
DSP System Toolbox™
Reference

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

DSP System Toolbox™ Reference
© COPYRIGHT 2012–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
April 2011 Online only Revised for Version 8.0 (R2011a)
September 2011 Online only Revised for Version 8.1 (R2011b)
March 2012 Online only Revised for Version 8.2 (R2012a)
September 2012 Online only Revised for Version 8.3 (R2012b)
March 2013 Online only Revised for Version 8.4 (R2013a)
September 2013 Online only Revised for Version 8.5 (R2013b)
March 2014 Online only Revised for Version 8.6 (R2014a)
October 2014 Online only Revised for Version 8.7 (R2014b)
March 2015 Online only Revised for Version 9.0 (R2015a)
September 2015 Online only Revised for Version 9.1 (R2015b)
March 2016 Online only Revised for Version 9.2 (R2016a)
September 2016 Online only Revised for Version 9.3 (R2016b)
March 2017 Online only Revised for Version 9.4 (R2017a)
September 2017 Online only Revised for Version 9.5 (R2017b)
March 2018 Online only Revised for Version 9.6 (R2018a)
September 2018 Online only Revised for Version 9.7 (R2018b)
March 2019 Online only Revised for Version 9.8 (R2019a)
September 2019 Online only Revised for Version 9.9 (R2019b)
March 2020 Online only Revised for Version 9.10 (R2020a)
September 2020 Online only Revised for Version 9.11 (R2020b)
March 2021 Online only Revised for Version 9.12 (R2021a)
September 2021 Online only Revised for Version 9.13 (R2021b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps
1

Blocks
2

Analysis Methods for Filter System Objects
3

Analysis Methods for Filter System Objects . 3-2

System Objects
4

Functions
5

Reference for the Properties of Filter Objects
6

Multirate Filter Properties . 6-2
Compatibility . 6-2
Property Summaries . 6-2
Property Details for Multirate Filter Properties . 6-5
References for Multirate Filters . 6-12

iii

Contents

Apps

1

Filter Builder
Design filters starting with frequency and magnitude specifications (filterBuilder)

Description
The Filter Builder app provides a graphical user interface to design filters using the fdesign
object. The first step is to choose the filter response. Based on the response you choose, the
algorithm, constraints, and the design parameter settings appear on the Main tab of the user
interface. You can further specify the precision and data types in the Data Types tab. The Code
Generation tab contains options for various implementations of the completed filter design. Once
you specify all the filter parameters and the design algorithm, you can visualize the filter response by
clicking on the View Filter Response button. When you click on this button, fvtool opens to
display the magnitude response of the filter. When you have achieved the desired filter response
through iterations of design and analysis, click OK. When you click OK, the app exports the filter
object to the base workspace. If you select the Use a System object to implement filter check box
in the user interface, the app exports a filter System object™. For more information on the design
process using the Filter Builder app, see “Filter Builder Design Process”. For details on each of the
response methods and settings of all the associated parameters, see filterBuilder.

1 Apps

1-2

Open the Filter Builder App
• MATLAB® Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

 app icon.
• MATLAB command prompt: Enter filterBuilder.

 Filter Builder

1-3

• MATLAB command prompt: Enter filterBuilder(obj), where obj is an existing filter object.
For example, if obj is a bandpass filter, filterBuilder(obj) opens the bandpass filter design
dialog. The obj object must have been created using filterBuilder or using fdesign.

• MATLAB command prompt: Enter filterBuilder('response') to replace response with a
supported response method. MATLAB opens a filter design dialog that corresponds to the
specified response. For details on the supported response methods, see filterBuilder.

Examples
• “Filter Builder Design Process”
• “Lowpass FIR Filter Design”

See Also
Apps
Window Designer | Filter Designer

Functions
filterBuilder | designfilt | fvtool | wvtool

Topics
“Filter Builder Design Process”
“Lowpass FIR Filter Design”

Introduced before R2006a

1 Apps

1-4

Logic Analyzer
Visualize, measure, and analyze transitions and states over time

Description
The Logic Analyzer is a tool for visualizing and inspecting signals and states in your Simulink®

model. Using the Logic Analyzer, you can:

• Debug and analyze models
• Trace and correlate many signals simultaneously
• Detect and analyze timing violations
• Trace system execution
• Detect signal changes using triggers

For keyboard shortcuts, click More.

Keyboard Shortcuts

Actions Description Applicable When
Ctrl+X Cut Wave is selected
Ctrl+C Copy Wave is selected
Ctrl+V Paste Wave is selected
Delete Delete Wave is selected
Ctrl+- Zoom out Always
Shift+Ctrl+- Zoom out around active cursor Always
Ctrl++ Zoom in Always
Shift+Ctrl++ Zoom out around active cursor Always
Shift+Ctrl+C Move display to active cursor When cursor is not in the

display range
Space Zoom out full Always
Tab, Right Arrow Next transition Digital format wave is selected
Shift+Tab, Left Arrow Previous transition Digital format wave is selected
Ctrl+A Select all waves Always
Up Arrow Select wave above selected Wave is selected
Down Arrow Select wave below selection Wave is selected
Ctrl+Up Arrow Move selected waves up Wave is selected
Ctrl+Down Arrow Move selected waves down Wave is selected
Escape Unselect all signals Wave is selected
Page Up Scroll up Always
Page Down Scroll down Always

 Logic Analyzer

1-5

Open the Logic Analyzer App
On the Simulink toolstrip Simulation tab, click the Logic Analyzer app button. If the button is not
displayed, expand the review results app gallery. Your most recent choice for data visualization is
saved across Simulink sessions.

To visualize referenced models, you must open the Logic Analyzer from the referenced model. You
should see the name of the referenced model in the Logic Analyzer toolbar.

1 Apps

1-6

Examples
Select Signals to Analyze

The Logic Analyzer supports several methods for selecting data to visualize.

• Select a signal in your model. When you select a signal, an ellipsis appears above the signal line.
Hover over the ellipsis to view options and then select the Enable Data Logging option.

• Right-click a signal in your model to open an options dialog box. Select the Log Selected Signals
option.

• Use any method to select multiple signal lines in your model. For example, use Shift+click to
select multiple lines individually or CTRL+A to select all lines at once. Then, on the Signal tab,
select the Log Signals button.

 Logic Analyzer

1-7

To visualize data in the Logic Analyzer, you must enable signal logging for the model. (Logging is on
by default.) To enable signal logging, open Model Settings from the toolstrip, navigate to the Data
Import/Export pane, and select Signal logging.

When you open the Logic Analyzer, all signals marked for logging are listed. You can add and delete
waves from your Logic Analyzer while it is open. Adding and deleting signals does not disable
logging, only removes the signal from the Logic Analyzer.

Modify Global Settings

Open the Logic Analyzer and select Settings from the toolstrip. A global settings dialog box opens.
Any setting you change for an individual signal supersedes the global setting. The Logic Analyzer
saves any setting changes with the model (Simulink) or System object (MATLAB).

Set the display Radix of your signals as one of the following:

• Hexadecimal — Displays values as symbols from zero to nine and A to F
• Octal — Displays values as numbers from zero to seven
• Binary — Displays values as zeros and ones
• Signed decimal — Displays the signed, stored integer value
• Unsigned decimal — Displays the stored integer value

Set the display Format as one of the following:

• Automatic — Displays floating point signals in Analog format and integer and fixed-point signals
in Digital format. Boolean signals are displayed as zero or one.

1 Apps

1-8

• Analog — Displays values as an analog plot
• Digital — Displays values as digital transitions

Set the display Time Units to one of the following:

• Automatic — Uses a time scale appropriate to the time range shown in the current plot
• seconds
• milliseconds
• microseconds
• nanoseconds
• picoseconds
• femtoseconds

Set the Boolean Highlighting to one of the following:

• None
• Rows — Adds a highlighted background for the entire Boolean signal row.

Select Highlight boolean values to add highlighting to Boolean signals.
• Gradient— Adds color highlighting to Boolean signals based on value. If the signal value is true,

the highlight fades out below. If the signal value is false, the signal fades out above. With this
option, you can visually deduce the value of the signal.

Inspect the graphic for an explanation of the global settings: Wave Color, Axes Color, Height,
Font Size, and Spacing. Font Size applies only to the text within the axes.

 Logic Analyzer

1-9

By default, when your simulation stops, the Logic Analyzer shows all the data for the simulation time
on one screen. If you do not want this behavior, clear Fit to view at Stop. This option is disabled for
long simulation times.

To display the short names of waves without path information, select Display short wave names.

You can expand fixed-point and integer signals and view individual bits. The Display Least
Significant bit first option enables you to reverse the order of the displayed bits.

If you stream logged bus signals to the Logic Analyzer, you can display the names of the signals inside
the bus using the Display bus element names option. To show bus element names:

1 Add the bus signal for logging.
2 In the Logic Analyzer settings, select the Display bus element names check box.
3 Run the simulation.

When you expand the bus signals, you will see the bus signal names.

Some special situations:

• If the signal has no name, the Logic Analyzer shows the block name instead.
• If the bus is a bus object, the Logic Analyzer shows the bus element names specified in the Bus

Object Editor.
• If one of the bus elements contains an array, each element of the array is appended with the

element index.

1 Apps

1-10

• If a bus element contains an array with complex elements, the real and complex values (i) are
split.

• Bus signals passed through a Gain block are labeled Gain(1), Gain(2),...Gain(n).
• If the bus contains an array of buses, the Logic Analyzer prepends the element name with the bus

array index.

Modify Individual Wave Settings

Open the Logic Analyzer and select a wave by double-clicking the wave name. Then from the Wave
tab, set parameters specific to the individual wave you selected. Any setting made on individual
signals supersedes the global setting. To return individual wave parameters to the global settings,
click Reset.

 Logic Analyzer

1-11

Delete and Restore Waves

1 Open the Logic Analyzer and select a wave by clicking the wave name.

2 From the Logic Analyzer toolstrip, click . The wave is removed from the Logic Analyzer.
3 To restore the wave, from the Logic Analyzer toolstrip, click .

A divider named Restored Waves is added to the bottom of your channels, with all deleted
waves placed below it.

1 Apps

1-12

Add Trigger

The Logic Analyzer trigger allows you to find data points based on certain conditions. This feature is
useful for debugging or testing when you need to find a specific signal change.

1 Open the Logic Analyzer and select the Trigger tab.

2 To attach a signal to the trigger, select Attach Signals, then select the signal you want to trigger
on. You can attach up to 20 signals to the trigger. Each signal can have only one triggering
condition.

3 By default, the trigger looks for rising edges in the attached signals. You can set the trigger to
look for rising or falling edges, bit sequences, or a comparison value. To change the triggering
conditions, select Set Conditions.

If you add multiple signals to the trigger, control the trigger logic using the Operator option:

• AND - match all conditions.
• OR - match any condition.

4 To control how many samples you see before triggering, set the Display Samples option. For
example, if you set this option to 500, the Logic Analyzer tries to give you 500 samples before
the trigger. Depending on the simulation, the Logic Analyzer may show more or fewer than 500
samples before the trigger. However, if the trigger is found before the 500th sample, the Logic
Analyzer still shows the trigger.

5 Control the trigger mode using Display Mode.

• Once - The Logic Analyzer marks only the first location matching the trigger conditions and
stops showing updates to the Logic Analyzer. If you want to reset the trigger, select Rearm
Trigger. Relative to the current simulation time, the Logic Analyzer shows the next
matching trigger event.

• Auto - The Logic Analyzer marks every location matching the trigger conditions.

 Logic Analyzer

1-13

6 Before running the simulation, select Enable Trigger. A blue cursor appears as time 0. Then,
run the simulation. When a trigger is found, the Logic Analyzer marks the location with a locked
blue cursor.

Choose Visible Instance of Multi-Reference Model Block

The Logic Analyzer can stream only a single instance of a multi-instance Model block. If the same
model is opened across different windows, those models will share the same Logic Analyzer. This
example shows how to select an instance of a multi-instance Model block for logging on the Logic
Analyzer.

Open the multipleModelInstances model.

open_system('multipleModelInstances')

The model contains three instances of the referencedModel model.

Double-click any of the Model blocks to open the model referenced by all three Model blocks.

open_system('referencedModel')

1 Apps

1-14

Open the Logic Analyzer in the referenced model by double-clicking the logging symbol next to the
MovingAverage block. You should see referencedModel - [multipleModelInstances] in the
toolbar of the Logic Analyzer.

From the Logic Analyzer window, run the model. By running the simulation from a referenced version
of referencedModel, Simulink runs the top model (multipleModelInstances) and referenced
models (referencedModel). The Logic Analyzer displays a single instance of a multi-instance
Model block.

When you run a simulation, the logic analyzer runs the model listed in the Logic Analyzer toolbar. If
this model is a referenced model, the toolbar also lists the top model and you will see results from

 Logic Analyzer

1-15

running the top model. To view results from the referenced model in isolation, you must open the
referenced model as a top model.

To switch between instances, from the Simulink Editor menu, on the Simulation tab open the Prepare
gallery and select Normal Mode Diagram > Subsystem & Model Reference > Model Block
Normal Mode Visibility. Select Model Instance 3 and then click OK.

Run the multipleModelInstances model again. The Logic Analyzer displays Model Instance
3 data.

View Bit-Expanded Wave and Reverse Display Order of Bits

The Logic Analyzer enables you to bit-expand fixed-point and integer waves.

1 Apps

1-16

1 In the Logic Analyzer, click the arrow next to a fixed-point or integer wave to view the bits.

The least significant bit and the most significant bit are marked with lsb and msb next to the
wave names.

 Logic Analyzer

1-17

2 Click Settings, and then select Display Least Significant bit first to reverse the order of the
displayed bits.

1 Apps

1-18

Add Triggers to Verify Write Operation

This example shows how to use a trigger to verify that the signals are matching the design.

1 Open the Programmable FIR Filter model (dspprogfirhdl).

 Logic Analyzer

1-19

matlab:dspprogfirhdl

2 Open the Logic Analyzer and select the Trigger tab.
3 To add a trigger, in the toolstrip, select Attach Signals and attach the write enable Write En

signal. An icon appears in front of the signal name to indicate it is attached to a trigger. The icon
changes depending on the type of trigger.

4 Select Set Conditions and change the trigger condition for the Write En signal to Falling
Edge. The trigger will show when the write enable signal was sent.

5 Attach the Write Done signal to the trigger. Keep the trigger condition for this signal as the
default, Rising Edge. Now, the trigger will also show when the write was completed.

If you open the Set Conditions drop down, you see an Operator field. This field appears when
multiple signals are attached to the trigger. Change the operator to OR so that the trigger will
show instances where a write was started or completed.

1 Apps

1-20

6 Set the Display Mode to Auto. With this setting, the Logic Analyzer marks all locations where
the trigger conditions are met.

7 Select Enable Trigger and run the simulation.

Each time the trigger conditions are met, the Logic Analyzer marks the time with a locked blue
cursor. At each marked location, Write En is 0 and Write Done is 1. If you examine each
location marked by a trigger, you can verify that each time a write is sent, it is also completed.

 Logic Analyzer

1-21

Limitations
Logging Settings

• If you enable the configuration parameter Log Dataset data to file, you cannot stream logged
data to the Logic Analyzer.

• Signals marked for logging using Simulink.sdi.markSignalForStreaming or visualized with
a Dashboard Scope do not appear on the Logic Analyzer.

• You cannot visualize Data Store Memory block signals in the Logic Analyzer if you set the Log
data store data parameter to on.

Input Signal Limitations

• Signals marked for logging for the Logic Analyzer must have fewer than 8000 samples per
simulation step.

• The Logic Analyzer does not support frame-based processing.
• For 64-bit integers and fixed-point numbers greater than 53 bits, if the numbers are greater than

the maximum value of double precision, the transitions between numbers might not display
correctly.

• You may see performance degradation in the Logic Analyzer for large matrices (greater than 500
elements) and buses with more than 1000 signals.

1 Apps

1-22

• The Logic Analyzer does not support Stateflow data output.

Graphical Settings

• While the simulation is running, you cannot zoom, pan, or modify the trigger.
• To visualize constant signals, in the settings, you must set the Format to Digital. Constants

marked for logging are visualized as a continuous transition.

Supported Simulation Modes

Mode Suppor
ted

Notes and Limitations

Normal Yes
Accelerator Yes You cannot use the Logic Analyzer to visualize signals in Model blocks

with Simulation mode set to Accelerator.
Rapid
Accelerator

Yes Data is not available in the Logic Analyzer during simulation.

If you simulate a model with the simulation mode set to rapid accelerator,
after simulation the following signals cannot be visualized in the Logic
Analyzer:

• Multi-instance model reference signals
• Nonvirtual bus signals

Processor-in-
the-loop (PIL)

No

Software-in-the-
loop (SIL)

No

External No

For more information about these modes, see “How Acceleration Modes Work” (Simulink).

See Also
Objects
dsp.LogicAnalyzer

Topics
“Inspect and Measure Transitions Using the Logic Analyzer”
“Visualizing Multiple Signals Using Logic Analyzer”
“Partly Serial Systolic FIR Filter Implementation”
“Fully Parallel Systolic FIR Filter Implementation”
“Programmable FIR Filter for FPGA” (HDL Coder)
“Log Simulation Output for States and Data” (Stateflow)
“View Stateflow States in the Logic Analyzer” (Stateflow)

Introduced in R2016b

 Logic Analyzer

1-23

Blocks

2

Allpass Filter
Single-section or multiple-section allpass filter
Library: DSP System Toolbox / Filtering / Filter Implementations

Description
The Allpass Filter block filters each channel of the input signal independently using a single-section
or multiple-section (cascaded) allpass filter. You can implement the allpass filter using a minimum
multiplier, wave digital filter, or a lattice structure.

In minimum multiplier form, the block uses the minimum number of required multipliers, n, with 2n
delay units and 2n adders. In wave digital filter form, the block uses only n multipliers and n delay
units, at the expense of 3n adders. The lattice structure uses 2n multipliers, n delay units, and 2n
adders. For more details on these structures, see “Algorithms” on page 2-7.

Input/Output Ports
Input

x — Input data
column vector | row vector | matrix

Input data that is passed into the allpass filter. The block accepts real-valued or complex-valued
multichannel inputs, that is, m-by-n size inputs, where m ≥ 1 and n ≥ 1. The block also accepts
variable-size inputs. That is, you can change the size of each input channel during simulation.
However, the number of channels cannot change.

This port is unnamed until you set Internal allpass structure to Minimum multiplier or
Lattice, and select the Specify coefficients from input port parameter.
Data Types: single | double

coeffs — Allpass filter coefficients
column vector | row vector | matrix

This port inputs the coefficients of the allpass filter. When you set Internal allpass structure to
Minimum multiplier, the coeffs port accepts matrices of size N-by-1 or N-by-2. When you set
Internal allpass structure to Lattice, the coeffs port accepts an N-by-1 column vector or an 1-by-
N row vector.

Dependencies

This port appears when you set Internal allpass structure to Minimum multiplier or Lattice,
and select the Specify coefficients from input port parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

2 Blocks

2-2

Output

Port_1 — Output of the allpass filter
column vector | row vector | matrix

The size of the filtered output matches the size of the input.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Internal allpass structure — Filter structure
Minimum multiplier (default) | Wave Digital Filter | Lattice

• Minimum multiplier — This structure uses the minimum number of required multipliers, n,
with 2n delay units and 2n adders. The coefficients to this structure are specified through the
Allpass polynomial coefficients parameter.

• Wave Digital Filter — The structure uses n multipliers and n delay units, at the expense of
3n adders. The coefficients to this structure are specified through the Wave Digital Filter
allpass coefficients parameter.

• Lattice — The structure uses 2n multipliers, n delay units, and 2n adders. The coefficients to
this structure are specified through the Lattice allpass coefficients parameter.

For more details on these structures, see “Algorithms” on page 2-7.

Specify coefficients from input port — Flag to specify allpass polynomial coefficients
off (default) | on

When you select this check box and set Internal allpass structure to Minimum multiplier, the
allpass polynomial coefficients are input through the coeffs port. When you clear this check box, the
allpass polynomial coefficients are specified on the block dialog through the Allpass polynomial
coefficients parameter.

When you select this check box and set Internal allpass structure to Lattice, the lattice allpass
coefficients are input through the coeffs port. When you clear this check box, the lattice allpass
coefficients are specified on the block dialog through the Lattice allpass coefficients parameter.
Dependencies

This parameter applies when you set Internal allpass structure to Minimum multiplier or
Lattice.

Allpass polynomial coefficients — Coefficients in minimum multiplier form
[-2^(-1/2), 1/2] (default) | N-by-1 matrix | N-by-2 matrix

Specify the real allpass polynomial filter coefficients in minimum multiplier form as an N-by-1 matrix
or an N-by-2 matrix.

• N-by-1 matrix — The block realizes N first-order allpass sections.
• N-by-2 matrix — The block realizes N second-order allpass sections.

The default value, [-2^(-1/2), 1/2], defines a stable second-order allpass filter with poles and
zeros at ±π/3 in the z-plane.

 Allpass Filter

2-3

Tunable: Yes

Dependencies

To enable this parameter, set Internal allpass structure to Minimum multiplier and clear the
Specify coefficients from input port parameter.

Wave Digital Filter allpass coefficients — Coefficients in wave digital filter form
[1/2, -2^(1/2)/3] (default) | N-by-1 matrix | N-by-2 matrix

Specify the real allpass filter coefficients in wave digital filter form. The coefficients can be N-by-1
matrix for N first-order allpass sections and N-by-2 matrix for N second-order allpass sections. The
default value, [1/2, -2^(1/2)/3], is a transformed version of the default value of allpass
polynomial coefficients. This value is computed using allpass2wdf(Allpass polynomial
coefficients). These coefficients define the same stable second-order allpass filter as when the
allpass structure is set to Minimum multiplier.

Tunable: Yes

Dependencies

To enable this parameter, set Internal allpass structure to Wave Digital Filter.

Indicate if last section is first order — Is last section first order
off (default) | on

• on — When you set select this check box, the last section is considered first order. Also, the second
element of the last row of the N-by-2 matrix is ignored.

• off — When you do not select this check box, the last section is considered second-order.

Dependencies

To enable this parameter, set Internal allpass structure to Minimum multiplier or Wave
Digital Filter.

Lattice allpass coefficients — Coefficients in lattice form
[-2^(1/2)/3, 1/2] (default) | N-by-1 column vector | 1-by-N row vector

Specify the real or complex allpass coefficients as lattice reflection coefficients. The default value,
[-2^(1/2)/3, 1/2], is a transformed and transposed version of the default value of the allpass
polynomial coefficients. This value is computed using transpose(tf2latc(1, [1 A])), where A
is the value specified in Allpass polynomial coefficients.

Tunable: Yes

Dependencies

To enable this parameter, set Internal allpass structure to Lattice and clear the Specify
coefficients from input port parameter.

View Filter Response — Visualize filter response
button

Opens the Filter Visualization Tool, fvtool, and displays the magnitude response of the allpass filter.
The response is based on the parameters. Changes made to these parameters update fvtool.

2 Blocks

2-4

To update the magnitude response while fvtool is running, modify the block parameters and click
Apply.

To view the magnitude response and phase response simultaneously, click the Magnitude and
Phase responses button on the toolbar.

 Allpass Filter

2-5

In this example, the magnitude response is flat and the phase response varies with frequencies. This
varying phase response has applications in phase equalization, notch filtering, and multirate filtering.
You can realize a lowpass filter using a parallel combination of two allpass filters that have 180
degrees of phase shift with respect to each other.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster simulation speed
than Interpreted execution.

• Interpreted execution

2 Blocks

2-6

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals Yes

Algorithms
The transfer function of an allpass filter is given by

H(z) = c(n) + c(n− 1)z−1 + ... + z−n

1 + c(1)z−1 + ... + c(n)z−n .

c is allpass polynomial coefficients vector. The order, n, of the transfer function is the length of vector
c.

In the minimum multiplier form and wave digital form, the allpass filter is implemented as a cascade
of either second-order (biquad) sections or first-order sections. When the coefficients are specified as
an N-by-2 matrix, each row of the matrix specifies the coefficients of a second-order filter. The last
element of the last row can be ignored based on the trailing first-order setting. When the coefficients
are specified as an N-by-1 matrix, each element in the matrix specifies the coefficient of a first-order
filter. The cascade of all the filter sections forms the allpass filter.

In the lattice form, the coefficients are specified as a vector.

These structures are computationally more economical and structurally more stable compared to the
generic IIR filters, such as df1, df1t, df2, df2t. For all structures, the allpass filter can be a single-
section or a multiple-section (cascaded) filter. The different sections can have different orders, but
they are all implemented according to the same structure.

Minimum Multiplier

This structure realizes the allpass filter with the minimum number of required multipliers, equal to
the order n. It also uses 2n delay units and 2n adders. The multipliers uses the specified coefficients,
which are equal to the polynomial vector c in the allpass transfer function. In this second-order
section of the minimum multiplier structure, the coefficients vector, c, is equal to [0.1 -0.7].

 Allpass Filter

2-7

Wave Digital Filter

This structure uses n multipliers, but only n delay units, at the expense of requiring 3n adders. To use
this structure, specify the coefficients in wave digital filter (WDF) form. Obtain the WDF equivalent of
the conventional allpass coefficients using allpass2wdf(allpass_coefficients). To convert
WDF coefficients into the equivalent allpass polynomial form, use wdf2allpass(WDF
coefficients). In this second-order section of the WDF structure, the coefficients vector w is equal
to allpass2wdf([0.1 -0.7]).

2 Blocks

2-8

Lattice

This lattice structure uses 2n multipliers, n delay units, and 2n adders. To use this structure, specify
the coefficients as a vector.

You can obtain the lattice equivalent of the conventional allpass coefficients using
transpose(tf2latc(1, [1 allpass_coefficients])). In the following second-order section
of the lattice structure, the coefficients vector is computed using transpose(tf2latc(1, [1 0.1
-0.7])). Use these coefficients for a filter that is functionally equivalent to the minimum multiplier
structure with coefficients [0.1 -0.7].

References
[1] Regalia, Philip A., Sanjit K. Mitra, and P.P.Vaidyanathan. “The Digital All-Pass Filter: A Versatile

Signal Processing Building Block.” Proceedings of the IEEE. 76, no. 1 (1988): 19–37.

[2] Lutovac, M., D. Tosic, and B. Evans. Filter Design for Signal Processing Using MATLAB and
Mathematica. Upper Saddle River, NJ: Prentice Hall, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Allpass Filter

2-9

See Also
Blocks
Biquad Filter | IIR Halfband Decimator | IIR Halfband Interpolator

Objects
dsp.AllpassFilter | dsp.BiquadFilter | dsp.CoupledAllpassFilter | dsp.IIRFilter |
dsp.IIRHalfbandDecimator | dsp.IIRHalfbandInterpolator

Introduced in R2016b

2 Blocks

2-10

Allpole Filter
Model allpole filters

Library
Filtering / Filter Implementations

dsparch4

Description
The Allpole Filter block independently filters each channel of the input signal with the specified
allpole filter. The block can implement static filters with fixed coefficients, as well as time-varying
filters with coefficients that change over time. You can tune the coefficients of a static filter during
simulation.

This block filters each channel of the input signal independently over time. The Input processing
parameter allows you to specify whether the block treats each element of the input as an independent
channel (sample-based processing), or each column of the input as an independent channel (frame-
based processing).

This block supports the Simulink state logging feature. See “State” (Simulink) in the Simulink User's
Guide for more information.

Filter Structure Support

You can change the filter structure implemented with the Allpole Filter block by selecting one of the
following from the Filter structure parameter:

• Direct form
• Direct form transposed
• Lattice AR

Specifying Initial States

The Allpole Filter block initializes the internal filter states to zero by default, which has the same
effect as assuming that past inputs and outputs are zero. You can optionally use the Initial states
parameter to specify nonzero initial conditions for the filter delays.

To determine the number of initial states you must specify and how to specify them, see the table on
valid initial states. The Initial states parameter can take one of the forms described in the next
table.

 Allpole Filter

2-11

Valid Initial States

Initial Condition Description
Scalar The block initializes all delay elements in the filter to the scalar value.
Vector or matrix
(for applying different delay
elements to each channel)

Each vector or matrix element specifies a unique initial condition for a
corresponding delay element in a corresponding channel:

• The vector length equals the product of the number of input channels and
the number of delay elements in the filter, #_of_filter_coeffs-1 (or
#_of_reflection_coeffs for Lattice AR).

• The matrix must have the same number of rows as the number of delay
elements in the filter, #_of_filter_coeffs-1
(#_of_reflection_coeffs for Lattice AR), and must have one column
for each channel of the input signal.

Data Type Support
The Allpole Filter block accepts and outputs real and complex signals of any numeric data type
supported by Simulink. The block supports the same types for the coefficients.

The following diagrams show the filter structure and the data types used within the Allpole Filter
block for fixed-point signals.

Direct Form

You cannot specify the state data type on the block mask for this structure because the output states
have the same data types as the output.

2 Blocks

2-12

 Allpole Filter

2-13

Direct Form Transposed

States are complex when either the inputs or the coefficients are complex.

2 Blocks

2-14

 Allpole Filter

2-15

2 Blocks

2-16

Lattice AR

Dialog Box
The Main pane of the Allpole Filter block dialog box appears as follows.

 Allpole Filter

2-17

Coefficient source
Select whether you want to specify the filter coefficients on the block mask or through an input
port.

Filter structure
Select the filter structure you want the block to implement. You can select Direct form,
Direct form transposed, or Lattice AR.

Coefficients
Specify the row vector of coefficients of the filter's transfer function.

This parameter is visible only when you set the Coefficient source to Dialog parameters.
Input processing

Specify whether the block performs sample- or frame-based processing. You can select one of the
following options:

• Elements as channels (sample based) — Treat each element of the input as an
independent channel (sample-based processing).

• Columns as channels (frame based) — Treat each column of the input as an
independent channel (frame-based processing).

2 Blocks

2-18

Initial states
Specify the initial conditions of the filter states. To learn how to specify initial states, see
“Specifying Initial States” on page 2-11.

The Data Types pane of the Allpole Filter block dialog box appears as follows.

Coefficients
Specify the coefficient data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• A built-in integer, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Coefficient parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

 Allpole Filter

2-19

Coefficients minimum
Specify the minimum value that a filter coefficient should have. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”
(Simulink))

• Automatic scaling of fixed-point data types

Coefficients maximum
Specify the maximum value that a filter coefficient should have. The default value is []
(unspecified). Simulink software uses this value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”
(Simulink))

• Automatic scaling of fixed-point data types

Product output
Specify the product output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Accumulator

Specify the accumulator data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
State

Specify the state data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• A built-in integer, for example, int8

2 Blocks

2-20

• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

This parameter is only visible when the selected filter structure is Lattice MA.

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the State parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Output

Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• A built-in data type, for example, int8
• A data type object, for example, a Simulink.NumericType object
• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in the Simulink User's Guide (Simulink) for more
information.

Output minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Integer rounding mode
Specify the rounding mode for fixed-point operations.

 Allpole Filter

2-21

Saturate on integer overflow

Action Reasons for Taking This
Action

What Happens for
Overflows

Example

Select this check
box.

Your model has possible
overflow and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

An overflow associated with
a signed 8-bit integer can
saturate to -128 or 127.

Do not select this
check box.

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors” (Simulink).

Overflows wrap to the
appropriate value that is
representable by the data
type.

The number 130 does not fit
in a signed 8-bit integer and
wraps to -126.

When you select this check box, saturation applies to every internal operation on the block, not
just the output or result. In general, the code generation process can detect when overflow is not
possible. In this case, the code generator does not produce saturation code.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Signed fixed point
• 8-, 16-, and 32-bit signed integers

See Also
Discrete FIR Filter DSP System Toolbox
Filter Realization Wizard DSP System Toolbox
filterDesigner DSP System Toolbox
fvtool Signal Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

2 Blocks

2-22

Introduced in R2011b

 Allpole Filter

2-23

Analog Filter Design
Design and implement analog filters
Library: DSP System Toolbox / Filtering / Filter Implementations

Description
The Analog Filter Design block designs and implements a Butterworth, Chebyshev type I, Chebyshev
type II, elliptic, or bessel filter in a highpass, lowpass, bandpass, or bandstop configuration.

You select the design and band configuration of the filter from the Design method and Filter
type drop-down lists in the dialog box. For each combination of design method and band
configuration, an appropriate set of secondary parameters is displayed. For more details, see
“Design/Band Combination Table” on page 2-28.

The Analog Filter Design block uses a state-space filter representation, and applies the filter using
the State-Space block in the Simulink Continuous library. All of the design methods use Signal
Processing Toolbox™ functions to design the filter.

The Analog Filter Design block is built on the filter design capabilities of Signal Processing Toolbox
software.

Note The Analog Filter Design block does not work with the Simulink discrete solver, which is
enabled when you set the Solver list to Discrete (no continuous states) in the Solver pane
of the Model Configuration Parameters dialog box. Select one of the continuous solvers (such as
ode4) instead.

Ports
Input

Port_1 — Input signal
scalar

Input signal to filter, specified as a sample-based, continuous-time, real-valued scalar value.
Data Types: double

Output

Port_1 — Output signal
scalar

Filtered signal, returned as a real double scalar value.
Data Types: double

2 Blocks

2-24

Parameters
Design method — Filter design
Butterworth (default) | Chebyshev I | Chebyshev II | Elliptic | Bessel

The filter design methods are:

• Butterworth — The magnitude response of a Butterworth filter is maximally flat in the passband
and monotonic overall. The Butterworth design uses the toolbox function butter.

• Chebyshev I — The magnitude response of a Chebyshev I filter is equiripple in the passband and
monotonic in the stopband. The Chebyshev I design uses the toolbox function cheby1.

• Chebyshev II — The magnitude response of a Chebyshev II filter is monotonic in the passband
and equiripple in the stopband. The Chebyshev II design uses the toolbox function cheby2.

• Elliptic — The magnitude response of an elliptic filter is equiripple in both the passband and
the stopband. The elliptic design uses the toolbox function ellip.

• Bessel — The magnitude response of a bessel filter is maximally flat in the passband and
monotonic overall. The filter has a maximally flat linear phase response. The bessel design uses
the function besself.

Tunable: Yes

Filter type — Filter type
Lowpass (default) | Highpass | Bandpass | Bandstop

The type of filter to design:

• Lowpass
• Highpass
• Bandpass
• Bandstop

Tunable: Yes

Filter order — Filter order
8 (default) | scalar value

The order of the filter when Filter type is set to:

• Lowpass
• Highpass

The order of the final filter is twice the value of Filter order when Filter type is set to:

• Bandpass
• Bandstop

.

Passband edge frequency (rad/s) — Passband edge frequency
30 (default) | scalar value

The passband edge frequency, in rad/s.

 Analog Filter Design

2-25

Tunable: Yes
Dependencies

This parameter appears only when Design method is set to:

• Butterworth
• Chebyshev I
• Elliptic
• Bessel

and Filter type is set to:

• Lowpass
• Highpass

Lower passband edge frequency (rad/s) — Lower passband edge frequency
30 (default) | scalar value

The lower passband edge frequency, specified in rad/s.

Tunable: Yes
Dependencies

This parameter appears only when Design method is set to:

• Butterworth
• Chebyshev I
• Elliptic
• Bessel

and Filter type is set to:

• Bandpass
• Bandstop

Upper passband edge frequency (rad/s) — Upper passband edge frequency
80 (default) | scalar value

The upper passband edge frequency, specified in rad/s.

Tunable: Yes
Dependencies

This parameter appears only when Design method is set to:

• Butterworth
• Chebyshev I
• Elliptic
• Bessel

and Filter type is set to:

2 Blocks

2-26

• Bandpass
• Bandstop

Stopband edge frequency (rad/s) — Stopband edge frequency
30 (default) | scalar value

The stopband edge frequency, specified in rad/s.

Tunable: Yes

Dependencies

This parameter appears only when Design method is set to:

• Chebyshev II

and Filter type is set to:

• Lowpass
• Highpass

Lower stopband edge frequency (rad/s) — Lower stopband edge frequency
30 (default) | scalar value

The lower stopband edge frequency, in rad/s.

Tunable: Yes

Dependencies

This parameter appears only when Design method is set to:

• Chebyshev II

and Filter type is set to:

• Bandpass
• Bandstop

Upper stopband edge frequency (rad/s) — Upper stopband edge frequency
80 (default) | scalar value

The upper stopband edge frequency, specified in rad/s.

Tunable: Yes

Dependencies

This parameter appears only when Design method is set to:

• Chebyshev II

and Filter type is set to:

• Bandpass
• Bandstop

 Analog Filter Design

2-27

Passband ripple in dB — Passband ripple
2 (default) | scalar value

The passband ripple, specified in dB.

Tunable: Yes

Dependencies

This parameter appears only when Design method is set to:

• Chebyshev I
• Elliptic

Stopband attenuation in dB — Stopband attenuation
40 (default) | scalar value

The stopband attenuation, in dB.

Tunable: Yes

Dependencies

This parameter appears only when Design method is set to:

• Chebyshev II
• Elliptic

Block Characteristics
Data Types double
Multidimensional
Signals

No

Variable-Size Signals No

More About
Design/Band Combination Table

This table lists the available parameters for each design/band combination. For lowpass and highpass
band configurations, these parameters include:

• The passband edge frequency Ωp.
• The stopband edge frequency Ωs

• The passband ripple Rp

• The stopband attenuation Rs

For bandpass and bandstop configurations, the parameters include:

• The lower and upper passband edge frequencies, Ωp1 and Ωp2

• The lower and upper stopband edge frequencies, Ωs1 and Ωs2

2 Blocks

2-28

• The passband ripple Rp

• The stopband attenuation Rs

Frequency values are in rad/s, and ripple and attenuation values are in dB.

Filter Design Type Lowpass Highpass Bandpass Bandstop
Butterworth Order, Ωp Order, Ωp Order, Ωp1, Ωp2 Order, Ωp1, Ωp2

Chebyshev Type I Order, Ωp, Rp Order, Ωp, Rp Order, Ωp1, Ωp2, Rp Order, Ωp1, Ωp2, Rp

Chebyshev Type
II

Order, Ωs, Rs Order, Ωs, Rs Order, Ωs1, Ωs2, Rs Order, Ωs1, Ωs2, Rs

Elliptic Order, Ωp, Rp, Rs Order, Ωp, Rp, Rs Order, Ωp1, Ωp2, Rp,
Rs

Order, Ωp1, Ωp2, Rp,
Rs

Bessel Order, Ωp Order, Ωp Order, Ωp1, Ωp2 Order, Ωp1, Ωp2

References
[1] Antoniou, A. Digital Filters: Analysis, Design, and Applications. 2nd ed. New York, NY: McGraw-

Hill, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is not recommended for production code generation.

Consider using the “Model Discretizer” (Simulink) to map this continuous block into a discrete
equivalent that supports code generation. To access the Model Discretizer, on the Apps tab, under
Apps, under Control Systems, click Model Discretizer.

See Also
Functions
besself | butter | cheby1 | cheby2 | ellip

Blocks
Digital Filter Design

Topics
“Filter Design”
“Filter Analysis”

Introduced before R2006a

 Analog Filter Design

2-29

Analytic Signal
Compute analytic signals of discrete-time inputs

Library
Transforms

dspxfrm3

Description
The Analytic Signal block computes the complex analytic signal corresponding to each channel of the
real M-by-N input, u

y = u + jH u

where j = −1 and H{ } denotes the Hilbert transform. The real part of the output in each channel is
a replica of the real input in that channel; the imaginary part is the Hilbert transform of the input. In
the frequency domain, the Fourier transform of the analytic signal doubles the positive frequency
content of the original signal while zeroing-out negative frequencies and retaining the DC component.

The block computes the Hilbert transform using an equiripple FIR filter with the order specified by
the Filter order parameter, n. The linear phase filter is designed using the Remez exchange
algorithm, and imposes a delay of n/2 on the input samples.

The output has the same dimensions as the input.

This block supports SIMD code generation. For details, see “Code Generation” on page 2-31.

Frame-Based Processing

When you set the Input processing parameter to Columns as channels (frame based), the
block performs frame-based processing. In this mode, the block treats an M-by-N matrix input as N
independent channels containing M sequential time samples. The block computes the analytic signal
for each channel over time.

Sample-Based Processing

When you set the Input processing parameter to Elements as channels (sample based), the
block performs sample-based processing. In this mode, the block treats an M-by-N matrix input as
M*N independent channels and computes the analytic signal for each channel (matrix element) over
time.

Parameters
Filter order

The length of the FIR filter used to compute the Hilbert transform.

2 Blocks

2-30

Input processing
Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) (default) — When you select this option, the block
treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

The Analytic Signal block supports SIMD code generation using Intel AVX2 technology under these
conditions:

• Input processing is set to Columns as channels (frame based).
• Input signal has to be real-valued.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

See Also
Topics
“SSB Modulation”

Introduced before R2006a

 Analytic Signal

2-31

Arbitrary Response Filter
Design arbitrary response filter

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

This block supports SIMD code generation. For details, see “Code Generation” on page 2-35.

Dialog Box
See “Arbitrary Response Filter Design — Main Pane” on page 5-573 for more information about the
parameters of this block. The Data Types and Code Generation panes are not available for blocks in
the DSP System Toolbox Filter Designs library.

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

In this group, you specify your filter format, such as the impulse response and the filter order.

Impulse response
Select either FIR or IIR from the drop down list, where FIR is the default. When you choose an
impulse response, the design methods and structures you can use to implement your filter change
accordingly.

Order mode
Select Minimum or Specify from the drop-down list. Selecting Specify enables the Order
option so you can enter the filter order. When you set the Impulse response to IIR, you can

2 Blocks

2-32

specify different numerator and denominator orders. To specify a different denominator order,
you must select the Denominator order check box.

Order
Enter the order for FIR filter, or the order of the numerator for the IIR filter.

Denominator order
Select the check box and enter the denominator order. This option is enabled only if IIR is
selected for Impulse response.

Filter type
This option is available for FIR filters only. Select Single-rate, Decimator, Interpolator, or
Sample-rate converter. Your choice determines the type of filter as well as the design
methods and structures that are available to implement your filter. By default, the block specifies
a single-rate filter.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default value is 2.

Interpolation Factor
Enter the interpolation factor. This option is enabled only if the Filter type is set to
Interpolator or Sample-rate converter. The default value is 2.

Response Specification

Number of Bands
Select the number of bands in the filter. Multiband design is available for both FIR and IIR filters.

Specify response as
Specify the response as Amplitudes, Magnitudes and phases, Frequency response, or
Group delay. Group delay is only available for IIR designs.

Frequency units
Specify frequency units as either Normalized, which means normalized by the input sampling
frequency, or select from Hz, kHz, MHz, or GHz.

Input sample rate
Enter the input sampling frequency in the units specified in the Frequency units drop-down list.
When you select the frequency units, this option is available.

Band Properties

These properties are modified automatically depending on the response chosen in the Specify
response as drop-down list. Two or three columns are presented for input. The first column is always
Frequencies. The other columns are Amplitudes, Magnitudes, Phases, or Frequency Response. Enter
the corresponding vectors of values for each column.

• Frequencies and Amplitudes — These columns are presented for input if the response chosen in
the Specify response as drop-down list is Amplitudes.

 Arbitrary Response Filter

2-33

• Frequencies, Magnitudes, and Phases — These columns are presented for input if the response
chosen in the Specify response as drop-down list is Magnitudes and phases.

• Frequencies and Frequency response — These columns are presented for input if the response
chosen in the Specify response as drop-down list is Frequency response.

Algorithm

Design Method
Select the design method for the filter. Different methods are enabled depending on the defining
parameters entered in the previous sections.

Design Options
The options for each design are specific for each design method. This section does not present all
of the available options for all designs and design methods. There are many more that you
encounter as you select different design methods and filter specifications.

• Window — Replace the square brackets with the name of a window window function or
function handle. For example, hamming or @hamming. If the window function takes
parameters other than the length, use a cell array. For example, {'kaiser',3.5} or
{@chebwin,60}.

• Density factor — Valid when the Design method is Equiripple. Density factor controls the
density of the frequency grid over which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid is the value you enter for
Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter
but increases the time required to design the filter. The default value of 16 represents a
reasonable trade-off between the accurate approximation to the ideal filter and the time to
design the filter.

• Phase constraint — Valid when the Design method is Equiripple, you have the DSP
System Toolbox installed, and Specify response as is set to Amplitudes. Choose one of
Linear, Minimum, or Maximum.

• Weights — Valid when the Design method is Equiripple. Uses the weights in Weights to
weight the error for a single-band design. If you have multiple frequency bands, the Weights
design option changes to B1 Weights, B2 Weights to designate the separate bands.

Filter Implementation

Structure
Select the structure for the filter, available for the corresponding design method.

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.

2 Blocks

2-34

• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single
delay by n.

• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in
Gain blocks.

Optimize for unit-scale values
Select this check box to scale unit gains between sections in SOS filters. This parameter is
available only for SOS filters.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Arbitrary Response Filter block supports SIMD code generation using Intel AVX2 technology
under these conditions:

 Arbitrary Response Filter

2-35

• Filter type is set to Single-rate, Decimator, or Interpolator.
• For Filter type that is set to Single-rate, Structure is set to Direct-form FIR or Direct-

form FIR transposed.
• For Filter type that is set to Decimator, Structure is set to Direct-form FIR polyphase

decimator and Rate options is set to Enforce single-rate processing.
• For Filter type that is set to Interpolator, Rate options is set to Enforce single-rate

processing.
• Input processing is set to Columns as channels (frame based).
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

Introduced in R2009b

2 Blocks

2-36

Array Plot
Display vectors or arrays
Library: DSP System Toolbox / Sinks

Description
The Array Plot block plots vectors or arrays of data.

The Array Plot is a vector plot where data is uniformly spaced along the x-axis. To modify the spacing,
change the Sample Increment property.

 Array Plot

2-37

Measurements available:

• Data Cursors — Measure signal values using vertical and horizontal cursors.
• Signal Statistics — Display the maximum, minimum, peak-to-peak difference, mean, median, and

RMS values of a selected signal.
• Peak Finder — Find maxima, showing the x-axis values at which they occur.

Ports
Input

Port_1 — Signal or signals to visualize
scalar | vector | matrix | array

Connect the signals you want to visualize. You can have up to 96 input ports. Input signals must have
these characteristics:

• Fixed number of channels, but size can be variable
• Discrete, continuous, or constant sample time
• Real or complex values
• Floating- or fixed-point data type
• 2-D and nonscalar

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Properties
For information about how to configure the Array Plot and use the toolstrip, see “Configure Array
Plot”.

Plot

Legend — Display signal legend
off (default) | on

Select this option to show the legend on the plot. The names listed in the legend are taken from the
Channel Names property.

From the legend, you can control which signals are visible. This control is equivalent to changing the
visibility in the Style properties. In the scope legend, click a signal name to hide the signal in the
scope. To show the signal, click the signal name again. To show only one signal, right-click the signal
name, which hides all other signals. To show all signals, press Esc.

Note The legend only shows the first 20 signals. Any additional signals cannot be controlled from the
legend.

Tunable: Yes

2 Blocks

2-38

Programmatic Use

Block Parameter: ShowLegend
Type: logical

Magnitude and Phase — Split display into magnitude and phase plots
off (default) | on

• On — Display magnitude and phase plots. If the signal is real, the scope plots the absolute value of
the signal for the magnitude. The phase is 0 degrees for positive values and 180 degrees for
negative values. This feature is useful for complex-valued input signals. If the input is a real-
valued signal, selecting this check box returns the absolute value of the signal for the magnitude.

• Off — Display signal plot. If the signal is complex, the scope plots the real and imaginary parts on
the same y-axis.

Tunable: Yes

Programmatic Use

Block Parameter: PlotAsMagnitudePhase
Type: logical

Measurements

For more information about the measurements, see “Use Array Plot Measurements”.

Settings

Data and Axes

X-Data Mode — Type of x-axis spacing
Sample increment and X-offset (default) | Custom

Select the type of spacing to use between x-axis data values.

• Sample increment and X-offset — Use the “Sample Increment” on page 2-0 and “X-Offset” on
page 2-0 values to specify x-axis data.

• Custom — Specify a custom spacing between data values using the “Custom X-data” on page 2-
0 property.

Programmatic Use

Block Parameter: XDataMode
Type: character vector or string scalar
Values: 'Sample increment and X-offset' | 'Custom'

Sample Increment — x-axis spacing
1 (default) | finite scalar

Specify the spacing between samples along the x-axis as a finite numeric scalar. The input signal is
only y-axis data. x-axis data is set automatically based on both the Sample Increment and “X-Offset”
on page 2-0 values.
Example: When X-Offset is 0 and Sample Increment is 1, the x-axis values are set to 0, 1, 2, 3, 4,
… .

 Array Plot

2-39

Example: When X-Offset is -1 and Sample Increment is 0.25, the x-axis values are set to -1, -0.75,
-0.5, -0.25, 0, … .

Tunable: Yes

Dependency

To use this property, set “X-Data Mode” on page 2-0 to Sample increment and X-offset.

Programmatic Use
Block Parameter: SampleIncrement
Type: character vector or string scalar
Values: scalar

X-Offset — x-axis offset
0 (default) | scalar

Specify the offset to apply to the x-axis, as a numeric scalar. x-axis data is set automatically based on
both the “Sample Increment” on page 2-0 and X-Offset values. The x-offset represents the first
value on the x-axis.
Example: When X-Offset is 0 and Sample Increment is 1, the x-axis values are set to 0, 1, 2, 3, 4,
… .
Example: When X-Offset is -1 and Sample Increment is 0.25, the x-axis values are set to -1, -0.75,
-0.5, -0.25, 0, … .

Tunable: Yes

Dependency

To use this property, set “X-Data Mode” on page 2-0 to Sample increment and X-offset.

Programmatic Use

Block Parameter: XOffset
Type: character vector or string scalar
Values: scalar

Custom X-data — x-axis data values
empty vector (default) | vector with length equal to the input frame length

Specify the x-axis data values as a vector equal in length to the frame length of the inputs. If you use
the default (empty vector) value, the x-axis data is uniformly spaced over the interval (0:L-1), where L
is the frame length.
Example: A custom logarithmic x-axis data scaling is [0:log10(44100/2):1024]

Tunable: Yes

Dependency

To use this property, set “X-Data Mode” on page 2-0 to Custom

Programmatic Use

Block Parameter: CustomXData
Type: character vector or string scalar

2 Blocks

2-40

Values: scalar
Default: '[]'

X-Axis Scale — x-axis scale
Linear (default) | Log

Select Linear or Log as the x-axis scale.

Tunable: Yes

Dependency

If X-Offset is a negative value, you cannot set this parameter to Log.

Programmatic Use

Block Parameter: XScale
Type: character vector or string scalar

Y-Axis Scale — y-axis scale
Linear (default) | Log

Select Linear or Log as the y-axis scale.

Tunable: Yes

Programmatic Use

Block Parameter: YScale
Type: character vector or string scalar

Y-limits — y-axis limits
[-10,10] (default) | [ymin, ymax]

Specify the y-axis limits as a two-element numeric vector, [ymin, ymax].

If Plot as Magnitude and Phase is off, the default is [-10,10]. If the magnitude/phase plot is on,
the default is [0,10].

Tunable: Yes

Dependencies

When PlotAsMagnitudePhase is true, this property specifies the y-axis limits of only the
magnitude plot. The y-axis limits of the phase plot are always [-180,180].

Programmatic Use

Block Parameter: YLimits
Type: character vector or string scalar
Value: two-element numeric vector

Plot Type — Type of plot
Stem (default) | Stairs | Line

• Stem — Stem graph displayed as circles at the input value with vertical lines to the x-axis.
• Line — Line graph

 Array Plot

2-41

• Stairs — Stair-step graph. A stair-step graph is made up of only horizontal and vertical lines.
Each horizontal line represents the signal value for a discrete sample period and is connected to
two vertical lines. Each vertical line represents the change in the signal value occurring at a
specific sample time.

Tunable: Yes
Programmatic Use

Block Parameter: PlotType
Type: character vector or string scalar

Grid — Show internal grid lines
on (default) | off

Select this option to show grid lines on the plot.

Tunable: Yes
Programmatic Use

Block Parameter: ShowGrid
Type: logical

Display and Labels

Title — Display name
none (default) | string

Specify a title for display. To use the input signal name for the title, enter %<SignalLabel>.

Tunable: Yes
Programmatic Use

Block Parameter: Title
Type: character vector or string scalar
Default: ''

X-Label — x-axis label
none (default) | string

Specify the text for the scope to display below the x-axis.

Tunable: Yes
Programmatic Use

Block Parameter: XLabel
Type: character vector or string scalar
Default: ''

Y-Label — Y-axis label
none (default) | string

Specify the text to display on the y-axis. To display signal units, add (%<SignalUnits>) to the label.
At the beginning of a simulation, Simulink replaces (%<SignalUnits>) with the units associated
with the signals.

2 Blocks

2-42

Example: For a velocity signal with units of m/s, enter Velocity (%<SignalUnits>).

Tunable: Yes

Dependency

If you select Plot as Magnitude and Phase, this property does not apply. The y-axes are labeled
Magnitude and Phase.

Programmatic Use

Block Parameter: YLabel
Type: character vector or string scalar
Default: ''

Property Inspector Only

Number of input ports — Number of input ports
1 (default) | integer between 1 and 96

The number of input ports to the block, specified as an integer between 1 and 96. To change the
number of input ports, drag a new input signal line to the block and the block will auto-create new
ports.

Programmatic Use

Block Parameter: NumInputPorts
Type: character vector or string scalar
Values: scalar between 1 and 96

Open at start of simulation — Automatically open scope at start
on (default) | off

Select this parameter to automatically open the Array Plot window when you run the simulation.

This parameter is only available from the Property Inspector.

Programmatic Use

Block Parameter: OpenAtSimulationStart
Type: logical

Channel Names — Input channel names
[] (default) | character vector | string | array of strings or character vectors.

Input channel names, specified as a character vector, string, or array of either. The names appear in
the legend, Settings, and Measurements panels. If you do not specify names, the channels are
labeled as Channel 1, Channel 2, etc.
Example: ["A","B"]

Dependency

To see channel names, set “Legend” on page 2-0 to true.

Programmatic Use

Block Parameter: ChannelNames

 Array Plot

2-43

Type: cell array of character vectors or string array

Maximize axes — Maximize size of plots
Auto (default) | Off | On

• Auto — If “Title” on page 2-0 and “Y-Label” on page 2-0 properties are not specified,
maximize all plots.

• On — Maximize all plots. Values in Title and Y-label are hidden.
• Off — Do not maximize plots.

Hover over the array plot to see the maximize axes button .

Tunable: Yes

Programmatic Use

Block Parameter: MaximizeAxes
Type: character vector or string scalar

Axes scaling — Y-axis scaling mode
OnceAtStop (default) | Manual | Auto | Updates

• OnceAtStop — Scale y-axis after the simulation is finished.
• Manual — Manually scale y-axis range with the Scale Y-axis Limits toolbar button.
• Auto — Scale y-axis range during and after simulation.
• Updates — Scale y-axis after the number of time steps specified in the “Number of updates” on

page 2-0 text box (100 by default). Scaling occurs only once during each run.

Tunable: Yes

Programmatic Use

Block Parameter: AxesScaling
Type: character vector or string scalar

Number of updates — Number of updates before scaling
10 (default) | integer

Set this property to delay auto scaling the y-axis.

Tunable: Yes

Dependency

To enable this property, set “Axes scaling” on page 2-0 to AfterNUpdates.

Programmatic Use

Block Parameter: AxesScalingNumUpdates
Type: character vector or string scalar
Values: scalar

2 Blocks

2-44

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block accepts fixed-point input, but converts it to double for display.

See Also
Blocks
Time Scope | Spectrum Analyzer

Objects
dsp.ArrayPlot

Topics
“Configure Array Plot”
Array Plot with Apple iOS Devices (Simulink Support Package for Apple iOS Devices)
“Array Plot with Android Devices”

Introduced in R2015b

 Array Plot

2-45

Array-Vector Add
Add vector to array along specified dimension

Library
Math Functions / Matrices and Linear Algebra / Matrix Operations

dspmtrx3

Description
The Array-Vector Add block adds the values in the specified dimension of the N-dimensional input
array A to the values in the input vector V.

The length of the input V must be the same as the length of the specified dimension of A. The Array-
Vector Add block adds each element of V to the corresponding element along that dimension of A.

Consider a 3-dimensional M-by-N-by-P input array A(i,j,k) and an N-by-1 input vector V. When the
Add along dimension parameter is set to 2, the output of the block Y(i,j,k) is

Y(i, j, k) = A(i, j, k) + V(j)

where

1 ≤ i ≤ M
1 ≤ j ≤ N
1 ≤ k ≤ P

The output of the Array-Vector Add block is the same size as the input array, A. This block accepts
real and complex floating-point and fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Array-Vector Add block for fixed-point
signals.

When you specify the vector V on the Main pane of the block mask, you must specify the data type
and scaling properties of its elements in the Vector (V) parameter on the Data Types tab. When the

2 Blocks

2-46

vector comes in through the block port, its elements inherit their data type and scaling from the
driving block.

You can set the vector, accumulator, and output data types in the block dialog as discussed below.

Parameters
Main Tab

Add along dimension
Specify the dimension along which to add the input array A to the elements of vector V.

Vector (V) source
Specify the source of the vector, V. The vector can come from the Input port or from a Dialog
parameter.

Vector (V)
Specify the vector, V. This parameter is visible only when you select Dialog parameter for the
Vector (V) source parameter.

Data Types Tab

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.

If Accumulator data type is Inherit: Inherit via internal rule and Output data type
is Inherit: Same as accumulator, the value of Rounding mode does not affect the
numerical results.

Note The Rounding mode and Saturate on integer overflow settings have no effect on
numerical results when both of these conditions are met:

• Accumulator is Inherit: Inherit via internal rule
• Output is Inherit: Same as accumulator

 Array-Vector Add

2-47

With these data type settings, the block is effectively operating in full precision mode.

Saturate on integer overflow
When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Vector (V)
Use this parameter to specify the word and fraction lengths for the elements of the vector, V. You
can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Note The Vector (V) parameter on the Data Types pane is only visible when you select Dialog
parameter for the Vector (V) source parameter on the Main pane of the block mask. When the
vector comes in through the block's input port, the data type and scaling of its elements are
inherited from the driving block.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-46 for a diagram
showing the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as first input.
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-46 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• A rule that inherits a data type, for example, Inherit: Same as first input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

2 Blocks

2-48

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Supported Data Types
Port Supported Data Types
A • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

V • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 Array-Vector Add

2-49

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Blocks
Array-Vector Divide | Array-Vector Multiply | Array-Vector Subtract

Introduced in R2007b

2 Blocks

2-50

Array-Vector Divide
Divide array by vector along specified dimension

Library
Math Functions / Matrices and Linear Algebra / Matrix Operations

dspmtrx3

Description
The Array-Vector Divide block divides the values in the specified dimension of the N-dimensional
input array A by the values in the input vector V.

The length of the input V must be the same as the length of the specified dimension of A. The Array-
Vector Divide block divides each element of V by the corresponding element along that dimension of
A.

Consider a 3-dimensional M-by-N-by-P input array A(i,j,k) and an N-by-1 input vector V. When the
Divide along dimension parameter is set to 2, the output of the block Y(i,j,k) is

Y(i, j, k) = A(i, j, k)
V(j)

where

1 ≤ i ≤ M
1 ≤ j ≤ N
1 ≤ k ≤ P

The output of the Array-Vector Divide block is the same size as the input array, A. This block accepts
real and complex floating-point and fixed-point input arrays, and real floating-point and fixed-point
input vectors.

Fixed-Point Data Types

The following diagram shows the data types used within the Array-Vector Divide block for fixed-point
signals.

 Array-Vector Divide

2-51

When you specify the vector V on the Main pane of the block mask, you must specify the data type
and scaling properties of its elements in the Vector (V) parameter on the Data Types tab. When the
vector comes in through the block port, its elements inherit their data type and scaling from the
driving block.

You can set the vector and output data types in the block dialog.

Parameters
Main Tab

Divide along dimension
Specify the dimension along which to divide the input array A by the elements of vector V.

Vector (V) source
Specify the source of the vector, V. The vector can come from the Input port or from a Dialog
parameter.

Vector (V)
Specify the vector, V. This parameter is visible only when you select Dialog parameter for the
Vector (V) source parameter.

Data Types Tab

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.
Saturate on integer overflow

When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Vector (V)
Use this parameter to specify the word and fraction lengths for the elements of the vector, V. You
can set this parameter to:

2 Blocks

2-52

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Vector (V) data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Note The Vector (V) parameter on the Data Types pane is only visible when you select Dialog
parameter for the Vector (V) source parameter on the Main pane of the block mask. When the
vector comes in through the block's input port, the data type and scaling of its elements are
inherited from the driving block.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-51 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as first input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

 Array-Vector Divide

2-53

Supported Data Types
Port Supported Data Types
A • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

V • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Blocks
Array-Vector Add | Array-Vector Multiply | Array-Vector Subtract

Introduced in R2007b

2 Blocks

2-54

Array-Vector Multiply
Multiply array by vector along specified dimension

Library
Math Functions / Matrices and Linear Algebra / Matrix Operations

dspmtrx3

Description
The Array-Vector Multiply block multiplies the values in the specified dimension of the N-dimensional
input array A by the values in the input vector V.

The length of the input V must be the same as the length of the specified dimension of A. The Array-
Vector Multiply block multiplies each element of V by the corresponding element along that
dimension of A.

Consider a 3-dimensional M-by-N-by-P input array A(i,j,k) and an N-by-1 input vector V. When the
Multiply along dimension parameter is set to 2, the output of the block Y(i,j,k) is

Y(i, j, k) = A(i, j, k) * V(j)

where

1 ≤ i ≤ M
1 ≤ j ≤ N
1 ≤ k ≤ P

The output of the Array-Vector Multiply block is the same size as the input array, A. This block accepts
real and complex floating-point and fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Array-Vector Multiply block for fixed-
point signals.

When you specify the vector V on the Main pane of the block mask, you must specify the data type
and scaling properties of its elements in the Vector (V) parameter on the Data Types tab. When the

 Array-Vector Multiply

2-55

vector comes in through the block port, its elements inherit their data type and scaling from the
driving block.

The output of the multiplier is in the product output data type when at least one of the inputs to the
multiplier is real. When both of the inputs to the multiplier are complex, the result of the
multiplication is in the accumulator data type. For details on the complex multiplication performed,
see “Multiplication Data Types”.

You can set the vector, accumulator, product output, and output data types in the block dialog as
discussed below.

Parameters
Main Tab

Multiply along dimension
Specify the dimension along which to multiply the input array A by the elements of vector V.

Vector (V) source
Specify the source of the vector, V. The vector can come from the Input port or from a Dialog
parameter.

Vector (V)
Specify the vector, V. This parameter is visible only when you select Dialog parameter for the
Vector (V) source parameter.

Data Types Tab

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.
Saturate on integer overflow

When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

2 Blocks

2-56

Vector (V)
Use this parameter to specify the word and fraction lengths for the elements of the vector, V. You
can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Note The Vector (V) parameter on the Data Types pane is only visible when you select Dialog
parameter for the Vector (V) source parameter on the Main pane of the block mask. When the
vector comes in through the block's input port, the data type and scaling of its elements are
inherited from the driving block.

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 2-55 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as first input.
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-55 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as first input.
• A rule that inherits a data type, for example, Inherit: Same as product output.
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

 Array-Vector Multiply

2-57

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-55 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as product output
• A rule that inherits a data type, for example, Inherit: Same as first input.
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Supported Data Types
Port Supported Data Types
A • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

V • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

2 Blocks

2-58

Port Supported Data Types
Output • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Blocks
Array-Vector Add | Array-Vector Divide | Array-Vector Subtract

Introduced in R2007b

 Array-Vector Multiply

2-59

Array-Vector Subtract
Subtract vector from array along specified dimension

Library
Math Functions / Matrices and Linear Algebra / Matrix Operations

dspmtrx3

Description
The Array-Vector Subtract block subtracts the values in the input vector V from the values in the
specified dimension of the N-dimensional input array A.

The length of the input V must be the same as the length of the specified dimension of A. The Array-
Vector Subtract block subtracts each element of V from the corresponding element along that
dimension of A.

Consider a 3-dimensional M-by-N-by-P input array A(i,j,k) and an N-by-1 input vector V. When the
Subtract along dimension parameter is set to 2, the output of the block Y(i,j,k) is

Y(i, j, k) = A(i, j, k)− V(j)

where

1 ≤ i ≤ M
1 ≤ j ≤ N
1 ≤ k ≤ P

The output of the Array-Vector Subtract block is the same size as the input array, A. This block
accepts real and complex floating-point and fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Array-Vector Subtract block for fixed-
point signals.

When you specify the vector V on the Main pane of the block mask, you must specify the data type
and scaling properties of its elements in the Vector (V) parameter on the Data Types tab. When the

2 Blocks

2-60

vector comes in through the block port, its elements inherit their data type and scaling from the
driving block.

The output of the subtractor is in the accumulator data type.

You can set the vector, accumulator, and output data types in the block dialog as discussed below.

Parameters
Main Tab

Subtract along dimension
Specify the dimension along which to subtract the elements of vector V from the input array A.

Vector (V) source
Specify the source of the vector, V. The vector can come from the Input port or from a Dialog
parameter.

Vector (V)
Specify the vector, V. This parameter is visible only when you select Dialog parameter for the
Vector (V) source parameter.

Data Types

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.

Note The Rounding mode and Saturate on integer overflow settings have no effect on
numerical results when both of these conditions are met:

• Accumulator is Inherit: Inherit via internal rule
• Output is Inherit: Same as accumulator

With these data type settings, the block is effectively operating in full precision mode.

 Array-Vector Subtract

2-61

Saturate on integer overflow
When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Vector (V)
Use this parameter to specify the word and fraction lengths for the elements of the vector, V. You
can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Note The Vector (V) parameter on the Data Types pane is only visible when you select Dialog
parameter for the Vector (V) source parameter on the Main pane of the block mask. When the
vector comes in through the block's input port, the data type and scaling of its elements are
inherited from the driving block.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-60 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as first input.
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-60 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• A rule that inherits a data type, for example, Inherit: Same as first input.
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

2 Blocks

2-62

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Supported Data Types
Port Supported Data Types
A • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

V • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

 Array-Vector Subtract

2-63

See Also
Blocks
Array-Vector Add | Array-Vector Divide | Array-Vector Multiply

Introduced in R2007b

2 Blocks

2-64

Audio Device Writer
Play to sound card
Library: Audio Toolbox / Sinks

DSP System Toolbox / Sinks

Description
The Audio Device Writer block writes audio samples to an audio output device.

Parameters of the Audio Device Writer block specify the driver, the device, and device attributes such
as sample rate and bit depth.

Data Flow of Audio Device Writer Block

• An audio signal frame is input to the Audio Device Writer block.
• The Audio Device Writer block uses the specified driver to pass the frame (device input) to your
specified audio device buffer.

• The audio device performs digital-to-analog conversion at the specified sample rate and bit depth.
• The audio device outputs an analog chunk to your speaker.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

If input to the Audio Device Writer block is of data type double or single, the block clips values
outside the range [–1, 1]. For other data types, the allowed input range is [min, max] of the specified
data type.
Data Types: single | double | int16 | int32 | uint8

 Audio Device Writer

2-65

Output

Port_1 — Number of samples underrun
scalar

This port outputs the number of samples underrun while writing a frame of data (one input matrix).
Dependencies

To enable this port, select the Output number of samples underrun parameter.
Data Types: uint32

Parameters
Main Tab

Driver — Driver used to access your audio device
DirectSound (default) | ASIO | WASAPI

• ASIO drivers do not come pre-installed on Windows machines. To use the ASIO driver option,
install an ASIO driver outside of MATLAB.

Note If Driver is set to ASIO, open the ASIO UI outside of MATLAB to set the sound card buffer
size to the frame size (number of rows) input to the Audio Device Writer block. See the
documentation of your ASIO driver for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI drivers,
supply an audio stream with a sample rate supported by your audio device.

This parameter applies only on Windows machines. Linux machines always use the ALSA driver. Mac
machines always use the CoreAudio driver.

To specify nondefault Driver values, you must install Audio Toolbox™. If the toolbox is not installed,
specifying nondefault Driver values returns an error.

Device — Device used to play audio samples
default audio device (default)

The device list is populated with devices available on your computer.

Info — View information about your audio output configuration
button

This button opens a dialog box that lists your selected audio driver, the full name of your audio
device, and the maximum output channels for your configuration. For example:

2 Blocks

2-66

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Sample rate (Hz).

Sample rate (Hz) — Sample rate used by device to play audio data
44100 (default) | positive scalar

The possible range of Sample rate (Hz) depends on your audio hardware.

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Device bit depth — Data type used by device to perform digital-to-analog conversion
16-bit integer (default) | 8-bit integer | 24-bit integer | 32-bit float

Before performing digital-to-analog conversion, the input data is cast to a data type specified by this
parameter.

Note To specify a nondefault Device bit depth, you must install Audio Toolbox. If the toolbox is not
installed, specifying a nondefault Device bit depth returns an error.

Use default channel mapping — Toggle channel mapping source
on (default) | off

When you select this parameter, the block uses the default mapping between columns of the matrix
input to this block and the channels of your device. When you clear this parameter, you specify the
mapping in Device output channels.

Device output channels — Specify nondefault channel mapping
[1:MaximumOutputChannels] (default) | scalar | vector

Nondefault mapping between columns of matrix input to the Audio Device Writer block and channels
of output device, specified as a scalar or vector. For example:

If Device output channels is specified as 1:3, then:

• The first column of the input matrix maps to channel 1.
• The second column of the input matrix maps to channel 2.
• The third column of the input matrix maps to channel 3.

If Device output channels is specified as [3,1,2], then:

• The first column of the input matrix maps to channel 3.
• The second column of the input matrix maps to channel 1.
• The third column of the input matrix maps to channel 2.

 Audio Device Writer

2-67

Note To selectively map between columns of the input matrix and your sound card's output channels,
you must install Audio Toolbox. If the toolbox is not installed, specifying nondefault values for Device
output channels returns an error.

Dependencies

To enable this parameter, clear the Use default mapping between columns of input of this block
and sound card’s output channels parameter.

Output number of samples underrun — Specify output port for number of samples
underrun
off (default) | on

When you select this parameter, an output port is added to the block. The port outputs the number of
samples underrun while writing a frame of data (one input matrix).

Block Characteristics
Data Types double | integera | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

a. Supports 16- and 32-bit signed and 8-bit unsigned integers.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The following code generation limitations apply:

• Host computer only. Excludes Simulink Desktop Real-Time™ code generation.
• The executable generated from this block relies on prebuilt dynamic library files (.dll files)

included with MATLAB. Use the packNGo function to package the code generated from this block
and all the relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and
rebuild your project in another development environment where MATLAB is not installed. For
more details, see “How To Run a Generated Executable Outside MATLAB”.

See Also
Binary File Reader | audioDeviceWriter | sound | audioplayer

Topics
“How To Run a Generated Executable Outside MATLAB”

Introduced in R2016a

2 Blocks

2-68

Audio Weighting Filter
Design audio weighting filter

Compatibility

Note The Audio Weighting Filter block will be removed from DSP System Toolbox in a future release.
Existing instances of the block continue to run. For new code, use the Audio Weighting Filter block
from Audio Toolbox instead.

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Dialog Box
See “Audio Weighting Filter Design — Main Pane” on page 5-576 for more information about the
parameters of this block. The Data Types and Code panes are not available for blocks in the DSP
System Toolbox Filter Designs library.

 Audio Weighting Filter

2-69

View Filter Response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

In this group, you specify your filter format, such as the impulse response and the filter order.

2 Blocks

2-70

Weighting type
The weighting type defines the frequency response of the filter. The valid weighting types for this
filter are A, C , C-message, ITU-R 468–4, and ITU-T 0.41. For definitions of the available
weighting types, see the fdesign.audioweighting reference page.

Class
The filter class describes the frequency-dependent tolerances specified in the relevant standards
[1], [2]. There are two possible class values: 1 and 2. Class 1 weighting filters have stricter
tolerances than class 2 filters. The filter class value does not affect the design. The class value is
only used to provide a specification mask in fvtool for the analysis of the filter design. The
default value of this parameter is 1.

The filter class is only applicable for A weighting and C weighting filters.
Impulse response

Specify the impulse response type as one of IIR or FIR. For A, C , C-message, and ITU-R 468–4
filter, IIR is the only option. For a ITU-T 0.41 weighting filter, FIR is the only option.

Frequency units
Specify the frequency units as Hertz (Hz), kilohertz (kHz), megahertz (MHz), or gigahertz (GHz).
Normalized frequency designs are not supported for audio weighting filters. The default value of
this parameter is Hz.

Input sample rate
Specify the input sampling frequency. The units correspond to the setting of the Frequency units
parameter.

Algorithm

Design Method
Valid design methods depend on the weighting type. For type A and C weighting filters, the only
valid design type is ANSI S1.42. This is an IIR design method that follows ANSI standard S1.42–
2001. For a C message filter, the only valid design method is Bell 41009, which is an IIR design
method following the Bell System Technical Reference PUB 41009. For a ITU-R 468–4 weighting
filter, you can design an IIR or FIR filter. If you choose an IIR design, the design method is IIR
least p-norm. If you choose an FIR design, the design method choices are Equiripple or
Frequency Sampling. For an ITU-T 0.41 weighting filter, the available FIR design methods are
Equiripple or Frequency Sampling.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. For audio weighting IIR filter designs, you can choose direct
form I or II biquad (SOS). You can also choose to implement these structures in transposed form.

For FIR designs, you can choose a direct form, direct-form transposed, direct-form symmetric, or
direct-form asymmetric structure.

 Audio Weighting Filter

2-71

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Optimize for unit-scale values
Select this check box to scale unit gains between sections in SOS filters. This parameter is
available only for SOS filters.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

For more information about sample- and frame-based processing, see “Sample- and Frame-Based
Concepts”.

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

References

[1] American National Standard Design Response of Weighting Networks for Acoustical
Measurements, ANSI S1.42-2001, Acoustical Society of America, New York, NY, 2001.

2 Blocks

2-72

[2] Electroacoustics Sound Level Meters Part 1: Specifications, IEC 61672-1, First Edition 2002-05.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
fdesign.audioweighting | filterbuilder | fvtool

Introduced in R2011b

 Audio Weighting Filter

2-73

Autocorrelation
Autocorrelation of N-D array
Library: DSP System Toolbox / Statistics

Description
The Autocorrelation block computes the autocorrelation along the first dimension of an N-D input
array. The computation can be done in the time domain or frequency domain. You can specify the
domain through the Computation domain parameter. In the time domain, the input signal is
convolved with its time-reversed complex conjugate. In the frequency domain, the block computes the
autocorrelation by taking the Fourier transform of the input signal, multiplying the Fourier transform
with its conjugate, and computing the inverse Fourier transform of the product. In this domain,
depending on the input length, the block can require fewer computations. For information on these
two computation methods, see “Algorithms” on page 2-79.

You can specify the maximum lag for autocorrelation using the Compute all non-negative lags and
Maximum non-negative lag (less than input length) parameters.

The block accepts fixed-point signals when you set the Computation domain to Time.

Ports
Input

Port_1 — Data input
vector | matrix | N-D array

Data input. The block accepts real-valued or complex-valued multichannel and multidimensional
inputs. The input can be a fixed-point signal when you set the Computation domain to Time.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Autocorrelated output
vector | matrix | N-D array

Autocorrelated output of the data input.

• When the input is an M-by-N matrix, u, the output, y, is an (l+1)-by-N matrix. l is the maximum
positive lag for autocorrelation.

• When the input is an N-D array, the block outputs an N-D array. The size of the first dimension is l
+1, and the sizes of all other dimensions match those of the input array. For example, when the
input is an M-by-N-by-P array, the block outputs an (l+1)-by-N-by-P array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

2 Blocks

2-74

Parameters
Main Tab

Compute all non-negative lags — Compute autocorrelation over all nonnegative lags
on (default) | off

When you select this parameter, the Autocorrelation block computes the autocorrelation over all
nonnegative lags in the range [0, length(input) – 1]. When you clear this parameter, the block
computes the autocorrelation using the lags in the range [0, l], where l is the value you specify in
Maximum non-negative lag (less than input length).

Maximum non-negative lag (less than input length) — Maximum positive lag
1 (default) | integer greater than or equal to 0 and less than input length

Maximum positive lag for autocorrelation, specified as an integer that is greater than or equal to 0
and less than the input length.
Dependencies

To enable this parameter, clear the Compute all non-negative lags parameter.

Scaling — Scaling of the output
None (default) | Biased | Unbiased | Unity at zero-lag

Scaling applied to the output.

• None — Generates the raw autocorrelation yi,j without normalization.
• Biased — Generates the biased estimate of the autocorrelation.

yi, j
biased =

yi, j
M

• Unbiased — Generates the unbiased estimate of the autocorrelation.

yi, j
unbiased =

yi, j
M − i

• Unity at zero-lag — Normalizes the estimate of the autocorrelation for each channel so that
the zero-lag sum, the first element in each column, is identically 1.

y0, j = 1

Computation domain — Domain in which the block computes the autocorrelation
Time (default) | Frequency

• Time — Computes the convolutions in the time domain, which minimizes the memory usage.
• Frequency — Computes the autocorrelation in frequency domain. For more information, see

“Algorithms” on page 2-79.

To autocorrelate fixed-point signals, set this parameter to Time.

Data Types Tab

Note Fixed-point signals are supported for the time domain only. To use these parameters, on the
Main tab, set Computation domain to Time.

 Autocorrelation

2-75

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numerical results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.
• Output data type is Inherit: Same as accumulator.

With these data type settings, the block operates in full-precision mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numeric results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in full-precision mode.

Product output — Product output data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt([],16,0)

Product output specifies the data type of the output of a product operation in the Autocorrelation
block. For more information on the product output data type, see “Multiplication Data Types” and the
'Fixed-Point Conversion' section in “Extended Capabilities” on page 2-0 .

• Inherit: Inherit via internal rule — The block inherits the product output data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

2 Blocks

2-76

• Inherit: Same as input — The block specifies the product output data type to be the same as
the input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Product output data type by using the Data Type Assistant. To use

the assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Accumulator — Accumulator data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | fixdt([],16,0)

Accumulator specifies the data type of the output of an accumulation operation in the
Autocorrelation block. For illustrations on how to use the accumulator data type in this block, see the
'Fixed-Point Conversion' section in “Extended Capabilities” on page 2-0 .

• Inherit: Inherit via internal rule — The block inherits the accumulator data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

• Inherit: Same as input — The block specifies the accumulator data type to be the same as
the input data type.

• Inherit: Same as product output — The block specifies the accumulator data type to be
the same as the product output data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Output — Output data type
Inherit: Same as accumulator (default) | Inherit: Same as input | Inherit: Same as
product output | fixdt([],16,0)

Output specifies the data type of the output of the Autocorrelation block. For more information on
the output data type, see the 'Fixed-Point Conversion' section in “Extended Capabilities” on page 2-
0 .

• Inherit: Same as input — The block specifies the output data type to be the same as the
input data type.

• Inherit: Same as product output — The block specifies the output data type to be the
same as the product output data type.

• Inherit: Same as accumulator — The block specifies the output data type to be the same as
the accumulator data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

 Autocorrelation

2-77

Alternatively, you can set the Output data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Output Minimum — Minimum value the block can output
[] (default) | scalar

Specify the minimum value the block can output. Simulink software uses this minimum value to
perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Output Maximum — Maximum value block can output
[] (default) | scalar

Specify the maximum value the block can output. Simulink software uses this maximum value to
perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Block Characteristics
Data Types double | single | base integer | fixed point
Multidimensional
Signals

No

Variable-Size Signals No

More About
Autocorrelation

Autocorrelation is the correlation of a signal with itself at different points in time.

For a deterministic discrete-time sequence, x(n), the autocorrelation is computed using the following
relationship:

rx(h) = ∑
n = 0

N − h− 1
x*(n)x(n + h) h = 0, 1, …, N − 1

2 Blocks

2-78

where h is the lag and * denotes the complex conjugate. If the input is a length N realization of a WSS
stationary random process, rx(h) is an estimate of the theoretical autocorrelation:

ρx(h) = E x*(n)x(n + h)

where E{ } is the expectation operator. The Unity at zero-lag normalization divides each
sequence value by the autocorrelation or autocorrelation estimate at zero lag.

ρx(h)
ρx(0) = E x*(n)x(n + h)

E x(0) 2

The most commonly used estimate of the theoretical autocorrelation of a WSS random process is the
biased estimate:

ρ x(h) = 1
N ∑

k = 0

N − h− 1
x*(n)x(n + h)

Algorithms
Time-Domain Computation

When you set the computation domain to time, the algorithm computes the autocorrelation of the
input signal in the time domain. The input signal can be a fixed-point signal in this domain.

The autocorrelation sequence, y, is computed using this equation:

yi, j = ∑
k = 0

M − l− 1
uk, j* u(k + i), j 0 ≤ i ≤ l

• y0,j is the zero-lag element in the jth column of the input.
• i is the index of the lag.
• j is the index of the input data column.
• * denotes the complex conjugate.
• M is the number of elements in each column.
• l is the maximum positive lag for autocorrelation. When you choose to compute the

autocorrelation with all nonnegative lags, l=M–1. Otherwise, l is the maximum nonnegative
integer lag value specified.

• u is an M-by-N input matrix.

Frequency-Domain Computation

When you set the computation domain to frequency, the algorithm computes the autocorrelation in
the frequency domain.

In this domain, the algorithm computes the autocorrelation sequence by taking the Fourier transform
of the input signal, multiplying the Fourier transform with its complex conjugate, and taking the
inverse Fourier transform of the product. In this domain, depending on the input length, the
algorithm can require fewer computations.

 Autocorrelation

2-79

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

These diagrams show the data types that the Autocorrelation block uses for fixed-point signals (time
domain only).

You can set the product output, accumulator, and output data types on the Data Types tab of the
block.

2 Blocks

2-80

When the input is real, the output of the multiplier is in the product output data type. When the input
is complex, the output of the multiplication is in the accumulator data type. For details on the
complex multiplication performed, see “Multiplication Data Types”.

See Also
Blocks
Correlation

Introduced before R2006a

 Autocorrelation

2-81

Autocorrelation LPC
Determine coefficients of Nth-order forward linear predictors
Library: DSP System Toolbox / Estimation / Linear Prediction

Description
The Autocorrelation LPC block determines the coefficients of an N-step forward linear predictor for
the time-series in each length-M input channel, u, by minimizing the prediction error in the least
squares sense. A linear predictor is an FIR filter that predicts the next value in a sequence from the
present and past inputs. This technique has applications in filter design, speech coding, spectral
analysis, and system identification.

The Autocorrelation LPC block can output the prediction error for each channel as polynomial
coefficients, reflection coefficients, or both. The block can also output the prediction error power for
each channel.

Ports
Input

Input 1 — Input array
unoriented vector | column vector | matrix

Specify the input u as an unoriented vector, column vector, or a matrix. Row vectors are not valid
inputs. The block treats all M-by-N matrix inputs as N channels of length M.
Data Types: single | double

Output

A — Polynomial coefficients
column vector | matrix

Polynomial coefficients generated when you set the Output(s) parameter to A or A and K. For each
input channel, port A outputs an (N+1)-by-1 column vector a = [1 a2a3 ... aN+1]T, containing the
coefficients of an Nth-order moving average (MA) linear process that predicts the next value, ûM+1, in
the input time-series.

u M + 1 = − a2uM − a3uM − 1 − ...− aN + 1uM − N + 1

2 Blocks

2-82

Dependencies

To enable port A, set Output(s) to A or A and K.
Data Types: single | double

K — Reflection coefficients
column vector | matrix

Reflection coefficients generated when Output(s) is set to K or A and K. For each input channel,
port K outputs a length-N column vector whose elements are the prediction error reflection
coefficients.

Dependencies

To enable port K, set Output(s) to A or A and K.
Data Types: single | double

P — Prediction error power
vector

Prediction error power output at port P as a vector whose length is the number of input channels.

Dependencies

To enable port P, select the Output prediction error power (P) parameter.
Data Types: single | double

Parameters
Output(s) — Type of prediction coefficients
A and K (default) | A | K

Specify the type of prediction coefficients output by the block. The block can output polynomial
coefficients (A), reflection coefficients (K), or both (A and K).

When you set Output(s) to A and K, the block enables port A and K and each port outputs its
respective set of prediction coefficients for each channel.

Output prediction error power (P) — Output prediction error power
off (default) | on

Select this parameter to enable the output port P, which outputs the output prediction error power.

Inherit prediction order from input dimensions — Inherit prediction order from
input dimensions
off (default) | on

Select this parameter to inherit the prediction order N from the input dimensions.

Prediction order (N) — Prediction order
1 (default) | scalar

Specify the prediction order N. Note that N must be a scalar with a value less than the length of the
input channels or the block produces an error.

 Autocorrelation LPC

2-83

Dependencies

This parameter appears only when you do not select the Inherit prediction order from input
dimensions parameter.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
The Autocorrelation LPC block computes the least squares solution to

min
i ∈ ℜn

Ua − b

where ⋅ indicates the 2-norm and

U =

u1 0 ⋯ 0
u2 u1 ⋱ ⋮
⋮ u2 ⋱ 0
⋮ ⋮ ⋱ u1

⋮ ⋮ ⋮ u2

⋮ ⋮ ⋮ ⋮
uM ⋮ ⋮ ⋮
0 ⋱ ⋮ ⋮
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 uM

, a =
a2

⋮
an + 1

, b =

u2
u3

⋮
uM
0
⋮
0

Solving the least squares problem via the normal equations

U∗Ua = U∗b

leads to the system of equations

r1 r2
∗ ⋯ rn

∗

r2 r1 ⋱ ⋮
⋮ ⋱ ⋱ r2

∗

rn ⋯ r2 r1

a2
a3

⋮
an + 1

=

−r2
−r3

⋮
−rn + 1

2 Blocks

2-84

where r = [r1r2r3 ... rn+1]T is an autocorrelation estimate for u computed using the Autocorrelation
block, and * indicates the complex conjugate transpose. The normal equations are solved in O(n2)
operations by the Levinson-Durbin block.

Note that the solution to the LPC problem is very closely related to the Yule-Walker AR method of
spectral estimation. In that context, the normal equations above are referred to as the Yule-Walker AR
equations.

References
[1] Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

[2] Ljung, L. System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice Hall, 1987.
Pgs. 278-280.

[3] Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall,
1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Functions
lpc

Blocks
Autocorrelation | Levinson-Durbin | Yule-Walker Method

Introduced before R2006a

 Autocorrelation LPC

2-85

Backward Substitution
Solve UX = B for X when U is upper triangular matrix

Library
Math Functions / Matrices and Linear Algebra / Linear System Solvers

dspsolvers

Description
The Backward Substitution block solves the linear system UX = B by simple backward substitution of
variables, where:

• U is the upper triangular M-by-M matrix input to the U port.
• B is the M-by-N matrix input to the B port.

The M-by-N output matrix X is the solution of the equations. The block does not check the rank of the
inputs.

The block uses only the elements in the upper triangle of input U and ignores the lower elements.
When you select the Input U is unit-upper triangular check box, the block assumes the elements
on the diagonal of U are 1s. This is useful when matrix U is the result of another operation, such as
an LDL decomposition, that uses the diagonal elements to represent the D matrix.

The block treats a length-M vector input at port B as an M-by-1 matrix.

Fixed-Point Data Types

The following diagram shows the data types used within the Backward Substitution block for fixed-
point signals.

2 Blocks

2-86

You can set the product output, accumulator, and output data types in the block dialog.

The output of the multiplier is in the product output data type when the input is real. When the input
is complex, the result of the multiplication is in the accumulator data type. For details on the complex
multiplication performed, see “Multiplication Data Types”.

Parameters
Main Tab

Input U is unit-upper triangular
Select this check box only when all elements on the diagonal of U have a value of 1. When you do
so, the block optimizes its behavior by skipping an unnecessary division operation.

 Backward Substitution

2-87

Do not select this check box if there are any elements on the diagonal of U that do not have a
value of 1. When you clear the Input U is unit-upper triangular check box, the block always
performs the necessary division operation.

Diagonal of complex input U is real
Select to optimize simulation speed when the diagonal elements of complex input U are real. This
parameter is only visible when Input U is unit-upper triangular is not selected.

Note When U is a complex fixed-point signal, you must select either Input U is unit-upper
triangular or Diagonal of complex input U is real. When either of these options are selected, the
block ignores any imaginary part of the diagonal of U.

Data Types Tab

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.
Saturate on integer overflow

When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 2-86 and
“Multiplication Data Types” for diagrams showing the use of the product output data type in this
block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as first input.
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

2 Blocks

2-88

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-86 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as product output.
• A rule that inherits a data type, for example, Inherit: Same as first input.
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output data type
Specify the output data type. See “Fixed-Point Data Types” on page 2-86 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as first input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output data type parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

 Backward Substitution

2-89

Supported Data Types
Port Supported Data Types
U • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

B • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

X • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Blocks
Cholesky Solver | Forward Substitution | LDL Solver | Levinson-Durbin | LU Solver | QR Solver

Topics
“Linear System Solvers”

Introduced before R2006a

2 Blocks

2-90

Bandpass Filter
Design bandpass filter
Library: DSP System Toolbox / Filtering / Filter Designs

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

This block supports SIMD code generation. For details, see “Code Generation” on page 2-99.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal to filter, specified as a scalar, vector, or matrix.
Data Types: single | double

Output

Port_1 — Filtered output signal
scalar | vector | matrix

Filtered output signal, specified as a scalar, vector, or matrix.
Data Types: single | double

Parameters
View Filter Response — Open Filter Visualization Tool
button

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product.
You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

 Bandpass Filter

2-91

Impulse response — FIR or IIR filter
FIR (default) | IIR

Choose to implement an FIR or IIR filter.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode — Mode of specifying filter order
Minimum (default) | Specify

Select Minimum to have the block implement a filter with minimum order. When you select Specify,
you must enter the filter order using the Order parameter.

Tip When you set the Impulse response to IIR, you can specify different numerator and
denominator orders. To specify a different denominator order, select the Denominator order check
box.

Order — Filter order
20 (default) | positive integer

Specify the filter order as a positive integer.
Dependencies

To enable this parameter, set Order mode to Specify.

Denominator order — Specify denominator order
off (default) | on

Select this check box to specify a different denominator order. When you select this check box, you
can specify the denominator order as a positive integer in the resulting text box.
Dependencies

To enable this parameter, set the Impulse response to IIR and the Order mode to Specify.

Filter type — Type of filter
Single-rate (default) | Decimator | Interpolator | Sample-rate converter

Select the type of filter to implement. Your choice determines the type of filter and the design
methods and structures that are available to implement your filter.
Dependencies

• Selecting Decimator or Interpolator activates the Decimation Factor or the Interpolation
Factor options respectively.

• Selecting Sample-rate converter activates both factors.

Decimation Factor — Decimation factor
2 (default) | positive integer

Specify the decimation factor as a positive integer.

2 Blocks

2-92

Dependencies

To enable this parameter, set the Filter type to Decimator or Sample-rate converter.

Interpolation Factor — Interpolation factor
2 (default) | positive integer

Specify the interpolation factor as a positive integer.

Dependencies

To enable this parameter, set the Filter type to Interpolator or Sample-rate converter.

Frequency constraints — Frequency response constraints
Passband and stopband edges (default) | Passband edges | Half power (3dB)
frequencies | Half power (3dB) frequencies and passband width | Half power (3dB)
frequencies and stopband width | Cutoff (6dB) frequencies

When you set the Order mode to Specify, this parameter allows you to choose the filter features
that the block uses to define the frequency response characteristics. Depending on the Impulse
response you choose, you can set the Frequency constraints to one of:

• Passband and stopband edges — Specify the frequencies for the edges for the stop- and
passbands.

• Passband edges — For IIR filters, define the filter by specifying frequencies for the edges of the
passband.

• Stopband edges — For IIR filters, define the filter by specifying frequencies for the edges of the
stopbands.

• Half power (3dB) frequencies — For IIR filters, define the filter response by specifying the
locations of the 3 dB points. The 3 dB point is the frequency for the point three decibels below the
passband value.

• Half power (3dB) frequencies and passband width — For IIR filters, define the filter by
specifying frequencies for the 3 dB points in the filter response and the width of the passband.

• Half power (3dB) frequencies and stopband width — For IIR filters, define the filter by
specifying frequencies for the 3 dB points in the filter response and the width of the stopband.

• Cutoff (6dB) frequencies — For FIR filters, define the filter response by specifying the
locations of the 6 dB points. The 6 dB point is the frequency for the point 6 dB below the passband
value.

Dependencies

To enable this parameter, set the Order mode to Specify. The available Frequency constraints
will depend on whether the Impulse response is FIR or IIR.

Frequency units — Frequency units
Normalized (0 to 1) (default) | Hz | kHz | MHz | GHz

Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. To enter
frequencies in absolute values, select one of the frequency units from the drop-down list—Hz, kHz,
MHz, or GHz.

 Bandpass Filter

2-93

Input sample rate — Input sample rate
2 (default) | positive scalar

Fs, specified in the units you selected for Frequency units, defines the sampling frequency at the
filter input. When you provide an input sampling frequency, all frequencies in the specifications are in
the selected units as well.

Dependencies

To enable this parameter, set Filter type to Single-rate, Decimator, or Sample-rate
converter and Frequency units to one of the unit options (Hz, kHz, MHz, or GHz).

Output sample rate — Output sample rate
2 (default) | positive scalar

When you design an interpolator, Fs represents the sampling frequency at the filter output.

Dependencies

To enable this parameter, set Filter type to Interpolator and Frequency units to one of the unit
options (Hz, kHz, MHz, or GHz).

Stopband frequency 1 — Frequency at edge of end of first stopband
0.35 (default) | positive scalar

Enter the frequency at the edge of the end of the first stopband. Specify the value in either
normalized frequency units or the absolute units you select in Frequency units.

Passband frequency 1 — Frequency at edge of start of passband
0.45 (default) | positive scalar

Enter the frequency at the edge of the start of the passband. Specify the value in either normalized
frequency units or the absolute units you selected for Frequency units.

Passband frequency 2 — Frequency at edge of end of passband
.55 (default) | positive scalar

Enter the frequency at the edge of the end of the passband. Specify the value in either normalized
frequency units or the absolute units you select in Frequency units.

Stopband frequency 2 — Frequency at edge of start of second stopband
.65 (default) | positive scalar

Enter the frequency at the edge of the start of the second stopband. Specify the value in either
normalized frequency units or the absolute units you select in Frequency units.

Half power (3dB) frequency 1 — Lower frequency 3 dB point
.4 (default) | positive scalar

Specify the lower frequency 3 dB point as a positive scalar between zero and one.

Dependencies

To enable this parameter, set Impulse response to IIR, Order mode to Specify, and Frequency
constraints to Half power (3dB) frequencies, Half power (3dB) frequencies and
passband width, or Half power (3dB) frequencies and stopband width.

2 Blocks

2-94

Half power (3dB) frequency 2 — Higher frequency 3 dB point
.6 (default) | positive scalar

Specify the higher frequency 3 dB point as a positive scalar between zero and one.

Dependencies

To enable this parameter, set Impulse response to IIR, Order mode to Specify, and Frequency
constraints to Half power (3dB) frequencies, Half power (3dB) frequencies and
passband width, or Half power (3dB) frequencies and stopband width.

Cutoff (6dB) frequency 1 — Lower frequency 6 dB point
.4 (default) | positive scalar

Specify the lower frequency 6 dB point as a positive scalar between zero and one.

Dependencies

To enable this parameter, set Frequency constraints to Cutoff (6dB) frequencies.

Cutoff (6dB) frequency 2 — Higher frequency 6 dB point
.6 (default) | positive scalar

Specify the higher frequency 6 dB point as a positive scalar between zero and one.

Dependencies

To enable this parameter, set Frequency constraints to Cutoff (6dB) frequencies.

Passband width — Passband width
.15 (default) | positive scalar

Specify the width of the passband as a positive scalar, in units corresponding to the Frequency units
parameter.

Dependencies

To enable this parameter, set Frequency constraints to Half power (3dB) frequencies and
passband width.

Stopband width — Width of stopband
.25 (default) | positive scalar

Specify the width of the stopband as a positive scalar, in units corresponding to the Frequency units
parameter.

Dependencies

To enable this parameter, set Frequency constraints to Half power (3dB) frequencies and
stopband width.

Magnitude constraints — Magnitude constraints
Unconstrained (default) | Constrained bands | Passband ripple | Passband ripple and
stopband attenuation | Stopband attenuation

Specify the magnitude constraints for the filter design.

 Bandpass Filter

2-95

Dependencies

To enable this parameter, set Order mode to Specify. The available options depend on the value of
the Frequency constraints parameters.

Magnitude units — Units for magnitude specifications
dB (default) | Linear | Squared

Specify the units for any parameter you provide in magnitude specifications:

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Dependencies

To enable this parameter, set Order mode to Minimum.

Stopband attenuation 1 — Filter attenuation in first stopband
60 (default) | real-valued positive scalar

Enter the filter attenuation in the first stopband in the units you choose for Magnitude units. Values
must be real, positive scalars. If you are specifying values in linear units, they must be smaller than 1.
Dependencies

To enable this parameter, set the Order mode to Minimum.

Passband ripple — Allowable filter ripple in passband
1 (default) | real-valued positive scalar

Enter the filter ripple allowed in the passband in the units you choose for Magnitude units. Values
must be real, positive scalars. If you are specifying values in linear units, they must be smaller than 1.
Dependencies

To enable this parameter, set the Order mode to Minimum.

Stopband attenuation 2 — Filter attenuation in second stopband
60 (default) | real-valued positive scalar

Enter the filter attenuation in the second stopband in the units you choose for Magnitude units.
Values must be real, positive scalars. If you are specifying values in linear units, they must be smaller
than 1.
Dependencies

To enable this parameter, set the Order mode to Minimum.

Design method — Filter design method
Equiripple (default) | Kaiser window | Butterworth | Chebyshev type I | Chebyshev type
II | Elliptic

Lists the design methods available for the frequency and magnitude specifications you entered. When
you change the specifications for a filter, such as changing the impulse response, the methods
available to design filters changes as well. The default IIR design method is usually Butterworth,
and the default FIR method is Equiripple.

2 Blocks

2-96

Scale SOS filter coefficients to reduce chance of overflow — Scale filter
coefficients
on (default) | off

Selecting this parameter directs the design to scale the filter coefficients to reduce the chances that
the inputs or calculations in the filter overflow and exceed the representable range of the filter.
Clearing this option removes the scaling.
Dependencies

To enable this parameter, set Impulse response to IIR.

Density factor — Density factor
16 (default) | positive scalar

Density factor controls the density of the frequency grid over which the design method optimization
evaluates your filter response function. The number of equally spaced points in the grid is the value
you enter for Density factor times filter order + 1.

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
balance between the accurate approximation to the ideal filter and the time to design the filter.
Dependencies

To enable this parameter, set Impulse response to FIR and Design method to Equiripple.

Phase constraint — Phase constraint
Linear (default) | Maximum | Minimum

Specify the phase constraint of the filter as Linear, Maximum, or Minimum.
Dependencies

To enable this parameter, set Impulse response to FIR and Design method to Equiripple.

Match exactly — Match passband, stopband, or both
Stopband (default) | Passband | Both

Specifies that the resulting filter design matches either the passband, stopband, or both bands.
Dependencies

To enable this parameter, set Impulse response to IIR.

Minimum order — Minimum filter order
Any (default) | Even | Odd

When you select this parameter, the design method determines and designs a minimum order filter to
meet your specifications.
Dependencies

To enable this parameter, set Impulse response to FIR and Order mode to Minimum.

Structure — Filter structure
Direct-form FIR (default) | Direct-form FIR transposed | Direct-form symmetric FIR |
Cascade minimum-multiplier allpass | Cascade wave digital filter allpass |

 Bandpass Filter

2-97

Direct-form I SOS | Direct-form I transposed SOS | Direct-form II SOS | Direct-
form II transposed SOS

For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters use
direct-form II filters with SOS.

Use basic elements to enable filter customization — Implement filter with basic
Simulink blocks
off (default) | on

Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the check
box to implement the filter as a high-level subsystem.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements.

Dependencies

When you select this check box, the block enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in Gain

blocks.

Optimize for unit-scale values — Optimize unit scale values
off (default) | on

Select this check box to scale unit gains between sections in SOS filters.

Dependencies

To enable this parameter, set Impulse response to IIR.

Rate options — Enforce single-rate or allow multirate processing
Enforce single-rate processing (default) | Allow multirate processing

When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at the
output to accommodate an increased or reduced number of samples.

Dependencies

To enable this parameter, set the Impulse response to FIR and set Filter type to a multirate filter.

Use symbolic names for coefficients — Specify coefficients with MATLAB variables
off (default) | on

2 Blocks

2-98

Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals No

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Bandpass Filter block supports SIMD code generation using Intel AVX2 technology under these
conditions:

• Impulse response is set to FIR.
• Filter type is set to Single-rate.
• Structure is set to Direct-form FIR or Direct-form FIR transposed.
• Use basic elements to enable filter customization parameter is not selected.
• Input processing is set to Columns as channels (frame based).
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

See Also
Blocks
Bandstop Filter

Functions
filterBuilder | fdesign.bandstop

Introduced in R2006b

 Bandpass Filter

2-99

Bandstop Filter
Design bandstop filter
Library: DSP System Toolbox / Filtering / Filter Designs

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

This block supports SIMD code generation. For details, see “Code Generation” on page 2-108.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal to filter, specified as a scalar, vector, or matrix.
Data Types: single | double

Output

Port_1 — Filtered output signal
scalar | vector | matrix

Filtered output signal, specified as a scalar, vector, or matrix.
Data Types: single | double

Parameters
View Filter Response — Open Filter Visualization Tool
button

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product.
You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

2 Blocks

2-100

Impulse response — FIR or IIR filter
FIR (default) | IIR

Specify whether the block implements an FIR or IIR filter.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode — Mode of specifying filter order
Minimum (default) | Specify

Select Minimum to have the block implement a filter with minimum order. When you select Specify,
you must enter the filter order using the Order parameter.

Tip When you set the Impulse response to IIR, you can specify different numerator and
denominator orders. To specify a different denominator order, select the Denominator order check
box.

Order — Filter order
20 (default) | positive integer

Specify the filter order as a positive integer.

Dependencies

To enable this parameter, set Order mode to Specify.

Denominator order — Specify denominator order
off (default) | on

Select this check box to specify a different denominator order. When you select this check box, you
can specify the denominator order as a positive integer in the resulting text box.

Dependencies

To enable this parameter, set the Impulse response to IIR and the Order mode to Specify.

Filter type — Type of filter
Single-rate (default) | Decimator | Interpolator | Sample-rate converter

Select the type of filter to implement. Your choice determines the type of filter and the design
methods and structures that are available to implement your filter.

Dependencies

• This parameter applies only when you set Impulse response to FIR.
• Selecting Decimator or Interpolator activates the Decimation Factor or the Interpolation

Factor options respectively.
• Selecting Sample-rate converter activates both factors.

Decimation Factor — Decimation factor
2 (default) | positive integer

 Bandstop Filter

2-101

Specify the decimation factor as a positive integer.

Dependencies

To enable this parameter, set the Filter type to Decimator or Sample-rate converter.

Interpolation Factor — Interpolation factor
2 (default) | positive integer

Specify the interpolation factor as a positive integer.

Dependencies

To enable this parameter, set the Filter type to Interpolator or Sample-rate converter.

Frequency constraints — Frequency response constraints
Passband and stopband edges (default) | Passband edges | Half power (3dB)
frequencies | Half power (3dB) frequencies and passband width | Half power (3dB)
frequencies and stopband width | Cutoff (6dB) frequencies

When you set the Order mode to Specify, this parameter allows you to choose the filter features
that the block uses to define the frequency response characteristics. Depending on the Impulse
response you choose, you can set the Frequency constraints to one of:

• Passband and stopband edges — Specify the frequencies for the edges for the stop- and
passbands.

• Passband edges — For IIR filters, define the filter by specifying frequencies for the edges of the
passband.

• Stopband edges — For IIR filters, define the filter by specifying frequencies for the edges of the
stopbands.

• Half power (3dB) frequencies — For IIR filters, define the filter response by specifying the
locations of the 3 dB points. The 3 dB point is the frequency for the point three decibels below the
passband value.

• Half power (3dB) frequencies and passband width — For IIR filters, define the filter by
specifying frequencies for the 3 dB points in the filter response and the width of the passband.

• Half power (3dB) frequencies and stopband width — For IIR filters, define the filter by
specifying frequencies for the 3 dB points in the filter response and the width of the stopband.

• Cutoff (6dB) frequencies — For FIR filters, define the filter response by specifying the
locations of the 6 dB points. The 6 dB point is the frequency for the point 6 dB below the passband
value.

Dependencies

To enable this parameter, set the Order mode to Specify. The available Frequency constraints
will depend on whether the Impulse response is FIR or IIR.

Frequency units — Frequency units
Normalized (0 to 1) (default) | Hz | kHz | MHz | GHz

Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. To enter
frequencies in absolute values, select one of the frequency units from the drop-down list—Hz, kHz,
MHz, or GHz.

2 Blocks

2-102

Input sample rate — Input sample rate
2 (default) | positive scalar

Fs, specified in the units you selected for Frequency units, defines the sampling frequency at the
filter input. When you provide an input sampling frequency, all frequencies in the specifications are in
the selected units as well.
Dependencies

To enable this parameter, set Filter type to Single-rate, Decimator, or Sample-rate
converter and Frequency units to one of the unit options (Hz, kHz, MHz, or GHz).

Output sample rate — Output sample rate
2 (default) | positive scalar

When you design an interpolator, Fs represents the sampling frequency at the filter output rather
than the filter input.
Dependencies

To enable this parameter, set Filter type to Interpolator and Frequency units to one of the unit
options (Hz, kHz, MHz, or GHz).

Passband frequency 1 — Frequency at edge of end of first passband
0.35 (default) | positive scalar

Enter the frequency at the edge of the end of the first passband. Specify the value in either
normalized frequency units or the absolute units you select in Frequency units.

Stopband frequency 1 — Frequency at edge of start of stopband
0.45 (default) | positive scalar

Enter the frequency at the edge of the start of the stopband. Specify the value in either normalized
frequency units or the absolute units you select in Frequency units.

Stopband frequency 2 — Frequency at edge of end of stopband
0.55 (default) | positive scalar

Enter the frequency at the edge of the end of the stopband. Specify the value in either normalized
frequency units or the absolute units you select in Frequency units.

Passband frequency 2 — Frequency at edge of start of second passband
0.65 (default) | positive scalar

Enter the frequency at the edge of the start of the second passband. Specify the value in either
normalized frequency units or the absolute units you select in Frequency units.

Half power (3dB) frequency 1 — Lower frequency 3 dB point
0.4 (default) | positive scalar

Specify the lower frequency 3 dB point as a positive scalar between zero and one.
Dependencies

To enable this parameter, set Impulse response to IIR, Order mode to Specify, and Frequency
constraints to Half power (3dB) frequencies, Half power (3dB) frequencies and
passband width, or Half power (3dB) frequencies and stopband width.

 Bandstop Filter

2-103

Half power (3dB) frequency 2 — Higher frequency 3 dB point
0.6 (default) | positive scalar

Specify the higher frequency 3 dB point as a positive scalar between zero and one.

Dependencies

To enable this parameter, set Impulse response to IIR, Order mode to Specify, and Frequency
constraints to Half power (3dB) frequencies, Half power (3dB) frequencies and
passband width, or Half power (3dB) frequencies and stopband width.

Cutoff (6dB) frequency 1 — Lower frequency 6 dB point
0.4 (default) | positive scalar

Specify the lower frequency 6 dB point as a positive scalar between zero and one.

Dependencies

To enable this parameter, set Frequency constraints to Cutoff (6dB) frequencies.

Cutoff (6dB) frequency 2 — Higher frequency 6 dB point
0.6 (default) | positive scalar

Specify the higher frequency 6 dB point as a positive scalar between zero and one.

Dependencies

To enable this parameter, set Frequency constraints to Cutoff (6dB) frequencies.

Passband width — Passband width
0.25 (default) | positive scalar

Specify the width of the passband as a positive scalar, in units corresponding to the Frequency units
parameter.

Dependencies

To enable this parameter, set Frequency constraints to Half power (3dB) frequencies and
passband width.

Stopband width — Width of stopband
0.15 (default) | positive scalar

Specify the width of the stopband as a positive scalar, in units corresponding to the Frequency units
parameter.

Dependencies

To enable this parameter, set Frequency constraints to Half power (3dB) frequencies and
stopband width.

Magnitude constraints — Magnitude constraints
Unconstrained (default) | Constrained bands | Passband ripples and stopband
attenuation

Specify the magnitude constraints for the filter design.

2 Blocks

2-104

Dependencies

To enable this parameter, set Order mode to Specify. The available options depend on the value of
the Frequency constraints parameter.

Magnitude units — Units for magnitude specifications
dB (default) | Linear | Squared

Specify the units for any parameter you provide in magnitude specifications:

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Dependencies

To enable this parameter, set Order mode to Minimum.

Passband ripple 1 — Allowable filter ripple in first passband
1 (default) | real-valued positive scalar

Specify the filter ripple allowed in the first passband in the units you choose for Magnitude units.
Values must be real, positive scalars. If you are specifying values in linear units, they must be smaller
than 1.

Dependencies

To enable this parameter, set the Order mode to Minimum.

Stopband attenuation — Stopband attenuation
60 (default) | real-valued positive scalar

Enter the filter attenuation in the stopband in the units you choose for Magnitude units. Values
must be real, positive scalars. If you are specifying values in linear units, they must be smaller than 1.

Dependencies

To enable this parameter, set the Order mode to Minimum.

Passband ripple 2 — Allowable filter ripple in second passband
1 (default) | real-valued positive scalar

Enter the filter ripple allowed in the second passband in the units you choose for Magnitude units.
Values must be real, positive scalars. If you are specifying values in linear units, they must be smaller
than 1.

Dependencies

To enable this parameter, set the Order mode to Minimum.

Design method — Filter design method
Equiripple (default) | Kaiser window | Butterworth | Chebyshev type I | Chebyshev type
II | Elliptic

Lists the design methods available for the frequency and magnitude specifications you entered. When
you change the specifications for a filter, such as changing the impulse response, the methods

 Bandstop Filter

2-105

available to design filters changes as well. The default IIR design method is usually Butterworth,
and the default FIR method is Equiripple.

Scale SOS filter coefficients to reduce chance of overflow — Scale filter
coefficients
on (default) | off

Selecting this parameter directs the design to scale the filter coefficients to reduce the chances that
the inputs or calculations in the filter overflow and exceed the representable range of the filter.
Clearing this option removes the scaling.
Dependencies

To enable this parameter, set Impulse response to IIR.

Density factor — Density factor
16 (default) | positive scalar

Density factor controls the density of the frequency grid over which the design method optimization
evaluates your filter response function. The number of equally spaced points in the grid is the value
you enter for Density factor times (filter order + 1.

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
balance between the accurate approximation to the ideal filter and the time to design the filter.
Dependencies

To enable this parameter, set Impulse response to FIR and Design method to Equiripple.

Phase constraint — Phase constraint
Linear (default) | Maximum | Minimum

Specify the phase constraint of the filter as Linear, Maximum, or Minimum.
Dependencies

To enable this parameter, set Impulse response to FIR and Design method to Equiripple.

Minimum order — Minimum filter order
Any (default) | Even

When you select this parameter, the design method determines and designs a minimum order filter to
meet your specifications.
Dependencies

To enable this parameter, set Impulse response to FIR, Order mode to Minimum, and Design
method to Kaiser window.

Match exactly — Match passband, stopband, or both
Stopband (default) | Passband | Both

Specifies that the resulting filter design matches either the passband, stopband, or both bands.
Dependencies

To enable this parameter, set Impulse response to IIR.

2 Blocks

2-106

Structure — Filter structure
Direct-form FIR (default) | Direct-form FIR transposed | Direct-form symmetric FIR |
Cascade minimum-multiplier allpass | Cascade wave digital filter allpass |
Direct-form I SOS | Direct-form I transposed SOS | Direct-form II SOS | Direct-
form II transposed SOS

For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters use
direct-form II filters with SOS.

Use basic elements to enable filter customization — Implement filter with basic
Simulink blocks
off (default) | on

Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the check
box to implement the filter as a high-level subsystem.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements.

Dependencies

When you select this check box, the block enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay of n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in Gain

blocks.

Optimize for unit scale values — Optimize unit scale values
off (default) | on

Select this check box to scale unit gains between sections in SOS filters.

Dependencies

To enable this parameter, set Impulse response to IIR.

Rate options — Enforce single-rate or allow multirate processing
Enforce single-rate processing (default) | Allow multirate processing

When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at the
output to accommodate an increased or reduced number of samples.

Dependencies

To enable this parameter, set the Impulse response to FIR and set Filter type to a multirate filter.

 Bandstop Filter

2-107

Use symbolic names for coefficients — Specify coefficients with MATLAB variables
off (default) | on

Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals No

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Bandstop Filter block supports SIMD code generation using Intel AVX2 technology under these
conditions:

• Impulse response is set to FIR.
• Filter type is set to Single-rate.
• Structure is set to Direct-form FIR or Direct-form FIR transposed.
• Use basic elements to enable filter customization parameter is not selected.
• Input processing is set to Columns as channels (frame based).
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

See Also
Blocks
Bandpass Filter

Functions
filterBuilder | fdesign.bandpass

Introduced in R2006b

2 Blocks

2-108

Binary File Reader
Read data from binary files
Library: DSP System Toolbox / Sources

Description
The Binary File Reader block reads multichannel signal data from a binary file. The block reads the
header that precedes the data. The File header parameter specifies the structure of the header. You
can specify the type, size, and complexity of the data through the block parameters. You can also
export the header to the base workspace by clicking on the Export header to base workspace
button.

The first time you read the file, the reader reads the header, followed by the data. On subsequent
calls, the reader reads the remaining data. Once the end of the file is reached, the reader returns
zeros of the specified data type, size, and complexity. The reader can read signal data from a binary
file that is not created by the Binary File Writer block.

Output Ports
Output

data — Binary file data
column vector | row vector | matrix

The reader block reads the binary data from the file specified in the File name parameter. The data
output from the block has dimensions Samples per frame-by-Number of channels. The block can
read floating-point data and integer data. The input data can be real or complex. When the data is
complex, the block reads the data as interleaved real and imaginary components. The reader assumes
the default endianness of the host machine.

This port is unnamed until you select the Output end-of-file indicator parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

EOF — End-of-file indicator
boolean scalar

When the block reaches the end of the file, the port outputs a 1. Otherwise, the port outputs a 0.

This port is unnamed until you select the Output end-of-file indicator parameter.
Data Types: Boolean

Parameters
File name — Name of the file
'Untitled.bin' (default) | character vector

 Binary File Reader

2-109

Name of the file from which the block reads the data. If the file is not on the MATLAB path, then
specify the full path for the file.

File header — Size of the header
struct([]) (default) | structure

The structure specifies the prototype of the file header, that is, the size of the header and the data
type of the field values. The structure can have an arbitrary number of fields. Each field of the
structure must be a real matrix of a built-in type. For example, if File header is set to
struct('field1',1:10,'field2',single(1)), the block assumes that the header is formed by
10 real double-precision values followed by 1 single-precision value. If the file contains no header, you
can set this parameter to an empty structure, struct([]).

Export header to base workspace — Retrieve the header
button

To retrieve the file header, click Export header to base workspace. The block exports the file
header to the base workspace.

Storage data type — Storage class of data in file
'double' (default) | 'single' | 'int8' | 'int16' | 'int32' | 'int64' | 'uint8' | 'uint16' |
'uint32' | 'uint64'

Storage class of data in file, specified as a character vector. This parameter defines the data type of
the matrix the block outputs.

Samples per frame — Number of samples per output frame
1024 (default) | positive integer

Samples per frame specifies the number of rows of the output matrix that the block outputs. The
output matrix has dimensions Samples per frame-by-Number of channels. Once the end of the file
is reached, the block returns zeros of the specified data type, size, and complexity.

Data is complex — Specify data complexity
off (default) | on

When you select this parameter, the reader treats the data as complex data. The block reads the data
as interleaved real and imaginary components. Configure the block to read the data as a 2-by-2
matrix. The block reads [1 5 2 6 3 7 4 8] as [1 2; 3 4]+1j*[5 6; 7 8]. When you do not
select this parameter, the block reads the data as [1 5; 2 6].

Number of channels — Number of channels
1 (default) | positive integer

Number of channels specifies the number of columns of the output matrix that the block outputs.
This parameter defines the number of consecutive interleaved data samples stored in the file for each
time instant. The size of the data is Samples per frame-by-Number of channels. Once the end of
the file is reached, if the output matrix is not full, the block fills the matrix with zeros to make it a full-
sized matrix.

Output end-of-file indicator — End-of-file indicator
off (default) | on

When you select this parameter, an additional output port named EOF appears on the block. When
the block reaches the end of the file, the port outputs a 1. Otherwise, the port outputs a 0.

2 Blocks

2-110

Sample time (s) — Sample time
1 (default) | nonnegative scalar

Sample time (s) controls the sample time at the output port of the block. This value represents 1/Fs,
where Fs is the sampling rate of the signal data. The Simulink sample time at the output port is
Samples per frame × Sample time (s).

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but provides faster simulation speed than Interpreted execution.

• Interpreted execution — Simulate model using the MATLAB interpreter. This option
shortens startup time but has slower simulation speed than Code generation.

Block Characteristics
Data Types double | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Binary File Writer | Audio Device Writer

Objects
dsp.BinaryFileWriter | dsp.BinaryFileReader | dsp.MatFileWriter

Introduced in R2016b

 Binary File Reader

2-111

Binary File Writer
Write data to binary files
Library: DSP System Toolbox / Sinks

Description
The Binary File Writer block writes multichannel signal data to a binary file. The block specifies the
name of the file and the structure of the header that precedes the signal data. If there is no header to
write, the block specifies an empty structure, struct([]). The first time you write to the file, the
block writes the header, followed by the data. On subsequent calls, the block writes the remaining
data. If the header is empty, then no header is written.

The block writes the data in a row-major format. For example, if the input array is [1 2 4 5; 8 7 9
2], the block writes the data as [1 2 4 5 8 7 9 2].

Input Ports
Input

Port_1 — Data to write
column vector | row vector | matrix

The writer block writes the data to the file specified in the File name parameter. If the File header
structure is not empty, then the writer writes the header before writing the data. The block can write
floating-point data and integer data. The input data can be real or complex. When the data is
complex, the block writes the data as interleaved real and imaginary components. The writer assumes
the default endianness of the host machine.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Parameters
File name — Name of the file
'Untitled.bin' (default) | character vector

Name of the file to which the block writes the data.

File header — Size of the header
struct([]) (default) | structure

The structure can have an arbitrary number of fields. Each field of the structure must be a real matrix
of a built-in type. For example, if File header is set to
struct('field1',1:10,'field2',single(1)), the block writes a header formed by 10 double-
precision values, (1:10), followed by 1 single precision value, single(1). If there is no header to
write, set this parameter to an empty structure, struct([]).

2 Blocks

2-112

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but provides faster simulation speed than Interpreted execution.

• Interpreted execution — Simulate model using the MATLAB interpreter. This option
shortens startup time but has slower simulation speed than Code generation.

Block Characteristics
Data Types double | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Binary File Reader | Audio Device Writer

Objects
dsp.BinaryFileReader | dsp.BinaryFileWriter | dsp.MatFileReader

Introduced in R2016b

 Binary File Writer

2-113

Biquad Filter
Model biquadratic IIR (SOS) filters
Library: DSP System Toolbox / Filtering / Filter Implementations

DSP System Toolbox HDL Support / Filtering

Description
The Biquad Filter block independently filters each channel of the input signal with the specified
biquadratic infinite impulse response (IIR) filter. When you specify the filter coefficients in the dialog
box, the block implements static filters with fixed coefficients. When you provide the filter coefficients
through an input port, you can tune the coefficients during simulation.

The Biquad Filter block supports the Simulink state logging feature. See “State” (Simulink) for more
information.

Ports
Input

In — Data input
vector | matrix

Data input to the block, specified as a vector or a matrix. This block supports variable-size input
signals, enabling you to change the input frame size (number of rows) during simulation. However,
the number of channels (number of columns) must remain constant.

If the input is fixed-point, it must be signed fixed-point with binary point scaling.

This port is unnamed unless you set the Coefficient source to Input port(s).
Data Types: single | double | int8 | int16 | int32 | int64 | fixed point

Num — Numerator coefficients
matrix

Numerator coefficients of the biquad filter, specified as a 3-by-N matrix, where N is the number of
biquad filter sections.

If Num is fixed-point, it must be signed fixed-point with binary point scaling.
Dependencies

This port appears only when you set the Coefficient source to Input port(s).
Data Types: single | double | int8 | int16 | int32 | int64 | fixed point

Den — Denominator coefficients
matrix

2 Blocks

2-114

Denominator coefficients of the biquad filter, specified as a 2-by-N matrix, where N is the number of
biquad filter sections.

If Den is fixed-point, it must be signed fixed-point with binary point scaling.

Dependencies

This port appears only when you set the Coefficient source to Input port(s).
Data Types: single | double | int8 | int16 | int32 | int64 | fixed point

g — Scale values
row vector

Scale values of the biquad filter, specified as a 1-by-(N+1) vector, where N is the number of biquad
filter sections.

If g is fixed-point, it must be signed fixed-point with binary point scaling.

Dependencies

This port appears only when you set the Coefficient source to Input port(s).
Data Types: single | double | int8 | int16 | int32 | int64 | fixed point

Output

Out — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix.

The output dimensions always equal the dimensions of the input signal. The output of this block
numerically matches the outputs of the dsp.BiquadFilter System object.

If Out is fixed-point, it must be signed fixed-point with binary point scaling.

This port is unnamed unless you set the Coefficient source to Input port(s).
Data Types: single | double | int8 | int16 | int32 | int64 | fixed point

Parameters
Main Tab

Coefficient source — Mode of operation
Dialog parameters (default) | Input port(s) | Filter object

The Biquad Filter block can operate in three different modes:

• Dialog parameters — Enter information about the filter, such as structure and coefficients, in
the block mask.

• Input port(s) — Enter information about the filter structure in the block mask using the Filter
structure parameter. The filter coefficients come into the block through additional input ports
that appear on the block icon:

 Biquad Filter

2-115

• Num — Specify numerator coefficients.
• Den — Specify denominator coefficients.
• g — Specify scale values.

The block assumes the first denominator coefficients and of each section to be 1. This
configuration is applicable when the SOSMatrixSource property is 'Input port' and the
ScaleValuesInputPort property is true. The reason you would need to specify Num and Den
instead of the SOSMatrix, is that in Fixed-Point operation, the numerators, and denominators can
have different fraction lengths. Therefore, there is a need to be able to pass the data of the
numerator with a fixed-point type different from that of the denominator.

• Filter object — Specify the filter using a dsp.BiquadFilter System object.

Filter — Name of filter object
BQF (default) | dsp.BiquadFilter System object name

Specify the name of the discrete-time filter that you want the block to implement. You must specify
the filter as a dsp.BiquadFilter System object.

You can define the System object in the block mask or in a MATLAB workspace variable.

For information on creating System objects, see “Define Basic System Objects”.
Dependencies

This parameter is visible only when Coefficient source is set to Filter object.

Filter structure — Filter structure
Direct form II transposed (default) | Direct form I | Direct form I transposed |
Direct form II

Specify the filter structure.
Dependencies

This parameter is visible only when Coefficient source is set to Dialog parameters or Input
port(s).

SOS Matrix (Mx6) — SOS matrix
[1 0.3 0.4 1 0.1 0.2] (default) | M-by-6 matrix

Specify an M-by-6 matrix, where M is the number of sections in the second-order section filter. Each
row of the SOS matrix contains the numerator and denominator coefficients (bik and aik) of the
corresponding section in the filter.

b01 b11 b21 a01 a11 a21
b02 b12 b22 a02 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0M b1M b2M a0M a1M a2M

The leading denominator coefficients [a01 a02 ... a0N] are treated as 1s, regardless of their actual
values. No scaling is applied to the SOS matrix when a0 is not 1.

The ss2sos and tf2sos functions convert a state-space or transfer function description of your filter
into the second-order section description used by this block.

2 Blocks

2-116

Dependencies

This parameter is visible only when Coefficient source is set to Dialog parameters.

Scale values — Scale values
1 (default) | scalar | vector

Specify scale values to be used between SOS sections. You can specify a real-valued scalar or a vector
of length M+1:

• When you enter a scalar, the value specifies the gain value before the first section of the second-
order filter. The rest of the gain values default to 1.

• When you enter a vector of M+1 values, each value specifies a separate section of the filter. For
example, the first element is the first gain value, the second element is the second gain value, and
so on.

Select the Optimize unity scale values check box to optimize your simulation when one or more
scale values equal 1. Selecting this option removes the unity gains so that the values are treated like
Simulink lines or wires. In some fixed-point cases when there are unity scale values, selecting this
parameter also omits certain casts. Refer to the Fixed-Point Conversion section under Extended
Capabilities for more information.

Dependencies

This parameter is visible only when Coefficient source is set to Dialog parameters.

Initial conditions — Initial conditions
0 (default) | scalar | vector

Specify the initial conditions of the filter states when Filter structure is set to Direct form II or
Direct form II transposed.

Direct form II

 Biquad Filter

2-117

Direct form II transposed

The Biquad Filter block initializes the internal filter states to zero by default. To specify nonzero
initial states for the filter delays, use the Initial conditions parameter.

To determine the number of initial conditions you must specify and how to specify them, see the
following table on valid initial conditions.

2 Blocks

2-118

Valid Initial Conditions

Initial Condition Description
Scalar The block initializes all delay elements in the filter to the scalar value.
Vector or matrix
(for applying different delay
elements to each channel)

Each vector or matrix element specifies a unique initial condition for a
corresponding delay element in a corresponding channel. M is the number of
sections, and N is the number of input channels:

• The vector length must equal the number of delay elements in the filter, 2M.
• The matrix must have the same number of rows as the number of delay

elements in the filter 2MN. The matrix must also have one column for each
channel of the input signal.

Dependencies

This parameter is only visible when Coefficient source is set to Dialog parameters or Input
port(s) and the Filter structure is set to Direct form II or Direct form II transposed.

Initial conditions on zeros side — Initial conditions on zeros side
0 (default) | scalar | vector

Specify the initial conditions for the filter states on the side of the filter structure with the zeros (b0,
b1, b2, …). This parameter applies only when Filter structure is set to Direct form I or Direct
form I transposed.

Direct form I

Direct form I transposed

 Biquad Filter

2-119

The Biquad Filter block initializes the internal filter states to zero by default. To specify nonzero
initial states for the filter delays, use the Initial conditions on zeros side parameter.

For an example model, type the following model name in the MATLAB command prompt.

ex_biquad_filter_ref

To determine the number of initial conditions you must specify and how to specify them, see the
following table on valid initial conditions.

Valid Initial Conditions

Initial Condition Description
Scalar The block initializes all delay elements in the filter to the scalar value.
Vector or matrix
(for applying different delay
elements to each channel)

Each vector or matrix element specifies a unique initial condition for a
corresponding delay element in a corresponding channel. Where M is the
number of sections and N is the number of input channels:

• The vector length must equal the number of delay elements in the filter, 2M.
• The matrix must have the same number of rows as the number of delay

elements in the filter 2MN. The matrix must also have one column for each
channel of the input signal.

Dependencies

This parameter is visible only when Coefficient source is set to Dialog parameters or Input
port(s) and the Filter structure is set to Direct form I or Direct form I transposed.

Initial conditions on poles side — Initial conditions on poles side
0 (default) | scalar | vector

2 Blocks

2-120

Specify the initial conditions for the filter states on the side of the filter structure with the poles (a1,
a2, ...). This parameter applies only when Filter structure is set to Direct form I or Direct
form I transposed.

Direct form I

Direct form I transposed

The Biquad Filter block initializes the internal filter states to zero by default. To specify nonzero
initial states for the filter delays, use the Initial conditions on poles side parameter.

 Biquad Filter

2-121

For an example model, type the following model name in the MATLAB command prompt.

ex_biquad_filter_ref

To determine the number of initial conditions you must specify and how to specify them, see the
following table on valid initial conditions.

Valid Initial Conditions

Initial Condition Description
Scalar The block initializes all delay elements in the filter to the scalar value.
Vector or matrix
(for applying different delay
elements to each channel)

Each vector or matrix element specifies a unique initial condition for a
corresponding delay element in a corresponding channel. Where M is the
number of sections and N is the number of input channels:

• The vector length must equal the number of delay elements in the filter, 2M.
• The matrix must have the same number of rows as the number of delay

elements in the filter 2MN. The matrix must also have one column for each
channel of the input signal.

Dependencies

This parameter is visible only when Coefficient source is set to Dialog parameters or Input
port(s) and the Filter structure is set to Direct form I or Direct form I transposed.

Scale values mode — Mode to specify scale values
Specify via input port (g) (default) | Assume all are unity and optimize

Choose how to specify the scale values to use between filter sections. When you select Specify via
input port (g), you enter the scale values as a 2-D vector at port g. When you select Assume all
are unity and optimize, all scale values are removed and treated like Simulink lines or wires.

Dependencies

This parameter is visible only when Coefficient source is set to Input port(s).

Action when the a0 values of the SOS matrix are not one — Action when a0 values
of SOS matrix are not one
Warning (default) | None | Error

Specify the action the block should perform when the SOS matrix a0j values do not equal one. The
action can be Warning, Error, or None.

When you choose None, the leading coefficients a0j are treated as 1's, regardless of their actual
values. No scaling is applied on the SOS matrix when a0 is not 1.

Dependencies

This parameter is visible only when Coefficient source is set to Dialog parameters.

Optimize unity scale values — Optimize unity scale values
on (default) | off

Select this check box to optimize your simulation when one or more scale values equal 1. Selecting
this option removes the unity gains so that the values are treated like Simulink lines or wires. In some

2 Blocks

2-122

fixed-point cases when there are unity scale values, selecting this parameter also omits certain casts.
See the Fixed Point section under “Extended Capabilities” on page 2-0 for more information.
Dependencies

This parameter is visible only when Coefficient source is set to Dialog parameters.

Input processing — Input processing
Columns as channels (frame based) (default) | Elements as channels (sample based)

Specify how the block should process the input. If the input is an M-by-N matrix, you can set this
parameter to:

• Columns as channels (frame based) (default) — The block treats each column as a
separate channel. In this mode, the block creates M instances of the same filter, each with its own
independent state buffer. Each of the M filters process N input samples at every Simulink time
step.

• Elements as channels (sample based) — The block treats each element as a separate
channel. In this mode, the block creates MN instances of the same filter, each with its own
independent state buffer. Each filter processes one input sample at every Simulink time step.

View Filter Response — View filter response
button

This button opens the Filter Visualization Tool (fvtool) and displays the filter response of the filter
specified in the dialog.

Note When you make changes to the filter parameters on the block dialog, you must click the Apply
button before using the View Filter Response button.

Data Types Tab

Note This tab appears only when you set Coefficient source to either Dialog parameters or
Input port(s). When the Coefficient source is set to Filter object, the data types specified in
the filter object properties are used by the block.

Rounding mode — Rounding mode
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations.

For more details, see rounding mode. The filter coefficients do not obey this parameter; instead, they
always round to Nearest.

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

The filter coefficients are always saturated and do not obey this parameter.

 Biquad Filter

2-123

Section input — Section input data type
Same as input (default) | Binary point scaling

Choose how you specify the word and fraction lengths of the fixed-point data type going into each
section of a biquadratic filter. See the Fixed-Point Conversion section under “Extended
Capabilities” on page 2-0 for illustrations depicting the use of the section input data type in this
block. When you select:

• Same as input — Word length and fraction length characteristics of the Section input data
type match those of the input to the block.

• Binary point scaling — Enter the word and fraction lengths of the section input, in bits.

Section output — Section output data type
Same as section input (default) | Binary point scaling

Choose how you specify the word and fraction lengths of the fixed-point data type coming out of each
section of a biquadratic filter. See the Fixed-Point Conversion section under Extended
Capabilities for illustrations depicting the use of the section output data type in this block. When
you select:

• Same as section input — Word length and fraction length characteristics of the Section
output data type match with those of the input to the block.

• Binary point scaling — Enter the word and fraction lengths of the section output, in bits.

Multiplicand — Multiplicand data type
Same as output (default) | Binary point scaling

Choose how you specify the word and fraction lengths of the multiplicand data type of a Direct
form I transposed filter structure. See the Fixed-Point Conversion section under Extended
Capabilities for illustrations depicting the use of the multiplicand data type in this block.

When you select:

• Same as output — Word length and fraction length characteristics of the Multiplicand data
type match with those of the output of the block.

• Binary point scaling — Enter the word length and the fraction length of the multiplicand, in
bits.

Dependencies

This parameter is visible only when the Filter structure parameter is set to Direct form I
transposed.

Coefficients — Coefficients data type
Same word length as input (default) | Specify word length | Binary point scaling

Choose how you specify the word and fraction lengths of the filter coefficients (numerator,
denominator, and scale value) when Coefficient source is set to Dialog parameters. See the
Fixed-Point Conversion section under Extended Capabilities for illustrations depicting the use of
the coefficient data types in this block. When you select:

• Same word length as input — Word length of the filter coefficients matches that of the input
to the block. In this mode, the block automatically sets the fraction length of the coefficients to the
binary point-only scaling that provides the best precision possible given the value and word length
of the coefficients.

2 Blocks

2-124

• Specify word length — Enter the word length of the coefficients, in bits. In this mode, the
block automatically sets the fraction length of the coefficients to the binary point-only scaling that
provides the best precision possible given the value and word length of the coefficients.

• Binary point scaling — Enter the word length and the fraction length of the coefficients, in
bits. If applicable, enter separate fraction lengths for the numerator and denominator coefficients.

The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; instead,
they are always saturated and rounded to Nearest.

Dependencies

This parameter is visible only when Coefficient source is set to Dialog parameters.

Product output — Product output data type
Same as input (default) | Inherit via internal rule | Binary point scaling

Specify how to designate the product output word and fraction lengths. See “Multiplication Data
Types” and the Fixed-Point Conversion section under Extended Capabilities for illustrations
depicting the use of the product output data type in this block. When you select:

• Same as input — Product output word length and fraction length characteristics match those of
the input to the block.

• Inherit via internal rule — Product output word length and fraction lengths are
computed based on full-precision rules. These rules prevent quantization from occurring within
the block. Bits are added, as needed, so that no roundoff or overflow occurs. For more details, see
“Inherit via Internal Rule”.

• Binary point scaling — Enter the word length and the fraction length of the product output,
in bits. If applicable, enter separate fraction lengths for the numerator and denominator product
output data type.

Accumulator — Accumulator data type
Same as product output (default) | Same as input | Binary point scaling

Specify how to designate the accumulator word and fraction lengths. See “Multiplication Data Types”
and the Fixed-Point Conversion section under Extended Capabilities for illustrations depicting
the use of the accumulator data type in this block. When you select:

• Same as input — Accumulator word and fraction length characteristics match those of the input
to the block.

• Same as product output — Accumulator word and fraction length characteristics match those
of the product output.

• Binary point scaling — Enter the word length and the fraction length of the accumulator, in
bits. If applicable, enter separate fraction lengths for the numerator and denominator accumulator
data type.

States — States data type
Same as accumulator (default) | Same as input | Binary point scaling

Specify how to designate the state word and fraction lengths when Coefficient source is set to
Dialog parameters. See the Fixed-Point Conversion section under Extended Capabilities for
illustrations depicting the use of the state data type in this block.

When you select:

 Biquad Filter

2-125

• Same as input — State word and fraction length characteristics match those of the input to the
block.

• Same as accumulator — State word and fraction length characteristics match those of the
accumulator.

• Binary point scaling — Enter the word length and the fraction length of the state, in bits. If
applicable, enter separate fraction lengths for the numerator and denominator state data type.

Dependencies

This parameter is visible only when Filter structure is set to Direct form II or Direct form
II transposed.

Output — Output data type
Same as accumulator (default) | Same as input | Binary point scaling

Choose how you specify the output word length and fraction length. See the Fixed-Point
Conversion section under Extended Capabilities for illustrations depicting the use of the output
data type in this block. When you select:

• Same as input — Output word and fraction length characteristics match those of the input to
the block.

• Same as accumulator — Output word and fraction length characteristics match those of the
accumulator.

• Binary point scaling — Enter the word length and the fraction length of the output, in bits.

Lock data type settings against changes by the fixed-point tools — Lock data
type settings
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
the block mask.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

2 Blocks

2-126

HDL Coder™ provides additional configuration options that affect HDL implementation and
synthesized logic.

Programmable Filter Support

HDL Coder supports programmable filters for Biquad Filter blocks.

1 On the filter block mask, set Coefficient source to Input port(s).
2 Connect vector signals to the Num and Den coefficient ports.

The following limitations apply to the HDL optimizations for a programmable Biquad Filter block:

• Fully serial and partly serial architectures are not supported. Architecture must be set to Fully
parallel.

• Canonical signed digit (CSD) multiplier optimization is not supported. CoeffMultipliers must
be set to multiplier.

Multichannel Filter Support

HDL Coder supports the use of vector inputs to Biquad Filter blocks.

1 Connect a vector signal to the Biquad Filter block input port.
2 Specify Input processing as Elements as channels (sample based).
3 To reduce area by sharing the filter kernel between channels, set the StreamingFactor

parameter of the subsystem to the number of channels. See the Streaming section of “Subsystem
Optimizations for Filters” (HDL Coder).

Serial Architectures

To use block-level optimizations to reduce hardware resources, select a serial Architecture. Then set
either NumMultipliers or Folding Factor. See “HDL Filter Properties” on page 2-127.

When you select a serial architecture, set Filter structure to Direct form I or Direct form II.
The direct form transposed structures are not supported with serial architectures.

AddPipelineRegisters Support

When you use AddPipelineRegisters, registers are placed based on the filter structure. The pipeline
register placement determines the latency.

Filter Structure Pipeline Register Placement Latency (Clock Cycles)
Any Pipeline registers are added

between the filter sections.
NS-1, where NS is number of
sections.

Subsystem Optimizations

This block can participate in subsystem-level optimizations such as sharing, streaming, and
pipelining. For the block to participate in subsystem-level optimizations, set Architecture to Fully
parallel. See “Subsystem Optimizations for Filters” (HDL Coder).

HDL Filter Properties

AddPipelineRegisters Insert a pipeline register between stages of computation in a filter. See
also AddPipelineRegisters (HDL Coder).

 Biquad Filter

2-127

CoeffMultipliers Specify the use of canonical signed digit (CSD) optimization to decrease
filter area by replacing coefficient multipliers with shift-and-add logic.
When you choose a fully parallel filter implementation, you can set
CoeffMultipliers to csd or factored-csd. The default is multipliers,
which retains multipliers in the HDL. See also CoeffMultipliers (HDL
Coder).

FoldingFactor Specify a serial implementation of an IIR SOS filter by the number of cycles
it takes to generate the result. See also FoldingFactor (HDL Coder).

NumMultipliers Specify a serial implementation of an IIR SOS filter by the number of
hardware multipliers that are generated. See also NumMultipliers (HDL
Coder).

For more details about HDL filter properties, see “HDL Filter Block Properties” (HDL Coder).

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• Frame input is not supported for HDL code generation.
• You must set Initial conditions to 0. HDL code generation is not supported for nonzero initial

states.
• You must select Optimize unity scale values.
• You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

The diagrams in the following sections show the filter structures supported by the Biquad Filter
block. They also show the data types used in the filter structures for fixed-point signals. You can set
the data types shown in these diagrams in the block dialog box.

2 Blocks

2-128

Direct Form I

The following diagram shows the data types for one section of the filter for fixed-point signals.

The following diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

 Biquad Filter

2-129

When you select Optimize unity scale values and scale values equal 1:

Direct Form I Transposed

The following diagram shows the data types for one section of the filter for fixed-point signals.

2 Blocks

2-130

The dashed casts are omitted when Optimize unity scale values is selected and scale values equal
one.

The following diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you select Optimize unity scale values and scale values equal 1:

 Biquad Filter

2-131

Direct Form II

The following diagram shows the data types for one section of the filter for fixed-point signals.

The dashed casts are omitted when Optimize unity scale values is selected and scale values equal
one.

2 Blocks

2-132

The following diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you select Optimize unity scale values and scale values equal 1:

Direct Form II Transposed

The following diagram shows the data types for one section of the filter for fixed-point signals.

 Biquad Filter

2-133

The following diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you select Optimize unity scale values and scale values equal 1:

2 Blocks

2-134

See Also
Objects
dsp.BiquadFilter

Blocks
Discrete FIR Filter | Variable Bandwidth FIR Filter | Variable Bandwidth IIR Filter

Introduced in R2008b

 Biquad Filter

2-135

Block LMS Filter
Compute output, error, and weights using LMS adaptive algorithm

Library
Filtering / Adaptive Filters

dspadpt3

Description
The Block LMS Filter block implements an adaptive least mean-square (LMS) filter, where the
adaptation of filter weights occurs once for every block of samples. The block estimates the filter
weights, or coefficients, needed to minimize the error, e(n), between the output signal, y(n), and the
desired signal, d(n). Connect the signal you want to filter to the Input port. The input signal can be a
scalar or a column vector. Connect the signal you want to model to the Desired port. The desired
signal must have the same data type, complexity, and dimensions as the input signal. The Output
port outputs the filtered input signal. The Error port outputs the result of subtracting the output
signal from the desired signal.

The block calculates the filter weights using the Block LMS adaptive filter algorithm. This algorithm
is defined by the following equations.

n = kN + i
y(n) = wT(k− 1)u(n)

e(n) = d(n)− y(n)
w(k) = w(k− 1) + f (u(n), e(n), μ)

The weight update function for the Block LMS adaptive filter algorithm is defined as

f (u(n), e(n), μ) = μ ∑
i = 0

N − 1
u∗(kN + i)e(kN + i)

The variables are as follows.

Variable Description
n The current time index
i The iteration variable in each block, 0 ≤ i ≤ N − 1
k The block number

2 Blocks

2-136

Variable Description
N The block size
u(n) The vector of buffered input samples at step n
w(n) The vector of filter-tap estimates at step n
y(n) The filtered output at step n
e(n) The estimation error at time n
d(n) The desired response at time n
μ The adaptation step size

Use the Filter length parameter to specify the length of the filter weights vector.

The Block size parameter determines how many samples of the input signal are acquired before the
filter weights are updated. The number of rows in the input must be an integer multiple of the Block
size parameter.

The adaptation Step-size (mu) parameter corresponds to µ in the equations. You can either specify a
step-size using the input port, Step-size, or enter a value in the Block Parameters: Block LMS Filter
dialog box.

Use the Leakage factor (0 to 1) parameter to specify the leakage factor, 0 < 1− μα ≤ 1, in the leaky
LMS algorithm shown below.

w(k) = (1− μα)w(k− 1) + f (u(n), e(n), μ)

Enter the initial filter weights as a vector or a scalar in the Initial value of filter weights text box.
When you enter a scalar, the block uses the scalar value to create a vector of filter weights. This
vector has length equal to the filter length and all of its values are equal to the scalar value

When you select the Adapt port check box, an Adapt port appears on the block. When the input to
this port is greater than zero, the block continuously updates the filter weights. When the input to
this port is zero, the filter weights remain at their current values.

When you want to reset the value of the filter weights to their initial values, use the Reset input
parameter. The block resets the filter weights whenever a reset event is detected at the Reset port.
The reset signal rate must be the same rate as the data signal input.

From the Reset input list, select None to disable the Reset port. To enable the Reset port, select one
of the following from the Reset input list:

• Rising edge — Triggers a reset operation when the Reset input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero (see the following figure).

 Block LMS Filter

2-137

• Falling edge — Triggers a reset operation when the Reset input does one of the following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero (see the following figure)

• Either edge — Triggers a reset operation when the Reset input is a Rising edge or Falling
edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time that the Reset input is not
zero

Select the Output filter weights check box to create a Wts port on the block. For each iteration, the
block outputs the current updated filter weights from this port.

Parameters
Filter length

Enter the length of the FIR filter weights vector.
Block size

Enter the number of samples to acquire before the filter weights are updated. The number of
rows in the input must be an integer multiple of the Block size.

Specify step-size via
Select Dialog to enter a value for mu in the Block parameters: LMS Filter dialog box. Select
Input port to specify mu using the Step-size input port.

Step-size (mu)
Enter the step-size. Tunable (Simulink).

2 Blocks

2-138

Leakage factor (0 to 1)
Enter the leakage factor, 0 < 1− μα ≤ 1. Tunable (Simulink).

Initial value of filter weights
Specify the initial values of the FIR filter weights.

Adapt port
Select this check box to enable the Adapt input port.

Reset port
Select this check box to enable the Reset input port.

Output filter weights
Select this check box to export the filter weights from the Wts port.

References
Hayes, M. H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons, 1996.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Desired • Must be the same as Input
Step-size • Must be the same as Input
Adapt • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Reset • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Same as Input
Error • Same as Input
Wts • Same as Input

See Also
Fast Block LMS Filter DSP System Toolbox
Kalman Adaptive Filter (Obsolete) DSP System Toolbox

 Block LMS Filter

2-139

LMS Filter DSP System Toolbox
RLS Filter DSP System Toolbox

See “Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-140

Buffer
Buffer input sequence to smaller or larger frame size
Library: DSP System Toolbox / Signal Management / Buffers

Description
The Buffer block always performs frame-based processing. The block redistributes the data in each
column of the input to produce an output with a different frame size. Buffering a signal to a larger
frame size yields an output with a slower frame rate than the input. For example, consider this
illustration for a scalar input.

Buffering a signal to a smaller frame size yields an output with a faster frame rate than the input. For
example, consider this illustration of a scalar output.

The block coordinates the output frame size and frame rate of nonoverlapping buffers such that the
sample period of the signal is the same at both the input and output: Tso = Tsi.

This block supports triggered subsystems when the block input and output rates are the same.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

To buffer single-channel signals, input a scalar or column vector. To buffer multichannel signals, input
a row vector or matrix. To buffer single-channel signals, input a scalar or column vector of the size
Mi-by-1, where Mi is the input frame size.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

 Buffer

2-141

Complex Number Support: Yes

Output

Port_1 — Output signal
vector | matrix

The buffered input signal returned as a vector or a matrix.

When the input is a single-channel signal:

• 1-by-1 (scalar) — Output is an Mo-by-1 vector.
• Mi-by-1 (column vector) — Output is an Mo-by-1 vector.

where

• Mi — Input frame size
• Mo — Value of the Output buffer size parameter

The input frame period is Mi · Tsi, where Tsi is the input sample period. The output frame period is
Mo− L Tsi, where L is the value of the Buffer overlap parameter and Tsi is the input sample period.

When you set the Buffer overlap parameter to Mo – 1, the output frame period equals the input
sample period.

When the input is a multichannel signal:

• 1-by-N — Output is an Mo-by-N matrix.
• Mi-by-N — Output is an Mo-by-N matrix.

where

• N — Number of channels in the signal
• Mi — Input frame period
• Mo is the value of the Output buffer size parameter and can be greater or less than the input

frame size, Mi. The block buffers each of the N input channels independently.

The input frame period is Mi · Tsi. The output frame period is Mo− L Tsi, which equals the sequence
sample period when the Buffer overlap is Mo− 1. Thus, the output sample period Tso is related to
the input sample period Tsi by

Tso =
Mo− L Tsi

Mi

The output has the same data type and complexity as the input
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point
Complex Number Support: Yes

Parameters
Output buffer size (per channel) — Buffer size
64 (default) | positive integer

2 Blocks

2-142

Specify the number of consecutive samples, Mo, from each channel to buffer into the output frame.
Data Types: double | int8 | int16 | int32 | uint8 | uint16 | uint32

Buffer overlap — Buffer overlap
0 (default) | integer

Specify the number of samples, L, which specifies the amount of overlap or underlap in each
successive output frame.

To overlap the data in the buffer, specify a value of L in the range 0 ≤ L < Mo, where Mo is the value
of the Output buffer size parameter. The block takes L samples (rows) from the current output and
repeats them in the next output. In cases of overlap, the block acquires Mo− Lnew input samples
before propagating the buffered data to the output.

When L < 0, you are buffering the signal with underlap. The block discards L input samples after the
buffer fills and outputs the buffer with period Mo− L Tsi, which is longer than in the zero-overlap
case.

The output frame period is Mo− L Tsi, which equals the input sequence sample period, Tsi, when the
Buffer overlap is Mo− 1.

Data Types: double | int8 | int16 | int32 | uint8 | uint16 | uint32

Initial conditions — Initial output
0 (default) | scalar | vector | matrix

Specify the value of the block's initial output, in cases of nonzero latency, as a scalar, vector, or
matrix.

For all cases of single-tasking operation (Simulink Coder) other than those listed in “Zero-Tasking
Latency” on page 2-144, the Buffer block's buffer is initialized to the value(s) specified by the Initial
conditions parameter. The block reads from this buffer to generate the first D output samples, where

D =
Mo + L (L ≥ 0)

Mo (L < 0)

The dimensions of the Initial conditions parameter depend on the Buffer overlap, L, and whether
the input is single-channel or multichannel:

• When L ≠ 0, the Initial conditions parameter must be a scalar.
• When L = 0, the Initial conditions parameter can be a scalar, or it can be a vector with either of

these constraints:

• For single-channel inputs, the Initial conditions parameter can be a vector of length Mo if Mi
is 1, or a vector of length Mi if Mo is 1.

• For multichannel inputs, the Initial conditions parameter can be a vector of length Mo * N if
Mi is 1, or a vector of length Mi * N if Mo is 1.

For all multitasking operations (Simulink Coder), use the rebuffer_delay function to compute the
exact delay in samples that the Buffer block introduces for a given combination of buffer size and
buffer overlap.

For general buffering between arbitrary frame sizes, the Initial conditions parameter must be a
scalar, which is then repeated across all elements of the initial output(s). However, in the special case

 Buffer

2-143

where the input is a 1-by-N row vector, and the output of the block is an Mo-by-N matrix, Initial
conditions can be:

• An Mo-by-N matrix
• A length-Mo vector to be repeated across all columns of the initial output(s)
• A scalar to be repeated across all elements of the initial output(s)

In the special case where the output is a 1-by-N row vector, which is the result of unbuffering an Mi-
by-N matrix, the Initial conditions can be:

• A vector containing Mi samples to output sequentially for each channel during the first Mi sample
times

• A scalar to be repeated across all elements of the initial output(s)

For more information on latency and the Simulink tasking modes, see “Excess Algorithmic Delay
(Tasking Latency)” and “Time-Based Scheduling and Code Generation” (Simulink Coder).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point
Complex Number Support: Yes

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Zero-Tasking Latency

Zero-tasking latency means that the first input sample, received at t = 0, appears as the first output
sample. In the Simulink single-tasking mode (Simulink Coder), the Buffer block has zero-tasking
latency for these special cases:

• Scalar input and output (Mo = Mi = 1) with zero or negative Buffer overlap (L ≤ 0)

• Input frame size is an integer multiple of the output frame size

Mi = kMo

where k is an integer with zero Buffer overlap (L = 0); notable cases of this include:

• Any input frame size Mi with scalar output (Mo = 1) and zero Buffer overlap (L = 0)

• Equal input and output frame sizes (Mo = Mi) with zero Buffer overlap (L = 0)

2 Blocks

2-144

Overrun and Underrun

The Buffer block cannot be used in an enabled subsystem under the following conditions:

• In a multirate, multitasking environment
• When the Buffer overlap parameter is set to a negative value

The Buffer block has an internal reservoir that temporarily stores data. When the Buffer block is used
in an enabled subsystem, there is the possibility that the reservoir can overrun or underrun. The
block implements safeguards against these occurrences.

Overrun occurs when more data enters the buffer than what it can hold. For example, consider
buffering a scalar input to a frame of size three with a buffer that accepts an input every second and
outputs every three seconds. If you place this buffer inside an enabled subsystem that is disabled
every three seconds at t = 3s, t = 6s, and so on, the buffer accumulates data in its internal reservoir
without being able to empty it. This condition results in an overrun.

Underrun occurs when the buffer runs out of data to output. For example, again consider buffering a
scalar input to a frame size of three with a buffer that accepts an input every second and outputs
every three seconds. If you place this buffer inside an enabled subsystem that is disabled at t = 10s, t
= 11s, t = 13s, t = 14s, t = 16s, and t = 17s, its internal reservoir becomes drained, and there is no
data to output at t = 18s. This condition results in an underrun.

To protect from an overrun or an underrun, the Buffer block keeps a record of the amount of data in
its internal reservoir. When the Buffer block reads data, the amount of data in its reservoir goes up.
When the Buffer block outputs the data, the amount of data in its reservoir goes down. To protect
from overrun, the oldest samples in the reservoir are discarded whenever the amount of data in the
reservoir is larger than the actual buffer size. To protect from underrun, the most recent samples are
repeated whenever an output is due and there is no data in the reservoir.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
rebuffer_delay

Blocks
Delay Line | Unbuffer

Topics
“Convert Sample and Frame Rates in Simulink Using Rate Conversion Blocks”
“Buffering and Frame-Based Processing”

Introduced before R2006a

 Buffer

2-145

Burg AR Estimator
Compute estimate of autoregressive (AR) model parameters using Burg method

Library
Estimation / Parametric Estimation

dspparest3

Description
The Burg AR Estimator block uses the Burg method to fit an autoregressive (AR) model to the input
data by minimizing (least squares) the forward and backward prediction errors while constraining the
AR parameters to satisfy the Levinson-Durbin recursion.

The input must be a column vector or an unoriented vector, which is assumed to be the output of an
AR system driven by white noise. This input represents a frame of consecutive time samples from a
single-channel signal. The block computes the normalized estimate of the AR system parameters,
A(z), independently for each successive input frame.

H(z) = G
A(z) = G

1 + a(2)z−1 + … + a(p + 1)z−p

When you select the Inherit estimation order from input dimensions parameter, the order, p, of
the all-pole model is one less than the length of the input vector. Otherwise, the order is the value
specified by the Estimation order parameter.

The Output(s) parameter allows you to select between two realizations of the AR process:

• A — The top output, A, is a column vector of length p+1 with the same frame status as the input,
and contains the normalized estimate of the AR model polynomial coefficients in descending
powers of z.

[1 a(2) ... a(p+1)]

• K — The top output, K, is a column vector of length p with the same frame status as the input, and
contains the reflection coefficients (which are a secondary result of the Levinson recursion).

• A and K — The block outputs both realizations.

The scalar gain, G, is provided at the bottom output (G).

The following table compares the features of the Burg AR Estimator block to the Covariance AR
Estimator, Modified Covariance AR Estimator, and Yule-Walker AR Estimator blocks.

2 Blocks

2-146

 Burg AR Estimator Covariance AR
Estimator

Modified
Covariance AR
Estimator

Yule-Walker AR
Estimator

Characteristics Does not apply window to
data

Does not apply
window to data

Does not apply
window to data

Applies window to
data

Minimizes the forward
and backward prediction
errors in the least
squares sense, with the
AR coefficients
constrained to satisfy the
L-D recursion

Minimizes the
forward prediction
error in the least
squares sense

Minimizes the
forward and
backward
prediction errors
in the least
squares sense

Minimizes the
forward prediction
error in the least
squares sense (also
called
“autocorrelation
method”)

Advantages Always produces a stable
model

Always produces a
stable model

Disadvantages May produce
unstable models

May produce
unstable models

Performs relatively
poorly for short data
records

Conditions for
Nonsingularity

Order must be less
than or equal to half
the input frame size

Order must be
less than or
equal to 2/3 the
input frame size

Because of the
biased estimate, the
autocorrelation
matrix is guaranteed
to positive-definite,
hence nonsingular

Parameters
Output(s)

The realization to output, model coefficients, reflection coefficients, or both.
Inherit estimation order from input dimensions

When selected, sets the estimation order p to one less than the length of the input vector.
Estimation order

The order of the AR model, p. This parameter is enabled when you do not select Inherit
estimation order from input dimensions.

References
Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall,
1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall,
1987.

 Burg AR Estimator

2-147

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
A • Double-precision floating point

• Single-precision floating point
G • Double-precision floating point

• Single-precision floating point

See Also
Burg Method DSP System Toolbox
Covariance AR Estimator DSP System Toolbox
Modified Covariance AR Estimator DSP System Toolbox
Yule-Walker AR Estimator DSP System Toolbox
arburg Signal Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

2 Blocks

2-148

Burg Method
Power spectral density estimate using Burg method

Library
Estimation / Power Spectrum Estimation

dspspect3

Description
The Burg Method block estimates the power spectral density (PSD) of the input frame using the Burg
method. This method fits an autoregressive (AR) model to the signal by minimizing (least squares) the
forward and backward prediction errors. Such minimization occurs with the AR parameters
constrained to satisfy the Levinson-Durbin recursion.

The input must be a column vector or an unoriented vector. This input represents a frame of
consecutive time samples from a single-channel signal. The block outputs a column vector containing
the estimate of the power spectral density of the signal at Nfft equally spaced frequency points. The
frequency points are in the range [0,Fs), where Fs is the sampling frequency of the signal.

When you select the Inherit estimation order from input dimensions parameter, the order of the
all-pole model is one less than the input frame size. Otherwise, the Estimation order parameter
specifies the order. The block computes the spectrum from the FFT of the estimated AR model
parameters.

Selecting the Inherit FFT length from estimation order parameter specifies that Nfft is one
greater than the estimation order. Clearing the Inherit FFT length from estimation order check
box, allows you to use the FFT length parameter to specify Nfft as a power of 2. The block zero-pads
or wraps the input to Nfft before computing the FFT. The output is always sample based.

When you select the Inherit sample time from input check box, the block computes the frequency
data from the sample period of the input signal. For the block to produce valid output, the following
conditions must hold:

• The input to the block is the original signal, with no samples added or deleted (by insertion of
zeros, for example).

• The sample period of the time-domain signal in the simulation equals the sample period of the
original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then
specify a sample time using the Sample time of original time series parameter.

The Burg Method and Yule-Walker Method blocks return similar results for large frame sizes. The
following table compares the features of the Burg Method block to the Covariance Method, Modified
Covariance Method, and Yule-Walker Method blocks.

 Burg Method

2-149

 Burg Covariance Modified
Covariance

Yule-Walker

Characteristics Does not apply
window to data

Does not apply
window to data

Does not apply
window to data

Applies window to
data

Minimizes the
forward and
backward
prediction errors in
the least squares
sense, with the AR
coefficients
constrained to
satisfy the L-D
recursion

Minimizes the
forward prediction
error in the least
squares sense

Minimizes the
forward and
backward
prediction errors in
the least squares
sense

Minimizes the
forward prediction
error in the least
squares sense (also
called
autocorrelation
method)

Advantages High resolution for
short data records

Better resolution
than Y-W for short
data records (more
accurate estimates)

High resolution for
short data records

Performs as well as
other methods for
large data records

Always produces a
stable model

Able to extract
frequencies from
data consisting of p
or more pure
sinusoids

Able to extract
frequencies from
data consisting of p
or more pure
sinusoids

Always produces a
stable model

Does not suffer
spectral line-
splitting

Disadvantages Peak locations
highly dependent
on initial phase

May produce
unstable models

May produce
unstable models

Performs relatively
poorly for short data
records

May suffer spectral
line-splitting for
sinusoids in noise,
or when order is
very large

Frequency bias for
estimates of
sinusoids in noise

Peak locations
slightly dependent
on initial phase

Frequency bias for
estimates of
sinusoids in noise

Frequency bias for
estimates of
sinusoids in noise

Minor frequency
bias for estimates of
sinusoids in noise

Conditions for
Nonsingularity

 Order must be less
than or equal to half
the input frame size

Order must be less
than or equal to 2/3
the input frame size

Because of the
biased estimate, the
autocorrelation
matrix is guaranteed
to be positive-
definite, hence
nonsingular

2 Blocks

2-150

Parameters
Inherit estimation order from input dimensions

Selecting this check box sets the estimation order to one less than the length of the input vector.
Estimation order

The order of the AR model. This parameter becomes visible only when you clear the Inherit
estimation order from input dimensions check box.

Inherit FFT length from estimation order
When selected, the FFT length is one greater than the estimation order. To specify the number of
points on which to perform the FFT, clear the Inherit FFT length from estimation order check
box. You can then specify a power-of-two FFT length using the FFT length parameter.

FFT length
Enter the number of data points on which to perform the FFT, Nfft. When Nfft is larger than the
input frame size, the block zero-pads each frame as needed. When Nfft is smaller than the input
frame size, the block wraps each frame as needed. This parameter becomes visible only when you
clear the Inherit FFT length from input dimensions check box.

Inherit sample time from input
If you select the Inherit sample time from input check box, the block computes the frequency
data from the sample period of the input signal. For the block to produce valid output, the
following conditions must hold:

• The input to the block is the original signal, with no samples added or deleted (by insertion of
zeros, for example).

• The sample period of the time-domain signal in the simulation equals the sample period of the
original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can
then specify a sample time using the Sample time of original time series parameter.

Sample time of original time series
Specify the sample time of the original time-domain signal. This parameter becomes visible only
when you clear the Inherit sample time from input check box.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

References
[1] Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-

Hall, 1988.

[2] Orfanidis, S. J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1995.

 Burg Method

2-151

[3] Orfanidis, S. J. Optimum Signal Processing: An Introduction. 2nd ed. New York, NY: Macmillan,
1985.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Burg AR Estimator | Covariance Method | Modified Covariance Method | Short-Time FFT | Yule-
Walker Method

Topics
“Spectral Analysis”

Introduced before R2006a

2 Blocks

2-152

Channelizer
Polyphase FFT analysis filter bank
Library: DSP System Toolbox / Filtering / Multirate Filters

Description
The Channelizer block separates a broadband input signal into multiple narrow subbands using an
FFT-based analysis filter bank. The filter bank uses a prototype lowpass filter and is implemented
using a polyphase structure. You can specify the filter coefficients directly or through design
parameters. When you specify the design parameters, the filter is designed using the
designMultirateFIR function.

This block accepts variable-size inputs. That is, during the simulation, you can change the size of each
input channel. The number of channels cannot change.

Input/Output Ports
Input

x — Broadband signal
L-by-1 column vector | L-by-N matrix

Input broadband signal, which the channelizer splits into multiple narrow bands. The number of rows
in the input signal must be a multiple of the number of frequency bands of the filter bank. Each
column of the input corresponds to a separate channel.

This port is unnamed until you set Polyphase filter specification to Coefficients and select the
Specify coefficients from input port parameter.
Data Types: single | double

coeffs — Prototype lowpass filter coefficients
row vector

Coefficients of the prototype lowpass filter. There must be at least one coefficient per frequency band.
If the length of the lowpass filter is less than the number of frequency bands, the block zero-pads the
coefficients.

If you specify complex coefficients, the block designs a prototype filter that is centered at a nonzero
frequency, also known as a bandpass filter. The modulated versions of the prototype bandpass filter
appear with respect to the prototype filter and are wrapped around the frequency range [−Fs Fs].

Dependencies

This port appears when you set Polyphase filter specification to Coefficients and select the
Specify coefficients from input port parameter.

 Channelizer

2-153

Data Types: single | double

Output

Port_1 — Multiple narrowband signals
L/M-by-M | L/M-by-M-by-N array

Multiple narrow subbands of the input broadband signal. Each narrow band signal forms a column in
the output.

If the input is one of the following:

• L-by-1 column vector — The output is a L/M-by-M matrix. M is the number of frequency bands.
• L-by-N matrix — The output is a L/M-by-M-by-N matrix.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Number of frequency bands — Number of frequency bands
8 (default) | positive integer greater than 1

Number of frequency bands M into which the block separates the input broadband signal. This
parameter indicates the FFT length and the decimation factor used by the algorithm.

Polyphase filter specification — Filter design parameters or coefficients
Number of taps per band and stopband attenuation (default) | Coefficients

• Number of taps per band and stopband attenuation — Specify the filter design
parameters through the Number of filter taps per frequency band and Stopband attenuation
(dB) parameters. When you specify the design parameters, the filter is designed using the
designMultirateFIR function.

• Coefficients — Specify the filter coefficients directly using the Prototype lowpass filter
coefficients parameter or input them through the coeffs port.

DecimationFactor — Decimation factor
8 (default) | positive integer

Decimation factor D specified as a positive integer less than or equal to the number of frequency
bands M.

If the decimation factor D equals the number of frequency bands M, then the M/D ratio equals 1, and
the channelizer is known as the maximally decimated channelizer.

If the M/D ratio is greater than 1, the output sample rate is different from the channel spacing, and
the channelizer is known as the non-maximally decimated channelizer. If the ratio is an integer, the
channelizer is known as the integer-oversampled channelizer. If the ratio is not an integer, say 4/3,
the channelizer is known as the rationally oversampled channelizer. For more details, see “Algorithm”
on page 4-220.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

2 Blocks

2-154

Number of filter taps per frequency band — Number of filter coefficients per
frequency band
12 (default) | positive integer

Number of filter coefficients that each polyphase branch uses. The number of polyphase branches
matches the number of frequency bands. The total number of filter coefficients for the prototype
lowpass filter is given by Number of frequency bands × Number of filter taps per frequency
band. For a given stopband attenuation, increasing the number of taps per band narrows the
transition width of the filter. As a result, there is more usable bandwidth for each frequency band, at
the expense of increased computation.
Dependencies

To enable this parameter, set Polyphase filter specification to Number of taps per band and
stopband attenuation.

Stopband attenuation (dB) — Stopband attenuation
80 (default) | positive real scalar

Stopband attenuation of the lowpass filter, in dB. This value controls the maximum amount of aliasing
from one frequency band to the next. As the stopband attenuation increases, the passband ripple
decreases.
Dependencies

To enable this parameter, set Polyphase filter specification to Number of taps per band and
stopband attenuation.

Specify coefficients from input port — Flag to specify lowpass filter coefficients
off (default) | on

When you select this parameter, the lowpass filter coefficients are input through the coeffs port.
When you clear this parameter, the coefficients are specified on the block dialog through the
Prototype lowpass filter coefficients parameter.
Dependencies

To enable this parameter, set Polyphase filter specification to Coefficients.

Prototype lowpass filter coefficients — Coefficients of prototype lowpass filter
rcosdesign(0.25,6,8,'sqrt') (default) | row vector

Coefficients of the prototype lowpass filter. The default value is the coefficients vector that
rcosdesign(0.25,6,8,'sqrt') returns. There must be at least one coefficient per frequency
band. If the length of the lowpass filter is less than the number of frequency bands, the block zero-
pads the coefficients.

If you specify complex coefficients, the block designs a prototype filter that is centered at a nonzero
frequency, also known as a bandpass filter. The modulated versions of the prototype bandpass filter
appear with respect to the prototype filter and are wrapped around the frequency range [−Fs Fs].

Tunable: Yes
Dependencies

To enable this parameter, set Polyphase filter specification to Coefficients and clear the
Specify coefficients from input port parameter.

 Channelizer

2-155

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time and has faster
simulation speed compared to Code generation.

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster subsequent simulations.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals Yes

More About
Analysis Filter Bank

The generic analysis filter bank consists of a series of parallel bandpass filters that split an input
broadband signal, x[n], into a series of narrow subbands. Each bandpass filter retains a different
portion of the input signal. After the bandwidth is reduced by one of the bandpass filters, the signal is
downsampled to a lower sampling rate commensurate with the new bandwidth.

Prototype Lowpass Filter

To implement the analysis filter bank efficiently, the channelizer uses a prototype lowpass filter.

The prototype lowpass filter has an impulse response of h[n], a normalized two-sided bandwidth of
2π/M, and a cutoff frequency of π/M. M is the number of frequency bands, that is, the branches of the

2 Blocks

2-156

analysis filter bank. This value corresponds to the FFT length that the filter bank uses. M can be high
on the order of 2048 or more. The stopband attenuation determines the minimum level of
interference (aliasing) from one frequency band to another. The passband ripple must be small so that
the input signal is not distorted in the passband.

The prototype lowpass filter corresponds to H0(z) in the filter bank. The first branch of the filter bank
contains H0(z) followed by the decimator. The other M – 1 branches contain filters that are modulated
versions of the prototype filter. The modulation factor is given by the following equation:

e− jwkn, wk = 2πk/M, k = 0, 1, ..., M − 1

Using the Prototype Lowpass Filter

The transfer function of the modulated kth bandpass filter is given by:

Hk(z) = H0(ze− jwk), wk = 2πk/M, k = 1, 2, ..., M − 1

This figure shows the frequency response of M filters.

To obtain the frequency response characteristics of the filter Hk(z), where k = 1, … , M−1, uniformly
shift the frequency response of the prototype filter, H0(z), by multiples of 2π/M. Each subband filter,
Hk(z), {k = 1, … , M – 1}, is derived from the prototype filter.

Following is an equivalent representation of the frequency response diagram with ω ranging from
[−π π].

Shift Narrow Subbands to Baseband

The frequency components in the input signal, x[n], are translated in frequency to baseband by
multiplying x[n] with the complex exponentials, e− jwkn, wk = 2πk/M, k = 1, 2, .., M − 1 , where
wk = 2πk/M, and k = 1, 2, ..., M − 1. The resulting product signals are passed through the lowpass
filters, H0(z). The output of the lowpass filter is relatively narrow in bandwidth. Downsample the
signal commensurate with the new bandwidth. Choose a decimation factor, D ≤ M, where M is the

 Channelizer

2-157

number of branches of the analysis filter bank. When D < M, the channelizer is known as
oversampled or non-maximally decimated channelizer.

The figure shows an analysis filter bank that uses the prototype lowpass filter.

y1[m], y2[m], … , yM−1[m] are narrow subband signals translated into baseband.

Algorithms
Polyphase Implementation

The analysis filter bank can be implemented efficiently using the polyphase structure. For more
details on the analysis filter bank, see Analysis Filter Bank on page 2-156.

To derive the polyphase structure, start with the transfer function of the prototype lowpass filter:

H0(z) = b0 + b1z−1 + ... + bNz−N

N + 1 is the length of the prototype filter.

You can rearrange this equation as follows:

H0(z) =

b0 + bMz−M + b2Mz−2M + .. + bN −M + 1z−(N −M + 1) +

z−1 b1 + bM + 1z−M + b2M + 1z−2M + .. + bN −M + 2z−(N −M + 1) +
⋮

z−(M − 1) bM − 1 + b2M − 1z−M + b3M − 1z−2M + .. + bNz−(N −M + 1)

M is the number of polyphase components.

You can write this equation as:

H0(z) = E0(zM) + z−1E1(zM) + ... + z−(M − 1)EM − 1(zM)

2 Blocks

2-158

E0(zM), E1(zM), … , EM−1(zM) are polyphase components of the prototype lowpass filter H0(z).

The other filters in the filter bank, Hk(z), where k = 1, … , M−1, are modulated versions of this
prototype filter.

You can write the transfer function of the kth modulated bandpass filter as Hk(z) = H0(ze− jwk).

Replacing z with ze-jwk,

Hk(z) = h0 + h1e− jwkz−1 + h2e− j2wkz−2... + hNe− jNwkz−N

N + 1 is the length of the kth filter.

In polyphase form, the equation is as follows:

Hk(z) = 1 e− jwk e− j2wk ⋯ e− j(M − 1)wk

E0(zM)

z−1E1(zM)
⋮

z−(M − 1)EM − 1(zM)

For all M channels in the filter bank, the transfer function H(z) is given by:

H(z) =

1 1 1 ⋯ 1

1 e− jw1 e− j2w1 ⋯ e− j(M − 1)w1

⋮ ⋮ ⋮ ⋱ ⋮
1 e− jwM − 1 e− j2wM − 1 ⋯ e− j(M − 1)wM − 1

E0(zM)

z−1E1(zM)
⋮

z−(M − 1)EM − 1(zM)

Maximally decimated channelizer

When D = M, the channelizer is known as the maximally decimated channelizer or critically sampled
channelizer.

Here is the multirate noble identity for decimation, assuming that D = M.

For example, consider the first branch of the filter bank that contains the lowpass filter.

Replace H0(z) with its polyphase representation on page 2-158.

 Channelizer

2-159

After applying the noble identity for decimation, you can replace the delays and the decimation factor
with a commutator switch. The switch starts on the first branch 0 and moves in the counterclockwise
direction as shown in the following diagram. The accumulator at the output receives the processed
input samples from each branch of the polyphase structure and accumulates these processed samples
until the switch goes to branch 0. When the switch goes to branch 0, the accumulator outputs the
accumulated value.

For all M channels in the filter bank, the transfer function H(z) is given by:

H(z) =

1 1 1 ⋯ 1

1 e− jw1 e− j2w1 ⋯ e− j(M − 1)w1

⋮ ⋮ ⋮ ⋱ ⋮
1 e− jwM − 1 e− j2wM − 1 ⋯ e− j(M − 1)wM − 1

E0(z)
E1(z)
⋮

EM − 1(z)

The matrix on the left is a discrete Fourier transform (DFT) matrix. With the DFT matrix, the efficient
implementation of the lowpass prototype-based filter bank looks like this.

2 Blocks

2-160

When the first input sample is delivered, the switch feeds this input to the branch 0 and the
channelizer computes the first set of output values. As more input samples come in, the switch moves
in the counterclockwise direction through branches M−1, M−2, all the way up to branch 0, delivering
one sample at a time to each branch. When the switch comes to branch 0, the channelizer outputs the
next set of output values. This process continues as the data keeps coming in. Every time the switch
comes to the first branch 0, the channelizer outputs y0[m], y1[m], … , yM-1[m]. Each branch in the
channelizer effectively outputs one sample for every M samples it receives. Hence, the sample rate at
the output of the channelizer is fs/M.

Non-maximally decimated or oversampled channelizer

When D < M, the channelizer is known as the non-maximally decimated channelizer or oversampled
channelizer. In this configuration, the output sample rate is different from the channel spacing. The
non-maximally decimated channelizers offer increased design freedom, but at the expense of
increasing computational cost.

If the ratio M/D equals an integer that is greater than 1 and is less than or equal to M−1, the
channelizer is known as integer-oversampled channelizer. If the ratio M/D is not an integer, then the
channelizer is known as rationally-oversampled channelizer.

In this configuration, when the first input sample is delivered, the switch feeds this input to branch 0
and the channelizer computes the first set of output values. As more input samples come in, the
switch moves in the counterclockwise direction through branches D−1, D−2, all the way up to branch
0, delivering one sample at a time to each branch. When the switch comes to branch 0, the
channelizer outputs the next set of output values. This process continues as the data keeps coming in.
Every time the switch comes to the first branch 0, the channelizer outputs y0[m], y1[m], … , yM-1[m].

As more data keeps coming in and the switch feeds these samples to the first D addresses, the formal
contents of these addresses are shifted to the next set of D addresses, and this process of data shift
continues every time there is a new set of D input samples.

For every D input samples that are fed to the polyphase structure, the channelizer outputs M
samples, y0[m], y1[m], … , yM-1[m]. This process increases the output sample rate from fs/M in the case
of a maximally decimated channelizer, to fs/D in the case of a non-maximally decimated channelizer.

For more details, see [2].

After each D-point data sequence is delivered to the partitioned M-stage polyphase filter, the outputs
of the M stages are computed and conditioned for delivery to the M-point FFT. The data shifting

 Channelizer

2-161

through the filter introduces frequency-dependent phase shift. To correct for this phase shift and alias
all bands to DC, a circular shift buffer is inserted after the polyphase filters and before the M-point
FFT.

With the commutator switch followed by M-stage polyphase filter, circular shift buffer, and a DFT
matrix, the efficient implementation of the lowpass prototype-based filter bank looks like this.

References
[1] Harris, Fredric J, Multirate Signal Processing for Communication Systems, Prentice Hall PTR,

2004.

[2] Harris, F.J., Chris Dick, and Michael Rice. "Digital Receivers and Transmitters Using Polyphase
Filter Banks for Wireless Communications." IEEE® Transactions on Microwave Theory and
Techniques. 51, no. 4 (2003).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Channel Synthesizer | Dyadic Analysis Filter Bank | Two-Channel Analysis Subband Filter

Objects
dsp.Channelizer | dsp.ChannelSynthesizer | dsp.SubbandAnalysisFilter |
dsp.DyadicAnalysisFilterBank

2 Blocks

2-162

Introduced in R2017a

 Channelizer

2-163

Channel Synthesizer
Polyphase FFT synthesis filter bank
Library: DSP System Toolbox / Filtering / Multirate Filters

Description
The Channel Synthesizer block merges multiple narrowband signals into a broadband signal by using
an FFT-based synthesis filter bank. The filter bank uses a prototype lowpass filter and is implemented
using a polyphase structure. You can specify the filter coefficients directly or through design
parameters. When you specify the design parameters, the filter is designed using the
designMultirateFIR function.

This block also accepts variable-size inputs. That is, during the simulation, you can change the size of
each input channel. The number of channels cannot change.

Input/Output Ports
Input

x — Input narrowband signals
L-by-M matrix | L-by-M-by-N array

Input narrowband signals, which the channel synthesizer merges to form the broadband signal. Each
narrowband signal forms a column in the input signal. The number of columns in the input
correspond to the number of frequency bands of the filter bank. If the input is three-dimensional,
each matrix corresponds to a separate channel.

This port is unnamed until you set Polyphase filter specification to Coefficients and select the
Specify coefficients from input port parameter.
Data Types: single | double

coeffs — Prototype lowpass filter coefficients
row vector

Coefficients of the prototype lowpass filter. There must be at least one coefficient per frequency band.
If the length of the lowpass filter is less than the number of frequency bands, the block zero-pads the
coefficients.

If you specify complex coefficients, the block designs a prototype filter that is centered at a nonzero
frequency, also known as a bandpass filter. The modulated versions of the prototype bandpass filter
appear with respect to the prototype filter and are wrapped around the frequency range [−Fs Fs].
Dependencies

This port appears when you set Polyphase filter specification to Coefficients and select the
Specify coefficients from input port parameter.

2 Blocks

2-164

Data Types: single | double

Output

Port_1 — Broadband signal
L×M-by-1 vector | L×M-by-N matrix

Broadband signal the channel synthesizer forms from the multiple input narrow subbands.

If the input is one of the following:

• L-by-M matrix — The output is a L×M-by-1 vector. M is the number of frequency bands.
• L-by-M-by-N matrix — The output is a L×M-by-N matrix.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Polyphase filter specification — Filter design parameters or coefficients
Number of taps per band and stopband attenuation (default) | Coefficients

• Number of taps per band and stopband attenuation — Specify the filter design
parameters through the Number of filter taps per frequency band and Stopband attenuation
(dB) parameters. When you specify the design parameters, the filter is designed using the
designMultirateFIR function.

• Coefficients — Specify the filter coefficients directly using the Prototype lowpass filter
coefficients parameter or input them through the coeffs port.

Number of filter taps per frequency band — Number of filter coefficients per
frequency band
12 (default) | positive integer

Number of filter coefficients that each polyphase branch uses. The number of polyphase branches
matches the number of frequency bands. The total number of filter coefficients for the prototype
lowpass filter is given by the product of the number of frequency bands and the number of filter taps
per frequency band. The number of frequency bands equals the number of columns in the input. For a
given stopband attenuation, increasing the number of taps per band narrows the transition width of
the filter. As a result, there is more usable bandwidth for each frequency band, at the expense of
increased computation.

Dependencies

To enable this parameter, set Polyphase filter specification to Number of taps per band and
stopband attenuation.

Stopband attenuation (dB) — Stopband attenuation
80 (default) | positive real scalar

Stopband attenuation of the lowpass filter, in dB. This value controls the maximum amount of aliasing
from one frequency band to the next. As the stopband attenuation increases, the passband ripple
decreases.

 Channel Synthesizer

2-165

Dependencies

To enable this parameter, set Polyphase filter specification to Number of taps per band and
stopband attenuation.

Specify coefficients from input port — Flag to specify lowpass filter coefficients
off (default) | on

When you select this check box, the lowpass filter coefficients are input through the coeffs port.
When you clear this check box, the coefficients are specified on the block dialog through the
Prototype lowpass filter coefficients parameter.

Dependencies

To enable this parameter, set Polyspace filter specification to Coefficients.

Prototype lowpass filter coefficients — Coefficients of prototype lowpass filter
rcosdesign(0.25,6,8,'sqrt') (default) | row vector

This parameter specifies the coefficients of the prototype lowpass filter. The default value is the
coefficients vector that rcosdesign(0.25,6,8,'sqrt') returns. There must be at least one
coefficient per frequency band. If the length of the lowpass filter is less than the number of frequency
bands, the block zero-pads the coefficients.

If you specify complex coefficients, the block designs a prototype filter that is centered at a nonzero
frequency, also known as a bandpass filter. The modulated versions of the prototype bandpass filter
appear with respect to the prototype filter and are wrapped around the frequency range [−Fs Fs].

Tunable: Yes

Dependencies

To enable this parameter, set Polyphase filter specification to Coefficients and clear the
Specify coefficients from input port parameter.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time and has faster
simulation speed compared to Code generation.

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster subsequent simulations.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

2 Blocks

2-166

Variable-Size Signals Yes

More About
Synthesis Filter Bank

The synthesis filter bank consists of a set of parallel bandpass filters that merge multiple input
narrowband signals, y0[m], y1[m], … , yM-1[m] into a single broadband signal, v[n]. The input
narrowband signals are in the baseband. Each narrowband signal is interpolated to a higher sampling
rate by using the upsampler, and then filtered by the lowpass filter. A complex exponential that
follows the lowpass filter centers the baseband signal around wk.

Prototype Lowpass Filter

To implement the synthesis filter bank efficiently, the synthesizer uses a prototype lowpass filter. This
filter has an impulse response of h[n], a normalized two-sided bandwidth of 2π/M, and a cutoff
frequency of π/M. M is the number of frequency bands, that is, the branches of the synthesis filter
bank. This value corresponds to the FFT length that the filter bank uses. M can be high, in the order
of 2048 or more. The stopband attenuation determines the minimum level of interference (aliasing)
from one frequency band to another. The passband ripple must be small so that the input signal is not
distorted in the passband.

The prototype lowpass filter models the first branch of the filter bank. The other M – 1 branches are
modeled by filters that are modulated versions of the prototype filter. The modulation factor is given
by e jwkn, wk = 2πk/M, k = 0, 1, ..., M − 1.

The output of each bandpass filter forms a specific portion of the broadband signal. The output of all
the branches are added to form the broadband signal, v[n].

 Channel Synthesizer

2-167

Algorithms
Polyphase Implementation

The synthesis filter bank can be implemented efficiently using the polyphase structure.

To derive the polyphase structure, start with the transfer function of the prototype lowpass filter.

H0(z) = b0 + b1z−1 + ... + bNz−N

N + 1 is the length of the prototype filter.

You can rearrange this equation as follows:

H0(z) =

b0 + bMz−M + b2Mz−2M + .. + bN −M + 1z−(N −M + 1) +

z−1 b1 + bM + 1z−M + b2M + 1z−2M + .. + bN −M + 2z−(N −M + 1) +
⋮

z−(M − 1) bM − 1 + b2M − 1z−M + b3M − 1z−2M + .. + bNz−(N −M + 1)

M is the number of polyphase components.

You can write this equation as:

H0(z) = E0(zM) + z−1E1(zM) + ... + z−(M − 1)EM − 1(zM)

E0(zM), E1(zM), … , EM-1(zM) are polyphase components of the prototype lowpass filter, H0(z).

The other filters in the filter bank, Hk(z), where k = 1, … , M − 1, are modulated versions of this
prototype filter.

You can write the transfer function of the kth modulated bandpass filter as Hk(z) = H0(ze jwk).
Replacing z with zejwk,

Hk(z) = h0 + h1e jwkz−1 + h2e j2wkz−2... + hNe jNwkz−N

N + 1 is the length of the kth filter.

In polyphase form, the equation is as follows:

Hk(z) = 1 e jwk e j2wk ... e j(M − 1)wk

E0(zM)

z−1E1(zM)
⋮

z−(M − 1)EM − 1(zM)

For all M channels in the filter bank, the MIMO transfer function, H(z), is given by:

H(z) =

1 1 1 ... 1

1 e jw1 e j2w1 ... e j(M − 1)w1

⋮
1 e jwM − 1 e j2wM − 1 ... e j(M − 1)wM − 1

E0(zM)

z−1E1(zM)
⋮

z−(M − 1)EM − 1(zM)

2 Blocks

2-168

Here is the multirate noble identity for interpolation, assuming that D = M:

For illustration, consider the first branch of the filter bank that contains the lowpass filter.

Replace H0(z) with its polyphase representation.

After applying the noble identity for interpolation, you can replace the delays, interpolation factor,
and the adder with a commutator switch.

For all the M channels in the filter bank, the MIMO transfer function, H(z), is given by:

 Channel Synthesizer

2-169

H(z) =

1 1 1 ... 1

1 e jw1 e j2w1 ... e j(M − 1)w1

⋮
1 e jwM − 1 e j2wM − 1 ... e j(M − 1)wM − 1

E0(z)
E1(z)
⋮

EM − 1(z)

The matrix on the left is an IDFT matrix. With the IDFT matrix, the efficient implementation of the
lowpass prototype based filter bank looks like the following.

References
[1] Harris, Fredric J, Multirate Signal Processing for Communication Systems, Prentice Hall PTR,

2004.

[2] Harris, F.J., Chris Dick, and Michael Rice. "Digital Receivers and Transmitters Using Polyphase
Filter Banks for Wireless Communications." IEEE Transactions on Microwave Theory and
Techniques. Vol. 51, Number 4, April 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Channelizer | Dyadic Synthesis Filter Bank | Two-Channel Synthesis Subband Filter

Objects
dsp.ChannelSynthesizer | dsp.Channelizer | dsp.SubbandSynthesisFilter |
dsp.DyadicSynthesisFilterBank

Introduced in R2017a

2 Blocks

2-170

Channelizer HDL Optimized
Polyphase filter bank and fast Fourier transform—optimized for HDL code generation
Library: DSP System Toolbox HDL Support / Filtering

Description
The Channelizer HDL Optimized block separates a broadband input signal into multiple narrowband
output signals. It provides hardware speed and area optimization for streaming data applications. The
block accepts scalar or vector input of real or complex data, provides hardware-friendly control
signals, and has optional output frame control signals. You can achieve giga-sample-per-second
(GSPS) throughput using vector input. The block implements a polyphase filter, with one subfilter per
input vector element. The hardware implementation interleaves the subfilters, which results in
sharing each filter multiplier (FFT Length / Input Size) times. The FFT implementation uses the same
pipelined Radix 2^2 FFT algorithm as the FFT HDL Optimized block.

Ports
Input

data — Input data
scalar or column vector of real or complex values

The vector size must be a power of 2 that is from 1 to 64, and is not greater than the number of
channels (FFT length).

double and single data types are supported for simulation, but not for HDL code generation.

The block does not accept uint64 data.
Data Types: fixed point | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single |
double

valid — Indicates valid input data
scalar

When the input valid port is true, the block captures the value on the input data port.
Data Types: Boolean

reset — Reset control signal (optional)
scalar

When reset is true, the block stops the current calculation and clears internal state.
Dependencies

To enable this port, select Enable reset input port.

 Channelizer HDL Optimized

2-171

Data Types: Boolean

Output

data — Frequency channel output data
vector

• If you set Output vector size to Same as number of frequency bands (default), the output
data is a 1-by-M vector where M is the FFT length.

• If you set Output vector size to Same as input size, the output data is an M-by-1 vector
where M is the input vector size.

The output order is bit natural for either output size. The output data type is a result of the Filter
output data type and the bit growth in the FFT necessary to avoid overflow.

valid — Indicates valid output data
scalar

The block sets the output valid port to true with each valid sample on the output data port.
Data Types: Boolean

start — Indicates the first valid cycle of output data (optional)
scalar

The block sets start to true during the first valid sample on the output data port.

Dependencies

To enable this port, select Enable start output port.
Data Types: Boolean

end — Indicates the last valid cycle of output data (optional)
scalar

The block sets end to true during the last valid sample on the output data port.

Dependencies

To enable this port, select Enable end output port.
Data Types: Boolean

Parameters
Main

Number of frequency bands (FFT length) — FFT length
8 (default) | integer power of two

For HDL code generation, the FFT length must be a power of 2 from 23 to 216.

Filter coefficients — Polyphase filter coefficients
[-0.032, 0.121, 0.318, 0.482, 0.546, 0.482, 0.318, 0.121, -0.032] (default) |
vector of numeric values

2 Blocks

2-172

If the number of coefficients is not a multiple of Number of frequency bands (FFT length), the
block pads this vector with zeros. The default filter specification is a raised-cosine FIR filter,
rcosdesign(0.25,2,4,'sqrt'). You can specify a vector of coefficients or a call to a filter design
function that returns the coefficient values. Complex coefficients are not supported. By default, the
block casts the coefficients to the same data type as the input.

Complex multiplication — HDL implementation of complex multipliers
Use 4 multipliers and 2 adders (default) | Use 3 multipliers and 5 adders

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target
device, one option may be faster or smaller.

Dependencies

This option applies only if you use the Radix 2^2 architecture.

Output vector size — Size of output data
Same as number of frequency bands (default) | Same as input size

The output data is a row vector of M-by-1 channels. The output order is bit natural for either output
size.

• Same as number of frequency bands — Output data is a 1-by-M vector, where M is the FFT
length.

• Same as input size — Output data is an M-by-1 vector, where M is the input vector size.

Divide butterfly outputs by two — FFT scaling
on (default) | off

When you select this parameter, the FFT implements an overall 1/N scale factor by scaling the result
of each pipeline stage by 2. This adjustment keeps the output of the FFT in the same amplitude range
as its input. If scaling is disabled, the FFT avoids overflow by increasing the word length by 1 bit at
each stage.

Data Types

Rounding mode — Rounding method used for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

See “Rounding Modes”. The block uses fixed-point arithmetic for internal calculations when the input
is any integer or fixed-point data type. This option does not apply when the input is single or
double. Each FFT stage rounds after the twiddle factor multiplication but before the butterflies.
Rounding can also occur when casting the coefficients and the output of the polyphase filter to the
data types you specify.

Saturate on integer overflow — Overflow handling for internal fixed-point calculations
off (default) | on

See “Overflow Handling”. The block uses fixed-point arithmetic for internal calculations when the
input is any integer or fixed-point data type. This option does not apply when the input is single or
double. This option applies to casting the coefficients and the output of the polyphase filter to the
data types you specify.

 Channelizer HDL Optimized

2-173

The FFT algorithm avoids overflow by either scaling the output of each stage (Normalize enabled),
or by increasing the word length by 1 bit at each stage (Normalize disabled).

Coefficient data type — Data type of the filter coefficients
Inherit: Same word length as input (default) | data type expression

The block casts the polyphase filter coefficients to this data type, using the rounding and overflow
settings you specify. When you select Inherit: Same word length as input (default), the block
selects the binary point using fi() best-precision rules.

Filter output data type — Data type of the output of the polyphase filter
Inherit: Same word length as input (default) | Inherit: via internal rule | data type
expression

The block casts the output of the polyphase filter (the input to the FFT) to this data type, using the
rounding and overflow settings you specify. When you select Inherit: Same word length as
input (default), the block selects a best-precision binary point by considering the values of your filter
coefficients and the range of your input data type.

By default, the FFT logic does not modify the data type. When you disable Divide butterfly outputs
by two, the FFT increases the word length by 1 bit at each stage to avoid overflow.

Control Ports

Enable reset input port — Optional reset signal
off (default) | on

When you select this parameter, the reset port shows on the block icon. When the reset input is
true, the block stops calculation and clears all internal state.

Enable start output port — Optional control signal indicating start of data
off (default) | on

When you select this parameter, the start port shows on the block icon. The start signal is true for
the first cycle of output data in a frame.

Enable end output port — Optional control signal indicating end of data
off (default) | on

When you select this parameter, the end port shows on the block icon. The end signal is true for the
last cycle of output data in a frame.

Algorithms
The polyphase filter algorithm requires a subfilter for each FFT channel. For more detail on the
polyphase filter architecture, refer to [1], and to the Channelizer block reference page.

Note The output of the Channelizer HDL Optimized block does not match the output from the
Channelizer block sample-for-sample. This mismatch is because the blocks apply the input samples to
the subfilters in different orders. The Channelizer HDL Optimized block applies input X(0) to subfilter
EM-1(z), X(1) to subfilter EM-2(z), ..., X(M-1) to subfilter E0(z). The channels detected by both blocks
match, when analyzed over multiple frames.

2 Blocks

2-174

If the input vector size, M, is the same as the FFT length, N, then the block implements N subfilters
in the hardware. Each subfilter is a direct-form transposed FIR filter with NumCoeffs/N taps.

If the vector size is less than N, the block implements one subfilter for each input vector element. The
subfilter multipliers are shared as necessary to implement N channel filters. The shared multiplier
taps have a lookup table for N/M filter coefficients. Each tap is followed by a delay line of N/M–1
cycles.

The output of the subfilters is cast to the specified Filter output data type, using the rounding and
overflow settings you chose. Each filter tap in the subfilter is pipelined to target the DSP sections of
an FPGA.

 Channelizer HDL Optimized

2-175

For instance, for an FFT length of 8, and an input vector size of 4, the block implements four filters.
Each multiplier is shared N/M times, or twice. Each tap applies two coefficients, and the delay line is
N/M–1 cycles.

For scalar input, the block implements one filter. Each multiplier is shared N times. Each tap applies
N coefficients, and the delay line is N–1 cycles.

2 Blocks

2-176

Latency

The latency varies with FFT length and vector size. After you update the model, the latency is
displayed on the block icon. The displayed latency is the number of cycles between the first valid
input and the first valid output, assuming that the input is contiguous. The filter coefficients do not
affect the latency. Setting the output size equal to the input size reduces the latency, because the
samples are not saved and reordered.

Control Signals

This diagram shows validIn and validOut signals for contiguous input data with a vector size of
16 and an FFT length of 512.

The diagram also shows the optional startOut and endOut signals that indicate frame boundaries.
When enabled, startOut pulses for one cycle with the first validOut of the frame, and endOut
pulses for one cycle with the last validOut of the frame.

If you apply continuous input frames (no gap in validIn between frames), the output will also be
continuous, after the initial latency.

 Channelizer HDL Optimized

2-177

The validIn signal can be noncontiguous. Data accompanied by a validIn signal is stored until a
frame is filled. Then the data is output in a contiguous frame of N (FFT length) cycles. This diagram
shows noncontiguous input and contiguous output for an FFT length of 512 and a vector size of 16
samples.

Performance

These resource and performance data are the place-and-route results from the generated HDL
targeted to a Xilinx® Virtex® 6 (XC6VLX240-1ff784) FPGA. The three examples in the tables use this
configuration:

• FFT length (default) — 8
• Filter length — 96 coefficients
• 16-bit complex input data
• Coefficient and filter output data types (default) — Same as number of frequency bands
• Complex multiplication (default) — 4 multipliers, 2 adders
• Output scaling — Enabled
• Minimize clock enables (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options.

For scalar input, the design achieves a clock frequency of 346 MHz. The latency is 53 cycles. The
subfilters share each multiplier eight (N) times. The design uses these resources.

Resource Number Used
LUT 1591
FFS 2681
Xilinx LogiCORE® DSP48 16

For four-sample vector input, the design achieves a clock frequency of 333 MHz. The latency is 31
cycles. The subfilters share each multiplier twice (N/M). The design uses these resources.

Resource Number Used
LUT 1912
FFS 3986
Xilinx LogiCORE DSP48 56

For eight-sample vector input, the design achieves a clock frequency of 292 MHz. The latency is 20
cycles. When the input size is the same as the FFT length, the subfilters do not share any multipliers.
The design uses these resources.

2 Blocks

2-178

Resource Number Used
LUT 1388
FFS 2302
Xilinx LogiCORE DSP48 110

References
[1] Harris, F. J., C. Dick, and M. Rice. “Digital Receivers and Transmitters Using Polyphase Filter

Banks for Wireless Communications.” IEEE Transactions on Microwave Theory and
Techniques. Vol. 51, No. 4, April 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.
HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
FFT HDL Optimized | Channelizer

Objects
dsp.HDLChannelizer

Topics
“High Throughput HDL Algorithms”

 Channelizer HDL Optimized

2-179

Introduced in R2017a

2 Blocks

2-180

Check Signal Attributes
Error when input signal does or does not match selected attributes exactly

Library
Signal Management / Signal Attributes

dspsigattribs

Description
The Check Signal Attributes block terminates the simulation with an error when the input
characteristics differ from the characteristics you specify in the block parameters.

When you set Error when input to Does not match attributes exactly, the block generates
an error when the input fails to match any of the specified attributes. Only signals that possess all of
the specified attributes propagate to the output unaltered and do not cause the block to generate an
error.

When you set Error when input to Matches attributes exactly, the block generates an error
only when the input possesses all specified attributes. Signals that do not possess all of the specified
attributes propagate to the output unaltered, and do not cause the block to generate an error.

Signal Attributes

The Check Signal Attributes block can test for up to five different signal attributes, as specified by the
following parameters. When you select Ignore for any parameter, the block does not check the
signal for the corresponding attribute. For example, when you set Complexity to Ignore, neither
real nor complex inputs cause the block to generate an error. The attributes are:

• Complexity

Check whether the input is real or complex. You can display this information in a model by
attaching a Probe block with Probe complex signal selected. Alternatively, in the Debug tab,
select Information Overlays > Port Data Type.

• Dimensionality

Check the dimensionality of the input for compliance or noncompliance with the attributes in the
subordinate Dimension menu. See the following table. M and N are positive integers unless
otherwise indicated.

 Check Signal Attributes

2-181

Dimensions Is... Is not...
1-D 1-D vector,

1-D scalar
M-by-N matrix,
1-by-N matrix (row vector),
M-by-1 matrix (column vector),
1-by-1 matrix (2-D scalar)

2-D M-by-N matrix,
1-by-N matrix (row vector),
M-by-1 matrix (column vector),
1-by-1 matrix (2-D scalar)

1-D vector,
1-D scalar

Scalar
(1-D or 2-D)

1-D scalar,
1-by-1 matrix (2-D scalar)

1-D vector with length>1,
M-by-N matrix with M>1 and/or N>1

Vector
(1-D or 2-D)

1-D vector,
1-D scalar,
1-by-N matrix (row vector),
M-by-1 matrix (column vector),
1-by-1 matrix (2-D scalar)
Vector (1-D or 2-D) or scalar

M-by-N matrix with M>1 and N>1

Row Vector
(2-D)

1-by-N matrix (row vector),
1-by-1 matrix (2-D scalar)
Row vector (2-D) or scalar

1-D vector,
1-D scalar,
M-by-N matrix with M>1

Column Vector
(2-D)

M-by-1 matrix (column vector), 1-by-1
matrix (2-D scalar)
Column vector (2-D) or scalar

1-D vector,
1-D scalar,
M-by-N matrix with N>1

Full matrix M-by-N matrix with M>1 and N>1 1-D vector,
1-D scalar,
1-by-N matrix (row vector),
M-by-1 matrix (column vector),
1-by-1 matrix (2-D scalar)

Square matrix M-by-N matrix with M=N,
1-D scalar,
1-by-1 matrix (2-D scalar

M-by-N matrix with M≠N,
1-D vector,
1-by-N matrix (row vector),
M-by-1 matrix (column vector)

In the Debug tab, when you select Information Overlays > Signal Dimensions, Simulink
displays the size of a 1-D vector signal as an unbracketed integer, and displays the dimension of a
2-D signal as a pair of bracketed integers, [MxN]. Simulink does not display any size information
for a 1-D or 2-D scalar signal. You can also display dimension information for a signal in a model
by attaching a Probe block with Probe signal dimensions selected.

• Data type

Check the signal data type for compliance (Is...) or noncompliance (Is not...) with the
attributes in the subordinate General data type menu. See the following table. You can
individually select any of the specific data types listed in the (Is...) column from the
subordinate Specific data type menu.

2 Blocks

2-182

General Data Type Is... Is not...
Boolean boolean single, double, uint8, int8,

uint16, int16, uint32, int32, fixed
point, enumerated

Enumerated A user-defined
enumerated data type.
See “Data Types”
(Simulink).

boolean, single, double, uint8,
int8, uint16, int16, uint32, int32,
fixed point

Floating point single, double boolean, uint8, int8, uint16,
int16, uint32, int32, fixed point,
enumerated

Floating point or
Boolean

single, double,
boolean

uint8, int8, uint16, int16, uint32,
int32, fixed point, enumerated

Fixed point fixed point, uint8,
int8, uint16,
int16, uint32,
int32

boolean, single, double, enumerated

Integer Signed integer
int8, int16, int32
Unsigned integer
uint8, uint16,
uint32

boolean, single, double, fixed point,
enumerated

To display data type information, in the Debug tab, select Information Overlays > Port Data
Type.

• Sample time

Check whether the signal is discrete time or continuous time. In the Debug tab, when you select
Information Overlays > Colors, Simulink displays continuous-time signal lines in black or grey
and discrete-time signal lines in colors corresponding to the relative rate.

When you attach a Probe block with Probe sample time enabled to a continuous-time signal, the
block icon displays Ts:[0 To], where To is the sample time offset. Valid values of To for
continuous-time signals are 0 and 1. When To is 0, updates occur at every major and minor time
step. When To is 1, updates occur only at major time steps and the sample time is fixed in minor
time step.

When you attach a Probe block with Probe sample time enabled to a discrete-time signal, the
block icon displays Ts:[Ts To] for sample-based signals, and Tf:[Tf To] for frame-based
signals. Ts and Tf are the positive sample period and frame period, respectively. To is the offset,
such that 0 ≤ offset < period. Frame-based signals are almost always discrete time.

Parameters
Error when input

Specify whether the block generates an error when the input does or does not possess all of the
required attributes.

 Check Signal Attributes

2-183

Complexity
Specify the complexity for which you want to check the input, Real or Complex. When you select
Ignore from the list, the block does not check the complexity of the input.

Dimensionality
Specify whether you want to check the input for compliance or noncompliance with the attributes
in the subordinate Dimensions menu. When you select Ignore from the list, the block does not
check the dimensionality of the input.

Dimensions
Specify the dimensions for which you want to check the input. This parameter is only visible when
you set the Dimensionality parameter to Is... or Is not....

Data type
Specifies whether you want to check the input for compliance or noncompliance with the
attributes in the subordinate General data type menu. When you select Ignore from the list,
the block does not check the input data type.

General data type
Specify the general data type for which you want to check the input. This parameter is only
visible when you set the Data type to Is... or Is not....

Specific floating-point
Specify the floating-point data type for which you want to check the input. This parameter is only
visible when you set the General data type to Floating-point or Floating-point or
boolean.

Specific fixed-point
Specify the fixed-point data type for which you want to check the input. This parameter is only
visible when you set the General data type to Fixed-point.

Specific integer
Specify the integer data type for which you want to check the input. This parameter is only visible
when you set the General data type to Integer.

Sample time
Specify the sample time for which you want to check the input, Discrete or Continuous. When
you select Ignore from the list, the block does not check the sample time of the input.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8, 16, and 32-bit signed integers
• 8, 16, and 32-bit unsigned integers
• Enumerated

2 Blocks

2-184

Port Supported Data Types
Output • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8, 16, and 32-bit signed integers
• 8, 16, and 32-bit unsigned integers
• Enumerated

See Also
Buffer DSP System Toolbox
Convert 1-D to 2-D DSP System Toolbox
Convert 2-D to 1-D DSP System Toolbox
Data Type Conversion Simulink
Inherit Complexity DSP System Toolbox
Probe Simulink
Reshape Simulink
Submatrix DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 Check Signal Attributes

2-185

Chirp
Generate swept-frequency cosine (chirp) signal
Library: DSP System Toolbox / Sources

Description
The Chirp block outputs a swept-frequency cosine (chirp) signal with unity amplitude and continuous
phase. To specify the desired output chirp signal, you must define its instantaneous frequency
function, also known as the output frequency sweep. The frequency sweep can be linear, quadratic, or
logarithmic, and repeats once every Sweep time by default. For a description of the algorithms used
by the Chirp block, see “Algorithms” on page 2-190.

Ports
Output

Port_1 — Swept-frequency cosine (chirp) signal
scalar | vector

Swept-frequency cosine (chirp) signal. In Linear, Logarithmic, and Quadratic modes (set by the
Frequency sweep parameter), the block outputs a swept-frequency cosine with instantaneous
frequency values specified by the frequency and time parameters. In Swept cosine mode, the block
outputs a swept-frequency cosine with a linear instantaneous output frequency that may differ from
the one specified by the frequency and time parameters.

For more information about how the block computes the output, see “Algorithms” on page 2-190.
Data Types: single | double

Parameters
Frequency sweep — Type of frequency sweep
Linear (default) | Swept cosine | Logarithmic | Quadratic

The type of output instantaneous frequency sweep, fi(t): Linear, Logarithmic, Quadratic, or
Swept cosine. For more information, see “Shaping the Frequency Sweep” on page 2-189 and
“Algorithms” on page 2-190.
Limitations

When you want a linearly swept chirp signal, we recommend that you use a Linear frequency sweep.
Though a Swept cosine frequency sweep also yields a linearly swept chirp signal, the output might
have unexpected frequency content.

• The swept cosine sweep value at the Target time is not necessarily the Target frequency. This is
because the user-specified sweep is not the actual frequency sweep of the swept cosine output, as
noted in “Output Computation Method for Swept Cosine Frequency Sweep” on page 2-192. See

2 Blocks

2-186

the table Instantaneous Frequency Sweep Values for the actual value of the swept cosine sweep at
the Target time.

• In Swept cosine mode, do not set the parameters so that 1/Tsw is much greater than the values of
the Initial frequency and Target frequency parameters. In such cases, the actual frequency
content of the swept cosine sweep might be closer to 1/Tsw, far exceeding the Initial frequency
and Target frequency parameter values.

Sweep mode — Sweep mode
Unidirectional (default) | Bidirectional

The Sweep mode parameter determines whether your sweep is unidirectional or bidirectional, which
affects the shape of your output frequency sweep (see “Shaping the Frequency Sweep” on page 2-
189). The following table describes the characteristics of unidirectional and bidirectional sweeps.

Sweep Mode Parameter
Settings

Sweep Characteristics

Unidirectional • Lasts for one Sweep time, Tsw

• Repeats once every Tsw

Bidirectional • Lasts for twice the Sweep time, 2Tsw

• Repeats once every 2Tsw

• First half is identical to its unidirectional counterpart.
• Second half is a mirror image of the first half.

The following diagram illustrates a linear sweep in both sweep modes. For information on setting the
frequency values in your sweep, see “Setting Instantaneous Frequency Sweep Values” on page 2-190.

Initial frequency (Hz) — Initial frequency
1000 (default) | scalar

For Linear, Quadratic, and Swept cosine sweeps, the initial frequency, f0, of the output chirp
signal. You can specify the Initial frequency (Hz) as a scalar, greater than or equal to zero. For
Logarithmic sweeps, Initial frequency is one less than the actual initial frequency of the sweep.
Also, when the sweep is Logarithmic, you must set the Initial frequency to be less than the
Target frequency.

 Chirp

2-187

For more information, see “Setting Instantaneous Frequency Sweep Values” on page 2-190.

Tunable: Yes

Target frequency (Hz) — Target frequency
4000 (default) | scalar

For Linear, Quadratic, and Logarithmic sweeps, the instantaneous frequency, fi(tg), of the output
at the Target time, tg. You can specify the Target frequency (Hz) as a scalar, greater than or equal
to zero. For a Swept cosine sweep, Target frequency is the instantaneous frequency of the output
at half the Target time, tg/2. When Frequency sweep is Logarithmic, you must set the Target
frequency to be greater than the Initial frequency.

For more information, see “Setting Instantaneous Frequency Sweep Values” on page 2-190.

Tunable: Yes

Target time (s) — Target time of sweep
1 (default) | scalar

For Linear, Quadratic, and Logarithmic sweeps, the time, tg, at which the sweep reaches the
Target frequency, fi(tg). For a Swept cosine sweep, Target time is the time at which the sweep
reaches 2fi(tg) - f0. Target time must be a scalar that is greater than or equal to zero, and less than or
equal to Sweep time , Tsw ≥ tg.

For more information, see “Setting Instantaneous Frequency Sweep Values” on page 2-190.

Tunable: Yes

Sweep time (s) — Sweep time
1 (default) | scalar

In Unidirectional Sweep mode, the Sweep time, Tsw, is the period of the output frequency
sweep. In Bidirectional Sweep mode, the Sweep time is half the period of the output frequency
sweep. Sweep time must be a scalar that is greater than or equal to Target time, Tsw ≥ tg.

Tunable: Yes

Initial phase (rad) — Initial phase of cosine output
0 (default) | scalar

The phase, ϕ0, of the cosine output at t=0; ychirp(t) = cos(ϕ0). You can specify the Initial phase (rad)
as a scalar that is greater than or equal to zero.

Tunable: Yes

Sample time — Output sample period
1/8000 (default) | positive scalar

The sample period, Ts, of the output. The output frame period is MoTs, where Mo is the number of
samples per frame.

Samples per frame — Samples per frame
1 (default) | positive integer

2 Blocks

2-188

The number of samples, Mo, to buffer into each output frame, specified as a positive integer scalar.

Output data type — Output data type
Double (default) | Single

The data type of the output, specified as single precision or double precision.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Shaping the Frequency Sweep

You control the basic shape of the output instantaneous frequency sweep, fi(t), using the Frequency
sweep and Sweep mode parameters.

Parameters for Setting
Sweep Shape

Possible Setting Parameter Description

Frequency sweep Linear

Quadratic

Logarithmic

Swept cosine

Determines whether the sweep
frequencies vary linearly,
quadratically, or logarithmically.
Linear and swept cosine sweeps
both vary linearly.

Sweep mode Unidirectional

Bidirectional

Determines whether the sweep
is unidirectional or
bidirectional. For details, see
“Sweep mode” on page 2-0

The following diagram illustrates the possible shapes of the frequency sweep that you can obtain by
setting the Frequency sweep and Sweep mode parameters.

 Chirp

2-189

For information on how to set the frequency values in your sweep, see “Setting Instantaneous
Frequency Sweep Values” on page 2-190.

Setting Instantaneous Frequency Sweep Values

Set the following parameters to tune the frequency values of your output frequency sweep.

• Initial frequency (Hz), f0

• Target frequency (Hz), fi(tg)
• Target time (seconds), tg

The following table summarizes the sweep values at specific times for all Frequency sweep settings.
For information on the formulas used to compute sweep values at other times, see “Algorithms” on
page 2-190.

Instantaneous Frequency Sweep Values
Frequency Sweep Sweep Value at

t = 0
Sweep Value at
t = t g

Time When Sweep
Value Is Target
Frequency, f i (t g)

Linear f0 fi(tg) tg

Quadratic f0 fi(tg) tg

Logarithmic f0 fi(tg) tg

Swept cosine f0 2fi(tg) - f0 tg/2

Algorithms
The Chirp block uses one of two formulas to compute the block output, depending on the Frequency
Sweep parameter setting. For details, see the following sections.

2 Blocks

2-190

Equations for Output Computation

The following table shows the equations used by the block to compute the user-specified output
frequency sweep, fi(t), the block output, ychirp(t), and the actual output frequency sweep, fi(actual)(t).
The only time the user-specified sweep is not the actual output sweep is when the Frequency sweep
parameter is set to Swept cosine.

Note The following equations apply only to unidirectional sweeps in which fi(0) < fi(tg). To derive
equations for other cases, examine the following table and the diagram in “Shaping the Frequency
Sweep” on page 2-189.

The table of equations used by the block contains the following variables:

• fi(t) — the user-specified frequency sweep
• fi(actual)(t) — the actual output frequency sweep, usually equal to fi(t)
• y(t) — the Chirp block output
• ψ(t) — the phase of the chirp signal, where ψ(0) = 0, and 2πf i(t) is the derivative of the phase

f i(t) = 1
2π ⋅

dψ(t)
dt

• ϕ0 — the Initial phase parameter value, where ychirp(0) = cos(ϕ0)

Equations for Unidirectional Positive Sweeps

Frequency
Sweep

Block Output Chirp
Signal

User-Specified
Frequency Sweep, f i
(t)

β Actual Frequency
Sweep, f i(actual) (t)

Linear y(t) = cos(ψ(t) + ϕ0) f i(t) = f0 + βt β =
f i(tg)− f0

tg
f i(actual)(t) = f i(t)

Quadratic Same as Linear f i(t) = f0 + βt2 β =
f i(tg)− f0

tg2
f i(actual)(t) = f i(t)

Logarithmic Same as Linear

Fi(t) = f0
f i tg

f0

t
tg

Where fi(tg) > f0> 0

N/A f i(actual)(t) = f i(t)

Swept cosine y(t) = cos(2πf i(t)t + ϕ0) Same as Linear Same as Linear f i(actual)(t) = f i(t) + βt

Output Computation Method for Linear, Quadratic, and Logarithmic Frequency Sweeps

The derivative of the phase of a chirp function gives the instantaneous frequency of the chirp
function. The Chirp block uses this principle to calculate the chirp output when the Frequency
Sweep parameter is set to Linear, Quadratic, or Logarithmic.

ychirp(t) = cos(ψ(t) + ϕ0) Linear, quadratic, or logarithmic chirp signal with
phase ψ(t)

 Chirp

2-191

f i(t) = 1
2π ⋅

dψ(t)
dt

Phase derivative is instantaneous frequency

For instance, if you want a chirp signal with a linear instantaneous frequency sweep, set the
Frequency Sweep parameter to Linear, and tune the linear sweep values by setting other
parameters appropriately. The block outputs a chirp signal, the phase derivative of which is the
specified linear sweep. This ensures that the instantaneous frequency of the output is the linear
sweep you desired. For equations describing the linear, quadratic, and logarithmic sweeps, see
“Equations for Output Computation” on page 2-191.

Output Computation Method for Swept Cosine Frequency Sweep

To generate the swept cosine chirp signal, the block sets the swept cosine chirp output as follows.

ychirp(t) = cos(ψ(t) + ϕ0) = cos(2πf i(t)t + ϕ0) Swept cosine chirp output
(Instantaneous frequency
equation, does not hold.)

The instantaneous frequency equation, shown in “Output Computation Method for Linear, Quadratic,
and Logarithmic Frequency Sweeps” on page 2-191, does not hold for the swept cosine chirp, so the
user-defined frequency sweep, fi(t), is not the actual output frequency sweep, fi(actual)(t), of the swept
cosine chirp. Thus, the swept cosine output might not behave as you expect. To learn more about
swept cosine chirp behavior, see “Frequency sweep” on page 2-0 described for the Frequency
sweep parameter and “Equations for Output Computation” on page 2-191.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Signal From Workspace | Signal Generator | Sine Wave

Functions
chirp | spectrogram

Objects
dsp.Chirp

Topics
“Sample- and Frame-Based Concepts”

Introduced before R2006a

2 Blocks

2-192

Cholesky Factorization
Factor square Hermitian positive definite matrix into triangular components

Library
Math Functions / Matrices and Linear Algebra / Matrix Factorizations

dspfactors

Description
The Cholesky Factorization block uniquely factors the square Hermitian positive definite input matrix
S as

S = LL*

where L is a lower triangular square matrix with positive diagonal elements and L* is the Hermitian
(complex conjugate) transpose of L. The block outputs a matrix with lower triangle elements from L
and upper triangle elements from L*. The output is not in the same form as the output of the MATLAB
chol function. In order to convert the output of the Cholesky Factorization block to the MATLAB
form, use the following equation:

R = triu(LL');

In order to extract the L matrix exclusively, pass the output of the Cholesky Factorization block, LL',
to the Extract Triangular Matrix block. Setting the Extract parameter of the Extract Triangular
Matrix to Lower extracts the L matrix. Setting the Extract parameter to Upper extracts the L'

matrix.

Here, LL' is the output of the Cholesky Factorization block. Due to roundoff error, these equations do
not produce a result that is exactly the same as the MATLAB result.

Block Output Composed of L and L*

 Cholesky Factorization

2-193

Input Requirements for Valid Output

The block output is valid only when its input has the following characteristics:

• Hermitian — The block does not check whether the input is Hermitian; it uses only the diagonal
and upper triangle of the input to compute the output.

• Real-valued diagonal entries — The block disregards any imaginary component of the input's
diagonal entries.

• Positive definite — Set the block to notify you when the input is not positive definite as described
in “Response to Nonpositive Definite Input” on page 2-194.

Response to Nonpositive Definite Input

To generate a valid output, the block algorithm requires a positive definite input (see “Input
Requirements for Valid Output” on page 2-194). Set the Non-positive definite input parameter to
determine how the block responds to a nonpositive definite input:

• Ignore — Proceed with the computation and do not issue an alert. The output is not a valid
factorization. A partial factorization will be present in the upper left corner of the output.

• Warning — Display a warning message in the MATLAB Command Window, and continue the
simulation. The output is not a valid factorization. A partial factorization will be present in the
upper left corner of the output.

• Error — Display an error dialog and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic
parameters on the Configuration Parameters dialog box, it is set to Ignore in the code generated for
this block by Simulink Coder™ code generation software.

Performance Comparisons with Other Blocks

Note that L and L* share the same diagonal in the output matrix. Cholesky factorization requires half
the computation of Gaussian elimination (LU decomposition), and is always stable.

Parameters
Non-positive definite input

Response to nonpositive definite matrix inputs: Ignore, Warning, or Error. See “Response to
Nonpositive Definite Input” on page 2-194.

References
Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins
University Press, 1996.

2 Blocks

2-194

Supported Data Types
Port Supported Data Types
S • Double-precision floating point

• Single-precision floating point
LL' • Double-precision floating point

• Single-precision floating point

See Also
Autocorrelation LPC DSP System Toolbox
Cholesky Inverse DSP System Toolbox
Cholesky Solver DSP System Toolbox
LDL Factorization DSP System Toolbox
LU Factorization DSP System Toolbox
QR Factorization DSP System Toolbox
chol MATLAB

See “Matrix Factorizations” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

 Cholesky Factorization

2-195

Cholesky Inverse
Compute inverse of Hermitian positive definite matrix using Cholesky factorization

Library
Math Functions / Matrices and Linear Algebra / Matrix Inverses

dspinverses

Description
The Cholesky Inverse block computes the inverse of the Hermitian positive definite input matrix S by
performing Cholesky factorization.

S−1 = (LL∗)−1

L is a lower triangular square matrix with positive diagonal elements and L* is the Hermitian
(complex conjugate) transpose of L. Only the diagonal and upper triangle of the input matrix are
used, and any imaginary component of the diagonal entries is disregarded. Cholesky factorization
requires half the computation of Gaussian elimination (LU decomposition), and is always stable.

Response to Nonpositive Definite Input

The algorithm requires that the input be Hermitian positive definite. When the input is not positive
definite, the block reacts with the behavior specified by the Non-positive definite input parameter.
The following options are available:

• Ignore — Proceed with the computation and do not issue an alert. The output is not a valid
inverse.

• Warning — Display a warning message in the MATLAB Command Window, and continue the
simulation. The output is not a valid inverse.

• Error — Display an error dialog box and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic
parameters on the Configuration Parameters dialog box, it is set to Ignore in the code generated for
this block by Simulink Coder code generation software.

Parameters
Non-positive definite input

Response to nonpositive definite matrix inputs: Ignore, Warning, or Error. See “Response to
Nonpositive Definite Input” on page 2-196.

2 Blocks

2-196

References
Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins
University Press, 1996.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Cholesky Factorization DSP System Toolbox
Cholesky Solver DSP System Toolbox
LDL Inverse DSP System Toolbox
LU Inverse DSP System Toolbox
Pseudoinverse DSP System Toolbox
inv MATLAB

See “Matrix Inverses” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

 Cholesky Inverse

2-197

Cholesky Solver
Solve SX=B for X when S is square Hermitian positive definite matrix

Library
Math Functions / Matrices and Linear Algebra / Linear System Solvers

dspsolvers

Description
The Cholesky Solver block solves the linear system SX=B by applying Cholesky factorization to input
matrix at the S port, which must be square (M-by-M) and Hermitian positive definite. Only the
diagonal and upper triangle of the matrix are used, and any imaginary component of the diagonal
entries is disregarded. The input to the B port is the right side M-by-N matrix, B. The M-by-N output
matrix X is the unique solution of the equations.

A length-M vector input for right side B is treated as an M-by-1 matrix.

Response to Nonpositive Definite Input

When the input is not positive definite, the block reacts with the behavior specified by the Non-
positive definite input parameter. The following options are available:

• Ignore — Proceed with the computation and do not issue an alert. The output is not a valid
solution.

• Warning — Proceed with the computation and display a warning message in the MATLAB
Command Window. The output is not a valid solution.

• Error — Display an error dialog box and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic
parameters on the Configuration Parameters dialog box, it is set to Ignore in the code generated for
this block by Simulink Coder code generation software.

Algorithm
Cholesky factorization uniquely factors the Hermitian positive definite input matrix S as

S = LL∗

where L is a lower triangular square matrix with positive diagonal elements.

The equation SX=B then becomes

2 Blocks

2-198

LL∗X = B

which is solved for X by making the substitution Y = L∗X, and solving the following two triangular
systems by forward and backward substitution, respectively.

LY = B

L∗X = Y

Parameters
Non-positive definite input

Response to nonpositive definite matrix inputs: Ignore, Warning, or Error. See “Response to
Nonpositive Definite Input” on page 2-198.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Autocorrelation LPC DSP System Toolbox
Cholesky Factorization DSP System Toolbox
Cholesky Inverse DSP System Toolbox
LDL Solver DSP System Toolbox
LU Solver DSP System Toolbox
QR Solver DSP System Toolbox
chol MATLAB

See “Linear System Solvers” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

 Cholesky Solver

2-199

CIC Compensator (Obsolete)
(Removed) Design CIC compensator

Compatibility

Note The CIC Compensator block has been removed from the DSP System Toolbox block library.
Existing instances of the CIC Compensator block will continue to operate. For new models, use the
CIC Compensation Decimator and CIC Compensation Interpolator blocks. These blocks replace the
functionality of the CIC Compensator block, when FilterType is set to Decimator and
Interpolator, respectively.

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Dialog Box
See “CIC Compensator Design — Main Pane” on page 5-587 for more information about the
parameters of this block. The Data Types and Code Generation panes are not available for blocks in
the DSP System Toolbox Filter Designs library.

2 Blocks

2-200

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.

 CIC Compensator (Obsolete)

2-201

• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

In its normal mode of operation, the CIC Compensator block allows the adder’s numbers to wrap
around. The Fixed-Point infrastructure then causes warnings to appear on the command line.

Filter Specifications

In this group, you specify your filter format, such as the filter order mode and the filter type.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down list. Selecting Specify
enables the Order option (see the following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, the block specifies a single-rate filter.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

Order
Enter the filter order. This option is enabled only if Specify was selected for Filter order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default value is 2.

Interpolation Factor
Enter the interpolation factor. This option is enabled only if the Filter type is set to
Interpolator or Sample-rate converter. The default value is 2.

Number of CIC sections
Specify the number of sections in the CIC filter for which you are designing this compensator.
Select the number of sections from the drop-down list or enter the number.

Differential Delay
Specify the differential delay of your target CIC filter. The default value is 1. Most CIC filters use
1 or 2.

Frequency Specifications

The parameters in this group allow you to specify your filter response curve.

Frequency Specifications

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0–1) to enter frequencies in normalized form. This behavior is

2 Blocks

2-202

the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input Fs
parameter.

Input Fs
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Output Fs
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter output. When you provide an output sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available only when you design
interpolators.

Fpass
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select in Frequency units.

Fstop
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select in Frequency units.

Magnitude Specifications

Parameters in this group specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. From the drop-down
list, select one of the following options:

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels

Algorithm

The parameters in this group allow you to specify the design method and structure of your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default method is Equiripple.

Design Options
The options for each design are specific for each design method. This section does not present all
of the available options for all designs and design methods. There are many more that you
encounter as you select different design methods and filter specifications. The following options
represent some of the most common ones available.

 CIC Compensator (Obsolete)

2-203

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in
the grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter
but increases the time required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal filter and the time to
design the filter.

Phase constraint
Specify the phase constraint of the filter as Linear, Maximum, or Minimum.

Minimum order
When you select this parameter, the design method determines and design the minimum
order filter to meet your specifications. Some filters do not provide this parameter. Select
Any, Even, or Odd from the drop-down list to direct the design to be any minimum order, or
minimum even order, or minimum odd order.

Match Exactly
Specifies that the resulting filter design matches either the passband or stopband or both
bands when you select passband or stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the
frequency increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. The block applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation

(1/f)n to define the stopband decay. The block applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, the filter uses direct-form structure.

2 Blocks

2-204

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Note The Inherited (this choice will be removed — see release notes) option
will be removed in a future release. See “Frame-Based Processing” in the DSP System Toolbox
Release Notes for more information.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

 CIC Compensator (Obsolete)

2-205

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

See Also
Blocks
CIC Compensation Decimator | CIC Compensation Interpolator

Introduced in R2006b

2 Blocks

2-206

CIC Compensation Interpolator
Compensate for CIC filter using FIR interpolator

Library
Filtering/Filter Designs

dspfdesign

Description
The CIC Compensation Interpolator block uses an FIR polyphase interpolator as the compensation
filter. CIC compensation interpolators are multirate FIR filters that can be cascaded with CIC
interpolators to mitigate the drawbacks of the CIC filters.

CIC interpolation filters are used in areas that require high interpolation. These filters are popular in
ASICs and FPGAs, since they do not have any multipliers. CIC filters have two drawbacks:

• CIC filters have a magnitude response that causes a droop in the passband region. This magnitude
response is:

abs
sin M ω

2

sin ω
2

n

• M — Differential delay
• n — Number of stages
• ω — Normalized angular frequency

• CIC filters have a wide transition region.

The compensation interpolator filters have an inverse sinc passband response to correct for the CIC
droop, and they have a narrow transition width.

This block brings the capabilities of the dsp.CICCompensationInterpolator System object to the
Simulink environment.

 CIC Compensation Interpolator

2-207

Dialog Box
Main Tab

Rate change factor
Rate change factor for the CIC filter to be compensated, specified as a positive scalar integer. The
default is 2.

Number of sections
Number of integrator and comb sections of the CIC filter to be compensated, specified as a
positive scalar integer. The default is 2.

2 Blocks

2-208

Differential delay
Delay value used in each of the comb sections of the CIC filter to be compensated, specified as a
positive scalar integer. The default is 1.

Filter parameters

Interpolation factor
Interpolation factor of the compensator, specified as a positive scalar integer. The default value is
2.

Minimum order filter design
When you select this check box, the block designs filters with the minimum order that meets the
specifications for passband frequency, stopband frequency, passband ripple, and stopband
attenuation. When you clear this check box, the block designs filters with the order that you
specify in Filter order.

By default, this check box is selected.
Filter order

Order of the compensation filter, specified as a positive scalar integer. The default is 12.
Passband edge frequency (Hz)

Passband edge frequency of the compensation filter, specified as a real positive scalar in Hz.
Passband edge frequency (Hz) must be less than Fs/2, where Fs is the output sample rate. The
default is 100000.

Stopband edge frequency (Hz)
Stopband edge frequency of the compensation filter, specified as a real positive scalar in hertz.
Stopband edge frequency (Hz) must be less than Fs/2, where Fs is the output sample rate. The
default is 400000.

Passband ripple (dB)
Passband ripple of compensation filter, specified as a real positive scalar in dB. The default is
0.1.

Stopband attenuation (dB)
Stopband attenuation of compensation filter, specified as a real positive scalar in dB. The default
is 60.

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input signal. When you
clear this check box, you must specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz)
Input sample rate, specified as a scalar in Hz. The default is 600000.

View Filter Response
Opens the Filter Visualization Tool FVTool and displays the magnitude/phase response of the CIC
Compensation Interpolator. The response is based on the block dialog box parameters. Changes
made to these parameters update FVTool.

 CIC Compensation Interpolator

2-209

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

2 Blocks

2-210

Data Types Tab

Rounding mode
Rounding method for the output fixed-point operations. The rounding methods are Ceiling,
Convergent, Floor, Nearest, Round, Simplest, and Zero. The default is Floor.

Coefficients
Fixed-point data type of the coefficients, specified as one of the following:

• fixdt(1,16) (default) — Signed fixed-point data type of word length 16, with binary point
scaling. The block determines the fraction length automatically from the coefficient values in
such a way that the coefficients occupy maximum representable range without overflowing.

 CIC Compensation Interpolator

2-211

• fixdt(1,16,0) — Signed fixed-point data type of word length 16, fraction length 0. You can
change the fraction length to any other integer value.

• <data type expression> — Specify the coefficients data type by using the expression that
evaluates to a data type object, for example, numeric type (fixdt([],16, 15), to specify the
coefficients data type. Specify the sign mode of this data type as [] or true.

• Refresh Data Type — Refreshes to the default data type.

Click the Show data type assistant button to display the data type assistant, which helps
you set the stage input parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed or unsigned)
• 8-, 16-, 32-, and 64-bit signed integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, 32-, and 64-bit signed integers

See Also
dsp.CICCompensationInterpolator DSP System

Toolbox
CIC Compensation Decimator DSP System

Toolbox

Algorithms
The response of a CIC filter is given by:

Hcic ω =
sin RDω

2

sin ω
2

N

R, D, and N are the rate change factor, the differential delay, and the number of sections of the CIC
filter, respectively.

After decimation, the cic response has the form:okay

Hcic ω =
sin Dω

2

sin ω
2R

N

2 Blocks

2-212

The normalized version of this last response is the one that the CIC compensator needs to
compensate. Hence, the passband response of the CIC compensator should take the following form:

Hciccomp ω = RD
sin ω

2R

sin Dω
2

N

for ω ≤ ωp < π

where ωp is the passband frequency of the CIC compensation filter.

Notice that when ω/2R ≪ π, the previous equation for Hciccomp(ω) can be simplified using the fact
that sin(x) ≅ x:

Hciccomp ω ≈
Dω
2

sin Dω
2

N

 = sinc Dω
2

−N
for ω ≤ ωp < π

This previous equation is the inverse sinc approximation to the true inverse passband response of the
CIC filter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced in R2015b

 CIC Compensation Interpolator

2-213

CIC Compensation Decimator
Compensate for CIC filter using FIR decimator

Library
Filtering/Filter Designs

dspfdesign

Description
The CIC Compensation Decimator block uses an FIR polyphase decimator as the compensation filter.
CIC compensation decimators are multirate FIR filters that can be cascaded with CIC decimators to
mitigate the drawbacks of the CIC filters.

CIC decimation filters are used in areas that require high decimation. These filters are popular in
ASICs and FPGAs, since they do not have any multipliers. CIC filters have two drawbacks:

• CIC filters have a magnitude response that causes a droop in the passband region. This magnitude
response is:

abs
sin M ω

2

sin ω
2

n

• M — Differential delay
• n — Number of stages
• ω — Normalized angular frequency

• CIC filters have a wide transition region.

The compensation decimator filters have an inverse passband response to correct for the CIC droop,
and they have a narrow transition width.

This block brings the capabilities of the dsp.CICCompensationDecimator System object to the
Simulink environment.

2 Blocks

2-214

Dialog Box
Main Tab

Rate change factor
Rate change factor for the CIC filter to be compensated, specified as a positive scalar integer. The
default is 2.

Number of sections
Number of decimator and comb sections of the CIC filter to be compensated, specified as a
positive scalar integer. The default is 2.

 CIC Compensation Decimator

2-215

Differential delay
Delay value used in each of the comb sections of the CIC filter to be compensated, specified as a
positive scalar integer. The default is 1.

Decimation factor
Decimation factor of the compensator, specified as a positive scalar integer. The number of input
rows must be a multiple of the decimation factor. The default is 2.

Minimum order filter design
When you select this check box, the block designs filters with the minimum order that meets the
specifications passband frequency, stopband frequency, passband ripple, and stopband
attenuation. When you clear this check box, the block designs filters with the order that you
specify in Filter order.

By default, this check box is selected.
Filter order

Order of compensation filter, specified as a positive scalar integer. The default is 12.
Passband edge frequency (Hz)

Passband edge frequency of the compensation filter, specified as a real positive scalar in Hz.
Passband edge frequency (Hz) must be less than Fs/2, where Fs is the input sample rate. The
default value is 100000.

Stopband edge frequency (Hz)
Stopband edge frequency of the compensation filter, specified as a real positive scalar in Hz.
Stopband edge frequency (Hz) must be less than Fs/2, where Fs is the input sample rate. This
parameter applies when you select the Minimum order filter design check box. The default is
400000.

Passband ripple (dB)
Passband ripple of the compensation filter, specified as a real positive scalar in dB. The default is
0.1.

Stopband attenuation (dB)
Stopband attenuation of the compensation filter, specified as a real positive scalar in dB. The
default is 60.

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input signal. When you
clear this check box, you must specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz)
Input sample rate, specified as a scalar in Hz. The default is 1200000.

View Filter Response
Opens the Filter Visualization Tool FVTool and displays the magnitude/phase response of the CIC
Compensation Decimator. The response is based on the block dialog box parameters. Changes
made to these parameters update FVTool.

2 Blocks

2-216

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

 CIC Compensation Decimator

2-217

Data Types Tab

Rounding mode
Rounding method for the output fixed-point operations. The rounding methods are Ceiling,
Convergent, Floor, Nearest, Round, Simplest, and Zero. The default is Floor.

Coefficients
Fixed-point data type of the coefficients, specified as one of the following:

• fixdt(1,16) (default) — Signed fixed-point data type of word length 16, with binary point
scaling. The block determines the fraction length automatically from the coefficient values in
such a way that the coefficients occupy maximum representable range without overflowing.

2 Blocks

2-218

• fixdt(1,16,0) — Signed fixed-point data type of word length 16, fraction length 0. You can
change the fraction length to any other integer value.

• <data type expression> — Specify the coefficients data type by using an expression that
evaluates to a data type object, for example, numeric type (fixdt([],16, 15)), to specify the
coefficients data type. Specify the sign mode of this data type as [] or true.

• Refresh Data Type — Refresh to the default data type.

Click the Show data type assistant button to display the data type assistant, which helps
you set the stage input parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed or unsigned)
• 8-, 16-, 32-, and 64-bit signed integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, 32-, and 64-bit signed integers

Algorithms
The response of a CIC filter is given by:

Hcic ω =
sin RDω

2

sin ω
2

N

R, D, and N are the rate change factor, the differential delay, and the number of sections of the CIC
filter, respectively.

After decimation, the cic response has the form:okay

Hcic ω =
sin Dω

2

sin ω
2R

N

The normalized version of this last response is the one that the CIC compensator needs to
compensate. Hence, the passband response of the CIC compensator should take the following form:

Hciccomp ω = RD
sin ω

2R

sin Dω
2

N

for ω ≤ ωp < π

 CIC Compensation Decimator

2-219

where ωp is the passband frequency of the CIC compensation filter.

Notice that when ω/2R ≪ π, the previous equation for Hciccomp(ω) can be simplified using the fact
that sin(x) ≅ x:

Hciccomp ω ≈
Dω
2

sin Dω
2

N

 = sinc Dω
2

−N
for ω ≤ ωp < π

This previous equation is the inverse sinc approximation to the true inverse passband response of the
CIC filter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Objects
dsp.CICCompensationDecimator

Blocks
CIC Compensation Interpolator

Introduced in R2015b

2 Blocks

2-220

CIC Decimation
Decimate signal using cascaded integrator-comb filter
Library: DSP System Toolbox / Filtering / Multirate Filters

DSP System Toolbox HDL Support / Filtering

Description
The CIC Decimation block performs a sample rate decrease (decimation) on an input signal by an
integer factor. Cascaded Integrator-Comb (CIC) filters are a class of linear phase FIR filters
comprised of a comb part and an integrator part.

The block supports real and complex fixed-point inputs. In its normal mode of operation, the CIC
Decimation block allows the adder’s numeric values to overflow and wrap around [1] [3]. The Fixed-
Point infrastructure then causes overflow warnings to appear on the command line. This overflow is
of no consequence.

The CIC Decimation block requires a Fixed-Point Designer™ license.

Ports
Input

Port_1 — Input signal
vector | matrix

Data input, specified as a vector or matrix. The number of input rows must be a multiple of the
decimation factor.

If the input is fixed-point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.
Data Types: int8 | int16 | int32 | int64 | fixed point

Output

Port_1 — CIC decimated output
vector | matrix

CIC decimated output, returned as a vector or a matrix. The data type of the output is determined by
the settings in the block dialog. The complexity of the output matches that of the input. The number
of output rows is (1/R)✕Num, where R is the decimation factor and Num is the number of input rows.
Data Types: int8 | int16 | int32 | int64 | fixed point

 CIC Decimation

2-221

Parameters
Coefficient source — Source of the filter information
Dialog parameters (default) | Filter object

Source of the filter information, specified as one of the following:

• Dialog parameters — Enter information about the filter, such as Decimation factor (R),
Differential delay (M) and Number of sections (N), in the block dialog.

• Filter object — Specify the filter using a dsp.CICDecimator System object.

Different items appear on the CIC Decimation block dialog depending on whether you select Dialog
parameters or Filter object in the Coefficient source parameter.

Decimation factor (R) — Decimation factor
2 (default) | integer

Decimation factor of the filter, specified as an integer greater than 1.

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters.

Differential Delay (M) — Differential delay
1 (default) | positive integer

Specify the differential delay of the comb part of the filter, M, as a positive integer. For more details,
see “CIC Decimation Filter” on page 4-271.

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters.

Number of sections (N) — Number of filter sections
2 (default) | positive integer

Specify the number of filter sections. The number you specify determines the number of sections in
either the comb part of the filter or the integrator part of the filter. This value does not represent the
total number of sections in the comb and integrator parts combined.

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters.

Data type specification mode — Specify word length and fraction length of filter
sections and output
Full precision (default) | Minimum section word lengths | Specify word lengths |
Binary point scaling

Choose how you specify the fixed-point word length and fraction length of the filter sections and/or
output:

• Full precision — The word and fraction lengths of the filter sections and outputs are
automatically selected for you. All word lengths (WL) are set to:

WL = ceil(N × log2(M × R)) + I

2 Blocks

2-222

where,

• I –– Input word length
• M –– Differential delay
• N –– Number of sections
• R –– Decimation factor

All fraction lengths are set to the input fraction length.
• Minimum section word lengths — Specify the word length of the filter output in the Output

word length parameter. The block automatically selects the word lengths of the filter sections
and all fraction lengths such that each of the section word lengths is as small as possible. The
precision of each filter section is less than in Full precision mode, but the range of each
section is preserved.

• Specify word lengths — Specify the word lengths of the filter sections and output in the
Section word lengths and Output word length parameters. The block automatically selects
fraction lengths for the filter sections and output such that the range of each section is preserved
when the least significant bits are discarded.

• Binary point scaling — Specify the word and fraction lengths of the filter sections and
output in the Section word lengths, Section fraction lengths, Output word length, and
Output fraction length parameters.

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters.

Section word lengths — Word length of filter sections
[16 16 16 16] (default) | scalar | row vector

Word lengths of filter sections, specified as a scalar or a vector of length equal to 2N, where N is the
number of filter sections. The section word length must be in the range [2, 128].
Dependencies

This parameter appears when you set Coefficient source to Dialog parameters and Data type
specification mode to either Specify word lengths or Binary point scaling.

Section fraction lengths — Fraction lengths of filter sections
0 (default) | integer

Fraction lengths of filter sections, specified as an integer.
Dependencies

This parameter appears when you set Coefficient source to Dialog parameters and Data type
specification mode to Binary point scaling.

Output word length — Word length of filter output
32 (default) | integer

Word length of the filter output, specified as an integer in the range [2, 128].
Dependencies

This parameter appears when you set Coefficient source to Dialog parameters and Data type
specification mode to any option other than Full precision.

 CIC Decimation

2-223

Output fraction length — Fraction length of filter output
0 (default) | integer

Fraction length of the filter output, specified as an integer.

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters and Data type
specification mode to Binary point scaling.

Rate options — Rate processing rule
Enforce single-rate processing (default) | Allow multirate processing

Specify the rate processing rule for the block:

• Enforce single-rate processing — The block performs frame-based processing and
produces an output that has the same sample rate as the input. To decimate the signal while
maintaining the input sample rate, the block decreases the output frame size. In this mode, the
input column size must be a multiple of Decimation Factor (R).

• Allow multirate processing — The block performs sample-based processing. In this mode,
the block produces an output with a sample rate that is R times slower than the input sample rate.

Filter object — Multirate filter object
dsp.CICDecimator

Specify the name of the multirate filter object that you want the block to implement. You must specify
the filter as a dsp.CICDecimator System object.

You can define the System object in the block dialog or in a MATLAB workspace variable.

For information on creating System objects, see “Define Basic System Objects”.

Dependencies

This parameter appears when you set Coefficient source to Filter object.

View Filter Response — View filter response
gui button

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product
and displays the filter response of the filter defined in the block. For more information on FVTool, see
the Signal Processing Toolbox documentation.

Note If you specify a filter in the Filter object parameter, you must apply the filter by clicking the
Apply button before using the View Filter Response button.

Block Characteristics
Data Types fixed point | integer
Direct Feedthrough no
Multidimensional
Signals

no

2 Blocks

2-224

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
CIC Filter

CIC filters are an optimized class of linear phase FIR filters composed of a comb part and an
integrator part.

The CIC decimation filter is conceptually given by a single rate CIC filter, H(z) which is a lowpass
anti-imaging filter, followed by a downsampler. The CIC decimation filter decreases the sample rate of
an input signal by an integer factor using a cascaded integrator-comb (CIC) filter.

In a more efficient implementation, the single rate CIC filter H(z) is factorized this way:

H(z) = ∑
k = 0

RM − 1
z−k

N
=

1− z−RM N

1− z−1 N = 1
1− z−1 N ·

1− z−RM N

1 = HIN(z) · HcN(z)

where,

• HI is the transfer function of the integrator part of the filter containing N stages of integrators.
• HC is the transfer function of the N sections of the cascaded comb filters, each with a width of RM.
• N is the number of sections. The number of sections in a CIC filter is defined as the number of

sections in either the comb part or the integrator part of the filter. This value does not represent
the total number of sections throughout the entire filter.

• R is the decimation factor.
• M is the differential delay.

In the overall multirate realization, the algorithm applies the noble identity for decimation and moves
the rate change factor, R, to follow after the N sections of the cascaded integrators. The transfer
function of the resulting filter is given by the following equation:

H(z) =
1− z−M N

1− z−1 N .

For a block diagram that shows the multirate implementation, see “Algorithms” on page 2-226.

 CIC Decimation

2-225

Algorithms
CIC Decimation Filter

The CIC decimation filter in “More About” on page 2-225 is realized as a cascade of N sections of the
integrators followed by a rate change factor of R, followed by N sections of comb filters.

This diagram shows two sections of cascaded integrators and two sections of cascaded comb filters.
The unit delay in the integrator portion of the CIC filter can be located in either the feedforward or
the feedback path. These two configurations yield identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency. This block puts the
unit delay in the feedforward path of the integrator because it is a preferred configuration for HDL
implementation.

References
[1] Hogenauer, E.B. “An Economical Class of Digital Filters for Decimation and Interpolation.” IEEE

Transactions on Acoustics, Speech and Signal Processing. Vol. 29, Number 2, 1981, pp. 155–
162.

[2] Meyer-Baese, U. Digital Signal Processing with Field Programmable Gate Arrays. New York:
Springer Verlag, 2001.

[3] Harris, Fredric J., Multirate Signal Processing for Communication Systems. Upper Saddle River,
NJ: Prentice Hall PTR, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Coder supports Coefficient source options Dialog parameters and Filter object.

AddPipelineRegisters Support

When you use AddPipelineRegisters, registers are placed based on the filter structure. The pipeline
register placement determines the latency.

2 Blocks

2-226

Pipeline Register Placement Latency (clock cycles)
A pipeline register is added between the comb
stages of the differentiators.

NS-1, where NS is number of sections (at the
output side).

HDL Filter Properties

AddPipelineRegisters Insert a pipeline register between stages of computation in a filter. See
also AddPipelineRegisters (HDL Coder).

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• Vector and frame inputs are not supported for HDL code generation.
• When you select Dialog parameters, the Filter Structure option Zero-latency decimator is

not supported for HDL code generation. From the Filter Structure drop-down list, select
Decimator.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Functions
filter

Objects
dsp.CICDecimator | dsp.CICInterpolator | dsp.FIRDecimator | dsp.FIRInterpolator |
dsp.CICCompensationDecimator | dsp.CICCompensationInterpolator |
dsp.FIRHalfbandDecimator | dsp.FIRHalfbandInterpolator

Blocks
CIC Interpolation | FIR Decimation | FIR Interpolation | Digital Down-Converter | Digital Up-
Converter

 CIC Decimation

2-227

Topics
“Sigma-Delta A/D Conversion”

Introduced before R2006a

2 Blocks

2-228

CIC Filter
Design Cascaded Integrator-Comb (CIC) Filter

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Dialog Box
Main Pane

See “CIC Filter Design — Main Pane” on page 5-586 for more information about the parameters of
this block. The Data Types and Code Generation panes are not available for blocks in the DSP
System Toolbox Filter Designs library.

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

In its normal mode of operation, the CIC Filter block allows the adder’s numbers to wrap around.
The Fixed-Point infrastructure then causes warnings to appear on the command line.

Filter Specifications

In this group, you specify your CIC filter format, such as the filter type and the differential delay.

Filter type
Select whether your filter will be a decimator or an interpolator. Your choice determines the
type of filter and the design methods and structures that are available to implement your filter.

 CIC Filter

2-229

Selecting decimator or interpolator activates the Factor option. When you design an
interpolator, you enable the Output sample rate parameter.

When you design either a decimator or interpolator, the resulting filter is a CIC filter that
decimates or interpolates your input signal.

Differential delay
Specify the differential delay of your CIC filter as an integer value greater than or equal to 1. The
default value is 1. The differential delay changes the shape, number, and location of nulls in the
filter response. Increasing the differential delay increases the sharpness of the nulls and the
response between the nulls. In practice, differential delay values of 1 or 2 are the most common.

Factor
Specify the decimation or interpolation factor for your filter as an integer value greater than or
equal to 1. The default value is 2.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0–1) to enter frequencies in normalized form. This behavior is
the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Output sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter output. When you provide an output sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available only when you design
interpolators.

Passband frequency
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select in Frequency units.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. From the drop-down
list, select one of the following options:

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

2 Blocks

2-230

Filter Implementation

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Data Types Pane

See the Data Types Pane subsection of the filterBuilder function reference page for more
information about specifying data type parameters.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Fixed point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced in R2007b

 CIC Filter

2-231

CIC Interpolation
Interpolate signal using cascaded integrator-comb filter
Library: DSP System Toolbox / Filtering / Multirate Filters

DSP System Toolbox HDL Support / Filtering

Description
The CIC Interpolation block performs a sample rate increase (interpolation) on an input signal by an
integer factor. cascaded integrator-comb (CIC) filters are a class of linear phase FIR filters that
consist of a comb part and an integrator part.

The CIC Interpolation block requires a Fixed-Point Designer license.

Ports
Input

Port_1 — Input signal
vector | matrix

Data input, specified as a vector or matrix. If the input is fixed point, it must be signed integer or
signed fixed point with power-of-two slope and zero bias.
Data Types: int8 | int16 | int32 | int64 | fixed point

Output

Port_1 — CIC interpolated output
vector | matrix

CIC interpolated output, returned as a vector or a matrix. The data type of the output is determined
by the settings in the block dialog. The complexity of the output matches that of the input. The
number of output rows is R✕Num, where R is the interpolation factor and Num is the number of
input rows.
Data Types: int8 | int16 | int32 | int64 | fixed point

Parameters
Coefficient source — Source of filter information
Dialog parameters (default) | Filter object

Source of the filter information, specified as one of the following:

• Dialog parameters — Enter information about the filter, such as Interpolation factor (R),
Differential delay (M) and Number of sections (N), in the block dialog.

2 Blocks

2-232

• Filter object — Specify the filter using a dsp.CICInterpolator System object.

Interpolation factor (R) — Interpolation factor
2 (default) | integer

Interpolation factor of the filter, specified as an integer greater than 1.

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters.

Differential Delay (M) — Differential delay
1 (default) | positive integer

Specify the differential delay of the comb part of the filter, M, as a positive integer. For more details,
see “CIC Interpolation Filter” on page 4-286.

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters.

Number of sections (N) — Number of filter sections
2 (default) | positive integer

Specify the number of filter sections. The number you specify determines the number of sections in
either the comb part of the filter or the integrator part of the filter. This value does not represent the
total number of sections in the comb and integrator parts combined.

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters.

Data type specification mode — Specify word length and fraction length of filter
sections and output
Full precision (default) | Minimum section word lengths | Specify word lengths |
Binary point scaling

Choose how you specify the fixed-point word length and fraction length of the filter sections and/or
output:

• Full precision — The word and fraction lengths of the filter sections and outputs are
automatically selected for you. The output and last section word lengths (WL) are set to:

WL = ceil log2
RM N

R + I

where,

• I –– Input word length
• M –– Differential delay
• N –– Number of sections
• R –– Interpolation factor

The other section word lengths are set to accommodate the bit growth, as described in
Hogenauer's paper [1]. All fraction lengths are set to the input fraction length.

 CIC Interpolation

2-233

• Minimum section word lengths — Specify the word length of the filter output in the Output
word length parameter. The word lengths of the filter sections are set in the same way as in Full
precision mode.

The section fraction lengths are set to the input fraction length. The output fraction length is set
to the input fraction length minus the difference between the last section word length and the
output word length.

• Specify word lengths — Specify the word lengths of the filter sections and output in the
Section word lengths and Output word length parameters. The fraction lengths of the filter
sections are set such that the spread between word length and fraction length is the same as in
full-precision mode. The output fraction length is set to the input fraction length minus the
difference between the last section word length and the output word length.

• Binary point scaling — Specify the word and fraction lengths of the filter sections and
output in the Section word lengths, Section fraction lengths, Output word length, and
Output fraction length parameters.

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters.

Section word lengths — Word length of filter sections
[16 16 16 16] (default) | scalar | row vector

Word lengths of filter sections, specified as a scalar or a vector of length equal to 2N, where N is the
number of filter sections. The section word length must be in the range [2, 128].

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters and Data type
specification mode to either Specify word lengths or Binary point scaling.

Section fraction lengths — Fraction length of filter sections
0 (default) | integer

Fraction lengths of filter sections, specified as an integer.

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters and Data type
specification mode to Binary point scaling.

Output word length — Word length of filter output
32 (default) | integer

Word length of the filter output, specified as an integer in the range [2, 128].

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters and Data type
specification mode to any option other than Full precision.

Output fraction length — Fraction length of filter output
0 (default) | integer

Fraction length of the filter output, specified as an integer.

2 Blocks

2-234

Dependencies

This parameter appears when you set Coefficient source to Dialog parameters and Data type
specification mode to Binary point scaling.

Input processing — Method of processing input
Columns as channels (frame based) (default) | Elements as channels (sample based)

Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. In this mode, the block always performs single-rate processing.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. In this mode, the input to the block must be a scalar or a vector. You can use the
Rate options parameter to specify whether the block performs single-rate or multirate
processing.

Rate options — Rate processing rule
Enforce single-rate processing (default) | Allow multirate processing

Specify the rate processing rule for the block. You can select one of the following options:

• Enforce single-rate processing — The block maintains the sample rate of the input.
• Allow multirate processing — The block produces an output with a sample rate that is R

times faster than the input sample rate. To select this option, you must set the Input processing
parameter to Elements as channels (sample based).

Filter object — Multirate filter object
dsp.CICInterpolator System object

Specify the name of the multirate filter object that you want the block to implement. You must specify
the filter as a dsp.CICInterpolator System object.

You can define the System object in the block dialog or in a MATLAB workspace variable.

For information on creating System objects, see “Define Basic System Objects”.

Dependencies

This parameter appears when you set Coefficient source to Filter object.

View Filter Response — View filter response
button

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product
and displays the filter response of the filter defined in the block. For more information on FVTool, see
the Signal Processing Toolbox documentation.

Note If you specify a filter in the Filter object parameter, you must apply the filter by clicking the
Apply button before using the View Filter Response button.

 CIC Interpolation

2-235

Block Characteristics
Data Types fixed point | integer
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
CIC Filter

CIC filters are an optimized class of linear phase FIR filters composed of a comb part and an
integrator part.

The CIC interpolation filter is conceptually given by an upsampler followed by a single rate CIC filter,
H(z), which is a lowpass anti-imaging filter. The CIC interpolation filter increases the sample rate of
an input signal by an integer factor using a cascaded integrator-comb (CIC) filter.

In a more efficient implementation, the single rate CIC filter H(z) is factorized this way:

H(z) = ∑
k = 0

RM − 1
z−k

N
= (1− z−RM)N

(1− z−1)N = (1− z−RM)N

1 · 1
(1− z−1)N = HCN(z) · HIN(z)

where,

• HC is the transfer function of the N sections of the cascaded comb filters, each with a width of RM.
• HI is the transfer function of the integrator part of the filter containing N stages of integrators.
• N is the number of sections. The number of sections in a CIC filter is defined as the number of

sections in either the comb part or the integrator part of the filter. This value does not represent
the total number of sections throughout the entire filter.

• R is the interpolation factor.
• M is the differential delay.

In the overall multirate realization, the algorithm applies the noble identity for interpolation and
moves the rate change factor, R, to follow after the N sections of the cascaded comb filters.

The transfer function of the resulting filter is given by the following equation:

H(z) =
1− z−M N

1− z−1 N .

2 Blocks

2-236

For a block diagram that shows the multirate implementation, see “Algorithms” on page 2-237.

Algorithms
CIC Interpolation Filter

The CIC interpolation filter in “More About” on page 2-236 is realized as a cascade of N sections of
comb filters followed by a rate change by a factor R, followed by N sections of cascaded integrators.

This diagram shows two sections of cascaded comb filters and two sections of cascaded integrators.
The unit delay in the integrator portion of the CIC filter can be located in either the feedforward or
the feedback path. These two configurations yield identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency. This algorithm puts
the unit delay in the feedforward path of the integrator since it is a preferred configuration for HDL
implementation.

References
[1] Hogenauer, E.B. “An Economical Class of Digital Filters for Decimation and Interpolation” IEEE

Transactions on Acoustics, Speech and Signal Processing. Vol. 29, Number 2, 1981, pp. 155–
162, 1981.

[2] Meyer-Baese, U. Digital Signal Processing with Field Programmable Gate Arrays. New York:
Springer Verlag, 2001.

[3] Harris, Fredric J., Multirate Signal Processing for Communication Systems. Upper Saddle River,
NJ: Prentice Hall PTR, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Coder supports Coefficient source options Dialog parameters and Filter object.
AddPipelineRegisters Support

When you use AddPipelineRegisters, registers are placed based on the filter structure. The pipeline
register placement determines the latency.

 CIC Interpolation

2-237

Pipeline Register Placement Latency (clock cycles)
A pipeline register is added between the comb
stages of the differentiators.

NS, the number of sections (at the input side).

HDL Filter Properties

AddPipelineRegisters Insert a pipeline register between stages of computation in a filter. See
also AddPipelineRegisters (HDL Coder).

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• Vector and frame inputs are not supported for HDL code generation.
• When you select Dialog parameters, the Filter Structure option Zero-latency

interpolator is not supported for HDL code generation. From the Filter Structure drop-down
list, select Interpolator.

• When you use AddPipelineRegisters, delays in parallel paths are not automatically balanced.
Manually add delays where required by your design.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Functions
filter

Objects
dsp.CICDecimator | dsp.CICInterpolator | dsp.FIRDecimator | dsp.FIRInterpolator |
dsp.CICCompensationDecimator | dsp.CICCompensationInterpolator |
dsp.FIRHalfbandDecimator | dsp.FIRHalfbandInterpolator

Blocks
CIC Decimation | FIR Decimation | FIR Interpolation | Digital Down-Converter | Digital Up-Converter

2 Blocks

2-238

Introduced before R2006a

 CIC Interpolation

2-239

Colored Noise
Generate colored noise signal
Library: DSP System Toolbox / Sources

Description
The Colored Noise block generates a colored noise signal with a power spectral density of 1/|f|α over
its entire frequency range. The inverse power spectral density component, α, can be any value in the
interval [-2 2]. The type of colored noise the block generates depends on the Noise color option
you choose in the block dialog box. When you set Noise color to custom, you can specify the power
density of the noise through the Power of inverse frequency parameter.

Ports
Output

Port_1 — Colored noise signal
scalar | vector | matrix

Colored noise output signal. The size and data type of the signal depend on the values of the Number
of output channels, Number of samples per output channel, and Output data type parameters.
Data Types: single | double

Parameters
Noise color — Color of the generated noise
pink (default) | white | brown | blue | purple | custom

Color of the noise the block generates. You can set this parameter to:

• pink — Generates pink noise. This option is equivalent to setting Power of inverse frequency to
1.

• white — Generates white noise (flat power spectral density). This option is equivalent to setting
Power of inverse frequency to 0.

• brown — Generates brown noise. Also known as red or Brownian noise. This option is equivalent
to setting Power of inverse frequency to 2.

• blue — Generates blue noise. Also known as azure noise. This option is equivalent to setting
Power of inverse frequency to -1.

• purple — Generates violet (purple) noise. This option is equivalent to setting Power of inverse
frequency to -2.

• custom — Specify the power density of the noise using the Power of inverse frequency
parameter.

2 Blocks

2-240

Power of inverse frequency — Inverse power spectral density component
1 (default) | scalar in the range [-2 2]

Inverse power spectral density component, α, specified as a real-valued scalar in the interval [-2 2].
The inverse exponent defines the power spectral density of the random process by 1/|f|α. The default
value of this property is 1. When Power of inverse frequency is greater than 0, the block generates
lowpass noise, with a singularity (pole) at f= 0. These processes exhibit long memory. When Power
of inverse frequency is less than 0, the block generates highpass noise with negatively correlated
increments. These processes are referred to as antipersistent. In a log-log plot of power as a function
of frequency, processes generated by the Colored Noise block exhibit an approximate linear
relationship, with the slope equal to –α.

Dependencies

To enable this parameter, set Noise color to custom.

Guarantee the output is bounded (+/-1) — Set output bounds to +1 and −1
off (default) | on

Select the parameter to make the output bounded between +1 and −1.

When you select the parameter, the internal random source that generates the noise is uniform. If
Noise color is set to white, there is no color filter applied to the output of the random source. The
output is uniform noise of amplitude between +1 and −1. If Noise color is set to any other option,
then a coloring filter is applied to the output of the random source, followed by a gain that ensures
the absolute maximum output never exceeds 1.

When you do not select the parameter, the internal random source is Gaussian. The output is not
bounded.

Number of output channels — Number of output channels
1 (default) | positive integer

Number of output channels, specified as a positive integer scalar. This parameter defines the number
of columns in the generated signal.

Output data type — Output data type
double (default) | single

Data type of the output specified as double or single.

Number of samples per output channel — Samples per frame of output
1024 (default) | positive integer

Number of samples in each frame of the output signal, specified as a positive integer scalar. This
parameter defines the number of rows in the generated signal.

Output sample time (s) — Sample time of the output
1 (default) | positive scalar

Sample time of the output signal, specified as a positive scalar in seconds.

Initial seed — Initial seed of random number generator
67 (default) | positive integer

 Colored Noise

2-241

Initial seed of the random number generator algorithm, specified as a real-valued positive integer
scalar.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run. You can set this parameter to:

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time.
• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals No

More About
Colored Noise Processes

Many phenomena in diverse fields, such as hydrology and finance, produce time series with PSD
functions that follow a power law of the form

S(f) = L(f)
f α

where α is a real number in the interval [-2,2] and L(f) is a positive, slowly-varying or constant
function. Plotting the PSD of such processes on a log-log plot displays an approximate linear
relationship between the log frequency and log PSD with slope equal to -α

lnS(f) = − αln f + lnL(f) .

It is often convenient to plot the PSD in dB as a function of the frequency on a base-2 logarithmic
scale. The slope of the plot is then dB/octave. Rewriting the preceding equation, you obtain

10logS(f) = − 10α
ln(2)log2(f)

ln(10) + 10ln(L(f))
ln(10)

with the slope in dB/octave given by

−10α
ln(2)log2(f)

ln(10)

If α > 0, S(f) goes to infinity as the frequency, f, approaches 0. Stochastic processes with PSDs of this
form exhibit long memory. Long-memory processes have autocorrelations that persist for a long time

2 Blocks

2-242

as opposed to decaying exponentially like many common time-series models. If α<0, the process is
antipersistent and exhibits negative correlation between increments [1].

Special examples of 1
f α processes include:

• α = 0 — White noise, where L(f) is a constant proportional to the process variance.
• α = 1 — Pink, or flicker noise. Pink noise has equal energy per octave. See “Measure Pink Noise

Power in Octave Bands” on page 4-305 for a demonstration. The power spectral density of pink
noise decreases 3 dB per octave.

• α = 2 — brown noise, or Brownian motion. Brownian motion is a nonstationary process with
stationary increments. You can think of Brownian motion as the integral of a white noise process.
Even though Brownian motion is nonstationary, you can still define a generalized power spectrum,
which behaves like 1

f 2 . Accordingly, power in a brown noise decreases 6 dB per octave.

• α = −1 — blue noise. The power spectral density of blue noise increases 3 dB per octave.
• α = −2 — violet, or purple noise. The power spectral density of violet noise increases 6 dB per

octave. You can think of violet noise as the derivative of white noise process.

Algorithms
The figure shows the overall process of generating the colored noise.

The random stream generator produces a stream of white noise that is either Gaussian or uniform in
distribution. A coloring filter applied to the white noise generates colored noise with a power spectral
density (PSD) function given by:

S(f) = L(f)
f α

When α, the inverse frequency power, equals 0, no coloring filter is applied to the output of the
random stream generator. If the bounded option is enabled, the output is uniform white noise with
amplitude between +1 and −1. If the bounded output is not enabled, the output is a Gaussian white
noise and the values are not bounded between +1 and −1. If α is set to any other value, then a
coloring filter is applied to the output of the random stream generator. If the bounded output option is
enabled, a gain g is applied to the output of the coloring filter to ensure that the absolute maximum
output never exceeds 1.

For details on colored noise processes and how the value of α affects the PSD of the colored noise,
see “Colored Noise Processes” on page 2-242.

When the inverse frequency power α is positive, the colored noise is generated using an auto
regressive (AR) model of order 63. The AR coefficients are:

 Colored Noise

2-243

a0 = 1,

ak = (k− 1− α
2)

ak− 1
k , k = 1, 2, …, 63

Pink and brown noises are special cases, which are generated from specially tuned SOS filters of
orders 12 and 10, respectively. These filters are optimized for better performance.

When the inverse frequency power α is negative, the colored noise is generated using a moving
average (MA) model of order 255. The MA coefficients are:

b0 = 1,

bk = k− 1 + α
2

bk− 1
k , k = 1, 2,⋯, 255

Purple noise is generated from a first order filter, B = [1 −1].

The coloring filters applied (except pink, brown, and purple) are detailed on pp. 820–822 in [2].

References
[1] Beran, J., Feng, Y., Ghosh, S., and Kulik, R. Long-Memory Processes: Probabilistic Properties and

Statistical Methods. Springer, 2013.

[2] Kasdin, N.J. "Discrete Simulation of Colored Noise and Stochastic Processes and 1/fα Power Law
Noise Generation". Proceedings of the IEEE. Vol. 83, No. 5, 1995, pp. 802–827.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
randn

Objects
dsp.ColoredNoise

Topics
“Sample- and Frame-Based Concepts”

Introduced in R2015a

2 Blocks

2-244

Comb Filter
Design comb Filter

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Dialog Box
See “Comb Filter Design —Main Pane” on page 5-590 for more information about the parameters of
this block. The Data Types and Code Generation panes are not available for blocks in the DSP
System Toolbox Filter Designs library.

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

In this group, you specify the type of comb filter and the number of peaks or notches.

Comb Type
Select either Notch or Peak from the drop-down list. Notch creates a comb filter that attenuates
a set of harmonically related frequencies. Peak creates a comb filter that amplifies a set of
harmonically related frequencies.

Order mode
Select either Order or Number of Peaks/Notches from the drop-down menu.

 Comb Filter

2-245

Select Order to enter the desired filter order in the dialog box. The comb filter has notches or
peaks at increments of 2/Order in normalized frequency units.

Select Number of Peaks or Number of Notches to specify the number of peaks or notches
and the Shelving filter order

.
Shelving filter order

The Shelving filter order is a positive integer that determines the sharpness of the peaks
or notches. Larger values result in sharper peaks or notches.

Frequency specifications

In this group, you specify the frequency constraints and frequency units.

Frequency specifications
Select either Quality factor or Bandwidth.

Quality factor is the ratio of the center frequency of the peak or notch to the bandwidth
calculated at the –3 dB point.

Bandwidth specifies the bandwidth of the peak or notch. By default the bandwidth is measured
at the –3 dB point. For example, setting the bandwidth equal to 0.1 results in 3 dB frequencies at
normalized frequencies 0.05 above and below the center frequency of the peak or notch.

Frequency Units
Specify the frequency units. The default is normalized frequency. Choosing an option in Hz
enables the Input sample rate dialog box.

Magnitude specifications

Specify the units for the magnitude specification and the gain at which the bandwidth is measured.
This menu is disabled if you specify a filter order. Select one of the following magnitude units from
the drop down list:

• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Bandwidth gain — Specify the gain at which the bandwidth is measured. The default is –3 dB.

Algorithm

The parameters in this group allow you to specify the design method and structure of your filter.

Design Method
The IIR Butterworth design is the only option for peaking or notching comb filters.

2 Blocks

2-246

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter.

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Optimize for unit-scale values
Select this check box to scale unit gains between sections in SOS filters. This parameter is
available only for SOS filters.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

 Comb Filter

2-247

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2010a

2 Blocks

2-248

Complex Bandpass Decimator
Extract a frequency subband using a one-sided (complex) bandpass decimator
Library: DSP System Toolbox / Filtering / Multirate Filters

Description
The Complex Bandpass Decimator block extracts a specific subband of frequencies using a one-sided,
multistage, complex bandpass decimator. The block determines the bandwidth of interest using the
specified center frequency, decimator factor, and bandwidth values.

This block supports SIMD code generation. For details, see “Code Generation” on page 2-253.

Ports
Input

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. The number of rows in the input must be a multiple of
the decimation factor.

This port is unnamed unless you select the Specify center frequency from input port parameter.
Data Types: single | double

Fc — Center frequency
real scalar

Center frequency of the desired band in Hz, specified as a real, finite numeric scalar in the range [–
Fs/2, Fs/2]. The value of Fs depends on the setting of the Inherit sample rate from input
parameter. When you select this parameter, Fs is the value the block inherits from the input signal.
When you clear this parameter, Fs is the value you specify in the Input sample rate (Hz) parameter.

This port is only available if you select the Specify center frequency from input port parameter.
Data Types: single | double

Output

Port_1 — Filtered output
vector | matrix

Output of the complex bandpass decimator, returned as a vector or a matrix. The output contains the
subband of frequencies specified by the parameters on the block dialog. The number of rows (frame
size) in the output signal is 1/D times the number of rows in the input signal, where D is the
decimation factor. The number of channels (columns) does not change.

 Complex Bandpass Decimator

2-249

The data type of the output is same as the data type of the input. The output signal is always complex.
Data Types: single | double

Parameters
Filter specification — Filter design parameters
Decimation factor (default) | Bandwidth | Decimation factor and bandwidth

Filter design parameters, specified as one of the following:

• Decimation factor –– The block specifies the decimation factor through the Decimation
factor parameter. The bandwidth of interest (BW) is computed using the following equation:

BW = Fs/D

where

• Fs –– Sample rate specified through the Input sample rate (Hz) parameter.
• D –– Decimation factor.

• Bandwidth –– The block specifies the bandwidth through the Bandwidth (Hz) parameter. The
decimation factor (D) is computed using the following equation:

D = floor Fs
BW + TW

where

• Fs –– Sample rate specified through the Input sample rate (Hz) parameter.
• BW –– Bandwidth of interest.
• TW –– Transition width specified through the Transition width (Hz) parameter.

• Decimation factor and bandwidth –– The decimation factor and the bandwidth of interest
are specified through the Decimation factor and Bandwidth (Hz) parameters.

Decimation factor — Decimation factor
2 (default) | positive integer

Factor by which to reduce the bandwidth of the input signal, specified as a positive integer. The frame
size (number of rows) of the input signal must be a multiple of the decimation factor.

Dependencies

This parameter applies when you set Filter specification to either Decimation factor or
Decimation factor and bandwidth.

Bandwidth (Hz) — Bandwidth in Hz
5000 (default) | real positive scalar

Width of the frequency band of interest, specified as a real positive scalar in Hz.

Dependencies

This parameter applies when you set Filter specification to either Bandwidth or Decimation
factor and bandwidth.

2 Blocks

2-250

Data Types: single | double

Specify center frequency from input port — Flag to specify center frequency
off (default) | on

When you select this check box, the center frequency is input through the Fc port. When you clear
this check box, the center frequency is specified on the block dialog through the Center frequency
(Hz) parameter.

When you select this check box, the block does not compute the filter response. To view the filter
response, clear this check box, specify the center frequency on the block dialog, and click View
Filter Response button.

Center frequency (Hz) — Center frequency in Hz
0 (default) | real scalar

Center frequency of the desired band in Hz, specified as a real, finite numeric scalar in the range [–
Fs/2, Fs/2].

Tunable: Yes
Data Types: single | double

Stopband attenuation (dB) — Stopband attenuation in dB
80 (default) | positive scalar

Stopband attenuation of the filter in dB, specified as a finite positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Passband ripple (dB) — Passband ripple in dB
1 (default) | positive scalar

Passband ripple of the filter, specified as a positive scalar in dB.

Dependencies

This parameter applies when you set Filter specification to either Bandwidth or Decimation
factor and bandwidth.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Transition width (Hz) — Transition width in Hz
100 (default) | positive scalar

Transition width of the filter in Hz, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Reduce number of complex coefficients — Minimize number of complex coefficients
on (default) | off

Minimize the number of complex coefficients. When you select this parameter, the first stage of the
multistage filter is bandpass (with complex coefficients) centered at the specified center frequency.
The first stage is followed by a mixing stage that heterodynes the signal to DC. The remaining filter
stages, all with real coefficients, follow.

 Complex Bandpass Decimator

2-251

When you clear the parameter, the input signal is first passed through the different stages of the
multistage filter. All stages are bandpass (complex coefficients). The signal is then heterodyned to DC
if Mix signal to baseband parameter is selected and the frequency offset resulting from the
decimation is nonzero.

Mix signal to baseband — Mix signal to baseband
on (default) | off

Mix the signal to baseband. When you select this parameter, the block heterodynes the filtered,
decimated signal to DC. This mixing stage runs at the output sample rate of the filter. When you clear
this parameter, the block skips the mixing stage.
Dependencies

This parameter applies when you clear the Reduce number of complex coefficients parameter.

Inherit sample rate from input — Flag to specify input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. The block
calculates the sample rate based on the sample time of the input port. When you clear this parameter,
specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Input sample rate in Hz
44100 (default) | real positive scalar

Sampling rate of the input signal in Hz, specified as a real positive scalar.
Dependencies

This parameter applies when you clear the Inherit sample rate from input parameter.
Data Types: single | double

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals Yes

Algorithms
The complex bandpass decimator is designed by applying a complex frequency shift transformation
on a lowpass prototype filter. The lowpass prototype in this case is a multirate, multistage finite
impulse response (FIR) filter. The desired frequency shift applies only to the first stage. Subsequent
stages scale the desired frequency shift by their respective cumulative decimation factors. For
details, see “Complex Bandpass Filter Design” and “Zoom FFT”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-252

The Complex Bandpass Decimator block supports SIMD code generation using Intel AVX2 technology
under these conditions:

• Input signal is complex-valued.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

See Also
Objects
dsp.ComplexBandpassDecimator

Topics
“IF Subsampling with Complex Multirate Filters”
“Complex Bandpass Filter Design”
“Zoom FFT”

Introduced in R2018a

 Complex Bandpass Decimator

2-253

Complex Cepstrum
Compute complex cepstrum of input

Library
Transforms

dspxfrm3

Description
The Complex Cepstrum block computes the complex cepstrum of each column in the real-valued M-
by-N input matrix, u. The block treats each column of the input as an independent channel containing
M consecutive samples. The block always processes unoriented vector inputs as a single channel, and
returns the result as a length-M column vector. The block does not accept complex-valued inputs.

The input is altered by the application of a linear phase term so that there is no phase discontinuity at
±π radians. That is, each input channel is independently zero padded and circularly shifted to have
zero phase at π radians.

The output is a real Mo-by-N matrix, where Mo is specified by the FFT length parameter. Each output
column contains the length-Mo complex cepstrum of the corresponding input column.

y = cceps(u,Mo) % Equivalent MATLAB code

When you select the Inherit FFT length from input port dimensions check box, the output frame
size matches the input frame size (Mo = M).

The output port rate is the same as the input port rate.

Parameters
Inherit FFT length from input port dimensions

When you select this check box, the output frame size matches the input frame size.
FFT length

The number of frequency points at which to compute the FFT, which is also the output frame size,
Mo. This parameter is visible only when you clear the Inherit FFT length from input port
dimensions check box.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

2 Blocks

2-254

See Also
DCT DSP System Toolbox
FFT DSP System Toolbox
Real Cepstrum DSP System Toolbox
cceps Signal Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

 Complex Cepstrum

2-255

Constant
Generate constant value
Library: Simulink / Commonly Used Blocks

Simulink / Sources
DSP System Toolbox / Sources
HDL Coder / Commonly Used Blocks
HDL Coder / Sources

Description
The Constant block generates a real or complex constant value signal. Use this block to provide a
constant signal input. The block generates scalar, vector, or matrix output, depending on:

• The dimensionality of the Constant value parameter
• The setting of the Interpret vector parameters as 1-D parameter

The output of the block has the same dimensions and elements as the Constant value parameter. If
you specify for this parameter a vector that you want the block to interpret as a vector, select the
Interpret vector parameters as 1-D check box. Otherwise, if you specify a vector for the Constant
value parameter, the block treats that vector as a matrix.

Tip To output a constant enumerated value, consider using the Enumerated Constant block instead.
The Constant block provides block parameters that do not apply to enumerated types, such as
Output minimum and Output maximum.

Using Bus Objects as the Output Data Type

The Constant block supports nonvirtual buses as the output data type. Using a bus object as the
output data type can help simplify your model. If you use a bus object as the output data type, set the
Constant value to 0 or to a MATLAB structure that matches the bus object.

Using Structures for the Constant Value of a Bus

The structure you specify must contain a value for every element of the bus represented by the bus
object. The block output is a nonvirtual bus signal.

You can use the Simulink.Bus.createMATLABStruct to create a full structure that corresponds
to a bus.

You can use Simulink.Bus.createObject to create a bus object from a MATLAB structure.

If the signal elements in the output bus use numeric data types other than double, you can specify
the structure fields by using typed expressions such as uint16(37) or untyped expressions such as

2 Blocks

2-256

37. To control the field data types, you can use the bus object as the data type of a
Simulink.Parameter object. To decide whether to use typed or untyped expressions, see “Control
Data Types of Initial Condition Structure Fields” (Simulink).

Setting Configuration Parameters to Support Using a Bus Object Data Type

To enable the use of a bus object as an output data type, before you start a simulation, set
Configuration Parameters > Diagnostics > Data Validity > Advanced parameters >
Underspecified initialization detection to Simplified. For more information, see
“Underspecified initialization detection” (Simulink).

Ports
Output

Port_1 — Constant value
scalar | vector | matrix | N-D array

Constant value, specified as a real or complex valued scalar, vector, matrix, or N-D array. By default,
the Constant block outputs a signal whose dimensions, data type, and complexity are the same as
those of the Constant value parameter. However, you can specify the output to be any data type that
Simulink supports, including fixed-point and enumerated data types.

Note If you specify a bus object as the data type for this block, do not set the maximum value for
bus data on the block. Simulink ignores this setting. Instead, set the maximum values for bus
elements of the bus object specified as the data type. For more information, see
Simulink.BusElement.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Parameters
Main

Constant value — Constant output value
1 (default) | scalar | vector | matrix | N-D array

Specify the constant value output of the block.

• You can enter any expression that MATLAB evaluates as a matrix, including the Boolean keywords
true and false.

• If you set the Output data type to be a bus object, you can specify one of these options:

• A full MATLAB structure corresponding to the bus object
• 0 to indicate a structure corresponding to the ground value of the bus object

For details, see “Using Bus Objects as the Output Data Type” on page 2-256.
• For nonbus data types, Simulink converts this parameter from its value data type to the specified

output data type offline, using a rounding method of nearest and overflow action of saturate.

 Constant

2-257

Programmatic Use
Block Parameter: Value
Type: character vector
Value: scalar | vector | matrix | N-D array
Default: '1'

Interpret vector parameters as 1-D — Treat vectors as 1-D
on (default) | off

Select this check box to output a vector of length N if the Constant value parameter evaluates to an
N-element row or column vector.

• When you select this check box, the block outputs a vector of length N if the Constant value
parameter evaluates to an N-element row or column vector. For example, the block outputs a
matrix of dimension 1-by-N or N-by-1.

• When you clear this check box, the block does not output a vector of length N if the Constant
value parameter evaluates to an N-element row or column vector.

Programmatic Use
Block Parameter: VectorParams1D
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Sample time — Sampling interval
inf (default) | scalar | vector

Specify the interval between times that the Constant block output can change during simulation (for
example, due to tuning the Constant value parameter).

The default value of inf indicates that the block output can never change. This setting speeds
simulation and generated code by avoiding the need to recompute the block output.

See “Specify Sample Time” (Simulink) for more information.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: 'inf'

Signal Attributes

Output minimum — Minimum output value for range checking
[] (default) | scalar

Specify the lower value of the output range that Simulink checks as a finite, real, double, scalar
value.

Note If you specify a bus object as the data type for this block, do not set the minimum value for bus
data on the block. Simulink ignores this setting. Instead, set the minimum values for bus elements of
the bus object specified as the data type. For information on the Minimum parameter for a bus
element, see Simulink.BusElement.

2 Blocks

2-258

Simulink uses the minimum to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”
(Simulink)) for some blocks.

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see “Optimize using the specified minimum and maximum values”
(Embedded Coder).

Note Output minimum does not saturate or clip the actual output signal. Use the Saturation block
instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: scalar
Default: '[]'

Output maximum — Maximum output value for range checking
[] (default) | scalar

Specify the upper value of the output range that Simulink checks as a finite, real, double, scalar
value.

Note If you specify a bus object as the data type for this block, do not set the maximum value for
bus data on the block. Simulink ignores this setting. Instead, set the maximum values for bus
elements of the bus object specified as the data type. For information on the Maximum parameter for
a bus element, see Simulink.BusElement.

Simulink uses the maximum value to perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”
(Simulink)) for some blocks.

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes such as SIL or external mode.
For more information, see “Optimize using the specified minimum and maximum values”
(Embedded Coder).

Note Output maximum does not saturate or clip the actual output signal. Use the Saturation block
instead.

 Constant

2-259

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: scalar
Default: '[]'

Output data type — Output data type
Inherit: Inherit from 'Constant value' (default) | Inherit: Inherit via back
propagation | double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32
| uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class
name> | Bus: <object name> | <data type expression>

Specify the output data type. The type can be inherited, specified directly, or expressed as a data type
object such as Simulink.NumericType.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: Inherit from 'Constant value'' | 'Inherit: Inherit via back
propagation' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |
'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum: <class name>'
| 'Bus: <object name>'
Default: 'Inherit: Inherit from 'Constant value''

Lock output data type setting against changes by the fixed-point tools —
Prevent fixed-point tools from overriding Output data type
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the Output data type you
specify on the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point
Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Block Characteristics
Data Types Boolean | bus | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals no

2 Blocks

2-260

Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Tunable Parameters

You can use a tunable parameter in a Constant block intended for HDL code generation. For details,
see “Generate DUT Ports for Tunable Parameters” (HDL Coder).

HDL Architecture

Architecture Parameters Description
default
Constant

None This implementation emits the value of the Constant
block.

Logic Value None By default, this implementation emits the character
'Z' for each bit in the signal. For example, for a 4-
bit signal, the implementation would emit 'ZZZZ'.

{'Value', 'Z'} If the signal is in a high-impedance state, use this
parameter value. This implementation emits the
character 'Z' for each bit in the signal. For
example, for a 4-bit signal, the implementation
would emit 'ZZZZ'.

{'Value', 'X'} If the signal is in an unknown state, use this
parameter value. This implementation emits the
character 'X' for each bit in the signal. For
example, for a 4-bit signal, the implementation
would emit 'XXXX'.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

 Constant

2-261

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Restrictions

• The Logic Value implementation does not support the double data type. If you specify this
implementation for a constant value of type double, a code generation error occurs.

• For Sample time, enter -1. Delay balancing does not support an inf sample time.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Enumerated Constant | Simulink.Parameter | Simulink.BusElement

Topics
“Set Block Parameter Values” (Simulink)
“Specify Bus Properties with Simulink.Bus Object Data Types” (Simulink)
“Specify Initial Conditions for Bus Elements” (Simulink)
“Create Array of Buses from MATLAB Structures” (Simulink)

Introduced before R2006a

2 Blocks

2-262

Constant Ramp
Generate ramp signal with length based on input dimensions
Library: DSP System Toolbox / Signal Operations

Description
The Constant Ramp block generates the constant ramp signal

y = (0:L-1)*m + b

where m is the slope specified by the scalar Slope parameter, and b is the y-intercept specified by the
scalar Offset parameter.

For an unoriented vector input, L is equal to the length of the input vector. For an N-D input array, the
length L of the output ramp is equal to the length of the input in the dimension specified by the
Ramp length equals number of or Dimension parameter. The output, y, is always an unoriented
vector.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix | N-D array

Input signal used to generate ramp signal, specified as a scalar, vector, matrix, or N-D array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Output signal
vector

Output signal, specified as an unoriented vector. The block determines the length of the output based
on the length of the input signal, and the Ramp length equals number of or Dimension
parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Main

Ramp length equals number of — Dimension used to determine ramp length
Rows (default) | Columns | Elements in specified dimension

 Constant Ramp

2-263

Specify whether the length of the output ramp is the number of rows, number of columns, or the
length of the specified dimension of the input.

Dimension — Dimension that determines length of output ramp
1 (default) | positive integer

Specify the one-based dimension of the input array that determines the length of the output ramp as
a positive integer scalar.

Dependencies

To enable this parameter, set Ramp length equals number of to Elements in specified
dimension.

Slope — Slope of the ramp
1 (default) | scalar

Specify the slope of the ramp as a real-valued double-precision scalar.

Offset — y-intercept of the ramp
0 (default) | scalar

Specify the scalar y-intercept of the ramp as a real-valued double-precision scalar.

Data Types

Output data type — Output data type
Inherit: Same as input (default) | Inherit: Inherit via back propagation | double |
single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean |
fixdt(1,16) | fixdt(1,16,0) | <data type conversion>

Specify the output data type for this block. You can select one of the following:

• A rule that inherits a data type, for example, Inherit: Same as input.
• A built-in data type, such as double
• An expression that evaluates to a valid data type, for example, fixdt(1,16)

For help setting data type parameters, display the Data Type Assistant by clicking the Show data

type assistant button .

See “Control Data Types of Signals” (Simulink) for more information.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

2 Blocks

2-264

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Create Diagonal Matrix | Constant | Ramp | Identity Matrix

Introduced before R2006a

 Constant Ramp

2-265

Contiguous Copy (Obsolete)
Create discontiguous input in contiguous block of memory

Library
dspobslib

Description

Note The Contiguous Copy block is still supported but is likely to be obsoleted in a future release.

The Contiguous Copy block copies the input to a contiguous block of memory, and passes this new
copy to the output. The output is identical to the input, but is guaranteed to reside in a contiguous
section of memory.

Because Simulink software employs an efficient copy-by-reference method for propagating data in a
model, some operations produce outputs with discontiguous memory locations.

Although this does not present a problem during simulation, blocks linked to versions of DSP Blockset
prior to 4.0 may require contiguous inputs for code generation with the Simulink Coder product.
When such blocks are used in a model intended for code generation, they should be preceded by the
Contiguous Copy block to ensure that their inputs are contiguous.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Introduced in R2008b

2 Blocks

2-266

Convert 1-D to 2-D
Reshape 1-D or 2-D input to 2-D matrix with specified dimensions

Library
Signal Management / Signal Attributes

dspsigattribs

Description
The Convert 1-D to 2-D block reshapes a length-Mi 1-D vector or an Mi-by-Ni matrix to an Mo-by-No
matrix, where Mo is specified by the Number of output rows parameter, and No is specified by the
Number of output columns parameter.

y = reshape(u,Mo,No) % Equivalent MATLAB code

The input is reshaped columnwise, as shown in the two cases below. The length-6 vector and the 2-
by-3 matrix are both reshaped to the same 3-by-2 output matrix.

An error is generated when (Mo*No)≠(Mi*Ni). That is, the total number of input elements must be
conserved in the output.

The output is frame based when you select the Frame-based output check box; otherwise, the
output is sample based.

Parameters
Number of output rows

The number of rows, Mo, in the output matrix.
Number of output columns

The number of rows, No, in the output matrix.
Frame-based output

Creates a frame-based output when selected.

 Convert 1-D to 2-D

2-267

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Buffer DSP System Toolbox
Convert 2-D to 1-D DSP System Toolbox
Frame Conversion DSP System Toolbox
Reshape Simulink
Submatrix DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a pass-through implementation.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

2 Blocks

2-268

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 Convert 1-D to 2-D

2-269

Convert 2-D to 1-D
Convert 2-D matrix input to 1-D vector
Library: DSP System Toolbox / Signal Management / Signal Attributes

Description
The Convert 2-D to 1-D block reshapes an M-by-N matrix input to a 1-D vector that has a length of
M*N.

y = u(:) % Equivalent MATLAB code

The input is reshaped column-wise for a 3-by-2 matrix.

Ports
Input

Port_1 — Input signal
matrix

Input signal, specified as a 2-D matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Output signal
vector

Output signal, returned as a 1-D vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

2 Blocks

2-270

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Buffer | Convert 1-D to 2-D | Reshape | Submatrix

Introduced before R2006a

 Convert 2-D to 1-D

2-271

Convolution
Convolution of two inputs
Library: DSP System Toolbox / Signal Operations

Description
The Convolution block convolves the first dimension of an N-D input array u with the first dimension
of an N-D input array v. The block can also convolve a column vector with the first-dimension of an N-
D input array.

The general equation for convolution is:

y(k) = ∑
n

u(n− k)v(k)

Two DSP System Toolbox blocks can be used for convolving two input signals:

• Convolution
• Discrete FIR Filter

The Convolution block assumes that all elements of u and v are available at each Simulink time step
and computes the entire convolution at every step.

The Discrete FIR Filter block can be used for convolving signals in situations where all elements of v
is available at each time step, but u is a sequence that comes in over the life of the simulation. When
you use the Discrete FIR Filter block, the convolution is computed only once.

To determine which block best fits your needs, see “Selecting the Appropriate Convolution Block” on
page 2-276.

Ports
Input

Port_1 — First input signal
scalar | vector | matrix | N-D array

First input u specified as a scalar, vector, matrix, or N-D array. When both inputs are real, the output
is real. When one or both inputs are complex, the output is complex. All the input port dimensions for
both the inputs, except the first dimension, must have the same value.

Inputs u and v are zero when indexed outside their valid ranges.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

Port_2 — Second input signal
scalar | vector | matrix | N-D array

2 Blocks

2-272

Second input v specified as a scalar, vector, matrix, or N-D array. When both inputs are real, the
output is real. When one or both inputs are complex, the output is complex. All the input port
dimensions for both the inputs, except the first dimension, must have the same value.

Inputs u and v are zero when indexed outside their valid ranges.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

Output

Port_1 — Output signal
scalar | vector | matrix | N-D array

Convolved signal, returned as a scalar, vector, matrix, or N-D array depending on the input signals.
When both inputs are real, the output is real. When one or both inputs are complex, the output is
complex. Inputs u and v are zero when indexed outside of their valid ranges. For more details on how
the convolved signal changes based on the inputs, see “More About” on page 2-276.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Parameters
Main Tab

Computation domain — Computation domain
Time (default) | Frequency | Fastest

Set the domain in which the block computes convolutions:

• Time — The block computes in the time domain, which minimizes memory use.
• Frequency — The block computes in the frequency domain, which might require fewer

computations than computing in the time domain, depending on the input length.
• Fastest — The block computes in the domain that minimizes the number of computations.

Fixed-point signals are only supported in the time domain. When inputting fixed-point signals, make
sure you set the Computation domain parameter to Time.

Data Types Tab

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

 Convolution

2-273

For more details, see Rounding Modes.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numerical results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.
• Output data type is Inherit: Same as accumulator.

With these data-type settings, the block operates in a full-precision mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see Overflow Handing for fixed-point operations.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numerical results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.
• Output data type is Inherit: Same as accumulator.

With these data-type settings, the block operates in a full-precision mode.

Product output — Product output data type
Inherit: Inherit via internal rule (default) | Inherit: Same as first input |
fixdt([],16,0)

Product output specifies the data type of the output of a product operation in the Convolution block.

• Inherit: Inherit via internal rule — The block inherits the product output data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

• Inherit: Same as first input — The block specifies the product output data type to be the
same as the first input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Product output data type by using the Data Type Assistant. To use

the assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).

For more information on the product output data type, see “Multiplication Data Types” and Fixed-
Point Conversion in “Extended Capabilities” on page 2-0 .

2 Blocks

2-274

Accumulator — Data type of accumulator
Inherit: Inherit via internal rule (default) | Inherit: Same as first input |
Inherit: Same as product output | fixdt([],16,0)

Accumulator specifies the data type of the output of an accumulation operation in the Convolution
block.

• Inherit: Inherit via internal rule — The block inherits the accumulator data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

• Inherit: Same as first input — The block specifies the accumulator data type to be the
same as the first input data type.

• Inherit: Same as product output — The block specifies the accumulator data type to be
the same as the product output data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).

For a diagrammatic representation on how to use the accumulator data type in this block, see Fixed-
Point Conversion in “Extended Capabilities” on page 2-0 .

Output — Data type of output
Inherit: Same as accumulator (default) | Inherit: Same as input | Inherit: Same as
product output | fixdt([],16,0)

Output specifies the data type of the output of the Convolution block.

• Inherit: Same as accumulator — The block specifies the output data type to be the same as
the accumulator data type.

• Inherit: Same as first input — The block specifies the output data type to be the same as
the first input data type.

• Inherit: Same as product output — The block specifies the output data type to be the
same as the product output data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Output data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information, see “Control Data Types of Signals” (Simulink).

For more information on the output data type, see Fixed-Point Conversion in “Extended Capabilities”
on page 2-0 .

Output Minimum — Minimum value that block can output
[] (default) | scalar

 Convolution

2-275

Specify the minimum value the block can output. Simulink uses this minimum value to perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Output Maximum — Maximum value that block can output
[] (default) | scalar

Specify the maximum value the block can output. Simulink uses this maximum value to perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Selecting the Appropriate Convolution Block

Question Answer Recommended Block(s)
How many convolutions do you
intend to perform?

Many convolutions, one at each
time step

• Convolution block

One convolution over the life of the
simulation

• Convolution block
• Discrete FIR Filter block

How long are your input sequences? Both sequences have a finite length • Convolution block
• Discrete FIR Filter block

One sequence has an infinite (not
predetermined) length

• Discrete FIR Filter block

How many of the inputs are scalar
streams?

None • Convolution block
• Discrete FIR Filter block

2 Blocks

2-276

Question Answer Recommended Block(s)
One or both • Buffer block followed by the

Convolution block
• Discrete FIR Filter block

Convolving Two N-D Arrays

The block always computes the convolution of two N-D input arrays along the first dimension. When
both inputs are N-D arrays, the size of their first dimension can differ, but the size of all other
dimensions must be equal. For example, when u is an Mu-by-N-by-P array and v is an Mv-by-N-by-P
array, the output is an (Mu+Mv–1)-by-N-by-P array.

When u is a Mu-by-N matrix and v is an Mv-by-N matrix, the output y is a (Mu+Mv–1)-by-N matrix
whose jth column has these elements

yi, j = ∑
k = 0

max(Mu, Mv)− 1
uk, jv i− k , j 0 ≤ i ≤ Mu + Mv− 2

Inputs u and v are zero when indexed outside their valid ranges. When both inputs are real, the
output is real. When one or both inputs are complex, the output is complex.

Convolving a Column Vector with an N-D Array

When one input is a column vector and the other is an N-D array, the block independently convolves
the vector with the first dimension of the N-D input array. For example, when u is a Mu-by-1 column
vector and v is an Mv-by-N matrix, the output is an (Mu+Mv–1)-by-N matrix whose jth column has
these elements:

yi, j = ∑
k = 0

max(Mu, Mv)− 1
ukv i− k , j 0 ≤ i ≤ Mu + Mv− 2

Convolving Two Column Vectors

The Convolution block also accepts two column vector inputs. When u and v are column vectors with
lengths Mu and Mv, the Convolution block performs the vector convolution with lengths Mu and Mv
such that:

yi = ∑
k = 0

max(Mu, Mv)− 1
ukv i− k 0 ≤ i ≤ Mu + Mv− 2

The output is a (Mu+Mv–1)-by-1 column vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This diagram shows the data types used within the Convolution block for fixed-point signals (time
domain only).

 Convolution

2-277

You can set the product output, accumulator, and output data types in the block dialog as discussed in
“Parameters” on page 2-273.

The output of the multiplier is in the product output data type when the input is real. When the input
is complex, the result of the multiplication is in the accumulator data type. For details on how the
multiplication operation is performed, see “Multiplication Data Types”.

Note When one or both of the inputs are signed fixed-point signals, all internal block data types are
signed fixed point. The internal block data types are unsigned fixed point only when both inputs are
unsigned fixed-point signals.

See Also
Functions
conv

Blocks
Correlation | Discrete FIR Filter

Introduced before R2006a

2 Blocks

2-278

Correlation
Cross-correlation of two inputs
Library: DSP System Toolbox / Statistics

Description
The Correlation block computes the cross-correlation of two N-D input arrays along the first-
dimension. The computation can be done in the time domain or frequency domain. You can specify
the domain through the Computation domain parameter. In the time domain, the block convolves
the first input signal, u, with the time-reversed complex conjugate of the second input signal, v. In the
frequency domain, to compute the cross-correlation, the block:

1 Takes the Fourier transform of both input signals, U and V.
2 Multiplies U and V*, where * denotes the complex conjugate.
3 Computes the inverse Fourier transform of the product.

If you set Computation domain to Fastest, the block chooses the domain that minimizes the
number of computations. For information on these computation methods, see “Algorithms” on page 2-
284.

Ports
Input

Port_1 — First data input signal
vector | matrix | N-D array

The block accepts real-valued or complex-valued multichannel and multidimensional inputs. The input
can be a fixed-point signal when you set the Computation domain to Time. When one or both of the
input signals are complex, the output signal is also complex.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Port_2 — Second data input signal
vector | matrix | N-D array

The block accepts real-valued or complex-valued multichannel and multidimensional inputs. The input
can be a fixed-point signal when you set the Computation domain to Time. When one or both of the
input signals are complex, the output signal is also complex.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

 Correlation

2-279

Output

Port_1 — Cross-correlated output
vector | matrix | N-D array

Cross-correlated output of the two input signals.

When the inputs are N-D arrays, the object outputs an N-D array, where all the dimensions, except for
the first dimension, match with the input array. For example,

• When the inputs u and v have dimensions Mu-by-N-by-P and Mv-by-N-by-P, respectively, the
Correlation block outputs an (Mu + Mv – 1)-by-N-by-P array.

• When the inputs u and v have the dimensions Mu-by-N and Mv-by-N, the block outputs an (Mu +
Mv – 1)-by-N matrix.

If one input is a column vector and the other input is an N-D array, the Correlation block computes
the cross-correlation of the vector with each column in the N-D array. For example,

• When the input u is an Mu-by-1 column vector and v is an Mv-by-N matrix, the block outputs an
(Mu + Mv – 1)-by-N matrix.

• Similarly, when u and v are column vectors with lengths Mu and Mv, respectively, the block
performs the vector cross-correlation.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main Tab

Computation domain — Domain in which the block computes the cross-correlation
Time (default) | Frequency | Fastest

• Time — Computes the cross-correlation in the time domain, which minimizes the memory usage.
• Frequency — Computes the cross-correlation in the frequency domain. For more information, see

“Algorithms” on page 2-284.
• Fastest — Computes the cross-correlation in the domain that minimizes the number of

computations.

To cross-correlate fixed-point signals, set this parameter to Time.

Data Types Tab

Note Fixed-point signals are supported for the time domain only. To use these parameters, on the
Main tab, set Computation domain to Time.

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations as one of the following:

2 Blocks

2-280

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numerical results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.
• Output data type is Inherit: Same as accumulator.

With these data type settings, the block operates in full-precision mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numeric results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in full-precision mode.

Product output — Product output data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt([],16,0)

Product output specifies the data type of the output of a product operation in the Correlation block.
For more information on the product output data type, see “Multiplication Data Types” and the
'Fixed-Point Conversion' section in “Extended Capabilities” on page 2-0 .

• Inherit: Inherit via internal rule — The block inherits the product output data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

• Inherit: Same as input — The block specifies the product output data type to be the same as
the input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

 Correlation

2-281

Alternatively, you can set the Product output data type by using the Data Type Assistant. To use

the assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Accumulator — Accumulator data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | fixdt([],16,0)

Accumulator specifies the data type of output of an accumulation operation in the Correlation block.
For illustrations on how to use the accumulator data type in this block, see the 'Fixed-Point
Conversion' section in “Extended Capabilities” on page 2-0 .

• Inherit: Inherit via internal rule — The block inherits the accumulator data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

• Inherit: Same as input — The block specifies the accumulator data type to be the same as
the input data type.

• Inherit: Same as product output — The block specifies the accumulator data type to be
the same as the product output data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Output — Output data type
Inherit: Same as accumulator (default) | Inherit: Same as input | Inherit: Same as
product output | fixdt([],16,0)

Output specifies the data type of the output of the Correlation block. For more information on the
output data type, see the 'Fixed-Point Conversion' section in “Extended Capabilities” on page 2-0 .

• Inherit: Same as input — The block specifies the output data type to be the same as the
input data type.

• Inherit: Same as product output — The block specifies the output data type to be the
same as the product output data type.

• Inherit: Same as accumulator — The block specifies the output data type to be the same as
the accumulator data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Output data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

2 Blocks

2-282

Output Minimum — Minimum value block can output
[] (default) | scalar

Specify the minimum value the block can output. Simulink software uses this minimum value to
perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Output Maximum — Maximum value the block can output
[] (default) | scalar

Specify the maximum value the block can output. Simulink software uses this maximum value to
perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Cross-Correlation

Cross-correlation is the measure of similarity of two discrete-time sequences as a function of the lag
of one relative to the other.

For two length-N deterministic inputs or realizations of jointly wide-sense stationary (WSS) random
processes, x and y, the cross-correlation is computed using the following relationship:

rxy(h) =
∑

n = 0

N − h− 1
x(n + h)y*(n) 0 ≤ h ≤ N − 1

ryx* (h) −(N − 1) ≤ h ≤ 0

 Correlation

2-283

where h is the lag and * denotes the complex conjugate. If the inputs are realizations of jointly WSS
stationary random processes, rxy(h) is an unnormalized estimate of the theoretical cross-correlation:

ρxy(h) = E x(n + h)y*(n)

where E{ } is the expectation operator.

Algorithms
Time-Domain Computation

When you set the computation domain to time, the algorithm computes the cross-correlation of two
signals in the time domain. The input signals can be fixed-point signals in this domain.

Correlate Two 2-D Arrays

When the inputs are two 2-D arrays, the jth column of the output, yuv, has these elements:

yuv(i, j) = ∑
k = 0

max(Mu, Mv)− 1
uk, j* v(k + i), j 0 ≤ i < Mv

yuv(i, j) = yvu(− i, j)* −Mu < i < 0

where:

• * denotes the complex conjugate.
• u is an Mu-by-N input matrix.
• v is an Mv-by-N input matrix.
• yu,v is an (Mu + Mv – 1)-by-N matrix.

Inputs u and v are zero when indexed outside their valid ranges.

Correlate a Column Vector with a 2-D Array

When one input is a column vector and the other input is a 2-D array, the algorithm independently
cross-correlates the input vector with each column of the 2-D array. The jth column of the output, yu,v,
has these elements:

yuv(i, j) = ∑
k = 0

max(Mu, Mv)− 1
uk*v(k + i), j 0 ≤ i < Mv

yuv(i, j) = yvu(− i, j)* −Mu < i < 0

where:

• * denotes the complex conjugate.
• u is an Mu-by-1 column vector.
• v is an Mv-by-N matrix.
• yuv is an (Mu + Mv – 1)-by-N matrix.

Inputs u and v are zero when indexed outside their valid ranges.

2 Blocks

2-284

Correlate Two Column Vectors

When the inputs are two column vectors, the jth column of the output, yuv, has these elements:

yuv(i) = ∑
k = 0

max(Mu, Mv)− 1
uk*v(k + i) 0 ≤ i < Mv

yuv(i) = yvu(− i)* −Mu < i < 0

where:

• * denotes the complex conjugate.
• u is an Mu-by-1 column vector.
• v is an Mv-by-1 column vector.
• yuv is an (Mu + Mv – 1)-by-1 column vector.

Inputs u and v are zero when indexed outside their valid ranges.

Frequency-Domain Computation

When you set the computation domain to frequency, the algorithm computes the cross-correlation in
the frequency domain.

To compute the cross-correlation, the algorithm:

1 Takes the Fourier transform of both input signals, U and V.
2 Multiplies U and V*, where * denotes the complex conjugate.
3 Computes the inverse Fourier transform of the product.

In this domain, depending on the input length, the algorithm can require fewer computations.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The following diagram shows the data types the Correlation block uses for fixed-point signals (time
domain only).

 Correlation

2-285

You can set the product output, accumulator, and output data types on the Data Types tab of the
block.

When the input is real, the output of the multiplier is in the product output data type. When the input
is complex, the output of the multiplier is in the accumulator data type. For details on the complex
multiplication performed, see “Multiplication Data Types”.

Note When one or both of the inputs are signed fixed-point signals, all internal block data types are
signed fixed point. The internal block data types are unsigned fixed point only when both inputs are
unsigned fixed-point signals.

See Also
Blocks
Autocorrelation

Introduced before R2006a

2 Blocks

2-286

Counter
Count up or down through specified range of numbers
Library: DSP System Toolbox / Signal Management / Switches and

Counters

Description
The Counter block counts up or down through a specified range of numbers. The block enables the
Inc (increment) port when you set the Count direction parameter to Up. When you set the Count
direction parameter to Down, the block enables the Dec (decrement) port. If you set the Count
event parameter to Free running, the block disables the Inc or Dec port and counts at a constant
time interval. For all other settings of the Count event parameter, the block increments or
decrements the counter each time a trigger event occurs at the Inc or Dec input port. When a trigger
event occurs at the optional Rst port, the block resets the counter to its initial state.

The Counter block accepts single-channel inputs. For more information about scalar input operation,
vector input operation, and free-running operation, see “Algorithms” on page 2-292.

Ports
Input

Inc/Dec — Input signal to trigger count event
scalar | vector

Input signal used to determine when the block increments or decrements the counter, specified as a
real-valued scalar or vector. If the input to the Inc or Dec port is a vector, the block treats the vector
as a frame. Each time a triggering event occurs at the Inc or Dec input port, the block increments or
decrements the counter, respectively. You control the type of triggering event using the Count event
parameter.
Dependencies

The block enables the Inc (increment) port when you set the Count direction parameter to Up.

The block enables the Dec (decrement) port when you set the Count direction parameter to Down.

The block disables the Inc/Dec input port when you set the Count event parameter to Free
running. In free running mode, the block counts at a constant time interval.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Rst — Reset signal
scalar

Input signal used to determine when the block resets the counter, specified as a real-valued scalar.
The Rst port must have the same port sample time as the Inc or Dec input port. Each time a

 Counter

2-287

triggering event occurs at the Rst port, the block resets the counter to its initial value. For more
information about triggering events, see “Count event” on page 2-0 .
Dependencies

To enable this port, select the Reset input check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Max — Maximum counter size
scalar

Specify the maximum counter size as any unsigned integer that the Count data type can represent.
The counter values range from 0 to the value you specify as an input to the Max port.
Dependencies

To enable this port, set the Counter size parameter to Specify via input port.
Data Types: uint8 | uint16 | uint32

Output

Cnt — Current value of counter
scalar | vector

Current value of the counter, specified as a scalar or vector. When you set the Count event
parameter to Free running, the Cnt output is a M-by-1 vector containing the count value at each of
M consecutive sample times, where M is the value you specify for the Samples per output frame
parameter.
Dependencies

To enable this port, set the Output parameter to Count or Count and Hit.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Hit — Hit status
scalar | vector

Hit status of the integer values you specified in the Hit values parameter. When a value you specify
occurs in the count, the block outputs a 1 at the Hit port.

Note The block might output Boolean values from the Hit output port depending on the setting of
the Hit data type parameter.

Dependencies

To enable this port, set the Output parameter to Hit or Count and Hit.
Data Types: Boolean | Logical

Parameters
Count direction — Count up or down
Up (default) | Down

2 Blocks

2-288

Specify whether to count Up or Down. The port label on the block icon changes to Inc (increment) or
Dec (decrement) based on the value of this parameter.

• When you set the Count direction parameter to Up and the counter reaches the upper limit of
the counter range, the block restarts the counter at zero the next time a trigger event occurs at
the Inc port.

• When you set the Count direction parameter to Down and the counter reaches zero, the block
restarts the counter at the upper limit of the counter range the next time a trigger event occurs at
the Dec port.

This parameter is tunable (Simulink) in Simulink normal mode.

Tunable: Yes

Count event — Type of trigger event
Rising edge (default) | Falling edge | Either edge | Non-zero sample | Free running

Specify the type of event that triggers the block to increment, decrement, or reset the counter when
received at the Inc/Dec or Rst ports. You can select:

• Rising edge — Triggers a count or reset operation when the input to the Inc/Dec or Rst port
behaves in one of the following ways:

• Rises from a negative value to a positive value or zero.
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero (see the following figure).

• Falling edge — Triggers a count or reset operation when the input to the Inc/Dec or Rst port
behaves in one of the following ways:

• Falls from a positive value to a negative value or zero.
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero (see the following figure).

 Counter

2-289

• Either edge — Triggers a count or reset operation when the input to the Inc/Dec or Rst port is
a Rising edge or Falling edge.

• Non-zero sample — Triggers a count or reset operation at each sample time when the input to
the Inc/Dec or Rst port is not zero.

• Free running — Disables the Inc/Dec port and enables the Samples per output frame and
Sample time block parameters. The block increments or decrements the counter at a constant
interval, Ts, which you specify using the Sample time parameter. For more information, see
“Free-Running Operation” on page 2-293. In this mode, the block resets the counter whenever it
receives a non-zero sample at the Rst port.

Dependencies

When you set this parameter to Free running, the block disables the Inc/Dec port and counts at
the constant interval specified by the Sample time parameter.

Counter size — Range of integer values to count through
8 bits (default) | 16 bits | 32 bits | User defined | Specify via input port

Specify the range of integer values the block counts through. When the block counts through the
entire counter range, the next time a trigger event occurs at the Inc/Dec port, the block resets the
counter as follows:

• When you set the Count direction parameter to Up and the counter reaches the upper limit of
the counter range, the block restarts the counter at zero.

• When you set the Count direction parameter to Down and the counter reaches zero, the block
restarts the counter at the upper limit of the counter range.

You can set the Counter size parameter to one of the following options:

• 8 bits — Specifies a counter with a range of 0 to 255.
• 16 bits — Specifies a counter with a range of 0 to 65535.
• 32 bits — Specifies a counter with a range of 0 to 232–1.
• User defined — Enables the Maximum count parameter, which allows you to specify the

upper-count limit as any arbitrary unsigned integer that the Count data type can represent. The
counter values range from 0 to the value of the Maximum count parameter.

• Specify via input port — Enables the Max input port, which allows you to specify the
upper-count limit as any arbitrary unsigned integer that the Count data type can represent. The
counter values range from 0 to the value you specify as an input to the Max port.

2 Blocks

2-290

Maximum count — Maximum value of counter
255 (default) | positive integer

Specify the maximum value of the counter as any unsigned integer representable by the data type
you specify for the Counter data type parameter. Tunable (Simulink) in Simulink normal mode.

Tunable: Yes

Dependencies

To enable this parameter, set the Counter size to User defined.

Initial count — Initial value of counter
0 (default) | integer ≥ 0

Specify the initial value of the counter as any unsigned integer in the range defined by the Counter
size parameter. The block uses the initial value of the counter at the start of simulation and resets the
counter back to that initial value each time a trigger event occurs at the Rst port.

Tunable: Yes

Output — Output count value, hit value, or both
Count (default) | Hit | Count and Hit

Select the output ports to enable. You can choose to enable the Count, Hit, or Count and Hit
ports.

Hit values — Count values to flag
32 (default) | scalar | vector

Specify an integer or vector of integers whose occurrence in the count should be flagged by a 1 at the
(optional) Hit output port. This parameter appears only when you set the Output parameter to Hit
or Count and Hit.

Tunable: Yes

Reset input — Enable Rst input port
on (default) | off

Select this check box to enable the Rst input port. When you enable the Rst port, the block resets the
counter to its initial value each time a trigger event occurs at the Rst port. To specify the type of
event that triggers a reset of the counter, set the Count event parameter. When you clear the Reset
input check box, you cannot reset the counter during simulation.

Samples per output frame — Number of samples in each output vector
1 (default) | positive integer

Specify the number of samples, M, in each output vector as a positive integer.

Dependencies

To enable this parameter, set the Count event to Free running.

Sample time — Sample time in Free Running mode
1 (default) | -1 | scalar ≥ 0

 Counter

2-291

Specify the constant interval, Ts, at which the block increments or decrements the counter when in
free-running mode. You can specify a scalar that is greater than or equal to zero, or specify a value of
-1 to inherit the sample time.

For example, to have the block increment the counter every 5 seconds, set the Count direction
parameter to Up, the Count event parameter to Free running, and specify a value of 5 for the
Sample time parameter. In free running mode, the sample time of the output ports is always MTs.
Dependencies

To enable this parameter, set the Count event to Free running.

Count data type — Data type of Cnt port
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32

Specify the data type of the output at the Cnt port.
Dependencies

To enable this parameter, set the Output parameter to Count or Count and Hit.

Hit data type — Data type of Hit port
Logical (default) | Boolean

Specify the data type of the output at the Hit port.
Dependencies

To enable this parameter, set the Output parameter to Hit or set it to Count and Hit with the
Count data type parameter set to Double.

Block Characteristics
Data Types Boolean | double | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
Scalar Input Operation

When you set the Count direction parameter to Up, a trigger event at the Inc (increment) input port
causes the block to increase the counter by one. Assuming no reset events occur, the block continues
increasing the counter value when triggered, until the counter value reaches the upper-count limit.
The next time a trigger event occurs at the Inc port, the block restarts the counter at 0 and resumes
increasing the counter by one for each subsequent trigger event at the Inc port.

When you set the Count direction parameter to Down, a trigger event at the Dec (decrement) input
port causes the block to decrease the counter by one. Assuming no reset events occur, the block

2 Blocks

2-292

continues decreasing the counter value when triggered until the counter value reaches zero. The next
time a trigger event occurs at the Dec port, the block restarts the counter at the upper-count limit
and resumes decreasing the counter by one for each subsequent trigger event at the Dec port.

Between triggering events, the block holds the output at its most recent value. The block resets the
counter to its initial state when the trigger event specified by the Count event parameter occurs at
the optional Rst input port. When the Inc/Dec and Rst ports receive trigger events simultaneously,
the block first resets the counter and then increments or decrements the counter appropriately. If you
do not need to reset the counter during simulation, you can disable the Rst port by clearing the
Reset input check box.

The Output parameter allows you to specify which values the block outputs:

• Count enables a Cnt output port on the block. The Cnt port provides the current value of the
counter as a scalar value. The Cnt output port has the same port sample time as the Inc/Dec
input port.

• Hit enables a Hit output port on the block. The Hit port produces zeros while the value of the
counter does not equal any of the integers you specify for the Hit values parameter. You can
specify an integer or a vector of integers for the Hit values parameter. When the counter value
does equal one or more of the values you specify for the Hit values parameter, the block outputs
a value of 1 at the Hit output port. The Hit output port has the same port sample time as the
Inc/Dec input port.

• Count and Hit enables both the Cnt and Hit output ports.

Vector Input Operation

The block treats vector inputs to the Inc/Dec port as a frame. Vector operation is the same as scalar
operation, except that the block increments or decrements the counter by the total number of trigger
events contained in the Inc/Dec input vector. Thus, the counter may change multiple times during
the processing of a single Inc/Dec input vector.

When the block has a Hit port, the block outputs a value of 1 if any of the Hit values match any of
the counter values during the processing of the Inc/Dec input vector.

When a trigger event splits across two consecutive vectors, that event is counted in the vector that
contains the conclusion of the event. When the Rst port receives a trigger event at the same time as
the Inc/Dec port, the block first resets the counter. The block then increments or decrements the
counter by the number of trigger events contained in the Inc/Dec input vector.

When the input to the Inc/Dec port is a length N vector, the port sample time of the Inc/Dec input
port is equal to the frame period of the input, or N times the sample time of the input signal. The port
sample time of the Cnt and Hit output ports equals that of the Inc/Dec input port.

Free-Running Operation

The block operates in free-running mode when you select Free running for the Count event
parameter.

The Inc/Dec input port is disabled in this mode, and the block simply increments or decrements the
counter at the constant interval, Ts, which you specify using the Sample time parameter.

In this mode, the Rst port always behaves as if the Count event parameter were set to Non-zero
sample. Thus, the block triggers a reset event at each sample time that the Rst input is not zero.

 Counter

2-293

In this mode, the Cnt output is an M-by-1 vector containing the count value at each of M consecutive
sample times, where M is the value you specify for the Samples per output frame parameter. The
Hit output is an M-by-1 vector containing the hit status (0 or 1) at each of those M consecutive
sample times. Both the Cnt and Hit output ports have a port sample time of MTs.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Edge Detector | N-Sample Enable | N-Sample Switch

Introduced before R2006a

2 Blocks

2-294

Covariance AR Estimator
Compute estimate of autoregressive (AR) model parameters using covariance method

Library
Estimation / Parametric Estimation

dspparest3

Description
The Covariance AR Estimator block uses the covariance method to fit an autoregressive (AR) model to
the input data. This method minimizes the forward prediction error in the least squares sense.

The input must be a column vector or an unoriented vector, which is assumed to be the output of an
AR system driven by white noise. This input represents a frame of consecutive time samples from a
single-channel signal. The block computes the normalized estimate of the AR system parameters,
A(z), independently for each successive input frame.

H(z) = G
A(z) = G

1 + a(2)z−1 + … + a(p + 1)z−p

The order, p, of the all-pole model is specified by the Estimation order parameter. To guarantee a
valid output, you must set the Estimation order parameter to be less than or equal to half the input
vector length.

The top output, A, is a column vector of length p+1 with the same frame status as the input, and
contains the normalized estimate of the AR model coefficients in descending powers of z.

[1 a(2) ... a(p+1)]

The scalar gain, G, is provided at the bottom output (G).

See the Burg AR Estimator block reference page for a comparison of the Burg AR Estimator,
Covariance AR Estimator, Modified Covariance AR Estimator, and Yule-Walker AR Estimator blocks.

Parameters
Estimation order

The order of the AR model, p. To guarantee a nonsingular output, you must set p to be less than
or equal to half the input length. Otherwise, the output might be singular.

 Covariance AR Estimator

2-295

References
Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall,
1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall,
1987.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
A • Double-precision floating point

• Single-precision floating point
G • Double-precision floating point

• Single-precision floating point

See Also
Burg AR Estimator DSP System Toolbox
Covariance Method DSP System Toolbox
Modified Covariance AR Estimator DSP System Toolbox
Yule-Walker AR Estimator DSP System Toolbox
arcov Signal Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-296

Covariance Method
Power spectral density estimate using covariance method

Library
Estimation / Power Spectrum Estimation

dspspect3

Description
The Covariance Method block estimates the power spectral density (PSD) of the input using the
covariance method. This method fits an autoregressive (AR) model to the signal by minimizing the
forward prediction error in the least squares sense. The Estimation order parameter specifies the
order of the all-pole model. The block computes the spectrum from the FFT of the estimated AR
model parameters. To guarantee a valid output, the Estimation order parameter must be less than
or equal to half the input vector length.

The input must be a column vector or an unoriented vector. It represents a frame of consecutive time
samples from a single-channel signal. The block outputs a column vector containing the estimate of
the power spectral density of the signal at Nfft equally spaced frequency points. The frequency points
are in the range [0,Fs), where Fs is the sampling frequency of the signal.

Selecting Inherit FFT length from estimation order, specifies that Nfft is one greater than the
estimation order. Clearing the Inherit FFT length from estimation order parameter allows you to
use the FFT length parameter to specify Nfft as a power of 2. The block zero-pads or wraps the input
to Nfft before computing the FFT.

When you select the Inherit sample time from input check box, the block computes the frequency
data from the sample period of the input signal. For the block to produce valid output, the following
conditions must hold:

• The input to the block is the original signal, with no samples added or deleted (by insertion of
zeros, for example).

• The sample period of the time-domain signal in the simulation equals the sample period of the
original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then
specify a sample time using the Sample time of original time series parameter.

See the Burg Method block reference for a comparison of the Burg Method, Covariance Method,
Modified Covariance Method, and Yule-Walker Method blocks.

 Covariance Method

2-297

Parameters
Estimation order

The order of the AR model. To guarantee a nonsingular output, the value of this parameter must
be less than or equal to half the input length.

Inherit FFT length from estimation order
When selected, this option specifies that the FFT length is one greater than the estimation order.

FFT length
Enter the number of data points on which to perform the FFT, Nfft. When Nfft is larger than the
input frame size, the block zero-pads each frame as needed. When Nfft is smaller than the input
frame size, the block wraps each frame as needed. This parameter becomes visible only when you
clear the Inherit FFT length from estimation order check box.

Inherit sample time from input
When you select the Inherit sample time from input check box, the block computes the
frequency data from the sample period of the input signal. For the block to produce valid output,
the following conditions must hold:

• The input to the block is the original signal, with no samples added or deleted (by insertion of
zeros, for example).

• The sample period of the time-domain signal in the simulation equals the sample period of the
original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can
then specify a sample time using the Sample time of original time series parameter.

Sample time of original time series
Specify the sample time of the original time-domain signal. This parameter becomes visible only
when you clear the Inherit sample time from input check box.

References
Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall,
1988.

Marple, S. L. Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall,
1987.

Orfanidis, S. J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1995.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

2 Blocks

2-298

See Also
Burg Method DSP System Toolbox
Covariance AR Estimator DSP System Toolbox
Modified Covariance Method DSP System Toolbox
Short-Time FFT DSP System Toolbox
Yule-Walker Method DSP System Toolbox

See “Spectral Analysis” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Covariance Method

2-299

Create Diagonal Matrix
Create square diagonal matrix from diagonal elements
Library: DSP System Toolbox / Math Functions / Matrices and Linear

Algebra / Matrix Operations

Description
The Create Diagonal Matrix block populates the diagonal of the M-by-M matrix output with the
elements contained in the length-M vector input D. The elements off the diagonal are zero.

A = diag(D) % Equivalent MATLAB code

Ports
Input

Port_1 — Input signal
vector

Input to convert into a diagonal matrix, specified as an M-element vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point
Complex Number Support: Yes

Output

Port_1 — Output signal
matrix

Output specified as an M-by-M matrix, where M is the length of the input vector.

The output is equivalent to:

A = diag(D) % Equivalent MATLAB code

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point
Complex Number Support: Yes

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no

2 Blocks

2-300

Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Extract Diagonal

Functions
diag

Introduced before R2006a

 Create Diagonal Matrix

2-301

Cross-Spectrum Estimator
Estimate cross-power spectrum density

Library
Estimation / Power Spectrum Estimation

dspspect3

Description
The Cross-Spectrum Estimator block outputs the frequency cross-power spectrum density of two real
or complex input signals, x and y, via Welch’s method of averaged modified periodograms. The input
signals must be of the same size and data type.

The Cross-Spectrum Estimator block computes the current power spectrum estimate by averaging
the last N power spectrum estimates, where N is the number of spectral averages defined in Number
of spectral averages. The block buffers the input data into overlapping segments. You can set the
length of the data segment and the amount of data overlap through the parameters set in the block
dialog box. The block computes the power spectrum based on the parameters set in the block dialog
box.

Each column of the input signal is treated as a separate channel. If the input is a two-dimensional
signal, the first dimension represents the channel length (or frame size) and the second dimension
represents the number of channels. If the input is a one-dimensional signal, then it is interpreted as a
single channel.

Parameters
Window length source

Source of the window length value. You can set this parameter to:

• Same as input frame length (default) — Window length is set to the frame size of the
input.

• Specify on dialog — Window length is the value specified in Window length.

This parameter is nontunable.
Window length

Length of the window, in samples, used to compute the spectrum estimate, specified as a positive
integer scalar greater than 2. This parameter applies when you set Window length source to
Specify on dialog. The default is 1024. This parameter is nontunable.

2 Blocks

2-302

Window Overlap (%)
Percentage of overlap between successive data windows, specified as a scalar in the range [0,
100). The default is 0. This parameter is nontunable.

Averaging method
Specify the averaging method as Running or Exponential. In the running averaging method,
the block computes an equally weighted average of a specified number of spectrum estimates
defined by the Number of spectral averages parameter. In the exponential method, the block
computes the average over samples weighted by an exponentially decaying forgetting factor.

Number of spectral averages
Number of spectral averages, specified as a positive integer scalar. The default is 1. The spectrum
estimator computes the current power spectrum estimate by averaging the last N power
spectrum estimates, where N is the number of spectral averages defined in Number of spectral
averages. This parameter is nontunable.

This parameter applies when Averaging method is set to Running.
Specify forgetting factor from input port

Select this check box to specify the forgetting factor from an input port. When you do not select
this check box, the forgetting factor is specified through the Forgetting factor parameter.

This parameter applies when Averaging method is set to Exponential.
Forgetting factor

Specify the exponential weighting forgetting factor as a scalar value greater than zero and
smaller than or equal to one. The default is 0.9.

This parameter applies when you set Averaging method to Exponential and clear the Specify
forgetting factor from input port parameter.

FFT length source
Source of the FFT length value. You can set this parameter to:

• Auto (default) — FFT length is set to the frame size of the input.
• Property — FFT length is the value specified in FFT length.

This parameter is nontunable.
FFT length

Length of the FFT used to compute the spectrum estimates, specified as a positive integer scalar.
This parameter applies when you set FFT length source to Property. The default is 1024. This
parameter is nontunable.

Window function
Window function for the cross-spectrum estimator, specified as one of Chebyshev | Flat Top |
Hamming | Hann | Kaiser | Rectangular. The default is Hann. This parameter is nontunable.

Sidelobe attenuation of window (dB)
Side lobe attenuation of the window, specified as real positive scalar. This parameter applies
when you set Window function to Chebyshev or Kaiser. The default is 60. This parameter is
nontunable.

Frequency range
Frequency range of the cross-spectrum estimator. You can set this parameter to:

 Cross-Spectrum Estimator

2-303

• centered (default) — The cross-spectrum estimator computes the centered two-sided
spectrum of complex or real input signals, x and y. The length of the cross-spectrum estimate
is equal to the FFT length. The spectrum estimate is computed over the frequency range [-
SampleRate/2 SampleRate/2] when the FFT length is even and [-SampleRate/2
SampleRate/2] when FFT length is odd.

• onesided — The cross-spectrum estimator computes the one-sided spectrum of real input
signals, x and y. When the FFT length, NFFT is even, length of the cross-spectrum estimate is
(NFFT/ 2) + 1, and is computed over the frequency range [0 SampleRate/2]. When the FFT
length, NFFT is odd, length of the cross-spectrum estimate is (NFFT + 1)/ 2, and is computed
over the frequency range [0 SampleRate/2].

• twosided — The cross-spectrum estimator computes the two-sided spectrum of complex or
real input signals, x and y. The length of the cross-spectrum estimate is equal to the FFT
length. The spectrum estimate is computed over the frequency range [0 SampleRate],
where SampleRate is the sample rate of the input signal.

This parameter is nontunable.
Inherit sample rate from input

When you select this check box, the block’s sample rate is computed as N/Ts, where N is the
frame size of the input signal, and Ts is the sample time of the input signal. When you clear this
check box, the block sample rate is the value specified in Sample rate (Hz). By default, this
check box is selected.

Sample rate (Hz)
Sample rate of the input signal, specified as a positive scalar value. The default is 44100. This
parameter applies when you clear the Inherit sample rate from input check box. This
parameter is nontunable.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

2 Blocks

2-304

Algorithms
Welch's Method of Averaged Modified Periodograms

Give two signal inputs, x and y:

1 Multiply the inputs by the window and scale the result by the window power.
2 Compute FFT of the signals, X and Y, and multiply X with conj(Y) using Z = X.*conj(Y).
3 Compute the current cross power spectrum estimate by taking the moving average of the last N

number of Z's and scaling the answer by the sample rate. For details on the moving average
methods, see “Averaging Method” on page 4-1321.

For further information on the algorithms, refer to the “Algorithms” on page 2-1245 section in
Spectrum Analyzer.

References
[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling. Hoboken, NJ: John Wiley &

Sons, 1996.

[2] Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ:
Prentice Hall, 1999.

[3] Stoica, Petre, and Randolph L. Moses. Spectral Analysis of Signals. Englewood Cliffs, NJ: Prentice
Hall, 2005.

[4] Welch, P. D. ''The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method
Based on Time Averaging Over Short Modified Periodograms''. IEEE Transactions on Audio
and Electroacoustics. Vol. 15, No. 2, June 1967, pp. 70–73.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
dsp.CrossSpectrumEstimator

Blocks
Discrete Transfer Function Estimator | Periodogram | Spectrum Analyzer

Introduced in R2015a

 Cross-Spectrum Estimator

2-305

Cumulative Product
Cumulative product of channel, column, or row elements

Library
Math Functions / Math Operations

dspmathops

Description
The Cumulative Product block computes the cumulative product along the specified dimension of the
input or across time (running product).

The input can be a vector or matrix.

Input and Output Characteristics
Valid Input

The Cumulative Product block accepts vector or matrix inputs containing real or complex values.

Valid Reset Signal

The optional reset port, Rst, accepts scalar values, which can be any built-in Simulink data type
including boolean. The rate of the input to the Rst port must be the same or slower than that of the
input data signal. The sample time of the input to the Rst port must be a positive integer multiple of
the input sample time.

Computing the Running Product Along Channels of the Input

When you set the Multiply input along parameter to Channels (running product), the block
computes the cumulative product of the elements in each input channel. The running product of the
current input takes into account the running product of all previous inputs. In this mode, you must
also specify a value for the Input processing parameter. When you set the Input processing
parameter to Columns as channels (frame based), the block computes the running product
along each column of the current input. When you set the Input processing parameter to Elements
as channels (sample based), the block computes a running product for each element of the
input across time. See the following sections for more information:

• “Computing the Running Product for Each Column of the Input” on page 2-307
• “Computing the Running Product for Each Element of the Input” on page 2-307
• “Resetting the Running Product” on page 2-308

2 Blocks

2-306

Computing the Running Product for Each Column of the Input

When you set the Input processing parameter to Columns as channels (frame based), the
block treats each input column as an independent channel. As the following figure and equation
illustrate, the output has the following characteristics:

• The first row of the first output is the same as the first row of the first input.
• The first row of each subsequent output is the element-wise product of the first row of the current

input (time t), and the last row of the previous output (time t - Tf, where Tf is the frame period).
• The output has the same size, dimension, data type, and complexity as the input.

Given an M-by-N matrix input, u, the output, y, is an M-by-N matrix whose first row has elements

y1, j t = u1, j t ⋅ yM, j t − Tf

Computing the Running Product for Each Element of the Input

When you set the Input processing parameter to Elements as channels (sample based), the
block treats each element of the input matrix as an independent channel. As the following figure and
equation illustrate, the output has the following characteristics:

• The first output is the same as the first input.
• Each subsequent output is the element-wise product of the current input (time t) and the previous

output (time t - Ts, where Ts is the sample period).
• The output has the same size, dimension, data type, and complexity as the input.

Given an M-by-N matrix input, u, the output, y, is an M-by-N matrix with the elements

yi, j(t) = ui, j(t) ⋅ yi, j(t − Ts)
1 ≤ i ≤ M
1 ≤ j ≤ N

For convenience, the block treats length-M unoriented vector inputs as M-by-1 column vectors when
multiplying along channels. In such cases, the output is a length-M unoriented vector.

 Cumulative Product

2-307

Resetting the Running Product

When you are computing the running product, you can configure the block to reset the running
product whenever it detects a reset event at the optional Rst port. The rate of the input to the Rst
port must be the same or slower than that of the input data signal. The sample time of the input to
the Rst port must be a positive integer multiple of the input sample time. The input to the Rst port
can be of the Boolean data type.

If a reset event occurs while the block is performing sample-based processing, the block initializes
the current output to the values of the current input. If a reset event occurs while the block is
performing frame-based processing, the block initializes the first row of the current output to the
values in the first row of the current input.

The Reset port parameter specifies the reset event, which can be one of the following:

• None disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero (see the following figure)

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

2 Blocks

2-308

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero (see the following figure)

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time that the Rst input is not
zero

Note When you run simulations in Simulink MultiTasking mode, reset signals have a one-sample
latency. When the block detects a reset event, a one-sample delay occurs at the reset port rate before
the block applies the reset. For more information on latency and the Simulink tasking modes, see
“Excess Algorithmic Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation”
(Simulink Coder).

Multiplying Along Columns

When you set the Multiply input along parameter to Columns, the block computes the cumulative
product of each column of the input. In this mode, the current cumulative product is independent of
the cumulative products of previous inputs.

y = cumprod(u) % Equivalent MATLAB code

The output has the same size, dimension, data type, and complexity as the input. The mth output row
is the element-wise product of the first m input rows.

Given an M-by-N input, u, the output, y, is an M-by-N matrix whose jth column has elements

yi, j = ∏
k = 1

i
uk, j 1 ≤ i ≤ M

When multiplying along columns, the block treats length-M unoriented vector inputs as M-by-1
column vectors.

 Cumulative Product

2-309

Multiplying Along Rows

When you set the Multiply input along parameter to Rows, the block computes the cumulative
product of the row elements. In this mode, the current cumulative product is independent of the
cumulative products of previous inputs.

y = cumprod(u,2) % Equivalent MATLAB code

The output has the same size, dimension, and data type as the input. The nth output column is the
element-wise product of the first n input columns.

Given an M-by-N matrix input, u, the output, y, is an M-by-N matrix whose ith row has elements

yi, j = ∏
k = 1

j
ui, k 1 ≤ j ≤ N

When you multiply along rows, the block treats length-N unoriented vector inputs as 1-by-N row
vectors.

Fixed-Point Data Types

The following diagram shows the data types used within the Cumulative Product block for fixed-point
signals.

2 Blocks

2-310

The output of the multiplier is in the product output data type when at least one of the inputs to the
multiplier is real. When both of the inputs to the multiplier are complex, the result of the
multiplication is in the accumulator data type. For details on the complex multiplication performed,
see “Multiplication Data Types”. You can set the accumulator, product output, intermediate product,
and output data types in the block dialog as discussed in “Parameters” on page 2-311.

Parameters
Main Tab

Multiply input along
Specify the dimension along which to compute the cumulative product. You can choose to
multiply along Channels (running product), Columns, or Rows. For more information, see
the following sections:

• “Computing the Running Product Along Channels of the Input” on page 2-306
• “Multiplying Along Columns” on page 2-309
• “Multiplying Along Rows” on page 2-310

Input processing
Specify how the block should process the input when computing the running product along the
channels of the input. You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

This parameter is available only when you set the Multiply input along parameter to Channels
(running product).

Reset port
Determines the reset event that causes the block to reset the product along channels. The rate of
the input to the Rst port must be the same or slower than that of the input data signal. The
sample time of the input to the Rst port must be a positive integer multiple of the input sample
time. This parameter appears only when you set the Multiply input along parameter to
Channels (running product). For more information, see “Resetting the Running Product” on
page 2-308.

Data Types Tab

 Cumulative Product

2-311

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.
Saturate on integer overflow

When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Intermediate product
Specify the intermediate product data type. As shown in “Fixed-Point Data Types” on page 2-310,
the output of the multiplier is cast to the intermediate product data type before the next element
of the input is multiplied into it. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 2-310 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

2 Blocks

2-312

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-310 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same as input
• A rule that inherits a data type, for example, Inherit: Same as product output
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-310 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• A rule that inherits a data type, for example, Inherit: Same as product output
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

If both inputs are unsigned, all data types including the output data type is unsigned. If one of the
inputs is signed, internal and output data types are signed.

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

 Cumulative Product

2-313

Supported Data Types
Input and Output
Ports

Supported Data Types

Data input port, In • Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Reset input port,
Rst

All built-in Simulink data types:

• Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output port • Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
cumprod

Blocks
Cumulative Sum | Matrix Product

Introduced before R2006a

2 Blocks

2-314

Cumulative Sum
Cumulative sum of channel, column, or row elements
Library: DSP System Toolbox / Math Functions / Math Operations

Description
The Cumulative Sum block computes the cumulative sum along the specified dimension of the input
or across time (running sum).

Ports
Input

In — Input signal
vector | matrix

Input, specified as a vector or as matrix inputs containing real or complex values.

This port is unnamed until you select a non-None value for the Reset port parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Rst — Reset port
scalar

The optional reset port, Rst, accepts scalar values, which can be any built-in Simulink data type
including boolean. The rate of the input to the Rst port must be the same or slower than that of the
input data signal. The sample time of the input to the Rst port must be a positive integer multiple of
the input sample time.

This port is unnamed until you select a non-None value for the Reset port parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

Output

Port_1 — Output signal
vector | matrix

Cumulative sum of input, specified as a vector or a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

 Cumulative Sum

2-315

Parameters
Main

Sum input along — Dimension to sum along
Channels (running sum) (default) | Columns | Rows

Specify the dimension along which to compute the cumulative summations. You can choose to sum
along Channels (running sum), Columns, or Rows. For more information, see these sections:

• “Computing the Running Sum Along Channels of the Input” on page 2-318
• “Summing Along Columns” on page 2-321
• “Summing Along Rows” on page 2-322

Input processing — Method to process the input
Columns as channels (frame based) (default) | Elements as channels (sample based)

Specify how the block processes the input when computing the running sum along the channels of
the input. You can set this parameter to one of these options:

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel.

Dependencies

This parameter is available only when you set the Sum input along parameter to Channels
(running sum).

Reset port — Reset type
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

Determines the reset event that causes the block to reset the sum along channels. The rate of the
input to the Rst port must be the same or slower than that of the input data signal. The sample time
of the input to the Rst port must be a positive integer multiple of the input sample time. For more
information, see “Resetting the Running Sum” on page 2-320.
Dependencies

This parameter is available only when you set the Sum input along parameter to Channels
(running sum).

Data Types

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings. All internal data types are floating
point.

Rounding mode — Rounding mode
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations as one of the following:

2 Blocks

2-316

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.

Saturate on integer overflow — Saturate for fixed-point operation
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Accumulator — Data type of accumulator
Inherit: Same as first input (default) | fixdt([],16,0)

Accumulator specifies the data type of the output of an accumulation operation in the Cumulative
Sum block. For illustrations on how to use the accumulator data type in this block, see the 'Fixed-
Point Conversion' section in “Extended Capabilities” on page 2-0 .

• Inherit: Same as input — The block specifies the accumulator data type to be the same as
the input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. Click the

Show data type assistant button .

For more information, see “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink
User's Guide (Simulink).

Output — Data type of output
Inherit: Same as accumulator (default) | Inherit: Same as input | fixdt([],16,0)

Output specifies the data type of the output of the Cumulative Sum block. For more information on
the output data type, see the 'Fixed-Point Conversion' section in “Extended Capabilities” on page 2-
0 .

• Inherit: Same as input — The block specifies the output data type to be the same as the
input data type.

• Inherit: Same as accumulator — The block specifies the output data type to be the same as
the accumulator data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Output data type by using the Data Type Assistant. Click the Show

data type assistant button .

 Cumulative Sum

2-317

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Output Minimum — Minimum value the block can output
[] (default) | scalar

Specify the minimum value the block can output. Simulink software uses this minimum value to
perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Output Maximum — Maximum value block can output
[] (default) | scalar

Specify the maximum value the block can output. Simulink software uses this maximum value to
perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Computing the Running Sum Along Channels of the Input

When you set the Sum input along parameter to Channels (running sum), the block computes
the cumulative sum of the elements in each input channel. The running sum of the current input
takes into account the running sum of all previous inputs. In this mode, you must also specify a value
for the Input processing parameter.

When you set the Input processing parameter to:

• Columns as channels (frame based) –– The block computes the running sum along each
column of the current input.

2 Blocks

2-318

• Elements as channels (sample based) –– The block computes a running sum for each
element of the input across time.

Computing the Running Sum for Each Column of the Input

When you set the Input processing parameter to Columns as channels (frame based), the
block treats each input column as an independent channel. As the following figure and equation
illustrate, the output has the following characteristics:

• The first row of the first output is the same as the first row of the first input.
• The first row of each subsequent output is the sum of the first row of the current input (time t),

and the last row of the previous output (time t - Tf, where Tf is the frame period).
• The output has the same size, dimension, data type, and complexity as the input.

Given an M-by-N matrix input, u, the output, y, is an M-by-N matrix whose first row has elements

y1, j(t) = u1, j (t) + yM, j(t − Tf)

Computing the Running Sum for Each Element of the Input

When you set the Input processing parameter to Elements as channels (sample based), the
block treats each element of the input matrix as an independent channel. As the following figure and
equation illustrate, the output has these characteristics:

• The first output is the same as the first input.
• Each subsequent output is the sum of the current input (time t) and the previous output (time t -

Ts, where Ts is the sample period).
• The output has the same size, dimension, data type, and complexity as the input.

Given an M-by-N matrix input, u, the output, y, is an M-by-N matrix with the elements

yi, j(t) = ui, j(t) + yi, j(t − Ts)
1 ≤ i ≤ M
1 ≤ j ≤ N

 Cumulative Sum

2-319

Resetting the Running Sum

When you are computing the running sum, you can configure the block to reset the running sum
whenever it detects a reset event at the optional Rst port. The rate of the input to the Rst port must
be the same or slower than that of the input data signal. The sample time of the input to the Rst port
must be a positive integer multiple of the input sample time. The reset sample time must be a positive
integer multiple of the input sample time. The input to the Rst port can be boolean.

If a reset event occurs while the block is performing sample-based processing, the block initializes
the current output to the values of the current input. If a reset event occurs while the block is
performing frame-based processing, the block initializes the first row of the current output to the
values in the first row of the current input.

The Reset port parameter specifies the reset event, which can be one of the following:

• None disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

2 Blocks

2-320

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge

• Non-zero sample — Triggers a reset operation at each sample time that the Rst input is not
zero

Note When you run simulations in the Simulink MultiTasking mode, reset signals have a one-
sample latency. When the block detects a reset event, a one-sample delay occurs at the reset port rate
before the block applies the reset. For more information on latency and the Simulink tasking modes,
see “Excess Algorithmic Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation”
(Simulink Coder).

Summing Along Columns

When you set the Sum input along parameter to Columns, the block computes the cumulative sum
of each column of the input. In this mode, the current cumulative sum is independent of the
cumulative sums of previous inputs.

y = cumsum(u) % Equivalent MATLAB code

The output has the same size, dimension, data type, and complexity as the input. The mth output row
is the sum of the first m input rows.

Given an M-by-N input, u, the output, y, is an M-by-N matrix whose jth column has elements

yi, j = ∑
k = 1

j
uk, j 1 ≤ i ≤ M

The block treats length-M unoriented vector inputs as M-by-1 column vectors when summing along
columns.

 Cumulative Sum

2-321

Summing Along Rows

When you set the Sum input along parameter to Rows, the block computes the cumulative sum of
the row elements. In this mode, the current cumulative sum is independent of the cumulative sums of
previous inputs.

y = cumsum(u,2) % Equivalent MATLAB code

The output has the same size, dimension, and data type as the input. The nth output column is the
sum of the first n input columns.

Given an M-by-N input, u, the output, y, is an M-by-N matrix whose ith row has elements

yi, j = ∑
k = 1

j
ui, k 1 ≤ j ≤ N

When you sum along rows, the block treats length-N unoriented vector inputs as 1-by-N row vectors.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The following diagram shows the data types used within the Cumulative Sum block for fixed-point
signals.

2 Blocks

2-322

You can set the accumulator and output data types in the block dialog box. See “Parameters” on page
2-316.

See Also
Functions
cumsum

Blocks
Cumulative Product | Difference | Matrix Sum

Introduced before R2006a

 Cumulative Sum

2-323

Dataflow Subsystem
Subsystem whose execution domain is set to Dataflow
Library: DSP System Toolbox / Dataflow

Description
The Dataflow Subsystem block is a Subsystem block preconfigured with the execution domain set to
dataflow. A Dataflow Subsystem uses synchronous dataflow as a model of computation, which is data-
driven and statically scheduled.

Dataflow Subsystems help to

• Improve simulation throughput with multithreaded execution

Dataflow domains leverage the multicore CPU architecture of the host computer and can improve
simulation speed significantly. It automatically partitions your model and simulates the system
using multiple threads. By adding latency to your system, you can further increase concurrency
and improve simulation throughput of your model.

• Automatically infer signal sizes for frame-based multirate models

See “Dataflow Domain” for more information.

Ports
Input

In — Signal input to dataflow subsystem
scalar | vector | matrix

Placing an Inport block in a subsystem adds an external input port to the block. The port label on the
subsystem block is the name of the Inport block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

Output

Out — Signal output from dataflow subsystem
scalar | vector | matrix

Placing an Outport block in a subsystem adds an output port from the block. The port label on the
subsystem block is the name of the Outport block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated | bus

2 Blocks

2-324

Parameters
The Dataflow Subsystem block uses the same parameters as the Subsystem block. For parameter
descriptions and programmatic use information, see Subsystem, Atomic Subsystem, Nonvirtual
Subsystem, CodeReuse Subsystem.

Note Dataflow subsystems cannot be atomic subsystems.

Latency — Latency of dataflow subsystem
0 (default) | scalar integer

To increase the throughput of a system, it can be advantageous to increase the latency of the system.
Specify the Latency value in the Execution tab of the Property Inspector. The Dataflow Simulation
Assistant can recommend a latency value for simulation. Click the Dataflow assistant button to open
the Dataflow Simulation Assistant. For more information, see “Latency”

Programmatic Use
Block Parameter: Latency
Type: character vector
Values: scalar integer
Default: '0'

Automatic frame size calculation — Automatically calculate frame sizes and insert
buffers
0 (default) | 1

When the Automatic frame size calculation parameter is enabled, dataflow domains automatically
calculate frame sizes and insert buffers into your model, avoiding signal size propagation errors in
multirate signal processing systems. For more information, see “Automatic Frame Size Calculation”.

Programmatic Use
Block Parameter: AutoFrameSizeCalculation
Type: character vector
Values: 'off'|'on'
Default: 'off'

Block Characteristics
Data Types Booleana | busa | doublea | enumerateda | fixed pointa | halfa |

integera | singlea | stringa

Direct Feedthrough no
Multidimensional
Signals

limiteda

Variable-Size Signals limiteda

Zero-Crossing
Detection

no

a. Actual data type or capability support depends on block implementation.

 Dataflow Subsystem

2-325

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Dataflow subsystems can generate single-core or multi-core code. For more information on setting up
your dataflow subsystem for code generation, see “Multicore Simulation and Code Generation of
Dataflow Domains”.

See Also
Topics
“Dataflow Domain”
“Multicore Simulation and Code Generation of Dataflow Domains”
“Model Multirate Signal Processing Systems Using Dataflow”

Introduced in R2018b

2 Blocks

2-326

dB Conversion
Convert magnitude data to decibels (dB or dBm)
Library: DSP System Toolbox / Math Functions / Math Operations

Description
The dB Conversion block converts a linearly scaled power or amplitude input to dB or dBm. The
reference power is 1 Watt for conversions to dB and 1 mWatt for conversions to dBm. The block's
Input signal parameter specifies whether the input is a power signal or a voltage signal, and the
Convert to parameter controls the scaling of the output. When selected, the Add eps to input to
protect against “log(0) = -inf” parameter adds a value of eps to all power and voltage inputs.
When this parameter is not selected, zero-valued inputs produce -inf at the output.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal to be converted, specified as a real scalar, vector, or matrix.

When the “Input signal” on page 2-0 parameter is set to:

• Power — The input is treated as a power signal, specified in Watts.
• Amplitude — The input is treated as a voltage signal, specified in Volts.

Data Types: single | double

Output

Port_1 — Output signal
scalar | vector | matrix

The converted output signal, returned as a scalar, vector, or matrix. The output is the same size, and
data type as the input. The output y is calculated as follows.

When the “Input signal” on page 2-0 parameter is set to Power and Convert to parameter is set
to:

• dB — The block performs this dB conversion:

y = 10*log10(u)
• dBm — The block performs this dBm conversion:

y = 10*log10(u) + 30

The dBm conversion is equivalent to performing the dB operation after converting the input to
milliwatts.

 dB Conversion

2-327

Input u is a real, nonnegative, power signal, specified in Watts.

When the Input signal parameter is set to Amplitude and Convert to parameter is set to:

• dB — The block performs this dB conversion:

y = 10*log10(abs(u)^2/R)

• dBm — The block performs the following dBm conversion:

y = 10*log10(abs(u)^2/R) + 30

Input u is a real voltage signal, specified in Volts.

The dBm conversion is equivalent to performing the dB operation after converting the
(abs(u)^2/R) result to milliwatts. The scale factor, R, is specified in Ohms.
Data Types: single | double

Parameters
Convert to — Signal to convert
dB (default) | dBm

The logarithmic scaling to which the input is converted, dB or dBm. The reference power is 1 Watt for
conversions to dB and 1 mW for conversions to dBm.

Amplitude conversions use the scale factor specified in ohms by the Load resistance parameter, R,
to convert the voltage input to units of power (watts) before converting to dB or dBm.

When the “Input signal” on page 2-0 parameter is set to Power and Convert to parameter is set
to:

• dB — The block performs this dB conversion:

y = 10*log10(u)

• dBm — The block performs this dBm conversion:

y = 10*log10(u) + 30

The dBm conversion is equivalent to performing the dB operation after converting the input to
milliwatts.

Input u is a real, nonnegative, power signal, specified in Watts.

Input signal is set to Amplitude and Convert to parameter is set to:

• dB — The block performs this dB conversion:

y = 10*log10(abs(u)^2/R)

• dBm — The block performs this dBm conversion:

y = 10*log10(abs(u)^2/R) + 30

The dBm conversion is equivalent to performing the dB operation after converting the
(abs(u)^2/R) result to mW. The scale factor R is specified in Ohms.

2 Blocks

2-328

Input u is a real voltage signal, specified in Volts.

Tunable: Yes

Input signal — Type of signal
Amplitude (default) | Power

The type of input signal, Power or Amplitude.

When Input signal is set to:

• Power –– Input u is a real, nonnegative, power signal (units of Watts).
• Amplitude –– Input u is a real voltage signal (units of Volts).

Load resistance (ohms) — Scale factor
1 (default) | positive scalar | positive integer

The scale factor R, specified in ohms. The block uses the scale factor to convert voltage input to units
of power (watts) before converting to dB or dBm.

Tunable: Yes
Dependencies

To enable this parameter, set the “Input signal” on page 2-0 parameter to Amplitude.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point
Complex Number Support: Yes

Add eps to input to protect against "log(0) = -inf" — Add eps
off (default) | on

Select this parameter to add eps to all input values (power or voltage).

Tunable: Yes

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals No

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Math Function

 dB Conversion

2-329

Functions
log10

Topics
dB Gain

Introduced before R2006a

2 Blocks

2-330

dB Gain
Apply decibel gain

Library
Math Functions / Math Operations

dspmathops

Description
The dB Gain block multiplies the input by the decibel values specified in the Gain parameter. For an
M-by-N input matrix u with elements uij, the Gain parameter can be a real M-by-N matrix with
elements gij to be multiplied element-wise with the input, or a real scalar.

yi j = ui j10(gi j/k)

The value of k is 10 for power signals (select Power as the Input signal parameter) and 20 for
voltage signals (select Amplitude as the Input signal parameter).

The value of the equivalent linear gain

gi j
lin = 10(gi j/k)

is displayed in the block icon below the dB gain value. The output is the same size as the input.

The dB Gain block supports real and complex floating-point and fixed-point data types.

Fixed-Point Data Types

The following diagram shows the data types used within the dB Gain subsystem block for fixed-point
signals.

The settings for the fixed-point parameters of the Gain block in the diagram above are as follows:

• Integer rounding mode: Floor
• Saturate on integer overflow — unselected
• Parameter data type mode — Inherit via internal rule
• Output data type mode — Inherit via internal rule

See the Gain reference page for more information.

 dB Gain

2-331

Parameters
Gain

The dB gain to apply to the input, a scalar or a real M-by-N matrix. Tunable (Simulink).
Input signal

The type of input signal: Power or Amplitude. Tunable (Simulink).

Note This block does not support tunability in generated code.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
dB Conversion DSP System Toolbox
Math Function Simulink
log10 MATLAB

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

2 Blocks

2-332

DCT
Discrete cosine transform (DCT) of input

Library
Transforms

dspxfrm3

Description
The DCT block computes the unitary discrete cosine transform (DCT) of each channel in the M-by-N
input matrix, u.

y = dct(u) % Equivalent MATLAB code

For all N-D input arrays, the block computes the DCT across the first dimension. The size of the first
dimension (frame size), must be a power of two. To work with other frame sizes, use the Pad block to
pad or truncate the frame size to a power-of-two length.

When the input to the DCT block is an M-by-N matrix, the block treats each input column as an
independent channel containing M consecutive samples. The block outputs an M-by-N matrix whose
lth column contains the length-M DCT of the corresponding input column.

y(k, l) = w(k) ∑
m = 1

M
u(m, l)cosπ(2m− 1)(k− 1)

2M , k = 1, ..., M

where

w(k) =

1
M ,

2
M ,

k = 1

2 ≤ k ≤ M

The Sine and cosine computation parameter determines how the block computes the necessary
sine and cosine values. This parameter has two settings, each with its advantages and disadvantages,
as described in the following table.

 DCT

2-333

Sine and Cosine
Computation
Parameter Setting

Sine and Cosine Computation Method Effect on Block Performance

Table lookup The block computes and stores the
trigonometric values before the simulation
starts, and retrieves them during the
simulation. When you generate code from
the block, the processor running the
generated code stores the trigonometric
values computed by the block in a speed-
optimized table, and retrieves the values
during code execution.

The block usually runs much more quickly,
but requires extra memory for storing the
precomputed trigonometric values.

Trigonometric
fcn

The block computes sine and cosine values
during the simulation. When you generate
code from the block, the processor running
the generated code computes the sine and
cosine values while the code runs.

The block usually runs more slowly, but
does not need extra data memory. For code
generation, the block requires a support
library to emulate the trigonometric
functions, increasing the size of the
generated code.

This block supports Simulink virtual buses.

Fixed-Point Data Types

The following diagrams show the data types used within the DCT block for fixed-point signals. You
can set the sine table, accumulator, product output, and output data types displayed in the diagrams
in the DCT block dialog as discussed in “Parameters” on page 2-335.

Inputs to the DCT block are first cast to the output data type and stored in the output buffer. Each
butterfly stage processes signals in the accumulator data type, with the final output of the butterfly
being cast back into the output data type.

2 Blocks

2-334

The output of the multiplier is in the product output data type when at least one of the inputs to the
multiplier is real. When both of the inputs to the multiplier are complex, the result of the
multiplication is in the accumulator data type. For details on the complex multiplication performed,
see “Multiplication Data Types”.

Note When the block input is fixed point, all internal data types are signed fixed point.

Parameters
Main Tab

Sine and cosine computation
Sets the block to compute sines and cosines by either looking up sine and cosine values in a
speed-optimized table (Table lookup), or by making sine and cosine function calls
(Trigonometric fcn). See the table in the “Description” on page 2-333 section.

 DCT

2-335

Data Types Tab

Rounding mode
Select the rounding mode for fixed-point operations. The sine table values do not obey this
parameter; they always round to Nearest.

Saturate on integer overflow
When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numeric results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in full-precision mode.

Sine table
Choose how you specify the word length of the values of the sine table. The fraction length of the
sine table values always equals the word length minus one. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16)

The sine table values do not obey the Rounding mode and Saturate on integer overflow
parameters; instead, they are always saturated and rounded to Nearest.

Product output data type
Specify the product output data type. See “Fixed-Point Data Types” on page 2-334 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output data type parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-334 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

2 Blocks

2-336

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-334 for illustrations
depicting the use of the output data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the block calculates the output
word length and fraction length automatically. The internal rule first calculates an ideal output
word length and fraction length using the following equations:

WLidealoutput = WLinput + f loor(log2(DCTlength− 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction lengths that
are appropriate for your hardware. For more information on this rule, see “Inherit via Internal
Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Output Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Output Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

 DCT

2-337

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
dct

Blocks
Complex Cepstrum | FFT | IDCT | Real Cepstrum

Introduced before R2006a

2 Blocks

2-338

DC Blocker
Block DC component

Library
Signal Operations

dspsigops

Description
The DC Blocker block removes the DC component of the input signal. This block supports SIMD code
generation. For details, see “Code Generation” on page 2-352.

Dialog Box
The DC Blocker dialog box changes based on how the DC offset is estimated. The dialog box for the
IIR method is shown below.

The dialog box for the FIR method is shown below.

 DC Blocker

2-339

The dialog box for the CIC method is shown below.

The dialog box for the Subtract mean method is shown below.

2 Blocks

2-340

Algorithm for estimating DC offset
Specify the algorithm used for estimating the DC offset. Select from the following:

• IIR uses a recursive estimate based on a narrow, lowpass elliptic filter. This algorithm
typically uses less memory than FIR and is more efficient.

• FIR uses a nonrecursive, moving-average estimate. This algorithm typically uses more
memory than IIR and is less efficient.

• CIC uses a lowpass filter that does not employ any multipliers. If the algorithm is CIC, then
fixed-point data must be input to the DC Blocker.

• Subtract mean computes the means of the columns of the input matrix and subtracts the
means from the input. This method does not retain state between inputs. For example, if the
input is [1 2 3 4; 3 4 5 6], then the DC Blocker block in Subtract mean mode outputs
[-1 -1 -1 -1; 1 1 1 1].

Normalized bandwidth of lowpass IIR or CIC filter
Specify the normalized filter bandwidth as a real scalar greater than 0 and less than 1. The DC
Blocker uses this parameter only when the estimation algorithm is set to IIR or CIC.

Order of lowpass IIR elliptic filter
Specify the filter order as an integer greater than 3. The DC Blocker uses this parameter only
when the estimation algorithm is set to IIR.

Number of past input samples for FIR algorithm
Specify, as a positive integer, the number of samples to use when the estimation algorithm is set
to FIR.

View Filter Response
Opens the fvtool and displays the magnitude response of the DC Blocker. The response is based
on the block parameters. Changes made to these parameters update fvtool.

 DC Blocker

2-341

To update the magnitude response while fvtool is running, modify the block parameters and
click Apply.

Simulate using
Select the simulation type from the following:

• Code generation (default)
• Interpreted execution

Examples

Use DC Blocker to Remove DC Component of Signal

This example shows how to use the DC Blocker to remove the DC component of a signal.

Load the DC Blocker example by typing ex_dc_blocker in the MATLAB command prompt.

The spectral output from the DC Blocker is displayed in Spectrum with Blocking, while the spectrum
of the input signal is displayed in Spectrum without Blocking.

The two sine wave sources are set to use 1000 samples per frame because the Subtract mean
estimation algorithm requires a statistically significant number of samples to calculate a valid mean.

2 Blocks

2-342

In the model, run the simulation. The spectrum of the input signal shows tones at 150 Hz and 250 Hz
and a significant (0 dBW) DC component.

 DC Blocker

2-343

Using the default IIR setting for the DC Blocker estimation algorithm, the tones at 150 Hz and 250
Hz are unaffected while the DC component has been attenuated by 30 dB.

2 Blocks

2-344

Select the DC Blocker block by double-clicking on it and change the algorithm type from IIR to
Subtract mean. Rerun the simulation. The spectral output from the DC Blocker shows that the
Subtract mean estimation method results in a DC component of less than −100 dBW.

 DC Blocker

2-345

Try all three estimation methods. Modify the IIR and FIR parameters to illustrate the performance of
the DC Blocker using the various estimation techniques.

DC Blocker with Fixed Point Data

This example shows how to use the DC Blocker to remove a DC offset from fixed point data.

Load the DC Blocker example by typing ex_dcblock_cicmode in the MATLAB command prompt.

In the model:

• 64-QAM data passes through an AWGN channel.
• A DC offset of 1 is added to the signal .
• The Double -> Fixed block converts the data to 16-bit fixed point.
• The fixed-point data passes through the DC Blocker, which has the CIC algorithm selected, to

remove the DC offset.

2 Blocks

2-346

• The Fixed -> Double block converts the data back to floating point.

Constellation diagrams and spectrum analyzers are used to show the improvements from the DC
Blocker.

Run the simulation. The first constellation diagram, Noisy Constellation, shows a 64-QAM signal with
white noise.

Observe the constellation diagram of the signal after the DC offset of 1 has been applied. The signal,
represented by the yellow data points, has shifted one unit to the right.

 DC Blocker

2-347

Look at the spectrum of the noisy signal with the DC offset. Notice that the signal has a peak at 0 Hz.

2 Blocks

2-348

Observe the noisy constellation after the DC offset is removed. The signal has shifted back to the left
so that the data clusters are aligned with their corresponding reference points.

 DC Blocker

2-349

Observe the spectrum of the noisy signal after the DC Blocker removes the offset. The spectral peak
at 0 Hz has been removed.

2 Blocks

2-350

To visualize the efficiency of the DC Blocker under different conditions, try changing the DC offset or
the Normalized bandwidth of lowpass IIR or CIC filter parameter.

Algorithms
This block implements the algorithm, inputs, and outputs described on the dsp.DCBlocker
reference page. The object properties correspond to the block parameters.

 DC Blocker

2-351

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed)
• 8-, 16-, and 32-bit signed integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed)
• 8-, 16-, and 32-bit signed integers

References
[1] Nezami, M., “Performance Assessment of Baseband Algorithms for Direct Conversion Tactical

Software Defined Receivers: I/Q Imbalance Correction, Image Rejection, DC Removal, and
Channelization”, MILCOM, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The DC Blocker block supports SIMD code generation using Intel AVX2 technology when the input
signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

2 Blocks

2-352

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Objects
dsp.DCBlocker | dsp.BiquadFilter | dsp.FIRFilter

Introduced in R2014a

 DC Blocker

2-353

Delay
Delay discrete-time input by specified number of samples or frames

Compatibility

Note The Delay block from the dspsigops library has been replaced by the Delay block from the
Discrete library in Simulink. Existing instances of the dspsigops Delay block will be replaced with
Simulink Delay block when there is an exact match in functionality between the two blocks. For new
models, use the Delay block from the Discrete library in Simulink.

Library
Signal Operations

dspsigops

Description
The Delay block delays a discrete-time input by the number of samples or frames specified in the
Delay units and Delay parameters. The Delay value must be an integer value greater than or equal
to zero. When you enter a value of zero for the Delay parameter, any initial conditions you might have
entered have no effect on the output.

The Delay block allows you to set the initial conditions of the signal that is being delayed. The initial
conditions must be numeric.

Frame-Based Processing

When you set the Input processing parameter to Columns as channels (frame based), the
block treats each column of the M-by-N input matrix as an independent channel. The block delays
each channel of the input as specified by the Delay parameter.

The Delay parameter can be a scalar integer by which the block equally delays all channels or a
vector whose length is equal to the number of channels.

There are four different choices for initial conditions. The initial conditions can be the same or
different for each channel. They can also be constant or varying along each channel. See the “Frame-
Based Processing Examples” on page 2-356 section for more information.

Sample-Based Processing

When you set the Input processing parameter to Elements as channels (sample based), the
block treats each element of the N-D input array as an independent channel. Thus, the total number

2 Blocks

2-354

of channels in the input is equal to the product of the input dimensions. The dimension of the output
is the same as that of the input.

The Delay parameter can be a scalar integer by which to equally delay all channels or an N-D array
of the same dimensions as the input array, containing nonnegative integers that specify the number of
sample intervals to delay each channel of the input.

There are four different choices for initial conditions. The initial conditions can be the same or
different for each channel. They can also be the same or different within a channel. See the “Sample-
Based Processing Examples” on page 2-359 section for more information.

Resetting the Delay

The Delay block resets the delay whenever it detects a reset event at the optional Rst port. The reset
sample time must be a positive integer multiple of the input sample time.

The reset event is specified by the Reset port parameter, and can be one of the following:

• None disables the Rst port.
• Rising edge triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero (see the following figure)

• Falling edge triggers a reset operation when the Rst input does one of the following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero (see the following figure)

 Delay

2-355

• Either edge triggers a reset operation when the Rst input is Rising edge or Falling edge
(as described earlier).

• Non-zero sample triggers a reset operation at each sample time that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample
latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port
rate before the block applies the reset. For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” and “Time-Based Scheduling and Code
Generation” (Simulink Coder).

This block supports Simulink virtual buses.

Examples
Frame-Based Processing Examples

There are four different choices for initial conditions. The initial conditions can be the same or
different for each channel. They can also be constant or varying along each channel. The next
sections describe the behavior of the block for each of these four cases:

• “Case 1 — Use the Same Initial Conditions for Each Channel and Within a Channel” on page 2-356
• “Case 2 — Use Different Initial Conditions for Each Channel and the Same Initial Conditions

Within a Channel” on page 2-357
• “Case 3 — Use the Same Initial Conditions for Each Channel and Different Initial Conditions

Within a Channel” on page 2-357
• “Case 4 — Use Different Initial Conditions for Each Channel and Within a Channel” on page 2-358

Case 1 — Use the Same Initial Conditions for Each Channel and Within a Channel

Enter a scalar value for the initial conditions. This value is used as the constant initial condition value
for each of the channels.

For example, suppose your input is a matrix and you set the Input processing parameter to
Columns as channels (frame based).

1 1 1
2 2 2
3 3 3

,
4 4 4
5 5 5
6 6 6

,
7 7 7
8 8 8
9 9 9

, ...

You want the initial conditions of your three-channel signal to be identical and zero for the first
frame:

1 Set the Delay (frames) parameter to 1.
2 Clear the Specify different initial conditions for each channel and the Specify different

initial conditions within a channel check boxes.
3 Set the Initial conditions parameter to a scalar value of 0.

The output of the delay block is

2 Blocks

2-356

0 0 0
0 0 0
0 0 0

,
1 1 1
2 2 2
3 3 3

,
4 4 4
5 5 5
6 6 6

,
7 7 7
8 8 8
9 9 9

, ...

0, the scalar initial condition value, is used across the channels and within the channels for the
first frame. This frame is the output at sample time zero.

Case 2 — Use Different Initial Conditions for Each Channel and the Same Initial Conditions
Within a Channel

The initial conditions must be a vector of length N, where N ≥ 1. N is also equal to the number of
channels in your signal. These initial condition values are used as the constant initial condition value
for each of the channels.

For example, suppose your input is a matrix and you set the Input processing parameter to
Columns as channels (frame based).

1 1 1
2 2 2
3 3 3

,
4 4 4
5 5 5
6 6 6

,
7 7 7
8 8 8
9 9 9

, ...

You want the initial conditions of your three-channel signal to be [0 10 20] for the first frame:

1 Set the Delay (frames) parameter to 1.
2 Select the Specify different initial conditions for each channel check box.
3 Clear the Specify different initial conditions within a channel check box.
4 Set the Initial conditions parameter to [0 10 20].

The output of the delay block is

0 10 20
0 10 20
0 10 20

,
1 1 1
2 2 2
3 3 3

,
4 4 4
5 5 5
6 6 6

,
7 7 7
8 8 8
9 9 9

, ...

The initial condition vector expands to create the frame that is output at sample time zero.
Different initial conditions are used for each channel, but the same initial condition value is used
with a channel.

Case 3 — Use the Same Initial Conditions for Each Channel and Different Initial Conditions
Within a Channel

In this case, the Delay parameter can be a scalar integer by which to equally delay all channels or a
vector whose length is equal to the number of channels. All the values of this vector must be equal.

Enter the initial conditions as a vector. These values are used as the initial condition value along each
of the channels to be delayed. The initial condition vector must have length equal to the value of the
Delay (frames) parameter multiplied by the frame length. For example, if you want to delay your
signal by two frames with frame length two and an initial condition value of 3, enter your initial
condition vector as [3 3 3 3].

For example, suppose your input is a matrix and you set the Input processing parameter to
Columns as channels (frame based).

 Delay

2-357

1 1 1
2 2 2
3 3 3

,
4 4 4
5 5 5
6 6 6

,
7 7 7
8 8 8
9 9 9

, ...

You want the initial conditions of your three-channel signal to be the same along each of the channels
to be delayed:

1 Set the Delay (frame) parameter to 1.
2 Clear the Specify different initial conditions for each channel check box.
3 Select the Specify different initial conditions within a channel check box.
4 Set the Initial conditions parameter to [10 20 30].

The output of the delay block is

10 10 10
20 20 20
30 30 30

,
1 1 1
2 2 2
3 3 3

,
4 4 4
5 5 5
6 6 6

,
7 7 7
8 8 8
9 9 9

, ...

The initial condition vector defines the initial condition values within each of the three channels.
The same initial conditions are used for each channel, but different initial condition values are
used with a channel.

Case 4 — Use Different Initial Conditions for Each Channel and Within a Channel

Enter a cell array for your initial condition values. Or, when you have a scalar delay value, you can
enter the initial conditions as a matrix.

For example, suppose your input is a matrix and you set the Input processing parameter to
Columns as channels (frame based).

1 1 1
2 2 2
3 3 3

,
4 4 4
5 5 5
6 6 6

,
7 7 7
8 8 8
9 9 9

, ...

You want the initial conditions of your three-channel signal to be different for each channel and along
each channel.

1 Set the Delay (frames) parameter to 1.
2 Select the Specify different initial conditions for each channel and the Specify different

initial conditions within a channel check boxes.
3 Set the Initial conditions parameter to either [10 20 30; 40 50 60; 70 80 90] or {[10

40 70];[20 50 80];[30 60 90]}. Each cell of the cell array represents the delay along one
channel.

Regardless of whether you use a matrix or cell array, the output of the delay block is

10 20 30
40 50 60
70 80 90

,
1 1 1
2 2 2
3 3 3

,
4 4 4
5 5 5
6 6 6

,
7 7 7
8 8 8
9 9 9

...

The initial condition matrix is the output at sample time zero. The elements of the initial
condition cell array define the initial condition values within each channel. The first element, a

2 Blocks

2-358

vector, represents the initial conditions within channel 1. The second element, a vector,
represents the initial conditions within channel 2, and so on. Different initial conditions are used
for each channel and within the channels.

Sample-Based Processing Examples

There are four different choices for initial conditions. The initial conditions can be the same or
different for each channel. They can also be the same or different along each channel. The next
sections describe the behavior of the block for each of these four cases:

• “Case 1 — Use the Same Initial Conditions for Each Channel and Within a Channel” on page 2-359
• “Case 2 — Use Different Initial Conditions for Each Channel and the Same Initial Conditions

Within a Channel” on page 2-359
• “Case 3 — Use the Same Initial Conditions for Each Channel and Different Initial Conditions

Within a Channel” on page 2-360
• “Case 4 — Use Different Initial Conditions for Each Channel and Within a Channel” on page 2-361

Case 1 — Use the Same Initial Conditions for Each Channel and Within a Channel

Enter a scalar value for the initial conditions. This value is used as the constant initial condition value
for each of the channels.

For example, suppose your input is a matrix and you set the Input processing parameter to
Elements as channels (sample based).

1 1
1 1

,
2 2
2 2

,
3 3
3 3

, ...

You want the initial conditions of your four-channel signal to be identical and zero for the first two
samples:

1 Set the Delay (samples) parameter to 2.
2 Clear the Specify different initial conditions for each channel and Specify different initial

conditions within a channel check boxes.
3 Set the Initial conditions parameter to a scalar value of 0.

The output of the delay block is

0 0
0 0

,
0 0
0 0

,
1 1
1 1

,
2 2
2 2

,
3 3
3 3

, …

0, the scalar initial condition value, is used for each channel and within the channels. It is the
output at sample time zero and sample time one.

Case 2 — Use Different Initial Conditions for Each Channel and the Same Initial Conditions
Within a Channel

The initial conditions must be an N-D array for N-D input. The initial conditions must have the same
dimensions as the input data. These initial condition values are used as the constant initial condition
value for each of the channels.

For example, suppose your input is a matrix and you set the Input processing parameter to
Elements as channels (sample based).

 Delay

2-359

1 1
1 1

,
2 2
2 2

,
3 3
3 3

, ...

You want the initial conditions of your four-channel signal to be

7 9
11 13

for the first two samples:

1 Set the Delay (samples) parameter to 2.
2 Select the Specify different initial conditions for each channel check box.
3 Clear the Specify different initial conditions within a channel check box.
4 Set the Initial conditions parameter to [7 9; 11 13].

The output of the delay block is

7 9
11 13

,
7 9

11 13
,

1 1
1 1

,
2 2
2 2

,
3 3
3 3

, ...

The initial condition matrix is the output at sample time zero and sample time one. Different
initial conditions are used for each channel; the same initial condition value is used within a
channel.

Case 3 — Use the Same Initial Conditions for Each Channel and Different Initial Conditions
Within a Channel

In this case, for N-D sample-based inputs, the initial conditions parameter must be a vector whose
length is equal to the delay value, specified by the Delay parameter. The values in this vector are
used as the initial condition values along each of the channels to be delayed.

For example, suppose your input is a matrix and you set the Input processing parameter to
Elements as channels (sample based).

1 1
1 1

,
2 2
2 2

,
3 3
3 3

, ...

You want the initial conditions of your four channel signal to be the same along each of the channels
to be delayed:

1 Set the Delay (samples) parameter to 2.
2 Clear the Specify different initial conditions for each channel check box.
3 Select the Specify different initial conditions within a channel check box.
4 Set the Initial conditions parameter to [10 20].

The output of the delay block is

10 10
10 10

,
20 20
20 20

,
1 1
1 1

,
2 2
2 2

,
3 3
3 3

, ...

The first element of the initial conditions vector is the output, for all channels, at sample time
zero. The second element of the initial conditions vector is the output, for all channels, at sample

2 Blocks

2-360

time one. The same initial conditions are used for each channel, but different initial condition
values are used within a channel.

Case 4 — Use Different Initial Conditions for Each Channel and Within a Channel

Enter a cell array for your initial condition values. The cell array must be the same size as your input
signal. Each cell of the cell array represents the delay values for one channel, and must be a vector of
size equal to the delay value. If you have a vector or scalar input and a scalar delay value, you can
enter the initial conditions as a matrix.

For example, suppose your input is a matrix and you set the Input processing parameter to
Elements as channels (sample based).

1 1 , 2 2 , 3 3 , …

You want the initial conditions of your two channel signal to be different for each channel and along
each channel:

1 Set the Delay (samples) parameter to 2.
2 Select the Specify different initial conditions for each channel and Specify different

initial conditions within a channel check boxes.
3 Set the Initial conditions parameter to [10 20; 30 40].

The output of the delay block is

10 20 , 30 40 , 1 1 , 2 2 …

The first row of the initial conditions vector is the output at sample time zero. The second row of
the initial conditions vector is the output at sample time one. Different initial conditions are used
for each channel and within the channels.

In addition, suppose your input is a matrix and you set the Input processing parameter to
Elements as channels (sample based).

1 1
1 1

,
2 2
2 2

,
3 3
3 3

, ...

You want the initial conditions of your two-channel signal to be different for each channel and along
each channel:

1 Set the Delay (samples) parameter to 2.
2 Select the Specify different initial conditions for each channel and the Specify different

initial conditions within a channel check boxes.
3 Set the Initial conditions parameter to {[11 15] [12 16]; [13 17] [14 18]}. The

dimensions of the cell array match the dimensions of the input. Also, each element of the cell
array represents the initial conditions within one channel.

The output of the delay block is

11 12
13 14

,
15 16
17 18

,
1 1
1 1

,
2 2
2 2

, ...

Each element of the cell array represents the initial conditions within a channel. The first
element, a vector, represents the initial conditions within channel 1. The second element, a

 Delay

2-361

vector, represents the initial conditions within channel 2, and so on. Different initial conditions
are used for each channel and within the channels.

Parameters
Input processing

Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Note The option Inherit from input (this choice will be removed - see release
notes) will be removed in a future release. See “Frame-Based Processing” in the DSP System
Toolbox Release Notes for more information.

Delay units
Select whether you want to delay your input by a specified number of Samples or Frames. This
parameter appears only when you set the Input processing parameter to Columns as
channels (frame based).

Delay (samples) or Delay (frames)
See “Sample-Based Processing” on page 2-354 and “Frame-Based Processing” on page 2-354 for
a description of what format to use for each configuration of the block dialog.

Specify different initial conditions for each channel
Select this check box when you want the initial conditions to vary across the channels. When you
do not select this check box, the initial conditions are the same across the channels.

Specify different initial conditions within a channel
Select this check box when you want the initial conditions to vary within the channels. When you
do not select this check box, the initial conditions are the same within the channels.

Initial conditions
Enter a scalar, vector, matrix, or cell array of initial condition values, depending on your choice
for the Specify different initial conditions for each channel and Specify different initial
conditions within a channel check boxes. See “Sample-Based Processing” on page 2-354 and
“Frame-Based Processing” on page 2-354 for a description of what format to use for each
configuration of the block dialog.

Reset port
Determines the reset event that causes the block to reset the delay. For more information, see
“Resetting the Delay” on page 2-355.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

2 Blocks

2-362

• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For more information on implementations, properties, and restrictions for HDL code generation, see
the "HDL Code Generation" section of the Delay page.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
dsp.Delay | Unit Delay | Variable Fractional Delay | Variable Integer Delay

Introduced before R2006a

 Delay

2-363

Delay Line
Rebuffer sequence of inputs

Library
Signal Management / Buffers

dspbuff3

Description
The Delay Line block rebuffers a sequence of Mi-by-N matrix inputs into a sequence of Mo-by-N
matrix outputs, where Mo is the output frame size you specify in the Delay line size parameter.
Depending on whether Mo is greater than, less than, or equal to the input frame size, Mi, the output
frames can be underlapped or overlapped. The block always performs frame-based processing and
rebuffers each of the N input channels independently.

When Mo > Mi, the output frame overlap is the difference between the output and input frame size,
Mo-Mi. When Mo < Mi, the output is underlapped; the Delay Line block discards the first Mi-Mo
samples of each input frame so that only the last Mo samples are buffered into the corresponding
output frame. When Mo = Mi, the output data is identical to the input data, but is delayed by the
latency of the block. Due to the block's latency, the outputs are always delayed by one frame, the
entries of which you specify in the Initial conditions parameter (see “Initial Conditions” on page 2-
364).

The output frame period is equal to the input frame period (Tfo=Tfi). The output sample period, Tso, is
therefore equal to Tfi/Mo, or equivalently, Tsi(Mi/Mo)

In the most typical use, each output differs from the preceding output by only one sample, as
illustrated below for scalar input.

Note that the first output of the block in the example above is all zeros; this is because the Initial
Conditions parameter is set to zero.

Initial Conditions

The Delay Line block's buffer is initialized to the value specified by the Initial conditions parameter.
The block outputs this buffer at the first simulation step (t=0). When the block's output is a vector,
the Initial conditions can be a vector of the same size, or a scalar value to be repeated across all

2 Blocks

2-364

elements of the initial output. When the block's output is a matrix, the Initial conditions can be a
matrix of the same size, a vector (of length equal to the number of matrix rows) to be repeated across
all columns of the initial output, or a scalar to be repeated across all elements of the initial output.

Examples
In the following ex_delayline_ref2 model, the block rebuffers a two-channel input with a Delay line
size of 3.

The first output frame in this example is due to the latency of the Delay Line block; it is all zeros
because the Initial conditions parameter is set to zero. Because the input frame size of 4 is larger
than the output frame size of 3, only the last three samples in each input frame are propagated to the
corresponding output frame. The frame periods of the input and output are the same, and the output
sample period is Tsi(Mi/Mo), or 4/3 the input sample period.

Parameters
Delay line size

Specify the number of rows in output matrix, Mo.
Initial conditions

Specify the value of the block's initial output. When the block outputs a vector, the Initial
conditions can be a vector of the same size, or a scalar value to be repeated across all elements
of the initial output. When the block outputs a matrix, the Initial conditions can be a matrix of
the same size, a vector (of length equal to the number of matrix rows) to be repeated across all
columns of the initial output, or a scalar to be repeated across all elements of the initial output.

Allow direct feedthrough
When you select this check box, the input data is not delayed by an extra frame before it is
available at the output buffer. Instead, the input data is available immediately at the output port
of the block.

Show En_Out port for selectively enabling output
When you select this check box, the En_Out port appears on the block icon. This block uses a
circular buffer internally even though the output is linear. This means that for valid output, data
from the circular buffer has to be linearized. The En_Out port determines whether or not a valid
output needs to be computed based on the value of its Boolean input. If the input value to the
En_Out port is 1, the block output is linearized, and thus is valid. Otherwise, the output is not

 Delay Line

2-365

matlab:ex_delayline_ref2

linearized, and is invalid. This allows the block to be more efficient when the tapped Delay Line's
output is not required at each sample time.

Note that when the input value to the En_Out port is 0, the block can give different results
depending on the state of the model. The results can appear to match valid results or can be
invalid, and they cannot be predicted. You should ignore the block output in all cases when the
input to the En_Out port is 0.

Hold previous value when the output is disabled
This parameter only appears and applies when the Show En_Out port for selectively enabling
output parameter is selected. Use this parameter to specify the block output at those time steps
when the internal state buffer is not being linearized to output valid data.

When you do not select this check box, the block memory is free to be used by other parts of the
model, and the signal on the output port is invalid. When you select this check box, the most
recent valid value is held on the output port, and slightly more memory is used by the block.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Buffer

2 Blocks

2-366

Introduced before R2006a

 Delay Line

2-367

Detrend
Remove linear trend from vectors

Library
Statistics

dspstat3

Description
The Detrend block removes a linear trend from the length-M input vector, u, by subtracting the
straight line that best fits the data in the least squares sense.

The least squares line, û = ax + b, is the line with parameters a and b that minimizes the quantity

∑
i = 1

M
(ui− u i)

2

for M evenly-spaced values of x, where ui is the ith element in the input vector. The output, y = u-û, is
always an M-by-1 column vector.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Cumulative Sum DSP System Toolbox
Difference DSP System Toolbox
Least Squares Polynomial Fit DSP System Toolbox
Unwrap DSP System Toolbox
detrend MATLAB

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

2 Blocks

2-368

Introduced before R2006a

 Detrend

2-369

Difference
Compute element-to-element difference along specified dimension of input
Library: DSP System Toolbox / Math Functions / Math Operations

Description
The Difference block computes the difference between adjacent elements in rows, columns, or a
specified dimension of the input array u. You can configure the block to compute the difference only
within the current input, or across consecutive inputs (running difference).

Ports
Input

Port_1 — Input signal
vector | matrix | N-D array

Input signal, specified as a vector, matrix, or an N-D array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

Output

Port_1 — Output signal
vector | matrix | N-D array

The difference between adjacent rows, columns, or a specified dimension of the input, returned as a
vector, matrix, or an N-D array.

The output is the same data type and complexity as the input, but the dimension that the difference
was calculated on is one less. The length of the other dimensions is unchanged.

For more details on how the output is computed, see the “Difference along” on page 2-0 parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

Parameters
Main Tab

Running difference — Running difference
No (default) | Yes

Specify whether the block computes a running difference.

2 Blocks

2-370

• No –– The block computes the difference between adjacent elements in the specified dimension of
the current input. In this mode, the block can compute the difference along the columns, rows, or
a specified dimension of the input depending on the “Difference along” on page 2-0 parameter.

• Yes –– The block computes the running difference along the columns of the input. See “Running
Operation” on page 2-374 for more information.

Difference along — Difference dimension
Columns (default) | Rows | Specified dimension

Specify whether the block computes the difference along the columns, rows, or a specified dimension
of the input.

• Columns –– The block computes differences between adjacent elements in each column of the
input. Equivalent MATLAB code is given by:

y = diff(u)

For M-by-N inputs, the output is an (M – 1)-by-N matrix whose jth column has these elements:

yi, j = ui+1, j − ui, j 1 ≤ i ≤ (M − 1)
• Rows –– The block computes differences between adjacent elements in each row of the input.

Equivalent MATLAB code is given by:

y = diff(u,[],2)

The output is an M-by-(N-1) matrix whose ith row has the following elements:

yi, j = ui, j + 1− ui, j 1 ≤ j ≤ (N − 1)
• Specified dimension –– The behavior of the block is an extension of the row-wise differencing

described earlier. The block computes differences between adjacent elements along the dimension
you specify in the Dimension parameter. Equivalent MATLAB code is given by:
y = diff(u,[],d)

where d is the dimension.

The output is an array whose length in the specified dimension is one less than that of the input,
and whose lengths in other dimensions are unchanged. For example, consider an M-by-N-by-P-by-
R input array with elements u(i,j,k,l) and assume that the value of the Dimension parameter is 3.
The output of the block is an M-by-N-by-(P–1)-by-R array with the following elements:

yi, j, k, l = ui, j, k + 1, l− ui, j, k, l 1 ≤ k ≤ (P − 1)

Dimension — One-based dimension
1 (default) | 2 | 3

Specify the one-based dimension along which to compute element-to-element differences.
Dependencies

To enable this parameter, select Specified dimension for the Difference along parameter.

Data Types Tab

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

 Difference

2-371

Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see Rounding Modes.

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Accumulator — Accumulator data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt([],16,0)

Accumulator specifies the data type of the output of an accumulation operation in the Difference
block.

• Inherit: Inherit via internal rule — The block inherits the accumulator data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

• Inherit: Same as input — The block specifies the accumulator data type to be the same as
the input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).

For illustrations on how to use the accumulator data type in this block, see Fixed-Point Conversion in
“Extended Capabilities” on page 2-0 .

Output — Output data type
Inherit: Same as accumulator (default) | Inherit: Same as input | fixdt([],16,0)

Output specifies the data type of the output of the Difference block.

• Inherit: Same as input — The block specifies the output data type to be the same as the
input data type.

• Inherit: Same as accumulator — The block specifies the output data type to be the same as
the accumulator data type.

2 Blocks

2-372

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Output data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information, see “Control Data Types of Signals” (Simulink).

For more information on the output data type, see Fixed-Point Conversion in “Extended Capabilities”
on page 2-0 .

Output Minimum — Minimum value that block can output
[] (default) | scalar

Specify the minimum value the block can output. Simulink uses this minimum value to perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Output Maximum — Maximum value that block can output
[] (default) | scalar

Specify the maximum value the block can output. Simulink uses this maximum value to perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

 Difference

2-373

More About
Running Operation

When you set the Running difference parameter to Yes, the block computes the running difference
along the columns of the input.

For an M-by-N input matrix, the output is an M-by-N matrix whose jth column has the following
elements:

yi, j = ui + 1, j− ui, j 2 ≤ i ≤ (M − 1)

In the Running difference mode, the first element of the output for each column is the first input
element minus the last input element of the previous frame. For the first frame, the block subtracts
zero from the first input element.

y1, j(t) = u1, j(t)− uM, j(t − Tf)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This diagram shows the data types used within the Difference block for fixed-point signals.

You can set the accumulator and output data types in the block dialog as discussed in “Parameters”
on page 2-370 .

See Also
Functions
diff

Blocks
Cumulative Sum

Introduced before R2006a

2 Blocks

2-374

Differentiator Filter
Direct form FIR fullband differentiator filter

Library
Filtering / Filter Designs

dspfdesign

Description
The Differentiator Filter block applies a fullband differentiator filter on the input signal to
differentiate all its frequency components. The block uses an FIR equiripple filter design to design
the differentiator filter. The ideal frequency response of the differentiator is D(ω) = jω for
−π ≤ ω ≤ π.

You can design the filter with minimum order or with a specifies order.

The input signal can be a real- or complex-valued column vector or matrix. If the input signal is a
matrix, each column of the matrix is treated as an independent channel.

This block supports variable-size input, enabling you to change the channel length during simulation.
The output port properties, such as data type, complexity, and dimension, are identical to the input
port properties. The block supports fixed-point operations.

This block also supports SIMD code generation. For details, see “Code Generation” on page 2-380.

Examples
• “Group Delay Estimation in Simulink”

 Differentiator Filter

2-375

Dialog Box
Main Tab

Design minimum order filter
When you select this check box, the block designs a filter with the minimum order, with the
passband ripple specified in Maximum passband ripple (dB). When you clear this check box,
specify the order of the filter in Filter order.

By default, this check box is selected.
Filter order

Filter order of the differentiator filter, specified as an odd positive scalar integer. You can specify
the filter order only when Design minimum order filter check box is not selected. The default
is 31.

Maximum passband ripple (dB)
Maximum ripple of the filter response in the passband, specified as a real positive scalar in dB.
The default is 0.1.

Scale filter coefficients
When you select this check box, the filter coefficients are scaled to preserve the input dynamic
range. By default, this check box is not selected.

View Filter Response
Opens the Filter Visualization Tool (fvtool) and displays the magnitude and phase response of
the Differentiator Filter block. The response is based on the block dialog box parameters.
Changes made to these parameters update FVTool.

2 Blocks

2-376

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

Simulate using
Type of simulation to run. You can set this parameter to:

• Interpreted execution (default)

Simulate model using the MATLAB interpreter. This option shortens startup time and has
faster simulation speed than Code generation.

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
subsequent simulations.

 Differentiator Filter

2-377

Data Types Tab

Rounding mode
Rounding method for the output fixed-point operations. The rounding methods are Ceiling,
Convergent, Floor, Nearest, Round, Simplest, and Zero. The default is Floor.

Coefficients
Fixed-point data type of the coefficients, specified as one of the following:

• fixdt(1,16) (default) — Signed fixed-point data type of word length 16, with binary point
scaling. The block determines the fraction length automatically from the coefficient values
such that the coefficients occupy the maximum representable range without overflowing.

• fixdt(1,16,0) — Signed fixed-point data type of word length 16 and fraction length 0. You
can change the fraction length to any other integer value.

• <data type expression> — Specify the data type using an expression that evaluates to a
data type object, for example, numeric type (fixdt([],16, 15)). Specify the sign mode of
this data type as [] or true.

• Refresh Data Type — Refresh to the default data type.

Click the Show data type assistant button to display the data type assistant, which helps
you set the stage input parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

The word length of the output is same as the word length of the input. The fraction length of the
output is computed such that the entire dynamic range of the output can be represented without

2 Blocks

2-378

overflow. For details on how the block computes the fraction length, see “Fixed-Point Precision
Rules for Avoiding Overflow in FIR Filters”.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed or unsigned)

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed or unsigned)

Algorithms
Differentiator Filter

Differentiator computes the derivative of a signal. The frequency response of an ideal differentiator
filter is given by D(ω) = jω, defined over the Nyquist interval −π ≤ ω ≤ π.

The frequency response is antisymmetric and is linearly proportional to the frequency.

dsp.Differentiator object acts as a differentiator filter. This object condenses the two-step
process into one. For the minimum order design, the object uses generalized Remez FIR filter design
algorithm. For the specified order design, the object uses the Parks-McClellan optimal equiripple FIR
filter design algorithm. The filter is designed as a linear phase Type-IV FIR filter with a Direct form
structure.

The ideal differentiator has an antisymmetric impulse response given by d(n) = − d(− n). Hence
d(0) = 0. The differentiator must have zero response at zero frequency.

Linear-Phase FIR Differentiator Filter

 Differentiator Filter

2-379

The impulse response of an antisymmetric linear-phase FIR filter is given by h(n) = − h(M − 1− n),
where M is the length of the filter. Because the filter is antisymmetric, you can use this type of FIR
filter to design the linear-phase FIR differentiators.

Consider the design of linear-phase FIR differentiators based on the Chebyshev approximation
criterion.

If M is odd, the real-valued frequency response of the FIR filter, Hr(ω), has the characteristics that
Hr(0) = 0 and Hr(π) = 0. This filter satisfies the condition of zero response at zero frequency.
However, it is not fullband because Hr(π) = 0. This differentiator has a linear response over the
limited frequency range [0 2πfp], where fp is the bandwidth of the differentiator. The absolute error
between the desired response and the Chebyshev approximation increases as ω increases from 0 to
2πfp.

If M is even, the real-valued frequency response of the FIR filter, Hr(ω), has the characteristics that
Hr(0) = 0 and Hr(π) ≠ 0. This filter satisfies the condition of zero response at zero frequency. It is
fullband and this design results in a significantly smaller approximation error than comparable odd-
length differentiators. Hence, even-length (odd order) differentiators are preferred in practical
systems.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Differentiator Filter block supports SIMD code generation using Intel AVX2 technology when the
input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
dsp.Differentiator | Highpass Filter | Variable Bandwidth FIR Filter | Variable Bandwidth IIR
Filter | Biquad Filter

Introduced in R2015b

2 Blocks

2-380

Differentiator Filter (Obsolete)
Design differentiator filter

Compatibility

Note The Differentiator Filter (Obsolete) block has been replaced by the Differentiator Filter block.
Existing instances of the Differentiator Filter (Obsolete) block will continue to operate. For new
models, use the Differentiator Filter block.

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Dialog Box
See “Differentiator Filter Design — Main Pane” on page 5-592 for more information about the
parameters of this block. The Data Types and Code Generation panes are not available for blocks in
the DSP System Toolbox Filter Designs library.

 Differentiator Filter (Obsolete)

2-381

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

2 Blocks

2-382

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

Order mode
Select either Minimum or Specify (the default). Selecting Specify enables the Order option so
you can enter the filter order.

Order
Enter the filter order. This option is enabled only if you set the Order mode to Specify. The
default order is 31.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, the block specifies a single-rate filter.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default value is 2.

Interpolation Factor
Enter the interpolation factor. This option is enabled only if the Filter type is set to
Interpolator or Sample-rate converter. The default value is 2.

Frequency Specifications

The parameters in this group allow you to specify your filter response curve.

Frequency constraints
This option is only available when you specify the order of the filter design. Supported options are
Unconstrained and Passband edge and stopband edge.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0–1) to enter frequencies in normalized form. This behavior is
the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input Fs
parameter.

Input Fs
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Fpass
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select in Frequency units.

 Differentiator Filter (Obsolete)

2-383

Fstop
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select in Frequency units.

Magnitude Specifications

Parameters in this group specify the filter response in the passbands and stopbands. These
parameters are only available for minimum-order designs.

Magnitude constraints
This option is only available when you specify the order of your filter design. The available
Magnitude constraints depend on the value of the Frequency constraints parameter. When
you set the Frequency constraints parameter to Unconstrained, the Magnitude constraints
parameter must also be Unconstrained. When you set the Frequency constraints parameter
to Passband edge and stopband edge, the Magnitude constraints parameter can be
Unconstrained, Passband ripple, or Stopband attenuation.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. From the drop-down
list, select one of the following options:

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Astop2
Enter the filter attenuation in the second stopband in the units you choose for Magnitude units,
either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure of your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well.

Design Options
The options for each design are specific for each design method. This section does not present all
of the available options for all designs and design methods. There are many more that you
encounter as you select different design methods and filter specifications. The following options
represent some of the most common ones available.
Density factor

Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in
the grid is the value you enter for Density factor times (filter order + 1).

2 Blocks

2-384

Increasing the value creates a filter that more closely approximates an ideal equiripple filter
but increases the time required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal filter and the time to
design the filter.

Wpass
Passband weight. This option is only available for a specified-order design when Frequency
constraints is equal to Passband edge and stopband edge and the Design method is
Equiripple.

Wstop
Stopband weight. This option is only available for a specified-order design when Frequency
constraints is equal to Passband edge and stopband edge and the Design method is
Equiripple.

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure.

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Note The Inherited (this choice will be removed — see release notes) option
will be removed in a future release. See “Frame-Based Processing” in the DSP System Toolbox
Release Notes for more information.

 Differentiator Filter (Obsolete)

2-385

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

Introduced in R2006b

2 Blocks

2-386

Digital Down-Converter
Translate digital signal from Intermediate Frequency (IF) band to baseband and decimate it

Library
Signal Operations

dspsigops

Description
The Digital Down-Converter (DDC) block converts a digitized real signal, centered at an intermediate
frequency (IF) to a baseband complex signal centered at zero frequency. The DDC block downsamples
the frequency down-converted signal using a cascade of three decimation filters. This block designs
the decimation filters according to the filter parameters set in the block dialog box.

Structure
This block brings the capabilities of dsp.DigitalDownConverter System object to the Simulink
environment.

The DDC block consists of a CIC decimator, a CIC compensator, and a FIR decimator. You can bypass
the FIR Decimator, depending on how you set the DDC block parameters.

For more information on the structure that the DDC block uses, including the flow of fixed-point
input, see the “Creation” on page 4-419 section in dsp.DigitalDownConverter.

 Digital Down-Converter

2-387

Examples
• “Digital Up and Down Conversion for Family Radio Service”

Dialog Box
Main Tab

Decimation factor
Decimation factor, specified as a positive integer scalar, or as a 1-by-2 or 1-by-3 vector of positive
integers. The default is 100.

When you set this parameter to a scalar, the block chooses the decimation factors for each of the
three filtering stages.

2 Blocks

2-388

When you set this parameter to a 1-by-2 vector, the block bypasses the third filter stage and sets
the decimation factor of the first and second filtering stages to the values in the first and second
vector elements, respectively. Both elements of Decimation factor must be greater than 1.

When you set this parameter to a 1-by-3 vector, the ith element of the vector specifies the
decimation factor for the ith filtering stage. The first and second elements of Decimation factor
must be greater than 1, and the third element must be 1 or 2.

Minimum order filter design
When you select this check box, the block designs filters with the minimum order that meets the
requirements specified in these parameters:

• Passband ripple of cascade response (dB)
• Stopband attenuation of cascade response (dB)
• Two sided bandwidth of input signal (Hz)
• Source of stopband frequency
• Stopband frequency (Hz)

When you clear this check box, the block designs filters with orders that you specify in Number
of sections of CIC decimator, Order of CIC compensation filter stage, and Order of third
filter stage. The filter designs meet the passband and stopband frequency specifications that you
set in Two sided bandwidth of input signal (Hz), Source of stopband frequency, and
Stopband frequency (Hz). By default, this check box is selected.

Number of sections of CIC decimator
Number of sections in the CIC decimator, specified as a positive integer scalar. This parameter
applies when you clear the Minimum order filter design check box. The default is 3.

Order of CIC compensation filter stage
Order of the CIC compensation filter stage, specified as a positive integer scalar. This parameter
applies when you clear the Minimum order filter design check box. The default is 12.

Order of third filter stage
Order of the third filter stage, specified as an even positive integer scalar. When you specify
Decimation factor as a 1-by-2 vector, the block ignores the value of Order of third filter stage
because the block bypasses the third filter stage. This parameter applies when you clear the
Minimum order filter design check box. The default is 10.

Two sided bandwidth of input signal (Hz)
Two sided bandwidth of the input signal, specified as a positive integer scalar. The block sets the
passband frequency of the cascade of filters to half the value that you specify in this parameter.
Set the value of this parameter to less than Input sample rate/Decimation factor. When you
select the Inherit sample rate from input check box, then set this value to less than ((1/Ts) /
Decimation factor), where Ts is the sample time of the input signal. The default is 200 kHz.

Source of stopband frequency
Source of the stopband frequency, specified as Auto or Property. The default is Auto.

When you set this parameter to Auto, the block places the cutoff frequency of the cascade filter
response at approximately Fc = SampleRate / M/2 Hz, where M is the total decimation factor
specified in Decimation factor. SampleRate is computed as 1/ Ts, where Ts is the sample time of
the input signal. The block computes the stopband frequency as Fstop = Fc + (TW / 2). TW is the
transition bandwidth of the cascade response, computed as 2×(Fc–Fp), where the passband
frequency, Fp, equals Bandwidth/2.

 Digital Down-Converter

2-389

When you set this parameter to Property, specify the source in Stopband frequency (Hz).
Stopband frequency (Hz)

Stopband frequency, specified as a double-precision positive scalar. This parameter applies when
you set the Source of stopband frequency to Property. The default is 150 kHz.

Passband ripple of cascade response (dB)
Passband ripple of the cascade response, specified as a double-precision positive scalar. When
you select the Minimum order filter design, the block designs the filters so that the cascade
response meets the passband ripple that you specify in Passband ripple of cascade response
(dB). This parameter applies when you select the Minimum order filter design. The default is
0.1 dB.

Stopband attenuation of cascade response (dB)
Stopband attenuation of the cascade response, specified as a double-precision positive scalar.
When you select the Minimum order filter design, the block designs the filters so that the
cascade response meets the stopband attenuation that you specify in Stopband attenuation of
cascade response (dB). This parameter applies when you select the Minimum order filter
design. The default is 60.

Type of oscillator
Oscillator type, specified as one of the following:

• Sine wave (default) — The block performs frequency down conversion on input signal using
a complex exponential obtained from samples of a sinusoidal trigonometric function.

• NCO — The block performs frequency down conversion on input signal with a complex
exponential obtained using a numerically controlled oscillator (NCO).

• Input port — The block performs frequency down conversion on input signal using the
complex signal that you provide through the input port of the block.

• None — The mixer stage in the block is not present and the block acts as three stage cascaded
decimator.

Center frequency of input signal (Hz)
Center frequency of the input signal, specified as a double-precision positive scalar that is less
than or equal to half the sample rate. The block downconverts the input signal from the passband
center frequency, which you specify in Center frequency of input signal (Hz), to 0 Hz. This
parameter applies when you set Type of oscillator to Sine wave or NCO. The default is 14e6.

Number of NCO accumulator bits
Number of NCO accumulator bits, specified as an integer scalar in the range [1 128]. This
parameter applies when you set Type of oscillator to NCO. The default is 16.

Number of NCO quantized accumulator
Number of NCO quantized accumulator bits, specified as an integer scalar in the range [1 128].
This value must be less than the value you specify in Number of NCO accumulator bits. This
parameter applies when you set Type of oscillator to NCO. The default is 12.

Dither control for NCO
When you select this check box, a number of dither bits specified in Number of NCO dither bits
applies dither to the NCO signal. This parameter applies when you set Type of oscillator to NCO.
By default, this check box is selected.

2 Blocks

2-390

Number of NCO dither bits
Number of NCO dither bits, specified as an integer scalar smaller than the number of
accumulator bits that you specify in Number of NCO accumulator bits. This parameter applies
when you set Type of oscillator to NCO and select the Dither control for NCO. The default is 4.

Inherit sample rate from input
When you select this check box, sample rate is computed as N/ Ts, where N is the frame size of
the input signal, and Ts is the sample time of the input signal. When you clear this check box, the
block’s sample rate is the value specified in Input sample rate (Hz). By default, this check box
is selected.

Input sample rate
Input sample rate, specified as a positive scalar value, greater than or equal to twice the value of
the Center frequency of input signal (Hz). The default is 30 MHz. This parameter applies
when you clear the Inherit sample rate from input check box.

View Filter Response
Opens the Filter Visualization Tool FVTool and displays the magnitude/phase response of each
stage as well as the cascade of stages in the Digital Down-Converter. The response is based on
the block dialog box parameters. Changes made to these parameters update FVTool.

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as

 Digital Down-Converter

2-391

the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

Data Types tab

Stage input
Data type of the input of the first, second, and third filter stages. You can set this parameter to:

• Inherit: Same as input (default) — The block inherits the Stage input from the input
signal.

2 Blocks

2-392

• fixdt([],16,0) — Fixed-point data type with binary point scaling. Specify the sign mode of
this data type as [] or true.

• An expression that evaluates to a data type, for example, numerictype([],16,15). Specify
the sign mode of this data type as [] or true.

Click the Show data type assistant button to display the data type assistant, which helps
you set the stage input parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Data type of the block output. You can set this parameter to:

• Inherit: Same as input (default) — The block Inherits the output datatype from the
input.

• fixdt([],16,0) — Fixed-point data type with binary point scaling. Specify the sign mode of
this data type as [] or true.

• An expression that evaluates to a data type, for example, numerictype([],16,15). Specify
the sign mode of this data type as [] or true.

Click the Show data type assistant button to display the data type assistant, which helps
you set the Output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Minimum
Minimum value of the block output. The default value is [] (unspecified). Simulink software uses
this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Maximum value of the block output. The default value is [] (unspecified). Simulink software uses
this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

 Digital Down-Converter

2-393

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, 32- and 64-bit signed integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, 32- and 64-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Objects
dsp.DigitalDownConverter | dsp.DigitalUpConverter

Blocks
Digital Up-Converter

Introduced in R2015a

2 Blocks

2-394

Digital Up-Converter
Interpolate digital signal and translate it from baseband to Intermediate Frequency (IF) band

Library
Signal Operations

dspsigops

Description
The Digital Up-Converter (DUC) block converts a complex digital baseband signal to a real passband
signal.

The DUC block upsamples the input signal using a cascade of three interpolation filters. The block
frequency upconverts the upsampled signal by multiplying it by the specified center frequency of the
output signal. This block designs the interpolation filters according to the filter parameters that you
set in the block dialog.

Structure
This block brings the capabilities of dsp.DigitalUpConverter System object to the Simulink
environment.

The DUC block consists of a FIR interpolator, a CIC compensator, and a CIC interpolator. You can
bypass the FIR interpolator, depending on how you set the DUC block parameters.

For more information on the structure that the DUC block uses, including the flow of fixed-point
input, see the Construction on page 4-434 section in dsp.DigitalUpConverter.

 Digital Up-Converter

2-395

Examples
• “Digital Up and Down Conversion for Family Radio Service”

Dialog Box
Main Tab

Interpolation factor
Interpolation factor, specified as a positive integer scalar, or as a 1-by-2 or 1-by-3 vector of
positive integers. The default is 100.

When you set this parameter to a scalar, the block chooses the interpolation factors for each of
the three filtering stages.

When you set this parameter to a 1-by-2 vector, the block bypasses the first filter stage and sets
the interpolation factor of the second and third filtering stages to the values in the first and

2 Blocks

2-396

second vector elements, respectively. Both elements of the Interpolation factor must be greater
than 1.

When you set this parameter to a 1-by-3 vector, the ith element of the vector specifies the
interpolation factor for the ith filtering stage. The second and third elements of Interpolation
factor must be greater than 1, and the first element must be 1 or 2.

Minimum order filter design
When you select this check box, the block designs filters with the minimum order that meets the
requirements specified in these parameters:

• Passband ripple of cascade response (dB)
• Stopband attenuation of cascade response (dB)
• Two sided bandwidth of input signal (Hz)
• Source of stopband frequency
• Stopband frequency (Hz)

When you clear this check box, the block designs filters with orders that you specify in Order of
first filter stage, Order of CIC compensation filter stage, and Number of sections of CIC
interpolator. The filter designs meet the passband and stopband frequency specifications that
you set in Two sided bandwidth of input signal (Hz), Source of stopband frequency, and
Stopband frequency (Hz). By default, this check box is selected.

Order of first filter stage
Order of the first filter stage, specified as an even positive integer scalar. When you specify
Interpolation factor as a 1-by-2 vector, the block ignores the value of Order of first filter
stage because the block bypasses the first filter stage. This parameter applies when you clear the
Minimum order filter design check box. The default is 10.

Order of CIC compensation filter stage
Order of the CIC compensation filter stage, specified as a positive integer scalar. This parameter
applies when you clear the Minimum order filter design check box. The default is 12.

Number of sections of CIC interpolator
Number of sections in the CIC interpolator, specified as a positive integer scalar. This parameter
applies when you clear the Minimum order filter design check box. The default is 3.

Two sided bandwidth of input signal (Hz)
Two sided bandwidth of the input signal, specified as a positive integer scalar. The block sets the
passband frequency of the cascade of filters to half the value that you specify in this parameter.
The default is 200 kHz.

Source of stopband frequency
Source of the stopband frequency, specified as Auto or Property. The default is Auto.

When you set this parameter to Auto, the block places the cutoff frequency of the cascade filter
response at approximately Fc = SampleRate/2 Hz, and computes the stopband frequency as Fstop
= Fc + TW/2. SampleRate is computed as 1/ Ts, where Ts is the sample time of the input signal.
TW is the transition bandwidth of the cascade response, computed as 2×(Fc–Fp), and the
passband frequency, Fp, equals Bandwidth/2.

When you set this parameter to Property, specify the source in Stopband frequency (Hz).

 Digital Up-Converter

2-397

Stopband frequency (Hz)
Stopband frequency, specified as a double-precision positive scalar. This parameter applies when
you set the Source of stopband frequency to Property. The default is 150 kHz.

Passband ripple of cascade response (dB)
Passband ripple of the cascade response, specified as a double-precision positive scalar. When
you select the Minimum order filter design, the block designs the filters so that the cascade
response meets the passband ripple that you specify in Passband ripple of cascade response
(dB). This parameter applies when you select the Minimum order filter design check box. The
default is 0.1 dB.

Stopband attenuation of cascade response (dB)
Stopband attenuation of the cascade response, specified as a double-precision positive scalar.
When you select the Minimum order filter design check box, the block designs the filters so
that the cascade response meets the stopband attenuation that you specify in Stopband
attenuation of cascade response (dB). This parameter applies when you select the Minimum
order filter design check box. The default is 60 dB.

Type of oscillator
Oscillator type, specified as one of the following:

• Sine wave (default) — The block frequency upconverts the output of the interpolation filter
cascade using a complex exponential signal obtained from samples of a sinusoidal
trigonometric function.

• NCO — The block performs frequency up conversion with a complex exponential obtained
using a numerically controlled oscillator (NCO).

Center frequency of output signal (Hz)
Center frequency of the output signal, specified as a double-precision positive scalar. The value of
this parameter must be less than or equal to half the product of the SampleRate times the total
interpolation factor. SampleRate is computed as 1/ Ts, where Ts is the sample time of the input
signal. The block up converts the input signal so that the output spectrum centers at the
frequency you specify in Center frequency of output signal (Hz). The default is 14 MHz.

Number of NCO accumulator bits
Number of NCO accumulator bits, specified as an integer scalar in the range [1 128]. This
parameter applies when you set Type of oscillator to NCO. The default is 16.

Number of NCO quantized accumulator
Number of NCO quantized accumulator bits, specified as an integer scalar in the range [1 128].
This value must be less than the value you specify in Number of NCO accumulator bits. This
parameter applies when you set Type of oscillator to NCO. The default is 12.

Dither control for NCO
When you select this check box, a number of dither bits specified in Number of NCO dither bits
applies dither to the NCO signal. This parameter applies when you set Type of oscillator to NCO.
By default, this check box is selected.

Number of NCO dither bits
Number of NCO dither bits, specified as an integer scalar smaller than the number of
accumulator bits that you specify in Number of NCO accumulator bits. This parameter applies
when you set Type of oscillator to NCO and select the Dither control for NCO. The default is 4.

Inherit sample rate from input
When you select this check box, sample rate is computed as N/ Ts, where N is the frame size of
the input signal, and Ts is the sample time of the input signal. When you clear this check box, the

2 Blocks

2-398

block’s sample rate is the value specified in Input sample rate (Hz). By default, this check box
is selected.

Input sample rate
Input sample rate, specified as a positive scalar. The value of this parameter multiplied by the
total interpolation factor must be greater than or equal to twice the value of the Center
frequency of output signal (Hz). The default is 30 MHz. This parameter applies when you
clear the Inherit sample rate from input check box.

View Filter Response
Opens the Filter Visualization Tool FVTool and displays the magnitude/phase response of each
stage as well as the cascade of stages in the Digital Up-Converter. The response is based on the
block dialog box parameters. Changes made to these parameters update FVTool.

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

 Digital Up-Converter

2-399

Data Types Tab

Stage output
Data type of the output of the first, second, and third filter stages. You can set this parameter to:

• Inherit: Same as input (default) — The block inherits the Stage output from the input
signal.

• fixdt([],16,0) — Fixed-point data type with binary point scaling. Specify the sign mode of
this data type as [] or true.

• An expression that evaluates to a data type, for example, numerictype([],16,15). Specify
the sign mode of this data type as [] or true.

The block casts the data at the output of each filter stage according to the value you set in this
parameter. For the CIC stage, the casting is done after the signal has been scaled by the
normalization factor.

2 Blocks

2-400

Click the Show data type assistant button to display the data type assistant, which helps
you set the stage output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Data type of the block output. You can set this parameter to:

• Inherit: Same as input (default) — The block Inherits the output datatype from the
input.

• fixdt([],16,0) — Fixed-point data type with binary point scaling. Specify the sign mode of
this data type as [] or true.

• An expression that evaluates to a data type, for example, numerictype([],16,15). Specify
the sign mode of this data type as [] or true.

Click the Show data type assistant button to display the data type assistant, which helps
you set the Output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Minimum
Minimum value of the block output. The default value is [] (unspecified). Simulink software uses
this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Maximum value of the block output. The default value is [] (unspecified). Simulink software uses
this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, 32- and 64-bit signed integers

 Digital Up-Converter

2-401

Port Supported Data Types
Output • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, 32- and 64-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Objects
dsp.DigitalDownConverter | dsp.DigitalUpConverter

Blocks
Digital Down-Converter

Introduced in R2015a

2 Blocks

2-402

Digital Filter (Obsolete)
Filter each channel of input over time using static or time-varying digital filter implementations

Library
Filtering / Filter Implementations

dsparch4

Description

Note Use of Digital Filter block in future releases is not recommended. Existing instances will
continue to operate, but certain functionality will be disabled. See “Functionality being removed or
replaced for blocks and System objects”. We strongly recommend using one of Discrete FIR Filter,
Discrete Filter, Biquad Filter, or Allpole Filter in new designs.

You can use the Digital Filter block to efficiently implement a floating-point or fixed-point filter for
which you know the coefficients, or that is already defined in a dfilt object. The block
independently filters each channel of the input signal with a specified digital IIR or FIR filter. The
block can implement static filters with fixed coefficients, as well as time-varying filters with
coefficients that change over time. You can tune the coefficients of a static filter during simulation.

This block filters each channel of the input signal independently over time. You must set the Input
processing parameter to specify how the block interprets the input signal. You can select one of the
following options:

• Columns as channels (frame based) — When you select this option, the block treats each
column of the input as an independent channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as an individual channel.

The output dimensions always match those of the input signal. The outputs of this block numerically
match the outputs of the Digital Filter Design block and of the dfilt object.

Note The Digital Filter block has direct feedthrough, so if you connect the output of this block back
to its input you get an algebraic loop. For more information on direct feedthrough and algebraic
loops, see “Algebraic Loop Concepts” (Simulink).

 Digital Filter (Obsolete)

2-403

Sections of This Reference Page

• “Coefficient Source” on page 2-404
• “Supported Filter Structures” on page 2-404
• “Specifying Initial Conditions” on page 2-406
• “State Logging” on page 2-408
• “Fixed-Point Data Types” on page 2-409
• “Dialog Box” on page 2-409
• “Filter Structure Diagrams” on page 2-419
• “Supported Data Types” on page 2-446
• “See Also” on page 2-446

Coefficient Source

The Digital Filter block can operate in three different modes. Select the mode in the Coefficient
source group box.

• Dialog parameters Enter information about the filter such as structure and coefficients in the
block mask.

• Input port(s) Enter the filter structure in the block mask, and the filter coefficients come in
through one or more block ports. This mode is useful for specifying time-varying filters.

• Discrete-time filter object (DFILT) Specify the filter using a dfilt object.

Supported Filter Structures

When you select Discrete-time filter object (DFILT), the following dfilt structures are
supported:

• dfilt.df1
• dfilt.df1t
• dfilt.df2
• dfilt.df2t
• dfilt.df1sos
• dfilt.df1tsos
• dfilt.df2sos
• dfilt.df2tsos
• dfilt.dffir
• dfilt.dffirt
• dfilt.dfsymfir
• dfilt.dfasymfir
• dfilt.latticear
• dfilt.latticemamin

When you select Dialog parameters or Input port(s), the list of filter structures offered in the
Filter structure parameter depends on whether you set the Transfer function type to IIR
(poles & zeros), IIR (all poles), or FIR (all zeros), as summarized in the following
table.

2 Blocks

2-404

Note Each structure listed in the table below supports both fixed-point and floating-point signals.

The table also shows the vector or matrix of filter coefficients you must provide for each filter
structure.

Filter Structures and Filter Coefficients

Transfer
Function Type

Supported Filter Structures Filter Coefficient Specification

IIR (poles &
zeros)

Direct form I

Direct form I transposed

Direct form II

Direct form II transposed

• Numerator coefficients vector [b0, b1, b2, ...,
bn]

• Denominator coefficients vector [a0, a1,
a2, ..., am]

See Special Consideration for the Leading
Denominator Coefficient on page 2-405.

Biquadratic direct form I
(SOS)

Biquadratic direct form I
transposed (SOS)

Biquadratic direct form II
(SOS)

Biquadratic direct form II
transposed (SOS)

• M-by-6 second-order section (SOS) matrix.
• Scale values

IIR (all poles) Direct form

Direct form transposed

Denominator coefficients vector [a0, a1, a2, ...,
am]

See Special Consideration for the Leading
Denominator Coefficient on page 2-405.

Lattice AR Reflection coefficients vector [k1, k2, ..., kn]
FIR (all zeros) Direct form

Direct form symmetric

Direct form antisymmetric

Direct form transposed

Numerator coefficients vector [b0, b1, b2, ..., bn]

Lattice MA Reflection coefficients vector [k1, k2, ..., kn]

Special Considerations for the Leading Denominator Coefficient

In some cases, the Digital Filter block requires the leading denominator coefficient (a0) to be 1. This
requirement applies under the following conditions:

• The Digital Filter block is operating in a fixed-point mode. The block operates in a fixed-point
mode when at least one of the following statements is true:

• The input to the Digital Filter block has a fixed-point or integer data type.

 Digital Filter (Obsolete)

2-405

• The Fixed-point instrumentation mode parameter under Analysis > Fixed Point Tool has
a setting of Minimums, maximums and overflows.

• The Coefficient source has a setting of Dialog or Input port(s).

Note If you are working in one of the fixed-point situations described in the previous bullet, and
the Coefficient source is set to Input port(s), you must select the First denominator
coefficient = 1, remove a0 term in the structure check box.

• The Transfer function type and Filter structure parameters are set to one of the combinations
described in the following table.

Transfer function type Filter structure
IIR (poles & zeros) Direct form I

Direct form I transposed
Direct form II
Direct form II transposed

IIR (all poles) Direct form
Direct form transposed

The Digital Filter block produces an error if you use it in one of the these configurations and your
leading denominator coefficient (a0) does not equal 1. To resolve the error, set your leading
denominator coefficient to 1 by scaling all numerator and denominator coefficients by a factor of a0.

Specifying Initial Conditions

In Dialog parameters and Input port(s) modes, the block initializes the internal filter states to zero
by default, which is equivalent to assuming past inputs and outputs are zero. You can optionally use
the Initial conditions parameter to specify nonzero initial conditions for the filter delays.

To determine the number of initial condition values you must specify, and how to specify them, see
the following table on Valid Initial Conditions and Number of Delay Elements (Filter States). The
Initial conditions parameter can take one of four forms as described in the following table.

2 Blocks

2-406

Valid Initial Conditions

Initial Condition Examples Description
Scalar 5

Each delay element for each channel is
set to 5.

The block initializes all delay elements in the
filter to the scalar value.

Vector
(for applying the
same delay
elements to each
channel)

For a filter with two delay elements: [d1
d2]

The delay elements for all channels are
d1 and d2.

Each vector element specifies a unique initial
condition for a corresponding delay element. The
block applies the same vector of initial conditions
to each channel of the input signal. The vector
length must equal the number of delay elements
in the filter (specified in the table Number of
Delay Elements (Filter States)).

Vector or matrix
(for applying
different delay
elements to each
channel)

For a 3-channel input signal and a filter
with two delay elements:

[d1 d2 D1 D2 d1 d2] or

d1 D1 d1
d2 D2 d2

• The delay elements for channel 1 are
d1 and d2.

• The delay elements for channel 2 are
D1 and D2.

• The delay elements for channel 3 are
d1and d2.

Each vector or matrix element specifies a unique
initial condition for a corresponding delay
element in a corresponding channel:

• The vector length must be equal to the
product of the number of input channels and
the number of delay elements in the filter
(specified in the table Number of Delay
Elements (Filter States)).

• The matrix must have the same number of
rows as the number of delay elements in the
filter (specified in the table Number of Delay
Elements (Filter States)), and must have one
column for each channel of the input signal.

Empty matrix []
Each delay element for each channel is
set to 0.

The empty matrix, [], is equivalent to setting the
Initial conditions parameter to the scalar value
0.

The number of delay elements (filter states) per input channel depends on the filter structure, as
indicated in the following table.

 Digital Filter (Obsolete)

2-407

Number of Delay Elements (Filter States)

Filter Structure Number of Delay Elements per Channel
Direct form
Direct form transposed
Direct form symmetric
Direct form antisymmetric

#_of_filter_coeffs-1

Direct form I
Direct form I transposed

• #_of_zeros-1
• #_of_poles-1

Direct form II
Direct form II transposed

max(#_of_zeros, #_of_poles)-1

Biquadratic direct form I (SOS)
Biquadratic direct form I transposed (SOS)
Biquadratic direct form II (SOS)
Biquadratic direct form II transposed
(SOS)

2 * #_of_filter_sections

Lattice AR
Lattice MA

#_of_reflection_coeffs

State Logging

Simulink enables you to log the states in your model to the MATLAB workspace. The following table
indicates which filter structures of the Digital Filter block support the Simulink state logging feature.
See “State” (Simulink) for more information.

Transfer Function
Type

Filter Structure State Logging
Supported

IIR (poles &
zeros)

Direct form I No
Direct form I transposed Yes
Direct form II No
Direct form II transposed Yes
Biquadratic direct form I (SOS) Yes
Biquadratic direct form I transposed (SOS) Yes
Biquadratic direct form II (SOS) Yes
Biquadratic direct form II transposed (SOS) Yes

IIR (all poles) Direct form No
Direct form transposed Yes
Lattice AR Yes

FIR (all zeros) Direct form No
Direct form symmetric No
Direct form antisymmetric No
Direct form transposed Yes
Lattice MA Yes

2 Blocks

2-408

Fixed-Point Data Types

All structures supported by the Digital Filter block support fixed-point data types. You can specify
intermediate fixed-point data types for quantities such as the coefficients, accumulator, and product
output for each filter structure. See “Filter Structure Diagrams” on page 2-419 for diagrams
depicting the use of these intermediate fixed-point data types in each filter structure.

Dialog Box
Coefficient Source

The Digital Filter block can operate in three different modes. Select the mode in the Coefficient
source group box.

• Dialog parameters Enter information about the filter such as structure and coefficients in the
block mask.

• Input port(s) Enter the filter structure in the block mask, and the filter coefficients come in
through one or more block ports. This mode is useful for specifying time-varying filters.

• Discrete-time filter object (DFILT) Specify the filter using a dfilt object.

Different items appear on the Digital Filter block dialog depending on whether you select Dialog
parameters, Input port(s), or Discrete-time filter object (DFILT) in the Coefficient source
group box. See the following sections for details:

• “Specify Filter Characteristics in Dialog and/or Through Input Ports” on page 2-409
• “Specify Discrete-Time Filter Object” on page 2-416

Specify Filter Characteristics in Dialog and/or Through Input Ports

The Main pane of the Digital Filter block dialog appears as follows when Dialog parameters is
specified in the Coefficient source group box. The parameters below can appear when Dialog
parameters or Input port(s) is selected, as noted.

 Digital Filter (Obsolete)

2-409

Transfer function type
Select the type of transfer function of the filter; IIR (poles & zeros), IIR (all poles), or
FIR (all zeros). See “Supported Filter Structures” on page 2-404 for more information.

Filter structure
Select the filter structure. The selection of available structures varies depending the setting of
the Transfer function type parameter. See “Supported Filter Structures” on page 2-404 for
more information.

Numerator coefficients
Specify the vector of numerator coefficients of the filter's transfer function.

This parameter is only visible when Dialog parameters is selected and when the selected filter
structure lends itself to specification with numerator coefficients. Tunable (Simulink).

2 Blocks

2-410

Denominator coefficients
Specify the vector of denominator coefficients of the filter's transfer function.

In some cases, the leading denominator coefficient (a0) must be 1. See Special Consideration for
the Leading Denominator Coefficient on page 2-405 for more information.

This parameter is only visible when Dialog parameters is selected and when the selected filter
structure lends itself to specification with denominator coefficients. Tunable (Simulink).

Reflection coefficients
Specify the vector of reflection coefficients of the filter's transfer function.

This parameter is only visible when Dialog parameters is selected and when the selected filter
structure lends itself to specification with reflection coefficients. Tunable (Simulink).

SOS matrix (Mx6)
Specify an M-by-6 SOS matrix containing coefficients of a second-order section (SOS) filter, where
M is the number of sections. You can use the ss2sos and tf2sos functions from Signal
Processing Toolbox software to check whether your SOS matrix is valid.

This parameter is only visible when Dialog parameters is selected and when the selected filter
structure is biquadratic. Tunable (Simulink).

Scale values
Specify the scale values to be applied before and after each section of a biquadratic filter.

• If you specify a scalar, that value is applied before the first filter section. The rest of the scale
values are set to 1.

• You can also specify a vector with M + 1 elements, assigning a different value to each scale.
See “Filter Structure Diagrams” on page 2-419 for diagrams depicting the use of scale values
in biquadratic filter structures.

This parameter is only visible when Dialog parameters is selected and when the selected filter
structure is biquadratic. Tunable (Simulink).

First denominator coefficient = 1, remove a0 term in the structure
Select this parameter to reduce the number of computations the block must make to produce the
output by omitting the 1 / a0 term in the filter structure. The block output is invalid if you select
this parameter when the first denominator filter coefficient is not always 1 for your time-varying
filter.

This parameter is only enabled when the Input port(s) is selected and when the selected filter
structure lends itself to this specification.

Coefficient update rate
Specify how often the block updates time-varying filters; once per sample or once per frame.

This parameter appears only when the following conditions are met:

• You specify Input port(s) in the Coefficient source group box.
• You set the Input processing parameter to Columns as channels (frame based).

Initial conditions
Specify the initial conditions of the filter states. To learn how to specify initial conditions, see
“Specifying Initial Conditions” on page 2-406.

 Digital Filter (Obsolete)

2-411

Initial conditions on zeros side
(Not shown in dialog above.) Specify the initial conditions for the filter states on the side of the
filter structure with the zeros (b0, b1,b2, ...); see the diagram below.

This parameter is enabled only when the filter has both poles and zeros, and when you select a
structure such as direct form I, which has separate filter states corresponding to the poles (ak)
and zeros (bk). To learn how to specify initial conditions, see “Specifying Initial Conditions” on
page 2-406.

Initial conditions on poles side
(Not shown in dialog above). Specify the initial conditions for the filter states on the side of the
filter structure with the poles (a0, a1,a2, ...); see the diagram below.

This parameter is enabled only when the filter has both poles and zeros, and when you select a
structure such as direct form I, which has separate filter states corresponding to the poles (ak)
and zeros (bk). To learn how to specify initial conditions, see “Specifying Initial Conditions” on
page 2-406.

Input processing
Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Note The Inherited (this choice will be removed - see release notes) option
will be removed in a future release. See “Frame-Based Processing” in the DSP System Toolbox
Release Notes for more information.

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product and displays the filter response of the filter defined by the block. For more information on
FVTool, see the Signal Processing Toolbox documentation.

2 Blocks

2-412

Note If you specify a filter in the Filter parameter, you must click the Apply button to apply the filter
before using the View filter response button.

The Data Types pane of the Digital Filter block dialog appears as follows when Dialog parameters
is specified in the Coefficient source group box. The parameters below can appear when Dialog
parameters or Input port(s) is selected, depending on the filter structure and whether the
coefficients are being entered via ports or on the block mask.

Rounding mode
Select the rounding mode for fixed-point operations. The filter coefficients do not obey this
parameter; they always round to Nearest.

 Digital Filter (Obsolete)

2-413

Overflow mode
Select the overflow mode for fixed-point operations. The filter coefficients do not obey this
parameter; they are always saturated.

Section I/O
Choose how you specify the word length and the fraction length of the fixed-point data type going
into and coming out of each section of a biquadratic filter. See “Filter Structure Diagrams” on
page 2-419 for illustrations depicting the use of the section I/O data type in this block.

This parameter is only visible when the selected filter structure is biquadratic:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word and fraction lengths of the

section input and output, in bits.
• When you select Slope and bias scaling, you can enter the word lengths, in bits, and the

slopes of the section input and output. This block requires power-of-two slope and a bias of
zero.

Tap sum
Choose how you specify the word length and the fraction length of the tap sum data type of a
direct form symmetric or direct form antisymmetric filter. See “Filter Structure Diagrams” on
page 2-419 for illustrations depicting the use of the tap sum data type in this block.

This parameter is only visible when the selected filter structure is either Direct form
symmetric or Direct form antisymmetric:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word length and the fraction

length of the tap sum accumulator, in bits.
• When you select Slope and bias scaling, you can enter the word length, in bits, and the

slope of the tap sum accumulator. This block requires power-of-two slope and a bias of zero.

Multiplicand
Choose how you specify the word length and the fraction length of the multiplicand data type of a
direct form I transposed or biquadratic direct form I transposed filter. See “Filter Structure
Diagrams” on page 2-419 for illustrations depicting the use of the multiplicand data type in this
block.

This parameter is only visible when the selected filter structure is either Direct form I
transposed or Biquad direct form I transposed (SOS):

• When you select Same as output, these characteristics match those of the output to the
block.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the multiplicand data type, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the multiplicand data type. This block requires power-of-two slope and a bias of zero.

Coefficients
Choose how you specify the word length and the fraction length of the filter coefficients
(numerator and/or denominator). See “Filter Structure Diagrams” on page 2-419 for illustrations
depicting the use of the coefficient data types in this block:

2 Blocks

2-414

• When you select Same word length as input, the word length of the filter coefficients
match that of the input to the block. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best precision
possible given the value and word length of the coefficients.

• When you select Specify word length, you can enter the word length of the coefficients, in
bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point
only scaling that provides you with the best precision possible given the value and word length
of the coefficients.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the coefficients, in bits. If applicable, you can enter separate fraction lengths for the
numerator and denominator coefficients.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the coefficients. If applicable, you can enter separate slopes for the numerator and
denominator coefficients. This block requires power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the Overflow mode parameters;
they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the product output word and
fraction lengths. See “Filter Structure Diagrams” on page 2-419 and “Multiplication Data Types”
for illustrations depicting the use of the product output data type in this block:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word length and the fraction

length of the product output, in bits.
• When you select Slope and bias scaling, you can enter the word length, in bits, and the

slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word and fraction
lengths. See “Filter Structure Diagrams” on page 2-419 and “Multiplication Data Types” for
illustrations depicting the use of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Same as product output, these characteristics match those of the

product output.
• When you select Binary point scaling, you can enter the word length and the fraction

length of the accumulator, in bits.
• When you select Slope and bias scaling, you can enter the word length, in bits, and the

slope of the accumulator. This block requires power-of-two slope and a bias of zero.

State
Use this parameter to specify how you would like to designate the state word and fraction
lengths. See “Filter Structure Diagrams” on page 2-419 for illustrations depicting the use of the
state data type in this block.

This parameter is not visible for direct form and direct form I filter structures.

• When you select Same as input, these characteristics match those of the input to the block.

 Digital Filter (Obsolete)

2-415

• When you select Same as accumulator, these characteristics match those of the
accumulator.

• When you select Binary point scaling, you can enter the word length and the fraction
length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Same as accumulator, these characteristics match those of the

accumulator.
• When you select Binary point scaling, you can enter the word length and the fraction

length of the output, in bits.
• When you select Slope and bias scaling, you can enter the word length, in bits, and the

slope of the output. This block requires power-of-two slope and a bias of zero.

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Specify Discrete-Time Filter Object

The Main pane of the Digital Filter block dialog appears as follows when Discrete-time filter object
(DFILT) is specified in the Coefficient source group box.

2 Blocks

2-416

Filter
Specify the discrete-time filter object (dfilt) that you would like the block to implement. You can
do this in one of three ways:

• You can fully specify the dfilt object in the block mask, as shown in the default value.
• You can enter the variable name of a dfilt object that is defined in any workspace.
• You can enter a variable name for a dfilt object that is not yet defined.

Input processing
Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

 Digital Filter (Obsolete)

2-417

Note The Inherited (this choice will be removed - see release notes) option
will be removed in a future release. See “Frame-Based Processing” in the DSP System Toolbox
Release Notes for more information.

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product and displays the filter response of the dfilt object specified in the Filter parameter. For
more information on FVTool, see the Signal Processing Toolbox documentation.

Note If you specify a filter in the Filter parameter, you must click the Apply button to apply the
filter before using the View filter response button.

The Data Types pane of the Digital Filter block dialog appears as follows when Discrete-time filter
object (DFILT) is specified in the Coefficient source group box.

2 Blocks

2-418

The fixed-point settings of the filter object specified on the Main pane are displayed on the Data
Types pane. You cannot change these settings directly on the block mask. To change the fixed-point
settings you must edit the filter object directly.

Filter Structure Diagrams
The diagrams in the following sections show the filter structures supported by the Digital Filter block.
They also show the data types used in the filter structures for fixed-point signals. You can set the
coefficient, output, accumulator, product output, and state data types shown in these diagrams in the
block dialog. This is discussed in “Dialog Box” on page 2-409.

• “IIR direct form I” on page 2-420
• “IIR direct form I transposed” on page 2-421
• “IIR direct form II” on page 2-423
• “IIR direct form II transposed” on page 2-424
• “IIR biquadratic direct form I” on page 2-426
• “IIR biquadratic direct form I transposed” on page 2-427
• “IIR biquadratic direct form II” on page 2-429
• “IIR biquadratic direct form II transposed” on page 2-430
• “IIR (all poles) direct form” on page 2-432
• “IIR (all poles) direct form transposed” on page 2-434
• “IIR (all poles) direct form lattice AR” on page 2-436
• “FIR (all zeros) direct form” on page 2-437
• “FIR (all zeros) direct form symmetric” on page 2-438
• “FIR (all zeros) direct form antisymmetric” on page 2-440
• “FIR (all zeros) direct form transposed” on page 2-442
• “FIR (all zeros) lattice MA” on page 2-443

 Digital Filter (Obsolete)

2-419

IIR direct form I

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must be the same complexity as each other.

• When the numerator and denominator coefficients are specified via input ports and have
different complexities from each other, you get an error.

• When the numerator and denominator coefficients are specified in the dialog and have
different complexities from each other, the block does not error, but instead processes the filter
as if two sets of complex coefficients are provided. The coefficient set that is real-valued is
treated as if it is a complex vector with zero-valued imaginary parts.

• Numerator and denominator coefficients must have the same word length. They can have different
fraction lengths.

• The State data type cannot be specified on the block mask for this structure, because the input
and output states have the same data types as the input and output buffers.

2 Blocks

2-420

IIR direct form I transposed

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.

 Digital Filter (Obsolete)

2-421

• Numerator and denominator coefficients must be the same complexity as each other.

• When the numerator and denominator coefficients are specified via input ports and have
different complexities from each other, you get an error.

• When the numerator and denominator coefficients are specified in the dialog and have
different complexities from each other, the block does not error, but instead processes the filter
as if two sets of complex coefficients are provided. The coefficient set that is real-valued is
treated as if it is a complex vector with zero-valued imaginary parts.

• States are complex when either the input or the coefficients are complex.
• Numerator and denominator coefficients must have the same word length. They can have different

fraction lengths.

2 Blocks

2-422

IIR direct form II

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must be the same complexity as each other.

• When the numerator and denominator coefficients are specified via input ports and have
different complexities from each other, you get an error.

• When the numerator and denominator coefficients are specified in the dialog and have
different complexities from each other, the block does not error, but instead processes the filter
as if two sets of complex coefficients are provided. The coefficient set that is real-valued is
treated as if it is a complex vector with zero-valued imaginary parts.

• States are complex when either the inputs or the coefficients are complex.
• Numerator and denominator coefficients must have the same word length. They can have different

fraction lengths.

 Digital Filter (Obsolete)

2-423

IIR direct form II transposed

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must be the same complexity as each other.

• When the numerator and denominator coefficients are specified via input ports and have
different complexities from each other, you get an error.

• When the numerator and denominator coefficients are specified in the dialog and have
different complexities from each other, the block does not error, but instead processes the filter

2 Blocks

2-424

as if two sets of complex coefficients are provided. The coefficient set that is real-valued is
treated as if it is a complex vector with zero-valued imaginary parts.

• States are complex when either the inputs or the coefficients are complex.
• Numerator and denominator coefficients must have the same word length. They can have different

fraction lengths.

 Digital Filter (Obsolete)

2-425

IIR biquadratic direct form I

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs and coefficients can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Specify the coefficients by a M-by-6 matrix in the block mask. You cannot specify coefficients by

input ports for this filter structure.
• When the a0 element of any row is not equal to one, that row is normalized by a0 prior to filtering.
• States are complex when either the inputs or the coefficients are complex.
• You cannot specify the state data type on the block mask for this structure, because the input and

output states have the same data types as the input.
• Scale values must have the same complexity as the coefficient SOS matrix.
• The scale value parameter must be a scalar or a vector of length M+1, where M is the number of

sections.
• The Section I/O parameter determines the data type for the section input and output data types.

The section input and stage output data type must have the same word length but can have
different fraction lengths.

The following diagram shows the data types for one section of the filter.

2 Blocks

2-426

The following diagram shows the data types between filter sections.

IIR biquadratic direct form I transposed

 Digital Filter (Obsolete)

2-427

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs and coefficients can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Specify the coefficients by a M-by-6 matrix in the block mask. You cannot specify coefficients by

input ports for this filter structure.
• When the a0 element of any row is not equal to one, that row is normalized by a0 prior to filtering.
• States are complex when either the inputs or the coefficients are complex.
• Scale values must have the same complexity as the coefficient SOS matrix.
• The scale value parameter must be a scalar or a vector of length M+1, where M is the number of

sections.
• The Section I/O parameter determines the data type for the section input and output data types.

The section input and section output data type must have the same word length but can have
different fraction lengths.

The following diagram shows the data types for one section of the filter.

The following diagram shows the data types between filter sections.

2 Blocks

2-428

IIR biquadratic direct form II

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs and coefficients can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Specify the coefficients by a M-by-6 matrix in the block mask. You cannot specify coefficients by

input ports for this filter structure.
• When the a0 element of any row is not equal to one, that row is normalized by a0 prior to filtering.
• States are complex when either the inputs or the coefficients are complex.
• Scale values must have the same complexity as the coefficient SOS matrix.
• The scale value parameter must be a scalar or a vector of length M+1, where M is the number of

sections.
• The Section I/O parameter determines the data type for the section input and output data types.

The section input and section output data type must have the same word length but can have
different fraction lengths.

The following diagram shows the data types for one section of the filter.

 Digital Filter (Obsolete)

2-429

The following diagram shows the data types between filter sections.

IIR biquadratic direct form II transposed

2 Blocks

2-430

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs and coefficients can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Specify the coefficients by a M-by-6 matrix in the block mask. You cannot specify coefficients by

input ports for this filter structure.
• When the a0 element of any row is not equal to one, that row is normalized by a0 prior to filtering.
• States are complex when either the inputs or the coefficients are complex.
• Scale values must have the same complexity as the coefficient SOS matrix.
• The scale value parameter must be a scalar or a vector of length M+1, where M is the number of

sections.
• The Section I/O parameter determines the data type for the section input and output data types.

The section input and section output data type must have the same word length but can have
different fraction lengths.

The following diagram shows the data types for one section of the filter.

The following diagram shows the data types between filter sections.

 Digital Filter (Obsolete)

2-431

IIR (all poles) direct form

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs and coefficients can be real or complex.
• Denominator coefficients can be real or complex.
• You cannot specify the state data type on the block mask for this structure, because the input and

output states have the same data types as the input.

2 Blocks

2-432

 Digital Filter (Obsolete)

2-433

IIR (all poles) direct form transposed

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs and coefficients can be real or complex.
• Denominator coefficients can be real or complex.

2 Blocks

2-434

 Digital Filter (Obsolete)

2-435

IIR (all poles) direct form lattice AR

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs and coefficients can be real or complex.
• Coefficients can be real or complex.

2 Blocks

2-436

FIR (all zeros) direct form

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs can be real or complex.
• Numerator coefficients can be real or complex.
• You cannot specify the state data type on the block mask for this structure, because the input and

output states have the same data types as the input.

 Digital Filter (Obsolete)

2-437

FIR (all zeros) direct form symmetric

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs can be real or complex.
• Numerator coefficients can be real or complex.
• You cannot specify the state data type on the block mask for this structure, because the input and

output states have the same data types as the input.
• It is assumed that the filter coefficients are symmetric. Only the first half of the coefficients are

used for filtering.
• The Tap Sum parameter determines the data type the filter uses when it sums the inputs prior to

multiplication by the coefficients.

2 Blocks

2-438

 Digital Filter (Obsolete)

2-439

FIR (all zeros) direct form antisymmetric

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs can be real or complex.
• Numerator coefficients can be real or complex.
• You cannot specify the state data type on the block mask for this structure, because the input and

output states have the same data types as the input.
• It is assumed that the filter coefficients are antisymmetric. Only the first half of the coefficients

are used for filtering.
• The Tap Sum parameter determines the data type the filter uses when it sums the inputs prior to

multiplication by the coefficients.

2 Blocks

2-440

 Digital Filter (Obsolete)

2-441

FIR (all zeros) direct form transposed

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs can be real or complex.
• Coefficients can be real or complex.
• States are complex when either the inputs or the coefficients are complex.

2 Blocks

2-442

FIR (all zeros) lattice MA

 Digital Filter (Obsolete)

2-443

The following constraints are applicable when processing a fixed-point signal with this filter
structure:

• Inputs and coefficients can be real or complex.
• Coefficients can be real or complex.

HDL Code Generation
HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Note Use of Digital Filter block in future releases is not recommended. Existing instances will
continue to operate, but certain functionality will be disabled. See “Functionality being removed or
replaced for blocks and System objects”. We strongly recommend using Discrete FIR Filter or Biquad
Filter in new designs.

HDL Architecture

When you specify SerialPartition and ReuseAccum for a Digital Filter block, observe the
following constraints.

• If you specify Dialog parameters as the Coefficient source:

• Set Transfer function type to FIR (all zeros).
• Select Filter structure as one of: Direct form, Direct form symmetric, or Direct

form asymmetric.

Distributed Arithmetic Support

Distributed Arithmetic properties DALUTPartition and DARadix are supported for the default
architecture, with FIR, Asymmetric FIR, and Symmetric FIR filter structures.

2 Blocks

2-444

AddPipelineRegisters Support

When you use AddPipelineRegisters, registers are placed based on the filter structure. The pipeline
register placement determines the latency.

Architecture Pipeline Register Placement Latency (clock cycles)
FIR, Asymmetric FIR, and
Symmetric FIR filters

A pipeline register is added
between levels of a tree-based
adder.

ceil(log2(FL)).
FL is the filter length.

FIR Transposed A pipeline register is added
after the products.

1

IIR SOS Pipeline registers are added
between the filter sections.

NS-1.
NS is the number of sections.

HDL Filter Properties

AddPipelineRegisters Insert a pipeline register between stages of computation in a filter. See
also AddPipelineRegisters (HDL Coder).

CoeffMultipliers Specify the use of canonical signed digit (CSD) optimization to decrease
filter area by replacing coefficient multipliers with shift-and-add logic.
When you choose a fully parallel filter implementation, you can set
CoeffMultipliers to csd or factored-csd. The default is multipliers,
which retains multipliers in the HDL. See also CoeffMultipliers (HDL
Coder).

DALUTPartition Specify distributed arithmetic partial-product LUT partitions as a vector of
the sizes of each partition. The sum of all vector elements must be equal to
the filter length. The maximum size for a partition is 12 taps. Set
DALUTPartition to a scalar value equal to the filter length to generate DA
code without LUT partitions. See also DALUTPartition (HDL Coder).

MultiplierInputPipeli
ne

Specify the number of pipeline stages to add at filter multiplier inputs. See
also MultiplierInputPipeline (HDL Coder).

MultiplierOutputPipel
ine

Specify the number of pipeline stages to add at filter multiplier outputs.
See also MultiplierOutputPipeline (HDL Coder).

ReuseAccum Enable or disable accumulator reuse in a serial filter implementation. Set
ReuseAccum to on to use a cascade-serial implementation. See also
ReuseAccum (HDL Coder).

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

 Digital Filter (Obsolete)

2-445

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Coefficients and Data Support

Except for decimator and interpolator filter structures, HDL Coder supports use of complex
coefficients and complex input signals for all filter structures of the Digital Filter block.

Restrictions

• You must set Initial conditions to zero. HDL code generation is not supported for nonzero initial
states.

• HDL Coder does not support the Digital Filter block Input port(s) option for HDL code
generation.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

See Also
Allpole Filter DSP System Toolbox
Digital Filter Design DSP System Toolbox
Biquad Filter DSP System Toolbox
Discrete Filter Simulink
Discrete FIR Filter Simulink
Filter Realization Wizard DSP System Toolbox
filterDesigner DSP System Toolbox
fvtool Signal Processing Toolbox

Introduced in R2014b

2 Blocks

2-446

Digital Filter Design
Design and implement digital FIR and IIR filters
Library: DSP System Toolbox / Filtering / Filter Implementations

Description
Use this block to design, analyze, and efficiently implement floating-point filters.

The Digital Filter Design block implements a digital Finite Impulse Response (FIR) or Infinite Impulse
Response (IIR) filter that you design by using the Filter Designer (filterDesigner) app. This
block provides the same filter implementation as the Discrete FIR Filter or Biquad Filter blocks.

You must specify whether the block performs frame-based or sample-based processing on the input
by setting the Input processing parameter. The block applies the specified filter to each channel of a
discrete-time input signal and outputs the result. The outputs of the block numerically match the
outputs of the Discrete FIR Filter or Biquad Filter block and the MATLAB filter function. For more
information, see “Getting Started with Filter Designer”.

These blocks also implement digital filters, but serve slightly different purposes:

• Discrete FIR Filter and Biquad Filter— Use to efficiently implement floating-point or fixed-point
filters that you have already designed. These blocks provide the same exact filter implementation
as the Digital Filter Design block.

• Filter Realization Wizard — Use to implement floating-point or fixed-point filters built from Sum,
Gain, and Unit Delay blocks. You can either design the filter within this block, or import the
coefficients of a filter that you designed elsewhere.

Ports
Input

Port_1 — Input signal
vector | matrix

Signal to filter, specified as a vector or matrix of real values. When given matrix input, the block
treats each column as an independent channel.

The sample rate, Fs, that you specify in the filter designer app must be identical to the sample rate of
the input to the Digital Filter Design block. When the sampling frequencies do not match, the Digital
Filter Design block returns a warning message and inherits the sample rate of the input block.
Data Types: single | double

Output

Port_1 — Output signal
vector | matrix

 Digital Filter Design

2-447

Filtered signal, returned as a vector or a matrix of real values.
Data Types: single | double

Parameters
Dialog Box

For more information about the parameters in this dialog box, see “Getting Started with Filter
Designer”.

Block Characteristics
Data Types double | single

2 Blocks

2-448

Multidimensional
Signals

No

Variable-Size Signals No

More About
Designing the Filter

To open filter designer, double-click the Digital Filter Design block. Use the filter designer to design
or import a digital FIR or IIR filter. To learn how to design filters with this block and filter designer,
see:

• “Digital Filter Design Block”
• Filter Designer app reference page. For details, see filterDesigner.

Tuning the Filter During Simulation

You can tune the filter specifications in filter designer during simulations if your changes do not
modify the filter length or filter order. As you apply any filter changes in filter designer, the filter is
updated.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

The Digital Filter Design block supports SIMD code generation using Intel AVX2 technology under
these conditions:

• Input processing is set to Columns as channels (frame based).
• Filter Structure (in Import Filter from Workspace pane) is set to Direct-Form FIR. You can

generate SIMD code even when the filter is a Direct-Form FIR Transposed filter. To create a
Direct-Form FIR Transposed filter, select Edit > Convert Structure, and click Direct-Form
FIR Transposed.

• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

See Also
Functions
filterDesigner | filter | fvtool

Blocks
Discrete FIR Filter | Biquad Filter | Analog Filter Design | Window Function

Topics
“Filter Design”
“Filter Analysis”

 Digital Filter Design

2-449

“Digital Filter Design Block”
“Getting Started with Filter Designer”

Introduced before R2006a

2 Blocks

2-450

Discrete Impulse
Generate discrete impulse
Library: DSP System Toolbox / Sources

Description
The Discrete Impulse block generates an impulse (the value 1) at output sample D+1, where you
specify D using the Delay parameter (D ≥ 0). All output samples preceding and following sample D+1
are zero.

When D is a length-N vector, the block generates an M-by-N matrix output representing N distinct
channels, where you specify frame size M using the Samples per frame parameter. The impulse for
the ith channel appears at sample D(i)+1.

The Sample time parameter value, Ts, specifies the output signal sample period. The resulting frame
period is MTs.

Ports
Output

Port_1 — Discrete impulse signal
scalar | vector | matrix

Output signal containing a discrete impulse at output sample D(i)+1, where D is a scalar or vector
specified by the Delay parameter. For more information, see “Description” on page 2-451.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Main

Delay (samples) — Number of zero-valued output samples
0 (default) | scalar | vector

The number of zero-valued output samples, D, preceding the impulse, specified as a scalar or vector
of integer values, greater than or equal to zero. A length-N vector specifies an N-channel output.

Sample time — Output sample period
1 (default) | positive scalar

The sample period, Ts, of the output signal specified as a positive finite scalar. The output frame
period is MTs.

Samples per frame — Samples per frame
1 (default) | positive integer

 Discrete Impulse

2-451

The number of samples, M, in each output frame, specified as a positive integer scalar.

Data Types

Output data type — Output data type
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
boolean | fixdt(1,16) | fixdt(1,16,0) | Inherit: Inherit via back propagation |
<data type expression>

Specify the output data type for this block. You can select one of the following:

• A rule that inherits a data type, for example, Inherit: Inherit via back propagation.
When you select this option, the output data type and scaling matches that of the next
downstream block.

• A built-in data type, such as double
• An expression that evaluates to a valid data type, for example, fixdt(1,16)

For help setting data type parameters, display the Data Type Assistant by clicking the Show data

type assistant button .

See “Control Data Types of Signals” (Simulink) for more information.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Constant | Data Type Conversion | Multiphase Clock | N-Sample Enable | Signal From Workspace

Functions
impz

Topics
“Sample- and Frame-Based Concepts”

2 Blocks

2-452

Introduced before R2006a

 Discrete Impulse

2-453

Discrete FIR Filter HDL Optimized
Finite impulse response filter—optimized for HDL code generation
Library: DSP System Toolbox HDL Support / Filtering

Description
The Discrete FIR Filter HDL Optimized block models finite-impulse response filter architectures
optimized for HDL code generation. The block accepts one input sample at a time, and provides an
option for programmable coefficients. It provides a hardware-friendly interface with input and output
control signals. To provide a cycle-accurate simulation of the generated HDL code, the block models
architectural latency including pipeline registers and resource sharing.

The block provides three filter structures. The direct form systolic architecture provides a fully
parallel implementation that makes efficient use of Intel® and Xilinx DSP blocks. The direct form
transposed architecture is a fully parallel implementation and is suitable for FPGA and ASIC
applications. The partly serial systolic architecture provides a configurable serial implementation that
makes efficient use of FPGA DSP blocks. For a filter implementation that matches multipliers,
pipeline registers, and pre-adders to the DSP configuration of your FPGA vendor, specify your target
device when you generate HDL code.

All three structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters. The parallel implementations also remove the multipliers for zero-valued
coefficients such as in half-band filters and Hilbert transforms.

The latency between valid input data and the corresponding valid output data depends on the filter
structure, serialization options, the number of coefficients, and whether the coefficient values provide
optimization opportunities. For details of structure and latency, see the “Algorithm” on page 2-461
section.

For a FIR filter with multichannel or frame-based inputs, use the Discrete FIR Filter block instead of
this block.

Ports
Input

data — Input data
real or complex scalar

Input data, specified as a real or complex scalar. When the input data type is an integer type or a
fixed-point type, the block uses fixed-point arithmetic for internal calculations.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

2 Blocks

2-454

valid — Validity of input data
scalar

When valid is true, the block captures the data from the data input port.
Data Types: Boolean

coeff — Filter coefficients
real or complex vector

Filter coefficients, specified as a vector of real or complex values. You can change the input
coefficients at any time. The size of the vector depends on the size and symmetry of the sample
coefficients specified in the Coefficients prototype parameter. The prototype specifies a sample
coefficient vector that is representative of the symmetry and zero-valued locations of the expected
input coefficients. The block uses the prototype to optimize the filter by sharing multipliers for
symmetric or antisymmetric coefficients, and removing multipliers for zero-valued coefficients.
Therefore, provide only the nonduplicate coefficients at the port. For example, if you set the
Coefficients prototype parameter to a symmetric 14-tap filter, the block expects a vector of 7 values
on the coeff input port. You must still provide zeros in the input coeff vector for the nonduplicate
zero-valued coefficients.

double and single data types are supported for simulation, but not for HDL code generation.
Dependencies

To enable this port, set Coefficients source to Input port (Parallel interface).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

reset — Control signal that clears data path state
scalar

When reset is true, the block stops the current calculation and clears the internal state of the filter.
The reset signal is synchronous and clears the data path and control path states. For more reset
considerations, see “Tips” on page 2-460.
Dependencies

To enable this port, on the Control Ports tab, select Enable reset input port.
Data Types: Boolean

Output

data — Filtered output data
real or complex scalar

Filtered output data, returned as a real or complex scalar. When the input data type is a floating-point
type, the output data inherits the data type of the input data. When the input data type is an integer
type or a fixed-point type, the Output parameter on the Data Types tab controls the output data
type.
Data Types: fixed point | single | double

valid — Validity of output data
scalar

The block sets valid to true with each valid data returned on the data output port.

 Discrete FIR Filter HDL Optimized

2-455

Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

The block sets ready to true to indicate that it is ready for new input data on the next cycle.

When using the partly-serial architecture, the block processes one sample at a time. If your design
waits for ready to output 0 before de-asserting the input valid, then one extra data input value
arrives at the port. The block stores this extra data while processing the current data, and then does
not set ready to 1 until the extra input is processed.

Dependencies

To enable this port, set Filter structure to Partly serial systolic.
Data Types: Boolean

Parameters
Main

Coefficient source — Source of filter coefficients
Property (default) | Input port (Parallel interface)

You can enter constant filter coefficients as a parameter or provide time-varying filter coefficients
using an input port.

Selecting Input port (Parallel interface) enables the coeff port on the block and the
Coefficients prototype parameter. Specify a prototype to enable the block to optimize the filter
implementation according to the symmetry of your coefficients. To use Input port (Parallel
interface), set the Filter structure parameter to Direct form systolic.

Coefficients — Discrete FIR filter coefficients
[0.5, 0.5] (default) | real or complex vector

Discrete FIR filter coefficients, specified as a vector of real or complex values. You can also specify
the vector as a workspace variable or as a call to a filter design function. When the input data type is
a floating-point type, the block casts the coefficients to the same data type as the input. When the
input data type is an integer type or a fixed-point type, you can set the data type of the coefficients on
the Data Types tab.
Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0])

Dependencies

To enable this parameter, set Coefficients source to Property.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Coefficients prototype — Prototype filter coefficients
[] (default) | real or complex vector

Prototype filter coefficients, specified as a vector of real or complex values. The prototype specifies a
sample coefficient vector that is representative of the symmetry and zero-valued locations of the
expected input coefficients. If all of your input coefficient vectors have the same symmetry and zero-

2 Blocks

2-456

valued coefficient locations, set Coefficients prototype to one of those vectors. If your coefficients
are unknown or not expected to share symmetry or zero-valued locations, set Coefficients
prototype to []. The block uses the prototype to optimize the filter by sharing multipliers for
symmetric or antisymmetric coefficients, and removing multipliers for zero-valued coefficients.

Coefficient optimizations affect the expected size of the vector on the coeff port. Provide only the
nonduplicate coefficients at the port. For example, if you set the Coefficients prototype parameter
to a symmetric 14-tap filter, the block shares one multiplier between each pair of duplicate
coefficients, so the block expects a vector of 7 values on the coeff port. You must still provide zeros in
the input coeff vector for the nonduplicate zero-valued coefficients.

Dependencies

To enable this parameter, set Coefficients source to Input port (Parallel interface).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Filter structure — HDL filter architecture
Direct form systolic (default) | Direct form transposed | Partly serial systolic

Specify the HDL filter architecture as one of these structures:

• Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture and performance details, see
“Fully Parallel Systolic Architecture” on page 2-463.

• Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture and performance details, see “Fully Parallel
Transposed Architecture” on page 2-464.

• Partly serial systolic — This architecture provides a serial filter implementation and
options for tradeoffs between throughput and resource utilization. It makes efficient use of Intel
and Xilinx DSP blocks. The block implements a serial L-coefficient filter with M multipliers and
requires input samples that are at least N cycles apart, such that L = N×M. You can specify either
M or N. For this implementation, the block provides an output port, ready, that indicates when
the block is ready for new input data. For architecture and performance details, see “Partly Serial
Systolic Architecture (1 < N < L)” on page 2-464 and “Fully Serial Systolic Architecture (N ≥ L)”
on page 2-465.

All implementations share multipliers for symmetric and antisymmetric coefficients. The Direct
form systolic and Direct form transposed structures also remove multipliers for zero-valued
coefficients.

Specify serialization factor as — Rule to define serial implementation
Minimum number of cycles between valid input samples (default) | Maximum number of
multipliers

You can specify the rule that the block uses to serialize the filter as either:

• Minimum number of cycles between valid input samples – Specify a requirement for
input data timing using the Number of cycles parameter.

• Maximum number of multipliers – Specify a requirement for resource usage using the
Number of multipliers parameter.

For a filter with L coefficients, the block implements a serial filter with not more than M multipliers
and requires input samples that are at least N cycles apart, such that L = N×M. The block applies

 Discrete FIR Filter HDL Optimized

2-457

coefficient optimizations after serialization, so the M or N value of the final filter implementation can
be lower than the value that you specified.

Note For configuration instructions prior to R2019a, see “Changes to Serial Filter Parameters” on
page 2-466.

Dependencies

To enable this parameter, set the Filter structure parameter to Partly serial systolic.

Number of cycles — Serialization requirement for input timing
2 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This parameter represents
N, the minimum number of cycles between valid input samples. In this case, the block calculates M =
L/N. To implement a fully-serial architecture, set Number of cycles greater than the filter length, L,
or to Inf.

The block applies coefficient optimizations after serialization, so the M and N values of the final filter
can be lower than the value you specified.

Note For configuration instructions prior to R2019a, see “Changes to Serial Filter Parameters” on
page 2-466.

Dependencies

To enable this parameter, set Filter structure to Partly serial systolic and set Specify
serialization factor as to Minimum number of cycles between valid input samples.

Number of multipliers — Serialization requirement for resource usage
2 (default) | positive integer

Serialization requirement for resource usage, specified as a positive integer. This parameter
represents M, the maximum number of multipliers in the filter implementation. In this case, the block
calculates N = L/M. If the input data is complex, the block allocates floor(M/2) multipliers for the
real part of the filter and floor(M/2) multipliers for the imaginary part of the filter. To implement a
fully-serial architecture, set Number of multipliers to 1 for real input, or 2 for complex input.

The block applies coefficient optimizations after serialization, so the M and N values of the final filter
can be lower than the value you specified.

Note For configuration instructions prior to R2019a, see “Changes to Serial Filter Parameters” on
page 2-466.

Dependencies

To enable this parameter, set the Filter structure to Partly serial systolic, and set Specify
serialization factor as to Maximum number of multipliers.

2 Blocks

2-458

Data Types

Rounding mode — Rounding mode for type-casting the output
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output to the data type specified by the Output parameter. When
the input data type is floating point, the block ignores this parameter. For more details, see
“Rounding Modes”.

Saturate on integer overflow — Overflow handling for type-casting the output
off (default) | on

Overflow handling for type-casting the output to the data type specified by the Output parameter.
When the input data type is floating point, the block ignores this parameter. For more details, see
“Overflow Handling”.

Coefficients — Data type of discrete FIR filter coefficients
Inherit: Same word length as input (default) | <data type expression>

The block casts the filter coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

The recommended data type for this parameter is Inherit: Same word length as input.

The block returns a warning or error if:

• The coefficients data type does not have enough fractional length to represent the coefficients
accurately.

• The coefficients data type is unsigned while the coefficients include negative values.

You can disable or control the severity of these data type messages from the model Configuration
Parameters, by modifying Diagnostics > Type Conversion > Detect precision loss.

Dependencies

To enable this parameter, set Coefficients source to Property.

Output — Data type of filter output
Inherit: Inherit via internal rule (default) | Inherit: Same word length as input |
<data type expression>

The block casts the output of the filter to this data type. The quantization uses the settings of the
Rounding mode and Overflow mode parameters. When the input data type is floating point, the
block ignores this parameter.

The block increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

When you specify a fixed set of coefficients, because the coefficient values limit the potential growth,
usually the actual full-precision internal word length is smaller than WF.

 Discrete FIR Filter HDL Optimized

2-459

When you use programmable coefficients, the block cannot calculate the dynamic range, and the
internal data type is always WF.

Control Ports

Enable reset input port — Option to enable reset input port
off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see “Tips” on page 2-460.

Use HDL global reset — Option to connect data path registers to generated HDL global
reset signal
off (default) | on

Select this parameter to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this parameter, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see “Tips” on page 2-460.

Tips
Reset Behavior

• By default, the Discrete FIR Filter HDL Optimized block connects the generated HDL global reset
to only the control path registers. The two reset parameters, Enable reset input port and Use
HDL global reset, connect a reset signal to the data path registers. Because of the additional
routing and loading on the reset signal, resetting data path registers can reduce synthesis
performance.

• The Enable reset input port parameter enables the reset port on the block. The reset signal
implements a local synchronous reset of the data path registers. For optimal use of FPGA
resources, this option does not connect the reset signal to registers targeted to the DSP blocks of
the FPGA.

• The Use HDL global reset parameter connects the generated HDL global reset signal to the data
path registers. This parameter does not change the appearance of the block or modify simulation
behavior in Simulink. The generated HDL global reset can be synchronous or asynchronous
depending on the HDL Code Generation > Global Settings > Reset type parameter in the
model Configuration Parameters. Depending on your device, using the global reset might move
registers out of the DSP blocks and increase resource use.

• When you select the Enable reset input port and Use HDL global reset parameters together,
the global and local reset signals clear the control and data path registers.

Reset Considerations for Generated Test Benches

• FPGA-in-the-loop initialization provides a global reset but does not automatically provide a local
reset. With the default reset parameters, the data path registers that are not reset can result in
FPGA-in-the-loop (FIL) mismatches if you run the FIL model more than once without resetting the

2 Blocks

2-460

board. Select Use HDL global reset to reset the data path registers automatically, or select
Enable reset input port and assert the local reset in your model so the reset signal becomes
part of the Simulink FIL test bench.

• The generated HDL test bench provides a global reset but does not automatically provide a local
reset. With the default reset parameters and the default register reset Configuration Parameters,
the generated HDL code includes an initial simulation value for the data path registers. However,
if you are concerned about X-propagation in your design, you can set the HDL Code Generation
> Global Settings > Coding style > No-reset register initialization parameter in
Configuration Parameters to Do not initialize. In this case, with the default block reset
parameters, the data path registers that are not reset can cause X-propagation on the data path at
the start of HDL simulation. Select Use HDL global reset to reset the data path registers
automatically, or select Enable reset input port and assert the local reset in your model so the
reset signal becomes part of the generated HDL test bench.

Algorithms
The block provides several filter implementations depending on your parameter settings. The filter
implementation considers vendor-specific hardware details of the DSP blocks when adding pipeline
registers to the architecture. These differences in pipeline register locations help fit the filter design
to the DSP blocks on the FPGA.

The architecture diagrams assume a transfer function that has L coefficients (before optimizations
are applied).

Filter structure Number of cycles (N) Architecture and Performance Link
Direct form systolic N/A “Fully Parallel Systolic Architecture” on

page 2-463
Direct form transposed N/A “Fully Parallel Transposed Architecture”

on page 2-464
Partly serial systolic N < L “Partly Serial Systolic Architecture (1 < N

< L)” on page 2-464
Partly serial systolic N ≥ L “Fully Serial Systolic Architecture (N ≥

L)” on page 2-465

Complex Multipliers

If either data or coefficients are complex but not both, the block implements one filter to calculate the
real output and a second filter to calculate the imaginary part. This implementation results in two
multipliers for each filter tap.

When both the data and coefficients are complex, the block implements three filters in parallel. The
diagram shows the filter implementation for complex input data X = Xr+i×Xi and complex coefficients
W = Wr+i×Wi.

 Discrete FIR Filter HDL Optimized

2-461

When Coefficients source is set to Property, Wr + Wi and Wr-Wi are pre-calculated, so this
implementation uses 3 DSP blocks for each filter tap, plus the input adder and two output adders. The
input to each filter tap multiplier grows by one bit.

When Coefficients source is set to Input port, the block uses 2 more adders for each filter tap.
These adders calculate the coefficients Wr + Wi and Wr-Wi.

2 Blocks

2-462

Fully Parallel Systolic Architecture

When you set the Filter structure parameter to Direct form systolic, the block implements a
fully parallel systolic architecture with optimizations for symmetry or anti-symmetry and zero-valued
coefficients. The latency depends on the coefficient symmetry and is displayed on the block icon.

When symmetric pairs of coefficients have equal absolute values, they share one DSP block. This pair-
sharing enables the implementation to use the pre-adder in Xilinx and Intel DSP blocks. The top half
of the diagram shows a symmetric filter without the pair coefficient optimization. The bottom half of
the diagram shows the architecture using the pair coefficient optimization.

Resource Utilization and Performance

This table shows post-synthesis resource utilization for the HDL code generated for a symmetric 26-
tap FIR filter with 16-bit input and 16-bit coefficients. The synthesis targets a Xilinx ZC-706
(XC7Z045ffg900-2) FPGA. The Global HDL reset type parameter is Synchronous and Minimize
clock enables is selected. The reset port is not enabled, so only control path registers are connected
to the generated global HDL reset.

Resource Uses
LUT 36
Slice Reg 487
Slice 45
Xilinx LogiCORE DSP48 13

 Discrete FIR Filter HDL Optimized

2-463

After place and route, the maximum clock frequency of the design is 630 MHz.

Fully Parallel Transposed Architecture

When you set the Filter structure parameter to Direct form transposed, the block implements
a fully parallel transposed architecture. This architecture minimizes multipliers by sharing multipliers
for any two or more coefficients that have equal absolute values. It also removes multipliers for zero-
valued coefficients. The latency of the block is six cycles. This latency does not change with
coefficient values.

The top half of the diagram shows the theoretical architecture for a partly-symmetric filter without
the equal-absolute-value coefficient optimization. The bottom half of the diagram shows the
transposed architecture as implemented by this block, using the equal-value coefficient optimization.
If the coefficients are antisymmetric, the output adder becomes a subtraction.

Partly Serial Systolic Architecture (1 < N < L)

When you set the Filter structure parameter to Partly serial systolic, and you choose a
serialization factor, N, such that N is less than the number of coefficients but greater than one, the
block implements a partly serial systolic architecture. The serial implementation uses M =
ceil(L/N) systolic cells. Each cell consists of a delay line, coefficient lookup table, and DSP
(multiply-add) block. The coefficients are spread across the M lookup tables. The computation
performed by each DSP block is serialized. Input samples to the block must be at least N cycles apart.
The latency of the block is M + ceil(L/M) + 5.

2 Blocks

2-464

Resource Utilization and Performance

This table shows post-synthesis resource utilization for the HDL code generated from the “Partly
Serial Systolic FIR Filter Implementation” example. The implementation is for a 32-tap FIR filter with
16-bit input, 16-bit coefficients, and a serialization factor of 8 cycles between valid input samples. The
synthesis targets a Xilinx Virtex-6 (XC6VLX240T-1FF1156) FPGA. The Global HDL reset type
parameter is Synchronous and Minimize clock enables is selected.

Resource Uses
LUT 192
FFS 606
Xilinx LogiCORE DSP48 5

After place and route, the maximum clock frequency of the design is 376 MHz.

Fully Serial Systolic Architecture (N ≥ L)

When you set the Filter structure parameter to Partly serial systolic, and you choose a
serialization factor such that N ≥ L, the block implements a fully serial systolic architecture. In this
case, the implementation utilizes a single DSP (multiply-add) block with a delay line and a lookup
table for all L coefficients. Input samples must be at least N cycles apart. The latency of the block is L
+ 5.

 Discrete FIR Filter HDL Optimized

2-465

Compatibility Considerations
Changes to Serial Filter Parameters
Behavior changed in R2019a

The options for configuring a serial filter architecture have changed. Prior to R2019a, you specified
the serial implementation by setting a requirement for input timing. Now, you can specify the
serialization requirement based on either input timing (N) or resource usage (M).

2 Blocks

2-466

Serial Filter Requirement Configuration Prior to
R2019a

Configuration After R2019a

Specify a serialization rule
based on input timing, that is, N
cycles.

• Set the Filter structure
parameter to Direct form
systolic.

• Select Share DSP
resources.

• Set the Sharing factor
parameter to N.

• Set the Filter structure
parameter to Partly
serial systolic.

• Set the Specify
serialization factor as
parameter to Minimum
number of cycles
between valid input
samples.

• Set the Number of cycles
parameter to N.

Specify a serialization rule
based on resource usage, that
is, M multipliers.

Serialization based on resource
usage is not supported prior to
R2019a. However, you can
calculate N based on your
multiplier requirement.

• Set the Filter structure
parameter to Direct form
systolic.

• Select Share DSP
resources.

• Set the Sharing factor
parameter to
ceil(NumCoeffs/M).

• Set the Filter structure
parameter to Partly
serial systolic.

• Set the Specify
serialization factor as
parameter to Maximum
number of multipliers.

• Set the Number of
multipliers parameter to M.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

For a FIR filter with multichannel or frame-based inputs, use the Discrete FIR Filter block instead.
HDL Architecture

The block provides three filter structures. The direct form systolic architecture provides a fully
parallel implementation that makes efficient use of Intel and Xilinx DSP blocks. The direct form
transposed architecture is a fully parallel implementation and is suitable for FPGA and ASIC
applications. The partly serial systolic architecture provides a configurable serial implementation that
also makes efficient use of FPGA DSP blocks. For a filter implementation that matches multipliers,

 Discrete FIR Filter HDL Optimized

2-467

pipeline registers, and pre-adders to the DSP configuration of your FPGA vendor, specify your target
device when you generate HDL code.

All three structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters. The parallel implementations also remove the multipliers for zero-valued
coefficients such as in half-band filters and Hilbert transforms.

You can set block parameters to make tradeoffs between throughput and resource utilization.

• For highest throughput, choose a fully parallel systolic or transposed architecture. The generated
code can accept input data and provides filtered output data on every cycle.

• For reduced area, choose partly serial systolic architecture. Then specify a rule that the block uses
to serialize the filter based on either input timing or resource usage. To specify a serial filter using
an input timing rule, set Specify serialization factor as to Minimum number of cycles
between valid input samples, and choose Number of cycles to be greater than or equal to
2. In this case, the filter accepts only input samples that are at least Number of cycles cycles
apart. To specify a serial filter using a resource rule, set Specify serialization factor as to
Maximum number of multipliers, and set Number of multipliers to be less than the
number of filter coefficients. In this case, the filter accepts input samples that are at least
NumCoeffs/NumMults apart.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• The Discrete FIR Filter HDL Optimized block does not support:

• HDL code generation for floating-point input data types.
• Vector inputs. The block is sample based, accepting one scalar at a time.
• Resource sharing optimization through HDL Coder. Instead, set the Filter structure

parameter to Partly serial systolic, and configure a serialization factor based on either
input timing or resource usage.

See Also
Objects
dsp.HDLFIRFilter | dsp.FIRFilter

2 Blocks

2-468

Blocks
Discrete FIR Filter | FIR Decimation HDL Optimized

Introduced in R2017a

 Discrete FIR Filter HDL Optimized

2-469

Discrete Transfer Function Estimator
Compute estimate of frequency-domain transfer function of system

Library
Estimation / Power Spectrum Estimation

dspspect3

Description
The Discrete Transfer Function Estimator block estimates the frequency-domain transfer function of
a system using the Welch’s method of averaged modified periodograms.

The block takes two inputs, x and y. x is the system input signal and y is the system output signal. x
and y must have the same dimensions. For 2D inputs, the block treats each column as an independent
channel. The first dimension is the length of the channel. The second dimension is the number of
channels. The block treats 1D inputs as one channel. The sample rate of the block is equal to 1/T. T is
the sample time of the inputs to the block.

The block buffers the input data into overlapping segments. You can set the length of the data
segment and the amount of data overlap through the parameters set in the block dialog box.

The block first applies a window function to the two inputs, x and y, and then scales them by the
window power. It takes the FFT of each signal, calling them X and Y. The block calculates Pxx which is
the square magnitude of the FFT, X. The block then calculates Pyx which is X multiplied by the
conjugate of Y. The output transfer function estimate, H, is calculated by dividing Pyx by Pxx.

Parameters
Window length source

Source of the window length value. You can set this parameter to:

• Same as input frame length (default) — Window length is set to the frame size of the
input.

• Specify on dialog — Window length is the value specified in Window length.

This parameter is nontunable.
Window length

Length of the window, in samples, used to compute the spectrum estimate, specified as a positive
integer scalar greater than 2. This parameter applies when you set Window length source to
Specify on dialog. The default is 1024. This parameter is nontunable.

2 Blocks

2-470

Window Overlap (%)
Percentage of overlap between successive data windows, specified as a scalar in the range
[0,100). The default is 0. This parameter is nontunable.

Averaging method
Specify the averaging method as Running or Exponential. In the running averaging method,
the block computes an equally weighted average of specified number of spectrum estimates
defined by Number of spectral averages parameter. In the exponential method, the block
computes the average over samples weighted by an exponentially decaying forgetting factor.

Number of spectral averages
Specify the number of spectral averages. The Transfer Function Estimator block computes the
current estimate by averaging the last N estimates. N is the number of spectral averages. It can
be any positive integer scalar, and the default is 1.

This parameter applies when Averaging method is set to Running.
Specify forgetting factor from input port

Select this check box to specify the forgetting factor from an input port. When you do not select
this check box, the forgetting factor is specified through the Forgetting factor parameter.

This parameter applies when Averaging method is set to Exponential.
Forgetting factor

Specify the exponential weighting forgetting factor as a scalar value greater than zero and
smaller than or equal to one. The default is 0.9.

This parameter applies when you set Averaging method to Exponential and clear the Specify
forgetting factor from input port parameter.

FFT length source
Specify the source of the FFT length value. It can be one of Auto (default) or Property. When
the source of the FFT length is set to Auto, the Transfer Function Estimator block sets the FFT
length to the input frame size. When the source of the FFT length is set to Property, you specify
the FFT length in the FFT length parameter.

FFT length
Specify the length of the FFT that the Transfer Function Estimator block uses to compute
spectral estimates. It can be any positive integer scalar, and the default is 128.

Window function
Specify a window function for the Transfer Function Estimator block. Possible values are:

• Hann (default)
• Rectangular
• Chebyshev
• Flat Top
• Hamming
• Kaiser

Sidelobe attenuation of window (dB)
Specify the sidelobe attenuation of the window. It can be any real positive scalar value in decibels
(dB). The default is 60.

 Discrete Transfer Function Estimator

2-471

Note This parameter is visible only when Window function is set to Kaiser or Chebyshev.

Frequency range
Specify the frequency range of the transfer function estimate.

• centered (default)

When you set the frequency range to centered, the Transfer Function Estimator block
computes the centered two-sided transfer function of the real or complex input signals, x and
y.

• onesided

When you set the frequency range to onesided, the Transfer Function Estimator block
computes the one-sided transfer function of real input signals, x and y.

• twosided

When you set the frequency range to twosided, the Transfer Function Estimator block
computes the two-sided transfer function of the real or complex input signals, x and y.

Output magnitude squared coherence estimate
Select this check box to compute and output the magnitude squared coherence estimate using
Welch’s averaged, modified periodogram method. The magnitude squared coherence estimate
indicates how well two inputs correspond to each other at each frequency.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

Supported Data Types
The Discrete Transfer Function Estimator block supports real and complex inputs.

Port Supported Data Type
x • Double-precision floating point

• Single-precision floating point
y • Double-precision floating point

• Single-precision floating point
Output, H • Double-precision floating point

• Single-precision floating point

2 Blocks

2-472

Examples
This example shows how to use the Discrete Transfer Function Estimator block to estimate the
frequency-domain transfer function of a system.

The Random Source block represents the system input signal. The sample rate of the system input is
44.1 KHz. The Random Source input passes through a low-pass filter with a normalized cutoff
frequency of 0.3. The filtered signal represents the system output signal. Because the Discrete
Transfer Function Estimator block outputs complex values, take the magnitude of the output to see a
plot of the transfer function estimate.

To view this example, execute ex_discrete_transfer_function_estimator in MATLAB
Command prompt.

The transfer function plot displays the system transfer function, a low-pass filter that matches the
frequency response of the Discrete FIR Filter block.

 Discrete Transfer Function Estimator

2-473

Algorithms
Welch's Method of Averaged Modified Periodograms

Give two signal inputs, x and y:

1 Multiply the inputs by the window and scale the result by the window power.
2 Take FFT of the signals, X and Y.
3 Compute the current power spectral density estimates, Pxx, Pyy, and the current cross power

spectral density estimate, Pyx, by taking the moving average of last N number of Z1, Z2, and Z3
vectors, respectively:

• Z1 = X.*conj(X)
• Z2 = Y.*conj(Y)
• Z3 = Y.*conj(X)

For details on the moving average methods, see “Averaging Method” on page 4-1321.

The transfer function estimate is calculated by dividing Pyx by Pxx.

The magnitude squared coherence, Cxy, is defined by the following equation:

2 Blocks

2-474

Cxy =
abs Pxy . ^2

P .xx * Pyy

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
dsp.TransferFunctionEstimator | Cross-Spectrum Estimator | Periodogram | Spectrum Analyzer

Topics
“Continuous-Time Transfer Function Estimation”

Introduced in R2014a

 Discrete Transfer Function Estimator

2-475

Downsample
Resample input at lower rate by deleting samples
Library: DSP System Toolbox / Signal Operations

DSP System Toolbox HDL Support / Signal Operations

Description
The Downsample block decreases the sampling rate of the input by deleting samples. When the block
performs frame-based processing, it resamples the data in each column of the Mi-by-N input matrix
independently. When the block performs sample-based processing, it treats each element of the input
as a separate channel and resamples each channel of the input array across time. The resample rate
is K times lower than the input sample rate, where K is the value of the Downsample factor
parameter. The Downsample block resamples the input by discarding K–1 consecutive samples
following each sample that is output.

This block supports triggered subsystems when you set the Rate options parameter to Enforce
single-rate processing.

Ports
Input

Port_1 — Data input
column vector | matrix | N-D array

Data input whose sampling rate is to be decreased by the block, specified as a column vector or a
matrix.

When you set the Input processing parameter to Elements as channels (sample based), the
input can be an N-D array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Downsampled output
column vector | matrix

Downsampled output with a sampling rate that is 1/K times the input sampling rate, returned as a
column vector or a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

2 Blocks

2-476

Parameters
Downsample factor, K — Downsampling factor
2 (default) | positive integer

The integer factor, K, by which to decrease the input sample rate.

Sample offset (0 to K-1) — Sample offset
0 (default) | integer

The Sample offset parameter delays the output samples by an integer number of sample periods, D,
where 0 ≤ D ≤ (K–1), so that any of the K possible output phases can be selected. For example, when
you downsample the sequence 1, 2, 3, ... by a factor of 4, you can select from four phases.

Input Sequence Sample Offset, D Output Sequence (K = 4)
1,2,3,... 0 1,5,9,13,17,21,25,29,...
1,2,3,... 1 0,2,6,10,14,18,22,26,...
1,2,3,... 2 0,3,7,11,15,19,23,27,...
1,2,3,... 3 0,4,8,12,16,20,24,28,...

The initial zero in each of the latter three output sequences in the table is a result of the default zero
Initial conditions parameter setting for this example. See “Latency” on page 2-479 for more
information on the Initial conditions parameter.

Input processing — Method to process input
Columns as channels (frame based) (default) | Elements as channels (sample based)

Specify the method for input processing:

• Columns as channels (frame based) –– When you set the Input processing parameter to
Columns as channels (frame based), the block treats each of the N input columns as an
individual channel containing Mi sequential time samples. The block downsamples each channel
independently by discarding K–1 rows of the input matrix following each row that it outputs.

For more information, see “What Is Frame-Based Processing?”.
• Elements as channels (sample based) –– When you set the Input processing parameter

to Elements as channels (sample based), the input can be an N-D array. The Downsample
block treats each element of the input as a separate channel, and resamples each channel of the
input over time. The block downsamples the input array by discarding K–1 samples following each
sample that it passes through to the output. The input and output sizes of the Downsample block
are identical.

For more information, see “What Is Sample-Based Processing?”.

Rate options — Enforce single-rate or allow multirate processing
Enforce single-rate processing (default) | Allow multirate processing

Specify the method by which the block adjusts the rate at the output to accommodate the reduced
number of samples. . You can select one of the following options. The behavior of these options
depends on whether the Input processing parameter is set to Elements as channels (sample
based) (sample-based processing mode) or Columns as channels (frame based) (frame-based
processing mode).

 Downsample

2-477

• Elements as channels (sample based)

• Enforce single-rate processing

The block forces the output sample rate to match the input sample rate (Tso = Tsi) by repeating
every Kth input sample K times at the output. In this mode, the behavior of the block is similar
to the operation of a Sample and Hold block with a repeating trigger event of period KTsi.

• Allow multirate processing

The sample period of the output is K times longer than the input sample period (Tso = KTsi).
• Columns as channels (frame based)

• Enforce single rate processing

The block generates the output at the slower (downsampled) rate using a proportionally
smaller frame size than the input. For downsampling by a factor of K, the output frame size is
K times smaller than the input frame size (Mo = Mi/K), but the input and output frame rates are
equal.

The ex_downsample_ref2 model shows a single-channel input with a frame size of 64 being
downsampled by a factor of 4 to a frame size of 16. The input and output frame rates are
identical.

• Allow multirate processing

The block generates the output at the slower (downsampled) rate by using a proportionally
longer frame period at the output port than at the input port. For downsampling by a factor of
K, the output frame period is K times longer than the input frame period (Tfo = KTfi), but the
input and output frame sizes are equal.

The ex_downsample_ref1 model shows a single-channel input with a frame period of 1 second
being downsampled by a factor of 4 to a frame period of 4 seconds. The input and output frame
sizes are identical.

2 Blocks

2-478

matlab:ex_downsample_ref2
matlab:ex_downsample_ref1

Initial conditions — Initial value
0 (default) | real scalar | array

The initial block value for cases of nonzero latency. You can specify a scalar or an array of the same
size as the input.
Dependencies

This parameter appears only when you set the Rate options parameter to Allow multirate
processing.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Latency

Latency is the delay, measured in samples or frames, between the input and the output of the block.

The Downsample block has zero-tasking latency in the following cases:

• The Downsample factor parameter, K, is 1.
• The Input processing parameter is set to Columns as channels (frame based), and the

Rate options parameter is set to Enforce single-rate processing.
• The Input processing parameter is set to Columns as channels (frame based), the Rate

options parameter is set to Allow multirate processing, the Sample offset parameter, D,
is set to 0, and the input frame size is equal to 1.

• The Input processing parameter is set to Elements as channels (sample based), and the
Sample offset parameter, D, is 0.

Zero-tasking latency means that the block propagates input sample D+1 (received at t = 0) as the
first output sample, followed by input sample D+1+K, input sample D+1+2K, and so on. When there
is zero-tasking latency, the block ignores the value of the Initial conditions parameter.

In all other cases, the latency is nonzero:

• When the Input processing parameter is set to Elements as channels (sample based),
the latency is one sample.

• When the Input processing parameter is set to Columns as channels (frame based) and
the input frame size is greater than one, the latency is one frame.

In all cases of one-sample latency, the initial condition for each channel appears as the first output
sample. Input sample D+1 appears as the second output sample for each channel, followed by input

 Downsample

2-479

sample D+1+K, input sample D+1+2K, and so on. The Initial conditions parameter can be an array
of the same size as the input or a scalar to be applied to all signal channels.

In all cases of one-frame latency, the Mi rows of the initial condition matrix appear in sequence as the
first Mi output rows. Input sample D+1 (row D+1 of the input matrix) appears in the output as sample
Mi+1, followed by input sample D+1+K, input sample D+1+2K, and so on. The Initial conditions
value can be an Mi-by-N matrix containing one value for each channel or a scalar to be repeated
across all elements of the Mi-by-N matrix.

Note For more information on latency and the Simulink tasking modes, see “Excess Algorithmic
Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation” (Simulink Coder).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Best Practices

It is good practice to follow the Downsample block with a unit delay. Doing so prevents the code
generator from inserting an extra bypass register in the HDL code.

See also “Multirate Model Requirements for HDL Code Generation” (HDL Coder).

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

2 Blocks

2-480

Complex Data Support

This block supports code generation for complex signals.

Restrictions

• Input processing set to Columns as channels (frame based) is not supported.
• For Input processing set to Elements as channels (sample based), select Allow

multirate processing. With this setting, if Sample offset is set to 0, Initial conditions has
no effect on generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
FIR Decimation | FIR Rate Conversion | Repeat | Sample and Hold | Upsample

Topics
“Convert Sample and Frame Rates in Simulink Using Rate Conversion Blocks”
“Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter”

Introduced before R2006a

 Downsample

2-481

DSP Constant (Obsolete)
Generate discrete- or continuous-time constant signal

Library
Sources

dspobslib

Description

Note The DSP Constant block is still supported but is likely to be obsoleted in a future release. We
strongly recommend replacing this block with the Constant block.

The DSP Constant block generates a signal whose value remains constant throughout the simulation.
The Constant value parameter specifies the constant to output, and can be any valid MATLAB
expression that evaluates to a scalar, vector, or matrix.

When Sample mode is set to Continuous, the output is a continuous-time signal. When Sample
mode is set to Discrete, the Sample time parameter is visible, and the signal has the discrete
output period specified by the Sample time parameter.

You can set the output signal to Frame-based, Sample-based, or Sample-based (interpret
vectors as 1-D) with the Output parameter.

Dialog Box
The Main pane of the DSP Constant block dialog box appears as follows.

2 Blocks

2-482

Constant value
Specify the constant to generate. This parameter is Tunable (Simulink); values entered here can
be tuned, but their dimensions must remain fixed.

When you specify any data type information in this field, it is overridden by the value of the
Output data type parameter in the Data Types pane, unless you select Inherit from
'Constant value'.

Sample mode
Specify the sample mode of the output, Discrete for a discrete-time signal or Continuous for a
continuous-time signal.

Output
Specify whether the output is Sample-based (interpret vectors as 1-D), Sample-
based, or Frame-based. When you select Sample-based and the output is a vector, its
dimension is constrained to match the Constant value dimension (row or column). When you
select Sample-based (interpret vectors as 1-D), however, the output has no specified
dimensionality.

Sample time
Specify the discrete sample period for sample-based outputs. When you select Frame-based for
the Output parameter, this parameter is named Frame period, and is the discrete frame period
for the frame-based output. This parameter is only visible when you select Discrete for the
Sample mode parameter.

The Data Types pane of the DSP Constant block dialog box appears as follows.

 DSP Constant (Obsolete)

2-483

Output data type
Specify the output data type in one of the following ways:

• Choose one of the built-in data types from the list.
• Choose Fixed-point to specify the output data type and scaling in the Signed, Word

length, Set fraction length in output to, and Fraction length parameters.
• Choose User-defined to specify the output data type and scaling in the User-defined data

type, Set fraction length in output to , and Fraction length parameters.
• Choose Inherit from 'Constant value' to set the output data type and scaling to match

the values of the Constant value parameter in the Main pane.
• Choose Inherit via back propagation to set the output data type and scaling to match

the following block.

The value of this parameter overrides any data type information specified in the Constant value
parameter in the Main pane, except when you select Inherit from 'Constant value'.

Signed
Select to output a signed fixed-point signal. Otherwise, the signal is unsigned. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

Word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible
when you select Fixed-point for the Output data type parameter.

User-defined data type
Specify any built-in or fixed-point data type. You can specify fixed-point data types using the
following Fixed-Point Designer functions: sfix, ufix, sint, uint, sfrac, and ufrac. This
parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the following two methods:

• Choose Best precision to have the output scaling automatically set such that the output
signal has the best possible precision.

2 Blocks

2-484

• Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed-point for the Output data type
parameter, or when you select User-defined and the specified output data type is a fixed-point
data type.

Fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the right of the
binary point. This parameter is only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set fraction length in output to
parameter.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Constant Simulink
Signal From Workspace DSP System Toolbox

Introduced in R2008b

 DSP Constant (Obsolete)

2-485

DWT
Discrete wavelet transform (DWT) of input or decompose signals into subbands with smaller
bandwidths and slower sample rates

Library
Transforms

dspxfrm3

Description
The DWT block is the same as the Dyadic Analysis Filter Bank block in the Multirate Filters library,
but with different default settings. See the Dyadic Analysis Filter Bank block reference page for more
information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-486

Dyadic Analysis Filter Bank
Decompose signals into subbands with smaller bandwidths and slower sample rates or compute
discrete wavelet transform (DWT)

Library
Filtering / Multirate Filters

dspmlti4

Description

Note This block always interprets input signals as frames. The frame size of the input signal must be
a multiple of 2n, where n is the value of the Number of levels parameter. The block decomposes the
input signal into either n+1 or 2n subbands. To decompose signals with a frame size that is not a
multiple of 2n, use the Two-Channel Analysis Subband Filter block. (You can connect multiple copies
of the Two-Channel Analysis Subband Filter block to create a multilevel dyadic analysis filter bank.)

You can configure this block to compute the Discrete Wavelet Transform (DWT) or decompose a
broadband signal into a collection of subbands with smaller bandwidths and slower sample rates. The
block uses a series of highpass and lowpass FIR filters to repeatedly divide the input frequency range,
as illustrated in “Wavelet Filter Banks” on page 2-490 (the Asymmetric one).

You can specify the filter bank's highpass and lowpass filters by providing vectors of filter
coefficients. You can do so directly on the block mask, or, if you have a Wavelet Toolbox™ license, you
can specify wavelet-based filters by selecting a wavelet from the Filter parameter. You must set the
filter bank structure to asymmetric or symmetric, and specify the number of levels in the filter bank.

For the same input, the DWT configuration of this block does not produce the same results as the
Wavelet Toolbox dwt function. Because DSP System Toolbox is designed for real-time implementation
and Wavelet Toolbox is designed for analysis, the products handle boundary conditions and filter
states differently. To make the output of the dwt function match the DWT output of this block,
complete the following steps:

1 Set the boundary condition of the dwt function to zero-padding. To do so, type dwtmode('zpd')
at the MATLAB command line.

2 To match the latency of the block (implemented using FIR filters), add zeros to the input of the
dwt function. The number of zeros you add must be equal to the half-length of the filter.

 Dyadic Analysis Filter Bank

2-487

Input Requirements

• Input must be a vector or matrix.
• The input frame size must be a multiple of 2n, where n is the number of filter bank levels. For

example, a frame size of 16 would be appropriate for a three-level tree (16 is a multiple of 23).
• The block always treats input signals as frames and operates along the columns.

For an illustration of why the above input requirements exist, see the figure “Outputs of a 3-Level
Asymmetric Dyadic Analysis Filter Bank” on page 2-489.

Output Characteristics

The output characteristics vary depending on the block's parameter settings, as summarized in the
following list and figure:

• Number of levels parameter set to n
• Tree structure parameter setting:

• Asymmetric — Block produces n+1 output subbands
• Symmetric — Block produces 2n output subbands

• Output parameter setting can be Multiple ports or Single port. When you set the Output
parameter to Single port, the block outputs one vector or matrix of concatenated subbands.
The following figure illustrates the difference between the two settings for a 3-level asymmetric
dyadic analysis filter bank. For an explanation of the illustrated output characteristics, see the
table Output Characteristics for an n-Level Dyadic Analysis Filter Bank.

For more information about the filter bank levels and structures, see “Dyadic Analysis Filter Banks”.

2 Blocks

2-488

Outputs of a 3-Level Asymmetric Dyadic Analysis Filter Bank

The following table summarizes the different output characteristics of the block when it is set to
output from single or multiple ports.

 Dyadic Analysis Filter Bank

2-489

Output Characteristics for an n-Level Dyadic Analysis Filter Bank

 Single Output Port Multiple Output Ports
Output Description Block concatenates all the

subbands into one vector or
matrix, and outputs the
concatenated subbands from a
single output port. Each output
column contains subbands of
the corresponding input
channel.

Block outputs each subband from a separate output
port. The topmost port outputs the subband with the
highest frequencies. Each output column contains a
subband for the corresponding input channel.

Output Frame Rate Not applicable Same as input frame rate
(However, the output frame sizes can vary, so the
output sample rates can vary.)

Output Dimensions
(Frame Size)

Same number of rows and
columns as the input.

The output has the same number of columns as the
input. The number of output rows is the output frame
size. For an input with frame size Mi output yk has
frame size Mo,k:

• Symmetric — All outputs have the frame size, Mi /
2n.

• Asymmetric — The frame size of each output
(except the last) is half that of the output from the
previous level. The outputs from the last two output
ports have the same frame size since they originate
from the same level in the filter bank.

Mo, k =
Mi/2k (1 ≤ k ≤ n)

Mi/2n (k = n + 1)
Output Sample
Rate

Same as input sample rate. Though the outputs have the same frame rate as the
input, they have different frame sizes than the input.
Thus, the output sample rates, Fso, k, are different
from the input sample rate, Fsi:

• Symmetric — All outputs have the sample rate Fsi /
2n.

• Asymmetric —

Fso, k =
Fsi/2k 1 ≤ k ≤ n

Fsi/2n k = n + 1

Wavelet Filter Banks

• “Multilevel Filter Banks”

Filter Bank Filters

You must specify the highpass and lowpass filters in the filter bank by setting the Filter parameter to
one of the following options:

2 Blocks

2-490

• User defined — Allows you to explicitly specify the filters with two vectors of filter coefficients
in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters. The
block uses the same lowpass and highpass filters throughout the filter bank. The two filters should
be halfband filters, where each filter passes the frequency band that the other filter stops.

• Wavelet such as Biorthogonal or Daubechies — The block uses the specified wavelet to
construct the lowpass and highpass filters using the Wavelet Toolbox wfilters function.
Depending on the wavelet, the block might enable either the Wavelet order or Filter order
[synthesis / analysis] parameter. (The latter parameter allows you to specify different wavelet
orders for the analysis and synthesis filter stages.) You must have a Wavelet Toolbox license to use
wavelets.

Specifying Filters with the Filter Parameter and Related Parameters

Filter Sample Setting for Related Filter
Specification Parameters

Corresponding Wavelet
Function Syntax

User-defined Filters based on Daubechies wavelets with
wavelet order 3:

• Lowpass FIR filter coefficients =
[0.0352 -0.0854 -0.1350 0.4599
0.8069 0.3327]

• Highpass FIR filter coefficients =
[-0.3327 0.8069 -0.4599
-0.1350 0.0854 0.0352]

None

Haar None wfilters('haar')
Daubechies Wavelet order = 4 wfilters('db4')
Symlets Wavelet order = 3 wfilters('sym3')
Coiflets Wavelet order = 1 wfilters('coif1')
Biorthogonal Filter order [synthesis / analysis] =

[3/1]
wfilters('bior3.1')

Reverse Biorthogonal Filter order [synthesis / analysis] =
[3/1]

wfilters('rbio3.1')

Discrete Meyer None wfilters('dmey')

Examples
Wavelets

The primary application for dyadic analysis filter banks and dyadic synthesis filter banks is coding for
data compression using wavelets.

At the transmitting end, the output of the dyadic analysis filter bank is fed to a lossy compression
scheme, which typically assigns the number of bits for each filter bank output in proportion to the
relative energy in that frequency band. This represents the more powerful signal components by a
greater number of bits than the less powerful signal components.

 Dyadic Analysis Filter Bank

2-491

At the receiving end, the transmission is decoded and fed to a dyadic synthesis filter bank to
reconstruct the original signal. The filter coefficients of the complementary analysis and synthesis
stages are designed to cancel aliasing introduced by the filtering and resampling.

See “Calculate Channel Latencies Required for Wavelet Reconstruction” for an example using the
Dyadic Analysis and Dyadic Synthesis Filter Bank blocks.

Examples

See the floating-point frame-based version of the DSP System Toolbox “Wavelet Reconstruction and
Noise Reduction” example, which uses the Dyadic Analysis Filter Bank and Dyadic Synthesis Filter
Bank blocks.

Parameters
The parameters displayed in the block dialog vary depending on the setting of the Filter parameter.
Only some of the parameters described below are visible in the dialog box at any one time.

Filter
The type of filter used to determine the high- and low-pass FIR filters in the filter bank:

Select User defined to explicitly specify the filter coefficients in the Lowpass FIR filter
coefficients and Highpass FIR filter coefficients parameters.

Select a wavelet such as Biorthogonal or Daubechies to specify a wavelet-based filter. The
block uses the Wavelet Toolbox wfilters function to construct the filters. Extra parameters such
as Wavelet order or Filter order [synthesis / analysis] might become enabled. For a list of the
supported wavelets, see Specifying Filters with the Filter Parameter and Related Parameters.

Lowpass FIR filter coefficients
A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the
lowpass filters in the filter bank. This parameter is enabled when you set Filter to User
defined. The lowpass filter should be a half-band filter that passes the frequency band stopped
by the filter specified in the Highpass FIR filter coefficients parameter. The default values of
this parameter specify a filter based on a Daubechies wavelet with wavelet order 3.

Highpass FIR filter coefficients
A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the
highpass filters in the filter bank. This parameter is enabled when you set Filter to User
defined. The highpass filter should be a half-band filter that passes the frequency band stopped
by the filter specified in the Lowpass FIR filter coefficients parameter. The default values of
this parameter specify a filter based on a Daubechies wavelet with wavelet order 3.

Wavelet order
The order of the wavelet selected in the Filter parameter. This parameter is enabled only when
you set Filter to certain types of wavelets, as shown in the Specifying Filters with the Filter
Parameter and Related Parameters table.

2 Blocks

2-492

Filter order [synthesis / analysis]
The order of the wavelet for the synthesis and analysis filter stages. For example, when you set
the Filter parameter to Biorthogonal and set the Filter order [synthesis / analysis]
parameter to [2 / 6], the block calls the wfilters function with input argument 'bior2.6'.
This parameter is enabled only when you set Filter to certain types of wavelets, as shown in
Specifying Filters with the Filter Parameter and Related Parameters.

Number of levels
The number of filter bank levels. An n-level asymmetric structure has n+1 outputs, and an n-level
symmetric structure has 2n outputs, as shown in “Wavelet Filter Banks” on page 2-490. The
block's icon changes depending on the value of this parameter.

The default setting of this parameter is 2.
Tree structure

The structure of the filter bank: Asymmetric, or Symmetric. See “Wavelet Filter Banks” on page
2-490.

The default setting of this parameter is Asymmetric for the Dyadic Analysis Filter Bank block,
and Symmetric for the DWT block.

Output
Set to Multiple ports to output each output subband on a separate port (the topmost port
outputs the subband with the highest frequency band). Set to Single port to concatenate the
subbands into one vector or matrix and output the concatenated subbands on a single port. For
more information, see “Output Characteristics” on page 2-488.

The default setting of this parameter is Multiple ports for the Dyadic Analysis Filter Bank
block, and Single port for the DWT block.

References
Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West
Sussex, England: John Wiley & Sons, 1994.

Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press,
1996.

Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice Hall, 1993.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

 Dyadic Analysis Filter Bank

2-493

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Blocks
DWT | Dyadic Synthesis Filter Bank | Two-Channel Analysis Subband Filter

Topics
“Wavelet Reconstruction and Noise Reduction”

Introduced before R2006a

2 Blocks

2-494

Dyadic Synthesis Filter Bank
Reconstruct signals from subbands with smaller bandwidths and slower sample rates or compute
inverse discrete wavelet transform (IDWT)

Library
Filtering / Multirate Filters

dspmlti4

Description

Note This block always does frame-based processing, and its inputs must be of certain sizes. To use
input subbands that do not fit the criteria of this block, use the Two-Channel Synthesis Subband
Filter block. (You can connect multiple copies of the Two-Channel Synthesis Subband Filter block to
create a multilevel dyadic synthesis filter bank.)

You can configure this block to compute the inverse discrete wavelet transform (IDWT) or reconstruct
a signal from subbands with smaller bandwidths and slower sample rates. When the block computes
the inverse discrete wavelet transform (IDWT) of the input, the output has the same dimensions as
the input. Each column of the output is the IDWT of the corresponding input column. When
reconstructing a signal, the block uses a series of highpass and lowpass FIR filters to reconstruct the
signal from the input subbands, as illustrated in “Wavelet Filter Banks” on page 2-498 (the
Asymmetric one). The reconstructed signal has a wider bandwidth and faster sample rate than the
input subbands.

You can specify the filter bank's highpass and lowpass filters by providing vectors of filter
coefficients. You can do so directly on the block mask, or, if you have a Wavelet Toolbox license, you
can specify wavelet-based filters by selecting a wavelet from the Filter parameter. You must set the
filter bank structure to asymmetric or symmetric, and specify the number of levels in the filter bank.

When you set the Input parameter to Multiple ports, you must provide each subband to the block
through a different input port as a vector or matrix. You should input the highest frequency band
through the topmost port. When you set the Input parameter to Single port, the block input must
be a vector or matrix of concatenated subbands.

Note To use a dyadic synthesis filter bank to perfectly reconstruct the output of a dyadic analysis
filter bank, the number of levels and tree structures of both filter banks must be the same. In
addition, the filters in the synthesis filter bank must be designed to perfectly reconstruct the outputs
of the analysis filter bank. Otherwise, the reconstruction is not perfect.

 Dyadic Synthesis Filter Bank

2-495

This block automatically computes wavelet-based perfect reconstruction filters when the wavelet
selection in the Filter parameter of this block is the same as the Filter parameter setting of the
corresponding Dyadic Analysis Filter Bank block. The use of wavelets requires a Wavelet Toolbox
license. To learn how to design your own perfect reconstruction filters, see “References” on page 2-
501.

Input Requirements

The inputs to this block are usually the outputs of a Dyadic Analysis Filter Bank block. Since the
Dyadic Analysis Filter Bank block can output from either a single port or multiple ports, the Dyadic
Synthesis Filter Bank block accepts inputs to either a single port or multiple ports.

The Input parameter sets whether the block accepts inputs from a single port or multiple ports, and
thus determines the input requirements, as summarized in the following lists and figure.

Note Any output of a Dyadic Analysis Filter Bank block whose parameter settings match the
corresponding settings of this block is a valid input to this block. For example, the setting of the
Dyadic Analysis Filter Bank block parameter, Output, must be the same as this block's Input
parameter (Single port or Multiple ports).

Valid Inputs for Input Set to Single Port

• Inputs must be vectors or matrices of concatenated subbands.
• Each input column contains the subbands for an independent signal.
• Upper input rows contain the high-frequency subbands, and the lower rows contain the low-

frequency subbands.

Valid Inputs for Input Set to Multiple Ports

• Each subband must be provided as a vector or matrix to separate block input ports.
• The columns of each input contains a subband for an independent signal.
• The input to the topmost input port is the subband containing the highest frequencies, and the

input to the bottommost port is the subband containing the lowest frequencies.

2 Blocks

2-496

Valid Inputs to a 3-Level Asymmetric Dyadic Synthesis Filter Bank

For general information about the filter banks, see “Dyadic Synthesis Filter Banks”.

Output Characteristics

The following table summarizes the output characteristics for both types of inputs. For an illustration
of why the output characteristics exist, see the figure “Valid Inputs to a 3-Level Asymmetric Dyadic
Synthesis Filter Bank” on page 2-497.

 Dyadic Synthesis Filter Bank

2-497

 Input = Multiple ports Input = Single port
(Concatenated Subband Inputs)

Output Frame Rate Same as the input frame rate. Same as the input rate (the rate of the
concatenated subband inputs).

Output Frame
Dimensions

• The output has the same number of
columns as the inputs.

• The number of output rows depends on
the tree structure of the filter bank:

• Asymmetric — The number of
output rows is twice the number of
rows in the input to the topmost
input port.

• Symmetric — The number of output
rows is the product of the number of
input ports and the number of rows
in an input to any input port.

The output has the same number of rows
and columns as the input.

For general information about the filter banks, see “Dyadic Synthesis Filter Banks”.

Wavelet Filter Banks

• “Multilevel Filter Banks”

Filter Bank Filters

You must specify the highpass and lowpass filters in the filter bank by setting the Filter parameter to
one of the following options:

• User defined — Allows you to explicitly specify the filters with two vectors of filter coefficients
in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters. The
block uses the same lowpass and highpass filters throughout the filter bank. The two filters should
be halfband filters, where each filter passes the frequency band that the other filter stops. To use
this block to perfectly reconstruct a signal decomposed by a Dyadic Analysis Filter Bank block, the
filters in this block must be designed to perfectly reconstruct the outputs of the analysis filter
bank. To learn how to design your own perfect reconstruction filters, see “References” on page 2-
501.

• Wavelet such as Biorthogonal or Daubechies — The block uses the specified wavelet to
construct the lowpass and highpass filters using the Wavelet Toolbox function wfilters.
Depending on the wavelet, the block might enable either the Wavelet order or Filter order
[synthesis / analysis] parameter. (The latter parameter allows you to specify different wavelet
orders for the analysis and synthesis filter stages.) To use this block to reconstruct a signal
decomposed by a Dyadic Analysis Filter Bank block, you must set both blocks to use the same
wavelets with the same order. You must have a Wavelet Toolbox license to use wavelets.

2 Blocks

2-498

Specifying Filters with the Filter Parameter and Related Parameters
Filter Sample Setting for Related Filter

Specification Parameters
Corresponding Wavelet
Function Syntax

User-defined Filters based on Daubechies wavelets with
wavelet order 3:

• Lowpass FIR filter coefficients =
[0.0352 -0.0854 -0.1350 0.4599
0.8069 0.3327]

• Highpass FIR filter coefficients =
[-0.3327 0.8069 -0.4599 -0.1350
0.0854 0.0352]

None

Haar None wfilters('haar')
Daubechies Wavelet order = 4 wfilters('db4')
Symlets Wavelet order = 3 wfilters('sym3')
Coiflets Wavelet order = 1 wfilters('coif1')
Biorthogonal Filter order [synthesis / analysis] =

[3/1]
wfilters('bior3.1')

Reverse Biorthogonal Filter order [synthesis / analysis] =
[3/1]

wfilters('rbio3.1')

Discrete Meyer None wfilters('dmey')

Examples
See “Examples” on page 2-491 on the Dyadic Analysis Filter Bank block reference page.

Parameters
The parameters displayed in the block dialog vary depending on the setting of the Filter parameter.
Only some of the parameters described below are visible in the dialog box at any one time.

Note To use this block to reconstruct a signal decomposed by a Dyadic Analysis Filter Bank block, all
the parameters in this block must be the same as the corresponding parameters in the Dyadic
Analysis Filter Bank block (except the Lowpass FIR filter coefficients and Highpass FIR filter
coefficients; see the descriptions of these parameters).

Filter
The type of filter used to determine the high- and low-pass FIR filters in the filter bank:

• Select User defined to explicitly specify the filter coefficients in the Lowpass FIR filter
coefficients and Highpass FIR filter coefficients parameters.

• Select a wavelet such as Biorthogonal or Daubechies to specify a wavelet-based filter. The
block uses the Wavelet Toolbox wfilters function to construct the filters. Extra parameters
such as Wavelet order or Filter order [synthesis / analysis] might become enabled. For a
list of the supported wavelets, see the table Specifying Filters with the Filter Parameter and
Related Parameters.

 Dyadic Synthesis Filter Bank

2-499

Lowpass FIR filter coefficients
A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the
lowpass filters in the filter bank. This parameter is enabled when you set Filter to User
defined. The lowpass filter should be a half-band filter that passes the frequency band stopped
by the filter specified in the Highpass FIR filter coefficients parameter. To perfectly
reconstruct a signal decomposed by the Dyadic Analysis Filter Bank, the filters in this block must
be designed to perfectly reconstruct the outputs of the analysis filter bank. Otherwise, the
reconstruction is not perfect. The default values of this parameter specify a perfect
reconstruction filter for the default settings of the Dyadic Analysis Filter Bank (based on a
Daubechies wavelet with wavelet order 3).

Highpass FIR filter coefficients
A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the
highpass filters in the filter bank. This parameter is enabled when you set Filter to User
defined. The highpass filter should be a half-band filter that passes the frequency band stopped
by the filter specified in the Lowpass FIR filter coefficients parameter. To perfectly reconstruct
a signal decomposed by the Dyadic Analysis Filter Bank, the filters in this block must be designed
to perfectly reconstruct the outputs of the analysis filter bank. Otherwise, the reconstruction is
not perfect. The default values of this parameter specify a perfect reconstruction filter for the
default settings of the Dyadic Analysis Filter Bank (based on a Daubechies wavelet with wavelet
order 3).

Wavelet order
The order of the wavelet selected in the Filter parameter. This parameter is enabled only when
you set Filter to certain types of wavelets, as shown in the table Specifying Filters with the Filter
Parameter and Related Parameters.

Filter order [synthesis / analysis]
The order of the wavelet for the synthesis and analysis filter stages. For example, when you set
the Filter parameter to Biorthogonal and set the Filter order [synthesis / analysis]
parameter to [2 / 6], the block calls the wfilters function with input argument 'bior2.6'.
This parameter is enabled only when you set Filter to certain types of wavelets, as shown in
Specifying Filters with the Filter Parameter and Related Parameters.

Number of levels
The number of filter bank levels. An n-level asymmetric structure has n+1 inputs, and an n-level
symmetric structure has 2n inputs, as shown in “Wavelet Filter Banks” on page 2-498.

The default setting of this parameter is 2.
Tree structure

The structure of the filter bank: Asymmetric, or Symmetric. See “Wavelet Filter Banks” on page
2-498.

The default setting of this parameter is Asymmetric for the Dyadic Synthesis Filter Bank block,
and Symmetric for the IDWT block.

Input
Set to Multiple ports to accept each input subband at a separate port (the topmost port
accepts the subband with the highest frequency band). Set to Single port to accept one vector
or matrix of concatenated subbands at a single port. For more information, see “Input
Requirements” on page 2-496.

The default setting of this parameter is Multiple ports for the Dyadic Synthesis Filter Bank
block, and Single port for the IDWT block.

2 Blocks

2-500

References
Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West
Sussex, England: John Wiley & Sons, 1994.

Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press,
1996.

Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice Hall, 1993.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Blocks
Dyadic Analysis Filter Bank | IDWT | Two-Channel Synthesis Subband Filter

Topics
“Wavelet Reconstruction and Noise Reduction”

Introduced before R2006a

 Dyadic Synthesis Filter Bank

2-501

Edge Detector
Detect transition from zero to nonzero value

Library
Signal Management / Switches and Counters

dspswit3

Description
The Edge Detector block generates an impulse (the value 1) in a given output channel when the
corresponding channel of the input transitions from zero to a nonzero value. When the input does not
transition from zero to a nonzero value, the block generates a zero in the corresponding output
channel.

This block supports only discrete-time fixed-step signals. Continuous signals are not supported.

The output has the same dimension and sample rate as the input. When you set the Input
processing parameter to Columns as channels (frame based), the block counts an edge that
is split across two consecutive frames in the frame that contains the nonzero value. For example, if
there is a zero at the bottom of the first frame and a nonzero value at the top of the second frame, the
block counts the edge in the second frame.

Examples
In the ex_edgedetector_ref model, the Input processing parameter of the Edge Detector block is set
to Columns as channels (frame based). Thus, the block interprets the 3-by-2 input as a
multichannel signal with a frame size of 3. The Matrix Concatenate block concatenates the two input
channels of the original signal with the two output channels of the Edge Detector block to create the
four-channel workspace variable sp_examples_yout.

As shown in the following figure, the block finds edges at sample 7 in channel 1, and at samples 2, 5,
and 9 in channel 2.

2 Blocks

2-502

matlab:ex_edgedetector_ref

Parameters
Input processing

Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) (default) — When you select this option, the block
treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean — The block might output Boolean values depending on the input data type, and whether

Boolean support is enabled or disabled.
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Enumerated

See Also
Counter DSP System Toolbox

 Edge Detector

2-503

Event-Count Comparator DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

2 Blocks

2-504

Event-Count Comparator
Detect threshold crossing of accumulated nonzero inputs

Library
Signal Management / Switches and Counters

dspswit3

Description
The Event-Count Comparator block records the number of nonzero inputs to the Data port during the
period that the block is enabled by a high signal (the value 1) at the Int port. Both inputs must be
scalars.

When the number of accumulated nonzero inputs first equals the Event threshold setting, the block
waits one additional sample interval, and then sets the output high (1). The block holds the output
high until recording is restarted by a low-to-high (0-to-1) transition at the Int port.

The Event-Count Comparator block accepts real and complex floating-point and fixed-point inputs.
However, because the block has discrete state, it does not support constant or continuous sample
times. Therefore, at least one input or output port of the Event-Count Comparator block must be
connected to a block whose Sample time parameter is discrete. The Event-Count Comparator block
inherits this non-infinite discrete sample time.

Examples
In the ex_eventcountcomp_ref model, the Event-Count Comparator block (Event threshold = 3)
detects two threshold crossings in the input to the Data port, one at sample 4 and one at sample 12.

All inputs and outputs are multiplexed into the workspace variable yout, whose contents are shown
in the figure below. The two left columns in the illustration show the inputs to the Data and Int ports,
the center column shows the state of the block's internal counter, and the right column shows the
block's output.

 Event-Count Comparator

2-505

matlab:ex_eventcountcomp_ref

Parameters
Event threshold

Specify the value against which to compare the number of nonzero inputs. Tunable (Simulink).

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Enumerated

See Also
Counter DSP System Toolbox
Edge Detector DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

2 Blocks

2-506

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 Event-Count Comparator

2-507

Extract Diagonal
Extract main diagonal of input matrix
Library: DSP System Toolbox / Math Functions / Matrices and Linear

Algebra / Matrix Operations

Description
The Extract Diagonal block populates the unoriented output vector with the elements on the main
diagonal of the M-by-N input matrix A. Equivalent MATLAB code is given by:

D = diag(A)

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input matrix to extract the diagonal from, specified as a scalar, vector, or matrix .
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Output

Port_1 — Output signal
vector

Output vector of each diagonal element.

The output is the same data type and complexity as the input. The output vector has length
min(M,N).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no

2 Blocks

2-508

Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
diag

Topics
Create Diagonal Matrix
Extract Triangular Matrix

Introduced before R2006a

 Extract Diagonal

2-509

Extract Triangular Matrix
Extract lower or upper triangle from input matrices

Library
Math Functions / Matrices and Linear Algebra / Matrix Operations

dspmtrx3

Description
The Extract Triangular Matrix block creates a triangular matrix output from the upper or lower
triangular elements of an M-by-N input matrix. The block treats length-M unoriented vector inputs as
an M-by-1 matrix.

The Extract parameter selects between the two components of the input:

• Upper — Copies the elements on and above the main diagonal of the input matrix to an output
matrix of the same size. The first row of the output matrix is therefore identical to the first row of
the input matrix. The elements below the main diagonal of the output matrix are zero.

• Lower — Copies the elements on and below the main diagonal of the input matrix to an output
matrix of the same size. The first column of the output matrix is therefore identical to the first
column of the input matrix. The elements above the main diagonal of the output matrix are zero.

Examples
The ex_extracttriang_ref model below shows the extraction of upper and lower triangles from a 5-by-3
input matrix.

2 Blocks

2-510

matlab:ex_extracttriang_ref

Parameters
Extract

The component of the matrix to copy to the output: upper triangle or lower triangle.
Simulate using

Code generation (default) — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but provides faster simulation speed than Interpreted execution.

Interpreted execution — Simulate model using the MATLAB interpreter. This option
shortens startup time but has slower simulation speed than Code generation.

Supported Data Types
Port Supported Data Types
A • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

U • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

L • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Autocorrelation LPC DSP System Toolbox
Cholesky Factorization DSP System Toolbox
Extract Diagonal DSP System Toolbox
Forward Substitution DSP System Toolbox
LDL Factorization DSP System Toolbox

 Extract Triangular Matrix

2-511

LU Factorization DSP System Toolbox
tril MATLAB
triu MATLAB

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

2 Blocks

2-512

Farrow Rate Converter
Polynomial sample-rate converter with arbitrary conversion factor

Library
Signal Operations

dspsigops

Description
The Farrow Rate Converter block converts the sample rate of an input signal using polynomial fit
sample-rate conversion. Polynomial-based filters are efficient at implementing fractional sample rate
conversion. Farrow structures are implementations of polynomial-based filters. This block uses a
Farrow structure to implement arbitrary rate-change factors efficiently. The rate-change factors can
be irrational.

The input frame size must be a multiple of the decimation factor of the rate converter. The decimation
factor depends on the parameter settings of the block. To determine the decimation factor, in the
block dialog box click View Info .

Each column of the input signal is treated as a separate channel. If the input is a two-dimensional
signal, the first dimension represents the channel length (or frame size) and the second dimension
represents the number of channels. If the input is a one-dimensional signal, then it is interpreted as a
single channel. The inputs to the block can be single, double, or fixed-point data type.

Parameters
Main

Sample rate of input signal (Hz)
Sample rate of the input signal, specified as a positive scalar in Hz. The input sample rate must
be greater than the bandwidth of interest. The default is 48e3.

Sample rate of output signal (Hz)
Sample rate of the output signal, specified as a positive scalar in Hz. The output sample rate must
be higher or lower than the input sample rate. The default is 98e3.

Tolerance for output sample rate
Maximum allowed tolerance for the output sample rate, specified as a positive scalar in the range
[0 to0.5]. The default is 0.

The actual output sample rate varies but is within the specified range. For example, suppose that
you set the Tolerance for output sample rate to 0.01. Then the actual output sample rate is in

 Farrow Rate Converter

2-513

the range given by sample rate of output signal ± 1%. This flexibility allows for a simpler filter
design.

Specification method
Method used to specify the polynomial interpolator coefficients, specified as one of the following:

• Polynomial order — Specify the order of the Lagrange interpolation filter polynomial
through the Polynomial order parameter.

• Coefficients — Specify the polynomial coefficients directly through the Coefficients
parameter.

Polynomial order
Order of filter polynomial, specified as a 1, 2, 3, or 4. The default is 3. This parameter applies
only when you set Specification method to Polynomial order.

Coefficients
Filter polynomial coefficients, specified as a real-valued square matrix. The default is [-1 1; 1
0]. This property applies only when you set Specification method to Coefficients.

View Filter Response
Opens the fvtool and displays the magnitude/phase response of the Farrow Rate Converter. The
response is based on the block dialog box parameters. Changes made to these parameters update
FVTool.

2 Blocks

2-514

To update the magnitude response while fvtool is running, modify the dialog box parameters and
click Apply.

View Info
Display the following information about the Farrow filter system:

• Filter Structure
• Interpolation Factor
• Decimation Factor
• Filter Length
• Stable
• Linear Phase

 Farrow Rate Converter

2-515

This button brings the functionality of the info method into the Simulink environment.
Simulate using

Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

Data Types

Rounding mode
Rounding mode for fixed-point operations, specified as one of Ceiling | Convergent | Floor |
Nearest | Round | Zero. The default is Floor. For more information on the rounding modes, see
“Precision and Range”.

This property is not tunable.
Saturate on integer overflow

Overflow action for fixed-point operations, specified as Wrap | Saturate . The default is Wrap.
For more details on the overflow action to select, see the 'Overflow Handling' section of
“Precision and Range”.

This property is not tunable.
Coefficients

Data type of the filter coefficients, specified as a signed fixed-point object. The default,
fixdt(1,16), corresponds to a signed fixed-point type object with 16-bit coefficients. To give the
best possible precision, fraction length is determined based on the coefficient values.

This property is not tunable.

2 Blocks

2-516

Fractional Delay
Data type of the fractional delay, specified as an unsigned fixed-point object. The default,
fixdt(0,8), corresponds to an unsigned fixed-point data type object with 8-bit word length. To
give the best possible precision, fractional length computed based on the fractional delay values.

This property is not tunable.
Multiplicand

Data type of the multiplicand, specified as a signed fixed-point object. The default,
fixdt(1,16,13), corresponds to a signed fixed-point multiplicand data type with 16-bit word
length and 13-bit fraction length.

This property is not tunable.
Output

Word length and fraction length of the output data type, specified as one of the following:

• Inherit: Same word length as input (default) — Output word length and fraction
lengths are the same as the input.

• Inherit: Same as accumulator — Output word length and fraction lengths are the same
as the accumulator.

• fixdt(1,16) — Signed fixed-point data type with 16-bit word length. To give the best
possible precision, fraction length is computed based on the input range. The dynamic range
of the input is preserved.

• fixdt(1,16,0) — Signed fixed-point data type with 16-bit word length and zero fraction
length.

This property is not tunable.
Output Minimum

Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform automatic scaling of fixed-point data types.

Output Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform automatic scaling of fixed-point data types.

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed point
• 8-, 16-, and 32-bit signed integers

 Farrow Rate Converter

2-517

Port Supported Data Types
Output • Double-precision floating point

• Single-precision floating point
• Signed fixed point
• 8-, 16-, and 32-bit signed integers

See Also
dsp.FarrowRateConverter DSP System Toolbox
Sample-Rate Converter DSP System Toolbox

Algorithms
This block brings the capabilities of the dsp.FarrowRateConverter System object to the Simulink
environment.

For information on the algorithms used by this block, see the Algorithms on page 4-472 section of
dsp.FarrowRateConverter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

The diagram shows the data types that the Farrow Rate Converter block uses for fixed-point signals
and floating-point signals. You can specify these data types using the parameters on the Data Types
tab. If the input is floating point, all data types in filter are the same as the input data type, single
or double.

2 Blocks

2-518

If the input is fixed point, the FIR filter defines internal data types using the Rounding mode,
Saturate on integer overflow, and Coefficients data type parameters. The accumulators and
products within the FIR filter use full precision data types. The block casts the output of the FIR filter
to the Multiplicand data type.

Introduced in R2015b

 Farrow Rate Converter

2-519

Fast Block LMS Filter
Compute output, error, and weights using LMS adaptive algorithm

Library
Filtering / Adaptive Filters

dspadpt3

Description
The Fast Block LMS Filter block implements an adaptive least mean-square (LMS) filter, where the
adaptation of the filter weights occurs once for every block of data samples. The block estimates the
filter weights, or coefficients, needed to convert the input signal into the desired signal. Connect the
signal you want to filter to the Input port. The input signal can be a scalar or a column vector.
Connect the signal you want to model to the Desired port. The desired signal must have the same
data type, complexity, and dimensions as the input signal. The Output port outputs the filtered input
signal. The Error port outputs the result of subtracting the output signal from the desired signal.

The block calculates the filter weights using the Block LMS Filter equations. For more information,
see Block LMS Filter. The Fast Block LMS Filter block implements the convolution operation involved
in the calculations of the filtered output, y, and the weight update function in the frequency domain
using the FFT algorithm used in the Overlap-Save FFT Filter block. See Overlap-Save FFT Filter
(Obsolete) for more information.

Use the Filter length parameter to specify the length of the filter weights vector.

The Block size parameter determines how many samples of the input signal are acquired before the
filter weights are updated. The input frame length must be a multiple of the Block size parameter.

The Step-size (mu) parameter corresponds to µ in the equations. You can either specify a step-size
using the input port, Step-size, or enter a value in the Block Parameters: Block LMS Filter dialog box.

Use the Leakage factor (0 to 1) parameter to specify the leakage factor, 0 < 1− μα ≤ 1, in the leaky
LMS algorithm shown below.

w(k) = (1− μα)w(k− 1)− f (u(n), e(n), μ)

Enter the initial filter weights, w(0), as a vector or a scalar in the Initial value of filter weights text
box. When you enter a scalar, the block uses the scalar value to create a vector of filter weights. This
vector has length equal to the filter length and all of its values are equal to the scalar value.

2 Blocks

2-520

When you select the Adapt port check box, an Adapt port appears on the block. When the input to
this port is nonzero, the block continuously updates the filter weights. When the input to this port is
zero, the filter weights remain at their current values.

When you want to reset the value of the filter weights to their initial values, use the Reset input
parameter. The block resets the filter weights whenever a reset event is detected at the Reset port.
The reset signal rate must be the same rate as the data signal input.

From the Reset input list, select None to disable the Reset port. To enable the Reset port, select one
of the following from the Reset input list:

• Rising edge — Triggers a reset operation when the Reset input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero (see the following figure)

• Falling edge — Triggers a reset operation when the Reset input does one of the following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero (see the following figure)

• Either edge — Triggers a reset operation when the Reset input is a Rising edge or Falling
edge (as described above)

• Non-zero sample — Triggers a reset operation at each sample time that the Reset input is not
zero

 Fast Block LMS Filter

2-521

Select the Output filter weights check box to create a Wts port on the block. For each iteration, the
block outputs the current updated filter weights from this port.

Parameters
Filter length

Enter the length of the FIR filter weights vector. The sum of the Block size and the Filter length
must be a power of 2.

Block size
Enter the number of samples to acquire before the filter weights are updated. The number of
rows in the input must be an integer multiple of the Block size. The sum of the Block size and
the Filter length must be a power of 2.

Specify step-size via
Select Dialog to enter a value for mu, or select Input port to specify mu using the Step-size
input port.

Step-size (mu)
Enter the step-size. Tunable (Simulink).

Leakage factor (0 to 1)
Enter the leakage factor, 0 < 1− μα ≤ 1. Tunable (Simulink).

Initial value of filter weights
Specify the initial values of the FIR filter weights.

Adapt port
Select this check box to enable the Adapt input port.

Reset input
Select this check box to enable the Reset input port.

Output filter weights
Select this check box to export the filter weights from the Wts port.

References
Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons, 1996.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Desired • Must be the same as Input
Step-size • Must be the same as Input

2 Blocks

2-522

Port Supported Data Types
Adapt • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Reset • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Same as Input
Error • Same as Input
Wts • Same as Input

See Also
Block LMS Filter DSP System Toolbox
Kalman Adaptive Filter (Obsolete) DSP System Toolbox
LMS Filter DSP System Toolbox
RLS Filter DSP System Toolbox

See “Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

 Fast Block LMS Filter

2-523

FFT
Fast Fourier transform (FFT) of input
Library: DSP System Toolbox / Transforms

Description
The FFT block computes the fast Fourier transform (FFT) across the first dimension of an N-D input
array, u. The block uses one of two possible FFT implementations. You can select an implementation
based on the FFTW library or an implementation based on a collection of Radix-2 algorithms. To allow
the block to choose the implementation, you can select Auto. For more information about the FFT
implementations, see “Algorithms” on page 2-529.

For user-specified FFT lengths not equal to P, zero padding or truncating, or modulo-length data
wrapping occurs before the FFT operation. For an FFT with P ≤ M:

y = fft(u,M) % P ≤ M

Wrapping:

y(:,L) = fft(datawrap(u(:,L),M)) % P > M; L = 1,...,N

Truncating:

y (:,L) = fft(u,M) % P > M; L = 1,...,N

Tip When the input length, P, is greater than the FFT length, M, you may see magnitude increases in
your FFT output. These magnitude increases occur because the FFT block uses modulo-M data
wrapping to preserve all available input samples.

To avoid such magnitude increases, you can truncate the length of your input sample, P, to the FFT
length, M. To do so, place a Pad block before the FFT block in your model.

Ports
Input

Port_1 — Input signal
vector | matrix | N-D array

Input signal for computing the FFT. The block computes the FFT along the first dimension of the N-D
input signal.

For more information on how the block computes the FFT, see “Description” on page 2-524 and
“Algorithms” on page 2-529.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

2 Blocks

2-524

Output

Port_1 — FFT of input
vector | matrix | N-D array

The FFT, computed across the first dimension of an N-D input array. When the output of the block has
an integer or fixed-point data type, it is always signed.

The kth entry of the Lth output channel, y(k,L), equals the kth point of the M-point discrete Fourier
transform (DFT) of the Lth input channel:

y(k, L) = ∑
p = 1

P
u(p, L)e− j2π(p− 1)(k− 1)/M k = 1, …, M

For more information on how the block computes the FFT, see “Description” on page 2-524 and
“Algorithms” on page 2-529.
Data Types: single | double | int8 | int16 | int32 | fixed point

Parameters
Main

FFT implementation — FFT implementation
Auto (default) | Radix-2 | FFTW

Set this parameter to FFTW to support an arbitrary length input signal. The block restricts generated
code with FFTW implementation to host computers capable of running MATLAB.

Set this parameter to Radix-2 for bit-reversed processing, fixed or floating-point data, or portable C-
code generation using the Simulink Coder. The dimension M of the M-by-N input matrix, must be a
power of two. To work with other input sizes, use the Pad block to pad or truncate these dimensions
to powers of two, or if possible choose the FFTW implementation. For more information about the
algorithms used by the Radix-2 mode, see “Radix-2 Implementation” on page 2-529.

Set this parameter to Auto to let the block choose the FFT implementation. For floating-point inputs
with non-power-of-two transform lengths, the FFTW algorithm is automatically chosen. Otherwise a
Radix-2 algorithm is automatically chosen. For non-power-of-two transform lengths, the block
restricts generated code to MATLAB host computers.

Output in bit-reversed order — Output in bit-reversed order
off (default) | on

Designate the order of the output channel elements relative to the ordering of the input elements.
When you select this check box, the output channel elements appear in bit-reversed order relative to
the input ordering. If you clear this check box, the output channel elements appear in linear order
relative to the input ordering.

Note The FFT block calculates its output in bit-reversed order. Linearly ordering the FFT block
output requires an extra bit-reversal operation. In many situations, you can increase the speed of the
FFT block by selecting the Output in bit-reversed order check box.

For more information ordering of the output, see “Linear and Bit-Reversed Output Order”.

 FFT

2-525

Dependencies

To enable this parameter, set FFT implementation to Auto or Radix-2.

Divide output by FFT length — Divide output by FFT length
off (default) | on

When you select this parameter, the block divides the output of the FFT by the FFT length. This
option is useful when you want the output of the FFT to stay in the same amplitude range as its input.
This is particularly useful when working with fixed-point data types.

Inherit FFT length from input dimensions — Inherit FFT length from input dimensions
on (default) | off

Select to inherit the FFT length from the input dimensions. When you select this check box, the input
length must be a power of two.

Dependencies

When you do not select this check box, the FFT length parameter becomes available to specify the
length.

FFT length — FFT length
64 (default) | integer

Specify FFT length as an integer greater than or equal to two.

When you set the FFT implementation parameter to Radix-2, or when you check the Output in
bit-reversed order check box, this value must be a power of two.

Dependencies

To enable this parameter, clear the Inherit FFT length from input dimensions check box.

Wrap input data when FFT length is shorter than input length — Wrap or truncate
input
on (default) | off

Choose to wrap or truncate the input, depending on the FFT length. If you select this parameter,
modulo-length data wrapping occurs before the FFT operation when the FFT length is shorter than
the input length. If you clear this check box, truncation of the input data to the FFT length occurs
before the FFT operation.

Dependencies

To enable this parameter, clear the Inherit FFT length from input dimensions check box.

Data Types

Rounding mode — Rounding method
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations.

Limitations

The sine table values do not obey this parameter; instead, they always round to Nearest.

2 Blocks

2-526

The Rounding mode parameter has no effect on numeric results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in full-precision mode.

Saturate on integer overflow — Saturate on integer overflow
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Limitations

The Saturate on integer overflow parameter has no effect on numeric results when all these
conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in full-precision mode.

Sine table — Data type of sine table values
Inherit: Same word length as input (default) | fixdt(1,16)

Choose how to specify the word length of the values of the sine table. The fraction length of the sine
table values always equals the word length minus one. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16)

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Sine table parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Limitations

The sine table values do not obey the Rounding mode and Saturate on integer overflow
parameters; instead, they are always saturated and rounded to Nearest.

Product output — Product output data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt(1,16,0)

Specify the product output data type. See “Fixed Point” on page 2-531 and “Multiplication Data
Types” for illustrations depicting the use of the product output data type in this block. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

 FFT

2-527

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Accumulator — Accumulator data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | fixdt(1,16,0)

Specify the accumulator data type. See “Fixed Point” on page 2-531 for illustrations depicting the
use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Output — Output data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt(1,16,0)

Specify the output data type. See “Fixed Point” on page 2-531 for illustrations depicting the use of
the output data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the block calculates the output
word length and fraction length automatically. The equations that the block uses to calculate the
ideal output word length and fraction length depend on the setting of the Divide output by FFT
length check box.

• When you select the Divide output by FFT length check box, the ideal output word and
fraction lengths are the same as the input word and fraction lengths.

• When you clear the Divide output by FFT length check box, the block computes the ideal
output word and fraction lengths according to the following equations:

WLidealoutput = WLinput + floor(log2(FFTlength− 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction lengths that are
appropriate for your hardware. For more information, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Output parameter.

2 Blocks

2-528

See “Control Data Types of Signals” (Simulink) for more information.

Output Minimum — Minimum value block should output
[] (default) | scalar

Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Output Maximum — Maximum value block should output
[] (default) | scalar

Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals limiteda

Zero-Crossing
Detection

no

a. Variable-size signals are only supported when the Inherit FFT length from input dimensions checkbox is selected.

Algorithms
FFTW Implementation

The FFTW implementation provides an optimized FFT calculation including support for power-of-two
and non-power-of-two transform lengths in both simulation and code generation. Generated code
using the FFTW implementation can only run on computers capable of running MATLAB. The input
data type must be floating-point.

Radix-2 Implementation

The Radix-2 implementation supports bit-reversed processing, fixed or floating-point data, and allows
the block to provide portable C-code generation using the Simulink Coder. The dimension M of the M-

 FFT

2-529

by-N input matrix must be a power of two. To work with other input sizes, use the Pad block to pad or
truncate these dimensions to powers of two, or if possible choose the FFTW implementation.

With Radix-2 selected, the block implements one or more of the following algorithms:

• Butterfly operation
• Double-signal algorithm
• Half-length algorithm
• Radix-2 decimation-in-time (DIT) algorithm
• Radix-2 decimation-in-frequency (DIF) algorithm

Radix-2 Algorithms for Real and Complex Signals

Complexity of
Input

Output Ordering Algorithms Used for FFT Computation

Complex Linear Bit-reversed operation and radix-2 DIT
Complex Bit-reversed Radix-2 DIF
Real Linear Bit-reversed operation and radix-2 DIT in conjunction with the

half-length and double-signal algorithms
Real Bit-reversed Radix-2 DIF in conjunction with the half-length and double-signal

algorithms

The efficiency of the FFT algorithm can be enhanced for real input signals by forming complex-valued
sequences from the real-valued sequences prior to the computation of the DFT. When there are 2N+1
real input channels, the FFT block forms these complex-valued sequences by applying the double-
signal algorithm to the first 2N input channels, and the half-length algorithm to the last odd-
numbered channel.

For real input signals with fixed-point data types, different numerical results might appear in the
output of the last odd-numbered channel, even when all input channels are identical. This numerical
difference results from differences in the double-signal algorithm and the half-length algorithm.

You can eliminate this numerical difference in two ways:

• Using full precision arithmetic for fixed-point input signals
• Changing the input data type to floating point

For more information on the double-signal algorithm, see [2], “Efficient Computation of the DFT of
Two Real Sequences” on page 475. For more information on the half-length algorithm, see [2],
“Efficient Computation of the DFT of a 2N-Point Real Sequence” on page 476.

Radix-2 Optimization for the Table of Trigonometric Values

In certain situations, the block’s Radix–2 algorithm computes all the possible trigonometric values of
the twiddle factor

e j2πk
K

where K is the greater value of either M or N and k = 0,⋯, K − 1. The block stores these values in a
table and retrieves them during simulation. The number of table entries for fixed-point and floating-
point is summarized in the following table:

2 Blocks

2-530

Number of Table Entries for N-Point FFT
floating-point 3N/4
fixed-point N

References
[1] Orfanidis, S. J. Introduction to Signal Processing. Upper Saddle River, NJ: Prentice Hall, 1996, p.

497.

[2] Proakis, John G. and Dimitris G. Manolakis. Digital Signal Processing, 3rd ed. Upper Saddle River,
NJ: Prentice Hall, 1996.

[3] FFTW (http://www.fftw.org)

[4] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the FFT,”Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp.
1381-1384.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• When the following conditions apply, the executable generated from this block relies on prebuilt
dynamic library files (.dll files) included with MATLAB:

• FFT implementation is set to FFTW.
• Inherit FFT length from input dimensions is cleared, and FFT length is set to a value that

is not a power of two.

Use the packNGo function to package the code generated from this block and all the relevant files
in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your project in
another development environment where MATLAB is not installed. For more details, see “How To
Run a Generated Executable Outside MATLAB”.

• When the FFT length is a power of two, you can generate standalone C and C++ code from this
block.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The following diagrams show the data types used in the FFT block for fixed-point signals. You can set
the Sine table, Accumulator, Product output, and Output data types displayed in the diagrams in
the FFT dialog box as discussed in “Parameters” on page 2-525.

Inputs to the FFT block are first cast to the output data type and stored in the output buffer. Each
butterfly stage then processes signals in the accumulator data type, with the final output of the
butterfly being cast back into the output data type. The block multiplies in a twiddle factor before
each butterfly stage in a decimation-in-time FFT and after each butterfly stage in a decimation-in-
frequency FFT.

 FFT

2-531

http://www.fftw.org

The output of the multiplier appears in the accumulator data type because both of the inputs to the
multiplier are complex. For details on the complex multiplication performed, see “Multiplication Data
Types”.

Note When the block input is fixed point, all internal data types are signed fixed point.

See Also
Objects
dsp.FFT | dsp.IFFT

Functions
fft | ifft | bitrevorder

Blocks
DCT | IFFT | Pad

2 Blocks

2-532

Topics
“Linear and Bit-Reversed Output Order”

Introduced before R2006a

 FFT

2-533

Filter Realization Wizard
Construct filter realizations using digital filter blocks or Sum, Gain, and Delay blocks

Library
Filtering / Filter Implementations

dsparch4

Description

Note Use this block to implement fixed-point or floating-point digital filters using Sum, Gain, and
Delay blocks or digital filter blocks from the DSP System Toolbox library. You can either design a filter
by using the block parameters, or import the coefficients of a filter you have designed elsewhere.

The following blocks also implement digital filters, but serve slightly different purposes:

• Discrete FIR Filter and Biquad Filter— Use to implement floating-point or fixed-point filters that
you have already designed

• Digital Filter Design — Use to design, analyze, and then implement floating-point filters.

The Filter Realization Wizard is a tool for automatically implementing a digital filter. You must specify
a filter, its structure, and the data types for the inputs, outputs, and computations. The filter can
support double-precision, single-precision, or fixed-point data types.

The Filter Realization Wizard can implement a digital filter in one of two ways. It can use digital filter
blocks from the DSP System Toolbox library, or it can create a subsystem block that implements the
specified filter using Sum, Gain, and Delay blocks. If the Filter Realization Wizard creates a block,
double-click the block to open the dialog box. If it creates a subsystem, double-click the subsystem
block to see the filter implementation as shown in the figure below.

2 Blocks

2-534

For more information about filter implementation, see “Specify the Filter Implementation” on page 2-
536.

The parameters of the Filter Realization Wizard are a part of a larger app, the Filter Designer
(filterDesigner). You can use filter designer to design and analyze your filter, and then use the
Filter Realization Wizard parameters to implement the filter in your models.

Specify the Filter and Data Types

To specify a purely double-precision filter, you can either design a filter using the Design Filter
panel, or import a filter using the Import Filter panel. In the Import Filter panel, you can specify
the coefficients directly or specify the workspace variables which store the coefficients.

You can also specify a fixed-point filter or a single-precision filter by using the Set Quantization
Parameters panel.

Note Running a model containing implementations of fixed-point filters requires the Fixed-Point
Designer product, but you can still edit models containing such filter implementations without it. See
the Fixed-Point Designer documentation for more information.

See the following topics to learn how to use the panels to specify your filter:

• For more information on the Design Filter panel, see filterDesigner.
• For more information on the Import Filter panel, see “Importing a Filter Design”.
• For more information on the Set Quantization Parameters panel, see “Access the Quantization

Features of Filter Designer”.

To open a panel, click the appropriate button in the lower-left corner of filter designer.

Supported Filter Structures

The Filter Realization Wizard supports the following structures:

• Direct form I

 Filter Realization Wizard

2-535

• Direct form I, second-order sections
• Direct form I transposed
• Direct form I transposed, second-order sections
• Direct form II
• Direct form II, second-order sections
• Direct form II transposed
• Direct form II transposed, second-order sections
• Direct form FIR
• Direct form FIR transposed
• Direct form symmetric FIR
• Direct form antisymmetric FIR
• Lattice all-pass
• Lattice AR
• Lattice ARMA
• Lattice MA for maximum phase
• Lattice MA for minimum phase
• Cascade
• Parallel

Specify the Filter Implementation

You can determine how the Filter Realization Wizard models the specified filter. In the Realize
Model panel, select the Build model using basic elements check box. When you select this check
box and click on the Realize Model button, the Filter Realization Wizard creates a subsystem block
that implements your filter using Sum, Gain, and Delay blocks. When you clear this check box, the
Filter Realization Wizard uses a digital filter block to implement your filter. The Build model using
basic elements check box is available only when your filter can be implemented using a digital filter
block available in the DSP System Toolbox library.

The Filter Realization Wizard can generate a subsystem that represents either a double-precision or
fixed-point filter. You must install the Fixed-Point Designer product to simulate a fixed-point filter. You
can still edit the blocks used to implement the filter without installing the Fixed-Point Designer
product.

2 Blocks

2-536

Implementations of Double-Precision and Fixed-Point Filters

Command Line Alternative to Realize Model Button

You can enter realizemdl(sysobj) in the MATLAB command prompt to generate an architectural
model of the filter System object, sysobj, in a Simulink subsystem block using individual sum, gain,
and delay blocks, according to user-defined specifications. For more information, see realizemdl.

Parameters

Note The following parameters for the Filter Realization Wizard are in the Realize Model pane of
the filter designer app. To open different panels of filter designer, click the different buttons at the
lower-left corner. For more information about relevant panels, see “Specify the Filter and Data Types”
on page 2-535.

Block Name
Enter the name of the new filter block.

Destination
Specify where the new filter block should be created. This can be in a new model or in the current
(most recently selected) model.

User Defined
Specify the name of the target subsystem in which the Filter Realization Wizard should create the
new filter block.

 Filter Realization Wizard

2-537

Overwrite generated block “Filter” block
When selected, the block overwrites any filter block in the current model with the name specified
in the Block Name parameter. This parameter is enabled when the Destination parameter is set
to Current.

Build model using basic elements
Select this check box to implement your filter using Sum, Gain, and Delay blocks. Clear this check
box to implement your filter using digital filter blocks from the DSP System Toolbox library. This
parameter is available only when your filter can be modeled using an available digital filter block.

Optimize for zero gains
Select this check box to remove zero-gain paths from the filter structure. For an example, see
“Optimize the Filter Structure”.

Optimize for unity gains
Select this check box to substitute gains equal to 1 with a wire (short circuit). For an example,
see “Optimize the Filter Structure”.

Optimize for negative gains
Select this check box to substitute gains equal to -1 with a wire (short circuit), and change the
corresponding sums to subtractions. For an example, see “Optimize the Filter Structure”.

Optimize delay chains
Select this check box to substitute any delay chains made up of n unit delays with a single delay
by n. For an example, see “Optimize the Filter Structure”.

Optimize for unity scale values
Select this check box to remove all scale value multiplications by 1 from the filter structure.

Input processing
Specify how the generated filter block or subsystem block processes the input. Depending on the
type of filter you are designing, one or both of the following options may be available:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

For more information about sample- and frame-based processing, see “Sample- and Frame-Based
Concepts”.

Rate options
For multirate filters, specify how the block should process the input. You can set this parameter to
one of the following options:

• Enforce single-rate processing — When you select this option, the block maintains the
input sample rate.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples.

Realize Model
Click to create a filter block according to the settings you’ve specified. When the Build model
using basic elements check box is selected, the filter is implemented as a subsystem block
consisting of Sum, Gain, and Delay blocks. To see the filter implementation, double-click the
subsystem block in your model.

2 Blocks

2-538

Note For more information about relevant parameters in other panels of filter designer, see
“Specify the Filter and Data Types” on page 2-535.

Supported Data Types
• Double-precision floating point
• Single-precision floating point — Supported only when you install Fixed-Point Designer.
• Fixed point (signed and unsigned) — Supported only when you install Fixed-Point Designer and

Fixed-Point Designer.

References
[1] Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ:

Prentice Hall, 1989.

[2] Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall,
1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
filter | realizemdl

Blocks
Discrete FIR Filter | Biquad Filter | Digital Filter Design

Topics
“Filter Design”
“Filter Analysis”
“Select a Filter Design Block”

Introduced before R2006a

 Filter Realization Wizard

2-539

FIR Decimation
Filter and downsample input signals
Library: DSP System Toolbox / Filtering / Multirate Filters

DSP System Toolbox HDL Support / Filtering

Description
The FIR Decimation block resamples vector or matrix inputs along the first dimension. The FIR
decimator (as shown in the schematic) conceptually consists of an anti-aliasing FIR filter followed by
a downsampler. To design an FIR anti-aliasing filter, use the designMultirateFIR function.

The FIR filter filters the data in each channel of the input using a direct-form FIR filter. The
downsampler that follows downsamples each channel of filtered data by taking every M-th sample
and discarding the M – 1 samples that follow. M is the value of the decimation factor that you specify.
The resulting discrete-time signal has a sample rate that is 1/M times the original sample rate.

The actual block algorithm implements a direct-form FIR polyphase structure, an efficient equivalent
of the combined system depicted in the diagram. For more details, see “Algorithms” on page 2-550.

Under specific conditions, this block also supports SIMD code generation. For details, see “Code
Generation” on page 2-552.

Ports
Input

In — Data input
vector | matrix

Specify the data input as a vector or a matrix.

When the Rate options parameter is set to Enforce single-rate processing, the number of
rows in the input must be a multiple of the Decimation factor parameter.

2 Blocks

2-540

This block supports variable-size inputs. That is, the frame size (number of rows) of the signal can
change during simulation but the number of channels cannot.

This port is unnamed until you set Coefficient source to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Num — Numerator coefficients
vector

Specify the numerator coefficients of the FIR filter as a vector.

The transfer function H(z) of the FIR filter is given by:

You can generate the FIR filter coefficient vector, b = [b0, b1, …, bN], using one of the DSP System
Toolbox filter design functions such as designMultirateFIR, firnyquist, firhalfband, firgr,
or firceqrip.

To act as an effective anti-aliasing filter, the coefficients usually correspond to a lowpass filter with a
normalized cutoff frequency no greater than 1/M, where M is the decimation factor. To design such a
filter, use the designMultirateFIR function.

Coefficient values obtained through Num are tunable, that is, they can change during simulation,
while their properties must remain constant.

The data type of the Num input must match the data type of the In input.

Dependencies

The Num input port appears when you set Coefficient source as Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Output

Out — Decimator output
vector | matrix

Output of the FIR Decimator block, returned as a vector or a matrix.

When Rate options is set to:

• Enforce single-rate processing — The block maintains the input sample rate and
decimates the signal by decreasing the output frame size by a factor of M.

• Allow multirate processing — The block decimates the signal such that the output sample
rate is M times slower than the input sample rate.

This port is unnamed until you set Coefficient source to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

 FIR Decimation

2-541

Parameters
Coefficient source

Coefficient source — FIR filter coefficient source
Auto (default) | Dialog parameters | Input port | Filter object

Specify the FIR filter coefficient source as one of the following:

• Dialog parameters –– Specify the filter coefficients through the FIR filter coefficients
parameter in the block dialog box.

• Input port –– Specify the filter coefficients through the Num input port.
• Filter object –– Specify the filter using a dsp.FIRDecimator System object.
• Auto –– When you select Auto, the block designs an FIR decimator using the decimation factor

that you specify in Decimation factor. The designMultirateFIR function designs the filter and
returns the coefficients used by the block.

For more information on the filter design, see Orfanidis [2].

Main Tab

FIR filter coefficients — Lowpass FIR filter coefficients
designMultirateFIR(1,2) (default) | vector

Specify the lowpass FIR filter coefficients, in descending powers of z, as a vector. By default,
designMultirateFIR(1,2) computes the filter coefficients.

The transfer function H(z) of the FIR filter is given by:

You can generate the FIR filter coefficient vector, b = [b0, b1, …, bN], using one of the DSP System
Toolbox filter design functions such as designMultirateFIR, firnyquist, firhalfband, firgr,
or firceqrip.

To act as an effective anti-aliasing filter, the coefficients usually correspond to a lowpass filter with a
normalized cutoff frequency no greater than 1/M, where M is the decimation factor. To design such a
filter, use the designMultirateFIR function.

The block internally initializes all filter states to zero.
Dependencies

This parameter appears only when you set the Coefficient source to Dialog parameters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Decimation factor — Decimation factor
2 (default) | positive scalar

Specify the integer factor M. The block decreases the sample rate of the input sequence by this
factor.
Dependencies

This parameter appears only when you set the Coefficient source to Dialog parameters, Input
port, or Auto.

2 Blocks

2-542

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Filter structure — FIR filter structure
Direct form (default) | Direct form transposed

Specify the FIR filter structure as either Direct form or Direct form transposed.
Dependencies

This parameter appears only when you set the Coefficient source to Dialog parameters, Input
port, or Auto.

Filter object — Filter object
dsp.FIRDecimator

Specify the name of the multirate filter object that you want the block to implement. You must specify
the filter as a dsp.FIRDecimatorSystem object.

You can define the System object directly in the block dialog box. Alternatively, you can define the
object in a MATLAB workspace variable and specify the variable in the block dialog box.

For information on creating System objects, see “Define Basic System Objects”.
Dependencies

This parameter appears only when you set the Coefficient source to Filter object.

Input processing — Method to process input signals
Columns as channels (frame based) (default) | Elements as channels (sample based)

Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) — When you select this option, the block treats each
column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options — Method by which block decimates input
Enforce single-rate processing (default) | Allow multirate processing

Specify the method by which the block should decimate the input. You can select one of the following
options:

• Enforce single-rate processing — When you select this option, the block maintains the
input sample rate and decimates the signal by decreasing the output frame size by a factor of M.
To select this option, you must set the Input processing parameter to Columns as channels
(frame based).

When you set the Rate options parameter to Enforce single-rate processing, you can use
the FIR Decimation block inside triggered subsystems.

• Allow multirate processing — When you select this option, the block decimates the signal
such that the output sample rate is M times slower than the input sample rate.

Output buffer initial conditions — Initial conditions
0 (default) | scalar | matrix

 FIR Decimation

2-543

When you set the FIR Decimation block to the frame-based processing mode, the block can exhibit
one-frame latency. In the case of one-frame latency, this parameter specifies the output of the block
until the first filtered input sample is available. Specify this parameter as a scalar value to be applied
to all signal channels, or as a matrix containing one value for each channel.

Cases of one-frame latency can occur when the input frame size is greater than one, and you set the
Input processing and Rate options parameters of the FIR Decimation block as follows:

• Input processing set to Columns as channels (frame based)
• Rate options set to Allow multirate processing

For more information on latency in the FIR Decimation block, see “Latency” on page 2-549.

Dependencies

This parameter appears only when you configure the block to perform multirate processing by setting
Rate options to Allow multirate processing.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

View Filter Response — View filter response
button

Click on this button to open the Filter Visualization Tool (fvtool) and display the filter response of
the filter defined in the block dialog box.

Data Types Tab

Rounding mode — Rounding mode
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations. The default is Floor. The filter coefficients do
not obey this parameter and always round to Nearest.

Note The Rounding mode and Saturate on integer overflow settings have no effect on numerical
results when all the following conditions exist:

• Product output is Inherit: Inherit via internal rule
• Accumulator is Inherit: Inherit via internal rule
• Output is Inherit: Same as accumulator

With these data type settings, the block is effectively operating in the full-precision mode.

Saturate on integer overflow — Saturate on integer overflow
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numeric results when all these conditions are met:

2 Blocks

2-544

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in full-precision mode.

Coefficients Data Type — Coefficients data type
Inherit: Same word length as input (default) | fixdt(1,16) | fixdt(1,16,0)

Specify the coefficients data type. See “Fixed Point” on page 2-555 and “Multiplication Data Types”
for illustrations depicting the use of the coefficients data type in this block.

You can set this parameter to one of the following:

• Inherit: Same word length as input
• fixdt(1,16,0) or fixdt(1,16) –– Specify a data type object.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Coefficients parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide (Simulink)
for more information.

Dependencies

This parameter appears only when you set Coefficient source to Dialog parameters, Filter
object, or Auto.

When Coefficient source is set to Filter object, Coefficients parameter is automatically set to
Same word length as input.

Coefficients Minimum — Minimum value of filter coefficients
[] (default) | scalar

Specify the minimum value of the filter coefficients. The default value is [] (unspecified). Simulink
software uses this value to perform automatic scaling of fixed-point data types.

Dependencies

This parameter appears only when you set Coefficient source to Dialog parameters or Auto.

Coefficients Maximum — Maximum value of filter coefficients
[] (default) | scalar

Specify the maximum value of the filter coefficients. The default value is [] (unspecified). Simulink
software uses this value to perform automatic scaling of fixed-point data types.

Dependencies

This parameter appears only when you set Coefficient source to Dialog parameters or Auto.

Product output Data Type — Product output data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt(1,16,0)

 FIR Decimation

2-545

Specify the product output data type. See “Fixed Point” on page 2-555 and “Multiplication Data
Types” for illustrations depicting the use of the product output data type in this block.

You can set this parameter to one of the following:

• Inherit: Inherit via internal rule

For more information on this rule, see “Inherit via Internal Rule”.
• Inherit: Same as input
• fixdt(1,16,0) –– Specify a data type object.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide (Simulink)
for more information.

Dependencies

When Coefficient source is set to Filter object, Product output parameter is automatically set
to Full precision.

Accumulator Data Type — Accumulator data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | fixdt(1,16,0)

Specify the accumulator data type. See “Fixed Point” on page 2-555 for illustrations depicting the
use of the accumulator data type in this block.

You can set this parameter to one of the following:

• Inherit: Inherit via internal rule.

For more information on this rule, see “Inherit via Internal Rule”.
• Inherit: Same as input
• Inherit: Same as product output
• fixdt(1,16,0) –– Specify a data type object.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide (Simulink)
for more information.

Dependencies

When Coefficient source is set to Filter object, Accumulator parameter is automatically set to
Full precision.

Output Data Type — Output data type
Inherit: Same as accumulator (default) | Inherit: Same as input | Inherit: Same as
product output | fixdt(1,16,0)

2 Blocks

2-546

Specify the output data type. See “Fixed Point” on page 2-555 for illustrations depicting the use of
the output data type in this block.

You can set it to one of the following:

• Inherit: Same as accumulator
• Inherit: Same as input
• Inherit: Same as product output
• fixdt(1,16,0) –– Specify a data type object.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Dependencies

When Coefficient source is set to Filter object, Output parameter is automatically set to Same
as accumulator.

Output Minimum — Minimum value of block output
[] (default) | scalar

Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Dependencies

This parameter appears only when you set Coefficient source to Dialog parameters, Input
port, or Auto.

Output Maximum — Maximum value of block output
[] (default) | scalar

Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Dependencies

This parameter appears only when you set Coefficient source to Dialog parameters, Input
port, or Auto.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

 FIR Decimation

2-547

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
Polyphase Subfilters

A polyphase implementation of an FIR decimator splits the lowpass FIR filter impulse response into M
different subfilters, where M is the downsampling or decimation factor. For more details on the
polyphase implementation, see “Algorithms” on page 2-550.

Let h(n) denote the FIR filter impulse response of length N+1 and x(n) the input signal. Decimating
the filter output by a factor of M is equivalent to the downsampled convolution:

y(n) = ∑
l = 0

N
h(l)x(nM − l)

The key to the efficiency of polyphase filtering is that specific input values are only multiplied by
select values of the impulse response in the downsampled convolution. For example, letting M = 2,
the input values x(0),x(2),x(4), ... are combined only with the filter coefficients h(0),h(2),h(4),..., and
the input values x(1),x(3),x(5), ... are combined only with the filter coefficients h(1),h(3),h(5),.... By
splitting the filter coefficients into two polyphase subfilters, no unnecessary computations are
performed in the convolution. The outputs of the convolutions with the polyphase subfilters are
interleaved and summed to yield the filter output.

The following code demonstrates how to construct the two polyphase subfilters for the default order
35 filter.

M = 2;
Num = fir1(35,0.4);
FiltLength = length(Num);
Num = flipud(Num(:));

if (rem(FiltLength, M) ~= 0)
 nzeros = M - rem(FiltLength, M);
 Num = [zeros(nzeros,1); Num]; % Appending zeros
end

len = length(Num);
nrows = len / M;
PolyphaseFilt = flipud(reshape(Num, M, nrows).');

2 Blocks

2-548

The columns of PolyphaseFilt are subfilters containing the two phases of the filter in Num. For a
general downsampling factor of M, there are M phases and therefore M subfilters.

Frame-Based Processing

When you set the Input processing parameter to Columns as channels (frame based), the
block resamples each column of the input over time. In this mode, the block can perform either
single-rate or multirate processing. You can use the Rate options parameter to specify how the block
resamples the input:

• When you set the Rate options parameter to Enforce single-rate processing, the input
and output of the block have the same sample rate. To decimate the output while maintaining the
input sample rate, the block resamples the data in each column of the input such that the frame
size of the output (Ko) is 1/M times that of the input (Ko = Ki/M),

In this mode, the input frame size, Ki, must be a multiple of the Decimation factor, M.

For an example of single-rate FIR decimation, see “FIR Decimation Using Single-Rate Processing”.
• When you set the Rate options parameter to Allow multirate processing, the input and

output of the FIR Decimation block are of the same size, but the sample rate of the output is M
times slower than that of the input. In this mode, the block treats a Ki-by-N matrix input as N
independent channels. The block decimates each column of the input over time by keeping the
frame size constant (Ki=Ko), and making the output frame period (Tfo) M times longer than the
input frame period (Tfo = M*Tfi).

See “FIR Decimation Using Multirate Frame-Based Processing” for an example that uses the FIR
Decimation block in this mode.

Sample-Based Processing

When you set the Input processing parameter to Elements as channels (sample based), the
block treats a P-by-Q matrix input as P*Q independent channels, and decimates each channel over
time. The output sample period (Tso) is M times longer than the input sample period (Tso = M*Tsi), and
the input and output sizes are identical.

Latency

When you use the FIR Decimation block in the sample-based processing mode, the block always has
zero-tasking latency. Zero-tasking latency means that the block propagates the first filtered input
sample (received at time t= 0) as the first output sample. That first output sample is then followed by
filtered input samples M+1, 2M+1, and so on.

When you use the FIR Decimation block in the frame-based processing mode with a frame size
greater than one, the block may exhibit one-frame latency. Cases of one-frame latency can occur
when the input frame size is greater than one and you set the Input processing and Rate options
parameters of the FIR Decimation block as follows:

• Input processing = Columns as channels (frame based)
• Rate options = Allow multirate processing

In cases of one-frame latency, you can define the value of the first Ki output rows by setting the
Output buffer initial conditions parameter. The default value of the Output buffer initial
conditions parameter is 0. However, you can enter a matrix containing one value for each channel of
the input, or a scalar value to be applied to all channels. The first filtered input sample (first filtered

 FIR Decimation

2-549

row of the input matrix) appears in the output as sample Ki+ 1. That sample is then followed by
filtered input samples M+ 1, 2M+ 1, and so on.

Note For more information on latency and the Simulink tasking modes, see “Excess Algorithmic
Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation” (Simulink Coder).

Algorithms
The FIR decimation filter is implemented efficiently using a polyphase structure. For more details on
polyphase filters, see Polyphase Subfilters on page 2-548.

To derive the polyphase structure, start with the transfer function of the FIR filter:

H(z) = b0 + b1z−1 + ... + bNz−N

N+1 is the length of the FIR filter.

You can rearrange this equation as follows:

H(z) =

b0 + bMz−M + b2Mz−2M + .. + bN −M + 1z−(N −M + 1) +

z−1 b1 + bM + 1z−M + b2M + 1z−2M + .. + bN −M + 2z−(N −M + 1) +
⋮

z−(M − 1) bM − 1 + b2M − 1z−M + b3M − 1z−2M + .. + bNz−(N −M + 1)

M is the number of polyphase components, and its value equals the decimation factor that you
specify.

You can write this equation as:

H(z) = E0(zM) + z−1E1(zM) + ... + z−(M − 1)EM − 1(zM)

E0(zM), E1(zM), ..., EM-1(zM) are the polyphase components of the FIR filter H(z).

Conceptually, the FIR decimation filter contains a lowpass FIR filter followed by a downsampler.

Replace H(z) with its polyphase representation.

2 Blocks

2-550

Here is the multirate noble identity for decimation.

Applying the noble identity for decimation moves the downsampling operation to before the filtering
operation. This move enables you to filter the signal at a lower rate.

You can replace the delays and the decimation factor at the input with a commutator switch. The
switch starts on the first branch 0 and moves in the counterclockwise direction as shown in this
diagram. The accumulator at the output receives the processed input samples from each branch of
the polyphase structure and accumulates these processed samples until the switch goes to branch 0.
When the switch goes to branch 0, the accumulator outputs the accumulated value.

 FIR Decimation

2-551

When the first input sample is delivered, the switch feeds this input to the branch 0 and the
decimator computes the first output value. As more input samples come in, the switch moves in the
counter clockwise direction through branches M−1, M−2, and all the way up to branch 0, delivering
one sample at a time to each branch. When the switch comes to branch 0, the decimator outputs the
next set of output values. This process continues as data keeps coming in. Every time the switch
comes to the branch 0, the decimator outputs y[m]. The decimator effectively outputs one sample for
every M samples it receives. Hence the sample rate at the output of the FIR decimation filter is fs/M.

References
[1] Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets . West

Sussex, England: John Wiley & Sons, 1994.

[2] Orfanidis, Sophocles J. Introduction to Signal Processing . Upper Saddle River, NJ: Prentice-Hall,
1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

The FIR Decimation block supports SIMD code generation using Intel AVX2 technology under these
conditions:

• Filter structure is set to Direct form.
• Input processing is set to Columns as channels (frame based).
• Rate options is set to Enforce single-rate processing.
• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

2 Blocks

2-552

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

For a FIR decimation filter with hardware-friendly control signals and simulation of HDL latency in
Simulink, or for complex data with complex coefficients, use the FIR Decimation HDL Optimized
block instead of this block.

HDL Coder supports Coefficient source options Dialog parameters, Filter object, or Auto.
Programmable coefficients are not supported.

Frame-Based Input Support

HDL Coder supports the use of vector inputs to FIR Decimation blocks, where each element of the
vector represents a sample in time. You can use an input vector of up to 512 samples. The frame-
based implementation supports fixed-point input and output data types, and uses full-precision
internal data types. The output is a column vector of reduced size, corresponding to your decimation
factor. You can use real input signals with real coefficients, complex input signals with real
coefficients, or real input signals with complex coefficients.

1 Connect a column vector signal to the FIR Decimation block input port.
2 Specify Input processing as Columns as channels (frame based).
3 Set Rate options to Enforce single-rate processing.
4 Right-click the block and open HDL Code > HDL Block Properties. Set the Architecture to

Frame Based. The block implements a parallel HDL architecture. See “Frame-Based
Architecture” (HDL Coder).

Block Optimizations

To reduce area or increase speed, the FIR Decimator block supports block-level optimizations.

Right-click on the block or the subsystem to open the corresponding HDL Properties dialog box and
set optimization properties.

Serial Architectures To use block-level optimizations to reduce hardware resources, set
Architecture to Fully Serial or Partly Serial. See “HDL Filter
Architectures” (HDL Coder).

When you specify SerialPartition for a FIR Decimator block, set Filter
structure to Direct form. The Direct form transposed structure is
not supported with serial architectures. Accumulator reuse is not
supported for FIR Decimation filters.

Distributed Arithmetic To minimize multipliers by replacing them with LUTs and shift registers,
use a distributed arithmetic (DA) filter implementation. See “Distributed
Arithmetic for HDL Filters” (HDL Coder).

When you select the Distributed Arithmetic (DA) architecture and
use the DALUTPartition and DARadix distributed arithmetic properties,
set Filter structure to Direct form. The Direct form transposed
structure is not supported with distributed arithmetic.

 FIR Decimation

2-553

Pipelining To improve clock speed, use AddPipelineRegisters to use a pipelined
adder tree rather than the default linear adder. This option is supported for
Direct form architecture. You can also specify the number of pipeline
stages before and after the multipliers. See “HDL Filter Architectures”
(HDL Coder).

HDL Filter Properties

AddPipelineRegisters Insert a pipeline register between stages of computation in a filter. See
also AddPipelineRegisters (HDL Coder).

CoeffMultipliers Specify the use of canonical signed digit (CSD) optimization to decrease
filter area by replacing coefficient multipliers with shift-and-add logic.
When you choose a fully parallel filter implementation, you can set
CoeffMultipliers to csd or factored-csd. The default is multipliers,
which retains multipliers in the HDL. See also CoeffMultipliers (HDL
Coder).

DALUTPartition Specify distributed arithmetic partial-product LUT partitions as a vector of
the sizes of each partition. The sum of all vector elements must be equal to
the filter length. The maximum size for a partition is 12 taps. Set
DALUTPartition to a scalar value equal to the filter length to generate DA
code without LUT partitions. See also DALUTPartition (HDL Coder).

DARadix Specify how many distributed arithmetic bit sums are computed in parallel.
A DA radix of 8 (2^3) generates a DA implementation that computes three
sums at a time. The default value is 2^1, which generates a fully serial DA
implementation. See also DARadix (HDL Coder).

MultiplierInputPipeli
ne

Specify the number of pipeline stages to add at filter multiplier inputs. See
also MultiplierInputPipeline (HDL Coder).

MultiplierOutputPipel
ine

Specify the number of pipeline stages to add at filter multiplier outputs.
See also MultiplierOutputPipeline (HDL Coder).

SerialPartition Specify partitions for partly serial or cascade-serial filter implementations
as a vector of the lengths of each partition. For a fully serial
implementation, set this parameter to the length of the filter. See also
SerialPartition (HDL Coder).

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

2 Blocks

2-554

Restrictions

• You must set Initial conditions to zero. HDL code generation is not supported for nonzero initial
states.

• When you select Dialog parameters, the following fixed-point options are not supported for HDL
code generation:

• Slope and Bias scaling
• CoeffMultipliers options are supported only when using a fully parallel architecture. When you

select a serial architecture, CoeffMultipliers is hidden from the HDL Block Properties dialog box.
• Programmable coefficients are not supported.
• Frame-based input filters are not supported for:

• Resettable and enabled subsystems
• Complex input signals with complex coefficients. You can use either complex input signals and

real coefficients, or complex coefficients and real input signals.
• Sharing and streaming optimizations

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The following diagram shows the data types used within the FIR Decimation block for fixed-point
signals.

This diagram shows that data is stored in the input buffer with the same data type and scaling as the
input. The block stores filtered data and any initial conditions in the output buffer using the output
data type and scaling that you set in the block dialog box.

When at least one of the inputs to the multiplier is real, the output of the multiplier is in the product
output data type. When both inputs to the multiplier are complex, the result of the multiplication is in
the accumulator data type. For details on the complex multiplication performed by this block, see
“Multiplication Data Types”.

Note When the block input is fixed point, all internal data types are signed fixed-point values.

See Also
Functions
firgr | firceqrip | firhalfband | firnyquist

 FIR Decimation

2-555

Objects
dsp.FIRDecimator | dsp.CICCompensationDecimator | dsp.FIRHalfbandDecimator

Blocks
FIR Interpolation | FIR Rate Conversion | FIR Halfband Interpolator | FIR Halfband Decimator | IIR
Halfband Interpolator | IIR Halfband Decimator | CIC Compensation Interpolator | CIC Compensation
Decimator | Downsample | CIC Decimation | Digital Up-Converter | Digital Down-Converter

Introduced before R2006a

2 Blocks

2-556

FIR Decimation HDL Optimized
Finite impulse response (FIR) decimation filter—optimized for HDL code generation
Library: DSP System Toolbox HDL Support / Filtering

Description
The FIR Decimation HDL Optimized block implements a polyphase FIR decimation filter that is
optimized for HDL code generation. The block provides a hardware-friendly interface with input and
output control signals. To provide a cycle-accurate simulation of the generated HDL code, the block
models architectural latency including pipeline registers and resource sharing.

The block accepts scalar or vector input. When you use vector input, the decimation factor must be
an integer multiple of the vector size. The block uses a single-rate implementation. The output is
scalar and a valid signal indicates which samples are valid after decimation. The waveform shows an
input vector of four samples and a decimation factor of eight. The output sample is valid every second
cycle.

The block provides two filter structures. The direct form systolic architecture provides a fully parallel
implementation that makes efficient use of Intel and Xilinx DSP blocks. The direct form transposed
architecture is a fully parallel implementation that is suitable for FPGA and ASIC applications. For a
filter implementation that matches multipliers, pipeline registers, and pre-adders to the DSP
configuration of your FPGA vendor, specify your target device when you generate HDL code.

The block implements one filter for each sample in the input vector. The block then shares this filter
between the polyphase subfilters by interleaving the subfilter coefficients in time.

For a FIR decimation filter with an input size greater the decimation factor or a serial HDL
implementation (scalar input only), use the FIR Decimation block instead of this block.

Ports
Input

data — Input data
scalar | vector

Input data must be a real- or complex-valued scalar or vector. When you use vector input, the
decimation factor must be an integer multiple of the vector size. The vector size must be less than or
equal to 64.

 FIR Decimation HDL Optimized

2-557

When the input data type is an integer type or a fixed-point type, the block uses fixed-point arithmetic
for internal calculations.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

valid — Validity of input data
scalar

When valid is 1, the block captures the data from the data input port.
Data Types: Boolean

reset — Control signal that clears data path state
scalar

When reset is 1, the block stops the current calculation and clears the internal state of the filter. The
reset signal is synchronous and clears the data path and control path states. For more reset
considerations, see “Tips” on page 2-560.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — Filtered output data
scalar

Filtered output data, returned as a real- or complex-valued scalar. When the input data type is a
floating-point type, the output data inherits the data type of the input data. When the input data type
is an integer type or a fixed-point type, the Output parameter on the Data Types tab specifies the
output data type.

The output valid signal indicates which samples are valid after decimation.
Data Types: fixed point | single | double

valid — Validity of output data
scalar

The block sets valid to 1 with each valid data returned on the data output port.
Data Types: Boolean

Parameters
Main

Coefficients — Discrete FIR filter coefficients
fir1(35,0.4) (default) | real- or complex-valued vector

Discrete FIR filter coefficients, specified as a real- or complex-valued vector. You can specify the
vector as a workspace variable or as a call to a filter design function. When the input data type is a

2 Blocks

2-558

floating-point type, the block casts the coefficients to the same data type as the input. When the input
data type is an integer type or a fixed-point type, you can set the data type for the coefficients on the
Data Types tab.
Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0])
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Filter structure — HDL filter architecture
Direct form systolic (default) | Direct form transposed

Specify the HDL filter architecture as one of these structures:

• Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks.

• Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications.

Both implementations share resources by interleaving the subfilter coefficients over one filter
implementation for each sample in the input vector.

The block implements a polyphase decomposition filter using Discrete FIR Filter HDL Optimized
blocks. For architecture details, see the “Fully Parallel Systolic Architecture” on page 2-463 and the
“Fully Parallel Transposed Architecture” on page 2-464 sections on the Discrete FIR Filter HDL
Optimized block reference page.

Decimation factor — Decimation factor
2 (default) | integer greater than two

Specify an integer decimation factor greater than two. When you use vector input, the decimation
factor must be an integer multiple of the vector size.

Data Types

Rounding mode — Rounding mode for type-casting the output
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output to the data type specified by the Output parameter. When
the input data type is floating point, the block ignores this parameter. For more details, see
“Rounding Modes”.

Saturate on integer overflow — Overflow handling for type-casting the output
off (default) | on

Overflow handling for type-casting the output to the data type specified by the Output parameter.
When the input data type is floating point, the block ignores this parameter. For more details, see
“Overflow Handling”.

Coefficients — Data type of filter coefficients
Inherit: Same word length as input (default) | <data type expression>

The block casts the filter coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

The recommended data type for this parameter is Inherit: Same word length as input.

 FIR Decimation HDL Optimized

2-559

The block returns a warning or error if either of these conditions occur.

• The coefficients data type does not have enough fractional length to represent the coefficients
accurately.

• The coefficients data type is unsigned, and the coefficients include negative values.

You can disable or control the severity of these data type messages from the model Configuration
Parameters, by modifying the Diagnostics > Type Conversion > Detect precision loss parameter.

Output — Data type of filter output
Inherit: Inherit via internal rule (default) | Inherit: Same word length as input |
<data type expression>

The block casts the output of the filter to this data type. The quantization uses the settings of the
Rounding mode and Overflow mode parameters. When the input data type is floating point, the
block ignores this parameter.

The block increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

Because the coefficient values limit the potential growth, usually the actual full-precision internal
word length is smaller than WF.

Control Ports

Enable reset input port — Option to enable reset input port
off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see “Tips” on page 2-560.

Use HDL global reset — Option to connect data path registers to generated HDL global
reset signal
off (default) | on

Select this parameter to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this parameter, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see “Tips” on page 2-560.

Tips
Reset Behavior

• By default, the FIR Decimation HDL Optimized block connects the generated HDL global reset to
only the control path registers. The two reset parameters, Enable reset input port and Use

2 Blocks

2-560

HDL global reset, connect a reset signal to the data path registers. Because of the additional
routing and loading on the reset signal, resetting data path registers can reduce synthesis
performance.

• The Enable reset input port parameter enables the reset port on the block. The reset signal
implements a local synchronous reset of the data path registers. For optimal use of FPGA
resources, this option does not connect the reset signal to registers targeted to the DSP blocks of
the FPGA.

• The Use HDL global reset parameter connects the generated HDL global reset signal to the data
path registers. This parameter does not change the appearance of the block or modify simulation
behavior in Simulink. The generated HDL global reset can be synchronous or asynchronous
depending on the HDL Code Generation > Global Settings > Reset type parameter in the
model Configuration Parameters. Depending on your device, using the global reset might move
registers out of the DSP blocks and increase resource use.

• When you select the Enable reset input port and Use HDL global reset parameters together,
the global and local reset signals clear the control and data path registers.

Reset Considerations for Generated Test Benches

• FPGA-in-the-loop initialization provides a global reset but does not automatically provide a local
reset. With the default reset parameters, the data path registers that are not reset can result in
FPGA-in-the-loop (FIL) mismatches if you run the FIL model more than once without resetting the
board. Select Use HDL global reset to reset the data path registers automatically, or select
Enable reset input port and assert the local reset in your model so the reset signal becomes
part of the Simulink FIL test bench.

• The generated HDL test bench provides a global reset but does not automatically provide a local
reset. With the default reset parameters and the default register reset Configuration Parameters,
the generated HDL code includes an initial simulation value for the data path registers. However,
if you are concerned about X-propagation in your design, you can set the HDL Code Generation
> Global Settings > Coding style > No-reset register initialization parameter in
Configuration Parameters to Do not initialize. In this case, with the default block reset
parameters, the data path registers that are not reset can cause X-propagation on the data path at
the start of HDL simulation. Select Use HDL global reset to reset the data path registers
automatically, or select Enable reset input port and assert the local reset in your model so the
reset signal becomes part of the generated HDL test bench.

Algorithms
The block implements a polyphase filter bank where the filter coefficients are decomposed into
Decimation factor subfilters. If the filter length is not divisible by the Decimation factor
parameter value, then the block zero-pads the coefficients.

The diagram shows the polyphase filter bank with scalar input and the Decimation factor parameter
set to four. The four sets of decomposed coefficients are interleaved in time over a single subfilter.

 FIR Decimation HDL Optimized

2-561

The next diagram shows the polyphase filter bank for an input vector of four values and the
Decimation factor parameter set to eight. Each of the four subfilters has two sets of coefficients
interleaved in time.

Each subfilter is implemented with a Discrete FIR Filter HDL Optimized block. The adder at the
output is pipelined to accommodate higher synthesis frequencies. For architecture details, see the
“Fully Parallel Systolic Architecture” on page 2-463, “Fully Parallel Transposed Architecture” on page
2-464, and “Complex Multipliers” on page 2-461 sections on the Discrete FIR Filter HDL Optimized
block reference page.

2 Blocks

2-562

Note The output of the FIR Decimation HDL Optimized block does not match the output from the
FIR Decimation block sample-for-sample. This difference is mainly because of the phase that the
samples are applied across the subfilters. To match the FIR Decimation block, apply Decimation
factor – 1 zeros to the FIR Decimation HDL Optimized block at the start of the data stream.

The FIR Decimation block also uses slightly different data types for full-precision calculations. The
different data types can also introduce differences in output values if the values overflow the internal
data types.

Performance

This table shows the post-synthesis resource utilization for the HDL code generated for the default
FIR decimation filter using scalar input, a decimation factor of eight, 16-bit input, and 16-bit
coefficients. The synthesis targets a Xilinx ZC-706 (XC7Z045ffg900-2) FPGA. The Global HDL reset
type parameter is Synchronous, and the Minimize clock enables parameter is selected. The reset
port is disabled, so only the control path registers are connected to the generated global HDL reset.

Resource Uses
LUT 676
Slice Reg 878
Slice 257
Xilinx LogiCORE DSP48 5

After place and route, the maximum clock frequency of the design is 526 MHz.

For the same filter with a four-element input vector, the filter uses these resources.

Resource Uses
LUT 322
Slice Reg 2351
Slice 502
Xilinx LogiCORE DSP48 20

After place and route, the maximum clock frequency of the design is 518 MHz.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

 FIR Decimation HDL Optimized

2-563

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Objects
dsp.HDLFIRDecimation | dsp.HDLFIRFilter | dsp.FIRDecimator

Blocks
FIR Decimation | Discrete FIR Filter HDL Optimized

Introduced in R2020b

2 Blocks

2-564

FIR Interpolation
Upsample and filter input signals
Library: DSP System Toolbox / Filtering / Multirate Filters

DSP System Toolbox HDL Support / Filtering

Description
The FIR Interpolation block upsamples an input by the integer upsampling factor L along the first
dimension. The FIR interpolator (as shown in the schematic) conceptually consists of an upsampler
followed by an FIR anti-imaging filter, which is usually an approximation of an ideal band-limited
interpolation filter. To design an FIR anti-imaging filter, use the designMultirateFIR function.

The upsampler upsamples each channel of the input to a higher rate by inserting L–1 zeros between
samples. The FIR filter that follows filters each channel of the upsampled data. The resulting discrete-
time signal has a sample rate that is L times the original sample rate.

The actual block algorithm implements a direct-form FIR polyphase structure, an efficient equivalent
of the combined system depicted in the diagram. For more details, see “Algorithms” on page 2-574.

You can use the FIR Interpolation block inside triggered subsystems when you set the Rate options
parameter to Enforce single-rate processing.

Under specific conditions, this block also supports SIMD code generation. For more details, see
“Code Generation” on page 2-576.

Ports
Input

In — Data input
vector | matrix

Specify the data input as a vector or a matrix.

This block supports variable-size inputs. That is, the frame size (number of rows) of the signal can
change during simulation but the number of channels cannot.

 FIR Interpolation

2-565

This port is unnamed until you set Coefficient source to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Num — Numerator coefficients
vector

Specify the numerator coefficients of the FIR filter as a vector.

The transfer function H(z) of the FIR filter is given by:

You can generate the FIR filter coefficient vector, b = [b0, b1, …, bN], using one of the DSP System
Toolbox filter design functions such as designMultirateFIR, firnyquist, firhalfband, firgr
or firceqrip.

To act as an effective anti-imaging filter, the coefficients usually correspond to a lowpass filter with a
normalized cutoff frequency no greater than the reciprocal of the interpolation factor. To design such
a filter, use the designMultirateFIR function.

Coefficient values are tunable. That is, their values can change during simulation while their
properties such as size, data type, and complexity cannot change.

The data type of the Num input must match the data type of the In input.
Dependencies

The Num input port appears when you set Coefficient source as Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Output

Out — Interpolator output
vector | matrix

Output of the FIR Interpolator block, returned as a vector or a matrix.

When Rate options is set to:

• Enforce single-rate processing — When you select this option, the block maintains the
input sample rate, and interpolates the signal by increasing the output frame size by a factor of L.

• Allow multirate processing — When you select this option, the block interpolates the signal
such that the output sample rate is L times faster than the input sample rate.

This port is unnamed until you set Coefficient source to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Parameters
Coefficient source

Coefficient source — FIR filter coefficient source
Auto (default) | Dialog parameters | Input port | Filter object

Specify the FIR filter coefficient source as one of the following:

2 Blocks

2-566

• Dialog parameters –– Specify the filter coefficients through the FIR filter coefficients
parameter in the block dialog box.

• Input port –– Specify the filter coefficients through the Num input port.
• Filter object –– Specify the filter using a dsp.FIRInterpolator System object.
• Auto –– When you select Auto, the block designs an FIR interpolator using the interpolation

factor you specify in Interpolation factor. The designMultirateFIR function designs the filter
and returns the coefficients used by the block.

For more information on the filter design, see Orfanidis [2].

Main Tab

FIR filter coefficients — Lowpass FIR filter coefficients
designMultirateFIR(3,1) (default) | vector

Specify the numerator coefficients of the FIR filter transfer function H(z).

H(z) = b0 + b1z−1 + ... + bNz−N

You can generate the FIR filter coefficient vector, b = [b0, b1, …, bN], using one of the DSP System
Toolbox filter design functions such as designMultirateFIR, firnyquist, firhalfband, firgr
or firceqrip.

To act as an effective anti-imaging filter, the coefficients usually correspond to a lowpass filter with a
normalized cutoff frequency no greater than the reciprocal of the interpolation factor. To design such
a filter, use the designMultirateFIR function.

The block internally initializes all filter states to zero.

Dependencies

This parameter appears only when you set the Coefficient source to Dialog parameters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Interpolation factor — Interpolation factor
3 (default) | positive scalar

Specify the integer factor L. The block increases the sample rate of the input sequence by this factor.

Dependencies

This parameter appears only when you set the Coefficient source to Dialog parameters, Input
port, or Auto.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Filter object — Filter object
dsp.FIRInterpolator

Specify the name of the multirate filter object that you want the block to implement. You must specify
the filter as a dsp.FIRInterpolator System object.

You can define the System object directly in the block dialog box. Alternatively, you can define the
object in a MATLAB workspace variable and specify the variable in the block dialog box.

 FIR Interpolation

2-567

For information on creating System objects, see “Define Basic System Objects”.

Dependencies

This parameter appears only when you set the Coefficient source to Filter object.

Input processing — Method to process input signals
Columns as channels (frame based) (default) | Elements as channels (sample based)

Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) — When you select this option, the block treats each
column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options — Method by which block interpolates input
Enforce single-rate processing (default) | Allow multirate processing

Specify the method by which the block should interpolate the input. You can select one of the
following options:

• Enforce single-rate processing — When you select this option, the block maintains the
input sample rate, and interpolates the signal by increasing the output frame size by a factor of L.
To select this option, you must set the Input processing parameter to Columns as channels
(frame based).

• Allow multirate processing — When you select this option, the block interpolates the signal
such that the output sample rate is L times faster than the input sample rate.

Output buffer initial conditions — Initial conditions
0 (default) | scalar | matrix

When you set the Rate options parameter to Allow multirate processing and run your models
in Simulink MultiTasking mode, the block exhibits latency. The amount of latency for multirate,
multitasking operation depends on how you set the Input processing parameter.

Input processing Latency
Elements as channels (sample
based)

L samples

Columns as channels (frame based) L frames (Ki samples per frame)

When the block exhibits latency, the default initial condition is zero. Alternatively, you can use the
Output buffer initial conditions parameter to specify a matrix of initial conditions containing one
value for each channel or a scalar initial condition that the block applies to all channels. The block
divides the Output buffer initial conditions by the Interpolation factor and outputs the scaled
initial conditions until the first filtered input sample becomes available.

Output buffer initial conditions are stored in the output data type and scaling.

See “Latency” on page 2-573 for more information about latency in the FIR Interpolation block.

2 Blocks

2-568

Dependencies

This parameter appears only when you configure the block to perform multirate processing by setting
Rate options to Allow multirate processing.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

View Filter Response — View filter response
button

Click on this button to open the Filter Visualization Tool (fvtool) and display the filter response of
the filter defined in the block dialog box.

Data Types Tab

Rounding mode — Rounding mode
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations. The default is Floor. The filter coefficients do
not obey this parameter and always round to Nearest.

Note The Rounding mode and Saturate on integer overflow settings have no effect on numerical
results when all the following conditions exist:

• Product output is Inherit: Inherit via internal rule
• Accumulator is Inherit: Inherit via internal rule
• Output is Inherit: Same as accumulator

With these data type settings, the block is effectively operating in the full-precision mode.

Saturate on integer overflow — Saturate on integer overflow
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numeric results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in the full-precision mode.

Coefficients Data Type — Coefficients data type
Inherit: Same word length as input (default) | fixdt(1,16) | fixdt(1,16,0)

Specify the coefficients data type. See “Fixed Point” on page 2-578 and “Multiplication Data Types”
for illustrations depicting the use of the coefficients data type in this block.

You can set this parameter to one of the following:

 FIR Interpolation

2-569

• Inherit: Same word length as input
• fixdt(1,16,0) or fixdt(1,16) –– Specify a data type object.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Coefficients parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide (Simulink)
for more information.
Dependencies

This parameter appears only when you set Coefficient source to Dialog parameters, Filter
object, or Auto.

When Coefficient source is set to Filter object, Coefficients parameter is automatically set to
Same word length as input.

Coefficients Minimum — Minimum value of filter coefficients
[] (default) | scalar

Specify the minimum value of the filter coefficients. The default value is [] (unspecified). Simulink
software uses this value to perform automatic scaling of fixed-point data types.
Dependencies

This parameter appears only when you set Coefficient source to Dialog parameters or Auto.

Coefficients Maximum — Maximum value of filter coefficients
[] (default) | scalar

Specify the maximum value of the filter coefficients. The default value is [] (unspecified). Simulink
software uses this value to perform automatic scaling of fixed-point data types.
Dependencies

This parameter appears only when you set Coefficient source to Dialog parameters or Auto.

Product output Data Type — Product output data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt(1,16,0)

Specify the product output data type. See “Fixed Point” on page 2-578 and “Multiplication Data
Types” for illustrations depicting the use of the product output data type in this block.

You can set this parameter to one of the following:

• Inherit: Inherit via internal rule

For more information on this rule, see “Inherit via Internal Rule”.
• Inherit: Same as input
• fixdt(1,16,0) –– Specify a data type object.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Product output parameter.

2 Blocks

2-570

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide (Simulink)
for more information.

Dependencies

When Coefficient source is set to Filter object, Product output parameter is automatically set
to Full precision.

Accumulator Data Type — Accumulator data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | fixdt(1,16,0)

Specify the accumulator data type. See “Fixed Point” on page 2-578 for illustrations depicting the
use of the accumulator data type in this block.

You can set this parameter to one of the following:

• Inherit: Inherit via internal rule.

For more information on this rule, see “Inherit via Internal Rule”.
• Inherit: Same as input
• Inherit: Same as product output
• fixdt(1,16,0) –– Specify a data type object.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide (Simulink)
for more information.

Dependencies

When Coefficient source is set to Filter object, Accumulator parameter is automatically set to
Full precision.

Output Data Type — Output data type
Inherit: Same as accumulator (default) | Inherit: Same as input | Inherit: Same as
product output | fixdt(1,16,0)

Specify the output data type. See “Fixed Point” on page 2-578 for illustrations depicting the use of
the output data type in this block.

You can set it to one of the following:

• Inherit: Same as accumulator
• Inherit: Same as input
• Inherit: Same as product output
• fixdt(1,16,0) –– Specify a data type object.

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Output parameter.

 FIR Interpolation

2-571

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Dependencies

When Coefficient source is set to Filter object, Output parameter is automatically set to Same
as accumulator.

Output Minimum — Minimum value of block output
[] (default) | scalar

Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Dependencies

This parameter appears only when you set Coefficient source to Dialog parameters, Input
port, or Auto.

Output Maximum — Maximum value of block output
[] (default) | scalar

Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Dependencies

This parameter appears only when you set Coefficient source to Dialog parameters, Input
port, or Auto.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

2 Blocks

2-572

More About
Frame-Based Processing

When you set the Input processing parameter to Columns as channels (frame based), the
block resamples each column of the input over time. In this mode, the block can perform either
single-rate or multirate processing. You can use the Rate options parameter to specify how the block
resamples the input:

• When you set the Rate options parameter to Enforce single-rate processing, the input
and output of the block have the same sample rate. To interpolate the output while maintaining
the input sample rate, the block resamples the data in each column of the input such that the
frame size of the output (Ko) is L times larger than that of the input (Ko = Ki*L).

For an example of single-rate FIR Interpolation, see “FIR Interpolation Using Single-Rate
Processing”.

• When you set the Rate options parameter to Allow multirate processing, the input and
output of the FIR Interpolation block are the same size. However, the sample rate of the output is
L times faster than that of the input. In this mode, the block treats a Ki-by-N matrix input as N
independent channels. The block interpolates each column of the input over time by keeping the
frame size constant (Ki=Ko), while making the output frame period (Tfo) L times shorter than the
input frame period (Tfo = Tfi/L).

See “FIR Interpolation Using Multirate Frame-Based Processing” for an example that uses the FIR
Interpolation block in this mode.

Sample-Based Processing

When you set the Input processing parameter to Elements as channels (sample based), the
block treats a P-by-Q matrix input as P*Q independent channels, and interpolates each channel over
time. The output sample period (Tso) is L times shorter than the input sample period (Tso = Tsi/L),
while the input and output sizes remain identical.

Latency

When you run your models in the Simulink SingleTasking mode or set the Input processing
parameter to Columns as channels (frame based) and the Rate options parameter to
Enforce single-rate processing, the FIR Interpolation block always has zero-tasking latency.
Zero-tasking latency means that the block propagates the first filtered input sample (received at time
t=0) as the first output sample. That first output sample is then followed by L–1 interpolated values,
the second filtered input sample, and so on.

The only time the FIR Interpolation block exhibits latency is when you set the Rate options
parameter set to Allow multirate processing and run your models in the Simulink
MultiTasking mode. The amount of latency for a multirate, multitasking operation depends on how
you set the Input processing parameter.

Input processing Latency
Elements as channels (sample
based)

L samples

Columns as channels (frame based) L frames (Ki samples per frame)

When the block exhibits latency, the default initial condition is zero. Alternatively, you can use the
Output buffer initial conditions parameter to specify a matrix of initial conditions containing one

 FIR Interpolation

2-573

value for each channel or a scalar initial condition that the block applies to all channels. The block
scales the Output buffer initial conditions by the Interpolation factor and outputs the scaled
initial conditions until the first filtered input sample becomes available.

When the block is in the sample-based processing mode, the block outputs the scaled initial
conditions at the start of each channel, followed immediately by the first filtered input sample, then
L–1 interpolated values, and so on.

When the block is in the frame-based processing mode and using the default initial condition of zero,
the first Ki*L output rows contain zeros, where Ki is the input frame size. The first filtered input
sample (first filtered row of the input matrix) appears in the output as sample Ki*L+1. That value is
then followed by L–1 interpolated values, the second filtered input sample, and so on.

Note For more information on latency and the Simulink tasking modes, see “Excess Algorithmic
Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation” (Simulink Coder).

Algorithms
The FIR interpolation filter is implemented efficiently using a polyphase structure.

To derive the polyphase structure, start with the transfer function of the FIR filter:

H(z) = b0 + b1z−1 + ... + bNz−N

N+1 is the length of the FIR filter.

You can rearrange this equation as follows:

H(z) =

b0 + bLz−L + b2Lz−2L + .. + bN − L + 1z−(N − L + 1) +

z−1 b1 + bL + 1z−L + b2L + 1z−2L + .. + bN − L + 2z−(N − L + 1) +
⋮

z−(L− 1) bL− 1 + b2L− 1z−L + b3L− 1z−2L + .. + bNz−(N − L + 1)

L is the number of polyphase components, and its value equals the interpolation factor that you
specify.

You can write this equation as:

H(z) = E0(zL) + z−1E1(zL) + ... + z−(L− 1)EL− 1(zL)

E0(zL), E1(zL), ..., EL-1(zL) are polyphase components of the FIR filter H(z).

Conceptually, the FIR interpolation filter contains an upsampler followed by an FIR lowpass filter
H(z).

2 Blocks

2-574

Replace H(z) with its polyphase representation.

Here is the multirate noble identity for interpolation.

Applying the noble identity for interpolation moves the upsampling operation to after the filtering
operation. This move enables you to filter the signal at a lower rate.

 FIR Interpolation

2-575

You can replace the upsampling operator, delay block, and adder with a commutator switch. The
switch starts on the first branch 0 and moves in the counterclockwise direction, each time receiving
one sample from each branch. The interpolator effectively outputs L samples for every one input
sample it receives. Hence the sample rate at the output of the FIR interpolation filter is Lfs.

References
[1] Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets . West

Sussex, England: John Wiley & Sons, 1994.

[2] Orfanidis, Sophocles J. Introduction to Signal Processing . Upper Saddle River, NJ: Prentice-Hall,
1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

2 Blocks

2-576

The FIR Interpolation block supports SIMD code generation using Intel AVX2 technology under these
conditions:

• Input processing is set to Columns as channels (frame based).
• Rate options is set to Enforce single-rate processing.
• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Coder supports Coefficient source options Dialog parameters, Filter object, or Auto.

Block Optimizations

To reduce area or increase speed, the FIR Decimator block supports block-level optimizations.

Right-click on the block or the subsystem to open the corresponding HDL Properties dialog box and
set optimization properties.

Serial Architectures When you select Fully Serial architecture, the SerialPartition
property is set on the FIR Interpolation Block.

Distributed Arithmetic Distributed Arithmetic properties DALUTPartition and DARadix are
supported for the Distributed Arithmetic (DA) architecture with a
default FIR filter structure. structures.

Pipelining When you use AddPipelineRegisters, registers are placed based on the
filter structure. The pipeline register placement determines the latency.

A pipeline register is added between levels of a tree-based adder, for a
latency of ceil(log2(PL))-1, where PL is polyphase filter length.

HDL Filter Properties

AddPipelineRegisters Insert a pipeline register between stages of computation in a filter. See
also AddPipelineRegisters (HDL Coder).

CoeffMultipliers Specify the use of canonical signed digit (CSD) optimization to decrease
filter area by replacing coefficient multipliers with shift-and-add logic.
When you choose a fully parallel filter implementation, you can set
CoeffMultipliers to csd or factored-csd. The default is multipliers,
which retains multipliers in the HDL. See also CoeffMultipliers (HDL
Coder).

 FIR Interpolation

2-577

DALUTPartition Specify distributed arithmetic partial-product LUT partitions as a vector of
the sizes of each partition. The sum of all vector elements must be equal to
the filter length. The maximum size for a partition is 12 taps. Set
DALUTPartition to a scalar value equal to the filter length to generate DA
code without LUT partitions. See also DALUTPartition (HDL Coder).

DARadix Specify how many distributed arithmetic bit sums are computed in parallel.
A DA radix of 8 (2^3) generates a DA implementation that computes three
sums at a time. The default value is 2^1, which generates a fully serial DA
implementation. See also DARadix (HDL Coder).

MultiplierInputPipeli
ne

Specify the number of pipeline stages to add at filter multiplier inputs. See
also MultiplierInputPipeline (HDL Coder).

MultiplierOutputPipel
ine

Specify the number of pipeline stages to add at filter multiplier outputs.
See also MultiplierOutputPipeline (HDL Coder).

SerialPartition Specify partitions for partly serial or cascade-serial filter implementations
as a vector of the lengths of each partition. For a fully serial
implementation, set this parameter to the length of the filter. See also
SerialPartition (HDL Coder).

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• You must set Initial conditions to zero. HDL code generation is not supported for nonzero initial
states.

• Vector and frame inputs are not supported for HDL code generation.
• When you select Dialog parameters, the following fixed-point options are not supported for HDL

code generation:

• Coefficients: Slope and Bias scaling
• CoeffMultipliers options are supported only when using a fully parallel architecture. When you

select a serial architecture, CoeffMultipliers is hidden from the HDL Block Properties dialog box.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The following diagram shows the data types used within the FIR Interpolation block for fixed-point
signals.

2 Blocks

2-578

This diagram shows that input data is stored in the input buffer with the same data type and scaling
as the input. The block stores filtered data and any initial conditions in the output buffer using the
output data type and scaling that you set in the block dialog box.

When at least one of the inputs to the multiplier is real, the output of the multiplier is in the product
output data type. When both inputs to the multiplier are complex, the result of the multiplication is in
the accumulator data type. For details on the complex multiplication performed by this block, see
“Multiplication Data Types”.

Note When the block input is fixed point, all internal data types are signed fixed point.

See Also
Functions
firgr | firceqrip | firhalfband | firnyquist

Objects
dsp.FIRInterpolator | dsp.FIRHalfbandInterpolator |
dsp.CICCompensationInterpolator

Blocks
FIR Decimation | FIR Rate Conversion | FIR Halfband Interpolator | FIR Halfband Decimator | IIR
Halfband Interpolator | IIR Halfband Decimator | CIC Compensation Interpolator | CIC Compensation
Decimator | Upsample | CIC Interpolation | Digital Down-Converter | Digital Up-Converter

Introduced before R2006a

 FIR Interpolation

2-579

FIR Halfband Decimator
Decimate signal using polyphase FIR halfband filter

Library
Filtering/Filter Designs

dspfdesign

Description
The FIR Halfband Decimator block performs polyphase decimation of the input signal by a factor of
two. The block uses an FIR equiripple design to construct the halfband filters. The implementation
takes advantage of the zero-valued coefficients of the FIR halfband filter, making one of the polyphase
branches a delay. You can also use the block to implement the analysis portion of a two-band filter
bank to separate a signal into lowpass and highpass subbands.

The input signal can be a real- or complex-valued column vector or matrix. If the input signal is a
matrix, each column of the matrix is treated as an independent channel. The number of rows in the
input signal must be a multiple of 2. The block supports fixed-point operations and ARM® Cortex®

code generation. For more information on ARM Cortex code generation, refer “Code Generation for
ARM Cortex-M and ARM Cortex-A Processors”.

Dialog Box
Main Tab

Filter specification
Parameters used to design the FIR halfband filter.

• Transition width and stopband attenuation (default) — Design the filter using
Transition width (Hz) and Stopband attenuation (dB). This design is the minimum order
design.

• Filter order and transition width — Design the filter using Filter order and
Transition width (Hz).

• Filter order and stopband attenuation — Design the filter using Filter order and
Stopband attenuation (dB).

• Coefficients — Specify the filter coefficients directly through the Numerator parameter.

Transition width (Hz)
Transition width, specified as a real positive scalar in Hz. The transition width must be less than
half the input sample rate. You can specify the transition width when Filter specification is set
to Filter order and transition width or Transition width and stopband
attenuation. The default is 4.1e3.

2 Blocks

2-580

Filter order
Filter order, specified as an even positive integer. You can specify the filter order when Filter
specification is set to Filter order and transition width or Filter order and
stopband attenuation. The default is 52.

Stopband attenuation (dB)
Stopband attenuation, specified as a real positive scalar in dB. You can specify the stopband
attenuation when Filter specification is set to Filter order and stopband attenuation
or Transition width and stopband attenuation. The default is 80.

Numerator
Specify the FIR halfband filter coefficients directly as a row vector. The coefficients must comply
with the FIR halfband impulse response format. If half the order of the filter,
(length(Numerator) - 1)/2, is even, every other coefficient starting from the first coefficient
must be a zero except for the center coefficient which must be a 0.5. If half the order of the filter
is odd, the sequence of alternating zeros with a 0.5 at the center starts at the second coefficient.

This parameter appears when Filter specification is set to 'Coefficients'. The default is the
coefficients vector returned by firhalfband('minorder',0.407,1e-4).

Output highpass subband
When you select this check box, the block acts as a synthesis filter bank and synthesizes a signal
from the highpass and lowpass subbands. When you clear this check box, the block acts as an FIR
halfband decimator and accepts a single vector– or matrix–valued input.

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input signal. When you
clear this check box, you specify the sample rate in Input sample rate (Hz). This parameter
appears when you set Filter specification to any option other than Coefficients.

Input sample rate (Hz)
Input sample rate, specified as a scalar in Hz. The default is 44100. This parameter appears when
you set Filter specification to any option other than Coefficients and clear the Inherit
sample rate from input parameter.

View Filter Response
Opens the Filter Visualization Tool FVTool and displays the magnitude/phase response of the FIR
Halfband Decimator. The response is based on the block dialog box parameters. Changes made to
these parameters update FVTool.

 FIR Halfband Decimator

2-581

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

Data Types Tab

Rounding mode
Rounding method for the output fixed-point operations. The rounding methods are Ceiling,
Convergent, Floor, Nearest, Round, Simplest, and Zero. The default is Floor.

Coefficients
Fixed-point data type of the coefficients, specified as one of the following:

2 Blocks

2-582

• fixdt(1,16) (default) — Signed fixed-point data type of word length 16, with binary point
scaling. The block determines the fraction length automatically from the coefficient values in
such a way that the coefficients occupy maximum representable range without overflowing.

• fixdt(1,16,0) — Signed fixed-point data type of word length 16 and fraction length, 0. You
can change the fraction length to any other integer value.

• <data type expression> — Specify the data type using an expression that evaluates to a
data type object, for example, numeric type (fixdt,[],16, 15). Specify the sign mode of this
data type as [] or true.

• Refresh Data Type — Refreshes to the default data type.

Click the Show data type assistant button to display the data type assistant, which helps
you set the stage input parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed or unsigned)
• 8-, 16-, 32-, and 64-bit signed integers
• real and complex data

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, 32-, and 64-bit signed integers
• real and complex data

See Also
dsp.FIRHalfbandInterpolator DSP System

Toolbox
dsp.FIRHalfbandDecimator DSP System

Toolbox
FIR Halfband Interpolator DSP System

Toolbox

Algorithms
This block brings the capabilities of the dsp.FIRHalfbandDecimator System object to the Simulink
environment.

 FIR Halfband Decimator

2-583

For information on the algorithms used by this block, see the Algorithms on page 4-583 section of
dsp.FIRHalfbandDecimator.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced in R2015b

2 Blocks

2-584

FIR Halfband Interpolator
Interpolate signal using polyphase FIR half band filter

Library
Filtering / Filter Designs

dspfdesign

Description
The FIR Halfband Interpolator block performs interpolation of the input signal by a factor of two. The
block uses an FIR equiripple design to construct the halfband filters. To filter the input, the block
uses an efficient polyphase implementation. The implementation takes advantage of the zero-valued
coefficients of the FIR halfband filter, making one of the polyphase branches a delay. You can also use
the block to implement the synthesis portion of a two-band filter bank to synthesize a signal from
lowpass and highpass subbands.

The input signal can be a real- or complex-valued column vector or matrix. If the input signal is a
matrix, each column of the matrix is treated as an independent channel. The block supports fixed-
point operations and ARM Cortex code generation. For more information on ARM Cortex code
generation, refer “Code Generation for ARM Cortex-M and ARM Cortex-A Processors”.

The block also supports SIMD code generation. For details, see “Code Generation” on page 2-589.

Dialog Box
Main Tab

Filter specification
Parameters used to design the FIR halfband filter.

• Transition width and stopband attenuation (default) — Design the filter using
Transition width (Hz) and Stopband attenuation (dB). This design is the minimum order
design.

• Filter order and transition width — Design the filter using Filter order and
Transition width (Hz).

• Filter order and stopband attenuation — Design the filter using Filter order and
Stopband attenuation (dB).

• Coefficients — Specify the filter coefficients directly through the Numerator parameter.

Transition width (Hz)
Transition width, specified as a real positive scalar in Hz. The transition width must be less than
half the input sample rate. You can specify the transition width only when Filter specification is

 FIR Halfband Interpolator

2-585

set to Filter order and transition width or Transition width and stopband
attenuation. The default is 4.1e3.

Filter order
Filter order, specified as an even positive integer. You can specify only when Filter specification
is set to Filter order and transition width or Filter order and stopband
attenuation. The default is 52.

Stopband attenuation (dB)
Stopband attenuation, specified as a real positive scalar in dB. You can specify the stopband
attenuation only when Filter specification is set to Filter order and stopband
attenuation or Transition width and stopband attenuation. The default is 80.

Numerator
Specify the FIR halfband filter coefficients directly as a row vector. The coefficients must comply
with the FIR halfband impulse response format. If half the order of the filter,
(length(Numerator) - 1)/2, is even, every other coefficient starting from the first coefficient
must be a zero except for the center coefficient, which must be a 1.0. If half the order of the filter
is odd, the sequence of alternating zeros with a 1.0 at the center starts at the second coefficient.

This parameter appears when Filter specification is set to 'Coefficients'. The default is the
coefficients vector returned by 2*firhalfband('minorder',0.407,1e-4).

Input highpass subband
When you select this check box, the block acts as a synthesis filter bank and synthesizes a signal
from the highpass and lowpass subbands. When you clear this check box, the block acts as an FIR
half band interpolator and accepts a single vector– or matrix–valued input.

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input signal. When you
clear this check box, you specify the sample rate in Input Sample Rate (Hz). This parameter
appears when you set Filter specification to any option other than Coefficients.

Input sample rate (Hz)
Input sample rate, specified as a scalar in Hz. The default value is 44100. This parameter appears
when you set Filter specification to any option other than Coefficients and clear the Inherit
sample rate from input parameter.

View Filter Response
Opens the Filter Visualization Tool FVTool and displays the magnitude/phase response of the FIR
Halfband Interpolator. The response is based on the block dialog box parameters. Changes made
to these parameters update FVTool.

2 Blocks

2-586

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

Data Types Tab

Rounding mode
Rounding method for the output fixed-point operations. The rounding methods are Ceiling,
Convergent, Floor, Nearest, Round, Simplest, and Zero. The default is Floor.

Coefficients
Fixed-point data type of the coefficients, specified as one of the following:

 FIR Halfband Interpolator

2-587

• fixdt(1,16) (default) — Signed fixed-point data type of word length 16, with binary point
scaling. The block determines the fraction length automatically from the coefficient values in
such a way that the coefficients occupy maximum representable range without overflowing.

• fixdt(1,16,0) — Signed fixed-point data type of word length 16 and fraction length, 0. You
can change the fraction length to any other integer value.

• <data type expression> — Specify the data type using an expression that evaluates to a
data type object, for example, numeric type ([],16, 15). Specify the sign mode of this data
type as [] or true.

• Refresh Data Type — Refreshes to the default data type.

Click the Show data type assistant button to display the data type assistant, which helps
you set the stage input parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed or unsigned)
• 8-, 16-, 32-, and 64-bit signed integers
• real and complex data

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, 32-, and 64-bit signed integers
• real and complex data

See Also
dsp.FIRHalfbandInterpolator DSP System

Toolbox
dsp.FIRHalfbandDecimator DSP System

Toolbox
FIR Halfband Decimator DSP System

Toolbox

Algorithms
This block brings the capabilities of the dsp.FIRHalfbandInterpolator System object to the
Simulink environment.

2 Blocks

2-588

For information on the algorithms used by this block, see the “Algorithms” on page 4-598 section of
dsp.FIRHalfbandInterpolator.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The FIR Halfband Interpolator block supports SIMD code generation using Intel AVX2 technology
when the input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced in R2015b

 FIR Halfband Interpolator

2-589

FIR Rate Conversion
Upsample, filter, and downsample input signals
Library: DSP System Toolbox / Filtering / Multirate Filters

Description
The FIR Rate Conversion block resamples the discrete-time input such that its sample period is M/L
times the input sample period (Tsi). M is the integer value you specify for the Decimation factor
parameter, and L is the integer value you specify for the Interpolation factor parameter. The block
treats each column of the input as a separate channel and resamples the data in each channel
independently over time.

Conceptually, the rate converter combines an FIR interpolator followed by an FIR decimator. The
following schematic contains an upsampler, a combined anti-imaging and anti-aliasing FIR filter, and
a downsampler. To design an FIR filter which acts as a combined anti-imaging and anti-aliasing FIR
filter, use the designMultirateFIR function.

The rate converter does the following:

1 Upsamples the input to a higher rate by inserting L−1 zeros between input samples.
2 Passes the upsampled data through an FIR filter.
3 Downsamples the filtered data to a lower rate by discarding M-1 consecutive samples following

each sample that the block retains.

Note that the actual block algorithm implements a polyphase structure, an efficient equivalent of the
combined system depicted in the diagram. For more details, see “Algorithms” on page 2-601.

2 Blocks

2-590

Ports
Input

Port_1(In1) — Input signal
vector | matrix

Input signal, specified as a vector or a matrix.

When the block input is fixed point, all internal data types are signed fixed point.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1(Out1) — Rate converted signal
vector | matrix

Rate converted signal, returned as a vector or a matrix.

When the Rate options parameter is set to:

• Enforce single-rate processing –– The output frame size Ko is L/M times the input frame
size Ki, where L is the interpolation factor and M is the decimation factor.

Ko = (L/M)×Ki

The output signal rate in Simulink equals the input signal rate.

Fo = Fi

• Allow multirate processing –– The output frame size equals the input frame size.

Ko = Ki

The output signal rate in Simulink is L/M times the input signal rate.

Fo = (L/M)×Fi

All blocks connected to the output operate at Fo, and all blocks connected to the input operate at
Fi.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Coefficient source — Mode of operation
Auto (default) | Dialog parameters | Filter object

The FIR Rate Conversion block can operate in three different modes. Select the mode in the
Coefficient source group box.

• Dialog parameters — Enter information about the filter, such as FIR filter coefficients in the
block dialog box.

 FIR Rate Conversion

2-591

• Filter object — Specify the filter using a dsp.FIRRateConverter System object.
• Auto (default) — The block determines the filter coefficients.

The settings in the FIR Rate Conversion block dialog box change based on the mode selected.

Main Tab

Interpolation factor — Interpolation factor
3 (default) | positive integer

Specify the interpolation factor, L, as a positive integer. The block upsamples the signal by this value
before filtering it.

Dependencies

To enable this parameter, set Coefficient source to either Dialog parameters or Auto.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FIR filter coefficients — FIR filter coefficients
designMultirateFIR(3,2) (default) | vector

Specify the FIR filter coefficients in descending powers of z. By default, the block uses the
designMultirateFIR(3,2) function to compute the filter coefficients.

Dependencies

To enable this parameter, set Coefficient source to Dialog parameters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Decimation factor — Decimation factor
2 (default) | positive integer

Specify the decimation factor, M, as a positive integer. The block downsamples the signal by this
value after filtering it.

Dependencies

To enable this parameter, set Coefficient source to either Dialog parameters or Auto.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Rate options — Enforce single-rate or allow multirate processing
Enforce single-rate processing (default) | Allow multirate processing

Specify whether to enforce single-rate processing or allow multirate processing.

• Enforce single-rate processing –– The output frame size Ko is L/M times the input frame
size Ki, where L is the interpolation factor and M is the decimation factor.

Ko = (L/M)×Ki

The output signal rate in Simulink equals the input signal rate.

Fo = Fi

• Allow multirate processing –– The output frame size equals the input frame size.

2 Blocks

2-592

Ko = Ki

The output signal rate in Simulink is L/M times the input signal rate.

Fo = (L/M)×Fi

All blocks connected to the output operate at Fo, and all blocks connected to the input operate at
Fi.

Filter object — Filter object
FRC (default) | dsp.FIRRateConverter System object

Specify the multirate filter object that you want the block to implement. The specified filter object
must be a dsp.FIRRateConverter System object.

You can define the System object in the block mask or in a MATLAB workspace variable.

For information on creating System objects, see “Define Basic System Objects”.

Dependencies

This parameter appears when Coefficient source is set to Filter object.

View Filter Response — Visualize filter response
button

Select this parameter to open the Filter Visualization Tool, fvtool, and display the magnitude
response of the FIR filter. The response is based on the parameters selected in the block dialog box.
Changes made to these parameters update fvtool.

 FIR Rate Conversion

2-593

To update the magnitude response while fvtool is running, modify the block parameters and click
Apply.

To view the magnitude response and phase response simultaneously, click the Magnitude and
Phase responses button on the toolbar.

2 Blocks

2-594

Data Types Tab

When Coefficient source is set to Filter object, the fixed-point settings of the filter object specified
on the Main tab are displayed on the Data Types tab. You cannot change these settings directly on
the block dialog box. To change the fixed-point settings, you must edit the filter object.

For more information on System objects, see the “What Are System Objects?”.

When Coefficient source is set to Auto, the block chooses the filter coefficients automatically. For
more information on the filter design algorithm that the block uses, see “Specify FIR Filter
Coefficients” on page 2-600.

Rounding mode — Rounding method
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations as:

• Floor

 FIR Rate Conversion

2-595

• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see Rounding Modes.

The filter coefficients do not obey this parameter and always round to Nearest.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numerical results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.
• Output data type is Inherit: Same as accumulator.

With these data-type settings, the block operates in a full-precision mode.

Dependencies

To enable this parameter, set Coefficient source to either Dialog parameters or Auto.

Saturate on integer overflow — Overflow handling method
off (default) | on

Select this parameter to saturate the result of the fixed-point operation. Clear this parameter to wrap
the result of the fixed-point operation. For details on saturate and wrap, see Overflow Handling for
fixed-point operations.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numeric results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data-type settings, the block operates in a full-precision mode.

Dependencies

This parameter is editable only when Coefficient source is set to either Dialog parameters or
Auto.

Coefficients — Coefficients data type
Inherit: Same word length as input (default) | fixdt(1,16) | fixdt(1,16,0)

Coefficients specifies the data type of the filter coefficients.

2 Blocks

2-596

• Inherit: Same word length as input –– The block inherits the word length of the
coefficients from the fixed-point input. The fraction length is determined based on the coefficient
values in order to obtain the best possible precision.

• fixdt(1,16) –– The coefficients data type is a signed, binary-point, scaled, fixed-point data type
with a word length of 16 bits.

• fixdt(1,16,0) –– The coefficients data type is a signed, binary-point, scaled, fixed-point data
type with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Coefficients data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).

For a diagrammatic representation of how this block uses the filter coefficients data type, see “Fixed
Point” on page 2-604.

Dependencies

This parameter is editable only when Coefficient source is set to either Dialog parameters or
Auto.

Coefficients Minimum — Minimum value of filter coefficients
[] (default) | scalar

Specify the minimum value of the filter coefficients. Simulink uses this minimum value to perform
automatic scaling of fixed-point data types.

Coefficients Maximum — Maximum value of filter coefficients
[] (default) | scalar

Specify the maximum value of the filter coefficients. Simulink uses this maximum value to perform
automatic scaling of fixed-point data types.

Product output — Product output data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt(1,16,0)

Product output specifies the data type of the output of a product operation in the FIR Rate
Conversion block.

• Inherit: Inherit via internal rule — The block inherits the product output data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

• Inherit: Same as input — The block specifies the product output data type to be the same as
the input data type.

• fixdt(1,16,0) — The block specifies a signed, binary-point, scaled, fixed-point data type with a
word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Product output data type by using the Data Type Assistant. To use

the assistant, click the Show data type assistant button .

 FIR Rate Conversion

2-597

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).

For a diagrammatic representation of how this block uses the product output data type, see “Fixed
Point” on page 2-604.
Dependencies

This parameter is editable only when Coefficient source is set to either Dialog parameters or
Auto.

Accumulator — Accumulator data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | fixdt(1,16,0)

Accumulator specifies the data type of the output of an accumulation operation in the FIR Rate
Conversion block. For illustrations on how this block uses the accumulator data type, see “Fixed
Point” on page 2-604.

• Inherit: Inherit via internal rule — The block inherits the accumulator data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

• Inherit: Same as input — The block specifies the accumulator data type to be the same as
the input data type.

• Inherit: Same as product output — The block specifies the accumulator data type to be
the same as the product output data type.

• fixdt(1,16,0) — The block specifies a signed, binary-point, scaled, fixed-point data type with a
word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).
Dependencies

This parameter is editable only when Coefficient source is set to either Dialog parameters or
Auto.

Output — Output data type
Inherit: Same as accumulator (default) | Inherit: Same as input | Inherit: Same as
product output | fixdt(1,16,0)

Output specifies the data type of the output of the FIR Rate Conversion block.

• Inherit: Same as input — The block specifies the output data type to be the same as the
input data type.

• Inherit: Same as product output — The block specifies the output data type to be the
same as the product output data type.

• Inherit: Same as accumulator — The block specifies the output data type to be the same as
the accumulator data type.

• fixdt(1,16,0) — The block specifies a signed, binary-point, scaled, fixed-point data type with a
word length of 16 bits and a fraction length of 0.

2 Blocks

2-598

Alternatively, you can set the Output data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).

For a diagrammatic representation of how this block uses the output data type, see “Fixed Point” on
page 2-604.

Dependencies

This parameter is editable only when Coefficient source is set to either Dialog parameters or
Auto.

Output Minimum — Minimum value the block can output
[] (default) | scalar

Specify the minimum value the block can output. Simulink uses this minimum value to perform:

• Simulation range checking. For more information, see “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Output Maximum — Maximum value block can output
[] (default) | scalar

Specify the maximum value the block can output. Simulink uses this maximum value to perform:

• Simulation range checking. For more information, see “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
the block dialog box.

Dependencies

This parameter appears only when Coefficient source is set to either Dialog parameters or Auto.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

 FIR Rate Conversion

2-599

More About
Specify FIR Filter Coefficients

When you select the Dialog parameters option, you use the FIR filter coefficients parameter to
specify the numerator coefficients of the FIR filter transfer function H(z).

H(z) = b0 + b1z−1 + ... + bNz−N

You can generate the FIR filter coefficient vector, b = [b0, b1, …, bN], using one of the DSP System
Toolbox filter design functions such as designMultirateFIR, firnyquist, firhalfband, firgr,
or firceqrip.

The coefficient vector you specify must have a length greater than the interpolation factor (N + 1
>L). The FIR filter must be a lowpass filter with a normalized cutoff frequency no greater than
min(1/L,1/M). The block internally initializes all filter states to zero.

When you select the Auto mode, the block designs an FIR multirate filter with the decimation factor
specified in Decimation factor and interpolation factor specified in Interpolation factor. The
designMultirateFIR function designs the filter and returns the coefficients used by the block. For
more information on the filter design algorithm, see Orfanidis [1].

Specify Resampling Rate

This section applies only to the single-rate processing mode when the Rate options parameter is set
to Enforce single-rate processing.

You specify the resampling rate of the FIR Rate Conversion block using the Decimation factor and
Interpolation factor parameters. For a Ki-by-N matrix input, the Decimation factor M and the
Interpolation factor L must satisfy these requirements:

• M and L must be relatively prime integers. That is, the ratio M/L cannot be reduced to a ratio of
smaller integers.

• M
L =

Ki
Ko

, where Ki and Ko are the integer frame sizes of the input and output, respectively.

You can satisfy the second requirement by setting the Decimation factor, M, to equal the input
frame size Ki. When you do so, the output frame size Ko equals the Interpolation factor L.

By changing the frame size in this way, the block is able to hold the frame period constant (Tfi = Tfo)
and achieve the desired conversion of the sample period, such that

Tso = M
L × Tsi

where Tso is the output sample period.

This figure shows how the FIR Rate Conversion block converts a 4-by-1 input with a sample period of
3/4 to a 3-by-1 output with a sample period of 1. The frame period (Tf) of 3 remains constant.

2 Blocks

2-600

Algorithms
The FIR rate converter is implemented efficiently using a polyphase structure.

To derive the polyphase structure, start with the transfer function of the FIR filter: This FIR filter is a
combined anti-imaging and anti-aliasing filter.

H(z) = b0 + b1z−1 + ... + bNz−N

N+1 is the length of the FIR filter.

You can rearrange this equation as follows:

H(z) =

b0 + bLz−L + b2Lz−2L + .. + bN − L + 1z−(N − L + 1) +

z−1 b1 + bL + 1z−L + b2L + 1z−2L + .. + bN − L + 2z−(N − L + 1) +
⋮

z−(L− 1) bL− 1 + b2L− 1z−L + b3L− 1z−2L + .. + bNz−(N − L + 1)

L is the number of polyphase components, and its value equals the interpolation factor that you
specify.

You can write this equation as:

H(z) = E0(zL) + z−1E1(zL) + ... + z−(L− 1)EL− 1(zL)

E0(zL), E1(zL), ..., EL-1(zL) are polyphase components of the FIR filter H(z).

Conceptually, the FIR rate converter contains an upsampler, followed by a combined anti-imaging,
anti-aliasing FIR filter H(z), which is followed by a downsampler.

 FIR Rate Conversion

2-601

Replace H(z) with its polyphase representation.

Here is the multirate noble identity for interpolation.

Applying the noble identity for interpolation moves the upsampling operation to after the filtering
operation. This move enables you to filter the signal at a lower rate.

2 Blocks

2-602

You can replace the upsampling operator, delay block, and the adder with a commutator switch. To
account for the downsampler that follows, the switch moves in steps of size M. The switch receives
the first sample from branch 0 and moves in the counter clockwise direction, each time skipping M−1
branches.

As an example, consider a rate converter with L set to 5 and M set to 3. The polyphase components
are E0(z), E1(z), E2(z), E3(z), and E4(z). The switch starts on the first branch 0, skips branches 1 and 2,
receives the next sample from branch 3, then skips branches 4 and 0, receives the next sample from
branch 2, and so on. The sequence of branches from which the switch receives the data sample is [0,
3, 1, 4, 2, 0, 3, 1, ….].

The rate converter implements the L/M conversion by first applying the interpolation factor L to the
incoming data, and using the commutator switch at the end to receive only 1 in M samples, effectively
accounting for the dowsampling factor M. Hence, the sample rate at the output of the FIR rate
converter is Lfs/M.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Upper Saddle River, NJ: Prentice-Hall,

1996.

 FIR Rate Conversion

2-603

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This diagram shows the data types used within the FIR Rate Conversion block for fixed-point signals.

You can set the coefficient, product output, accumulator, and output data types in the block dialog
box. The diagram shows that input data is stored in the input buffer in the same data type and scaling
as the input. Filtered data resides in the output buffer in the output data type and scaling that you set
in the block dialog. The block stores any initial conditions in the output buffer using the output data
type and scaling that you set in the block dialog box.

The output of the multiplier is in the product output data type when at least one of the inputs to the
multiplier is real. When both the inputs to the multiplier are complex, the result of the multiplication
is in the accumulator data type. For details on how the complex multiplication is performed in the
block, see “Multiplication Data Types”.

Note When the block input is fixed point, all internal data types are signed fixed point.

See Also
Functions
firceqrip | firgr | firhalfband | firnyquist

Objects
dsp.FIRInterpolator | dsp.FIRDecimator | dsp.FIRHalfbandInterpolator |
dsp.FIRHalfbandDecimator | dsp.CICCompensationInterpolator |
dsp.CICCompensationDecimator

Blocks
CIC Compensation Decimator | CIC Compensation Interpolator | IIR Halfband Decimator | IIR
Halfband Interpolator | FIR Halfband Decimator | FIR Halfband Interpolator | CIC Interpolation | CIC
Decimation | FIR Interpolation | FIR Decimation | Upsample | Downsample

2 Blocks

2-604

Topics
“Convert Sample and Frame Rates in Simulink Using Rate Conversion Blocks”
“Multirate and Multistage Filters”

Introduced before R2006a

 FIR Rate Conversion

2-605

FIR Rate Conversion HDL Optimized
Upsample, filter, and downsample input signal and generates optimized HDL code
Library: DSP System Toolbox HDL Support / Filtering

Description
The FIR Rate Conversion HDL Optimized block upsamples, filters, and downsamples input signals. It
is optimized for HDL code generation and operates on one sample of each channel at a time. The
block implements a polyphase architecture to avoid unnecessary arithmetic operations and high
intermediate sample rates.

The block upsamples the input signal by an integer factor of L, applies it to a FIR filter, and
downsamples the input signal by an integer factor of M.

You can use the input and output control ports for pacing the flow of samples. In the default
configuration, the block uses input and output valid control signals. For additional flow control, you
can enable a ready output signal and a request input signal.

The ready output port indicates that the block can accept a new input data sample on the next time
step. When L ≥ M, you can use the ready signal to achieve continuous output data samples. If you

2 Blocks

2-606

apply a new input sample after each time the block returns ready signal as 1, the block returns a
data output sample with the output valid signal set to 1 on every time step.

When you disable the ready port, you can apply a valid data sample only every ceil(L/M) time
steps. For example, if:

• L/M = 4/5, then you can apply a new input sample on every time step.
• L/M = 3/2, then you can apply a new input sample on every other time step.

When you enable the request input port, the block returns the next output sample when therequest
signal is 1 and a valid output sample is available. When you disable the request port, the block
returns output samples when they are available. When no new data is available, block sets the output
valid signal to 0.

You can connect the request input port to the ready output port of a downstream block.

Ports
Input

data — Input data sample
scalar | row vector

Input data sample, specified as a scalar, or as a row vector in which each element represents an
independent channel. The block accepts real or complex data.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

valid — Indication of valid input
scalar

When the input valid port is 1 (true), the block captures the data from the input data port. You can
apply a valid data sample every ceiling(L/M) time steps.
Data Types: Boolean

request — Request control signal
scalar

When the request port is 1, and an output data sample is available, the block returns that output
data sample on the output data port and sets the output valid signal to 1. When no new data is
available, the block sets the output valid signal to 0. When the request port is 0, the block holds
available data until the request port is set to 1.

You can connect the request input port to the ready output port of a downstream block.

Dependencies

To enable this port, select the Enable request input port checkbox.
Data Types: Boolean

 FIR Rate Conversion HDL Optimized

2-607

Output

data — Output data sample
scalar | row vector

Output data sample, returned as a scalar or a row vector in which each element represents an
independent channel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

valid — Indication of valid output
scalar

The block sets the output valid port to true along with each valid data returned on the output data
port.
Data Types: Boolean

ready — Ready control signal
scalar

The block sets ready to true to indicate that it is ready for new input data on the next cycle.

You can connect the ready output port to the request input port of an upstream block.

Dependencies

To enable this port, select the Enable ready output port checkbox.
Data Types: Boolean

Parameters
Main

Interpolation factor — Interpolation factor
3 (default) | positive integer

Specify a factor by which the block interpolates the input data sample.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Decimation factor — Decimation factor
2 (default) | positive integer

Specify a factor by which the block decimates the input data sample.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FIR filter coefficients — FIR filter coefficients
firpm(70, [0 0.28 0.32 1],[1 1 0 0]) (default) | row vector

Specify a row vector of coefficients in descending powers of z-1.

2 Blocks

2-608

Note You can generate filter coefficients using Signal Processing Toolbox filter design functions
(such as fir1). Design a lowpass filter with normalized cutoff frequency no greater than
min(1/L,1/M). The block initializes internal filter states to zero.

Control Ports

Enable ready output port — Option to enable ready control signal
off (default) | on

Select this parameter to enable the ready port.

Enable request input port — Option to enable request control signal
off (default) | on

Select this parameter to enable the request port.

Data Types

Rounding mode — Rounding mode for fixed-point operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Select a rounding mode for fixed-point operations. For more information, see Rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that data type can represent. For example,
because 130 does not fit in a signed 8-bit integer, it wraps to -126.

• on — Overflows saturate to either the minimum or maximum value that data type can represent.
For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Coefficients Data Type — FIR filter coefficients data type
fixdt(1,16,16) (default)

FIR filter coefficients data type, specified as a fixdt(s,wl,fl) object with signedness, word
length, and fractional length properties.

Output Data Type — Data type of output data sample
Inherit: Same word length as input (default) | Inherit via internal rule |
fixdt(s,wl,fl)

Specify the data type for the output data samples.

Algorithms
The FIR Rate Conversion HDL Optimized block implements a fully parallel polyphase filter
architecture. The diagram shows where the block casts the data types based on your configuration.

 FIR Rate Conversion HDL Optimized

2-609

Delay

Because the block models HDL pipeline latency, an initial delay of several time steps exists before the
block returns the first valid output data sample. The latency depends on the filter coefficients and the
resampling factors. To determine the latency from the first input data sample to the first output data
sample, measure the cycles between asserting the input valid signal and the output valid signal
going high.

Performance

For an example of design performance, generate HDL for the block as configured in the “Control Data
Rate Using the Ready and Request Ports” example. The example filter resamples at 5/2, and uses a
symmetric 71-tap filter. The input samples and filter coefficients are 16 bits wide. The design is
targeted to a Xilinx Virtex-6 FPGA, using Xilinx ISE synthesis and place and route tools.

After placement and routing, the design achieves 535 MHz clock frequency and uses these resources
of the FPGA device.

LUT 592
FFS 979
Xilinx LogiCORE DSP48 15
Block RAM (16K) 0

Performance of the synthesized HDL code varies depending on your filter coefficients, FPGA target,
and synthesis options.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

2 Blocks

2-610

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
FIR Rate Conversion

Objects
dsp.HDLFIRRateConverter

Introduced in R2015b

 FIR Rate Conversion HDL Optimized

2-611

Flip
Flip input vertically or horizontally

Library
Signal Management / Indexing

dspindex

Description
The Flip block vertically or horizontally reverses the M-by-N input matrix, u. The output always has
the same dimensionality as the input.

When you set the Flip along parameter to Columns, the block flips the input vertically so the first
row of the input becomes the last row of the output.

y = flipud(u) % Equivalent MATLAB code

When flipping the input vertically, the block treats length-M unoriented vector inputs as M-by-1
column vectors.

When you set the Flip along parameter to Rows, the block flips the input horizontally so the first
column of the input becomes the last column of the output.

y = fliplr(u) % Equivalent MATLAB code

When flipping the input horizontally, the block treats length-N unoriented vector inputs as 1-by-N row
vectors.

This block supports Simulink virtual buses.

Parameters
Flip along

Specify the dimension along which to flip the input. When you set this parameter to Columns, the
block flips the input vertically. When you set this parameter to Rows, the block flips the input
horizontally.

2 Blocks

2-612

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Enumerated

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Enumerated

See Also
Selector Simulink
Variable Selector DSP System Toolbox
flipud MATLAB
fliplr MATLAB

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 Flip

2-613

Forward Substitution
Solve LX = B for X when L is lower triangular matrix

Library
Math Functions / Matrices and Linear Algebra / Linear System Solvers

dspsolvers

Description
The Forward Substitution block solves the linear system LX = B by simple forward substitution of
variables, where:

• L is the lower triangular M-by-M matrix input to the L port.
• B is the M-by-N matrix input to the B port.

The M-by-N matrix output X is the solution of the equations. The block does not check the rank of the
inputs.

The block only uses the elements in the lower triangle of input L and ignores the upper elements.
When you select Input L is unit-lower triangular, the block assumes the elements on the diagonal
of L are 1s. This is useful when matrix L is the result of another operation, such as an LDL
decomposition, that uses the diagonal elements to represent the D matrix.

The block treats a length-M vector input at port B as an M-by-1 matrix.

Fixed-Point Data Types

The following diagram shows the data types used within the Forward Substitution block for fixed-
point signals.

2 Blocks

2-614

You can set the product output, accumulator, and output data types in the block dialog box, as
discussed in the following section.

The output of the multiplier is in the product output data type when the input is real. When the input
is complex, the result of the multiplication is in the accumulator data type. For details on the complex
multiplication performed, see “Multiplication Data Types”.

Parameters
Main Tab

 Forward Substitution

2-615

Input L is unit-lower triangular
Select this check box only when all elements on the diagonal of L have a value of 1. When you do
so, the block optimizes its behavior by skipping an unnecessary division operation.

Do not select this check box if there are any elements on the diagonal of L that do not have a
value of 1. When you clear the Input L is unit-lower triangular check box, the block always
performs the necessary division operation.

Diagonal of complex input L is real
Select to optimize simulation speed when the diagonal elements of complex input L are real. This
parameter is only visible when Input L is unit-upper triangular is not selected.

Note When L is a complex fixed-point signal, you must select either Input L is unit-lower
triangular or Diagonal of complex input L is real. In these cases, the block ignores any imaginary
part of the diagonal of L.

Data Types tab

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.
Saturate on integer overflow

When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 2-614 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as first input.

2 Blocks

2-616

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-614 for diagrams
showing the use of the accumulator data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as product output.
• A rule that inherits a data type, for example, Inherit: Same as first input.
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-614 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as first input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

 Forward Substitution

2-617

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Supported Data Types
Port Supported Data Types
L • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

B • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

X • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Blocks
Cholesky Solver | Backward Substitution | LDL Solver | Levinson-Durbin | LU Solver | QR Solver

Topics
“Linear System Solvers”

Introduced before R2006a

2 Blocks

2-618

Frame Conversion
Specify sampling mode of output signal

Library
Signal Management / Signal Attributes

dspsigattribs

Description
The Frame Conversion block passes the input through to the output and sets the output sampling
mode to the value of the Sampling mode of output signal parameter, which can be either Frame-
based or Sample-based. The output sampling mode can also be inherited from the signal at the Ref
(reference) input port, which you make visible by selecting the Inherit output sampling mode
from <Ref> input port check box.

The Frame Conversion block does not make any changes to the input signal other than the sampling
mode. In particular, the block does not rebuffer or resize 2-D inputs. Because 1-D vectors cannot be
frame based, when the input is a length-M 1-D vector and the block is in Frame-based mode, the
output is a frame-based M-by-1 matrix — that is, a single channel.

Parameters
Inherit output sampling mode from <Ref> input port

Select to enable the Ref port from which the block inherits the output sampling mode.
Sampling mode of output signal

Specify the sampling mode of the output signal, Frame-based or Sample-based.

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Enumerated

 Frame Conversion

2-619

Port Supported Data Types
Ref • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Enumerated

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Enumerated

See Also
Buffer DSP System Toolbox
Check Signal Attributes DSP System Toolbox
Convert 1-D to 2-D DSP System Toolbox
Convert 2-D to 1-D DSP System Toolbox
Inherit Complexity DSP System Toolbox
Unbuffer DSP System Toolbox
Probe Simulink
Reshape Simulink
Signal Specification Simulink

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

2 Blocks

2-620

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 Frame Conversion

2-621

Frame Status Conversion (Obsolete)
Specify frame status of output as sample based or frame based

Library
dspobslib

Description

Note The Frame Status Conversion block is still supported but is likely to be obsoleted in a future
release. We strongly recommend replacing this block with the Frame Conversion block.

The Frame Status Conversion block passes the input through to the output, and sets the output frame
status to the Output signal parameter, which can be either Frame-based or Sample-based. The
output frame status can also be inherited from the signal at the Ref (reference) input port, which is
made visible by selecting the Inherit output frame status from Ref input port check box.

When the Output signal parameter setting or the inherited signal's frame status differs from the
input frame status, the block changes the input frame status accordingly, but does not otherwise alter
the signal. In particular, the block does not rebuffer or resize 2-D inputs. Because 1-D vectors cannot
be frame based, when the input is a length-M 1-D vector, and the Output signal parameter is set to
Frame-based, the output is a frame-based M-by-1 matrix (that is, a single channel).

When the Output signal parameter or the inherited signal's frame status matches the input frame
status, the block passes the input through to the output unaltered.

Parameters
Inherit output frame status from Ref input port

When selected, enables the Ref input port from which the block inherits the output frame status.
Output signal

The output frame status, Frame-based or Sample-based.

2 Blocks

2-622

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Ref • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Check Signal Attributes DSP System Toolbox
Convert 1-D to 2-D DSP System Toolbox
Convert 2-D to 1-D DSP System Toolbox
Inherit Complexity DSP System Toolbox

Introduced in R2008b

 Frame Status Conversion (Obsolete)

2-623

From Audio Device
Read audio data from computer's audio device

Compatibility

Note The From Audio Device block will be removed in a future release. Existing instances of the
block continue to run. For new models, use the Audio Device Reader block from Audio Toolbox
instead.

Library
Sources

dspsrcs4

Description
The From Audio Device block reads audio data from an audio device in real time. This block is not
supported for use with the Simulink Model block.

Use the Device parameter to specify the device from which to acquire audio. This parameter is
automatically populated based on the audio devices installed on your system. If you plug or unplug an
audio device from your system, type clear mex at the MATLAB command prompt to update this list.

Use the Number of channels parameter to specify the number of audio channels in the signal. For
example:

• Enter 2 if the audio source is two channels (stereo).
• Enter 1 if the audio source is single channel (mono).
• Enter 6 if you are working with a 5.1 speaker system.

The block's output is an M-by-N matrix, where M is the number of consecutive samples and N is the
number of audio channels.

Use the Sample rate (Hz) parameter to specify the number of samples per second in the signal. If
the audio data is processed in uncompressed pulse code modulation (PCM) format, it should typically
be sampled at one of the standard audio device rates: 8000, 11025, 22050, 44100, or 48000 Hz.

The range of supported audio device sample rates and data type formats, depend on both the sound
card and the API which is chosen for the sound card.

Use the Device data type parameter to specify the data type of the audio data that the device is
placing in the buffer. You can choose:

2 Blocks

2-624

• 8-bit integer
• 16-bit integer
• 24-bit integer
• 32-bit float
• Determine from output data type

If you choose Determine from output data type, the following table summarizes the block's
behavior.

Output Data Type Device Data Type
Double-precision floating point or single-precision
floating point

32-bit floating point

32-bit integer 24-bit integer
16-bit integer 16-bit integer
8-bit integer 8-bit integer

If you choose Determine from output data type and the device does not support a data type,
the block uses the next lowest precision data type supported by the device.

Use the Frame size (samples) parameter to specify the number of samples in the block's output.
Use the Output data type parameter to specify the data type of audio data output by the block.

The generated code for this block relies on prebuilt .dll files. You can run this code outside the
MATLAB environment, or redeploy it, but be sure to account for these extra .dll files when doing so.
The packNGo function creates a single zip file containing all of the pieces required to run or rebuild
this code. See packNGo for more information.

Buffering

The From Audio Device block buffers the data from the audio device using the process illustrated by
the following figure.

1 At the start of the simulation, the audio device begins writing the input data to a buffer. This data
has the data type specified by the Device data type parameter.

2 When the buffer is full, the From Audio Device block writes the contents of the buffer to the
queue. Specify the size of this queue using the Queue duration (seconds) parameter.

 From Audio Device

2-625

3 As the audio device appends audio data to the bottom of the queue, the From Audio Device block
pulls data from the top of the queue to fill the Simulink frame. This data has the data type
specified by the Output data type parameter.

Select the Automatically determine buffer size check box to allow the block to calculate a
conservative buffer size using the following equation:

size = 2 log2
sr
10

In this equation, size is the buffer size, and sr is the sample rate. If you clear this check box, the
Buffer size (samples) parameter appears on the block. Use this parameter to specify the buffer size
in samples.

When the simulation throughput rate is lower than the hardware throughput rate, the queue, which is
initially empty, fills up. If the queue is full, the block drops the incoming data from the audio device.
You can monitor dropped samples using the optional Overrun output port. When the simulation
throughput rate is higher than the hardware throughput rate, the From Audio Device block waits for
new samples to become available.

Channel Mapping

The term Channel Mapping refers to a 1-to-1 mapping that associates channels on the selected audio
device to channels of the data. When you record audio, channel mapping allows you to specify which
channel of the audio data directs input to a specific channel of audio. You can specify channel
mapping as a vector of audio channel indices corresponding to each channel of data being read. The
default value in the Device Input Channels parameter is 1:MAXINPUTCHANNELS. If you do not
select the default mapping, you must specify the Device Input Channels parameter in the dialog
box.

Example: The selected input audio device contains 8 channels. You want to read data from only
channels 2, 4, 6, and redirect the data as follows:

• Audio Device channel 2 to first data channel
• Audio Device channel 4 to second data channel
• Audio Device channel 6 to third data channel

Thus you would specify the Device Input Channels as [2 4 6].

Troubleshooting
Not Keeping Up in Real Time

When Simulink cannot keep up with an audio device that is operating in real time, the queue fills up
and the block begins to lose audio data. Select the Output number of samples by which the
queue was overrun check box to add an output port indicating when the queue was full. Here are
several ways to deal with this situation:

• Increase the queue duration.

The Queue duration (seconds) parameter specifies the duration of the signal, in seconds, that
can be buffered during the simulation. This is the maximum length of time that the block's data
demand can lag behind the hardware's data supply.

• Increase the buffer size.

2 Blocks

2-626

The size of the buffer processed in each interrupt from the audio device affects the performance of
your model. If the buffer is too small, a large portion of hardware resources are used to write data
to the queue. If the buffer is too big, Simulink must wait for the device to fill the buffer before it
moves the data to the queue, which introduces latency.

• Increase the simulation throughput rate.

Two useful methods for improving simulation throughput rates are increasing the signal frame
size and compiling the simulation into native code:

• Increase frame sizes and convert sample-based signals to frame-based signals throughout the
model to reduce the amount of block-to-block communication overhead. This can increase
throughput rates in many cases. However, larger frame sizes generally result in greater model
latency due to initial buffering operations.

• Generate executable code with Simulink Coder code generation software. Native code runs
much faster than Simulink and should provide rates adequate for real-time audio processing.

Other ways to improve throughput rates include simplifying the model and running the simulation on
a faster PC processor. For other ideas on improving simulation performance, see “Delay and Latency”
and “Optimize Performance” (Simulink).

Running an Executable Outside MATLAB

To run your generated standalone executable application in Shell, you need to set your environment
to the following:

Platform Command
Mac setenv DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/bin/
maci64 (csh/tcsh)

export DYLD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
maci64 (Bash)

Linux setenv LD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
glnxa64 (Bash)

Windows set PATH = $MATLABROOT\bin\win64;%PATH
%

Audio Hardware API

In order to communicate with the audio hardware on a given computer, the To Audio Device and
From Audio Device blocks use the open-source PortAudio library. The PortAudio library supports a
range of APIs designed to communicate with the audio hardware on a given platform. The following
API choices were made when building the PortAudio library for the DSP System Toolbox product:

• Windows®: DirectSound, WDM—KS, ASIO™
• Linux®: OSS, ALSA

 From Audio Device

2-627

• Mac: CoreAudio

For Windows, the default is DirectSound, for Linux, the default is ALSA, and for Mac there is only one
choice.

To determine the audio hardware API currently selected, type the following command in the MATLAB
command prompt.

getpref('dsp','portaudioHostApi')

The output is a scalar indicating the choice of the API.

• 1 — DirectSound
• 3 — ASIO
• 7 — OSS
• 8 — ALSA
• 11 — WDM-KS

To select a particular API, type the following command in the MATLAB command prompt.

setpref('dsp','portaudioHostApi',N)

where N is a scalar. Choose N based on the API choice above.

Parameters
Device

Specify the device from which to acquire audio data.
Use default mapping between Device Input Channels and Data

Select this check box to have the default mapping, where the data from the first channel of audio
device is sent to the first channel of the input data, data from second channel of audio device is
sent to second channel of data and so on. The maximum number of channels in the input data is
determined by the Number of channels property.

Number of channels
Specify the number of audio channels. This parameter is visible when the Use default mapping
between Device Input Channels and Data check box is enabled.

Device Input Channels
Specify the channel mapping. This parameter is visible when the Use default mapping between
Device Input Channels and Data check box is disabled.

Sample rate (Hz)
Specify the number of samples per second in the signal.

Device data type
Specify the data type used by the device to acquire audio data.

Automatically determine buffer size
Select this check box to enable the block to use a conservative buffer size.

Buffer size (samples)
Specify the size of the buffer that the block uses to communicate with the audio device. This
parameter is visible when the Automatically determine buffer size check box is cleared.

2 Blocks

2-628

Queue duration (seconds)
Specify the size of the queue in seconds.

Output number of samples by which the queue was overrun
Select this check box to output the number of samples lost to queue overrun since the last
transfer of a frame from the audio device. You can use this value to debug throughput problems
and adjust the queues and buffers in your model. To learn how to improve throughput, see
“Troubleshooting” on page 2-626.

Frame size (samples)
Specify the number of samples in the block's output signal.

Output data type
Select the data type of the block's output.

Supported Data Types
Port Supported Data Types
Output • Double-precision floating point

• Single-precision floating point
• 32-bit signed integers
• 16-bit signed integers
• 8-bit unsigned integers

Overrun 32-bit unsigned integer

See Also
From Multimedia File DSP System Toolbox
To Audio Device DSP System Toolbox
audiorecorder MATLAB

Introduced in R2007b

 From Audio Device

2-629

Frequency-Domain Adaptive Filter
Compute output, error, and coefficients using frequency domain FIR adaptive filter
Library: DSP System Toolbox / Filtering / Adaptive Filters

Description
The Frequency-Domain Adaptive Filter block implements an adaptive finite impulse response (FIR)
filter in the frequency domain using the fast block least mean squares (LMS) algorithm. The Filter
length and the Block length parameters specify the filter length and the block length values the
algorithm uses. When you select the Output filter FFT coefficients check box, the block outputs the
discrete Fourier transform of the current filter coefficients. The block offers the constrained and
unconstrained versions of the algorithm with partitioned and nonpartitioned modes. For details, see
“Algorithms” on page 2-636.

Ports
Input

Input — Data input
column vector

The signal to be filtered by the frequency-domain FIR adaptive filter. The data input and the desired
signal input must have the same size and data type. The length of the input vector must be divisible
by the Block length parameter value.

The data input can be a variable-size signal as long as the frame length is a multiple of the Block
length. You can change the number of elements in the column vector during the model simulation.
Data Types: single | double

Desired — Desired signal
column vector

The frequency-domain adaptive filter adapts its filter weights to minimize the error, Error, and
converge the input signal to match the desired signal as closely as possible.

The data input and the desired signal must have the same size and data type. The length of the
desired signal vector must be divisible by the Block length parameter value.

The desired signal can be a variable-size signal as long as the frame length is a multiple of the Block
length. You can change the number of elements in the column vector during the model simulation.
Data Types: single | double

Mu — Step size input
real scalar in the range (0,1]

2 Blocks

2-630

Adaptation step size factor, specified as a real scalar in the range (0,1]. Using a small step size
ensures a small steady-state error. However, a small step size decreases the resulting convergence
speed of the adaptive filter. Increasing the step size improves the convergence speed, at the cost of
increased steady-state mean squared error. When the step size value is 1, the algorithm provides the
optimal tradeoff between the convergence speed and the steady-state mean squared error.

Dependencies

This port appears when you select the Specify step size from port parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Leak — Leakage factor input
real scalar in the range (0,1]

Leakage factor used in leaky adaptive filter, specified as a real scalar in the range (0,1]. When the
value is less than 1, the block implements a leaky adaptive algorithm. When the value is 1, the block
provides no leakage in the adapting method.

Dependencies

This port appears when you select the Specify leakage factor from port check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Avrg — Averaging factor input
real scalar in the range (0,1]

Averaging factor used to compute the exponentially windowed fast Fourier transform (FFT) input
signal powers for the coefficient updates, specified as a real scalar in the range (0,1].

Dependencies

This port appears when you select the Specify averaging factor from port check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Offset — Offset for normalization terms
nonnegative real scalar

Offset for the normalization terms in the coefficient updates, specified as a nonnegative real scalar
value. Use this value to avoid division by zero or division by very small numbers if any of the FFT
input signal powers become very small.

Dependencies

This port appears when you select the Specify offset from port check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Adapt — Enable filter coefficient updates
nonnegative real scalar

If you input a nonzero scalar value through this port, the block continuously updates its filter
coefficients. If you input a zero through this port, the filter coefficients do not update, and their
values remain at the current value.

 Frequency-Domain Adaptive Filter

2-631

Dependencies

This port appears when you select the Enable adapt port check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Reset — Enable filter states reset
nonnegative real scalar

If you input a nonzero scalar value through this port, the block resets all internal states. If you input a
zero through this port, the internal states are not reset.

Dependencies

This port appears when you select the Enable reset port check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

Output — Filtered output
column vector

Filtered output, returned as a column vector. The block adapts its filter weights to converge the input
signal to match the desired signal as closely as possible. The filter outputs the converged signal.
Data Types: single | double

Error — Difference between output and desired signal
column vector

Difference between the output signal and the desired signal, returned as a column vector. The
objective of the adaptive filter is to minimize this error. The block adapts its weights to converge
towards optimal filter weights which produce an output signal that matches the desired signal as
closely as possible. For more details on how Error is computed, see “References” on page 2-638.
Data Types: single | double
Complex Number Support: Yes

FFTCoeffs — Current FFT coefficients of filter
row vector

Current discrete Fourier transform of the filter coefficients, returned as a row vector. For
Constrained FDAF and Unconstrained FDAF algorithms, the length of this vector is equal to the
sum of the Filter length value and the Block length value. This port initially outputs the FFT values
of the Initial time-domain coefficients parameter. During the model simulation, this port outputs
the FFT values of the current filter coefficients.

Dependencies

This port appears when you select the Output filter FFT coefficients check box.
Data Types: single | double
Complex Number Support: Yes

2 Blocks

2-632

Parameters
Method — Method to calculate filter coefficients
Constrained FDAF (default) | Partitioned constrained FDAF | Unconstrained FDAF |
Partitioned unconstrained FDAF

Method used to calculate the filter coefficients, specified as::

• Constrained FDAF –– Imposes a gradient constraint on the filter tap weights.
• Partitioned constrained FDAF –– Partitions the impulse response of the filter to reduce

latency.
• Unconstrained FDAF –– No gradient constraint is imposed on the filter tap weights.
• Partitioned unconstrained FDAF –– Partitions the impulse response of the filter to reduce

latency. No gradient constraint is imposed on the filter tap weights.

For more details, see “Algorithms” on page 2-636.

Filter length — Length of filter coefficients vector
32 (default) | positive, integer-valued scalar

Length of the FIR filter coefficients vector, specified as a positive, integer-valued scalar.

Block length — Block length for coefficient updates
32 (default) | positive, integer-valued scalar

Block length for the coefficients update, specified as a positive, integer-valued scalar. The adaptive
filter processes the input data and the desired signal as a block of samples of length set by this
parameter. For details on how this data is processed by the filter, see “Algorithms” on page 2-636.
The length of the input vector must be divisible by the Block length parameter value. The default
value of the Block length parameter is set to the value of the Filter length parameter.

Specify step size from port — Flag to specify step size
off (default) | on

When you select this check box, the adaptation step size is input through the Mu port. When you
clear this check box, the step size is specified on the block dialog through the Step size parameter.

Step size — Adaptation step size
1 (default) | real scalar in the range (0,1]

Adaptation step size factor, specified as a real scalar in the range (0,1]. Setting the Step size
parameter to 1 provides the fastest convergence during adaptation.

Tunable: Yes

Dependencies

This parameter appears when you clear the Specify step size from port check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Specify leakage factor from port — Flag to specify leakage factor
off (default) | on

 Frequency-Domain Adaptive Filter

2-633

When you select this check box, the leakage factor is input through the Leak port. When you clear
this check box, the leakage factor is specified on the block dialog through the Leakage factor
parameter.

LeakageFactor — Adaptation leakage factor
1 (default) | real scalar in the range (0,1]

Leakage factor used in leaky adaptive filter, specified as a real scalar in the range (0,1]. When the
value is less than 1, the block implements a leaky adaptive algorithm. When the value is 1, the block
provides no leakage in the adapting method.

Tunable: Yes

Dependencies

This parameter appears when you clear the Specify leakage factor from port check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Specify averaging factor from port — Flag to specify averaging factor
off (default) | on

When you select this check box, the averaging factor for signal power is input through the Avrg port.
When you clear this check box, the averaging factor is specified on the block dialog through the
Averaging factor parameter.

Averaging factor — Averaging factor for signal power
0.9 (default) | real scalar in the range (0,1]

Averaging factor used to compute the exponentially windowed FFT input signal powers for the
coefficient updates, specified as a real scalar in the range (0,1].

Tunable: Yes

Dependencies

This parameter appears when you clear the Specify averaging factor from port check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Specify offset from port — Flag to specify offset
off (default) | on

When you select this check box, the offset for the normalization terms in the coefficient updates is
input through the Offset port. When you clear this check box, the offset is specified on the block
dialog through the Offset parameter.

Offset — Offset for normalization terms
0 (default) | nonnegative real scalar

Offset for the normalization terms in the coefficient updates, specified as a nonnegative real scalar
value. Use this value to avoid division by zero or division by very small numbers if any of the FFT
input signal powers become very small.

Tunable: Yes

2 Blocks

2-634

Dependencies

This parameter appears when you clear the Specify offset from port check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Initial FFT input signal power — Initial FFT input signal power
1 (default) | positive numeric scalar

Initial common value of all of the FFT input signal powers, specified as a positive numeric scalar
value.

If you change this value during the simulation, the change takes effect only after a reset event occurs.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Initial time-domain coefficients — Initial time-domain coefficients of filter
0 (default) | scalar | vector

Initial time-domain coefficients of the adaptive filter, specified as a scalar or a vector of length equal
to the value you specify in the Filter length parameter. The adaptive filter block uses these
coefficients to compute the initial frequency-domain filter coefficients.

If you change this value during the simulation, the change takes effect only after a reset event occurs.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Enable adapt port — Flag to enable coefficient update
off (default) | on

When you select this check box, the Adapt input port is enabled. If you input a nonzero scalar value
through this port, the block continuously updates its filter coefficients. If you input a zero through
this port, the filter coefficients do not update and their values remain at the current value.

Enable reset port — Flag to reset internal states
off (default) | on

When you select this check box, the Reset input port is enabled. If you input a nonzero scalar value
through this port, the block resets all internal states. If you input a zero through this port, the
internal states are not reset.

Output filter FFT coefficients — Flag to output the DFT of the filter coefficients
off (default) | on

When you select this check box, the FFTCoeffs output port is enabled. Through this port, the block
outputs the discrete Fourier transform of the current filter coefficients.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not

 Frequency-Domain Adaptive Filter

2-635

change. This option requires additional startup time but provides faster simulation speed
than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
Frequency-domain adaptive filtering consists of three steps - filtering, error estimation, and tap-
weight adaptation. This algorithm implements FIR filtering in the frequency domain using the
overlap-save or overlap-add method. For more implementation details of these two methods, see the
“Algorithms” on page 4-663 section in the dsp.FrequencyDomainFIRFilter object page. The
error estimation and the tap-weight adaptation are implemented using the fast block LMS algorithm
(FBLMS).

Fast Block LMS Algorithm

The frequency-domain adaptive filter processes input data and the desired signal data as a block of
samples using the fast block LMS (FBLMS) algorithm. Here is the block diagram of the frequency-
domain adaptive filter using the FBLMS algorithm. The frequency-domain FIR filter in this diagram
uses the overlap-save method.

2 Blocks

2-636

where:

• N –– Filter length
• L –– Block length
• μ –– Step size parameter
• x(n) –– Input signal
• X(k) –– Transformed input signal in the frequency domain
• d(n) –– Desired signal
• e(n) –– Error between the desired signal and the filter output
• E(n) –– Transformed error signal in the frequency domain
• W(k) –– Tap-weights vector in the frequency domain

For more details on how the error is estimated and the tap-weights are adapted, see [2].

 Frequency-Domain Adaptive Filter

2-637

Constrained and Unconstrained FBLMS Algorithms

The previous diagram is the constrained version. If you remove the gradient constraint portion of the
algorithm, you have the unconstrained FBLMS implementation. For details on the convergence
behavior of both constrained and unconstrained variations, see [2].

Partitioned FBLMS Algorithm

The latency of the filter roughly equals the length of the FIR numerator. If the impulse response of
the filter is very long, the latency becomes significantly large. The partitioned FBLMS algorithm
reduces latency by partitioning the impulse response. The nonpartitioned frequency-domain FIR
filtering is faster than the time-domain filtering for long impulse responses, at the cost of increased
latency. To mitigate the latency and make the frequency domain filtering even more efficient, the
algorithm partitions the impulse response into multiple short blocks and performs overlap-save or
overlap-add on each block. The results of the different blocks are then combined to obtain the final
output. The latency of this approach is of the order of the block length, rather than the entire impulse
response length. This reduced latency comes at the cost of additional computation. For more details
on the implementation, see [2].

References
[1] Shynk, J.J."Frequency-Domain and Multirate Adaptive Filtering." IEEE Signal Processing

Magazine, Vol. 9, No. 1, pp. 14–37, Jan. 1992.

[2] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England, Wiley,
1998.

[3] Stockham, T. G., Jr. "High Speed Convolution and Correlation." Proceedings of the 1966 Spring
Joint Computer Conference, AFIPS, Vol 28, 1966, pp. 229–233.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
dsp.FrequencyDomainFIRFilter | dsp.FrequencyDomainAdaptiveFilter | dsp.LMSFilter
| dsp.RLSFilter | dsp.AffineProjectionFilter | dsp.AdaptiveLatticeFilter |
dsp.FilteredXLMSFilter | dsp.FIRFilter | dsp.FastTransversalFilter

Blocks
LMS Filter | RLS Filter | LMS Update | Kalman Filter | Fast Block LMS Filter | Block LMS Filter |
Frequency-Domain FIR Filter

Topics
“Overview of Adaptive Filters and Applications”
“Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter”
“Variable-Size Signal Support DSP System Objects”

2 Blocks

2-638

Introduced in R2018a

 Frequency-Domain Adaptive Filter

2-639

Frequency-Domain FIR Filter
Filter input signal in the frequency domain
Library: DSP System Toolbox / Filtering / Filter Implementations

Description
The Frequency-Domain FIR Filter block implements frequency-domain, fast Fourier transform (FFT)-
based filtering to filter a streaming input signal. In the time domain, the filtering operation involves a
convolution between the input and the impulse response of the finite impulse response (FIR) filter. In
the frequency domain, the filtering operation involves the multiplication of the Fourier transform of
the input and the Fourier transform of the impulse response. The frequency-domain filtering becomes
more efficient than time-domain filtering as the impulse response grows longer. You can specify the
filter coefficients directly in the frequency domain by setting Numerator domain to Frequency.

This block uses the overlap-save and overlap-add methods to perform the frequency-domain filtering.
For filters with a long impulse response length, the latency inherent to these two methods can be
significant. To mitigate this latency, the Frequency-Domain FIR Filter block partitions the impulse
response into shorter blocks and implements the overlap-save and overlap-add methods on these
shorter blocks. To partition the impulse response, select the Partition numerator to reduce
latency check box. For more details on these two methods and on reducing latency through impulse
response partitioning, see “Algorithms” on page 2-645.

Ports
Input

x — Data Input
vector | matrix

Data input, specified as a vector or matrix. This block supports variable-size input signals. That is,
you can change the input frame size (number of rows) even after calling the algorithm. However, the
number of channels (number of columns) must remain constant.

This port is unnamed until you select the Specify coefficients from input port parameter.
Data Types: single | double

NUM — Time domain FIR filter coefficients
row vector

Time domain FIR filter coefficients, specified as a row vector.

Dependencies

This port appears when you set Numerator domain to Time and select the Specify coefficients
from input port parameter.

2 Blocks

2-640

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

NUMFFT — Frequency domain FIR filter coefficients
row vector

Frequency domain FIR filter coefficients, specified as a row vector or a matrix. When you clear the
Partition numerator to reduce latency parameter, the coefficients input through this port must be
a row vector. The FFT length is equal to the length of the vector input. When you select the Partition
numerator to reduce latency parameter, Frequency response must be a 2P-by-N matrix, where P
is the partition size, and N is the number of partitions.

Dependencies

This port appears when you set Numerator domain to Frequency and select the Specify
frequency response from input port parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments

y — Filtered output
vector | matrix

Filtered output, returned as a vector or matrix. The size, data type, and complexity of the output
match those of the input.

This port is unnamed until you select the Output filter latency parameter and click Apply.
Data Types: single | double

latency — Filter latency
positive integer

Filter latency, returned as a scalar. This latency is inherent to overlap-add and overlap-save methods
and does not include the group delay of the filter. This port appears only when you select the Output
filter latency check box.

This port is unnamed until you select the Output filter latency check box and click Apply.
Data Types: uint32

Parameters
Frequency-domain filter method — Filtering method in frequency domain
Overlap-save (default) | Overlap-add

Filtering method in the frequency domain, specified as either Overlap-save or Overlap-add. For
more details on these two methods, see “Algorithms” on page 2-645

Numerator domain — Numerator domain
Time (default) | Frequency

Domain of the filter coefficients, specified as one of the following:

• Time –– Specify the time-domain filter coefficients in the Filter coefficients parameter or
through the NUM input port.

 Frequency-Domain FIR Filter

2-641

• Frequency –– Specify the filter's frequency response in the Frequency response parameter or
through the NUMFFT input port.

Specify coefficients from input port — Flag to specify lowpass filter coefficients
off (default) | on

When you select this check box, the FIR filter coefficients are input through the port, NUM. When
you clear this check box, the coefficients are specified on the block dialog through the Filter
coefficients parameter.

To view the filter response, clear this check box, specify the coefficients on the block dialog, and click
on the View Filter Response button.
Dependencies

To enable this parameter, set Numerator domain to Time.

Filter coefficients — filter coefficients
fir1(100,0.3) (default) | row vector

FIR filter coefficients, specified as a row vector.
Dependencies

To enable this parameter, set Numerator domain to Time and clear the Specify coefficients from
input port parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

Specify frequency response from input port — Flag to specify frequency-domain filter
coefficients
off (default) | on

When you select this check box, the FIR filter coefficients in the frequency domain are input through
the port, NUMFFT. When you clear this check box, the coefficients are specified on the block dialog
through the Frequency response parameter.

To view the filter response, clear this check box, specify the frequency response on the block dialog,
and click on the View Filter Response button.
Dependencies

To enable this parameter, set Numerator domain to Frequency.

Frequency response — Filter coefficients
fft(fir1(100,0.3),202) (default) | row vector | matrix

Frequency response of the filter, specified as a row vector or a matrix. When you clear the Partition
numerator to reduce latency parameter, Frequency response must be a row vector. The FFT
length is equal to the length of the Frequency response vector. When you select the Partition
numerator to reduce latency parameter, Frequency response must be a 2P-by-N matrix, where P
is the partition size, and N is the number of partitions.
Dependencies

To enable this parameter, set Numerator domain to Frequency and clear the Specify frequency
response from input port parameter.

2 Blocks

2-642

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32
Complex Number Support: Yes

Partition numerator to reduce latency — Flag to partition the numerator to reduce
latency
off (default) | on

Flag to partition the numerator to reduce latency, specified as one of the following:

• off –– The filter uses the traditional overlap-save or overlap-add method. The latency in this case is
FFT length – NumLen + 1. NumLen is the length of the numerator vector you specify in the Filter
coefficients parameter.

• on –– In this mode, the block partitions the numerator into segments of length specified by the
Numerator partition length parameter. The filter performs overlap-save or overlap-add on each
partition, and combines the partial results to form the overall output. The latency is now reduced
to the partition length.

Numerator partition length — Partition length of numerator
32 (default) | positive integer

Partition length of the numerator, specified as a positive integer less than or equal to the length of the
numerator.

Dependencies

This parameter applies only when you set Numerator domain to Time and select the Partition
numerator to reduce latency parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Time-domain numerator length — Time-domain numerator length
101 (default) | positive integer-valued scalar

Time-domain numerator length, specified as a positive integer-valued scalar.

Dependencies

This parameter applies only when you set Numerator domain to Frequency and clear the
Partition numerator to reduce latency check box.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Inherit FFT length from numerator length — Flag to inherit FFT length from the
numerator length
on (default) | off

When you select this check box, the FFT length equals twice the numerator length. When you clear
this check box, you specify the FFT length through the FFT length parameter.

Dependencies

This parameter applies only when you set Numerator domain to Time and clear the Partition
numerator to reduce latency parameter.

FFT length — FFT length
1024 (default) | positive integer

 Frequency-Domain FIR Filter

2-643

The FFT length you specify must be greater than or equal to the length of the numerator vector you
specify in the Filter coefficients parameter.
Dependencies

This parameter applies when you set Numerator domain to Time, clear the Partition numerator
to reduce latency and the Inherit FFT length from numerator length parameters.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Filter is real — Flag to specify if filter is real
true (default) | false

Flag to specify if the filter is real, specified as true or false.
Dependencies

This parameter applies when Numerator domain to Frequency.

Output filter latency — Flag to output filter latency
'off' (default) | 'on'

When you select this check box and click Apply, the block outputs the filter latency through the
latency port.

View Filter Response — Visualize frequency response of FIR filter
button

Opens the Filter Visualization Tool (FVTool) and displays the magnitude/phase response of the FIR
filter. The response is based on the block dialog parameters. Changes made to these parameters
update FVTool.

2 Blocks

2-644

To update the magnitude response while FVTool is running, modify the block dialog parameters and
click Apply.

To view the filter response when the Numerator domain is set to Time, clear the Specify
coefficients from input port check box. To view the filter response when the Numerator domain
is set to Frequency, clear the Specify frequency response from input port check box.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but provides faster simulation speed than Interpreted execution.

• Interpreted execution — Simulate model using the MATLAB interpreter. This option
shortens startup time but has slower simulation speed than Code generation.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
Overlap-save and overlap-add are the two frequency-domain FFT-based filtering methods this
algorithm uses.

Overlap-Save

The overlap-save method is implemented using the following approach:

The input stream is partitioned into overlapping blocks of size FFTLen, with an overlap factor of
NumLen – 1 samples. FFTLen is the FFT length and NumLen is the length of the FIR filter numerator.
The FFT of each block of input samples is computed and multiplied with the length-FFTLen FFT of

 Frequency-Domain FIR Filter

2-645

the FIR numerator. The inverse fast Fourier transform (IFFT) of the result is performed, and the last
FFTLen – NumLen + 1 samples are saved. The remaining samples are dropped.

The latency of overlap-save is FFTLen – NumLen + 1. The first FFTLen – NumLen + 1 samples are
equal to zero. The filtered value of the first input sample appears as the FFTLen – NumLen + 2 output
sample.

Note that the FFT length must be larger than the numerator length, and is typically set to a value
much greater than NumLen.

Overlap-Add

The overlap-add method is implemented using the following approach:

The input stream is partitioned into blocks of length FFLen – NumLen + 1, with no overlap between
consecutive blocks. Similar to overlap-save, the FFT of the block is computed, and multiplied by the
FFT of the FIR numerator. The IFFT of the result is then computed. The first NumLen + 1 samples
are modified by adding the values of the last NumLen + 1 samples from the previous computed IFFT.

The latency of overlap-add is FFTLen – NumLen + 1. The first FFTLen – NumLen + 1 samples are
equal to zero. The filtered value of the first input sample appears as the FFTLen – NumLen + 2 output
sample.

Reduce Latency Through Impulse Response Partitioning

With an FFT length that is twice the length of the FIR numerator, the latency roughly equals the
length of the FIR numerator. If the impulse response is very long, the latency becomes significantly
large. However, frequency domain FIR filtering is still faster than the time-domain filtering. To
mitigate the latency and make the frequency domain filtering even more efficient, the algorithm
partitions the impulse response into multiple short blocks and performs overlap-save or overlap-add
on each block. The results of the different blocks are then combined to obtain the final output. The
latency of this approach is of the order of the block length, rather than the entire impulse response
length. This reduced latency comes at the cost of additional computation. For more details, see [1].

References
[1] Stockham, T. G., Jr. "High Speed Convolution and Correlation." Proceedings of the 1966 Spring

Joint Computer Conference, AFIPS, 28 (1966): 229–233.

2 Blocks

2-646

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
dsp.FrequencyDomainFIRFilter | dsp.FIRFilter | dsp.FrequencyDomainAdaptiveFilter

Blocks
Variable Bandwidth FIR Filter | FFT | Frequency-Domain Adaptive Filter

Introduced in R2017b

 Frequency-Domain FIR Filter

2-647

From Multimedia File
Stream from multimedia file

Library
Sources

dspsrcs4

Description
The From Multimedia File block reads audio samples, video frames, or both, from a multimedia file
and generates a signal with one of the following data types and amplitude ranges.

Output Data Type Output Amplitude Range
double ±1
single ±1
int16 -32768 to 32767 (-215 to 215 - 1)
uint8 0 to 255

The block imports data from the file into a Simulink model.

Note This block supports code generation for the host computer that has file I/O available. You
cannot use this block with Simulink Desktop Real-Time software because that product does not
support file I/O.

The generated code for this block relies on prebuilt library files. You can run this code outside the
MATLAB environment, or redeploy it, but be sure to account for these extra library files when doing
so. The packNGo function creates a single zip file containing all of the pieces required to run or
rebuild this code. See packNGo for more information.

To run an executable file that was generated from a model containing this block, you may need to add
precompiled shared library files to your system path. See “Understanding C Code Generation in DSP
System Toolbox” for details.

Supported Platforms and File Types
The supported file formats available to you depends on the codecs installed on your system.

2 Blocks

2-648

Windows Platforms Supported File Formats

With the necessary Windows DirectShow codecs installed on your system, the From Multimedia File
Block supports many video and audio file formats. This block performs best on platforms with Version
9.0 or later of DirectX® software.

The following table lists the most common file formats.

Multimedia Types File Name Extensions
Image files .jpg,.bmp,.png
Video files .qt, .mov, .avi, .asf, .asx, .wmv, .mpg, .mpeg, .mp2, .mp4, .m4v
Audio files .wav, .wma, .avi, .aif, .aifc, .aiff, .mp3, .au, .snd, .mp4, .m4a,

.flac, .ogg

The default for image files is .png, for video files is .avi, and for audio files is .mp3.

Windows 7 and later versions of Windows ship with a limited set of 64-bit video and audio codecs. If
the From Multimedia File block cannot work on a compressed multimedia file, save the multimedia
file to a file format supported by the block.

If you use Windows, use Windows Media® Player Version 11 or later with this block for best results.

Non-Windows Platform Supported File Formats

The following table lists the most common file formats.

Multimedia Types File Name Extensions
Video files .avi, .mj2, .mov, .mp4,.m4v
Audio files .avi, .mp3, .mp4, .m4a, .wav, .flac, .ogg, .aif, .aifc, .ai

ff, .au, .snd

The default for video files is .avi, and for audio files is .mp3.

Ports
The output ports of the From Multimedia File block change according to the content of the
multimedia file. If the file contains only video frames, the Image, intensity I, or R,G,B ports appear
on the block. If the file contains only audio samples, the Audio port appears on the block. If the file
contains both audio and video, you can select the data to emit. The following table describes available
ports.

Port Description
Image M-by-N-by-P color video signal where P is the number of color planes.
I M-by-N matrix of intensity values.
R, G, B Matrix that represents one plane of the RGB video stream. Outputs from the R, G, or B

ports must have same dimensions.
Audio Vector of audio data.

 From Multimedia File

2-649

Port Description
Y, Cb, Cr Matrix that represents one frame of the YCbCr video stream. The Y, Cb, Cr ports

produce the following outputs:
Y: M x N
Cb: M xN

2
Cr: M xN

2

Sample Rates
The sample rate that the block uses depends on the audio and video sample rate. While the FMMF
block operates at a single rate in Simulink, the underlying audio and video streams can produce
different rates. In some cases, when the block outputs both audio and video, makes a small
adjustment to the video rate.

Sample Time Calculations Used for Video and Audio Files
Sample time = ceil(AudioSampleRate FPS)

AudioSampleRate .

When audio sample time, AudioSampleRate
FPS is noninteger, the equation cannot reduce to 1

FPS .
In this case, to prevent synchronization problems, the block drops the corresponding video frame
when the audio stream leads the video stream by more than 1

FPS .
In summary, the block outputs one video frame at each Simulink time step. To calculate the number of
audio samples to output at each time step, the block divides the audio sample rate by the video frame
rate (fps). If the audio sample rate does not divide evenly by the number of video frames per second,
the block rounds the number of audio samples up to the nearest whole number. If necessary, the block
periodically drops a video frame to maintain synchronization for large files.

Dialog Box
Main Tab

File name
Specify the name of the multimedia file from which to read. The block determines the type of file
(audio and video, audio only, or video only) and provides the associated parameters.

If the location of the file does not appear on your MATLAB path, use the Browse button to specify
the full path. Otherwise, if the location of this file appears on your MATLAB path, enter only the
file name. On Windows platforms, this parameter supports URLs that point to MMS (Microsoft
Media Server) streams.

Inherit sample time from file
Select the Inherit sample time from file check box if you want the block sample time to be the
same as the multimedia file. If you clear this check box, enter the block sample time in the
Desired sample time parameter field. The file that the From Multimedia File block references,
determines the block default sample time. You can also set the sample time for this block
manually. If you do not know the intended sample rate of the video, let the block inherit the
sample rate from the multimedia file.

2 Blocks

2-650

Desired sample time
Specify the block sample time. This parameter becomes available if you clear the Inherit sample
time from file check box.

Number of times to play file
Enter a positive integer or inf to represent the number of times to play the file.

Read range
Specify the sample range from which to read as a two-element row vector in the form of
[StartSample EndSample], where StartSample is the sample at which file reading starts, and
EndSample is the sample at which file reading stops.

The default is [1 Inf].
Output end-of-file indicator

Use this check box to determine whether the output is the last video frame or audio sample in the
multimedia file. When you select this check box, a Boolean output port labeled EOF appears on
the block. The output from the EOF port defaults to 1 when the last video frame or audio sample
is output from the block. Otherwise, the output from the EOF port defaults to 0.

Multimedia outputs
Specify Video and audio, Video only, or Audio only output file type. This parameter
becomes available only when a video signal has both audio and video.

Samples per audio channel
Specify number of samples per audio channel. This parameter becomes available for files
containing audio.

Output color format
Specify whether you want the block to output RGB, Intensity, or YCbCr 4:2:2 video frames.
This parameter becomes available only for a signal that contains video. If you select RGB, use the
Image signal parameter to specify how to output a color signal.

Image signal
Specify how to output a color video signal. If you select One multidimensional signal, the
block outputs an M-by-N-by-P color video signal, where P is the number of color planes, at one
port. If you select Separate color signals, additional ports appear on the block. Each port
outputs one M-by-N plane of an RGB video stream. This parameter becomes available only if you
set the Output color format parameter to RGB and the signal contains video.

Data Types Tab

Audio output data type
Set the data type of the audio samples output at the Audio port. This parameter becomes
available only if the multimedia file contains audio. You can choose double, single, int16, or
uint8 types.

Video output data type
Set the data type of the video frames output at the R, G, B, or Image ports. This parameter
becomes available only if the multimedia file contains video. You can choose double, single,
int8, uint8, int16, uint16, int32, uint32, or Inherit from file types.

 From Multimedia File

2-651

Troubleshooting
Running an Executable Outside MATLAB

To run your generated standalone executable application in Shell, you need to set your environment
to the following:

Platform Command
Mac setenv DYLD_LIBRARY_PATH "$

{DYLD_LIBRARY_PATH}:$MATLABROOT/bin/
maci64" (csh/tcsh)

export DYLD_LIBRARY_PATH=
$DYLD_LIBRARY_PATH:$MATLABROOT/bin/
maci64 (Bash)

For more information, see Append library path to
"DYLD_LIBRARY_PATH" in MAC.

Linux setenv LD_LIBRARY_PATH $
{LD_LIBRARY_PATH}:$MATLABROOT/bin/
glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH=
$LD_LIBRARY_PATH:$MATLABROOT/bin/
glnxa64 (Bash)

Windows set PATH=%PATH%;%MATLABROOT%\bin\win64

Supported Data Types
For source blocks to display video data properly, double- and single-precision floating-point pixel
values must be between 0 and 1. For other data types, the pixel values must be between the minimum
and maximum values supported by their data type.

Port Supported Data Types Supports Complex
Values?

Image • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

No

R, G, B Same as the Image port No
Audio • Double-precision floating point

• Single-precision floating point
• 16-bit signed integers
• 8-bit unsigned integers

No

Y, Cb,Cr Same as the Image port No

2 Blocks

2-652

https://www.mathworks.com/matlabcentral/answers/374930-append-library-path-to-dyld_library_path-in-mac
https://www.mathworks.com/matlabcentral/answers/374930-append-library-path-to-dyld_library_path-in-mac

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Host computer only. Excludes Simulink Desktop Real-Time code generation.

See Also
Blocks
To Multimedia File

Topics
“Sample Time” (Simulink)
“How To Run a Generated Executable Outside MATLAB”

Introduced before R2006a

 From Multimedia File

2-653

From Wave Device (Obsolete)
Read audio data from standard audio device in real-time (32-bit Windows operating systems only)

Library
dspwin32

Description

Note The From Wave Device block is still supported but is likely to be obsoleted in a future release.
We strongly recommend replacing this block with the From Audio Device block.

The From Wave Device block reads audio data from a standard Windows audio device in real-time. It
is compatible with most popular Windows hardware, including Sound Blaster cards. (Models that
contain both this block and the To Wave Device block require a duplex-capable sound card.)

The Use default audio device parameter allows the block to detect and use the system's default
audio hardware. This option should be selected on systems that have a single sound device installed,
or when the default sound device on a multiple-device system is the desired source. In cases when
the default sound device is not the desired input source, clear Use default audio device, and select
the desired device in the Audio device menu parameter.

When the audio source contains two channels (stereo), the Stereo check box should be selected.
When the audio source contains a single channel (mono), the Stereo check box should be cleared.
For stereo input, the block's output is an M-by-2 matrix containing one frame (M consecutive
samples) of audio data from each of the two channels. For mono input, the block's output is an M-by-1
matrix containing one frame (M consecutive samples) of audio data from the mono input. The frame
size, M, is specified by the Samples per frame parameter. For M=1, the output is sample based;
otherwise, the output is frame based.

The audio data is processed in uncompressed pulse code modulation (PCM) format, and should
typically be sampled at one of the standard Windows audio device rates: 8000, 11025, 22050, or
44100 Hz. You can select one of these rates from the Sample rate parameter. To specify a different
rate, select the User-defined option and enter a value in the User-defined sample rate parameter.

The Sample Width (bits) parameter specifies the number of bits used to represent the signal
samples read by the audio device. The following settings are available:

• 8 — allocates 8 bits to each sample, allowing a resolution of 256 levels
• 16 — allocates 16 bits to each sample, allowing a resolution of 65536 levels
• 24 — allocates 24 bits to each sample, allowing a resolution of 16777216 levels (only for use with

24-bit audio devices)

2 Blocks

2-654

Higher sample width settings require more memory but yield better fidelity. The output from the
block is independent of the Sample width (bits) setting. The output data type is determined by the
Data type parameter setting.

Buffering

Since the audio device accepts real-time audio input, Simulink software must read a continuous
stream of data from the device throughout the simulation. Delays in reading data from the audio
hardware can result in hardware errors or distortion of the signal. This means that the From Wave
Device block must read data from the audio hardware as quickly as the hardware itself acquires the
signal. However, the block often cannot match the throughput rate of the audio hardware, especially
when the simulation is running from within Simulink rather than as generated code. (Simulink
operations are generally slower than comparable hardware operations, and execution speed routinely
varies during the simulation as the host operating system services other processes.) The block must
therefore rely on a buffering strategy to ensure that signal data can be read on schedule without
losing samples.

At the start of the simulation, the audio device begins writing the input data to a (hardware) buffer
with a capacity of Tb seconds. The From Wave Device block immediately begins pulling the earliest
samples off the buffer (first in, first out) and collecting them in length-M frames for output. As the
audio device continues to append inputs to the bottom of the buffer, the From Wave Device block
continues to pull inputs off the top of the buffer at the best possible rate.

The following figure shows an audio signal being acquired and output with a frame size of 8 samples.
The buffer of the sound board is approaching its five-frame capacity at the instant shown, which
means that the hardware is adding samples to the buffer more rapidly than the block is pulling them
off. (If the signal sample rate was 8 kHz, this small buffer could hold approximately 0.005 second of
data.

When the simulation throughput rate is higher than the hardware throughput rate, the buffer remains
empty throughout the simulation. If necessary, the From Wave Device block simply waits for new
samples to become available on the buffer (the block does not interpolate between samples). More
typically, the simulation throughput rate is lower than the hardware throughput rate, and the buffer
tends to fill over the duration of the simulation.

Troubleshooting

When the buffer size is too small in relation to the simulation throughput rate, the buffer might fill
before the entire length of signal is processed. This usually results in a device error or undesired
device output. When this problem occurs, you can choose to either increase the buffer size or the
simulation throughput rate:

 From Wave Device (Obsolete)

2-655

• Increase the buffer size

The Queue duration parameter specifies the duration of signal, Tb (in real-time seconds), that
can be buffered in hardware during the simulation. Equivalently, this is the maximum length of
time that the block's data acquisition can lag the hardware's data acquisition. The number of
frames buffered is approximately

TbFs
M

where Fs is the sample rate of the signal and M is the number of samples per frame. The required
buffer size for a given signal depends on the signal length, the frame size, and the speed of the
simulation. Note that increasing the buffer size might increase model latency.

• Increase the simulation throughput rate

Two useful methods for improving simulation throughput rates are increasing the signal frame
size and compiling the simulation into native code:

• Increase frame sizes (and convert sample-based signals to frame-based signals) throughout the
model to reduce the amount of block-to-block communication overhead. This can drastically
increase throughput rates in many cases. However, larger frame sizes generally result in
greater model latency due to initial buffering operations.

• Generate executable code with Simulink Coder. Native code runs much faster than Simulink,
and should provide rates adequate for real-time audio processing.

More general ways to improve throughput rates include simplifying the model, and running the
simulation on a faster PC processor. See “Delay and Latency” and “Optimize Performance” (Simulink)
for other ideas on improving simulation performance.

Parameters
Sample rate (Hz)

The sample rate of the audio data to be acquired. Select one of the standard Windows rates or the
User-defined option.

User-defined sample rate (Hz)
The (nonstandard) sample rate of the audio data to be acquired.

Sample width (bits)
The number of bits used to represent each signal sample.

Stereo
Specifies stereo (two-channel) inputs when selected, mono (one-channel) inputs when cleared.
Stereo output is M-by-2; mono output is M-by-1.

Samples per frame
The number of audio samples in each successive output frame, M. When the value of this
parameter is 1, the block outputs a sample-based signal.

Queue duration (seconds)
The length of signal (in seconds) to buffer to the hardware at the start of the simulation.

2 Blocks

2-656

Use default audio device
Reads audio input from the system's default audio device when selected. Clear to enable the
Audio device ID parameter and select a device.

Audio device
The name of the audio device from which to read the audio output (lists the names of the installed
audio device drivers). Select Use default audio device when the system has only a single audio
card installed.

Data type
The data type of the output: double-precision, single-precision, signed 16-bit integer, or unsigned
8-bit integer.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• 16-bit signed integer
• 8-bit unsigned integer

See Also
From Wave File (Obsolete) DSP System Toolbox
To Wave Device (Obsolete) DSP System Toolbox
audiorecorder MATLAB

Introduced in R2008b

 From Wave Device (Obsolete)

2-657

From Wave File (Obsolete)
Read audio data from Microsoft Wave (.wav) file

Library
dspwin32

Description

Note The From Wave File block is still supported but is likely to be obsoleted in a future release. We
strongly recommend replacing this block with the From Multimedia File block.

The From Wave File block streams audio data from a Microsoft® Wave (.wav) file and generates a
signal with one of the data types and amplitude ranges in the following table.

Note AVI files are the only supported file type for non-Windows platforms.

Output Data Type Output Amplitude Range
double ±1
single ±1
int16 -32768 to 32767 (-215 to 215 - 1)
uint8 0 to 255

The audio data must be in uncompressed pulse code modulation (PCM) format.

y = wavread('filename') % Equivalent MATLAB code

The block supports 8-, 16-, 24-, and 32-bit Microsoft Wave (.wav) files.

The File name parameter can specify an absolute or relative path to the file. When the file is on the
MATLAB path or in the current folder (the folder returned by typing pwd at the MATLAB command
line), you need only specify the file name. You do not need to specify the.wav extension.

Note The From Wave File block does not support .wav file names that contain a + character. To
read .wav files that have a + character in the file name, use the From Multimedia File block.

For an audio file containing C channels, the block's output is an M-by-C matrix containing one frame
(M consecutive samples) of audio data from each channel. The frame size, M, is specified by the

2 Blocks

2-658

Samples per output frame parameter. For M=1, the output is sample based; otherwise, the output
is frame based.

The output frame period, Tfo, is

Tf o = M
Fs

where Fs is the data sample rate in Hz.

To reduce the required number of file accesses, the block acquires L consecutive samples from the
file during each access, where L is specified by the Minimum number of samples for each read
from file parameter (L ≥ M). For L < M, the block instead acquires M consecutive samples during
each access. Larger values of L result in fewer file accesses, which reduces run-time overhead.

Use the Data type parameter to specify the data type of the block's output. Your choices are double,
single, uint8, or int16.

Select the Loop check box if you want to play the file more than once. Then, enter the number of
times to play the file. The number you enter must be a positive integer or inf.

Use the Number of times to play file parameter to enter the number of times to play the file. The
number you enter must be a positive integer or inf, to play the file until you stop the simulation.

The Samples restart parameter determines whether the samples from the audio file repeat
immediately or repeat at the beginning of the next frame output from the output port. When you
select immediately after last sample, the samples repeat immediately. When you select at
beginning of next frame, the frame containing the last sample value from the audio file is zero
padded until the frame is filled. The block then places the first sample of the audio file in the first
position of the next output frame.

Use the Output start-of-file indicator parameter to determine when the first audio sample in the
file is output from the block. When you select this check box, a Boolean output port labeled SOF
appears on the block. The output from the SOF port is 1 when the first audio sample in the file is
output from the block. Otherwise, the output from the SOF port is 0.

Use the Output end-of-file indicator parameter to determine when the last audio sample in the file
is output from the block. When you select this check box, a Boolean output port labeled EOF appears
on the block. The output from the EOF port is 1 when the last audio sample in the file is output from
the block. Otherwise, the output from the EOF port is 0.

The block icon shows the name, sample rate (in Hz), number of channels (1 or 2), and sample width
(in bits) of the data in the specified audio file. All sample rates are supported; the sample width must
be either 8, 16, 24, or 32 bits.

Parameters
File name

Enter the path and name of the file to read. Paths can be relative or absolute.

Note The From Wave File block does not support .wav file names that contain a + character. To
read .wav files that have a + character in the file name, use the From Multimedia File block.

 From Wave File (Obsolete)

2-659

Samples per output frame
Enter the number of samples in each output frame, M. When the value of this parameter is 1, the
block outputs a sample-based signal.

Minimum number of samples for each read from file
Enter the number of consecutive samples to acquire from the file with each file access, L.

Data type
Select the output data type: double, single, uint8, or int16. The data type setting determines
the output's amplitude range.

Loop
Select this check box if you want to play the file more than once.

Number of times to play file
Enter the number of times you want to play the file.

Samples restart
Select immediately after last sample to repeat the audio file immediately. Select at
beginning of next frame to place the first sample of the audio file in the first position of the
next output frame.

Output start-of-file indicator
Use this check box to determine whether the output contains the first audio sample in the file.

Output end-of-file indicator
Use this check box to determine whether the output contains the last audio sample in the file.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• 16-bit signed integer
• 8-bit unsigned integer

See Also
From Audio Device DSP System Toolbox
Signal From Workspace DSP System Toolbox
To Multimedia File DSP System Toolbox

Introduced in R2010a

2 Blocks

2-660

G711 Codec
Quantize narrowband speech input signals

Library
Quantizers

dspquant2

Description
The G711 Codec block is a logarithmic scalar quantizer designed for narrowband speech.
Narrowband speech is defined as a voice signal with an analog bandwidth of 4 kHz and a Nyquist
sampling frequency of 8 kHz. The block quantizes a narrowband speech input signal so that it can be
transmitted using only 8-bits. The G711 Codec block has three modes of operation: encoding,
decoding, and conversion. You can choose the block's mode of operation by setting the Mode
parameter.

If, for the Mode parameter, you choose Encode PCM to A-law, the block assumes that the linear
PCM input signal has a dynamic range of 13 bits. Because the block always operates in saturation
mode, it assigns any input value above 212− 1 to 212− 1 and any input value below −212 to −212.
The block implements an A-law quantizer on the input signal and outputs A-law index values. When
you choose Encode PCM to mu-law, the block assumes that the linear PCM input signal has a
dynamic range of 14 bits. Because the block always operates in saturation mode, it assigns any input
value above 213− 1 to 213− 1 and any input value below −213 to −213. The block implements a mu-
law quantizer on the input signal and outputs mu-law index values.

If, for the Mode parameter, you choose Decode A-law to PCM, the block decodes the input A-law
index values into quantized output values using an A-law lookup table. When you choose Decode mu-
law to PCM, the block decodes the input mu-law index values into quantized output values using a
mu-law lookup table.

If, for the Mode parameter, you choose Convert A-law to mu-law, the block converts the input A-
law index values to mu-law index values. When you choose Convert mu-law to A-law, the block
converts the input mu-law index values to A-law index values.

Note Set the Mode parameter to Convert A-law to mu-law or Convert mu-law to A-law
only when the input to the block is A-law or mu-law index values.

If, for the Mode parameter, you choose Encode PCM to A-law or Encode PCM to mu-law, the
Overflow diagnostic parameter appears on the block parameters dialog box. Use this parameter to
determine the behavior of the block when overflow occurs. The following options are available:

 G711 Codec

2-661

• Ignore — Proceed with the computation and do not issue a warning message.
• Warning — Display a warning message in the MATLAB Command Window, and continue the

simulation.
• Error — Display an error dialog box and terminate the simulation.

Note Like all diagnostic parameters on the Configuration Parameters dialog box, Overflow
diagnostic parameter is set to Ignore in the code generated for this block by Simulink Coder code
generation software.

Parameters
Mode

• When you choose Encode PCM to A-law, the block implements an A-law encoder.
• When you choose Encode PCM to mu-law, the block implements a mu-law encoder.
• When you choose Decode A-law to PCM, the block decodes the input index values into

quantized output values using an A-law lookup table.
• When you choose Decode mu-law to PCM, the block decodes the input index values into

quantized output values using a mu-law lookup table.
• When you choose Convert A-law to mu-law, the block converts the input A-law index

values to mu-law index values.
• When you choose Convert mu-law to A-law, the block converts the input mu-law index

values to A-law index values.

Overflow diagnostic
Use this parameter to determine the behavior of the block when overflow occurs.

• Select Ignore to proceed with the computation without a warning message.
• Select Warning to display a warning message in the MATLAB Command Window and continue

the simulation.
• Select Error to display an error dialog box and terminate the simulation.

This parameter is only visible if, for the Mode parameter, you select Encode PCM to A-law or
Encode PCM to mu-law.

References
ITU-T Recommendation G.711, “Pulse Code Modulation (PCM) of Voice Frequencies,” General
Aspects of Digital Transmission Systems; Terminal Equipments, International Telecommunication
Union (ITU), 1993.

Supported Data Types
Port Supported Data Types
PCM • 16-bit signed integers
A • 8-bit unsigned integers

2 Blocks

2-662

Port Supported Data Types
mu • 8-bit unsigned integers

See Also
Quantizer Simulink
Scalar Quantizer Decoder DSP System Toolbox
Uniform Decoder DSP System Toolbox
Uniform Encoder DSP System Toolbox
Vector Quantizer Decoder DSP System Toolbox
Vector Quantizer Encoder DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 G711 Codec

2-663

Halfband Filter (Obsolete)
(Removed) Design halfband filter

Compatibility

Note The Halfband Filter block has been removed from the DSP System Toolbox block library.
Existing instances of the Halfband Filter block will continue to operate. To model FIR halfband
decimators and interpolators, use the FIR Halfband Decimator and FIR Halfband Interpolator blocks.
These blocks replace the functionality of the Halfband Filter block, when Impulse response is set to
FIR, and FilterType is set to Decimator and Interpolator. To model IIR halfband decimators and
interpolators, use the IIR Halfband Decimator and IIR Halfband Interpolator blocks. These blocks
replace the functionality of the Halfband Filter block, when Impulse response is set to IIR, and
FilterType is set to Decimator and Interpolator.

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Dialog Box
See “Halfband Filter Design — Main Pane” on page 5-595 for more information about the
parameters of this block. The Data Types and Code Generation panes are not available for blocks in
the DSP System Toolbox Filter Designs library.

2 Blocks

2-664

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

 Halfband Filter (Obsolete)

2-665

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

In this group, you specify your filter type and order.

Impulse response
Select either FIR or IIR from the drop-down list. FIR is the default. When you choose an impulse
response, the design methods and structures you can use to implement your filter change
accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select either Minimum (the default) or Specify from the drop-down list. Selecting Specify
enables the Order option (see the following sections) so you can enter the filter order.

Response type
Specify the filter response as Lowpass (the default) or Highpass.

Filter type
Select Single-rate, Decimator, or Interpolator. By default, the block specifies a single-
rate filter.

Order
Enter the filter order. This option is enabled only when the Filter order mode is set to Specify.

Frequency Specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications for a halfband lowpass filter look similar to those shown in the following figure.

In the figure, the transition region lies between the end of the passband and the start of the
stopband. The width is defined explicitly by the value of Transition width.

2 Blocks

2-666

Frequency constraints
When Order mode is Specify, set this parameter to Unconstrained or Transition width.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0–1) to enter frequencies in normalized form. This behavior is
the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input Fs
parameter.

Input Fs
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Transition width
Specify the width of the transition between the end of the passband and the edge of the stopband.
Specify the value in normalized frequency units or the absolute units you select in Frequency
units.

Magnitude Specifications

Parameters in this group specify the filter response in the passbands and stopbands.

Magnitude constraints
Specify Unconstrained (the default), or select Stopband attenuation to constrain the
response in the stopband explicitly.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. From the drop-down
list, select one of the following options:

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).

Astop
When Magnitude units is Stopband attenuation, enter the filter attenuation in the stopband
in the units you choose for Magnitude units, either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure of your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
For FIR halfband filters, the available design options are equiripple, and Kaiser window. For
IIR halfband filters, the available design options are Butterworth, elliptic, and IIR quasi-
linear phase.

Design Options
The following design options are available for FIR halfband filters when the user specifies an
equiripple design:

 Halfband Filter (Obsolete)

2-667

Minimum phase
Select the checkbox to specify a minimum-phase design.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the
frequency increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. The block applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation

(1/f)n to define the stopband decay. The block applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter.

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Optimize for unit-scale values
Select this check box to scale unit gains between sections in SOS filters. This parameter is
available only for SOS filters.

2 Blocks

2-668

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Note The Inherited (this choice will be removed — see release notes) option
will be removed in a future release. See “Frame-Based Processing” in the DSP System Toolbox
Release Notes for more information.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

See Also
Blocks
FIR Halfband Decimator | FIR Halfband Interpolator | IIR Halfband Decimator | IIR Halfband
Interpolator

Introduced in R2006b

 Halfband Filter (Obsolete)

2-669

Hampel Filter
Filter outliers using Hampel identifier
Library: DSP System Toolbox / Filtering / Filter Designs

Description
The Hampel Filter block detects and removes the outliers of the input signal by using the Hampel
identifier. The Hampel identifier is a variation of the three-sigma rule of statistics, which is robust
against outliers. For each sample of the input signal, the block computes the median of a window
composed of the current sample and Len− 1

2 adjacent samples on each side of the current sample.
Len is the window length you specify through the Window length parameter. The block also
estimates the standard deviation of each sample about its window median by using the median
absolute deviation. If a sample differs from the median by more than the threshold multiplied by the
standard deviation, the filter replaces the sample with the median. For more information, see
“Algorithms” on page 2-673.

Ports
Input

x — Data input
vector | matrix

The block accepts multichannel inputs, that is, m-by-n size inputs, where m ≥ 1, and n ≥ 1. m is the
number of samples in each frame (channel), and n is the number of channels. The block also accepts
variable-size inputs. That is, you can change the size of each input channel during simulation.
However, the number of channels cannot change.

This port is unnamed until you select the Specify threshold from input port parameter.
Data Types: single | double

T — Threshold
real scalar greater than or equal to 0

Threshold for outlier detection, specified as a real scalar greater than or equal to 0. For information
on how this parameter is used to detect the outlier, see “Algorithms” on page 2-673.

Dependencies

This port appears when you select the Specify threshold from input port parameter.
Data Types: single | double

2 Blocks

2-670

Output

y — Filtered output
vector | matrix

The size and data type of this output matches the size and data type of the input.

This port is unnamed until you select the Output outlier status check box.
Data Types: single | double

outlier — Output the outlier status
vector | matrix

A value of 1 in this output indicates that the corresponding element in the input is an outlier. This
output has the same size as the input.

Dependencies

To enable this port, select the Output outlier status check box.
Data Types: Boolean

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Window length — Length of sliding window
11 (default) | positive odd scalar integer

Length of the sliding window, specified as a positive odd scalar integer. The window of finite length
slides over the data, and the block computes the median and median absolute deviation of the data in
the window.

Specify threshold from input port — Flag to specify threshold
off (default) | on

When you select this check box, the threshold is input through the T port. When you clear this check
box, the threshold is specified on the block dialog through the Threshold for outlier detection
(standard deviations) parameter.

Threshold for outlier detection (standard deviations) — Threshold
3 (default) | real scalar greater than or equal to 0

Threshold for outlier detection, specified as a real scalar greater than or equal to 0. For information
on how this parameter is used to detect the outlier, see “Algorithms” on page 2-673.

Tunable: Yes

Dependencies

This parameter appears when you clear the Specify threshold from input port check box.

Output outlier status — Flag to output the outlier status
off (default) | on

 Hampel Filter

2-671

Select this parameter to output a matrix of boolean values that has the same size as the input. Each
element in this matrix indicates whether the corresponding element in the input is an outlier. A value
of 1 indicates an outlier.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time and provides
faster simulation speed than Code generation.

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time and has slower simulation speed
than Interpreted execution.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
Hampel Identifier

The Hampel identifier is a variation of the three-sigma rule of statistics that is robust against outliers.

Given a sequence x1, x2, x3, …, xn and a sliding window of length k, define point-to-point median and
standard-deviation estimates using:

• Local median — mi = median xi− k, xi− k + 1, xi− k + 2, …, xi, …, xi + k− 2, xi + k− 1, xi + k

• Standard deviation — σi = κmedian xi− k−mi , …, xi + k−mi , where κ = 1
2erfc−1 1/2

≈ 1.4826

The quantity σi /κ is known as the median absolute deviation (MAD).

If a sample xi is such that

xi−mi > nσσi

for a given threshold nσ, then the Hampel identifier declares xi an outlier and replaces it with mi. If nσ
is 0, then the Hampel filter behaves as a regular median filter.

2 Blocks

2-672

Algorithms

For a given sample of data, xs, the algorithm:

• Centers the window of odd length at the current sample.
• Computes the local median, mi, and standard deviation, σi, over the current window of data.
• Compares the current sample with nσ × σi, where nσ is the threshold value. If xs−mi > nσ × σi,

the filter identifies the current sample, xs, as an outlier and replaces it with the median value, mi.

Consider a frame of data that is passed into the Hampel filter.

In this example, the Hampel filter slides a window of length 5 (Len) over the data. The filter has a
threshold value of 2 (nσ). To have a complete window at the beginning of the frame, the filter
algorithm prepends the frame with Len – 1 zeros. To compute the first sample of the output, the

window centers on the Len− 1
2 + 1

th
 sample in the appended frame, the third zero in this case. The

filter computes the median, median absolute deviation, and the standard deviation over the data in
the local window.

• Current sample: xs = 0.
• Window of data: win = [0 0 0 0 1].
• Local median: mi = median([0 0 0 0 1]) = 0.
• Median absolute deviation: madi = median xi− k−mi , …, xi + k−mi . For this window of data,

mad = median 0− 0 , …, 1− 0 = 0.
• Standard deviation: σi = κ × madi = 0, where κ = 1

2erfc−1 1/2
≈ 1.4826.

• The current sample, xs = 0, does not obey the relation for outlier detection.

 Hampel Filter

2-673

xs−mi = 0 > nσ × σi = 0

Therefore, the Hampel filter outputs the current input sample, xs = 0.

Repeat this procedure for every succeeding sample until the algorithm centers the window on the

End− Len− 1
2

th
 sample, marked as End. Because the window centered on the last Len− 1

2 samples
cannot be full, these samples are processed with the next frame of input data.

Here is the first output frame the Hampel filter generates:

The seventh sample of the appended input frame, 23, is an outlier. The Hampel filter replaces this
sample with the median over the local window [4 9 23 8 12].

References
[1] Bodenham, Dean. “Adaptive Filtering and Change Detection for Streaming Data.” Ph.D. Thesis.

Imperial College, London, 2012.

[2] Liu, Hancong, Sirish Shah, and Wei Jiang. “On-line outlier detection and data cleaning.”
Computers and Chemical Engineering. Vol. 28, March 2004, pp. 1635–1647.

[3] Suomela, Jukka. Median Filtering Is Equivalent to Sorting, 2014.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
hampel

Objects
dsp.HampelFilter | dsp.MedianFilter | dsp.MovingAverage

Blocks
Median Filter | Moving Average

Introduced in R2017a

2 Blocks

2-674

https://arxiv.org/pdf/1406.1717.pdf

CIC Decimation HDL Optimized
Decimate signal using cascaded integrator-comb filter optimized for HDL code generation
Library: DSP System Toolbox HDL Support / Filtering

Description
The CIC Decimation HDL Optimized block decimates an input signal by using a cascaded integrator-
comb (CIC) decimation filter. CIC decimation filters are a class of linear phase FIR filters consisting of
a comb part and an integrator part. The CIC decimation filter structure consists of N sections of
cascaded integrators, a rate change factor of R, and N sections of cascaded comb filters. For more
information about CIC decimation filters, see “Algorithms” on page 2-678.

The block supports scalar and vector inputs. For both types of inputs, the block provides a scalar
output. The block supports fixed and variable decimation for scalar inputs and only fixed decimation
for vector inputs.

The block provides an architecture suitable for HDL code generation and hardware deployment.

Ports
Input

data — Input data
scalar | column vector

Specify input data as a scalar or a column vector of length 1 to 64. The input data must be a signed
integer or signed fixed point with a word length less than or equal to 32. Decimation factor (R)
parameter must be an integer multiple of the input frame size.
Data Types: int8 | int16 | int32 | fixed point

valid — Indication of valid input data
scalar

This port is a control signal that indicates if the input data is valid. When this value is 1, the block
captures the values from the data input port. When this value is 0, the block ignores the values from
the data input port.
Data Types: Boolean

decimFactor — Variable decimation rate
scalar

Use this port to dynamically specify the variable decimation rate during run time.

This value must be of data type ufix12 and an integer in the range from 2 to the Decimation factor
(R) parameter value.

 CIC Decimation HDL Optimized

2-675

Dependencies

To enable this port, select the Variable decimation parameter.
Data Types: fixdt(0,12,0)

reset — Clear internal states
scalar

When this value is 1, the block stops the current calculation and clears all internal states. When this
value is 0 and the input valid port is 1, the block starts a new filtering operation.

Dependencies

To enable this port, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — CIC-decimated output data
scalar

You can define the data type of this output by setting the Output data type parameter.
Data Types: int8 | int16 | int32 | fixed point
Complex Number Support: Yes

valid — Indication of valid output data
scalar

This port is a control signal that indicates if the data from the data output port is valid. When this
value is 1, the block returns valid data on the data output port. When this value is 0, the values on
the data output port are not valid.
Data Types: Boolean

Parameters
Variable decimation — Variable decimation rate
off (default) | on

• Select this parameter to operate the block with a variable decimation rate specified from the
decimFactor input port.

• Clear this parameter to operate the block with a fixed decimation rate specified from the
Decimation factor (R) parameter.

Note For vector inputs, the block does not support variable decimation.

Decimation factor (R) — Decimation factor
2 (default) | integer from 2 to 2048

Specify the decimation factor rate with which you want to decimate the input.

2 Blocks

2-676

When you select the Variable decimation parameter, the Decimation factor (R) parameter sets
the upper bound of the range of valid values for the decimFactor input port.

Differential delay (M) — Differential delay
1 (default) | 2

Specify the differential delay of the comb part of the block.

Number of sections (N) — Number of integrator and comb sections
2 (default) | 1 | 3 | 4 | 5 | 6

Specify the number of sections in either the comb part or the integrator part of the block.

Output data type — Data type of output
Full precision (default) | Same word length as input | Minimum section word lengths

Select the data type for the output data.

• Full precision — The output data type has a word length equal to the input word length plus
gain bits.

• Same word length as input — The output data type has a word length equal to the input
word length.

• Minimum section word lengths — The output data type uses the word length you specify in
the Output word length parameter. When you select this option, the block applies the Pruning
algorithm. For more information about the Pruning algorithm, see [1]. This option is not supported
when you select the Variable decimation parameter.

Output word length — Word length of output
16 (default) | integer from 2 to 104

Specify the word length of the output.

Note When this value is 2, 3, 4, 5, or 6, the block might overflow the output data.

Dependencies

To enable this parameter, set the Output data type parameter to Minimum section word
lengths.

Gain correction — Output gain compensation
off (default) | on

Select this parameter to compensate for the output gain of the block.

Depending on the type of input, the decimation you specify, and the value of this parameter, the
latency of the block changes. Here, N means the number of sections and vecLen means the length of
the vector.

For a scalar input with fixed decimation (the Variable decimation parameter is cleared):

• When you clear this parameter, the latency of the block is 3 + N clock cycles.
• When you select this parameter, the latency of the block is 3 + N + 9 clock cycles.

 CIC Decimation HDL Optimized

2-677

For a scalar input with variable decimation (the Variable decimation parameter is selected):

• When you clear this parameter, the latency of the block is 4 + N clock cycles.
• When you select this parameter, the latency of the block is 4 + N + 9 clock cycles.

For a vector input with fixed decimation (the Variable decimation parameter is cleared):

• When you clear this parameter, the latency of the block is floor((vecLen – 1) * (N/vecLen)) + 1 +
N + (2 + (vecLen + 1) * N clock cycles.

• When you select this parameter, the latency of the block is floor((vecLen – 1) * (N/vecLen)) + 1
+ N + (2 + (vecLen + 1) * N) + 9 clock cycles.

Note For vector inputs, the block does not support variable decimation.

Enable reset input port — Reset signal
off (default) | on

Select this parameter to enable the reset input port.

Algorithms
CIC Decimation Filter

The transfer function of a CIC decimation filter is

H(z) = ∑
k = 0

RM − 1
z−k

N
=

1− z−RM N

1− z−1 N = 1
1− z−1 N ·

1− z−RM N

1 = HIN(z) · HcN(z),

where:

• HI is the transfer function of the integrator part of the CIC filter.
• HC is the transfer function of the comb part of the CIC filter.
• N is the number of sections. The number of sections in a CIC filter is defined as the number of

sections in either the comb part or integrator part of the filter. This value does not represent the
total number of sections throughout the entire filter.

• R is the decimation factor.
• M is the differential delay.

CIC Filter Structure

The CIC Decimation HDL Optimized block has the CIC filter structure shown in this figure. The
structure consists of N sections of cascaded integrators, a rate change factor of R, and N sections of
cascaded comb filters [1].

2 Blocks

2-678

You can locate the unit delay in the integrator part of the CIC filter in either the feed-forward or
feedback path. These two configurations yield an identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency of the block.
Because this configuration is preferred for HDL implementation, this block puts the unit delay in the
feed-forward path of the integrator.

Fixed and Variable Decimation

The block downsamples the integrator stage output using R, either the fixed decimation rate provided
using the Decimation factor (R) parameter or the variable decimation rate provided using the
decimFactor input port. At the downsampler stage, the block uses a counter to count the valid input
samples, which depend on the decimation rate. Whenever the decimation rate changes, the block
resets and starts a new calculation from the next sample. This mechanism prevents the block from
accumulating false values. Then, the block provides the decimated output to the comb part of the CIC
filter.

Gain Correction

The gain of the block is given by Gain = (R x M)N, where:

• R is the Decimation factor (R) parameter value.
• M is the Differential delay (M) parameter value.
• N is the Number of sections (N) parameter value.

The block implements gain correction in two parts: coarse gain and fine gain. In coarse gain
correction, the block calculates the shift value, adds the shift value to the fractional bits to create a
numeric type, and performs a bit-shift left and reinterpretcast. In fine gain correction, the block
divides the remaining gain with the coarse gain if the gain is not a power of 2. Then, the block
multiplies the corrected coarse gain corrected value with the inverse value of the fine gain. Before
the block starts processing, all possible shift and fine gain values are precalculated initially and
stored in an array.

You can modify this equation as Gain = 2cGain x fGain. In this equation, cGain is the coarse gain, and
fGain is the fine gain. These gains are given by these equations.

• cGain = f loor(log2Gain)
• fGain = Gain/2cGain = Gain x 2−cGain

To perform gain correction when the Variable decimation parameter is selected, the block sets the
output data type configured with the maximum decimation rate and bit-shifts left for all of the values
under the maximum decimation rate. The bit-shift value is equal to
Maximum gain ‐ log2(current gain).

Output Data Type

How the block outputs data is based on the output data type selection. Consider a block with R, M,
and N values of 8, 1, and 3, respectively, and an input width of 16. The output word length is
calculated as BOUT = BIN + [log2(Gain)],

where:

• Gain = (R x M)N

 CIC Decimation HDL Optimized

2-679

• BIN is the input word length.
• BOUT is the output word length.

When you set the Output data type parameter to Full precision, the block outputs data with a
word length of 25 by adding nine gain bits to the input word length of 16.

When you set the Output data type parameter to Same word length as input, the block
outputs data with a word length of 16, which is the same length as the input word length. The
internal integrator and comb stages use the full-precision data type with 25 bits.

When you set the Output data type parameter to Minimum section word lengths and the
Output word length parameter to 16, the block outputs data with a word length of 16. In this case,
the block changes the bit width at each stage, based on the Pruning algorithm.

If the Output word length parameter value is less than the number of bits required at the block
output, the least significant bits (LSBs) at the earlier stages are pruned. The Hogenauer algorithm [1]
provides the number of LSBs to discard at each stage. This algorithm minimizes the loss of
information in the output data.

2 Blocks

2-680

Latency

This section shows the latencies of the block for a scalar input when the block is operated with fixed
and variable decimation rates and for a vector input when the block is operated with a fixed
decimation rate.

Scalar Input

This section shows the output of the block for a scalar input with different R, M, and N values.

This figure shows the output of the block for the default configuration (that is, with a fixed decimation
rate and R, M, and N values of 2, 1, and 2, respectively). The block returns valid output data at every
second cycle based on the fixed Decimation factor (R) parameter value of 2. The latency of the
block is 5 clock cycles and is calculated as 3 + N, where N is the number of sections.

This figure shows the output of the block with a fixed decimation rate, R, M, and N values of 8, 1, and
3, respectively, and the Gain correction parameter selected. The block returns valid output data at
every eighth cycle based on the fixed Decimation factor (R) parameter value of 8. The latency of
the block is 15 clock cycles, and is calculated as 3 + N + 9, where N is the number of sections.

This figure shows the output of the block with variable decimation rate (decimFactor input port)
values 2, 4, and 8 and for M and N values of 1 and 3, respectively. In this case, the Gain correction
parameter is cleared. The block returns valid output data at the second, fourth, and eighth cycles
corresponding to the decimFactor port values 2, 4, and 8, respectively. The block accepts
decimFactor port value changes only when the valid input port is 1. The latency of the block is 7
clock cycles and is calculated as 4 + N, where N is the number of sections.

 CIC Decimation HDL Optimized

2-681

Vector Input

The latency of the block for a vector input is calculated using this formula: floor((vecLen – 1) * (N/
vecLen)) + 1 + N + 9 * Gain correction + (2 + (vecLen + 1) * N), where vecLen is the length of the
vector and N is the number of sections.

This figure shows the output of the block for a two-element column vector input with the default
configuration, (that is, with a fixed decimation rate and R, M, and N values of 2, 1, and 2,
respectively). The latency of the block is 12 clock cycles.

This figure shows the output of the block for an eight-element column vector input with a fixed
decimation rate, R, M, and N values of 8, 1, and 3, respectively, and the Gain correction parameter
selected. The latency of the block is 44 clock cycles.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. This
table shows the resource and performance data synthesis results of the block for a scalar input with
fixed and variable decimation rates and for a two-element column vector input with a fixed
decimation rate when R, M, and N are 2, 1, and 2, respectively. The generated HDL is targeted to the
Xilinx Zynq®- 7000 ZC706 evaluation board.

Input Data Decimation Type Slice LUTs Slice Registers Maximum Frequency in
MHz

Scalar Fixed rate 101 166 711.74
Variable rate 206 186 441.70

Vector Fixed rate 218 627 624.61

The resources and frequencies vary based on the type of input data, R, M, and N values, and other
parameter values selected in the block mask. Using a vector input can increase the throughput,
however this option also increases the number of hardware resources that the block uses.

2 Blocks

2-682

References
[1] Hogenauer, E. “An Economical Class of Digital Filters for Decimation and Interpolation.” IEEE

Transactions on Acoustics, Speech, and Signal Processing 29, no. 2 (April 1981): 155–62.
https://doi.org/10.1109/TASSP.1981.1163535.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Objects
dsp.CICDecimator | dsp.CICInterpolator | dsp.CICCompensationDecimator |
dsp.CICCompensationInterpolator | dsp.HDLCICDecimation

Blocks
CIC Decimation | CIC Interpolation

Introduced in R2019b

 CIC Decimation HDL Optimized

2-683

Complex to Magnitude-Angle HDL Optimized
Compute magnitude and phase angle of complex signal – optimized for HDL code generation using
the CORDIC algorithm
Library: DSP System Toolbox HDL Support / Math Functions

Description
The Complex to Magnitude-Angle HDL Optimized block computes the magnitude and phase angle of a
complex signal and provides hardware-friendly control signals. To achieve an efficient HDL
implementation, the block uses a pipelined Coordinate Rotation Digital Computer (CORDIC)
algorithm.

You can use this block to implement operations such as atan2 in hardware.

Ports
Input

data — Complex input signal
scalar | vector

Complex input signal, specified as a scalar, a column vector representing samples in time, or a row
vector representing channels. Using vector input increases data throughput while using more
hardware resources. The block implements the conversion logic in parallel for each element of the
vector. The input vector can contain up to 64 elements.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

valid — Validity of input data
Boolean scalar

When the input valid port is true, the block captures the data from the input data port. The input
valid signal applies to all samples in a vector input signal.
Data Types: Boolean

Output

Magnitude — Magnitude of the input signal
scalar | vector

Magnitude of the input signal, returned as a scalar, a column vector representing samples in time, or
a row vector representing channels. The dimensions of this port match the dimensions of the input
data port.

2 Blocks

2-684

Dependencies

To enable this port, set the Output format parameter to Magnitude and Angle or Magnitude.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

Angle — Angle of the input signal
scalar | vector

Angle of the input signal, returned as a scalar, a column vector representing samples in time, or a row
vector representing channels. The dimensions of this port match the dimensions of the input data
port.

Dependencies

To enable this port, set the Output format parameter to Magnitude and Angle or Angle.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

valid — Validity of output data
Boolean scalar

The block sets the output valid port to true with each valid data returned on the Magnitude or
Angle output ports. The output valid signal applies to all samples in a vector output signal.
Data Types: Boolean

Parameters
Number of iterations source — Source of number of iterations
Auto (default) | Property

• To set the number of iterations to input WL − 1, select Auto. If the input is of data type double or
single, the number of iterations is set to 16, by default.

• To specify the number of iterations by using Number of iterations parameter, select Property.

Number of iterations — Number of CORDIC iterations
positive integer

The number of iterations must be less than or equal to input WL − 1. The latency of the block
depends on the number of iterations performed. For information about latency, see “Latency” on page
2-690.

Dependencies

To enable this parameter, set Number of iterations source to Property.

Output format — Output signal format
Magnitude and Angle (default) | Magnitude | Angle

Use this parameter to specify which output ports are enabled.

• To enable the Magnitude and Angle output ports, select Magnitude and Angle (default).
• To enable the Magnitude output port and disable the Angle output port, select Magnitude.

 Complex to Magnitude-Angle HDL Optimized

2-685

• To enable the Angle output port and disable the Magnitude output port, select Angle.

Angle format — Output angle format
Normalized (default) | Radians

• To return the Angle output as a fixed-point value that normalizes the angles in the range [–1,1],
select Normalized. For more information see “Normalized Angle Format” on page 2-689.

• To return the Angle output as a fixed-point value in the range [-π, π], select Radians. When using
this block to implement the atan2 function, set this parameter to Radians.

Scale output — Scales output
on (default) | off

Select this parameter to multiply the Angle output by the inverse of the CORDIC gain factor. The
block implements this gain factor using a shift-and-add architecture for the multiplier. This
implementation may increase the length of the critical path in your design.

Note If you clear this parameter and apply the CORDIC gain elsewhere in your design, you must
exclude the π/4 term. Because the quadrant mapping algorithm replaces the first CORDIC iteration
by mapping inputs onto the angle range [0, π/4], the initial rotation does not contribute a gain term.
The gain factor is the product of cos(atan(2-n)), for n from 1 to Number of iterations – 1.

Algorithms
CORDIC Algorithm

The CORDIC algorithm is a hardware-friendly method for performing trigonometric functions. It is an
iterative algorithm that approximates the solution by converging toward the ideal point. The block
uses CORDIC vectoring mode to iteratively rotate the input onto the real axis.

Givens method for rotating a complex number x+iy by an angle θ is as follows. The direction of
rotation, d, is +1 for counterclockwise and −1 for clockwise.

xr = xcosθ− dysinθ
yr = ycosθ + dxsinθ

For a hardware implementation, factor out the cosθ to leave a tanθ term.

xr = cosθ x− dytanθ
yr = cosθ y + dxtanθ

To rotate the vector onto the real axis, choose a series of rotations of θn so that tanθn = 2−n. Remove
the cosθ term so each iterative rotation uses only shift and add operations.

Rxn = xn− 1− dnyn− 12−n

Ryn = yn− 1 + dnxn− 12−n

Combine the missing cosθ terms from each iteration into a constant, and apply it with a single
multiplier to the result of the final rotation. The output magnitude is the scaled final value of x. The
output angle, z, is the sum of the rotation angles.

2 Blocks

2-686

xr = cosθ0cosθ1...cosθn RxN

z = ∑
0

N
dnθn

Modified CORDIC Algorithm

The convergence region for the standard CORDIC rotation is ≈±99.7°. To work around this limitation,
before doing any rotation, the block maps the input into the [0, π/4] range using this algorithm.

if abs(x) > abs(y)
 input_mapped = [abs(x), abs(y)];
else
 input_mapped = [abs(y), abs(x)];
end

At each iteration, the block rotates the vector towards the real axis. The rotation is counterclockwise
when y is negative, and clockwise when y is positive.

Quadrant mapping saves hardware resources and reduces latency by reducing the number of
CORDIC pipeline stages by one. The CORDIC gain factor, Kn, therefore does not include the n=0, or
cos(π/4)term.

Kn = cosθ1...cosθn = cos(26.565) ⋅ cos(14.036) ⋅ cos(7.125) ⋅ cos(3.576)

After the CORDIC iterations are complete, the block adjusts the angle back to its original location.
First it adjusts the angle to the correct side of π/4.

if abs(x) > abs(y)
 angle_unmapped = CORDIC_out;
else
 angle_unmapped = (pi/2) - CORDIC_out;
end

Then, the block flips the angle to the original quadrant.

if (x < 0)
 if (y < 0)
 output_angle = - pi + angle_unmapped;
 else
 output_angle = pi - angle_unmapped;
else
 if (y<0)
 output_angle = -angle_unmapped;

Architecture

The block generates a pipelined HDL architecture to maximize throughput. Each CORDIC iteration is
done in one pipeline stage. The gain multiplier, if enabled, is implemented with canonical signed digit
(CSD) logic.

If you use vector input, this block replicates this architecture in parallel for each element of the
vector.

 Complex to Magnitude-Angle HDL Optimized

2-687

The following table shows Magnitude and Angle output word length (WL), for particular input word
length (WL). FL stands for fractional length used in fixed-point representation.

Input Word Length Output Magnitude Word Length
fixdt(0,WL,FL) fixdt(0,WL + 2,FL)
fixdt(1,WL,FL) fixdt(1,WL + 1,FL)

Input Word Length Output Angle Word Length
fixdt([],WL,FL) Radians fixdt(1,WL + 3,WL)

Normalized fixdt(1,WL + 3,WL+2)

The CORDIC logic at each pipeline stage implements one iteration. For each pipeline stage, the shift
and angle rotation are constants.

2 Blocks

2-688

When you set Output format to Magnitude, the block does not generate HDL code for the angle
accumulation and quadrant correction logic.

Normalized Angle Format

This format normalizes the fixed-point radian angle values around the unit circle. This use of bits can
be more efficient than the use of the range [0, 2π] radians. Also this normalized angle format enables
wraparound of angle at 0 or 2π without additional detect and correct logic.

For example, representing the angle with 3 bits results in these normalized values.

 Complex to Magnitude-Angle HDL Optimized

2-689

The block normalizes the angles across [0, π/4] and maps them to the correct octant at the end of the
calculation.

Latency

When the valid input is applied, the valid output comes after Number of iterations + 4 cycles.

When you set the Number of iterations source parameter to Property, the block shows the
latency immediately. When you set Number of iterations source to Auto, the block calculates the
latency based on the input port data type and displays the latency when you update the model.

When you set the Number of iterations source parameter to Auto, the number of iterations is
input WL − 1, and the latency is input WL + 3. If the input is of data type double or single, the
number of iterations is 16, and the latency is 20.

Performance

Performance was measured for the default configuration, with output scaling disabled and
fixdt(1,16,12) input. When the generated HDL code is synthesized into a Xilinx Virtex-6
(XC6VLX240T-1FFG1156) FPGA, the design achieves 260 MHz clock frequency. It uses the following
resources.

Resource Number Used
LUT 882
FFS 792
Xilinx LogiCORE DSP48 0
Block RAM (16K) 0

Performance of the synthesized HDL code varies depending on your target and synthesis options.
When you use vector input, the resource usage is about VectorSize times the scalar resource usage.

2 Blocks

2-690

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration option that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

See Also
Complex to Magnitude-Angle | dsp.HDLComplexToMagnitudeAngle | atan2

Introduced in R2014b

 Complex to Magnitude-Angle HDL Optimized

2-691

HDL Minimum Resource FFT
(Removed) FFT— optimized for HDL code generation using minimum hardware resources

Note The HDL Minimum Resource FFT block has been removed. Use the FFT HDL Optimized block
with the Architecture parameter set to Burst Radix 2, instead. For more information, see
“Implement FFT for FPGA Using FFT HDL Optimized Block”.

Library
Obsolete

dspobs

Description
The HDL Minimum Resource FFT block implements an FFT architecture that uses minimal hardware
resources. The HDL Minimum Resource FFT block supports the Radix-2 with decimation-in-time (DIT)
algorithm for FFT computation. See the FFT block for more information about this algorithm.

The results returned by the HDL Minimum Resource FFT block are bit-for-bit compatible with results
returned by the FFT block. The operation of the HDL Minimum Resource FFT block differs from the
FFT block, due to the requirements of hardware realization. The HDL Minimum Resource FFT block:

• Requires serial input
• Generates serial output
• Operates in burst I/O mode

The HDL Minimum Resource FFT block provides handshaking signals to support these features.

• “Block Inputs and Outputs” on page 2-693
• “Parameters” on page 2-694

2 Blocks

2-692

Block Inputs and Outputs

The input ports are:

• din: The input data signal. A complex signal is required.
• start: Boolean control signal. When this signal is asserted true (1), the HDL Minimum Resource

FFT block initiates processing of a data frame.

The output ports are:

• dout: Data output signal. The Radix-2 with DIT algorithm produces output with linear ordering.
• dvalid: Boolean control signal. The HDL Minimum Resource FFT block asserts this signal true

(1) when a burst of valid output data is available at the dout port.
• ready: Boolean control signal. The HDL Minimum Resource FFT block asserts this signal true (1)

to indicate that it is ready to process a new frame.

Configuring Control Signals

For efficient hardware deployment of the HDL Minimum Resource FFT block, the timing of the
block's input and output data streams must be considered carefully. The following figure shows the
timing relationships between the system clock and the start, ready, and dvalid signals.

When ready is asserted, the start signal (active high) triggers the block. The high cycle period of
the start signal does not affect the behavior of the block.

One clock cycle after the start trigger, the block begins to load data and the ready signal is
deasserted. During the interval when the block is loading, processing, and outputting data, ready is
low and the start signal is ignored.

The dvalid signal is asserted high for N clock cycles (where N is the FFT length) after processing is
complete. ready is asserted again after the N-point FFT outputs are sent out.

The expression Tcycle denotes the total number of clock cycles required by the HDL Minimum
Resource FFT block to complete an FFT of length N. Tcycle is defined as follows:

• Where N >8

Tcycle = 3N/2-2 + log2(N)*(N/2+3);

 HDL Minimum Resource FFT

2-693

• Where N = 8

Tcycle = 3N/2-1 +log2(N)*(N/2+3);

Given Tcycle, you can then define the period between assertions of the HDL Minimum Resource
FFT start signal in a way that is suitable to your application. For example:

if (N<=8)
startLen = (ceil(Tcycle/N)+1)*N;
else
startLen = ceil(Tcycle/N)*N;
end

Use this startLen variable as the period of a Pulse Generator that drives the HDL Minimum
Resource FFT block's start input.

The HDL Minimum Resource FFT block asserts and deasserts the ready and dvalid signals
automatically. Route these signals to the parts of your design that write to and read from the HDL
Minimum Resource FFT block.

Parameters

FFT Length

Default: 8

The FFT length must be a power of 2, in the range 23 .. 216.

Rounding mode

Default: Floor

The HDL Minimum Resource FFT block supports all rounding modes of the FFT block. See also the
FFT block reference section.

Overflow mode

Default: Saturate

The HDL Minimum Resource FFT block supports all overflow modes of the FFT block. See also the
FFT block reference section.

Sine table

Default: Same word length as input

Choose how you specify the word length of the values of the sine table. The fraction length of the sine
table values is equal to the word length minus one.

• When you select Same word length as input, the word length of the sine table values match
that of the input to the block.

• When you select Specify word length, you can enter the word length of the sine table values,
in bits, in the Sine table word length field. The sine table values do not obey the Rounding
mode and Overflow mode parameters; they always saturate and round to Nearest.

Product output

2 Blocks

2-694

Default: Same as input

Use this parameter to specify how you want to designate the product output word and fraction
lengths:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word length and the fraction length

of the product output, in bits, in the Product word length and Product fraction length fields.

Accumulator

Default: Same as input

Use this parameter to specify how you want to designate the accumulator word and fraction lengths:

When you select Same as product output, these characteristics match those of the product
output.

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word length and the fraction length

of the accumulator, in bits, in the Accumulator word length and Accumulator fraction length
fields.

Output

Default: Same as input

Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word length and the fraction length

of the output, in bits, in the Output word length and Output fraction length fields.

Note The HDL FFT block skips the divide-by-two operation on butterfly outputs for fixed-point
signals.

HDL Code Generation
HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

 HDL Minimum Resource FFT

2-695

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Compatibility Considerations
HDL Minimum Resource FFT block has been removed
Errors starting in R2020b

The HDL Minimum Resource FFT block has been removed. Use the FFT HDL Optimized block with
the Architecture parameter set to Burst Radix 2, instead. For more information, see “Implement
FFT for FPGA Using FFT HDL Optimized Block”.

See Also
FFT HDL Optimized

Topics
“Implement FFT for FPGA Using FFT HDL Optimized Block”

Introduced in R2014b

2 Blocks

2-696

HDL Streaming FFT
(Removed) Radix-2 FFT with decimation-in-frequency (DIF) — optimized for HDL code generation

Note The HDL Streaming FFT block has been removed. Use the FFT HDL Optimized block with the
Architecture parameter set to Streaming Radix 2^2, instead. For more information, see
“Implement FFT for FPGA Using FFT HDL Optimized Block”.

Library
Obsolete

dspobs

Description
The HDL Streaming FFT block returns results identical to results returned by the Radix-2 DIF
algorithm of the FFT block.

• “Block Inputs and Outputs” on page 2-697
• “Timing Description” on page 2-698
• “Parameters” on page 2-700

Block Inputs and Outputs

The block has these input ports:

• din: The input data signal. The coder requires a complex fixed-point signal.
• start: Boolean control signal. When start asserts true (1), the HDL Streaming FFT block

initiates processing of a data frame.

The block has these output ports:

• dout: Data output signal.

 HDL Streaming FFT

2-697

• dvalid: Boolean control signal. The HDL Streaming FFT block asserts this signal true (1) when a
stream of valid output data is available at the dout port.

• ready: Boolean control signal. The HDL Streaming FFT block asserts this signal true (1) to
indicate that it is ready to process a new frame.

Timing Description

The HDL Streaming FFT block operates in one of two modes:

• Continuous data streaming mode: In this mode, the HDL Streaming FFT block expects to receive a
continuous stream of data at din. After an initial delay, the block produces a continuous stream of
data at dout.

• Non-continuous data streaming mode: In this mode, the HDL Streaming FFT block receives non-
continuous bursts of streaming data at din. After an initial delay, the block produces non-
continuous bursts of streaming data at dout.

The behavior of the control signals determines the timing mode of the block.

Continuous Data Streaming Timing

Assertion of the start signal (active high) triggers processing by the HDL Streaming FFT block. To
initiate continuous data stream processing, assert the start signal in one of the following ways:

• Hold the start signal high (as shown in figure “Continuous Data Streaming With Start Signal Held
High”).

• Pulse the start signal every N clock cycles, where N is the FFT length (as shown in figure
“Continuous Data Streaming With Pulsed Start Signal”).

One clock cycle after the start trigger, the block begins to load data at din. After the first frame of
streaming data, the block starts to receive the next frame of streaming data.

Meanwhile, the block performs the FFT calculation on the incoming data frames and outputs the
results continuously at dout. The HDL Streaming FFT block asserts and deasserts the ready and
dvalid signals automatically. The block asserts dvalid high whenever the output data stream is
valid. The block asserts ready high to indicate that the block is ready to load a new data frame.
When ready is low, the block ignores the start signal.

The following figures illustrate continuous data streaming. Each data frame corresponds to a stream
of N input data values, where N is the FFT length.

Continuous Data Streaming With Start Signal Held High

2 Blocks

2-698

Note The start signal can be a single cycle pulse; it need not be held high for the entire data frame.
When processing for a frame begins, further pulses on start do not affect processing of that frame.
However, a start pulse must occur at the beginning of each data frame.

Continuous Data Streaming With Pulsed Start Signal

Non-Continuous Data Streaming Timing

In this mode, the HDL Streaming FFT block receives continuous bursts of streaming data at din.
After an initial delay, the block produces non-continuous bursts of streaming data at dout. Breaks
occur between data frames when the following condition exist:

• The start signal does not assert every N clock cycles (where N is the FFT length)
• The start signal is not continuously held high.

Non-continuous data streaming mode allows you more flexibility in determining the intervals between
input data streams.

Initial Delay

The initial delay of the HDL Streaming FFT block is the interval between the following times:

• The time the block begins to receive the first frame of input data
• The time the block asserts dvalid and produces the first valid output data.

The initial delay represents the time the block uses to load a data frame, calculate the FFT, and
output the beginning of the first output frame. The following figure illustrates the initial delay.

 HDL Streaming FFT

2-699

If you select the block option Display computed initial delay on mask, the block icon displays the
initial delay. The display represents the delay time as Z-n, where n is the delay time in samples.

Parameters

FFT Length

Default: 1024

The FFT length must be a power of 2, in the range 23 to 216.

Rounding mode

Default: Floor

The HDL Streaming FFT block supports all rounding modes of the FFT block. See also the FFT block
reference.

Overflow mode

Default: Wrap

The HDL Streaming FFT block supports all overflow modes of the FFT block. See also the FFT block
reference.

Sine table

Default: Same word length as input

Choose how you specify the word length of the values of the sine table. The fraction length of the sine
table values is equal to the word length minus one.

• When you select Same word length as input, the word lengths of the sine table values match
the word lengths of the block inputs.

• When you select Specify word length, you can enter the word length of the sine table values,
in bits, in the Sine table word length field. The sine table values do not obey the Rounding
mode and Overflow mode parameters. They always saturate and round to Nearest.

Product output

Default: Same as input

2 Blocks

2-700

Use this parameter to specify how you want to designate the product output word and fraction
lengths:

• When you select Same as input, these characteristics match the characteristics of the input to
the block.

• Binary point scaling: Enter the word length and the fraction length of the product output, in
bits, in the Product word length and Product fraction length fields.

Accumulator

Default: Same as input

Use this parameter to specify how you want to designate the accumulator word and fraction lengths:

When you select Same as product output, these characteristics match the characteristics of the
product output.

• When you select Same as input, these characteristics match the characteristics of the input to
the block.

• Binary point scaling: Enter the word length and the fraction length of the accumulator, in
bits, in the Accumulator word length and Accumulator fraction length fields.

Output

Default: Same as input

Choose how you specify the output word length and fraction length:

• Same as input: these characteristics match the characteristics of the input to the block.
• Binary point scaling: lets you enter the word length and fraction length of the output, in

bits, in the Output word length and Output fraction length fields.

Output in bit-reversed order

Default: Off

• On: The output data stream is in bit-reversed order.
• Off: The output data stream is in natural order.

For more information about the effects of bit reversal, see “Linear and Bit-Reversed Output Order”.

Display computed initial delay on mask

Default: Off

• On: The block icon displays the initial delay as Z-n, where n is the delay time in samples.
• Off: The block icon does not display the initial delay.

Note Sine table, Product output, Accumulator, and Output do not support:

• Inherit via internal rule
• Slope and bias scaling

 HDL Streaming FFT

2-701

HDL Code Generation
HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Compatibility Considerations
HDL Streaming FFT block has been removed
Errors starting in R2020b

The HDL Streaming FFT block has been removed. Use the FFT HDL Optimized block with the
Architecture parameter set to Streaming Radix 2^2, instead. For more information, see
“Implement FFT for FPGA Using FFT HDL Optimized Block”.

See Also
FFT HDL Optimized

Topics
“Implement FFT for FPGA Using FFT HDL Optimized Block”

Introduced in R2014b

2 Blocks

2-702

FFT HDL Optimized
Computes fast fourier transform (FFT) and generates optimized HDL code
Library: DSP System Toolbox HDL Support / Transforms

Description
The FFT HDL Optimized block provides two architectures that implement the algorithm for FPGA and
ASIC applications. You can select an architecture that optimizes for either throughput or area.

• Streaming Radix 2^2 — Use this architecture for high-throughput applications. This
architecture supports scalar or vector input data. You can achieve giga sample per second (GSPS)
throughput using vector input.

• Burst Radix 2 — Use this architecture for a minimum resource implementation, especially with
large fast fourier transform (FFT) sizes. Your system must be able to tolerate bursty data and
higher latency. This architecture supports only scalar input data.

The FFT HDL Optimized block replaces the HDL Streaming FFT block and the HDL Minimum
Resource FFT block. The FFT HDL Optimized block accepts real or complex data, provides hardware-
friendly control signals, and optional output frame control signals.

Ports
Input

data — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values. Only the Streaming
Radix 2^2 architecture supports a vector input. The vector size must be a power of 2, in the range
from 1 to 64, and less than or equal to FFT length.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | fixed point |
single | double

valid — Indicates valid input data
scalar

This port indicates if the input data is valid. When the input valid is 1 (true), the block captures the
value on the input data port. When the input valid is 0 (false), the block ignores the input data
samples.
Data Types: Boolean

reset — Reset control signal
scalar

 FFT HDL Optimized

2-703

When reset is 1 (true), the block stops the current calculation and clears all internal states. The block
starts a new frame when the reset is 0 (false) and the input valid is 1 (true).
Dependencies

To enable this port, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — Frequency channel output data
scalar or column vector of real or complex values

When input is fixed-point data type and scaling is enabled, the output data type is the same as the
input data type. When the input is integer type and scaling is enabled, the output is fixed-point type
with the same word length as the input integer. The output order is bit-reversed by default. If scaling
is disabled, the output word length increases to avoid overflow. Only the Streaming Radix 2^2
architecture supports vector input and output. For more information, see the Divide butterfly
outputs by two parameter.
Data Types: fixed point | double | single

valid — Indicates valid output data
scalar

This port indicates that output data is valid. When valid is 1 (true), the block returns valid data on
the output data port. When valid is 0 (false), the values on output data port are not valid.
Data Types: Boolean

ready — Indicates block is ready
scalar

This port indicates that the block has memory available to accommodate a new input sample. You
must apply input data and valid signals only when ready is 1 (true). When ready is 0 (false), the
block ignores any input data in the next time step. For a waveform that shows this protocol, see the
third diagram in the “Timing Diagram” on page 2-709 section.
Dependencies

To enable this port, set the Architecture parameter to Burst Radix 2.
Data Types: Boolean

start — Indicates first valid cycle of output data
scalar

When you enable this port, the block sets the start output to 1 (true) during the first valid cycle of a
frame of output data.
Dependencies

To enable this port, select the Enable start output port parameter.
Data Types: Boolean

end — Indicates last valid cycle of output data
scalar

2 Blocks

2-704

When you enable this port, the block sets the end output to 1 (true) during the last valid cycle of a
frame of output data.

Dependencies

To enable this port, select the Enable end output port parameter.
Data Types: Boolean

Parameters
Main

FFT length — Number of data points for one FFT calculation
1024 (default)

This parameter specifies the number of data points used for one FFT calculation. For HDL code
generation, the FFT length must be a power of 2 between 23 to 216.

Architecture — Architecture type
Streaming Radix 2^2 (default) | Burst Radix 2

This parameter specifies the type of architecture.

• Streaming Radix 2^2 — Select this value to specify low-latency architecture. This architecture
type supports GSPS throughput when using vector input.

• Burst Radix 2 — Select this value to specify minimum resource architecture. This architecture
type does not support vector input. When you use this architecture, your input data must comply
with the ready backpressure signal. For a waveform that shows this protocol, see the third
diagram in the “Timing Diagram” on page 2-709 section.

For more details about these architectures, see “Algorithms” on page 2-706.

Complex multiplication — HDL implementation
Use 4 multipliers and 2 adders (default) | Use 3 multipliers and 5 adders

This parameter specifies the complex multiplier type for HDL implementation. Each multiplication is
implemented either with Use 4 multipliers and 2 adders or with Use 3 multipliers and
5 adders. The implementation speed depends on the synthesis tool and target device that you use.

Output in bit-reversed order — Order of output data
on (default) | off

This parameter returns output elements in bit-reversed order.

When you select this parameter, the output elements are bit-reversed. To return output elements in
linear order, clear this parameter.

The FFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Input in bit-reversed order — Expected order of input data
off (default) | on

 FFT HDL Optimized

2-705

When you select this parameter, the block expects input data in bit-reversed order. By default, this
parameter is disabled, and the block expects the input in linear order.

The FFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Divide butterfly outputs by two — FFT scaling
off (default) | on

When you select this parameter, the FFT implements an overall 1/N scale factor by dividing the
output of each butterfly multiplication by two. This adjustment keeps the output of the FFT in the
same amplitude range as its input. If you disable scaling, the FFT avoids overflow by increasing the
word length by 1 bit after each butterfly multiplication. The bit increase is the same for both
architectures.

Data Types

Rounding mode — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter specifies the type of rounding mode for internal fixed-point calculations. For more
information about rounding modes, see “Rounding Modes”. When the input is any integer or fixed-
point data type, this block uses fixed-point arithmetic for internal calculations. This parameter does
not apply when the input data is single or double. Rounding applies to twiddle-factor
multiplication and scaling operations.

Control Ports

Enable reset input port — Optional reset signal
off (default) | on

This parameter enables a reset input port. When you select this parameter, the input reset port
appears on the block icon.

Enable start output port — Optional control signal indicating start of data
off (default) | on

This parameter enables a port that indicates the start of output data. When you select this parameter,
the output start port appears on the block icon.

Enable end output port — Optional control signal indicating end of data
off (default) | on

This parameter enables a port that indicates the end of output data. When you select this parameter,
the output end port appears on the block icon.

Algorithms
Streaming Radix 2^2

The streaming Radix 2^2 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log4(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies

2 Blocks

2-706

with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDF.

The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
–j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.

If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1
bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not
including the memory.

 FFT HDL Optimized

2-707

Burst Radix 2

The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.

When you use this architecture, your input data must comply with the ready backpressure signal. For
a waveform that shows this protocol, see the third diagram in the “Timing Diagram” on page 2-709
section.

Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.

When the optional input reset port is 1, the algorithm stops the current calculation and clears all
internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.

2 Blocks

2-708

Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 2^2 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).

Latency

The latency varies with the FFT length and input vector size. After you update the model, the block
icon displays the latency. The displayed latency is the number of cycles between the first valid input
and the first valid output, assuming the input is contiguous. To obtain this latency programmatically,
see “Automatic Delay Matching for the Latency of FFT HDL Optimized Block”.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample

 FFT HDL Optimized

2-709

is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency – FFTLength.

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

• 1024 FFT length (default)
• Complex multiplication using 4 multipliers, 2 adders
• Output scaling enabled
• Natural order input, Bit-reversed output
• 16-bit complex input data
• Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,
reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 2^2 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597
FFS 5353
Xilinx LogiCORE DSP48 12
Block RAM (16K) 6

When you vectorize the same Radix 2^2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.

Resource Number Used
LUT 7653
FFS 9322
Xilinx LogiCORE DSP48 24

2 Blocks

2-710

Resource Number Used
Block RAM (16K) 8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these
resources.

Resource Number Used
LUT 971
FFS 1254
Xilinx LogiCORE DSP48 3
Block RAM (16K) 6

References
[1] Algnabi, Y.S, F.A. Aldaamee, R. Teymourzadeh, M. Othman, and M.S. Islam. “Novel architecture of

pipeline Radix 2^2 SDF FFT Based on digit-slicing technique.” 10th IEEE International
Conference on Semiconductor Electronics (ICSE). 2012, pp. 470–474.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block supports HDL code generation using HDL Coder. HDL Coder provides additional
configuration options that affect HDL implementation and synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

 FFT HDL Optimized

2-711

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• If you use the FFT HDL Optimized block with the State Control block inside an Enabled
Subsystem, the optional reset port is not supported. If you enable the reset port on the FFT HDL
Optimized block in such a subsystem, the model errors on Update Diagram.

See Also
Blocks
FFT | IFFT HDL Optimized | Channelizer HDL Optimized

Objects
dsp.HDLFFT

Introduced in R2014a

2 Blocks

2-712

IFFT HDL Optimized
Computes inverse-fast-fourier-transform and generates optimized HDL code
Library: DSP System Toolbox HDL Support / Transforms

Description
The IFFT HDL Optimized block provides two architectures that implement the algorithm for FPGA
and ASIC applications. You can select an architecture that optimizes for either throughput or area.

• Streaming Radix 2^2 — Use this architecture for high-throughput applications. This
architecture supports scalar or vector input data. You can achieve giga-sample-per-second (GSPS)
throughput using vector input.

• Burst Radix 2 — Use this architecture for a minimum resource implementation, especially with
large fast-fourier-transform (FFT) sizes. Your system must be able to tolerate bursty data and
higher latency. This architecture supports only scalar input data.

The IFFT HDL Optimized accepts real or complex data, provides hardware-friendly control signals,
and optional output frame control signals.

Ports
Input

data — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values. Only the Streaming
Radix 2^2 architecture supports a vector input. The vector size must be a power of 2, in the range
from 1 to 64, and less than or equal to the FFT length.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | fixed point |
single | double

valid — Indicates valid input data
scalar

This port indicates if the input data is valid. When the input valid is true (1), the block captures the
value on the input data port. When the input valid is false (0), the block ignores the input data
samples.

When you set the Architecture parameter to Burst Radix 2, you must apply input data and valid
signals only when ready is 1 (true). The block ignores the input data and valid signals when ready is
0 (false).

 IFFT HDL Optimized

2-713

Data Types: Boolean

reset — Reset control signal
scalar

When reset is true (1), the block stops the current calculation and clears all internal states. The
block starts a new frame when the reset is false (0) and the input valid is true (1).
Dependencies

To enable this port, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — Frequency channel output data
scalar or column vector of real or complex values

When input is fixed-point data type and scaling is enabled, the output data type is the same as the
input data type. When the input is integer type and scaling is enabled, the output is fixed-point type
with the same word length as the input integer. The output order is bit-reversed by default. If scaling
is disabled, the output word length increases to avoid overflow. Only the Streaming Radix 2^2
architecture supports vector input and output. For more information, see Divide butterfly outputs
by two parameter.
Data Types: fixed point | double | single

valid — Indicates valid output data
scalar

This port indicates that output data is valid. When valid is true (1), the block returns valid data on
the output data port. When valid is false (0), the values on output data port are not valid.
Data Types: Boolean

ready — Indicates block is ready
scalar

This port indicates that the block has memory available to accommodate a new input sample. You
must apply input data and valid signals only when ready is true (1). When ready is false (0), the
block ignores any input data in the next time step. For a waveform that shows this protocol, see the
third diagram in the “Timing Diagram” on page 2-709 section.
Dependencies

The port appears on the block when you set the Architecture parameter to Burst Radix 2.
Data Types: Boolean

start — Indicates first valid cycle of output data
scalar

When you enable this port, the block sets the start output to true (1) during the first valid cycle of a
frame of output data.
Dependencies

To enable this port, select the Enable start output port parameter.

2 Blocks

2-714

Data Types: Boolean

end — Indicates last valid cycle of output data
scalar

When you enable this port, the block sets the end output to true (1) during the last valid cycle of a
frame of output data.

Dependencies

To enable this port, select the Enable end output port parameter.
Data Types: Boolean

Parameters
Main

FFT length — Number of data points used for one FFT calculation
1024 (default)

This parameter specifies the number of data points used for one inverse-fast-fourier-transform (IFFT)
calculation. For HDL code generation, the FFT length must be a power of 2 between 23 and 216.

Architecture — Architecture type
Streaming Radix 2^2 (default) | Burst Radix 2

This parameter specifies the type of architecture.

• Streaming Radix 2^2 — Select this value to specify low-latency architecture. This architecture
type supports GSPS throughput when using vector input.

• Burst Radix 2 — Select this value to specify minimum resource architecture. This architecture
type does not support vector input. When you use this architecture, your input data must comply
with the ready backpressure signal. For a waveform that shows this protocol, see the third
diagram in the “Timing Diagram” on page 2-709 section.

For HDL code generation, the FFT length must be a power of 2 between 23 and 216.

For more details about these architectures, see “Algorithms” on page 2-706.

Complex Multiplication — HDL implementation
Use 4 multipliers and 2 adders (default) | Use 3 multipliers and 5 adders

This parameter specifies the complex multiplier type for HDL implementation. Each multiplication is
implemented either with Use 4 multipliers and 2 adders or with Use 3 multipliers and
5 adders. The implementation speed depends on the synthesis tool and target device that you use.

Output in bit-reversed order — Order of output data
on (default) | off

This parameter returns output elements in bit-reversed order.

When you select this parameter, the output elements are bit-reversed. To return output elements in
linear order, clear this parameter.

 IFFT HDL Optimized

2-715

The IFFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Input in bit-reversed order — Expected order of input data
off (default) | on

When you select this parameter, the block expects input data in bit-reversed order. By default, the
check box is cleared and the input is expected in linear order.

The IFFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Divide butterfly outputs by two — FFT scaling
on (default) | off

When you select this parameter, the block implements an overall 1/N scale factor by dividing the
output of each butterfly multiplication by two. This adjustment keeps the output of the IFFT in the
same amplitude range as its input. If you disable scaling, the block avoids overflow by increasing the
word length by 1 bit after each butterfly multiplication. The bit increase is the same for both
architectures.

Data Types

Rounding Method — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter allows you to select the type of rounding mode for internal fixed-point calculations.
For more information about rounding modes, see rounding method. When the input is any integer or
fixed-point data type, the IFFT algorithm uses fixed-point arithmetic for internal calculations. This
option does not apply when the input is single or double type. Rounding applies to twiddle factor
multiplication and scaling operations.

Control Ports

Enable reset input port — Optional reset signal
off (default) | on

This parameter enables a reset input port. When you select this parameter, the input reset port
appears on the block icon.

Enable start output port — Optional control signal indicating start of data
off (default) | on

This parameter enables a port that indicates the start of output data. When you select this parameter,
the output start port appears on the block icon.

Enable end output port — Optional control signal indicating end of data
off (default) | on

This parameter enables a port that indicates the end of output data. When you select this parameter,
the output end port appears on the block icon.

2 Blocks

2-716

Algorithms
Streaming Radix 2^2

The streaming Radix 2^2 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log4(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies
with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDF.

The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
–j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.

If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1
bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not
including the memory.

 IFFT HDL Optimized

2-717

Burst Radix 2

The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.

When you use this architecture, your input data must comply with the ready backpressure signal. For
a waveform that shows this protocol, see the third diagram in the “Timing Diagram” on page 2-709
section.

Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.

When the optional input reset port is 1, the algorithm stops the current calculation and clears all
internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.

2 Blocks

2-718

Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 2^2 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).

Latency

The latency varies with the FFT length and input vector size. After you update the model, the block
icon displays the latency. The displayed latency is the number of cycles between the first valid input
and the first valid output, assuming the input is contiguous. To obtain this latency programmatically,
see “Automatic Delay Matching for the Latency of FFT HDL Optimized Block”.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample

 IFFT HDL Optimized

2-719

is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency – FFTLength.

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

• 1024 FFT length (default)
• Complex multiplication using 4 multipliers, 2 adders
• Output scaling enabled
• Natural order input, Bit-reversed output
• 16-bit complex input data
• Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,
reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 2^2 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597
FFS 5353
Xilinx LogiCORE DSP48 12
Block RAM (16K) 6

When you vectorize the same Radix 2^2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.

Resource Number Used
LUT 7653
FFS 9322
Xilinx LogiCORE DSP48 24

2 Blocks

2-720

Resource Number Used
Block RAM (16K) 8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these
resources.

Resource Number Used
LUT 971
FFS 1254
Xilinx LogiCORE DSP48 3
Block RAM (16K) 6

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• If you use the IFFT HDL Optimized block with the State Control block inside an Enabled
Subsystem, the optional reset port is not supported. If you enable the reset port on the IFFT HDL
Optimized block in such a subsystem, the model will error on Update Diagram.

 IFFT HDL Optimized

2-721

See Also
Blocks
IFFT | FFT HDL Optimized

Objects
dsp.HDLIFFT

Introduced in R2014a

2 Blocks

2-722

Highpass Filter
Design FIR or IIR highpass filter
Library: DSP System Toolbox / Filtering / Filter Designs

Description
The Highpass Filter block independently filters each channel of the input signal over time using the
given design specifications. You can control whether the block implements an IIR or FIR highpass
filter using the Filter type parameter.

This block supports ARM Cortex code generation. Under specific conditions, this block also supports
SIMD code generation. For details, see “Code Generation” on page 2-726.

Ports
Input

Port_1 — Input signal to filter
column vector | matrix

Input signal, specified as a real- or complex-valued column vector or matrix. If the input signal is a
matrix, each column of the matrix is treated as an independent channel. The number of rows in the
input signal denotes the channel length.
Data Types: single | double | fixed point

Output

Port_1 — Filtered signal
vector | matrix

Filtered signal, specified as a vector or matrix. The output has the same size and complexity
characteristics as the input. If the output has a fixed-point data type, it is always signed.
Data Types: single | double | fixed point

Parameters
Main

Filter type — FIR or IIR filter
FIR (default) | IIR

Specify whether the block implements an FIR highpass filter or an IIR highpass filter.

Design minimum order filter — Design filter with minimum order
on (default) | off

 Highpass Filter

2-723

When you select this check box, the block designs a filter with minimum order. When you clear this
check box, you can specify the Filter order as a positive integer.

Filter order — Order of highpass filter
50 (default) | positive integer

Filter order of highpass filter, specified as a positive scalar integer.

Dependencies

To enable this parameter, clear the Design minimum order filter check box.

Stopband edge frequency (Hz) — Stopband edge frequency
8e3 (default) | real positive scalar

Stopband edge frequency of the highpass filter, specified as a real positive scalar in Hz. The value of
the stopband edge frequency in Hz must be less than the passband frequency.

Dependencies

To enable this parameter, select the Design minimum order filter check box.

Passband edge frequency (Hz) — Passband edge frequency
12e3 (default) | real positive scalar

Passband edge frequency of the highpass filter, specified as a real positive scalar in Hz. The passband
edge frequency must be less than half the value of the Input sample rate (Hz).

Minimum stopband attenuation (dB) — Minimum stopband attenuation
80 (default) | real positive scalar

Minimum attenuation in the stopband, specified as a real positive scalar in dB.

Maximum passband ripple (dB) — Maximum passband ripple
0.1 (default) | real positive scalar

Maximum ripple of the filter response in the passband, specified as a real positive scalar in dB.

Inherit sample rate from input — Inherit sample rate from input
off (default) | on

When you select this check box, the block inherits its sample rate from the input signal. When you
clear this check box, you specify the sample rate using the Input sample rate (Hz) parameter.

Input sample rate (Hz) — Input sample rate
44100 (default) | scalar

Input sample rate, specified as a scalar in Hz.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run:

• Interpreted execution (default)

2 Blocks

2-724

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations as long as the model does not
change. This option requires additional startup time but provides faster simulation speed than
Interpreted execution.

View Filter Response — Open Filter Visualization Tool
button

Opens the Filter Visualization Tool (fvtool) and displays the magnitude/phase response of the
highpass filter. The response is based on the block dialog box parameters. Changes made to these
parameters update FVTool.

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

Data Types

Rounding mode — Rounding method
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Rounding method for the output fixed-point operations.

 Highpass Filter

2-725

Coefficients — Coefficient data type
fixdt(1,16) (default) | fixdt(1,16,0) | <data type expression>

Fixed-point data type of the coefficients, specified as one of the following:

• fixdt(1,16) — Signed fixed-point data type of word length 16, with binary point scaling. The
block determines the fraction length automatically from the coefficient values in such a way that
the coefficients occupy maximum representable range without overflowing.

• fixdt(1,16,0) — Signed fixed-point data type of word length 16 and fraction length 0. You can
change the fraction length to any other integer value.

• <data type expression> — Specify the data type using an expression that evaluates to a data
type object, for example, numeric type (fixdt([],16, 15)). Specify the sign mode of this data
type as [] or true.

• Refresh Data Type — Refresh to the default data type.

Click the Show data type assistant button to display the data type assistant, which helps
you set the data type. For more information, see “Specify Data Types Using Data Type Assistant”
(Simulink).

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
This block brings the capabilities of the dsp.HighpassFilter System object to the Simulink
environment.

For information on the algorithms used by this block, see the Algorithms on page 4-777 section of
dsp.HighpassFilter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Highpass Filter block supports ARM Cortex code generation. To learn more about ARM Cortex
code generation, see “Code Generation for ARM Cortex-M and ARM Cortex-A Processors”.

The Highpass Filter block also supports SIMD code generation using Intel AVX2 technology under
these conditions:

2 Blocks

2-726

• Filter type is set to FIR.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Lowpass Filter

Objects
dsp.HighpassFilter | dsp.LowpassFilter

Introduced in R2015b

 Highpass Filter

2-727

Highpass Filter (Obsolete)
Design highpass filter

Compatibility

Note The Highpass Filter (Obsolete) block has been replaced by the Highpass Filter block. Existing
instances of the Highpass Filter (Obsolete) block will continue to operate. For new models, use the
Highpass Filter block.

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Dialog Box
See “Highpass Filter Design — Main Pane” on page 5-598 for more information about the
parameters of this block. The Data Types and Code Generation panes are not available for blocks in
the DSP System Toolbox Filter Designs library.

2 Blocks

2-728

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.

 Highpass Filter (Obsolete)

2-729

• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

In this group, you specify your filter format, such as the impulse response and the filter order.

Impulse response
Select either FIR or IIR from the drop-down list. FIR is the default. When you choose an impulse
response, the design methods and structures you can use to implement your filter change
accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify. Selecting Specify enables the Order option so you
can enter the filter order. When you set the Impulse response to IIR, you can specify different
numerator and denominator orders. To specify a different denominator order, you must select the
Denominator order check box.

Order
Enter the filter order. This option is enabled only if you set the Order mode to Specify.

Denominator order
Select this check box to specify a different denominator order. This option is enabled only if you
set the Impulse response to IIR and the Order mode to Specify.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, the block specifies a single-rate filter.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default value is 2.

Interpolation Factor
Enter the interpolation factor. This option is enabled only if the Filter type is set to
Interpolator or Sample-rate converter. The default value is 2.

Frequency Specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

2 Blocks

2-730

In the figure, the region between specification values Fstop and Fpass represents the transition
region where the filter response is not constrained.

Frequency constraints
When Order mode is Specify, select the filter features that the block uses to define the
frequency response characteristics. The list contains the following options, when available for the
filter specifications.

• Stopband edge and passband edge — Define the filter by specifying the frequencies for
the edges for the stop- and passbands.

• Passband edge — Define the filter by specifying the edge of the passband.
• Stopband edge — Define the filter by specifying the edge of the stopband.
• Stopband edge and 3 dB point — For IIR filters, define the filter by specifying the

frequency of the 3 dB point in the filter response and the edge of the stopband.
• 3 dB point — Define the filter response by specifying the location of the 3 dB point. The 3

dB point is the frequency for the point three decibels below the passband value.
• 3 dB point and passband edge — For IIR filters, define the filter by specifying the

frequency of the 3 dB point in the filter response and the edge of the passband.
• 6 dB point — For FIR filters, define the filter response by specifying the location of the 6 dB

point. The 6 dB point is the frequency for the point six decibels below the passband value.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0–1) to enter frequencies in normalized form. This behavior is
the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input Fs
parameter.

Input Fs
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Fstop
Enter the frequency at the edge of the end of the stopband. Specify the value in either normalized
frequency units or the absolute units you select in Frequency units.

 Highpass Filter (Obsolete)

2-731

Fpass
Enter the frequency at the edge of the start of the passband. Specify the value in either
normalized frequency units or the absolute units you select in Frequency units.

F3dB
When Frequency constraints is 3 dB point, Stopband edge and 3 dB point, or 3 dB
point and passband edge, specify the frequency of the 3 dB point. Specify the value in either
normalized frequency units or the absolute units you select Frequency units.

F6dB
When Frequency constraints is 6 dB point, specify the frequency of the 6 dB point. Specify
the value in either normalized frequency units or the absolute units you select Frequency units.

Magnitude Specifications

Parameters in this group specify the filter response in the passbands and stopbands.

Magnitude constraints
This option is only available when you specify the order of your filter design. Depending on the
setting of the Frequency constraints parameter, some combination of the following options will
be available for the Magnitude constraints parameter: Unconstrained, Passband ripple,
Passband ripple and stopband attenuation or Stopband attenuation.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. From the drop-down
list, select one of the following options:

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Astop
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Apass
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure of your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is Equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

2 Blocks

2-732

Design Options
The options for each design are specific for each design method. This section does not present all
of the available options for all designs and design methods. There are many more that you
encounter as you select different design methods and filter specifications. The following options
represent some of the most common ones available.
Density factor

Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in
the grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter
but increases the time required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal filter and the time to
design the filter.

Phase constraint
Specify the phase constraint of the filter as Linear, Maximum, or Minimum.

Minimum order
When you select this parameter, the design method determines and design the minimum
order filter to meet your specifications. Some filters do not provide this parameter. Select
Any, Even, or Odd from the drop-down list to direct the design to be any minimum order, or
minimum even order, or minimum odd order.

Match Exactly
Specifies that the resulting filter design matches either the passband or stopband or both
bands when you select passband or stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the
frequency increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterbuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation

(1/f)n to define the stopband decay. filterbuilder applies the (1/f)n relation to the
stopband to result in an exponentially decreasing stopband attenuation.

 Highpass Filter (Obsolete)

2-733

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Optimize for unit-scale values
Select this check box to scale unit gains between sections in SOS filters. This parameter is
available only for SOS filters.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Note The Inherited (this choice will be removed — see release notes) option
will be removed in a future release. See “Frame-Based Processing” in the DSP System Toolbox
Release Notes for more information.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

2 Blocks

2-734

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

Introduced in R2006b

 Highpass Filter (Obsolete)

2-735

Hilbert Filter
Design Hilbert filter

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

This block supports SIMD code generation. For details, see “Code Generation” on page 2-740.

Dialog Box
See “Hilbert Filter Design — Main Pane” on page 5-602 for more information about the parameters
of this block. The Data Types and Code panes are not available for blocks in the DSP System Toolbox
Filter Designs library.

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

In this group, you specify your filter format, such as the impulse response and the filter order.

Impulse response
Select either FIR or IIR from the drop-down list. FIR is the default. When you choose an impulse
response, the design methods and structures you can use to implement your filter change
accordingly.

2 Blocks

2-736

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down list. Selecting Specify
enables the Order option (see the following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, the block specifies a single-rate filter.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

Order
Enter the filter order. This option is enabled only if Specify was selected for Filter order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default value is 2.

Interpolation Factor
Enter the interpolation factor. This option is enabled only if the Filter type is set to
Interpolator or Sample-rate converter. The default value is 2.

Frequency Specifications

The parameters in this group allow you to specify your filter response curve.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Transition width
Specify the width of the transitions at the ends of the passband. Specify the value in normalized
frequency units or the absolute units you select in Frequency units.

Magnitude Specifications

Parameters in this group specify the filter response in the passbands and stopbands.

 Hilbert Filter

2-737

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. From the drop-down
list, select one of the following options:

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure of your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default FIR method is Equiripple.

Design Options
The options for each design are specific for each design method. This section does not present all
of the available options for all designs and design methods. There are many more that you
encounter as you select different design methods and filter specifications. The following options
represent some of the most common ones available.
Density factor

Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in
the grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter
but increases the time required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal filter and the time to
design the filter.

FIR Type
Specify whether to design a type 3 or a type 4 FIR filter. The filter type is defined as follows:

• Type 3 — FIR filter with even order antisymmetric coefficients
• Type 4 — FIR filter with odd order antisymmetric coefficients

Select either 3 or 4 from the drop-down list.

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use Direct-form FIR, and IIR filters
use Cascade minimum-multiplier allpass.

2 Blocks

2-738

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

 Hilbert Filter

2-739

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Hilbert Filter block supports SIMD code generation using Intel AVX2 technology under these
conditions:

• Filter type is set to Single-rate, Decimator, or Interpolator.
• For Filter type that is set to Single-rate, Structure is set to Direct-form FIR or Direct-

form FIR transposed.
• For Filter type that is set to Decimator, Structure is set to Direct-form FIR polyphase

decimator and Rate options is set to Enforce single-rate processing.
• For Filter type that is set to Interpolator:

• Interpolation Factor cannot be equal to 1.
• Rate options is set to Enforce single-rate processing.

• Input processing is set to Columns as channels (frame based).
• Input signal has a data type of single or double.
• Input port dimensions cannot be equal to [1 1].

The SIMD technology significantly improves the performance of the generated code.

Introduced in R2006b

2 Blocks

2-740

Histogram
Histogram of input or sequence of inputs
Library: DSP System Toolbox / Statistics

Description
The Histogram block computes the frequency distribution of the input elements along each column or
along the entire input. You can specify the dimension using the Find the histogram over parameter.
The block distributes the input elements based on their value into a number of discrete bins specified
by the Number of bins parameter. For more details, see “Algorithms” on page 2-746.

When the input data is real, the bin boundaries are cast into the double data type. When the input
data is complex, bin boundaries for double-precision inputs are cast into double, and bin boundaries
for integer inputs are cast into double and squared. For an example, see “Compute the Histogram of
Real and Complex Data”.

To track the frequency distribution of inputs over a period of time, select the Running histogram
parameter.

When the input is complex, the block sorts the elements by their magnitude.

Ports
Input

In — Data input
vector | matrix | N-D array

The block accepts real-valued or complex-valued multichannel and multidimensional inputs. The input
data type must be double precision, single precision, integer, or fixed point, with power-of-two slope
and zero bias.

This port is unnamed until you select the Running histogram parameter and set the Reset port
parameter to any option other than None.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Rst — Reset port
scalar

Specify the reset event that causes the block to reset the running histogram. The reset signal and the
input data signal must have the same rate.

Dependencies

To enable this port, select the Running histogram parameter, and set the Reset port parameter to
any option other than None.

 Histogram

2-741

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Port_1 — Histogram output
vector | matrix | N-D array

Outputs the histogram data as a vector, matrix, or array. The output primarily depends on the settings
of the Running histogram and Find the histogram over parameters.

For example, consider a two-dimensional input signal of size M-by-N.

When you clear the Running histogram parameter, the block computes the frequency distribution in
each column of input or along the entire input. When you set Find the histogram over to:

• Each column — The block computes a histogram for each column of the input. The output is an
n-by-N matrix, where n is the Number of bins. The jth column of the output matrix contains the
histogram for the data in the jth column of the M-by-N input matrix.

• Entire input — The block computes a histogram for the entire input vector, matrix, or N-D
array. The output is an n-by-1 vector, where n is the Number of bins.

When you select the Running histogram parameter, the block computes the frequency distribution
of all inputs over a period of time. In this case, when you set Find the histogram over to:

• Each column — The block computes a running histogram for each column of the input. The
output is an n-by-N matrix, where n is the Number of bins. The jth column of the output matrix
contains the running histogram for the data in the jth column of the M-by-N matrix input.

• Entire input — The block computes the running histogram for the entire input vector, matrix,
or N-D array. The output is an n-by-1 vector, where n is the Number of bins.

The output data type is uint32 when the input has a data type other than single or double. The
largest number that can be represented by uint32 is 232-1. If the range of any input exceeds this
value, the block wraps the value back to 0.
Data Types: single | double | uint32

Parameters
Main Tab

Lower limit of histogram — Lower boundary of lowest-valued bin
scalar

Specify the lower boundary of the lowest-valued bin as a real scalar. This parameter does not accept
NaN or Inf. If the input has a value less than Lower limit of histogram, the block places this
element in the lowest-valued bin.

Upper limit of histogram — Upper boundary of highest-valued bin
scalar

Specify the upper boundary of the highest-valued bin as a real scalar. This parameter does not accept
NaN or Inf. If the input has a value greater than Upper limit of histogram, the block places this
element in the highest-valued bin.

2 Blocks

2-742

Number of bins — Number of histogram bins
positive integer

Specify the number of histogram bins as a positive integer.

Find the histogram over — Compute histogram over each column or entire input
Each column (default) | Entire input

Specify whether the histogram is computed over each column or the entire input. The options for this
parameter are affected by the setting of the Running histogram parameter.

When you clear the Running histogram parameter, and you set Find the histogram over
parameter to:

• Each column — The block computes the histogram over each column.
• Entire input — The block outputs the histogram over the entire input.

When you select the Running histogram parameter, and you set Find the histogram over
parameter to:

• Each column — The block computes the running histogram over each column.
• Entire input — The block outputs the running histogram over the entire input.

Normalized — Normalize output
off (default) | on

When you select this parameter, the block output, y, is normalized. In mathematical terms, sum(y) =
1. This parameter does not apply for fixed-point input signals.

Running histogram — Track frequency distribution over time
off (default) | on

When you select this parameter, the block tracks the frequency distribution of inputs over a period of
time.

Reset port — Reset event
Non-zero sample (default) | None | Rising edge | Falling edge | Either edge

The block resets the running histogram and empties all the bins whenever a reset event is detected at
the optional Rst port. The reset sample time must equal the input sample time.

Use this parameter to specify the reset event:

• Non-zero sample — Triggers a reset operation at each sample time when the Rst input is not
zero.

• None — Disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to either a positive value or zero.
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero.

 Histogram

2-743

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

• Falls from a positive value to a negative value or zero.
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero.

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge.

Note When running simulations in the Simulink multitasking mode, reset signals have a one-sample
latency. When the block detects a reset event, there is a one-sample delay at the reset port rate
before the block applies the reset. For more information on latency and the Simulink tasking modes,
see “Excess Algorithmic Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation”
(Simulink Coder).

Dependencies

To enable this parameter, select the Running histogram parameter.

Data Types Tab

Note To use these parameters, the data input must be complex and fixed point. For all other inputs,
the parameters on the Data Types tab are ignored.

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

2 Blocks

2-744

Specify the rounding mode for fixed-point operations. For more details, see rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Product output — Product output data type
Inherit: Same as input (default) | fixdt([],16,0)

The squares of the real and imaginary parts of the complex input are stored in the Product output
data type.

You can set this parameter to:

• Inherit: Same as input — The product output data type is the same as the input data type.
• fixdt([],16,0) — The product output data type is an autosigned, binary-point, scaled, fixed-
point data type with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Product output data type by using the Data Type Assistant. To use

the assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Accumulator — Accumulator data type
Inherit: Same as input (default) | Inherit: Same as product output | fixdt([],16,0)

The result of the sum of the squares of the real and imaginary parts of the complex input are stored
in the Accumulator data type.

You can set this parameter to:

• Inherit: Same as input — The accumulator data type is the same as the input data type.
• Inherit: Same as product output — The accumulator data type is the same as the product

output data type.
• fixdt([],16,0) — The accumulator data type is an autosigned, binary-point, scaled, fixed-point

data type with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
the block.

 Histogram

2-745

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
Histogram

The histogram value for a given bin represents the frequency of occurrence of the input values
bracketed by that bin. Upper limit of histogram specifies the upper boundary of the highest-valued
bin, BM. Lower limit of histogram specifies the lower boundary of the lowest-valued bin, Bm. The
bins have equal width, given by:

Δ =
BM − Bm

n .

The bins are centered at the following locations:

Bm + k + 1
2 Δ k = 0, 1, 2, ..., n− 1 .

n is the number of bins, specified by the Number of bins parameter.

Input values that fall on the border between two bins are placed into the lower-valued bin. Each bin
includes its upper boundary. For example, a bin of width 4 centered on the value 5 contains the input
value 7, but not 3. Input values greater than the Upper limit of histogram parameter are placed in
the highest-valued bin. Similarly, values less than the Lower limit of histogram parameter are
placed in the lowest-valued bin.

The block sorts the complex data into bins by magnitude. The magnitude is the sum of the squares of
the real and imaginary components of the complex data.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The parameters on the Data Types tab are used only for complex fixed-point inputs. Complex inputs
are sorted by magnitude, which is the sum of the squares of the real and imaginary components of
the input. The results of the squares of the real and imaginary parts are stored in the Product

2 Blocks

2-746

output data type. The result of the sum of the squares is stored in the Accumulator data type. The
parameters on the Data Types tab are ignored for all other inputs.

See Also
Functions
histogram

Blocks
Sort | Median | Maximum | Minimum

Introduced before R2006a

 Histogram

2-747

IDCT
Inverse discrete cosine transform (IDCT) of input

Library
Transforms

dspxfrm3

Description
The IDCT block computes the inverse discrete cosine transform (IDCT) of each channel in the M-by-N
input matrix, u.

y = idct(u) % Equivalent MATLAB code

For all N-D input arrays, the block computes the IDCT across the first dimension. The size of the first
dimension (frame size), must be a power of two. To work with other frame sizes, use the Pad block to
pad or truncate the frame size to a power-of-two length.

When the input is an M-by-N matrix, the block treats each input column as an independent channel
containing M consecutive samples. The block outputs an M-by-N matrix whose lth column contains
the length-M IDCT of the corresponding input column.

y m, l = ∑
k = 1

M
w(k)u(k, l)cosπ(2m− 1)(k− 1)

2M , m = 1, ..., M

where

w(k) =

1
M
2
M

,

,

k = 1

2 ≤ k ≤ M

The Sine and cosine computation parameter determines how the block computes the necessary
sine and cosine values. This parameter has two settings, each with its advantages and disadvantages,
as described in the following table.

2 Blocks

2-748

Sine and Cosine Computation
Parameter Setting

Sine and Cosine Computation Method Effect on Block Performance

Table lookup The block computes and stores the
trigonometric values before the simulation
starts, and retrieves them during the
simulation. When you generate code from
the block, the processor running the
generated code stores the trigonometric
values computed by the block in a speed-
optimized table, and retrieves the values
during code execution.

The block usually runs much
more quickly, but requires extra
memory for storing the
precomputed trigonometric
values.

Trigonometric fcn The block computes sine and cosine values
during the simulation. When you generate
code from the block, the processor running
the generated code computes the sine and
cosine values while the code runs.

The block usually runs more
slowly, but does not need extra
data memory. For code
generation, the block requires a
support library to emulate the
trigonometric functions,
increasing the size of the
generated code.

Fixed-Point Data Types

The following diagrams show the data types used within the IDCT block for fixed-point signals. You
can set the sine table, accumulator, product output, and output data types displayed in the diagrams
in the IDCT block dialog as discussed in “Parameters” on page 2-750.

Inputs to the IDCT block are first cast to the output data type and stored in the output buffer. Each
butterfly stage processes signals in the accumulator data type, with the final output of the butterfly
being cast back into the output data type.

 IDCT

2-749

The output of the multiplier is in the product output data type when at least one of the inputs to the
multiplier is real. When both of the inputs to the multiplier are complex, the result of the
multiplication is in the accumulator data type. For details on the complex multiplication performed,
see “Multiplication Data Types”.

Note When the block input is fixed point, all internal data types are signed fixed point.

Parameters
Main Tab

Sine and cosine computation
Sets the block to compute sines and cosines by either looking up sine and cosine values in a
speed-optimized table (Table lookup), or by making sine and cosine function calls
(Trigonometric fcn). See the table in the “Description” on page 2-748 section.

2 Blocks

2-750

Data Types Tab

Rounding mode
Select the rounding mode for fixed-point operations. The sine table values do not obey this
parameter; they always round to Nearest.

Saturate on integer overflow
When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numeric results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in full-precision mode.

Sine table
Choose how you specify the word length of the values of the sine table. The fraction length of the
sine table values always equals the word length minus one. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16)

The sine table values do not obey the Rounding mode and Saturate on integer overflow
parameters; instead, they are always saturated and rounded to Nearest.

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 2-749 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-749 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

 IDCT

2-751

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-749 for illustrations
depicting the use of the output data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the block calculates the output
word length and fraction length automatically. The internal rule first calculates an ideal output
word length and fraction length using the following equations:

WLidealoutput = WLinput + f loor(log2(DCTlength− 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction lengths that
are appropriate for your hardware. For more information, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Output Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Output Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

2 Blocks

2-752

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
idct

Blocks
DCT | IFFT

Introduced before R2006a

 IDCT

2-753

Identity Matrix
Generate matrix with ones on main diagonal and zeros elsewhere
Library: DSP System Toolbox / Math Functions / Matrices and Linear

Algebra / Matrix Operations
DSP System Toolbox / Sources

Description
The Identity Matrix block generates a rectangular matrix with ones on the main diagonal and zeros
elsewhere.

When you select the Inherit output port attributes from input port check box, the input port is
enabled, and an M-by-N matrix input generates an M-by-N matrix output with the same sample
period as the input. The values in the input matrix are ignored. The equivalent MATLAB code is:

y = eye([M N])

When you clear the Inherit output port attributes from input port check box, the input port is
disabled, and the block determines the dimensions of the output matrix based on the Matrix size
parameter. A scalar value, M, specifies an M-by-M identity matrix, while a two-element vector, [M N],
specifies an M-by-N unit-diagonal matrix. You can specify the output sample period using the Sample
time parameter.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

Input signal used to determine dimensions of the output matrix, specified as a scalar, vector, or
matrix. When the input signal is an M-by-N matrix, the block generates an M-by-N matrix output with
the same sample period as the input. The values in the input matrix are ignored.
Dependencies

To enable this port, select the Inherit output port attributes from input port check box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Identity matrix
scalar | vector | matrix

2 Blocks

2-754

Identity matrix, specified as a scalar, vector, or matrix. For more information on how the block
generates output, see “Description” on page 2-754.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Main

Inherit output port attributes from input port — Set output attributes based on
input signal
off (default) | on

Enables the input port when selected. In this mode, the output inherits its dimensions, sample period,
and data type from the input. The output is always real.

Matrix size — Size of output matrix
5 (default) | scalar | two-element vector

The number of rows and columns in the output matrix. You can specify:

• A positive integer scalar M to create a square M-by-M output.
• A vector of positive integers, [M N], to create an M-by-N output.

Dependencies

To enable this parameter, clear the Inherit output port attributes from input port check box.

Sample time — Output sample period
1 (default) | scalar

The discrete sample period of the output specified as a real-valued scalar.
Dependencies

To enable this parameter, clear the Inherit output port attributes from input port check box.

Data Types

Output data type — Output data type
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 |
boolean | fixdt(1,16) | fixdt(1,16,0) | Inherit: Inherit via back propagation |
<data type expression>

Specify the output data type for this block. You can select one of the following:

• A rule that inherits a data type, for example, Inherit: Inherit via back propagation.
When you select this option, the output data type and scaling matches that of the next
downstream block.

• A built-in data type, such as double
• An expression that evaluates to a valid data type, for example, fixdt(1,16)

For help setting data type parameters, display the Data Type Assistant by clicking the Show data

type assistant button .

 Identity Matrix

2-755

See “Control Data Types of Signals” (Simulink) for more information.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Constant

Functions
eye

Introduced before R2006a

2 Blocks

2-756

IDWT
Inverse discrete wavelet transform (IDWT) of input or reconstruct signals from subbands with smaller
bandwidths and slower sample rates

Library
Transforms

dspxfrm3

Description
The IDWT block is the same as the Dyadic Synthesis Filter Bank block in the Multirate Filters library,
but with different default settings. See the Dyadic Synthesis Filter Bank block reference page for
more information on how to use the block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

 IDWT

2-757

IFFT
Inverse fast Fourier transform (IFFT) of input
Library: DSP System Toolbox / Transforms

Description
The IFFT block computes the inverse fast Fourier transform (IFFT) across the first dimension of an N-
D input array. The block uses one of two possible FFT implementations. You can select an
implementation based on the FFTW library or an implementation based on a collection of Radix-2
algorithms. To allow the block to choose the implementation, you can select Auto. For more
information about the FFT implementations, see “Algorithms” on page 2-764.

When you specify an FFT length not equal to the length of the input vector (or first dimension of the
input array), the block implements zero-padding, truncating, or modulo-M (FFT length) data
wrapping. This occurs before the IFFT operation. For an IFFT with P ≤ M:

y = ifft(u,M) % P ≤ M

Wrapping:

y(:,L) = ifft(datawrap(u(:,L),M)) % P > M; L = 1,...,N

Truncating:

y (:,L) = ifft(u,M) % P > M; L = 1,...,N

Tip When the input length, P, is greater than the FFT length, M, you may see magnitude increases in
your IFFT output. These magnitude increases occur because the IFFT block uses modulo-M data
wrapping to preserve all available input samples.

To avoid such magnitude increases, you can truncate the length of your input sample, P, to the FFT
length, M. To do so, place a Pad block before the IFFT block in your model.

Ports
Input

Port_1 — Input signal
vector | matrix | N-D array

Input signal for computing the IFFT. The block computes the IFFT along the first dimension of the N-
D input signal. The input can be floating-point or fixed-point, real, or complex, and conjugate
symmetric.

For more information on how the block computes the IFFT, see “Description” on page 2-758 and
“Algorithms” on page 2-764.

2 Blocks

2-758

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — IFFT of input
vector | matrix | N-D array

The IFFT, computed across the first dimension of an N-D input array. For more information on how
the block computes the IFFT, see “Description” on page 2-758 and “Algorithms” on page 2-764.

The kth entry of the Lth output channel, y(k,L), is equal to the kth point of the M-point inverse
discrete Fourier transform (IDFT) of the Lth input channel:

y(k, L) = 1
M ∑

p = 1

P
u(p, L)e j2π(p− 1)(k− 1)/M k = 1, …, M

The output has the same dimensions as the input. If the input signal has a floating-point data type,
the data type of the output signal uses the same floating-point data type. Otherwise, the output can
be any signed fixed-point data type. The block computes scaled and unscaled versions of the IFFT.
Data Types: single | double | int8 | int16 | int32 | fixed point

Parameters
Main

FFT implementation — FFT implementation
Auto (default) | Radix-2 | FFTW

Set this parameter to FFTW to support an arbitrary length input signal. The block restricts generated
code with FFTW implementation to MATLAB host computers.

Set this parameter to Radix-2 for bit-reversed processing, fixed or floating-point data, or portable C-
code generation using the Simulink Coder. The dimension M of the M-by-N input matrix, must be a
power of two. To work with other input sizes, use the Pad block to pad or truncate these dimensions
to powers of two, or if possible choose the FFTW implementation. For more information about the
algorithms used by the Radix-2 mode, see “Radix-2 Implementation” on page 2-764.

Set this parameter to Auto to let the block choose the FFT implementation. For floating-point inputs
with non-power-of-two transform lengths, the FFTW algorithm is automatically chosen. Otherwise a
Radix-2 algorithm is automatically chosen. For non-power-of-two transform lengths, the block
restricts generated code to MATLAB host computers.

Input is in bit-reversed order — Input is in bit-reversed order
off (default) | on

Select or clear this check box to designate the order of the input channel elements. Select this check
box when the input is in bit-reversed order, and clear it when the input is in linear order. The block
yields invalid outputs when you do not set this parameter correctly.

You cannot select this check box if you have cleared the Inherit FFT length from input
dimensions check box, and you are specifying the FFT length using the FFT length parameter. Also,
it cannot be selected when you set the FFT implementation parameter to FFTW.

 IFFT

2-759

For more information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

Dependencies

To enable this parameter, set FFT implementation to Auto or Radix-2.

Input is conjugate symmetric — Input is conjugate symmetric
off (default) | on

Select this option when the block inputs conjugate symmetric data and you want real-valued outputs.
Selecting this check box optimizes the block's computation method.

The FFT block yields conjugate symmetric output when you input real-valued data. Taking the IFFT of
a conjugate symmetric input matrix produces real-valued output. Therefore, if the input to the block
is both floating point and conjugate symmetric, and you select this check box, the block produces
real-valued outputs.

You cannot select this check box if you have cleared the Inherit FFT length from input
dimensions check box, and you are specifying the FFT length using the FFT length parameter.

If you input conjugate symmetric data to the IFFT block and do not select this check box, the IFFT
block outputs a complex-valued signal with small imaginary parts. The block outputs invalid data if
you select this option with non conjugate symmetric input data.

Divide output by FFT length — Divide output by FFT length
on (default) | off

When you select this check box, the block computes its output according to the IDFT equation,
discussed in the Description on page 2-758 section.

When you clear this check box, the block computes the output using a modified version of the IDFT:
M ⋅ y(k, l), which is defined by the following equation:

M ⋅ y(k, l) = ∑
p = 1

P
u(p, l)e j2π(p− 1)(k− 1)/M k = 1, ..., M

The modified IDFT equation does not include the multiplication factor of 1/M.

Inherit FFT length from input dimensions — Inherit FFT length from input dimensions
on (default) | off

Select to inherit the FFT length from the input dimensions. If you do not select this parameter, the
FFT length parameter becomes available to specify the length. You cannot clear this parameter
when you select either the Input is in bit-reversed order or the Input is conjugate symmetric
parameter.

FFT length — FFT length
64 (default) | integer

Specify FFT length as an integer greater than or equal to two.

When you set the FFT implementation parameter to Radix-2, or when you check the Output in
bit-reversed order check box, this value must be a power of two.

2 Blocks

2-760

Dependencies

To enable this parameter, clear the Inherit FFT length from input dimensions check box.

Wrap input data when FFT length is shorter than input length — Wrap or truncate
the input
on (default) | off

Choose to wrap or truncate the input, depending on the FFT length. If you select this parameter,
modulo-length data wrapping occurs before the FFT operation when the FFT length is shorter than
the input length. If you clear this parameter, truncation of the input data to the FFT length occurs
before the FFT operation.
Dependencies

To enable this parameter, clear the Inherit FFT length from input dimensions check box.

Data Types

Rounding mode — Rounding method
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations.
Limitations

The sine table values do not obey this parameter; instead, they always round to Nearest.

The Rounding mode parameter has no effect on numeric results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in full-precision mode.

Saturate on integer overflow — Saturate on integer overflow
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.
Limitations

The Saturate on integer overflow parameter has no effect on numeric results when all these
conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in full-precision mode.

Sine table — Data type of sine table values
Inherit: Same word length as input (default) | fixdt(1,16)

Choose how you specify the word length of the values of the sine table. The fraction length of the sine
table values always equals the word length minus one. You can set this parameter to:

 IFFT

2-761

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16)

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Sine table parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.
Limitations

The sine table values do not obey the Rounding mode and Saturate on integer overflow
parameters; instead, they are always saturated and rounded to Nearest.

Product output — Product output data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt(1,16,0)

Specify the product output data type. See “Fixed Point” on page 2-766 and “Multiplication Data
Types” for illustrations depicting the use of the product output data type in this block. You can set
this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Accumulator — Accumulator data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | fixdt(1,16,0)

Specify the accumulator data type. See “Fixed Point” on page 2-766 for illustrations depicting the
use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) for more information.

Output — Output data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt(1,16,0)

Specify the output data type. See “Fixed Point” on page 2-766 for illustrations depicting the use of
the output data type in this block. You can set this parameter to:

2 Blocks

2-762

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the block calculates the output
word length and fraction length automatically. The equations that the block uses to calculate the
ideal output word length and fraction length depend on the setting of the Divide output by FFT
length check box.

• When you select the Divide output by FFT length check box, the ideal output word and
fraction lengths are the same as the input word and fraction lengths.

• When you clear the Divide output by FFT length check box, the block computes the ideal
output word and fraction lengths according to the following equations:

WLidealoutput = WLinput + floor(log2(FFTlength− 1)) + 1

FLidealoutput = FLinput

Using these ideal results, the internal rule then selects word lengths and fraction lengths that are
appropriate for your hardware. For more information, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which helps
you set the Output parameter.

See “Control Data Types of Signals” (Simulink) for more information.

Output Minimum — Minimum value block should output
[] (default) | scalar

Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Output Maximum — Maximum value block should output
[] (default) | scalar

Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

 IFFT

2-763

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals limiteda

Zero-Crossing
Detection

no

a. Variable-size signals are only supported when the Inherit FFT length from input dimensions checkbox is selected.

Algorithms
FFTW Implementation

The FFTW implementation provides an optimized FFT calculation including support for power-of-two
and non-power-of-two transform lengths in both simulation and code generation. Generated code
using the FFTW implementation will be restricted to MATLAB host computers. The data type must be
floating-point. Refer to Simulink Coder for more details on generating code.

Radix-2 Implementation

The Radix-2 implementation supports bit-reversed processing, fixed or floating-point data, and allows
the block to provide portable C-code generation using the Simulink Coder. The dimension M of the M-
by-N input matrix must be a power of two. To work with other input sizes, use the Pad block to pad or
truncate these dimensions to powers of two, or if possible choose the FFTW implementation.

With Radix-2 selected, the block implements one or more of the following algorithms:

• Butterfly operation
• Double-signal algorithm
• Half-length algorithm
• Radix-2 decimation-in-time (DIT) algorithm
• Radix-2 decimation-in-frequency (DIF) algorithm

Radix-2 Algorithms for Real or Complex Input Complexity

Parameter Settings Algorithms Used for IFFT Computation
Bit-reversal operation and radix-2 DIT

Radix-2 DIT

Bit-reversal operation and radix-2 DIT in conjunction
with the half-length and double-signal algorithms

2 Blocks

2-764

Parameter Settings Algorithms Used for IFFT Computation
Radix-2 DIT in conjunction with the half-length and
double-signal algorithms

Radix-2 Optimization for the Table of Trigonometric Values

In certain situations, the block’s Radix–2 algorithm computes all the possible trigonometric values of
the twiddle factor

e j2πk
K

where K is the greater value of either M or N and k = 0,⋯, K − 1. The block stores these values in a
table and retrieves them during simulation. The number of table entries for fixed-point and floating-
point is summarized in the following table:

Number of Table Entries for N-Point FFT
floating-point 3N/4
fixed-point N

References
[1] Orfanidis, S. J. Introduction to Signal Processing. Upper Saddle River, NJ: Prentice Hall, 1996, p.

497.

[2] Proakis, John G. and Dimitris G. Manolakis. Digital Signal Processing, 3rd ed. Upper Saddle River,
NJ: Prentice Hall, 1996.

[3] FFTW (http://www.fftw.org)

[4] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the FFT,”Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp.
1381-1384.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• When the following conditions apply, the executable generated from this block relies on prebuilt
dynamic library files (.dll files) included with MATLAB:

• FFT implementation is set to FFTW.
• Inherit FFT length from input dimensions is cleared, and FFT length is set to a value that

is not a power of two.

Use the packNGo function to package the code generated from this block and all the relevant files
in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your project in
another development environment where MATLAB is not installed. For more details, see “How To
Run a Generated Executable Outside MATLAB”.

 IFFT

2-765

http://www.fftw.org

• When the FFT length is a power of two, you can generate standalone C and C++ code from this
block.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The following diagrams show the data types used within the IFFT block for fixed-point signals. You
can set the sine table, accumulator, product output, and output data types displayed in the diagrams
in the IFFT block dialog box, as discussed in “Parameters” on page 2-759.

The IFFT block first casts input to the output data type and then stores it in the output buffer. Each
butterfly stage then processes signals in the accumulator data type, with the final output of the
butterfly being cast back into the output data type. The block multiplies in a twiddle factor before
each butterfly stage in a decimation-in-time IFFT, and after each butterfly stage in a decimation-in-
frequency IFFT.

The output of the multiplier is in the accumulator data type because both of the inputs to the
multiplier are complex. For details on the complex multiplication performed, see “Multiplication Data
Types”.

Note When the block input is fixed point, all internal data types are signed fixed point.

2 Blocks

2-766

See Also
Objects
dsp.IFFT | dsp.FFT

Functions
bitrevorder | fft | ifft

Blocks
FFT | IDCT | Pad

Topics
“Linear and Bit-Reversed Output Order”

Introduced before R2006a

 IFFT

2-767

IIR Halfband Interpolator
Interpolate signal using polyphase IIR halfband filter

Library
Filtering/Filter Designs

dspfdesign

Description
The IIR Halfband Interpolator block performs efficient polyphase interpolation of the input signal by a
factor of two. To design the halfband filter, you can specify the block to use an elliptic design or a
quasi-linear phase design. The block uses these design methods to compute the filter coefficients. To
filter the inputs, the block uses a polyphase structure. The allpass filters in the polyphase structure
are in a minimum multiplier form.

Elliptic design introduces nonlinear phase and creates the filter using fewer coefficients than quasi
linear design. Quasi-linear phase design overcomes phase nonlinearity at the cost of additional
coefficients.

Alternatively, instead of designing the halfband filter using a design method, you can specify the filter
coefficients directly. When you choose this option, the allpass filters in the two branches of the
polyphase implementation can be in a minimum multiplier form or in a wave digital form.

You can also use the block to implement the synthesis portion of a two-band filter bank to synthesize
a signal from lowpass and highpass subbands.

The input signal can be a real- or complex-valued column vector or matrix. If the input signal is a
matrix, each column of the matrix is treated as an independent channel.

Parameters
Filter specification

Parameters used to design the IIR halfband filter. Because the filter design has only two degrees
of freedom, you can specify only two of the three parameters:

• Transition width and stopband attenuation (default) — Design the filter using
Transition width (Hz) and Stopband attenuation (dB). This design is the minimum order
design.

• Filter order and transition width — Design the filter using Filter order and
Transition width (Hz).

• Filter order and stopband attenuation — Design the filter using Filter order and
Stopband attenuation (dB).

2 Blocks

2-768

• Coefficients— Specify the filter coefficients directly using the enabled parameters.

Transition width (Hz)
Transition width of the IIR halfband filter, specified as a real positive scalar in Hz. The transition
width must be less than half the input sample rate.This parameter applies when Filter
specification is set to Filter order and transition width or Transition width and
stopband attenuation. The default is 4.1e3.

Filter order
Filter order, specified as a finite positive integer. If you set Design method to Elliptic, then
Filter order must be an odd integer greater than one. If you set Design method to Quasi-
linear phase, then Filter order must be a multiple of four. This parameter applies when Filter
specification is set to Filter order and transition width or Filter order and
stopband attenuation. The default is 9.

Stopband attenuation (dB)
Minimum attenuation needed in the stopband of the IIR halfband filter, specified as a real positive
scalar in dB. This parameter applies when Filter specification is set to Filter order and
stopband attenuation or Transition width and stopband attenuation. The default
is 80.

Design method
Design method for the IIR halfband filter.

• Elliptic (default) — The filter has nonlinear phase and uses few coefficients.
• Quasi-linear phase — The first branch of the polyphase filter structure is a pure delay,

which results in an approximately linear phase response.

This parameter applies when you set Filter specification to any option except Coefficients.
Internal allpass structure

Internal allpass filter implementation structure, specified as Minimum multiplier or Wave
Digital Filter. This parameter applies when you set Filter specification to Coefficients.
Each structure uses a different coefficients set, independently stored in the corresponding
coefficients property. The default is Minimum multiplier.

Make the first branch a pure delay
When you select this check box, the first branch of the polyphase filter structure becomes a pure
delay, and the Branch 1 allpass polynomial coefficients and Branch 1 Wave Digital
coefficients parameters do not apply. This parameter applies when you set Filter specification
to Coefficients.

By default, this check box is selected.
Delay length in samples for branch 1

Length of the first branch delay, specified as a finite positive scalar. This parameter applies when
you set Filter specification to Coefficients and select Make the first branch a pure delay.
The default is 1.

Specify coefficients from input port
When you select this check box, the branch 1 allpass polynomial coefficients and branch 2 allpass
polynomial coefficients are input through the input ports coeffs1 and coeffs2. When you clear
this check box, the coefficients are specified on the block dialog through the Branch 1 allpass
polynomial coefficients and Branch 2 allpass polynomial coefficients parameters.

 IIR Halfband Interpolator

2-769

This parameter applies when you set Filter specification to Coefficients and Internal
allpass structure to Minimum multiplier.

Branch 1 allpass polynomial coefficients
Allpass polynomial filter coefficients of the first branch, specified as an N-by-1 or N-by-2 matrix of
N first-order or second-order allpass sections. This parameter applies only when you set Filter
specification to Coefficients and Internal allpass structure to Minimum multiplier. The
default is [0.1284563; 0.7906755].

This parameter applies when you set Filter specification to Coefficients, set Internal
allpass structure to Minimum multiplier, and clear the Specify coefficients from input
port parameter.

This parameter is tunable. That is, you can change its value during simulation.
Branch 2 allpass polynomial coefficients

Allpass polynomial filter coefficients of the second branch, specified as an N-by-1 or N-by-2
matrix of N first-order or second-order allpass sections. This parameter applies only when you set
Filter specification to Coefficients and Internal allpass structure to Minimum
multiplier. The default is 0.4295667.

This parameter applies when you set Filter specification to Coefficients, set Internal
allpass structure to Minimum multiplier, and clear the Specify coefficients from input
port parameter.

This parameter is tunable. That is, you can change its value during simulation.
Branch 1 Wave Digital coefficients

Allpass filter coefficients of the first branch in Wave Digital Filter form, specified as an N-by-1 or
N-by-2 matrix of N first-order or second-order allpass sections. This parameter applies only when
you set Filter specification to Coefficients and Internal allpass structure to Wave
Digital Filter. The default is [0.1284563; 0.7906755].

This parameter applies when you set Filter specification to Coefficients and Internal
allpass structure to Wave Digital Filter.

Branch 2 Wave Digital coefficients
Allpass filter coefficients of the second branch in Wave Digital Filter form, specified as an N-by-1
or N-by-2 matrix of N first-order or second-order allpass sections. This parameter applies only
when you set Filter specification to Coefficients and Internal allpass structure to Wave
Digital Filter. The default is 0.4295667.

This parameter applies when you set Filter specification to Coefficients and Internal
allpass structure to Wave Digital Filter.

Last section of branch 2 is first order
When you select this check box, the last section of the second branch is treated as a first order
section. This parameter applies only when you set Filter specification to Coefficients. When
the coefficients of the second branch are in an N-by-2 matrix, the block ignores the second
element of the last row of the matrix. The last section of the second branch then becomes a first-
order section.

When this check box is cleared, the last section of the second branch is treated as a second-order
section. When the coefficients of the second branch are in an N-by-1 matrix, the block ignores
this parameter.

2 Blocks

2-770

By default, this check box is cleared.
Input highpass subband

When you select this check box, the block acts as a synthesis filter bank. The block accepts two
inputs to synthesize: lowpass and highpass subbands. When you clear this check box, the block
acts as an IIR half band interpolator and accepts a single vector or matrix as input. By default,
this check box is cleared.

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input signal. The block
calculates the sample rate based on the sample time of the input port. When you clear this check
box, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz)
Input sample rate, specified as a scalar in Hz. The default is 44100. You can specify an input
sample rate when the Inherit sample rate from input check box is cleared.

View Filter Response
Opens the Filter Visualization Tool FVTool and displays the magnitude/phase response of the IIR
Halfband Interpolator. The response is based on the block dialog box parameters. Changes made
to these parameters update FVTool.

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

Simulate using
Type of simulation to run. You can set this parameter to:

 IIR Halfband Interpolator

2-771

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

See Also
dsp.IIRHalfbandInterpolator DSP System

Toolbox
dsp.IIRHalfbandDecimator DSP System

Toolbox
IIR Halfband Decimator DSP System

Toolbox
FIR Halfband Interpolator DSP System

Toolbox
FIR Halfband Decimator DSP System

Toolbox

Algorithms
This block brings the capabilities of the dsp.IIRHalfbandInterpolator System object to the
Simulink environment.

For information on the algorithms used by this block, see the Algorithms on page 4-842 section of
dsp.IIRHalfbandInterpolator.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2015b

2 Blocks

2-772

IIR Halfband Decimator
Decimate signal using polyphase IIR halfband filter

Library
Filtering/Filter Designs

dspfdesign

Description
The IIR Halfband Decimator block performs polyphase decimation of the input signal by a factor of
two. To design the halfband filter, you can specify the block to use an elliptic design or a quasi-linear
phase design. The block uses these design methods to compute the filter coefficients. To filter the
inputs, the block uses a polyphase structure. The allpass filters in the polyphase structure are in a
minimum multiplier form.

Elliptic design introduces nonlinear phase and creates the filter using fewer coefficients than quasi
linear design. Quasi-linear phase design overcomes phase nonlinearity at the cost of additional
coefficients.

Alternatively, instead of designing the halfband filter using a design method, you can specify the filter
coefficients directly. When you choose this option, the allpass filters in the two branches of the
polyphase implementation can be in a minimum multiplier form or in a wave digital form.

You can also use the block to implement the analysis portion of a two-band filter bank to filter a signal
into lowpass and highpass subbands.

The input signal can be a real- or complex-valued column vector or matrix. If the input signal is a
matrix, each column of the matrix is treated as an independent channel. The number of rows in the
input signal must be a multiple of 2.

Parameters
Filter specification

Parameters used to design the IIR halfband filter. Because the filter design has only two degrees
of freedom, you can specify only two of the three parameters:

• Transition width and stopband attenuation (default) — Design the filter using
Transition width (Hz) and Stopband attenuation (dB). This design is the minimum order
design.

• Filter order and transition width — Design the filter using Filter order and
Transition width (Hz).

• Filter order and stopband attenuation — Design the filter using Filter order and
Stopband attenuation (dB).

 IIR Halfband Decimator

2-773

• Coefficients— Specify the filter coefficients directly using the enabled parameters.

Transition width (Hz)
Transition width of the IIR halfband filter, specified as a real positive scalar in Hz. The transition
width must be less than half the input sample rate. This parameter applies when Filter
specification is set to Filter order and transition width or Transition width and
stopband attenuation. The default is 4.1e3.

Filter order
Filter order, specified as a finite positive integer. If you set Design method to Elliptic, then
Filter order must be an odd integer greater than one. If you set Design method to Quasi-
linear phase, then Filter order must be a multiple of four. This parameter applies when Filter
specification is set to Filter order and transition width or Filter order and
stopband attenuation. The default is 9.

Stopband attenuation (dB)
Minimum attenuation needed in the stopband of the IIR halfband filter, specified as a real positive
scalar in dB. This parameter applies when Filter specification is set to Filter order and
stopband attenuation or Transition width and stopband attenuation. The default
is 80.

Design method
Design method for the IIR halfband filter.

• Elliptic (default) — The filter has nonlinear phase and uses few coefficients.
• Quasi-linear phase — The first branch of the polyphase filter structure is a pure delay,

which results in an approximately linear phase response.

This parameter applies when you set Filter specification to any option except Coefficients.
Internal allpass structure

Internal allpass filter implementation structure, specified as Minimum multiplier or Wave
Digital Filter. This parameter applies when you set Filter specification to Coefficients.
Each structure uses a different coefficients set, independently stored in the corresponding
coefficients property. The default is Minimum multiplier.

Make the first branch a pure delay
When you select this check box, the first branch of the polyphase filter structure becomes a pure
delay, and the Branch 1 allpass polynomial coefficients and Branch 1 Wave Digital
coefficients parameters do not apply. This parameter applies when you set Filter specification
to Coefficients.

By default, this check box is selected.
Delay length in samples for branch 1

Length of the first branch delay, specified as a finite positive scalar. This parameter applies when
you set Filter specification to Coefficients and select Make the first branch a pure delay.
The default is 1.

Specify coefficients from input port
When you select this check box, the branch 1 allpass polynomial coefficients and branch 2 allpass
polynomial coefficients are input through the input ports coeffs1 and coeffs2. When you clear
this check box, the coefficients are specified on the block dialog through the Branch 1 allpass
polynomial coefficients and Branch 2 allpass polynomial coefficients parameters.

2 Blocks

2-774

This parameter applies when you set Filter specification to Coefficients and Internal
allpass structure to Minimum multiplier.

Branch 1 allpass polynomial coefficients
Allpass polynomial filter coefficients of the first branch, specified as an N-by-1 or N-by-2 matrix of
N first-order or second-order allpass sections. This parameter applies only when you set Filter
specification to Coefficients and Internal allpass structure to Minimum multiplier. The
default is [0.1284563; 0.7906755].

This parameter applies when you set Filter specification to Coefficients, set Internal
allpass structure to Minimum multiplier, and clear the Specify coefficients from input
port parameter.

This parameter is tunable. That is, you can change its value during simulation.
Branch 2 allpass polynomial coefficients

Allpass polynomial filter coefficients of the second branch, specified as an N-by-1 or N-by-2
matrix of N first-order or second-order allpass sections. This parameter applies only when you set
Filter specification to Coefficients and Internal allpass structure to Minimum
multiplier. The default is 0.4295667.

This parameter applies when you set Filter specification to Coefficients, set Internal
allpass structure to Minimum multiplier, and clear the Specify coefficients from input
port parameter.

This parameter is tunable. That is, you can change its value during simulation.
Branch 1 Wave Digital coefficients

Allpass filter coefficients of the first branch in Wave Digital Filter form, specified as an N-by-1 or
N-by-2 matrix of N first-order or second-order allpass sections. This parameter applies only when
you set Filter specification to Coefficients and Internal allpass structure to Wave
Digital Filter. The default is [0.1284563; 0.7906755].

This parameter applies when you set Filter specification to Coefficients and Internal
allpass structure to Wave Digital Filter.

Branch 2 Wave Digital coefficients
Allpass filter coefficients of the second branch in Wave Digital Filter form, specified as an N-by-1
or N-by-2 matrix of N first-order or second-order allpass sections. This parameter applies only
when you set Filter specification to Coefficients and Internal allpass structure to Wave
Digital Filter. The default is 0.4295667.

This parameter applies when you set Filter specification to Coefficients and Internal
allpass structure to Wave Digital Filter.

Last section of branch 2 is first order
When you select this check box, the last section of the second branch is treated as a first order
section. This parameter applies only when you set Filter specification to Coefficients. When
the coefficients of the second branch are in an N-by-2 matrix, the block ignores the second
element of the last row of the matrix. The last section of the second branch then becomes a first-
order section.

When this check box is cleared, the last section of the second branch is treated as a second-order
section. When the coefficients of the second branch are in an N-by-1 matrix, the block ignores
this parameter.

 IIR Halfband Decimator

2-775

By default, this check box is cleared.
Output highpass subband

When you select this check box, the block acts as an analysis filter bank, producing two power-
complementary outputs. When you clear this check box, the block acts as an IIR halfband
decimator and accepts a single vector or matrix as input. By default, this check box is cleared.

Inherit sample rate from input
When you select this check box, the block inherits its sample rate from the input signal. The block
calculates the sample rate based on the sample time of the input port. When you clear this check
box, you specify the sample rate in Input sample rate (Hz).

This parameter applies when you set Filter specification to any option except Coefficients.
Input sample rate (Hz)

Input sample rate, specified as a scalar in Hz. The default is 44100. You can specify an input
sample rate when the Inherit sample rate from input check box is cleared.

View Filter Response
Opens the Filter Visualization Tool FVTool and displays the magnitude/phase response of the IIR
Halfband Decimator. The response is based on the block dialog box parameters. Changes made to
these parameters update FVTool.

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

Simulate using
Type of simulation to run. You can set this parameter to:

2 Blocks

2-776

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

See Also
dsp.IIRHalfbandInterpolator DSP System

Toolbox
dsp.IIRHalfbandDecimator DSP System

Toolbox
IIR Halfband Interpolator DSP System

Toolbox
FIR Halfband Interpolator DSP System

Toolbox
FIR Halfband Decimator DSP System

Toolbox

Algorithms
This block brings the capabilities of the dsp.IIRHalfbandDecimator System object to the Simulink
environment.

For information on the algorithms used by this block, see the Algorithms on page 4-828 section of
dsp.IIRHalfbandDecimator.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2015b

 IIR Halfband Decimator

2-777

Inherit Complexity
Change complexity of input to match reference signal

Library
Signal Management / Signal Attributes

dspsigattribs

Description
The Inherit Complexity block alters the input data at the Data port to match the complexity of the
reference input at the Ref port. When the Data input is real, and the Ref input is complex, the block
appends a zero-valued imaginary component, 0i, to each element of the Data input.

When the Data input is complex, and the Ref input is real, the block outputs the real component of
the Data input.

When both the Data input and Ref input are real, or when both the Data input and Ref input are
complex, the block propagates the Data input with no change.

2 Blocks

2-778

Supported Data Types
Port Supported Data Types
Data • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Ref • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Check Signal Attributes DSP System Toolbox
Complex to Magnitude-Angle Simulink
Complex to Real-Imag Simulink
Magnitude-Angle to Complex Simulink
Real-Imag to Complex Simulink

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 Inherit Complexity

2-779

Integer Delay (Obsolete)
Delay input by integer number of sample periods

Library
dspobslib

Description

Note The Integer Delay block will be removed from the product in a future release. We strongly
recommend replacing this block with the Delay block.

The Integer Delay block delays a discrete-time input by the number of sample intervals specified in
the Delay parameter. Noninteger delay values are rounded to the nearest integer, and negative
delays are clipped at 0.

Sample-Based Operation

When the input is a sample-based M-by-N matrix, the block treats each of the M*N matrix elements
as an independent channel. The Delay parameter, v, can be an M-by-N matrix of positive integers
that specifies the number of sample intervals to delay each channel of the input, or a scalar integer
by which to equally delay all channels.

For example, when the input is M-by-1 and v is the matrix [v(1) v(2) ... v(M)]', the first
channel is delayed by v(1) sample intervals, the second channel is delayed by v(2) sample intervals,
and so on. Note that when a channel is delayed for Δ sample-time units, the output sample at time t is
the input sample at time t – Δ. When t – Δ is negative, then the output is the corresponding value
specified by the Initial conditions parameter.

A 1-D vector of length M is treated as an M-by-1 matrix, and the output is 1-D.

The Initial conditions parameter specifies the output of the block during the initial delay in each
channel. The initial delay for a particular channel is the time elapsed from the start of the simulation
until the first input in that channel is propagated to the output. Both fixed and time-varying initial
conditions can be specified in a variety of ways to suit the dimensions of the input.

Fixed Initial Conditions

A fixed initial condition in sample-based mode can be specified as one of the following:

• Scalar value to be repeated at each sample time of the initial delay (for every channel). For a 2-
by-2 input with the parameter settings below,

2 Blocks

2-780

the block generates the following sequence of matrices at the start of the simulation,

−1 −1
−1 −1

, u11
1 −1
−1 −1

, u11
2 u12

1

−1 −1
,

u11
3 u12

2

u21
1 −1

,
u11

4 u12
3

u21
2 u22

1
, ...

where ui j
k is the i,jth element of the kth matrix in the input sequence.

• Array of size M-by-N-by-d. In this case, you can set different fixed initial conditions for each
element of a sample-based input. This setting is explained further in the Array bullet in “Time-
Varying Initial Conditions” on page 2-781.

Initial conditions cannot be specified by full matrices.

Time-Varying Initial Conditions

A time-varying initial condition in sample-based mode can be specified in one of the following ways:

• Vector of length d, where d is the maximum value specified for any channel in the Delay
parameter. The vector can be a L-by-d, 1-by-d, or 1-by-1-by-d. The d elements of the vector are
output in sequence, one at each sample time of the initial delay.

For a scalar input and the parameters shown below,

the block outputs the sequence -1, -1, -1, 0, 1,... at the start of the simulation.
• Array of dimension M-by-N-by-d, where d is the value specified for the Delay parameter (the

maximum value when the Delay is a vector) and M and N are the number of rows and columns,
respectively, in the input matrix. The d pages of the array are output in sequence, one at each
sample time of the initial delay. For a 2-by-3 input, and the parameters below,

the block outputs the matrix sequence

1 2 3
4 5 6

,
2 4 6
1 3 5

,
3 6 9
0 4 8

at the start of the simulation. Note that setting Initial conditions to an array with the same
matrix for each entry implements constant initial conditions; a different constant initial condition
for each input matrix element (channel).

 Integer Delay (Obsolete)

2-781

Initial conditions cannot be specified by full matrices.

Frame-Based Operation

When the input is a frame-based M-by-N matrix, the block treats each of the N columns as an
independent channel, and delays each channel as specified by the Delay parameter.

For frame-based inputs, the Delay parameter can be a scalar integer by which to equally delay all
channels. It can also be a 1-by-N row vector, each element of which serves as the delay for the
corresponding channel of the N-channel input. Likewise, it can also be an M-by-1 column vector, each
element of which serves as the delay for one of the corresponding M samples for each channel. The
Delay parameter can be an M-by-N matrix of positive integers as well; in this case, each element of
each channel is delayed by the corresponding element in the delay matrix. For instance, if the fifth
element of the third column of the delay matrix was 3, then the fifth element of the third channel of
the input matrix is always delayed by three sample-time units.

When a channel is delayed for Δ sample-time units, the output sample at time t is the input sample at
time t – Δ. When t – Δ is negative, then the output is the corresponding value specified in the Initial
conditions parameter.

The Initial conditions parameter specifies the output during the initial delay. Both fixed and time-
varying initial conditions can be specified. The initial delay for a particular channel is the time
elapsed from the start of the simulation until the first input in that channel is propagated to the
output.

Fixed Initial Conditions

The settings shown below specify fixed initial conditions. The value entered in the Initial conditions
parameter is repeated at the output for each sample time of the initial delay. A fixed initial condition
in frame-based mode can be one of the following:

• Scalar value to be repeated for all channels of the output at each sample time of the initial delay.
For a general M-by-N input with the parameter settings below,

the first five samples in each of the N channels are zero. Notice that when the frame size is larger
than the delay, all of these zeros are all included in the first output from the block.

• Array of size 1-by-N-by-D. In this case, you can also specify different fixed initial conditions for
each channel. See “Time-Varying Initial Conditions” on page 2-782 for details.

Initial conditions cannot be specified by full matrices.

Time-Varying Initial Conditions

The following settings specify time-varying initial conditions. For time-varying initial conditions, the
values specified in the Initial conditions parameter are output in sequence during the initial delay.
A time-varying initial condition in frame-based mode can be specified in the following ways:

• Vector of length D, where each of the N channels have the same initial conditions sequence
specified in the vector. D is defined as follows:

2 Blocks

2-782

• When an element of the delay entry is less than the frame size,

D = d + 1

where d is the maximum delay.
• When the all elements of the delay entry are greater than the input frame size,

D = d + input frame size - 1

Only the first d entries of the initial condition vector are used; the rest of the values are ignored,
but you must include them nonetheless. For a two-channel ramp input [1:100; 1:100]' with a
frame size of 4 and the parameter settings below,

the block outputs the following sequence of frames at the start of the simulation.

‐4 ‐1
‐5 ‐2
1 ‐3
2 ‐4

,

3 ‐5
4 1
5 2
6 3

,

7 4
8 5
9 6
10 7

, ...

Note that since one of the delays, 2, is less than the frame size of the input, 4, the length of the
Initial conditions vector is the sum of the maximum delay and 1 (5+1), which is 6. The first five
entries of the initial conditions vector are used by the channel with the maximum delay, and the
rest of the entries are ignored. Since the first channel is delayed for less than the maximum delay
(2 sample time units), it only makes use of two of the initial condition entries.

• Array of size 1-by-N-by-D, where D is defined in “Time-Varying Initial Conditions” on page 2-782.
In this case, the kth entry of each 1-by-N entry in the array corresponds to an initial condition for
the kth channel of the input matrix. Thus, a 1-by-N-by-D initial conditions input allows you to
specify different initial conditions for each channel. For instance, for a two-channel ramp input
[1:100; 1:100]' with a frame size of 4 and the parameter settings below,

the block outputs the following sequence of frames at the start of the simulation.

‐1 ‐2
‐3 ‐4
‐5 ‐6
‐7 ‐8

,

−9 −10
1 1
2 2
3 3

,

4 4
5 5
6 6
7 7

, ...

Note that the channels have distinct time varying initial conditions; the initial conditions for
channel 1 correspond to the first entry of each length-2 row vector in the initial conditions array,
and the initial conditions for channel 2 correspond to the second entry of each row vector in the

 Integer Delay (Obsolete)

2-783

initial conditions array. Only the first five entries in the initial conditions array are used; the rest
are ignored.

The 1-by-N-by-D array entry can also specify different fixed initial conditions for every channel; in
this case, every 1-by-N entry in the array would be identical, so that the initial conditions for each
column are fixed over time.

Initial conditions cannot be specified by full matrices.

Resetting the Delay

The block resets the delay whenever it detects a reset event at the optional Rst port. The reset
sample time must be a positive integer multiple of the input sample time.

You specify the reset event in the Reset port parameter:

• None disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero (see the following figure)

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero (see the following figure)

2 Blocks

2-784

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge (as described above).

• Non-zero sample — Triggers a reset operation at each sample time that the Rst input is not
zero.

Note When running simulations in the Simulink MultiTasking mode, sample-based reset
signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus,
there is a one-sample or one-frame delay between the time the block detects a reset event, and
when it applies the reset. For more information on latency and the Simulink tasking modes, see
“Excess Algorithmic Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation”
(Simulink Coder).

Parameters
Delay

The number of sample periods to delay the input signal.
Initial conditions

The value of the block's output during the initial delay.
Reset port

Determines the reset event that causes the block to reset the delay. For more information, see
“Resetting the Delay” on page 2-784.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• Boolean — The block accepts Boolean inputs to the Rst port, which is enabled by the Reset port

parameter.
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Unit Delay Simulink
Variable Fractional Delay DSP System Toolbox
Variable Integer Delay Simulink

Introduced in R2008b

 Integer Delay (Obsolete)

2-785

Interpolation
Interpolate values of real input samples
Library: DSP System Toolbox / Signal Operations

Description
The Interpolation block interpolates discrete, real inputs by using linear or FIR interpolation. The
block accepts a vector, a matrix, or an N-D array. The block outputs a scalar, a vector, a matrix, or an
N-D array of the interpolated values.

You must specify the interpolation points, the times at which to interpolate values in a one-based
interpolation array IPts. An entry of 1 in IPts refers to the first sample of the input data, an entry of 2.5
refers to the sample halfway between the second and third input sample, and so on. Depending on the
dimensions of the input data, IPts can be a scalar, a length-P row, or a column vector, a P-by-N matrix,
or an N-D array where P is the size of the first dimension of the N-D array. In most cases, P can be
any positive integer. For more information about valid interpolation arrays, refer to the tables in “Pts”
on page 2-0 and “Interpolation points” on page 2-0 .

In most cases, the block applies IPts across the first dimension of an N-D input array or to each input
vector. You can set the block to apply the same interpolation array for all input data, static
interpolation points entered on the block mask, or to use a different interpolation array for each N-D
array, matrix, or vector input, time-varying interpolation points received through the Pts input port.

Ports
Input

In — Input signal
scalar | vector | matrix | N-D array

Input signal, specified as a scalar, vector, matrix, or N-D array.

This port is unnamed until Source of interpolation points is set to Input port.
Data Types: single | double

Pts — Interpolation points
scalar | vector | matrix | N-D array

Interpolation points, specified as a scalar, vector, matrix, or N-D array.

For more details on the block's behavior when the Source of interpolation points parameter
is set to Input port, see “How the Block Applies Interpolation Arrays to Inputs” on page 2-789.
Dependencies

This port is unavailable until Source of interpolation points is set to Input port.

2 Blocks

2-786

Data Types: single | double

Output

Out — Output signal
scalar | vector | matrix | N-D array

Output signal, specified as a vector, matrix, or N-D array.

This port is unnamed until Source of interpolation points is set to Input port.
Data Types: single | double

Parameters
Source of interpolation points — Interpolation point input method
Specify via dialog (default) | Input port

Choose how you want to specify the interpolation points:

• Specify via dialog –– The Interpolation points parameter becomes available. Use this
option for static interpolation points.

• Input port –– The Pts port appears on the block. The block uses the input to this port as the
interpolation points. Use this option for time-varying interpolation points.

For more information, see “Specifying Static Interpolation Points” on page 2-789 and “Specifying
Time-Varying Interpolation Points” on page 2-789.

Interpolation points — Interpolation points
[1.1 4.8 2.67 1.6 3.2]' (default) | scalar | vector | matrix | N-D array

The array of points in time at which to interpolate the input signal (IPts). An entry of 1 in IPts refers to
the first sample of the input, an entry of 2.5 refers to the sample halfway between the second and
third input sample, and so on. See “How the Block Applies Interpolation Arrays to Inputs” on page 2-
789.

Tunable: Yes

Dependencies

This parameter becomes available only when the Source of interpolation points is set to
Specify via dialog. For more information, see “Specifying Static Interpolation Points” on page 2-
789.

Interpolation mode — Interpolation mode
Linear (default) | FIR

Sets the block to interpolate by either Linear or FIR interpolation. For more information, see
“Linear Interpolation Mode” on page 2-791 and “FIR Interpolation Mode” on page 2-792.

Interpolation filter half-length — Half length of FIR interpolation filter
3 (default) | positive integer

Specify the half-length of the FIR interpolation filter (P). To perform the interpolation in FIR mode,
the block uses the nearest 2×P low-rate samples. In most cases, P low-rate samples must appear

 Interpolation

2-787

below and above each interpolation point. If you interpolate at a low-rate sample point, the block
includes that low-rate sample in the required 2*P samples and requires only 2*P–1 neighboring low-
rate samples. If an interpolation point does not have the required number of neighboring low-rate
samples, the block interpolates that point using linear interpolation.

Dependencies

This parameter becomes available only when the Interpolation mode is set to FIR. For more
information, see “FIR Interpolation Mode” on page 2-792.

Interpolation points per input sample — Interpolation points per sample
3 (default)

Number of points per input sample, upsampling factor (L), at which the block computes a unique FIR
interpolation filter. To perform the FIR interpolation, the block uses a polyphase structure that has L
filter arms of length 2*P.

For example, if L=4, the block constructs a polyphase filter with four arms. The block then
interpolates at points corresponding to 1 +i/L, 2 +i/L, 3 +i/L..., where the integers 1, 2, and 3
represent the low-rate samples, and i=0,1,2,3. To interpolate at a point that does not directly
correspond to an arm of the polyphase filter requires an extra computation. The block first rounds
that point down to the nearest value that does correspond to an arm of the polyphase filter. To
interpolate at the point 2.2, the block rounds 2.2 down to 2, and computes the FIR interpolation by
using the first arm of the polyphase filter structure. Similarly, to interpolate the point 2.65, the block
rounds the value down to 2.5 and uses the third arm of the polyphase filter structure.

Dependencies

This parameter becomes available only when the Interpolation mode is set to FIR. For more
information, see “FIR Interpolation Mode” on page 2-792.

Normalized input bandwidth — Normalized input bandwidth
0.5 (default) | scalar in (0 1]

The bandwidth of the input divided by Fs/2 (half the input sample frequency), specified as a scalar in
the range (0 1].

Dependencies

This parameter becomes available only when the Interpolation mode is set to FIR. For more
information, see “FIR Interpolation Mode” on page 2-792.

Out of range interpolation points — Error handling for out-of-range points
Clip (default) | Clip and warn | Error

Valid values in the interpolation array IPts range from 1 to the number of samples in each channel of
the input. For instance, given a length-5 input vector D, all entries of IPts must range from 1 to 5. IPts
cannot contain entries such as 7 or -9 because there is no 7th or -9th entry in D.

The Out of range interpolation points parameter sets how the block handles interpolation points
that are fall outside the valid range. The parameter has these settings:

• Clip — The block replaces any out-of-range values in IPts with the closest value in the valid range
(from 1 to the number of input samples), and then proceeds with computations by using the
clipped version of IPts.

2 Blocks

2-788

• Clip and warn — In addition to Clip, the block issues a warning at the MATLAB command line
every time clipping occurs.

• Error — When the block encounters an out-of-range value in IPts, the simulation stops, and the
block issues an error at the MATLAB command line.

As an example of clipping, suppose the block is set to clip out-of-range interpolation points and gets
these input vector and interpolation points:

• D = [11 22 33 44]'
• IPts = [10 2.6 -3]'

Because D has four samples, valid interpolation points range from 1 to 4. The block clips the
interpolation point 10 to 4 and the point -3 to 1, resulting in the clipped interpolation vector
IPtsClipped = [4 2.6 1]'.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Specifying Static Interpolation Points

To supply the block with a static interpolation array, that is an interpolation array applied to every
vector or N-D array of input data), perform the following steps:

1 Set the Source of interpolation points parameter to Specify via dialog.
2 Enter the interpolation array in the Interpolation points parameter. To learn about

interpolation arrays, see “How the Block Applies Interpolation Arrays to Inputs” on page 2-789.

Specifying Time-Varying Interpolation Points

To supply the block with time-varying interpolation arrays, where the block uses a different
interpolation array for each vector or N-D array input, perform the following steps:

1 Set the Source of interpolation points parameter to Input port. The Pts port appears
on the block.

2 Generate a signal of interpolation arrays and supply it to the Pts port. The block uses the input to
this port as the interpolation points. To learn about interpolation arrays, see “How the Block
Applies Interpolation Arrays to Inputs” on page 2-789.

How the Block Applies Interpolation Arrays to Inputs

The interpolation array IPts represents the points in time at which to interpolate values of the input
signal. An entry of 1 in IPts refers to the first sample of the input, an entry of 2.5 refers to the sample

 Interpolation

2-789

halfway between the second and third input sample, and so on. In most cases, when IPts is a vector, it
can be of any length.

Valid values in the interpolation array, IPts, range from 1 to the number of samples in each channel of
the input. To learn how the block handles out-of-range interpolation values, see Out of range
interpolation points.

Depending on the dimension of the input and the dimension of IPts, the block usually applies IPts to the
input in one of the following ways:

• Applies the IPts array across the first dimension of an N-D array, resulting in an N-D array output.
• Applies the vector IPts to each input vector (as if the input vector were a single channel), resulting

in a vector output with the same orientation as the input (row or column).

These tables summarize how the block applies the interpolation array IPts to all the possible types of
inputs and shows the resulting output dimensions.

The first table describes the block's behavior when the Source of interpolation points is
Specify via dialog.

Specify Interpolation Points Through Dialog Box

Input Dimensions Valid Dimensions of
Interpolation Array I
Pts

How Block Applies I
Pts to Input

Output Dimensions
(Frame-Based)

M-by-N-by-K matrix P-by-1 column Applies IPts to the first
dimension of the input

P-by-N-by-K array

P-by-N-by-K matrix Applies each column of
IPts (each element of IPts)
to the corresponding
column of the input
matrix

P-by-N-by-K array

M-by-N matrix 1-by-N row Applies each column of
IPts (each element of IPts)
to the corresponding
column of the input
matrix

1-by-N row

P-by-1 column Applies IPts to each input
column

P-by-N matrix

P-by-N matrix Applies the columns of
IPts to the corresponding
columns of the input
matrix

M-by-1 column P-by-1 column Applies IPts to the input
column

P-by-1 column

1-by-N row

(not recommended)

1-by-N row Not Applicable. Block
copies input vector

1-by-N row, a copy of
the input vector

P-by-1 column P-by-N matrix where
each row is a copy of
the input vector

2 Blocks

2-790

Input Dimensions Valid Dimensions of
Interpolation Array I
Pts

How Block Applies I
Pts to Input

Output Dimensions
(Frame-Based)

P-by-N matrix

The next table describes the block's behavior when the Source of interpolation points is Input
port.

Specify Interpolation Points Through Input Port

Input Dimensions Valid Dimensions of
Interpolation Array I
Pts

How Block Applies I
Pts to Input

Output Dimensions
(Frame-Based)

M-by-N-by-K matrix Unoriented vector or
column vector of length
P

Applies IPts to the first
dimension of the input

P-by-N-by-K array

P-by-N-by-K matrix Applies each column of
IPts (each element of IPts)
to the corresponding
column of the input
matrix

P-by-N-by-K array

M-by-N matrix 1-by-N row Applies each column of
IPts (each element of IPts)
to the corresponding
column of the input
matrix

1-by-N row

P-by-1 column Applies IPts to each input
column

P-by-N matrix

P-by-N matrix Applies the columns of
IPts to the corresponding
columns of the input
matrix

M-by-1 column P-by-1 column Applies IPts to the input
column

P-by-1 column

1-by-N row

(not recommended)

1-by-N row Not Applicable. Block
copies input vector

1-by-N row, a copy of
the input vector

P-by-1 column P-by-N matrix where
each row is a copy of
the input vector

P-by-N matrix

Algorithms
Linear Interpolation Mode

When Interpolation mode is set to Linear, the block interpolates data values by assuming that
the data varies linearly between samples taken at adjacent sample times.

For instance, if the input signal D = [1 2 1.5 3 0.25]', the plot on the left shows the samples in D and
the plot on the right shows the linearly interpolated values between the samples in D.

 Interpolation

2-791

The following figure illustrates the case of a block in linear interpolation mode that is set to clip out-
of-range interpolation points. The vector D supplies the input data and the vector IPts supplies the
interpolation points:

• D = [1 2 1.5 3 0.25]'
• IPts = [-4 2.7 4.3 10]'

The block clips the invalid interpolation points and outputs the linearly interpolated values in a
vector, [1 1.65 2.175 0.25]'.

FIR Interpolation Mode

When Interpolation mode is set to FIR, the block interpolates data values by using an FIR
interpolation filter, specified by various block parameters. For more information, see “FIR
Interpolation Mode” on page 2-1407 in the Variable Fractional Delay block reference.

2 Blocks

2-792

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FIR Halfband Interpolator | CIC Compensation Interpolator | IIR Halfband Interpolator |
dsp.CICInterpolator | FIR Interpolation

Introduced before R2006a

 Interpolation

2-793

Inverse Short-Time FFT
Recover time-domain signals by performing inverse short-time, fast Fourier transform (FFT)

Library
Transforms

dspxfrm3

Description
The Inverse Short-Time FFT block reconstructs the time-domain signal from the frequency-domain
output of the Short-Time FFT block using a two-step process. First, the block performs the overlap
add algorithm shown below.

x n = L
W(0) ∑

p = −∞

∞ 1
N ∑

k = 0

N − 1
X pL, k e j2πkn/N

Then, the block rebuffers the signal in order to reconstruct the time-domain signal. Depending on the
analysis window used by the Short-Time FFT block, the Inverse Short-Time FFT block might or might
not achieve perfect reconstruction of the time domain signal.

Connect your complex-valued, single-channel or multichannel input signal to the X(n,k) port. The
block accepts unoriented vector, column vector and matrix input. The block outputs the real or
complex-valued, single-channel or multichannel inverse short-time FFT at port x(n).

Connect your complex-valued, single-channel analysis window to the w(n) port. When you select the
Assert if analysis window does not support perfect signal reconstruction check box, the block
displays an error when the input signal cannot be perfectly reconstructed. The block uses the values
you enter for the Analysis window length (W) and Reconstruction error tolerance, or maximum
amount of allowable error in the reconstruction process, to determine if the signal can be perfectly
reconstructed.

Examples
The dspstsa example illustrates how to use the Short-Time FFT and Inverse Short-Time FFT blocks
to remove the background noise from a speech signal. To open the dspstsa model, type dspstsa in
the MATLAB command prompt.

2 Blocks

2-794

matlab:dspstsa

Parameters
Analysis window length

Enter the length of the analysis window. This parameter is visible when you select the Assert if
analysis window does not support perfect signal reconstruction check box.

Overlap between consecutive STFFT frames (in samples)
Enter the number of samples of overlap for each frame of the Short-Time FFT block's input signal.
This value should be the same as the Overlap between consecutive windows (in samples)
parameter in the Short-Time FFT block parameters dialog.

Samples per output frame
Enter the desired frame size of the output signal.

Input is conjugate symmetric
Select this check box when the input to the block is both floating point and conjugate symmetric,
and you want real-valued outputs. When you select this check box when the input is not conjugate
symmetric, the output of the block is invalid. This parameter cannot be used for fixed-point
signals.

Assert if analysis window does not support perfect signal reconstruction
Select this check box to display an error when the analysis window used by the Short-Time FFT
block does not support perfect signal reconstruction.

Reconstruction error tolerance
Enter the amount of acceptable error in the reconstruction of the original signal. This parameter
is visible when you select the Assert if analysis window does not support perfect signal
reconstruction check box.

Supported Data Types
Port Supported Data Types
X(n,k) • Double-precision floating point

• Single-precision floating point
w(n) • Double-precision floating point

• Single-precision floating point
x(n) • Double-precision floating point

• Single-precision floating point

References
[1] Quatieri, Thomas E. Discrete-Time Speech Signal Processing. Englewood Cliffs, NJ: Prentice-Hall,

2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

 Inverse Short-Time FFT

2-795

See Also
Objects
dsp.SpectrumEstimator | dsp.ISTFT

Blocks
Spectrum Estimator | Burg Method | Magnitude FFT | Periodogram | Short-Time FFT | Spectrum
Analyzer | Window Function | Yule-Walker Method

Introduced before R2006a

2 Blocks

2-796

Inverse Sinc Filter
Design inverse sinc filter

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

This block supports SIMD code generation. For details, see “Code Generation” on page 2-802.

Dialog Box
See “Inverse Sinc Filter Design — Main Pane” on page 5-605 for more information about the
parameters of this block. The Data Types and Code Generation panes are not available for blocks in
the DSP System Toolbox Filter Designs library.

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

In this group, you specify your filter format, such as the impulse response and the filter order.

Order mode
Select either Minimum (the default) or Specify from the drop-down list. Selecting Specify
enables the Order option (see the following sections) so you can enter the filter order.

Response type
Select Lowpass or Highpass to design an inverse sinc lowpass or highpass filter.

 Inverse Sinc Filter

2-797

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, the block specifies a single-rate filter.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

Order
Enter the filter order. This option is enabled only if you set the Order mode to Specify.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default value is 2.

Interpolation Factor
Enter the interpolation factor. This option is enabled only if the Filter type is set to
Interpolator or Sample-rate converter. The default value is 2.

Frequency Specifications

The parameters in this group allow you to specify your filter response curve.

Regions between specification values such as Passband frequency and Stopband frequency
represent transition regions where the filter response is not constrained.

Frequency constraints
When Order mode is Specify, select the filter features that the block uses to define the
frequency response characteristics. The list contains the following options, when available for the
filter specifications.

• Passband and stopband frequencies — Define the filter by specifying the frequencies
for the edges for the stop- and passbands.

• Passband frequency — For IIR filters, define the filter by specifying frequencies for the
edges of the passband.

• Stopband frequency — For IIR filters, define the filter by specifying frequencies for the
edges of the stopbands.

• Cutoff (6dB) frequency — For FIR filters, define the filter response by specifying the
locations of the 6 dB point. The 6 dB point is the frequency for the point six decibels below the
passband value.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the

2 Blocks

2-798

specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Passband frequency
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select in Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select in Frequency units.

Cutoff (6dB) frequency
When Frequency constraints is Cutoff (6dB) frequency, specify the frequency of the 6 dB
point. Specify the value in either normalized frequency units or the absolute units you select
Frequency units.

Magnitude Specifications

Parameters in this group specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. From the drop-down
list, select one of the following options:

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure of your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default FIR method is Equiripple.

Design Options
The options for each design are specific for each design method. This section does not present all
of the available options for all designs and design methods. There are many more that you
encounter as you select different design methods and filter specifications. The following options
represent some of the most common ones available.
Density factor

Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in
the grid is the value you enter for Density factor times (filter order + 1).

 Inverse Sinc Filter

2-799

Increasing the value creates a filter that more closely approximates an ideal equiripple filter
but increases the time required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal filter and the time to
design the filter.

Phase constraint
Specify the phase constraint of the filter as Linear, Maximum, or Minimum.

Minimum order
When you select this parameter, the design method determines and design the minimum
order filter to meet your specifications. Some filters do not provide this parameter. Select
Any, Even, or Odd from the drop-down list to direct the design to be any minimum order, or
minimum even order, or minimum odd order.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options;

• Flat — Specifies that the stopband is flat. The attenuation does not change as the
frequency increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to
the stopband. the following conditions apply to Stopband decay based on the value of
Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. The block applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation

(1/f)n to define the stopband decay. The block applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Sinc frequency factor
A frequency dilation factor. The Sinc frequency factor, C , parameterizes the passband
magnitude response for a lowpass design through H(ω) = sinc(Cω)^(-P) and through H(ω) =
sinc(C(1-ω))^(-P) for a highpass design.

Sinc power
Negative power of passband magnitude response. The Sinc power, P, parameterizes the
passband magnitude response for a lowpass design through H(ω) = sinc(Cω)^(-P) and
through H(ω) = sinc(C(1-ω))^(-P) for a highpass design.

2 Blocks

2-800

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

 Inverse Sinc Filter

2-801

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Inverse Sinc Filter block supports SIMD code generation using Intel AVX2 technology under
these conditions:

• Filter type is set to Single-rate, Decimator, or Interpolator.
• For Filter type that is set to Single-rate, Structure is set to Direct-form FIR or Direct-

form FIR transposed.
• For Filter type that is set to Decimator, Structure is set to Direct-form FIR polyphase

decimator and Rate options is set to Enforce single-rate processing.
• For Filter type that is set to Interpolator, Rate options is set to Enforce single-rate

processing.
• Input processing is set to Columns as channels (frame based).
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

Introduced in R2006b

2 Blocks

2-802

Kalman Adaptive Filter (Obsolete)
Compute filter estimates for inputs using Kalman adaptive filter algorithm

Library
dspobslib

Description

Note The Kalman Adaptive Filter block is still supported but is likely to be obsoleted in a future
release. We strongly recommend replacing this block with the Kalman Filter block.

The Kalman Adaptive Filter block computes the optimal linear minimum mean-square estimate
(MMSE) of the FIR filter coefficients using a one-step predictor algorithm. This Kalman filter
algorithm is based on the following physical realization of a dynamic system.

The Kalman filter assumes that there are no deterministic changes to the filter taps over time (that is,
the transition matrix is identity), and that the only observable output from the system is the filter
output with additive noise. The corresponding Kalman filter is expressed in matrix form as

g(n) = K(n− 1)u(n)
uH(n)K(n− 1)u(n) + QM

y(n) = uH(n)w(n)
e(n) = d(n)− y(n)
w(n + 1) = w(n) + e(n)g(n)
K(n) = K(n− 1)− g(n)uH(n)K(n− 1) + Qp

The variables are as follows

 Kalman Adaptive Filter (Obsolete)

2-803

Variable Description
n The current algorithm iteration
u(n) The buffered input samples at step n
K(n) The correlation matrix of the state estimation error
g(n) The vector of Kalman gains at step n
w(n) The vector of filter-tap estimates at step n
y(n) The filtered output at step n
e(n) The estimation error at step n
d(n) The desired response at step n
QM The correlation matrix of the measurement noise
QP The correlation matrix of the process noise

The correlation matrices, QM and QP, are specified in the parameter dialog by scalar variance terms
to be placed along the matrix diagonals, thus ensuring that these matrices are symmetric. The filter
algorithm based on this constraint is also known as the random-walk Kalman filter.

The implementation of the algorithm in the block is optimized by exploiting the symmetry of the input
covariance matrix K(n) . This decreases the total number of computations by a factor of two.

The block icon has port labels corresponding to the inputs and outputs of the Kalman algorithm. Note
that inputs to the In and Err ports must be sample-based scalars with the same complexity. The signal
at the Out port is a scalar, while the signal at the Taps port is a sample-based vector.

Block Ports Corresponding Variables
In u, the scalar input, which is internally buffered into the vector u(n)
Out y(n), the filtered scalar output
Err e(n), the scalar estimation error
Taps w(n), the vector of filter-tap estimates

An optional Adapt input port is added when you select the Adapt port check box in the dialog. When
this port is enabled, the block continuously adapts the filter coefficients while the Adapt input is
nonzero. A zero-valued input to the Adapt port causes the block to stop adapting, and to hold the
filter coefficients at their current values until the next nonzero Adapt input.

The FIR filter length parameter specifies the length of the filter that the Kalman algorithm
estimates. The Measurement noise variance and the Process noise variance parameters specify
the correlation matrices of the measurement and process noise, respectively. The Measurement
noise variance must be a scalar, while the Process noise variance can be a vector of values to be
placed along the diagonal, or a scalar to be repeated for the diagonal elements.

The Initial value of filter taps specifies the initial value w 0 as a vector, or as a scalar to be
repeated for all vector elements. The Initial error correlation matrix specifies the initial value
K(0), and can be a diagonal matrix, a vector of values to be placed along the diagonal, or a scalar to
be repeated for the diagonal elements.

2 Blocks

2-804

Parameters
FIR filter length

The length of the FIR filter.
Measurement noise variance

The value to appear along the diagonal of the measurement noise correlation matrix. Tunable
(Simulink).

Process noise variance
The value to appear along the diagonal of the process noise correlation matrix. Tunable
(Simulink).

Initial value of filter taps
The initial FIR filter coefficients.

Initial error correlation matrix
The initial value of the error correlation matrix.

Adapt port
Enables the Adapt port.

References
Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
LMS Adaptive Filter (Obsolete) DSP System Toolbox
RLS Adaptive Filter (Obsolete) DSP System Toolbox

See “Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter” for related information.

Introduced in R2008b

 Kalman Adaptive Filter (Obsolete)

2-805

Kalman Filter
Predict or estimate states of dynamic systems

Library
Filtering/Adaptive Filters

dspadpt3

Description
Use the Kalman Filter block to predict or estimate the state of a dynamic system from a series of
incomplete and/or noisy measurements. Suppose you have a noisy linear system that is defined by the
following equations:

xk = Axk− 1 + wk− 1
zk = Hxk + vk

This block can use the previously estimated state, x k− 1, to predict the current state at time k, xk
−, as

shown by the following equation:

xk
− = Ax k− 1

Pk
− = AP k− 1AT + Q

The block can also use the current measurement, zk, and the predicted state, xk
−, to estimate the

current state value at time k, x k, so that it is a more accurate approximation:

Kk = Pk
−HT HPk

−HT + R −1

x k = xk
−+ Kk zk− Hxk

−

P k = I − KkH Pk
−

The variables in the previous equations are defined in the following table.

Variable Definition Default Value or Initial Condition
x State N/A
x Estimated state zeros([6, 1])

x− Predicted state N/A

2 Blocks

2-806

Variable Definition Default Value or Initial Condition
A State transition matrix 1 0 1 0 0 0

0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

w Process noise N/A
z Measurement N/A
H Measurement matrix 1 0 0 0 0 0

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

v Measurement noise N/A

P Estimated error covariance 10*eye(6)

P- Predicted error covariance N/A
Q Process noise covariance 0.05*eye(6)
K Kalman gain N/A
R Measurement noise covariance eye(4)
I Identity matrix N/A

In the previous equations, z is a vector of measurement values. Most of the time, the block processes
Z, an M-by-N matrix, where M is the number of measurement values and N is the number of filters.

Use the Number of filters parameter to specify the number of filters to use to predict or estimate
the current value.

Use the Enable filters parameter to specify which filters are enabled or disabled at each time step. If
you select Always, the filters are always enabled. If you choose Specify via input port
<Enable>, the Enable port appears on the block. The input to this port must be a row vector of 1s
and 0s whose length is equal to the number of filters. For example, if there are 3 filters and the input
to the Enable port is [1 0 1], only the first and third filter are enabled at this time step. If you select
the Reset the estimated state and estimated error covariance when filters are disabled check
box, the estimated and predicted states as well as the estimated error covariance that correspond to
the disabled filters are reset to their initial values.

Note All filters have the same state transition matrix, measurement matrix, initial conditions, and
noise covariance, but their state, measurement, enable, and MSE signals are unique. Within the state,
measurement, enable, and MSE signals, each column corresponds to a filter.

Use the Measurement matrix source parameter to specify how to enter the measurement matrix
values. If you select Specify via dialog, the Measurement matrix parameter appears in the
dialog box. If you select Input port <H>, the H port appears on the block. Use this port to specify
your measurement matrix.

 Kalman Filter

2-807

Parameters
Number of filters

Specify the number of filters to use to predict or estimate the current value.
Enable filters

Specify which filters are enabled or disabled at each time step. If you select Always, the filters
are always enabled. If you choose Specify via input port <Enable>, the Enable port
appears on the block.

Reset the estimated state and estimated error covariance when filters are disabled
If you select this check box, the estimated and predicted states as well as the estimated error
covariance that correspond to the disabled filters are reset to their initial values. This parameter
is visible if, for the Enable filters parameter, you select Specify via input port <Enable>.

Initial condition for estimated state
Enter the initial condition for the estimated state.

Initial condition for estimated error covariance
Enter the initial condition for the estimated error covariance.

State transition matrix
Enter the state transition matrix.

Process noise covariance
Enter the process noise covariance.

Measurement matrix source
Specify how to enter the measurement matrix values. If you select Specify via dialog, the
Measurement matrix parameter appears in the dialog box. If you select Input port <H>, the
H port appears on the block.

Measurement matrix
Enter the measurement matrix values. This parameter is visible if you select Specify via
dialog for the Measurement matrix source parameter.

Measurement noise covariance
Enter the measurement noise covariance.

Output estimated measurement <Z_est>
Select this check box if you want the block to output the estimated measurement.

Output estimated state <X_est>
Select this check box if you want the block to output the estimated state.

Output MSE of estimated state <MSE_est>
Select this check box if you want the block to output the mean-squared error of the estimated
state.

Output predicted measurement <Z_prd>
Select this check box if you want the block to output the predicted measurement.

Output predicted state <X_prd>
Select this check box if you want the block to output the predicted state.

2 Blocks

2-808

Output MSE of predicted state <MSE_prb>
Select this check box if you want the block to output the mean-squared error of the predicted
state.

References

[1] Haykin, Simon. Adaptive Filter Theory. Upper Saddle River, NJ: Prentice Hall, 1996.

[2] Welch, Greg and Gary Bishop, “An Introduction to the Kalman Filter,” TR 95–041, Department of
Computer Science, University of North Carolina.

Supported Data Types

Port Input/Output Supported Data Types
Z M-by-N measurement where M is the

length of the measurement vector and N is
the number of filters.

• Double-precision floating point
• Single-precision floating point

Enable 1-by-N vector of 1s and 0s where N is the
number of filters.

• Double-precision floating point
• Single-precision floating point
• Boolean

H M-by-P measurement matrix where M is
the length of the measurement vector and
P is the length of the filter state vectors.

Same as Z port

Z_est M-by-N estimated measurement matrix
where M is the length of the measurement
vector and N is the number of filters.

Same as Z port

X_est P-by-N estimated state matrix where P is
the length of the filter state vectors and N
is the number of filters.

Same as Z port

MSE_est 1-by-N vector that represents the mean-
squared-error of the estimated state. N is
the number of filters.

Same as Z port

Z_prd M-by-N predicted measurement matrix
where M is the length of the measurement
vector and N is the number of filters.

Same as Z port

X_prd P-by-N predicted state matrix where P is
the length of the filter state vectors and N
is the number of filters.

Same as Z port

MSE_prd 1-by-N vector that represents the mean-
squared-error of the predicted state. N is
the number of filters.

Same as Z port

See Also
LDL Solver DSP System Toolbox

 Kalman Filter

2-809

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2007a

2 Blocks

2-810

LDL Factorization
Factor square Hermitian positive definite matrices into lower, upper, and diagonal components
Library: DSP System Toolbox / Math Functions / Matrices and Linear

Algebra / Matrix Factorizations

Description
The LDL Factorization block uniquely factors the square Hermitian positive definite input matrix S as

S = LDL*

where L is a lower triangular square matrix with unity diagonal elements, D is a diagonal matrix, and
L* is the Hermitian (complex conjugate) transpose of L. Only the diagonal and lower triangle of the
input matrix are used. Any imaginary component of the diagonal entries is disregarded.

LDL factorization requires half the computation of Gaussian elimination (LU decomposition), and is
always stable. It is more efficient than Cholesky factorization because it avoids computing the square
roots of the diagonal elements.

Ports
Input

Port_1 — Input signal
matrix

Input signal, specified as a square matrix.

The algorithm requires that the input be square and Hermitian positive definite. When the input is
not positive definite, the block reacts as specified by the Non-positive definite input parameter.

If the input is fixed point, it must be signed fixed point with a power-of-two slope and zero bias.
Data Types: single | double | int8 | int16 | int32 | fixed point

Output

Port_1 — Output signal
matrix

The output is a composite matrix with lower triangle elements lij from L, diagonal elements dij from D
and upper triangle elements uij from L*, where L is a lower triangular square matrix that has unity
diagonal elements, D is a diagonal matrix, and L* is the Hermitian (complex conjugate) transpose of L.

The output format is shown below for a 5-by-5 matrix.

 LDL Factorization

2-811

Data Types: single | double | int8 | int16 | int32 | fixed point

Parameters
Main Tab

Non-positive definite input — Non-positive definite input action
Warning (default) | Ignore | Error

Specify the action when nonpositive definite matrix inputs occur:

• Ignore — Proceed with the computation and do not issue an alert. The output is not a valid
factorization. A partial factorization is present in the upper-left corner of the output.

• Warning — Display a warning message in the MATLAB Command Window and continue the
simulation. The output is not a valid factorization. A partial factorization is present in the upper-
left corner of the output.

• Error — Display an error dialog box and terminate the simulation.

Data Types Tab

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

2 Blocks

2-812

Intermediate product — Intermediate product data type
Inherit: Same as input (default) | fixdt(1,16,0)

Specify the intermediate product data type. As shown in Fixed-Point Conversion section in “Extended
Capabilities” on page 2-0 , the output of the multiplier is cast to the intermediate product data
type before the next element of the input is multiplied into it. You can set the data type to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Alternatively, you can set the Intermediate product data type by using the Data Type Assistant. To

use the assistant, click the Show data type assistant button .

For more information, see “Specify Data Types Using Data Type Assistant” (Simulink).

Product output — Product output data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt([],16,0)

Product output specifies the data type of the output of a product operation in the LDL Factorization
block.

• Inherit: Inherit via internal rule — The block inherits the product output data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

• Inherit: Same as input — The block specifies the product output data type to be the same as
the input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
that has a word length of 16 bits and a fraction length of 0.

For more information, see “Multiplication Data Types” and Fixed-Point Conversion in “Extended
Capabilities” on page 2-0 .

Alternatively, you can set the Product output data type by using the Data Type Assistant. To use

the assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).

Accumulator — Accumulator data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input | Inherit:
Same as product output | fixdt([],16,0)

Accumulator specifies the data type of the output of an accumulation operation in the LDL
Factorization block.

• Inherit: Inherit via internal rule — The block inherits the accumulator data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

• Inherit: Same as input — The block specifies the accumulator data type to be the same as
the input data type.

• Inherit: Same as product output — The block specifies the accumulator data type to be
the same as the product output data type.

 LDL Factorization

2-813

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
that has a word length of 16 bits and a fraction length of 0.

For illustrations on how to use the accumulator data type in this block, see Fixed-Point Conversion in
“Extended Capabilities” on page 2-0 .

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).

Output — Output data type
Inherit: Same as input (default) | fixdt([],16,0)

Output specifies the data type of the output of the LDL Factorization block. For more information on
the output data type, see the 'Fixed-Point Conversion' section in “Extended Capabilities” on page 2-
0 .

• Inherit: Same as input — The block specifies the output data type to be the same as the
input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
that has a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Output data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).

Output Minimum — Minimum value that block can output
[] (default) | scalar

Specify the minimum value that the block can output. Simulink software uses this minimum value to
perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Output Maximum — Maximum value that block can output
[] (default) | scalar

Specify the maximum value that the block can output. Simulink software uses this maximum value to
perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

2 Blocks

2-814

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

References
[1] Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins

University Press, 1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

Fixed-Point Data Types

This diagram shows the data types used within the LDL Factorization block for fixed-point signals.

You can set the intermediate product, product output, accumulator, and output data types in the block
dialog box.

 LDL Factorization

2-815

When the input is real, the output of the second multiplier is in the product output data type. When
the input is complex, the result of the multiplication is in the accumulator data type. For details on
the complex multiplication performed, see “Multiplication Data Types”.

See Also
Blocks
Cholesky Factorization | LDL Inverse | LDL Solver | LU Factorization | QR Factorization

Topics
“Matrix Factorizations”

Introduced before R2006a

2 Blocks

2-816

LDL Inverse
Compute inverse of Hermitian positive definite matrix using LDL factorization

Library
Math Functions / Matrices and Linear Algebra / Matrix Inverses

dspinverses

Description
The LDL Inverse block computes the inverse of the Hermitian positive definite input matrix S by
performing an LDL factorization.

S−1 = LDL* −1

L is a lower triangular square matrix with unity diagonal elements, D is a diagonal matrix, and L* is
the Hermitian (complex conjugate) transpose of L. Only the diagonal and lower triangle of the input
matrix are used, and any imaginary component of the diagonal entries is disregarded.

LDL factorization requires half the computation of Gaussian elimination (LU decomposition), and is
always stable. It is more efficient than Cholesky factorization because it avoids computing the square
roots of the diagonal elements.

The algorithm requires that the input be Hermitian positive definite. When the input is not positive
definite, the block reacts with the behavior specified by the Non-positive definite input parameter.
The following options are available:

• Ignore — Proceed with the computation and do not issue an alert. The output is not a valid
inverse.

• Warning — Display a warning message in the MATLAB command window, and continue the
simulation. The output is not a valid inverse.

• Error — Display an error dialog and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic
parameters on the Configuration Parameters dialog, it is set to Ignore in the code generated for this
block by Simulink Coder code generation software.

Parameters
Non-positive definite input

Response to nonpositive definite matrix inputs.

 LDL Inverse

2-817

References
Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins
University Press, 1996.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Cholesky Inverse DSP System Toolbox
LDL Factorization DSP System Toolbox
LDL Solver DSP System Toolbox
LU Inverse DSP System Toolbox
Pseudoinverse DSP System Toolbox
inv MATLAB

See “Matrix Inverses” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-818

LDL Solver
Solve SX=B for X when S is square Hermitian positive definite matrix

Library
Math Functions / Matrices and Linear Algebra / Linear System Solvers

dspsolvers

Description
The LDL Solver block solves the linear system SX=B by applying LDL factorization to the matrix at
the S port, which must be square (M-by-M) and Hermitian positive definite. Only the diagonal and
lower triangle of the matrix are used, and any imaginary component of the diagonal entries is
disregarded. The input to the B port is the right side M-by-N matrix, B. The M-by-N output matrix X is
the unique solution of the equations.

A length-M unoriented vector input for right side B is treated as an M-by-1 matrix.

When the input is not positive definite, the block reacts with the behavior specified by the Non-
positive definite input parameter. The following options are available:

• Ignore — Proceed with the computation and do not issue an alert. The output is not a valid
solution.

• Warning — Proceed with the computation and display a warning message in the MATLAB
Command Window. The output is not a valid solution.

• Error — Display an error dialog and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic
parameters on the Configuration Parameters dialog, it is set to Ignore in the code generated for this
block by Simulink Coder code generation software.

Algorithm
The LDL algorithm uniquely factors the Hermitian positive definite input matrix S as

S = LDL*

where L is a lower triangular square matrix with unity diagonal elements, D is a diagonal matrix, and
L* is the Hermitian (complex conjugate) transpose of L.

The equation

 LDL Solver

2-819

LDL*X = B

is solved for X by the following steps:

1 Substitute

Y = DL*X
2 Substitute

Z = L*X
3 Solve one diagonal and two triangular systems.

LY = B

DZ = Y

L*X = Z

Parameters
Non-positive definite input

Response to nonpositive definite matrix inputs.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Autocorrelation LPC DSP System Toolbox
Cholesky Solver DSP System Toolbox
LDL Factorization DSP System Toolbox
LDL Inverse DSP System Toolbox
Levinson-Durbin DSP System Toolbox
LU Solver DSP System Toolbox
QR Solver DSP System Toolbox

See “Linear System Solvers” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-820

Least Squares Polynomial Fit
Compute polynomial coefficients that best fit input data in least-squares sense

Library
Math Functions / Polynomial Functions

dsppolyfun

Description
The Least Squares Polynomial Fit block computes the coefficients of the nth order polynomial that
best fits the input data in the least-squares sense, where you specify n in the Polynomial order
parameter. A distinct set of n+1 coefficients is computed for each column of the M-by-N input, u.

For a given input column, the block computes the set of coefficients, c1, c2, ..., cn+1, that minimizes the
quantity

∑
i = 1

M
(ui− u i)

2

where ui is the ith element in the input column, and

u i = f xi = c1xi
n + c2xi

n− 1 + ... + cn + 1

The values of the independent variable, x1, x2, ..., xM, are specified as a length-M vector by the
Control points parameter. The same M control points are used for all N polynomial fits, and can be
equally or unequally spaced. The equivalent MATLAB code is shown below.

c = polyfit(x,u,n) % Equivalent MATLAB code

For convenience, the block treats length-M unoriented vector input as an M-by-1 matrix.

Each column of the (n+1)-by-N output matrix, c, represents a set of n+1 coefficients describing the
best-fit polynomial for the corresponding column of the input. The coefficients in each column are
arranged in order of descending exponents, c1, c2, ..., cn+1.

Examples
In the ex_leastsquarespolyfit_ref model below, the Polynomial Evaluation block uses the second-order
polynomial

y = − 2u2 + 3

 Least Squares Polynomial Fit

2-821

matlab:ex_leastsquarespolyfit_ref

to generate four values of dependent variable y from four values of independent variable u, received
at the top port. The polynomial coefficients are supplied in the vector [-2 0 3] at the bottom port.
Note that the coefficient of the first-order term is zero.

The Control points parameter of the Least Squares Polynomial Fit block is configured with the same
four values of independent variable u that are used as input to the Polynomial Evaluation block, [1 2
3 4]. The Least Squares Polynomial Fit block uses these values together with the input values of
dependent variable y to reconstruct the original polynomial coefficients.

Parameters
Control points

The values of the independent variable to which the data in each input column correspond. For an
M-by-N input, this parameter must be a length-M vector. Tunable (Simulink).

Polynomial order
The order, n, of the polynomial to be used in constructing the best fit. The number of coefficients
is n+1.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Detrend DSP System Toolbox
Polynomial Evaluation DSP System Toolbox
Polynomial Stability Test DSP System Toolbox
polyfit MATLAB

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-822

Levinson-Durbin
Solve linear system of equations using Levinson-Durbin recursion

Library
Math Functions / Matrices and Linear Algebra / Linear System Solvers

dspsolvers

Description
The Levinson-Durbin block solves the nth-order system of linear equations

Ra = b

in the cases where:

• R is a Hermitian, positive-definite, Toeplitz matrix.
• b is identical to the first column of R shifted by one element and with the opposite sign.

r(1) r*(2) ⋯ r*(n)
r(2) r(1) ⋯ r*(n− 1)
⋮ ⋮ ⋱ ⋮

r(n) r(n− 1) ⋯ r(1)

a(2)
a(3)
⋮

a(n + 1)

=

−r(2)
−r(3)
⋮

−r(n + 1)

The input to the block, r = [r(1) r(2) ... r(n+1)], can be a vector or a matrix. If the input is a
matrix, the block treats each column as an independent channel and solves it separately. Each
channel of the input contains lags 0 through n of an autocorrelation sequence, which appear in the
matrix R.

The block can output the polynomial coefficients, A, the reflection coefficients, K, and the prediction
error power, P, in various combinations. The Output(s) parameter allows you to enable the A and K
outputs by selecting one of the following settings:

• A — For each channel, port A outputs A = [1 a(2) a(3) ... a(n+1)], the solution to the
Levinson-Durbin equation. A has the same dimension as the input. You can also view the elements
of each output channel as the coefficients of an nth-order autoregressive (AR) process.

• K — For each channel, port K outputs K = [k(1) k(2) ... k(n)], which contains n reflection
coefficients and has the same dimension as the input, less one element. A scalar input channel

 Levinson-Durbin

2-823

causes an error when you select K. You can use reflection coefficients to realize a lattice
representation of the AR process described later in this page.

• A and K — The block outputs both representations at their respective ports. A scalar input
channel causes an error when you select A and K.

Select the Output prediction error power (P) check box to output the prediction error power for
each channel, P. For each channel, P represents the power of the output of an FIR filter with taps A
and input autocorrelation described by r, where A represents a prediction error filter and r is the
input to the block. In this case, A is a whitening filter. P has one element per input channel.

When you select the If the value of lag 0 is zero, A=[1 zeros], K=[zeros], P=0 check box
(default), an input channel whose r(1) element is zero generates a zero-valued output. When you
clear this check box, an input with r(1) = 0 generates NaNs in the output. In general, an input with
r(1) = 0 is invalid because it does not construct a positive-definite matrix R. Often, however, blocks
receive zero-valued inputs at the start of a simulation. The check box allows you to avoid propagating
NaNs during this period.

Applications

One application of the Levinson-Durbin formulation implemented by this block is in the Yule-Walker
AR problem, which concerns modeling an unknown system as an autoregressive process. You would
model such a process as the output of an all-pole IIR filter with white Gaussian noise input. In the
Yule-Walker problem, the use of the signal's autocorrelation sequence to obtain an optimal estimate
leads to an Ra = b equation of the type shown above, which is most efficiently solved by Levinson-
Durbin recursion. In this case, the input to the block represents the autocorrelation sequence, with
r(1) being the zero-lag value. The output at the block's A port then contains the coefficients of the
autoregressive process that optimally models the system. The coefficients are ordered in descending
powers of z, and the AR process is minimum phase. The prediction error, G, defines the gain for the
unknown system, where G = P:

H z = G
A(z) = G

1 + a(2)z−1 + ... + a(n + 1)z−n

The output at the block's K port contains the corresponding reflection coefficients, [k(1) k(2) ...
k(n)], for the lattice realization of this IIR filter. The Yule-Walker AR Estimator block implements this
autocorrelation-based method for AR model estimation, while the Yule-Walker Method block extends
the method to spectral estimation.

Another common application of the Levinson-Durbin algorithm is in linear predictive coding, which is
concerned with finding the coefficients of a moving average (MA) process (or FIR filter) that predicts
the next value of a signal from the current signal sample and a finite number of past samples. In this
case, the input to the block represents the signal's autocorrelation sequence, with r(1) being the
zero-lag value, and the output at the block's A port contains the coefficients of the predictive MA
process (in descending powers of z).

H z = A z = 1 + a(2)z−1 + ... a(n + 1)z−n

These coefficients solve the following optimization problem:

ai
min

E xn− ∑
i = 1

N
aixn− i

2

2 Blocks

2-824

Again, the output at the block's K port contains the corresponding reflection coefficients, [k(1)
k(2) ... k(n)], for the lattice realization of this FIR filter. The Autocorrelation LPC block in the
Linear Prediction library implements this autocorrelation-based prediction method.

Fixed-Point Data Types

The diagrams in this section show the data types used within the Levinson-Durbin block for fixed-
point signals.

After initialization the block performs n updates. At the (j+1) update,

value in accumulator = r(j + 1) + ∑a j(i) × r j− i + 1

The following diagram displays the fixed-point data types used in this calculation:

The block then updates the reflection coefficients K according to

K j + 1 = value in accumulator/P j

The block then updates the prediction error power P according to

P j + 1 = P j− P j × K j + 1 × conj K j + 1

The next diagram displays the fixed-point data types used in this calculation:

The polynomial coefficients A are then updated according to

a j + 1(i) = a j(i) + K j + 1 × conj a j(j− 1 + i)

This diagram displays the fixed-point data types used in this calculation:

 Levinson-Durbin

2-825

Algorithm
The algorithm requires O(n2) operations for each input channel. This implementation is therefore
much more efficient for large n than standard Gaussian elimination, which requires O(n3) operations
per channel.

Parameters
Main Tab

Output(s)
Specify the solution representation of Ra = b to output: model coefficients (A), reflection
coefficients (K), or both (A and K). When the input is a scalar or row vector, you must set this
parameter to A.

Output prediction error power (P)
Select to output the prediction error at port P.

If the value of lag 0 is zero, A=[1 zeros], K=[zeros], P=0
When you select this check box and the first element of the input, r(1), is zero, the block outputs
the following vectors, as appropriate:

• A = [1 zeros(1,n)]
• K = [zeros(1,n)]
• P = 0

When you clear this check box, the block outputs a vector of NaNs for each channel whose r(1)
element is zero.

Data Types Tab

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

2 Blocks

2-826

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.
Saturate on integer overflow

When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 2-825 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-825 for illustrations
depicting the use of the accumulator data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• A rule that inherits a data type, for example, Inherit: Same as product output
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Polynomial coefficients (A)
Specify the polynomial coefficients (A) data type. See “Fixed-Point Data Types” on page 2-825 for
illustrations depicting the use of the A data type in this block. You can set it to an expression that
evaluates to a valid data type, for example, fixdt(1,16,15).

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the A parameter.

 Levinson-Durbin

2-827

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Reflection coefficients (K)
Specify the polynomial coefficients (A) data type. See “Fixed-Point Data Types” on page 2-825 for
illustrations depicting the use of the K data type in this block. You can set it to an expression that
evaluates to a valid data type, for example, fixdt(1,16,15).

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the K parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Prediction error power (P)
Specify the prediction error power (P) data type. See “Fixed-Point Data Types” on page 2-825 for
illustrations depicting the use of the P data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the P parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Minimum
Specify the minimum values that the polynomial coefficients, reflection coefficients, or prediction
error power should have. The default value is [] (unspecified). Simulink uses this value to
perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”
(Simulink))

• Automatic scaling of fixed-point data types

Maximum
Specify the maximum values that the polynomial coefficients, reflection coefficients, or prediction
error power should have. The default value is [] (unspecified). Simulink uses this value to
perform:

• Parameter range checking (see “Specify Minimum and Maximum Values for Block Parameters”
(Simulink))

• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

2 Blocks

2-828

References
Golub, G. H. and C. F. Van Loan. Sect. 4.7 in Matrix Computations. 3rd ed. Baltimore, MD: Johns
Hopkins University Press, 1996.

Ljung, L. System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice Hall, 1987. Pgs.
278–280.

Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice
Hall, 1988.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Functions
levinson

Blocks
Cholesky Solver | LDL Solver | Autocorrelation LPC | LU Solver | QR Solver | Yule-Walker AR
Estimator | Yule-Walker Method

Topics
“Linear System Solvers”

Introduced before R2006a

 Levinson-Durbin

2-829

LMS Adaptive Filter (Obsolete)
Compute filter estimates for input using LMS adaptive filter algorithm

Library
dspobslib

Description

Note The LMS Adaptive Filter block is still supported but is likely to be obsoleted in a future release.
We strongly recommend replacing this block with the LMS Filter block.

The LMS Adaptive Filter block implements an adaptive FIR filter using the stochastic gradient
algorithm known as the normalized least mean-square (LMS) algorithm.

y(n) = wH n− 1 u(n)
e(n) = d(n)− y(n)

w n = w n− 1 + u(n)
a + uH(n)u(n)

μe*(n)

The variables are as follows.

Variable Description
n The current algorithm iteration
u(n) The buffered input samples at step n
w(n) The vector of filter-tap estimates at step n
y(n) The filtered output at step n
e(n) The estimation error at step n
d(n) The desired response at step n
µ The adaptation step size

To overcome potential numerical instability in the tap-weight update, a small positive constant (a =
1e-10) has been added in the denominator.

To turn off normalization, clear the Use normalization check box in the parameter dialog. The block
then computes the filter-tap estimate as

w(n) = w(n− 1) + u(n)μe*(n)

2 Blocks

2-830

The block icon has port labels corresponding to the inputs and outputs of the LMS algorithm. Note
that inputs to the In and Err ports must be sample-based scalars. The signal at the Out port is a
scalar, while the signal at the Taps port is a sample-based vector.

Block Ports Corresponding Variables
In u, the scalar input, which is internally buffered into the vector u(n)
Out y(n), the filtered scalar output
Err e(n), the scalar estimation error
Taps w(n), the vector of filter-tap estimates

An optional Adapt input port is added when you select the Adapt input check box in the dialog.
When this port is enabled, the block continuously adapts the filter coefficients while the Adapt input
is nonzero. A zero-valued input to the Adapt port causes the block to stop adapting, and to hold the
filter coefficients at their current values until the next nonzero Adapt input.

The FIR filter length parameter specifies the length of the filter that the LMS algorithm estimates.
The Step size parameter corresponds to µ in the equations. Typically, for convergence in the mean
square, µ must be greater than 0 and less than 2. The Initial value of filter taps specifies the initial
value w 0 as a vector, or as a scalar to be repeated for all vector elements. The Leakage factor
specifies the value of the leakage factor, 1 –μ α, in the leaky LMS algorithm below. This parameter
must be between 0 and 1.

w(n + 1) = (1− μα)w(n) + u(n)
uH(n)u(n)

μe*(n)

Examples
See the lmsadtde demo.

Parameters
FIR filter length

The length of the FIR filter.
Step-size

The step-size, usually in the range (0, 2). Tunable (Simulink).
Initial value of filter taps

The initial FIR filter coefficients.
Leakage factor

The leakage factor, in the range [0, 1]. Tunable (Simulink).
Use normalization

Select this check box to compute the filter-tap estimate using the normalized equations.
Adapt input

Enables the Adapt port when selected.

 LMS Adaptive Filter (Obsolete)

2-831

matlab:lmsadtde

References
Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Kalman Adaptive Filter (Obsolete) DSP System Toolbox
RLS Adaptive Filter (Obsolete) DSP System Toolbox

See “Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter” for related information.

Introduced in R2008b

2 Blocks

2-832

LMS Filter
Compute output, error, and weights using LMS adaptive algorithm
Library: DSP System Toolbox / Filtering / Adaptive Filters

DSP System Toolbox HDL Support / Filtering

Description
The LMS Filter block can implement an adaptive FIR filter by using five different algorithms. The
block estimates the filter weights or coefficients needed to minimize the error, e(n), between the
output signal y(n) and the desired signal, d(n). The output is the filtered input signal, which is the
estimate of the desired signal. The Error port outputs the result of subtracting the output signal from
the desired signal.

Under specific conditions, this block also supports SIMD code generation. For details, see “Code
Generation” on page 2-840.

Ports
Input

Input — Input signal
scalar | vector

Connect the signal that you want to filter, specified as a scalar or column vector.

When the input is fixed-point, it must be signed.
Data Types: single | double | fixed point

Desired — Desired signal
vector | matrix

Connect the desired signal, specified as a vector or matrix. The desired signal must have the same
data type, complexity, and dimensions as the Input signal.

When Input is fixed-point, the desired signal must be a signed fixed-point.
Data Types: single | double | fixed point

Step-size — Step-size
scalar

Enter the step size μ. For convergence of the normalized LMS equations, 0<µ<2. Input type must
match the type of the Input port.

When Input is fixed-point, the step-size must be a signed fixed-point.

 LMS Filter

2-833

Dependencies

This port appears only when you set the Specify step size via parameter to Input port.
Data Types: single | double | fixed point

Adapt — Update filter weights
scalar | vector

When the input to this port is greater than zero, the block continuously updates the filter weights.
When the input to this port is less than or equal to zero, the filter weights remain at their current
values.

Dependencies

This port appears only when you set the Adapt port parameter to on.
Data Types: single | double | int8 | int16 | int32 | Boolean

Reset — Reset filter weights
scalar | vector

Signal to reset the value of the filter weights to their initial values, specified as a vector. The block
resets the filter weights whenever a reset event is detected at the Reset port. The reset signal rate
must be the same rate as the data signal input.

For reset event types, see the Reset parameter.

Dependencies

This port appears only when you set the Reset port parameter to Rising edge, Falling edge,
Either edge, or Non-zero sample.
Data Types: single | double | int8 | int16 | int32 | Boolean

Output

Output — Output signal
scalar | vector

Outputs the filtered input signal, which is the estimate of the desired signal. It is the same size and
complexity as the input signal.

The output signal has the same data type as the desired signal.
Data Types: single | double | fixed point

Error — Error between Output and Desired signals
scalar | vector

Outputs the result of subtracting the output signal from the desired signal.

The error signal has the same data type as the desired signal.
Data Types: single | double | fixed point

Wts — Updated filter weights
scalar | vector

2 Blocks

2-834

For each iteration, the block outputs the current updated filter weights from this port.

The weights data type must match the type of the Input port for floating-point signals. Obeys the
Weights parameter for fixed-point signals.

Dependencies

This port appears only when you set the Output filter weights parameter to On.
Data Types: single | double | fixed point

Parameters
Main Tab

Algorithm — Select algorithm
LMS (default) | Normalized LMS | Sign-Error LMS | Sign-Data LMS | Sign-Sign LMS

Choose the algorithm used to calculate the filter weights.

Filter length — Filter length
32 (default) | scalar

Enter the length of the FIR filter weights vector.

Specify step size via — Specify step size via
Dialog (default) | Input port

• Dialog –– Specify step size by using the Step size (mu) parameter.
• Input port –– Specify step size by using the Step-size port.

Step size (mu) — Step size
0.1 (default) | positive scalar

Enter the step size μ. For convergence of the normalized LMS equations, 0<µ<2.

Tunable: Yes

Dependencies

This parameter appears only when you set the Specify step size via parameter to Dialog.

Leakage factor (0 to 1) — Leakage factor
1.0 (default) | scalar

Enter the leakage factor, 0 < 1 – μα ≤ 1.

Tunable: Yes

Initial value of filter weights — Initial value of filter weights
0 (default) | vector | scalar

Enter the initial filter weights w(0) as a vector or a scalar. When you enter a scalar, the block uses the
scalar value to create a vector of filter weights. This vector length is equal to the filter length and all
of its values are equal to the scalar value.

 LMS Filter

2-835

Adapt port — Enable Adapt port
on (default) | off

Select this check box to enable the Adapt input port.

Reset port — Reset port
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

When you want to reset the value of filter weights to their initial values, use the Reset port
parameter. The reset signal must be the same rate as the data signal input.

Select None to disable the Reset port. To enable the Reset port, select one of the following from the
list:

• Rising edge — Triggers a reset operation when the Reset input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero (see the following figure)

• Falling edge — Triggers a reset operation when the Reset input does one of the following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero (see the following figure)

• Either edge — Triggers a reset operation when the Reset input is a Rising edge or Falling
edge

2 Blocks

2-836

• Non-zero sample — Triggers a reset operation at each sample time that the Reset input is not
zero

Output filter weights — Output filter weights
on (default) | off

Select the Output filter weights parameter to export the filter weights from the Wts port. For each
iteration, the block outputs the current updated filter weights from this port.

Data Type Tab

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Parameters — Parameters
Same word length as first input (default) | Specify word length | Binary point
scaling

Choose how you specify the word length and the fraction length of the leakage factor and step size:

• Same word length as first input –– The word length of the leakage factor and step size
match that of the first input to the block. In this mode, the fraction length of the leakage factor
and step size is automatically set to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• Specify word length –– You can enter the word length of the leakage factor and step size, in
bits. In this mode, the fraction length of the leakage factor and step size is automatically set to the
binary-point only scaling that provides you with the best precision possible given the value and
word length of the coefficients.

• Binary point scaling –– You can enter the word length and the fraction length of the leakage
factor and step size, in bits. The leakage factor and the step size must have the same word length,
but the fraction lengths can differ.

For the Specify step size via parameter, if you choose Input port, the word length of the
leakage factor is the same as the word length of the step size input at the Step-size port. The

 LMS Filter

2-837

fraction length of the leakage factor is automatically set to the best precision possible based on the
word length of the leakage factor.

Dependencies

This parameter is visible only if you set the Specify step size via parameter to Dialog

Weights — Word and fraction length of filter weights
Same as first input (default) | Binary point scaling

Choose how you specify the word length and fraction length of the filter weights of the block:

• Same as first input –– The word length and fraction length of the filter weights match those
of the first input to the block.

• Binary point scaling –– You can enter the word length and the fraction length of the filter
weights, in bits.

Product and quotient — Word and fraction length of product and quotient
Same as first input (default) | Binary point scaling

Choose how you specify the word length and fraction length of u'u, W'u, μ ⋅ e, Q ⋅ u, and the quotient,
Q. Here, u is the input vector, W is the vector of filter weights, μ is the step size, e is the error, and Q
is the quotient, which is defined as Q = μ ⋅ e

u′u

• Same as first input –– The word length and fraction length of these quantities match those of
the first input to the block.

• Binary point scaling –– You can enter the word length and the fraction length of these
quantities, in bits. The word length of the quantities must be the same, but the fraction lengths
can differ.

Accumulator — Word and fraction lengths of accumulators
Same as first input (default) | Binary point scaling

Use this parameter to specify how you want to designate the word and fraction lengths of the
accumulators for the u'u and W'u operations.

Note Do not use this parameter to designate the word and fraction lengths of the accumulator for
the Q ⋅ u operation. The accumulator data type for this quantity is automatically set to be the same as
the product data type. The minimum, maximum, and overflow information for this accumulator is
logged as part of the product information. Autoscaling treats this product and accumulator as one
data type.

• Same as first input –– These characteristics match those of the input to the block.
• Binary point scaling –– You can enter the word length and the fraction length of the

accumulators, in bits. The word length of both the accumulators must be the same, but the
fraction lengths can differ.

For illustrations depicting the use of the accumulator data type in this block, see “Fixed Point” on
page 2-841 and “Multiplication Data Types”.

2 Blocks

2-838

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
LMS Filter Algorithms

When you select LMS for the Algorithm parameter, the block calculates the filter weights by using
the least mean-square (LMS) algorithm. This algorithm is defined by these equations.

y(n) = wT(n− 1)u(n)
e(n) = d(n)− y(n)

w(n) = αw(n− 1) + f (u(n), e(n), μ)

The various LMS adaptive filter algorithms available in this block are defined as:

• LMS ––

f (u(n), e(n), μ) = μe(n)u*(n)
• Normalized LMS ––

f (u(n), e(n), μ) = μe(n) u∗(n)
ε + uH(n)u(n)

In Normalized LMS, to overcome potential numerical instability in the update of the weights, a
small positive constant, ε, has been added in the denominator. For double-precision floating-point
input, ε is 2.2204460492503131e-016. For single-precision floating-point input, ε is
1.192092896e-07. For fixed-point input, ε is 0.

• Sign-Error LMS ––

f (u(n), e(n), μ) = μsign(e(n))u*(n)
• Sign-Data LMS ––

f (u(n), e(n), μ) = μe(n)sign(u(n))

where u(n) is real.

 LMS Filter

2-839

• Sign-Sign LMS ––

f (u(n), e(n), μ) = μsign(e(n))sign(u(n))

where u(n) is real.

Variable Description
n The current time index
u(n) The vector of buffered input samples at step n
u*(n) The complex conjugate of the vector of buffered input samples at step n
w(n) The vector of filter weight estimates at step n
y(n) The filtered output at step n
e(n) The estimation error at step n
d(n) The desired response at step n
µ The adaptation step size
α The leakage factor (0 < α ≤ 1)
ε A constant that corrects any potential numerical instability that occurs

during the update of weights.

References
[1] Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons,

1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

The LMS Filter block supports SIMD code generation using Intel AVX2 technology under these
conditions:

• Algorithm is set to LMS or Normalized LMS.
• Input signal is real-valued.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

By default, the LMS Filter implementation uses a linear sum for the FIR section of the filter.

2 Blocks

2-840

The LMS Filter implements a tree summation (which has a shorter critical path) under the following
conditions:

• The LMS Filter is used with real data.
• The word length of the Accumulator W'u data type is at least ceil(log2(filter length))

bits wider than the word length of the Product W'u data type.
• The Accumulator W'u data type has the same fraction length as the Product W'u data type.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Restrictions

• HDL Coder does not support the Normalized LMS algorithm of the LMS Filter.
• The Reset port supports only Boolean and unsigned inputs.
• The Adapt port supports only Boolean inputs.
• Filter length must be greater than or equal to 2.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

Fixed-Point Data Types

The following diagrams show the data types used within the LMS Filter block for fixed-point signals.
The table summarizes the definitions of variables used in the diagrams.

Variable Definition
u Input vector
W Vector of filter weights
µ Step size
e Error

 LMS Filter

2-841

Variable Definition
Q Quotient, Q = μ ⋅ e

u′u
Product u'u Product data type in Energy calculation diagram
Accumulator u'u Accumulator data type in Energy calculation diagram
Product W'u Product data type in Convolution diagram
Accumulator W'u Accumulator data type in Convolution diagram
Product μ ⋅ e Product data type in Product of step size and error diagram
Product Q ⋅ u Product and accumulator data type in Weight update

diagram. 1

1The accumulator data type for this quantity is automatically set to be the same as the product data
type. The minimum, maximum, and overflow information for this accumulator is logged as part of the
product information. Autoscaling treats this product and accumulator as one data type.

2 Blocks

2-842

You can set the data type of the parameters, weights, products, quotient, and accumulators in the
block mask. Fixed-point inputs, outputs, and mask parameters of this block must have these
characteristics:

• The input signal and the desired signal must have the same word length, but their fraction lengths
can differ.

• The step size and leakage factor must have the same word length, but their fraction lengths can
differ.

• The output signal and the error signal have the same word length and the same fraction length as
the desired signal.

• The quotient and the product output of the u'u, W'u, μ ⋅ e, and Q ⋅ u operations must have the
same word length, but their fraction lengths can differ.

• The accumulator data type of the u'u and W'u operations must have the same word length, but
their fraction lengths can differ.

The output of the multiplier is in the product output data type if at least one of the inputs to the
multiplier is real. If both of the inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details, see “Multiplication Data Types”.

 LMS Filter

2-843

See Also
Blocks
LMS Update | RLS Filter | Block LMS Filter | Fast Block LMS Filter

Topics
“Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter”

Introduced before R2006a

2 Blocks

2-844

LMS Update
Estimate weights of LMS adaptive filter
Library: DSP System Toolbox / Filtering / Adaptive Filters

Description
The LMS Update block estimates the weights of an LMS adaptive filter. The block accepts the data
and error as inputs and computes the filter weights based on the algorithm the block chooses. For
more details on the algorithms, see “Algorithms” on page 2-847.

You can use this block to compute the adaptive filter weights in applications such as system
identification, inverse modeling, and filtered-x LMS algorithms, which are used in acoustic noise
cancellation. For more details, see “References” on page 2-848.

Input/Output Ports
Input

Input — Data input
scalar

Data input to the adaptive filter. The block accepts single-precision or double-precision floating point
inputs. All inputs must be scalars and must have the same data type and precision.
Data Types: single | double

Error — Error
scalar

Error between the output signal and the desired signal.
Data Types: single | double

Mu — Filter adaptation step size
0.1 (default) | scalar in the range [0,1]

To enable this port, set Step size source to Input port.
Data Types: single | double

Adapt — Update filter weights
real scalar

When the input to this port is not zero, the block updates the filter weights. When the input to this
port is 0, the filter weights do not change.

 LMS Update

2-845

Data Types: single | double | Boolean | int16 | int32 | int64 | int8 | uint16 | uint32 |
uint64 | uint8

Reset — Reset filter weights
real scalar

When the input to this port is not zero, the block resets the filter weights to their initial values. When
the input to this port is 0, the filter weights do not change.
Data Types: single | double | Boolean | int16 | int32 | int64 | int8 | uint16 | uint32 |
uint64 | uint8

Output

Wts — Filter weights
1-by-n row vector

The length of the filter weights vector is the value in the Filter length parameter.
Data Types: single | double

Parameters
Algorithm — LMS adaptive algorithm
LMS (default) | Normalized LMS | Sign—Error LMS | Sign—Data LMS | Sign—Sign LMS

The block uses one of the listed algorithms to compute the filter weights. For more details on the
algorithms, see “Algorithms” on page 2-847.

Filter length — Length of the filter
32 (default) | positive integer

Filter length specifies the length of the weights vector the block generates through the Wts output
port.

Step size source — Method to specify the step size
Property (default) | Input port

• Property — Specify the filter adaptation size using the Step size (mu) parameter.
• Input port — Pass filter adaptation size using the Mu input port.

Step size (mu) — Size of the adaptation step
0.1 (default) | nonnegative scalar

Step size (mu) indicates the amount by which the filter weights are updated in each iteration.
Choose an optimal step size so that the filter is stable and the convergence speed is optimal.

To enable this parameter, set Step size source to Property.

This parameter is tunable. You can change its value even during the simulation.

Leakage factor (0 to 1) — Leakage factor
1.0 (default) | real scalar in the range [0,1]

Leakage factor (0 to 1) prevents unbounded growth of the filter coefficients by reducing the drift of
the coefficients from their optimum values. A leakage factor of 1.0 indicates no leakage. If you

2 Blocks

2-846

encounter coefficient drift, that is, large fluctuation about the optimum solution, decrease the leakage
factor until the coefficient fluctuation becomes small.

This parameter is tunable. You can change its value even during the simulation.

Initial value of filter weights — Initial value of filter weights
0 (default) | real scalar

This parameter specifies the initial value of the filter weights, w(n-1). The block uses this value to
compute the weights, w(n), when n = 1. For more details, see “Algorithms” on page 2-847.

Enable adapt input — Update the filter weights
off (default) | on

When you select this check box, the Adapt input port appears on the block. When the input to this
port is greater than 0, the block updates the filter weights. When the input to this port is less than or
equal to 0, the filter weights do not change.

Enable reset input — Reset the filter weights
off (default) | on

When you select this check box, the Reset input port appears on the block. When the input to this
port is greater than 0, the block resets the filter weights to their initial values. When the input to this
port is less than or equal to 0, the filter weights do not change.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster simulation speed
than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
The block computes filter weight estimates using w(n) = αw(n− 1) + f (u(n), e(n), μ).

 LMS Update

2-847

The function f (u(n), e(n), μ) is defined according to the LMS algorithm you specify through the
Algorithm parameter:

• LMS — f (u(n), e(n), μ) = μe(n)u*(n)
•

Normalized LMS — f (u(n), e(n), μ) = μe(n) u∗(n)
ε + uH(n)u(n)

In the Normalized LMS algorithm, ε is a small positive constant that overcomes the potential
numerical instability in the update of weights.

For double-precision floating-point inputs, ε is 2.2204460492503131e-016. For single-precision
floating-point inputs, ε is 1.192092896e-07. For fixed-point input, ε is 0.

• Sign-Error LMS — f (u(n), e(n), μ) = μsign(e(n))u*(n)
• Sign-Data LMS — f (u(n), e(n), μ) = μe(n)sign(u(n)), where u(n) is real
• Sign-Sign LMS — f (u(n), e(n), μ) = μsign(e(n))sign(u(n)), where u(n) is real

In the previous equations:

• n — The current time index
• u(n) — The vector of buffered input samples at step n
• u*(n) — The complex conjugate of the vector of buffered input samples at step n
• w(n) — The vector of filter weight estimates at step n
• e(n) — The estimation error at step n
• µ — The adaptation step size
• α — The leakage factor (0 ≤ α ≤ 1)

References
[1] Madisetti, Vijay, and Douglas Williams. "Introduction to Adaptive Filters." The Digital Signal

Processing Handbook. Boca Raton, FL: CRC Press, 1999.

[2] Akhtar, M. T., M. Abe, M. Kawamata. "Modified-filtered-x LMS algorithm based active noise
control systems with improved online secondary-path modeling." IEEE Symposium on Circuits
and Systems, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
LMS Filter | RLS Filter | Block LMS Filter | Fast Block LMS Filter

Objects
dsp.AdaptiveLatticeFilter | dsp.BlockLMSFilter | dsp.LMSFilter | dsp.RLSFilter

2 Blocks

2-848

Topics
“Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter”

Introduced in R2016b

 LMS Update

2-849

Lowpass Filter
Design FIR or IIR lowpass filter
Library: DSP System Toolbox / Filtering / Filter Designs

Description
The Lowpass Filter block independently filters each channel of the input signal over time using the
filter design specified by the block parameters. You can control whether the block implements an IIR
or FIR lowpass filter using the Filter type parameter.

This block supports ARM Cortex code generation. Under specific conditions, this block also supports
SIMD code generation. For details, see “Code Generation” on page 2-854.

Ports
Input

Port_1 — Input signal to filter
column vector | matrix

Input signal, specified as a real- or complex-valued column vector or matrix. If the input signal is a
matrix, each column of the matrix is treated as an independent channel. The number of rows in the
input signal denotes the channel length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Filtered signal
vector | matrix

Filtered signal, specified as a vector or matrix. The output has the same size, data type, and
complexity characteristics as the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main

Filter type — FIR or IIR filter
FIR (default) | IIR

Specify whether the block implements an FIR lowpass filter or an IIR lowpass filter.

2 Blocks

2-850

Design minimum order filter — Design filter with minimum order
on (default) | off

When you select this check box, the block designs a filter with the minimum order and the specified
passband, stopband frequency, passband ripple, and stopband attenuation.

When you clear this check box, you can specify the Filter order as a positive integer.

Filter order — Order of lowpass filter
50 (default) | positive integer

Filter order of lowpass filter, specified as a positive scalar integer.

Dependencies

To enable this parameter, clear the Design minimum order filter check box.

Passband edge frequency (Hz) — Passband edge frequency
8e3 (default) | real positive scalar

Passband edge frequency of the lowpass filter, specified as a real positive scalar in Hz. The passband
edge frequency must be less than half the value of the Input sample rate (Hz).

Stopband edge frequency (Hz) — Stopband edge frequency
12e3 (default) | real positive scalar

Stopband edge frequency of the lowpass filter, specified as a real positive scalar in Hz. The stopband
edge frequency must be less than half the value of the Input sample rate (Hz).
Dependencies

To enable this parameter, select the Design minimum order filter check box.

Maximum passband ripple (dB) — Maximum passband ripple
0.1 (default) | real positive scalar

Maximum ripple of the filter response in the passband, specified as a real positive scalar in dB.

Minimum stopband attenuation (dB) — Minimum stopband attenuation
80 (default) | real positive scalar

Minimum attenuation in the stopband, specified as a real positive scalar in dB.

Inherit sample rate from input — Inherit sample rate from input
off (default) | on

When you select this check box, the block inherits its sample rate from the input signal. When you
clear this check box, you specify the sample rate using the Input sample rate (Hz) parameter.

Input sample rate (Hz) — Input sample rate
44100 (default) | scalar

Input sample rate, specified as a scalar in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate from input check box.

 Lowpass Filter

2-851

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run:

• Interpreted execution (default)

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster simulation speed than
Interpreted execution.

View Filter Response — Open Filter Visualization Tool
button

Opens the Filter Visualization Tool (fvtool) and displays the magnitude/phase response of the
Lowpass Filter. The response is based on the block dialog box parameters. Changes made to these
parameters update FVTool.

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

2 Blocks

2-852

Data Types

Rounding mode — Rounding method
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Rounding method for the output fixed-point operations.

Coefficients — Coefficient data type
fixdt(1,16) (default) | fixdt(1,16,0) | <data type expression>

Fixed-point data type of the coefficients, specified as one of the following:

• fixdt(1,16) — Signed fixed-point data type of word length 16, with binary point scaling. The
block determines the fraction length automatically from the coefficient values in such a way that
the coefficients occupy maximum representable range without overflowing.

• fixdt(1,16,0) — Signed fixed-point data type of word length 16 and fraction length 0. You can
change the fraction length to any other integer value.

• <data type expression> — Specify the data type using an expression that evaluates to a data
type object, for example, numeric type (fixdt([],16, 15)). Specify the sign mode of this data
type as [] or true.

• Refresh Data Type — Refresh to the default data type.

Click the Show data type assistant button to display the data type assistant, which helps
you set the data type. For more information, see “Specify Data Types Using Data Type Assistant”
(Simulink).

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
This block brings the capabilities of the dsp.LowpassFilter System object to the Simulink
environment.

For information on the algorithms used by this block, see the Algorithms on page 4-949 section of
the dsp.LowpassFilter System object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Lowpass Filter

2-853

The Lowpass Filter block supports ARM Cortex code generation. To learn more about ARM Cortex
code generation, see “Code Generation for ARM Cortex-M and ARM Cortex-A Processors”.

The Lowpass Filter block also supports SIMD code generation using Intel AVX2 technology under
these conditions:

• Filter type is set to FIR.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Highpass Filter

Objects
dsp.LowpassFilter | dsp.HighpassFilter

Topics
“Lowpass IIR Filter Design in Simulink”

Introduced in R2015b

2 Blocks

2-854

Lowpass Filter (Obsolete)
Design lowpass filter

Compatibility

Note The Lowpass Filter (Obsolete) block has been replaced by the Lowpass Filter block. Existing
instances of the Lowpass Filter (Obsolete) block will continue to operate. For new models, use the
Lowpass Filter block.

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Parameters
View filter response

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

In this group, you specify your filter format, such as the impulse response and the filter order.

Impulse response
Select either FIR or IIR from the drop-down list. FIR is the default. When you choose an impulse
response, the design methods and structures you can use to implement your filter change
accordingly.

 Lowpass Filter (Obsolete)

2-855

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify. Selecting Specify enables the Order option so you
can enter the filter order. When you set the Impulse response to IIR, you can specify different
numerator and denominator orders. To specify a different denominator order, you must select the
Denominator order check box.

Order
Enter the filter order. This option is enabled only if you set the Order mode to Specify.

Denominator order
Select this check box to specify a different denominator order. This option is enabled only if you
set the Impulse response to IIR and the Order mode to Specify.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, the block specifies a single-rate filter.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default value is 2.

Interpolation Factor
Enter the interpolation factor. This option is enabled only if the Filter type is set to
Interpolator or Sample-rate converter. The default value is 2.

Frequency Specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to the one shown in the following figure.

In the figure, regions between specification values such as Fpass and Fstop represent transition regions
where the filter response is not constrained.

2 Blocks

2-856

Frequency constraints
When Order mode is Specify, select the filter features that the block uses to define the
frequency response characteristics. The list contains the following options, when available for the
filter specifications.

• Passband and Stopband frequencies — Define the filter by specifying the frequencies
for the edges for the stop- and passbands.

• Passband frequency — Define the filter by specifying the edge of the passband.
• Stopband frequency — Define the filter by specifying the edge of the stopband.
• Hafband power (3dB) frequency — Define the filter response by specifying the location

of the 3 dB point. The 3 dB point is the frequency for the point three decibels below the
passband value.

• Cutoff (6dB) frequency — For FIR filters, define the filter response by specifying the
location of the 6 dB point. The 6 dB point is the frequency for the point six decibels below the
passband value.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0–1) to enter frequencies in normalized form. This behavior is
the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Input sample rate, specified in the units you selected for Frequency units, defines the
sampling frequency at the filter input. When you provide an input sampling frequency, all
frequencies in the specifications are in the selected units as well. This parameter is available
when you select one of the frequency options from the Frequency units list.

Passband frequency
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select in Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select in Frequency units.

Half power (3dB) frequency
When Frequency constraints is Half power (3dB) frequency, specify the frequency of the
3 dB point. Specify the value in either normalized frequency units or the absolute units you select
in Frequency units.

Cutoff (6dB) frequency
When Frequency constraints is Cutoff (6dB) frequency, specify the frequency of the 6 dB
point. Specify the value in either normalized frequency units or the absolute units you select
Frequency units.

Magnitude Specifications

Parameters in this group specify the filter response in the passbands and stopbands.

Magnitude constraints
This option is only available when you specify the order of your filter design. Depending on the
setting of the Frequency constraints parameter, some combination of the following options will

 Lowpass Filter (Obsolete)

2-857

be available for the Magnitude constraints parameter: Unconstrained, and Passband
ripple and stopband attenuation.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. From the drop-down
list, select one of the following options:

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure of your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Elliptic, and the default FIR method is Equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options
The options for each design are specific for each design method. This section does not present all
of the available options for all designs and design methods. There are many more that you
encounter as you select different design methods and filter specifications. The following options
represent some of the most common ones available.
Density factor

Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in
the grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter
but increases the time required to design the filter. The default value of 16 represents a
reasonable trade between the accurate approximation to the ideal filter and the time to
design the filter.

Phase constraint
Specify the phase constraint of the filter as Linear, Maximum, or Minimum.

Minimum order
When you select this parameter, the design method determines and design the minimum
order filter to meet your specifications. Some filters do not provide this parameter. Select

2 Blocks

2-858

Any, Even, or Odd from the drop-down list to direct the design to be any minimum order, or
minimum even order, or minimum odd order.

Match Exactly
Specifies that the resulting filter design matches either the passband or stopband or both
bands when you select passband or stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the
frequency increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. The block applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation

(1/f)n to define the stopband decay. The block applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

 Lowpass Filter (Obsolete)

2-859

Optimize for unit scale values
Select this check box to scale unit gains between sections in SOS filters. This parameter is
available only for SOS filters (Impulse response: IIR).

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Note The Inherited (this choice will be removed — see release notes) option
will be removed in a future release. See “Frame-Based Processing” in the DSP System Toolbox
Release Notes for more information.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

Introduced in R2006b

2 Blocks

2-860

LPC to LSF/LSP Conversion
Convert linear prediction coefficients to line spectral pairs or line spectral frequencies

Library
Estimation / Linear Prediction

dsplp

Description
The LPC to LSF/LSP Conversion block takes a vector or matrix of linear prediction coefficients (LPCs)
and converts it to a vector or matrix of line spectral pairs (LSPs) or line spectral frequencies (LSFs).
When converting LPCs to LSFs, the block outputs match those of the poly2lsf function.

The block input must be either a matrix, a column vector, or an unoriented vector. Each channel of
the input must have at least two samples.

The input LPCs for each channel, 1, a1, a2, ..., am, must be the denominator of the transfer function of
a stable all-pole filter with the form given in the first equation of “Requirements for Valid Outputs” on
page 2-861. A length-M+1 input channel yields a length-M output channel.

See other sections of this reference page to learn about how to ensure that you get valid outputs, how
to detect invalid outputs, how the block computes the LSF/LSP values, and more.

Requirements for Valid Outputs

To get valid outputs, your inputs and the Root finding coarse grid points parameter value must
meet these requirements:

• The input LPCs for each channel, 1, a1, a2, ..., am, must come from the denominator of the
following transfer function, H(z), of a stable all-pole filter (all roots of H(z) must be inside the unit
circle). Note that the first term in H(z)'s denominator must be 1. When the input LPCs do not
come from a transfer function of the following form, the block outputs are invalid.

H(z) = 1
1 + a1z−1 + a2z−2 + ... + amz−m

• The Root finding coarse grid points parameter value must be large enough so that the block
can find all the LSP or LSF values. (The output LSFs and LSPs are roots of polynomials related to
the input LPC polynomial; the block looks for these roots to produce the output. For details, see
“LSF and LSP Computation Method: Chebyshev Polynomial Method for Root Finding” on page 2-
865.) When you do not set Root finding coarse grid points to a high enough value relative to
the number of LPCs, the block might not find all the LSPs or LSFs and yield invalid outputs as
described in “Root Finding Method Limitations: Failure to Find Roots” on page 2-867.

 LPC to LSF/LSP Conversion

2-861

To learn about recognizing invalid inputs and outputs and parameters for dealing with them, see
“Handling and Recognizing Invalid Inputs and Outputs” on page 2-863.

Setting Outputs to LSFs or LSPs

Set the Output parameter to one of the following settings to determine whether the block outputs
LSFs or LSPs:

• LSF in radians (0 pi) — Block outputs the LSF values between 0 and π radians in increasing
order. The block does not output the guaranteed LSF values, 0 and π.

• LSF normalized in range (0 0.5) — Block outputs normalized LSF values in increasing
order, computed by dividing the LSF values between 0 and π radians by 2π. The block does not
output the guaranteed normalized LSF values, 0 and 0.5.

• LSP in range (-1 1) — Block outputs LSP values in decreasing order, equal to the cosine of
the LSF values between 0 and π radians. The block does not output the guaranteed LSP values, -1
and 1.

Adjusting Output Computation Time and Accuracy with Root Finding Parameters

The values n and k determine the block's output computation time and accuracy, where

• n is the value of the Root finding coarse grid points parameter (choose this value with care; see
the note below).

• k is the value of the Root finding bisection refinement parameter.
• Decreasing the values of n and k decreases the output computation time, but also decreases

output accuracy:

• The upper bound of block's computation time is proportional to k ⋅ (n− 1).
• Each LSP output is within 1/(n ⋅ 2k) of the actual LSP value.
• Each LSF output is within ΔLSF of the actual LSF value, LSFact, where

ΔLSF = acos LSFact − acos LSFact + 1/ n ⋅ 2k

Note When the value of the Root finding coarse grid points parameter is too small relative to the
number of LPCs, the block might output invalid data as described in “Requirements for Valid
Outputs” on page 2-861. Also see “Handling and Recognizing Invalid Inputs and Outputs” on page 2-
863.

Notable Input and Output Properties

• To get valid outputs, your input LPCs and the value of the Root finding coarse grid points
parameter must meet the requirements described in “Requirements for Valid Outputs” on page 2-
861.

• Length-L+1 input channel yields length-L output channel
• Output parameter determines the output type (see “Setting Outputs to LSFs or LSPs” on page 2-

862):

• LSFs — frequencies, wk, where 0 < wk < π and wk < wk + 1

• Normalized LSFs — wk / 2π

2 Blocks

2-862

• LSPs — cos(wk)

Handling and Recognizing Invalid Inputs and Outputs

The block outputs invalid data when your input LPCs and the value of the Root finding coarse grid
points parameter do not meet the requirements described in “Requirements for Valid Outputs” on
page 2-861. The following topics describe what invalid outputs look like, and how to set the block
parameters provided for handling invalid inputs and outputs:

• “What Invalid Outputs Look Like” on page 2-863
• “Parameters for Handling Invalid Inputs and Outputs” on page 2-863

What Invalid Outputs Look Like

The channels of an invalid output have the same dimensions, sizes, and frame statues as the channels
of a valid output. However, invalid output channels do not contain all the LSP or LSF values. Instead,
they contain none or some of the LSP and LSF values and the rest of the output is filled with place
holder values (-1, 0.5, or π) depending on the Output parameter setting).

In short, all invalid outputs in a channel end in one of the place holder values (-1, 0.5, or π) as
illustrated in the following table. To learn how to use the block's parameters for handling invalid
inputs and outputs, see the next section.

Output Parameter Setting Place Holder Sample Invalid Outputs
LSF in radians (0 pi) π w1 w2 w3 π π π π π
LSF normalized in range (0
0.5)

0.5 w1
w2
0.5

LSP in range (-1 1) -1 cos w13
cos w23
−1
−1
−1

Parameters for Handling Invalid Inputs and Outputs

You must set how the block handles invalid inputs and outputs by setting these parameters:

• Show output validity status (1=valid, 0=invalid) — Set this parameter to activate a second
output port that outputs a vector with one Boolean element per channel; 1 when the output of the
corresponding channel is valid, and 0 when the output is invalid. The LSF and LSP outputs are
invalid when the block fails to find all the LSF or LSP values or when the input LPCs are unstable
(for details, see “Requirements for Valid Outputs” on page 2-861). See the previous section to
learn how to recognize invalid outputs.

• If current output is invalid, overwrite with previous output — Select this check box to cause
the block to overwrite invalid outputs with the previous output. When you set this parameter you
also need to consider these parameters:

• When first output is invalid, overwrite with user-defined values — When the first input is
unstable, you can overwrite the invalid first output with either

 LPC to LSF/LSP Conversion

2-863

• The default values, by clearing this check box
• Values you specify, by selecting this check box

The default initial overwrite values are the LSF or LSP representations of an all-pass filter. The
vector that is used to overwrite invalid output is stored as an internal state.

• User-defined LSP/LSF values for overwriting invalid first output — Specify a vector of
values for overwriting an invalid first output if you selected the When first output is invalid,
overwrite with user-defined values parameter. For multichannel inputs, provide a matrix
with the same number of channels as the input, or one vector that will be applied to every
channel. The vector or matrix of LSP/LSF values you specify should have the same dimension,
size, and frame status as the other outputs.

• If first input value is not 1 — The block output in any channel is invalid when the first
coefficient in an LPC vector is not 1; this parameter determines what the block does when given
such inputs:

• Ignore — Proceed with computations as if the first coefficient is 1.
• Normalize — Divide the input LPCs by the value of the first coefficient before computing the

output.
• Normalize and warn — In addition to Normalize, display a warning message at the

MATLAB command line.
• Error — Stop the simulation and display an error message at the MATLAB command line.

Parameters
Output

Specifies whether to convert the input linear prediction polynomial coefficients (LPCs) to LSP in
range (-1 1), LSF in radians (0 pi), or LSF normalized in range (0 0.5). See
“Setting Outputs to LSFs or LSPs” on page 2-862 for descriptions of the three settings.

Root finding coarse grid points
The value n, where the block divides the interval (-1, 1) into n subintervals of equal length, and
looks for roots (LSP values) in each subinterval. You must pick n large enough or the block output
might be invalid as described in “Requirements for Valid Outputs” on page 2-861. To learn how
the block uses this parameter to compute the output, see “LSF and LSP Computation Method:
Chebyshev Polynomial Method for Root Finding” on page 2-865. Also see “Adjusting Output
Computation Time and Accuracy with Root Finding Parameters” on page 2-862. Tunable
(Simulink).

Root finding bisection refinement

The value k, where each LSP output is within 1/(n ⋅ 2k) of the actual LSP value, where n is the
value of the Root finding coarse grid points parameter. To learn how the block uses this
parameter to compute the output, see “LSF and LSP Computation Method: Chebyshev Polynomial
Method for Root Finding” on page 2-865. Also see “Adjusting Output Computation Time and
Accuracy with Root Finding Parameters” on page 2-862. Tunable (Simulink).

Show output validity status
Set this parameter to activate a second output port that outputs a vector with one Boolean
element per channel; 1 when the output of the corresponding channel is valid, and 0 when the
output is invalid. The LSF and LSP outputs are invalid when the block fails to find all the LSF or
LSP values or when the input LPCs are unstable (for details, see “Requirements for Valid
Outputs” on page 2-861).

2 Blocks

2-864

If current output is invalid, overwrite with previous output
Selecting this check box causes the block to overwrite invalid outputs with the previous output.
Setting this parameter activates other parameters for taking care of initial overwrite values
(when the very first output of the block is invalid). For more information, see “Parameters for
Handling Invalid Inputs and Outputs” on page 2-863.

When first output is invalid, overwrite with user-defined values
When the first input is unstable, you can overwrite the invalid first output with either

• The default values, by clearing this check box
• Values you specify, by selecting this check box

The default initial overwrite values are the LSF or LSP representations of an all-pass filter. The
vector that is used to overwrite invalid output is stored as an internal state. For more information,
see “Parameters for Handling Invalid Inputs and Outputs” on page 2-863.

User-defined LSP/LSF values for overwriting invalid first output
Specify a vector of values for overwriting an invalid first output if you selected the When first
output is invalid, overwrite with user-defined values parameter. For multichannel inputs,
provide a matrix with the same number of channels as the input, or one vector that will be
applied to every channel. The vector or matrix of LSP/LSF values you specify should have the
same dimension, size, and frame status as the other outputs.

If first input value is not 1
Determines what the block does when the first coefficient of an input is not 1. The block can
either proceed with computations as when the first coefficient is 1 (Ignore); divide the input
LPCs by the value of the first coefficient before computing the output (Normalize); in addition to
Normalize, display a warning message at the MATLAB command line (Normalize and warn);
stop the simulation and display an error message at the MATLAB command line (Error). For
more information, see “Parameters for Handling Invalid Inputs and Outputs” on page 2-863.

Theory
LSF and LSP Computation Method: Chebyshev Polynomial Method for Root Finding

Note To learn the principles on which the block's LSP and LSF computation method is based, see the
reference listed in “References” on page 2-868.

To compute LSP outputs for each channel, the block relies on the fact that LSP values are the roots of
two particular polynomials related to the input LPC polynomial; the block finds these roots using the
Chebyshev polynomial root finding method, described next. To compute LSF outputs, the block
computes the arc cosine of the LSPs, outputting values ranging from 0 to π radians.

Root Finding Method

LSPs, which are the roots of two particular polynomials, always lie in the range (-1, 1). (The
guaranteed roots at 1 and -1 are factored out.) The block finds the LSPs by looking for a sign change
of the two polynomials' values between points in the range (-1, 1). The block searches a maximum of
k(n – 1) points, where

• n is the value of the Root finding coarse grid points parameter.

 LPC to LSF/LSP Conversion

2-865

• k is the value of the Root finding bisection refinement parameter.

The block's method for choosing which points to check consists of the following two steps:

1 Coarse Root Finding —- The block divides the interval [-1, 1] into n intervals, each of length
2/n, and checks the signs of both polynomials' values at the endpoints of the intervals. The block
starts checking signs at 1, and continues checking signs at 1 – 4/n, 1 – 6/n, and so on at steps of
length 2/n, outputting any point if it is a root. The block stops searching in these situations:

a The block finds a sign change of a polynomial's values between two adjacent points. An
interval containing a sign change is guaranteed to contain a root, so the block further
searches the interval as described in Step 2, Root Finding Refinement.

b The block finds and outputs all M roots (given a length-M+1 LPC input).
c The block fails to find all M roots and yields invalid outputs as described in “Handling and

Recognizing Invalid Inputs and Outputs” on page 2-863.
2 Root Finding Refinement — When the block finds a sign change in an interval, [a, b], it

searches for the root guaranteed to lie in the interval by following these steps:

a Check if Midpoint Is a Root — The block checks the sign of the midpoint of the interval [a,
b]. The block outputs the midpoint if it is a root, and continues Step 1, Coarse Root Finding,
at the next point, a – 2/n. Otherwise, the block selects the half-interval with endpoints of
opposite sign (either [a, (a + b)/2] or [(a + b)/2, b]) and executes Step 2b, Stop or Continue
Root Finding Refinement.

b Stop or Continue Root Finding Refinement — When the block has repeated Step 2a k
times (k is the value of the Root finding bisection refinement parameter), the block
linearly interpolates the root by using the half-interval's endpoints, outputs the result as an
LSP value, and returns to Step 1, Coarse Root Finding. Otherwise, the block repeats Step 2a
using the half-interval.

2 Blocks

2-866

Coarse Root Finding and Root Finding Refinement

Root Finding Method Limitations: Failure to Find Roots

The block root finding method described above can fail, causing the block to produce invalid outputs
(for details on invalid outputs, see “Handling and Recognizing Invalid Inputs and Outputs” on page 2-
863).

In particular, the block can fail to find some roots if the value of the Root finding coarse grid
points parameter, n, is too small. If the polynomials oscillate quickly and have roots that are very
close together, the root finding might be too coarse to identify roots that are very close to each other,
as illustrated in “Fixing a Failed Root Finding” on page 2-868.

For higher-order input LPC polynomials, you should increase the Root finding coarse grid points
value to ensure the block finds all the roots and produces valid outputs.

 LPC to LSF/LSP Conversion

2-867

Fixing a Failed Root Finding

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Boolean — Supported only by the optional output port that appears when you set the parameter,

Show output validity status (1=valid, 0=invalid)

References
Kabal, P. and Ramachandran, R. “The Computation of Line Spectral Frequencies Using Chebyshev
Polynomials.“IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-34 No. 6,
December 1986. pp. 1419-1426.

2 Blocks

2-868

See Also
LSF/LSP to LPC Conversion DSP System Toolbox
LPC to/from RC DSP System Toolbox
LPC/RC to Autocorrelation DSP System Toolbox
poly2lsf Signal Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

 LPC to LSF/LSP Conversion

2-869

LSF/LSP to LPC Conversion
Convert line spectral frequencies or line spectral pairs to linear prediction coefficients

Library
Estimation / Linear Prediction

dsplp

Description
The LSF/LSP to LPC Conversion block takes a vector or matrix of line spectral pairs (LSPs) or line
spectral frequencies (LSFs) and converts it to a vector or matrix of linear prediction polynomial
coefficients (LPCs). When converting LSFs to LPCs, the block outputs match those of the lsf2poly
function.

The block input can be an N-by-M matrix or an unoriented vector. Each column of the matrix is
treated as a channel. When the input is an unoriented vector, the input is treated as one channel.
Each input channel must be in the same format, which you specify in the Input parameter:

• LSF in range (0 pi) — Vector of LSF values between 0 and π radians in increasing order. Do
not include the guaranteed LSF values, 0 and π.

• LSF normalized in range (0 0.5) — Vector of normalized LSF values in increasing order,
(compute by dividing the LSF values between 0 and π radians by 2π). Do not include the
guaranteed normalized LSF values, 0 and 0.5.

• LSP in range (-1 1) — Vector of LSP values in decreasing order, equal to the cosine of the
LSF values between 0 and π radians. Do not include the guaranteed LSP values, -1 and 1.

Parameters
Input

Specifies whether to convert LSP in range (-1 1), LSF in range (0 pi), or LSF
normalized in range (0 0.5) to linear prediction coefficients (LPCs).

Supported Data Types
• Double-precision floating point
• Single-precision floating point

2 Blocks

2-870

References
Kabal, P. and Ramachandran, R. “The Computation of Line Spectral Frequencies Using Chebyshev
Polynomials.” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-34 No. 6,
December 1986. pp. 1419-1426.

See Also
LPC to LSF/LSP Conversion DSP System Toolbox
LPC to/from RC DSP System Toolbox
LPC/RC to Autocorrelation DSP System Toolbox
lsf2poly Signal Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 LSF/LSP to LPC Conversion

2-871

LPC to/from Cepstral Coefficients
Convert linear prediction coefficients to cepstral coefficients or cepstral coefficients to linear
prediction coefficients

Library
Estimation / Linear Prediction

dsplp

Description
The LPC to/from Cepstral Coefficients block either converts linear prediction coefficients (LPCs) to
cepstral coefficients (CCs) or cepstral coefficients to linear prediction coefficients. Set the Type of
conversion parameter to LPCs to cepstral coefficients or Cepstral coefficients to
LPCs to select the domain into which you want to convert your coefficients. The LPC port
corresponds to LPCs, and the CC port corresponds to the CCs. For more information, see “Algorithm”
on page 2-873.

The block input can be an N-by-M matrix or an unoriented vector. Each column of the matrix is
treated as a channel. When the input is an unoriented vector, the input is treated as one channel.

Consider a signal x(n) as the input to an FIR analysis filter represented by LPCs. The output of this
analysis filter, e(n), is known as the prediction error signal. The power of this error signal is denoted
by P, the prediction error power.

When you select LPCs to cepstral coefficients from the Type of conversion list, you can
specify the prediction error power in two ways. From the Specify P list, choose via input port to
input the prediction error power using input port P. The input to the port must be a vector with length
equal to the number of input channels. Select assume P equals 1 to set the prediction error power
equal to 1 for all channels.

When you select LPCs to cepstral coefficients from the Type of conversion list, the Output
size same as input size check box appears. When you select this check box, the length of the input
vector of LPCs is equal to the output vector of CCs. When you do not select this check box, enter a
positive scalar for the Length of output cepstral coefficients parameter.

When you select LPCs to cepstral coefficients from the Type of conversion list, you can use
the If first input value is not 1 parameter to specify the behavior of the block when the first
coefficient of the LPC vector is not 1. The following options are available:

• Replace it with 1 —- Changes the first value of the coefficient vector to 1. The other
coefficient values are unchanged.

2 Blocks

2-872

• Normalize — Divides the entire vector of coefficients by the first coefficient so that the first
coefficient of the LPC vector is 1.

• Normalize and Warn — Divides the entire vector of coefficients by the first coefficient so that
the first coefficient of the LPC vector is 1. The block displays a warning message telling you that
your vector of coefficients has been normalized.

• Error — Displays an error telling you that the first coefficient of the LPC vector is not 1.

When you select Cepstral coefficients to LPCs from the Type of conversion list, the Output
P check box appears on the block. Select this check box when you want to output the prediction error
power from output port P.

Algorithm
The cepstral coefficients are the coefficients of the Fourier transform representation of the logarithm
magnitude spectrum. Consider a sequence, x(n), having a Fourier transform X(ω). The cepstrum,
cx(n), is defined by the inverse Fourier transform of Cx(ω), where Cx(ω) = logeX (ω). See the Real
Cepstrum block reference page for information on computing cepstrum coefficients from time-domain
signals.

LPC to CC

When in this mode, this block uses a recursion technique to convert LPCs to CCs. The LPC vector is
defined by a0 a1 a2 ... ap and the CC vector is defined by c0 c1 c2 ... cp ... cn− 1 . The recursion is
defined by the following equations:

c0 = logeP

cm = − am + 1
m ∑

k = 1

m− 1
− m− k ⋅ ak ⋅ c m− k , 1 ≤ m ≤ p

cm = ∑
k = 1

p − m− k
m ⋅ ak ⋅ c m− k , p < m < n

CC to LPC

When in this mode, this block uses a recursion technique to convert CCs to LPCs. The CC vector is
defined by c0 c1 c2 ... cp ... cn and the LPC vector is defined by a0 a1 a2 ... ap . The recursion is
defined by the following equations

am = − cm−
1
m ∑

k = 1

m− 1
m− k ⋅ c m− k ⋅ ak

P = exp C0

where m = 1, 2, ..., p.

Parameters
Type of conversion

Choose LPCs to cepstral coefficients or Cepstral coefficients to LPCs to specify
the domain into which you want to convert your coefficients.

 LPC to/from Cepstral Coefficients

2-873

Specify P
Choose via input port to input the values of prediction error power using input port P. Select
assume P equals 1 to set the prediction error power equal to 1.

Output size same as input size
When you select this check box, the length of the input vector of LPCs is equal to the output
vector of CCs.

Length of output cepstral coefficients
Enter a positive scalar that is the length of each output channel of CCs.

If first input value is not 1
Select what you would like the block to do when the first coefficient of the LPC vector is not 1.
You can choose Replace it with 1, Normalize, Normalize and Warn, and Error.

Output P
Select this check box to output the prediction error power for each channel from output port P.

References
Papamichalis, Panos E. Practical Approaches to Speech Coding. Englewood Cliffs, NJ: Prentice Hall,
1987.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Levinson-Durbin DSP System Toolbox
LPC to LSF/LSP Conversion DSP System Toolbox
LSF/LSP to LPC Conversion DSP System Toolbox
LPC to/from RC DSP System Toolbox
LPC/RC to Autocorrelation DSP System Toolbox
Real Cepstrum DSP System Toolbox
Complex Cepstrum DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

2 Blocks

2-874

LPC to/from RC
Convert linear prediction coefficients to reflection coefficients or reflection coefficients to linear
prediction coefficients

Library
Estimation / Linear Prediction

dsplp

Description
The LPC to/from RC block either converts linear prediction coefficients (LPCs) to reflection
coefficients (RCs) or reflection coefficients to linear prediction coefficients. Set the Type of
conversion parameter to LPC to RC or RC to LPC to select the domain into which you want to
convert your coefficients. The A port corresponds to LPC coefficients, and the K port corresponds to
the RC coefficients. For more information, see “Algorithm” on page 2-876.

The block input can be an N-by-M matrix or an unoriented vector. Each column of the matrix is
treated as a channel. When the input is an unoriented vector, the input is treated as one channel.

Consider a signal x (n) as the input to an FIR analysis filter represented by LPC coefficients. The
output of the analysis filter, e (n), is known as the prediction error signal. The power of this error
signal is denoted by P. When the zero lag autocorrelation coefficient of x (n) is one, the
autocorrelation sequence and prediction error power are said to be normalized.

Select the Output normalized prediction error power check box to enable port P. The normalized
prediction error power output at P is a vector with one element per input channel. Each element
varies between zero and one.

Select the Output LPC filter stability check box to output the stability of the filter represented by
the LPCs or RCs. The synthesis filter represented by the LPCs is stable when the absolute value of
each of the roots of the LPC polynomial is less than one. The lattice filter represented by the RCs is
stable when the absolute value of each reflection coefficient is less than 1. When the filter is stable,
the block outputs a Boolean value of 1 for each input channel at the S port. When the filter is
unstable, the block outputs a Boolean value of 0 for each input channel at the S port.

If first input value is not 1 parameter specifies the behavior of the block when the first coefficient
of the LPC coefficient vector in any channel is not 1. The following options are available:

• Replace it with 1 — Changes the first value of the coefficient channel to 1. The other
coefficient values are unchanged.

• Normalize — Divides the entire channel of coefficients by the first coefficient so that the first
coefficient of the LPC coefficient vector is 1.

 LPC to/from RC

2-875

• Normalize and Warn — Divides the entire channel of coefficients by the first coefficient so that
the first coefficient of the LPC coefficient vector is 1. The block displays a warning message telling
you that your vector of coefficients has been normalized.

• Error — Displays an error telling you that the first coefficient of the LPC coefficient channel is
not 1.

Algorithm
LPC to RC

When in this mode, this block uses backward Levinson recursion to convert linear prediction
coefficients (LPCs) to reflection coefficients (RCs). For a given Nth order LPC vector
LPCN = 1 aN1 aN2 … aNN , the block calculates the Nth reflection coefficient value using the
formula γN = − aNN. The block then finds the lower order LPC vectors , LPCN − 1, LPCN − 2, ..., LPC1,
using the following recursion.

for p = N, N – 1, ..., 2,

γp = app
F = 1− γp2

ap− 1, m =
ap, m

F −
γpap, p−m

F , 1 ≤ m < p

end

Finally, γ1 = − a11. The reflection coefficient vector is γ1, γ2, …, γN .

RC to LPC

When in this mode, this block uses Levinson recursion to convert reflection coefficients (RCs) to
linear prediction coefficients (LPCs). In this case, the input to the block is RC = γ1 γ2 ... γN . The
zeroth order LPC vector term is 1. Starting with this term, the block uses recursion to calculate the
higher order LPC vectors, LPC2, LPC3, ...LPCN, until it has calculated the entire LPC matrix.

LPCmatrix =

LPC0
LPC1
LPC2

⋯
LPCN

=

1 0 0 0 ⋯ 0
1 a11 0 0 ⋯ 0
1 a21 a22 0 ⋯ 0
1 a31 a32 a33 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
1 aN1 aN2 aN3 ⋯ aNN

This LPC matrix consists of LPC vectors of order 0 through N found by using the Levinson recursion.
The following are the formulas for the recursion steps, for p = 0, 1, ...,N – 1.

ap + 1, m = ap, m + γp + 1ap, p + 1−m, 1 ≤ m ≤ p
ap + 1, p + 1 = γp + 1

2 Blocks

2-876

Parameters
Type of conversion

Select LPC to RC or RC to LPC to select the domain into which you want to convert your
coefficients.

Output normalized prediction error power
Select this check box to output the normalized prediction error power at port P.

Output LPC filter stability
Select this check box to output the stability of the filter. When the filter represented by the LPCs
or RCs is stable, the block outputs a Boolean value of 1 for each input channel at the S port.
When the filter represented by the LPCs or RCs is unstable, the block outputs a Boolean value of
0 for each input channel at the S port.

If first input value is not 1
Select what you would like the block to do when the first coefficient of the LPC coefficient vector
is not 1. You can choose Replace it with 1, Normalize, Normalize and Warn, and Error.

References
Makhoul, J Linear Prediction: A tutorial review. Proc. IEEE. 63, 63, 56 (1975).

Markel, J.D. and A. H. Gray, Jr., Linear Prediction of Speech. New York, Springer-Verlag, 1976.

Supported Data Types
• Double-precision floating-point
• Single-precision floating-point

See Also
Levinson-Durbin DSP System Toolbox
LPC to LSF/LSP Conversion DSP System Toolbox
LSF/LSP to LPC Conversion DSP System Toolbox
LPC/RC to Autocorrelation DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 LPC to/from RC

2-877

LPC/RC to Autocorrelation
Convert linear prediction coefficients or reflection coefficients to autocorrelation coefficients

Library
Estimation / Linear Prediction

dsplp

Description
The LPC/RC to Autocorrelation block either converts linear prediction coefficients (LPCs) to
autocorrelation coefficients (ACs) or reflection coefficients (RCs) to autocorrelation coefficients (ACs).
Set the Type of conversion parameter to LPC to autocorrelation or RC to
autocorrelation to select the domain from which you want to convert your coefficients. The A port
corresponds to LPC coefficients, and the K port corresponds to the RC coefficients.

The block input can be an N-by-M matrix or an unoriented vector. Each column of the matrix is
treated as a channel. When the input is an unoriented vector, the input is treated as one channel.

Use the Specify P parameter to set the value of the prediction error power. You can set this
parameter to 1 by selecting Assume P=1. When you select Via input port, a P port appears on
the block. You can use this port to input the value of the actual, non-unity prediction error power for
each channel. The length of this vector must equal the number of channels in the input.

The If first input value is not 1 parameter specifies the behavior of the block when the first
coefficient of the LPC coefficient vector is not 1. The following options are available:

• Replace it with 1 — The block changes the first value of the coefficient vector to 1. The rest
of the coefficient values are unchanged.

• Normalize — The block divides the entire vector of coefficients by the first coefficient so that the
first coefficient of the LPC coefficient vector is 1.

• Normalize and Warn — The block divides the entire vector of coefficients by the first coefficient
so that the first coefficient of the LPC coefficient vector is 1. The block displays a warning
message telling you that your vector of coefficients has been normalized.

• Error — The block displays an error telling you that the first coefficient of the LPC coefficient
vector is not 1.

Parameters
Type of conversion

From the list select LPC to autocorrelation or RC to autocorrelation to specify the
domain from which you want to convert your coefficients.

2 Blocks

2-878

Specify P
From the list select Assume P=1 or Via input port to specify the value of prediction error
power.

If first input value is not 1
Select what you would like the block to do when the first coefficient of the LPC coefficient vector
is not 1. You can choose Replace it with 1, Normalize, Normalize and Warn, and Error.

References
Orfanidis, S.J. Optimum Signal Processing. New York, McGraw-Hill, 1988.

Makhoul, J. Linear Prediction: A tutorial review. Proc. IEEE. 63, 63, 56 (1975).

Markel, J.D. and A. H. Gray, Jr., Linear Prediction of Speech. New York, Springer-Verlag, 1976.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Levinson-Durbin DSP System Toolbox
LPC to LSF/LSP Conversion DSP System Toolbox
LSF/LSP to LPC Conversion DSP System Toolbox
LPC to/from RC DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 LPC/RC to Autocorrelation

2-879

LU Factorization
Factor square matrix into lower and upper triangular components

Library
Math Functions / Matrices and Linear Algebra / Matrix Factorizations

dspfactors

Description
The LU Factorization block factors a row-permuted version of the square input matrix A as Ap = L*U,
where L is a unit-lower triangular matrix, U is an upper triangular matrix, and Ap contains the rows of
A permuted as indicated by the permutation index vector P. The block uses the pivot matrix Ap
instead of the exact input matrix A because it improves the numerical accuracy of the factorization.
You can determine the singularity of the input matrix A by enabling the optional output port S. When
A is singular, the block outputs a 1 at port S; when A is nonsingular, it outputs a 0.

To improve efficiency, the output of the LU Factorization block at port LU is a composite matrix
containing both the lower triangle elements of L and the upper triangle elements of U. Thus, the
output is in a different format than the output of the MATLAB lu function, which returns L and U as
separate matrices. To convert the output from the block's LU port to separate L and U matrices, use
the following code:

L = tril(LU,-1)+eye(size(LU));
U = triu(LU);

If you compare the results produced by these equations to the actual output of the MATLAB lu
function, you may see slightly different values. These differences are due to rounding error, and are
expected.

See the lu function reference page for more information about LU factorizations.

Fixed-Point Data Types

The following diagram shows the data types used within the LU Factorization block for fixed-point
signals.

2 Blocks

2-880

You can set the product output, accumulator, and output data types in the block dialog as discussed
below.

The output of the multiplier is in the product output data type when the input is real. When the input
is complex, the result of the multiplication is in the accumulator data type. For details on the complex
multiplication performed, see “Multiplication Data Types”.

Examples
The row-pivoted matrix Ap and permutation index vector P computed by the block are shown below
for 3-by-3 input matrix A.

A =
−1 8 −5
9 −1 2
2 −5 7

 P = 2 1 3 AP =
9 −1 2
−1 8 −5
2 −5 7

The LU output is a composite matrix whose lower subtriangle forms L and whose upper triangle forms
U.

See “Matrix Factorizations” in the DSP System Toolbox User's Guide for another example using the
LU Factorization block.

Parameters
Main Tab

 LU Factorization

2-881

Show singularity status
Select to output the singularity of the input at port S, which outputs Boolean data type values of 1
or 0. An output of 1 indicates that the current input is singular, and an output of 0 indicates the
current input is nonsingular.

Data Types Tab

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.
Saturate on integer overflow

When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 2-880 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as input.
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-880 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as input.
• A rule that inherits a data type, for example, Inherit: Same as product output.

2 Blocks

2-882

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-880 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

References
Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins
University Press, 1996.

Supported Data Types
Port Supported Data Types
A • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

LU • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

P • Double-precision floating point
• Single-precision floating point
• 32-bit unsigned integers

S • Boolean

 LU Factorization

2-883

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Functions
lu

Blocks
Cholesky Factorization | Autocorrelation LPC | LU Solver | LDL Factorization | LU Inverse | Permute
Matrix | QR Factorization

Topics
“Matrix Factorizations”

Introduced before R2006a

2 Blocks

2-884

LU Inverse
Compute inverse of square matrix using LU factorization

Library
Math Functions / Matrices and Linear Algebra / Matrix Inverses

dspinverses

Description
The LU Inverse block computes the inverse of the square input matrix A by factoring and inverting
row-pivoted variant Ap.

Ap
−1 = LU −1

L is a lower triangular square matrix with unity diagonal elements, and U is an upper triangular
square matrix. The block outputs the inverse matrix A-1.

Examples
See “Matrix Inverses” for an example that uses the LU Inverse block.

References
Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins
University Press, 1996.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Cholesky Inverse DSP System Toolbox
LDL Inverse DSP System Toolbox
LU Factorization DSP System Toolbox
LU Solver DSP System Toolbox

 LU Inverse

2-885

inv MATLAB

See “Matrix Inverses” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-886

LU Solver
Solve AX=B for X when A is square matrix

Library
Math Functions / Matrices and Linear Algebra / Linear System Solvers

dspsolvers

Description
The LU Solver block solves the linear system AX=B by applying LU factorization to the M-by-M matrix
at the A port. The input to the B port is the right side M-by-N matrix, B. The M-by-N matrix output X
is the unique solution of the equations.

The block treats length-M unoriented vector input to the input port B as an M-by-1 matrix.

Algorithm
The LU algorithm factors a row-permuted variant (Ap) of the square input matrix A as

Ap = LU

where L is a lower triangular square matrix with unity diagonal elements, and U is an upper
triangular square matrix.

The matrix factors are substituted for Ap in

ApX = Bp

where Bp is the row-permuted variant of B, and the resulting equation

LUX = Bp

is solved for X by making the substitution Y = UX, and solving two triangular systems.

LY = Bp
UX = Y

Examples
See “Linear System Solvers” for an example that uses the LU Solver block.

 LU Solver

2-887

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Autocorrelation LPC DSP System Toolbox
Cholesky Solver DSP System Toolbox
LDL Solver DSP System Toolbox
Levinson-Durbin DSP System Toolbox
LU Factorization DSP System Toolbox
LU Inverse DSP System Toolbox
QR Solver DSP System Toolbox

See “Linear System Solvers” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-888

Magnitude FFT
Compute nonparametric estimate of spectrum using periodogram method

Library
• Estimation / Power Spectrum Estimation

dspspect3
• Transforms

dspxfrm3

Description
The Magnitude FFT block computes a nonparametric estimate of the spectrum using the periodogram
method.

When the Output parameter is set to Magnitude squared, the block output for an M-by-N input u
is equivalent to

y = abs(fft(u,nfft)).^2 % M ≤ nfft

When the Output parameter is set to Magnitude, the block output for an input u is equivalent to

y = abs(fft(u,nfft)) % M ≤ nfft

When M > Nfft, the block wraps the input to Nfft before computing the FFT using one of the above
equations:

y(:,k)=datawrap(u(:,k),nfft) % 1 ≤ k ≤ N

When M > Nfft, the block can also truncate the input:

y(:,k)=abs(fft(u,nfft)) % 1 ≤ k ≤ N

The block treats an M-by-N matrix input as M sequential time samples from N independent channels.
The block computes a separate estimate for each of the N independent channels and generates an
Nfft-by-N matrix output. Each column of the output matrix contains the estimate of the corresponding
input column's power spectral density at Nfft equally spaced frequency points in the range [0,Fs),
where Fs represents the signal's sample frequency. The block always outputs sample–based data.

The Magnitude FFT block supports real and complex floating-point inputs. The block also supports
real fixed-point inputs in both Magnitude and Magnitude squared modes, and complex fixed-point
inputs in the Magnitude squared mode.

 Magnitude FFT

2-889

Fixed-Point Data Types

The following diagram shows the data types used within the Magnitude FFT subsystem block for
fixed-point signals.

The settings for the fixed-point parameters of the FFT block in the diagram above are as follows:

• Sine table — Same word length as input
• Integer rounding mode — Floor
• Saturate on integer overflow — unchecked
• Product output — Inherit via internal rule
• Accumulator — Inherit via internal rule
• Output — Inherit via internal rule

The settings for the fixed-point parameters of the Magnitude Squared block in the diagram above are
as follows:

• Integer rounding mode — Floor
• Saturate on integer overflow — checked
• Output — Inherit via internal rule

Parameters
Output

Specify whether the block computes the magnitude FFT or magnitude-squared FFT of the input.
FFT implementation

Set this parameter to FFTW to support an arbitrary length input signal. The block restricts
generated code with FFTW implementation to MATLAB host computers.

Set this parameter to Radix-2 for bit-reversed processing, fixed or floating-point data, or for
portable C-code generation using the Simulink Coder. The first dimension M, of the input matrix
must be a power of two. To work with other input sizes, use the Pad block to pad or truncate
these dimensions to powers of two, or if possible choose the FFTW algorithm.

Set this parameter to Auto to let the block choose the FFT implementation. For non-power-of-two
transform lengths, the block restricts generated code to MATLAB host computers.

Inherit FFT length from input dimensions
Select to use the input frame size as the number of data points, on which to perform the FFT.
When you select this check box, this number must be a power of two. When you do not select this
check box, the FFT length parameter specifies the number of data points.

FFT length
Enter the number of data points on which to perform the FFT, Nfft. When Nfft is larger than the
input frame size, each frame is zero-padded as needed. When Nfft is smaller than the input frame

2 Blocks

2-890

size, each frame is wrapped as needed. This parameter is enabled when you clear the Inherit
FFT length from input dimensions check box.

When you set the FFT implementation parameter to Radix-2, this value must be a power of
two.

Wrap input data when FFT length is shorter than input length
Choose to wrap or truncate the input, depending on the FFT length. If this parameter is
checked, modulo-length data wrapping occurs before the FFT operation, given FFT length is
shorter than the input length. If this property is unchecked, truncation of the input data to the
FFT length occurs before the FFT operation. The default is checked.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, and 32-bit signed integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

References
[1] FFTW (http://www.fftw.org)

[2] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the FFT,”Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp.
1381-1384.

[3] Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, 1989.

[4] Orfanidis, S. J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[5] Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall,
1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Generated code relies on memcpy or memset functions (string.h) under certain conditions.
• When the following conditions apply, the executable generated from this block relies on prebuilt

dynamic library files (.dll files) included with MATLAB:

 Magnitude FFT

2-891

http://www.fftw.org

• FFT implementation is set to FFTW.
• Inherit FFT length from input dimensions is cleared, and FFT length is set to a value that

is not a power of two.

Use the packNGo function to package the code generated from this block and all the relevant files
in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your project in
another development environment where MATLAB is not installed. For more details, see “How To
Run a Generated Executable Outside MATLAB”.

• When the FFT length is a power of two, you can generate standalone C and C++ code from this
block.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
pwelch

Blocks
Burg Method | Short-Time FFT | Spectrum Analyzer | Yule-Walker Method

Topics
“Spectral Analysis”

Introduced before R2006a

2 Blocks

2-892

Matrix 1-Norm
Compute 1-norm of matrix
Library: DSP System Toolbox / Math Functions / Matrices and Linear

Algebra / Matrix Operations

Description
The Matrix 1-Norm block computes the 1-norm or maximum column-sum of an M-by-N input matrix
A.

y = A 1 = max
1 ≤ j ≤ N

∑
i = 1

M
ai j

Equivalent MATLAB code is given by:

y = max(sum(abs(A)))

Ports
Input

Port_1 — Input signal
vector | matrix

Input signal, specified as a vector or matrix.

The block treats length-M unoriented vector input as an M-by-1 matrix.

The Matrix 1-Norm block supports real and complex floating-point inputs and real fixed-point inputs.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

 Matrix 1-Norm

2-893

Output

Port_1 — Output signal
scalar

Matrix 1-norm or maximum column-sum of the input, returned as a scalar. The output y is always a
scalar.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Parameters
Main

There are no parameters on the Main Tab.

Data Types

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see Rounding Modes.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numerical results when all these conditions are met:

• Accumulator data type is Inherit: Inherit via internal rule.
• Output data type is Inherit: Same as accumulator.

With these data-type settings, the block operates in a full-precision mode.

Saturate on integer overflow — Overflow handling method
off (default) | on

Select this parameter to saturate the result of the fixed-point operation. Clear this parameter to wrap
the result of the fixed-point operation. For details on saturate and wrap, see Overflow Handling for
fixed-point operations.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numeric results when all these conditions are met:

2 Blocks

2-894

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data-type settings, the block operates in a full-precision mode.

Accumulator — Accumulator data type
Inherit: Inherit via internal rule (default) | Inherit: Same as input |
fixdt([],16,0)

Accumulator specifies the data type of the output of an accumulation operation in the Matrix 1-
Norm block.

• Inherit: Inherit via internal rule — The block inherits the accumulator data type
based on an internal rule. For more information on this rule, see “Inherit via Internal Rule”.

• Inherit: Same as input — The block specifies the accumulator data type to be the same as
the input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).

For illustrations on how to use the accumulator data type in this block, see Fixed-Point Conversion in
“Extended Capabilities” on page 2-0 .

Output — Output data type
Inherit: Same as accumulator (default) | Inherit: Same as input | fixdt([],16,0)

Output specifies the data type of the output of the Matrix 1-Norm block.

• Inherit: Same as input — The block specifies the output data type to be the same as the
input data type.

• Inherit: Same as accumulator — The block specifies the output data type to be the same as
the accumulator data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Output data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink).

For more information on the output data type, see Fixed-Point Conversion in “Extended Capabilities”
on page 2-0 .

Output Minimum — Minimum value that block can output
[] (default) | scalar

 Matrix 1-Norm

2-895

Specify the minimum value the block can output. Simulink uses this minimum value to perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Output Maximum — Maximum value that block can output
[] (default) | scalar

Specify the maximum value the block can output. Simulink uses this maximum value to perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Note Floating-point inheritance takes precedence over the data type settings defined on this tab.
When inputs are floating point, the block ignores these settings and all internal data types are
floating point.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

References
[1] Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins

University Press, 1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This diagram shows the data types used within the Matrix 1-Norm block for fixed-point signals.

2 Blocks

2-896

The block calculations are all done in the accumulator data type until the max operation is performed.
The result is then cast to the output data type. You can set the accumulator and output data types in
the block dialog box.

See Also
Functions
norm

Blocks
Normalization | Reciprocal Condition

Introduced before R2006a

 Matrix 1-Norm

2-897

Matrix Exponential
Compute matrix exponential
Library: DSP System Toolbox / Math Functions / Matrices and Linear

Algebra / Matrix Operations

Description
The Matrix Exponential block computes the matrix exponential of a square matrix using a scaling and
squaring algorithm with a Pade approximation.

Ports
Input

Input 1 — Data input
matrix

Specify the input data as a square matrix.
Data Types: single | double

Output

Output 1 — Matrix exponential output
matrix

Matrix exponential output of the input square matrix.
Data Types: single | double

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

2 Blocks

2-898

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Functions
expm

Blocks
Array-Vector Multiply | Product | Matrix Product | Dot Product

Introduced before R2006a

 Matrix Exponential

2-899

Matrix Product
Multiply matrix elements along rows, columns, or entire input

Library
Math Functions / Matrices and Linear Algebra / Matrix Operations

dspmtrx3

Description
The Matrix Product block multiplies the elements of an M-by-N input matrix u along its rows, its
columns, or over all its elements.

When the Multiply over parameter is set to Rows, the block multiplies across the elements of each
row and outputs the resulting M-by-1 matrix. The block treats length-N unoriented vector input as a
1-by-N matrix.

u11 u12 u13
u21 u22 u23
u31 u32 u33

y1
y2
y3

=

∏
j = 1

3
u1 j

∏
j = 1

3
u2 j

∏
j = 1

3
u3 j

When the Multiply over parameter is set to Columns, the block multiplies down the elements of
each column and outputs the resulting 1-by-N matrix. The block treats length-M unoriented vector
input as an M-by-1 matrix.

u11 u12 u13
u21 u22 u23
u31 u32 u33

y1 y2 y3 = ∏
i = 1

3
ui1 ∏

i = 1

3
ui2 ∏

i = 1

3
ui3

When the Multiply over parameter is set to Entire input, the block multiplies all the elements of
the input together and outputs the resulting scalar.

u11 u12 u13
u21 u22 u23
u31 u32 u33

y = (∏
i = 1

3
∏

j = 1

3
ui j)

2 Blocks

2-900

Fixed-Point Data Types

The following diagram shows the data types used within the Matrix Product block for fixed-point
signals.

The output of the multiplier is in the product output data type when at least one of the inputs to the
multiplier is real. When both of the inputs to the multiplier are complex, the result of the
multiplication is in the accumulator data type. For details on the complex multiplication performed,
see “Multiplication Data Types”. You can set the accumulator, product output, intermediate product,
and output data types in the block dialog as discussed in “Parameters” on page 2-901 below.

Parameters
Main Tab

Multiply over
Indicate whether to multiply together the elements of each row, each column, or the entire input.

Data Types Tab

Note Floating-point inheritance takes precedence over the data type settings defined on this pane.
When inputs are floating point, the block ignores these settings, and all internal data types are
floating point.

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.

 Matrix Product

2-901

Saturate on integer overflow
When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Intermediate product
Specify the intermediate product data type. As shown in “Fixed-Point Data Types” on page 2-901,
the output of the multiplier is cast to the intermediate product data type before the next element
of the input is multiplied into it. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 2-901 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as input.
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-901 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• A rule that inherits a data type, for example, Inherit: Same as input.
• A rule that inherits a data type, for example, Inherit: Same as product output.
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

2 Blocks

2-902

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-901 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as product output
• A rule that inherits a data type, for example, Inherit: Same as input.
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

 Matrix Product

2-903

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
prod

Blocks
Array-Vector Multiply | Matrix Sum

Introduced before R2006a

2 Blocks

2-904

Matrix Sum (Obsolete)
Sum matrix elements along rows, columns, or entire input

Library
Math Functions / Matrices and Linear Algebra / Matrix Operations

dspobslib

Description
The Matrix Sum block sums the elements of an M-by-N input matrix u along its rows, its columns, or
over all its elements.

When the Sum over parameter is set to Rows, the block sums across the elements of each row and
outputs the resulting M-by-1 matrix. A length-N 1-D vector input is treated as a 1-by-N matrix.

u11 u12 u13
u21 u22 u23
u31 u32 u33

y1
y2
y3

=

∑
j = 1

3
u1 j

∑
j = 1

3
u2 j

∑
j = 1

3
u3 j

When the Sum over parameter is set to Columns, the block sums down the elements of each column
and outputs the resulting 1-by-N matrix. A length-M 1-D vector input is treated as a M-by-1 matrix.

u11 u12 u13
u21 u22 u23
u31 u32 u33

y1 y2 y3 = ∑
i = 1

3
ui1 ∑

i = 1

3
ui2 ∑

i = 1

3
ui3

When the Sum over parameter is set to Entire input, the block sums all the elements of the input
together and outputs the resulting scalar.

u11 u12 u13
u21 u22 u23
u31 u32 u33

y = (∑
i = 1

3
∑

j = 1

3
ui j)

 Matrix Sum (Obsolete)

2-905

The output of the Matrix Sum block has the same frame status as the input. This block accepts real
and complex fixed-point and floating-point inputs except for complex unsigned fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Matrix Sum block for fixed-point signals.

You can set the accumulator and output data types in the block dialog as discussed in “Dialog Box” on
page 2-906 below.

Dialog Box
The Main pane of the Matrix Sum block dialog appears as follows.

Sum over
Indicate whether to sum the elements of each row, each column, or of the entire input.

The Fixed-point pane of the Matrix Sum block dialog appears as follows.

2 Blocks

2-906

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Accumulator

As depicted above, the elements of the block input are cast to the accumulator data type before
they are added together. The output of the adder remains in the accumulator data type as each
element of the input is added to it. Use this parameter to specify how you would like to designate
this accumulator word and fraction lengths:

• When you select Inherit via internal rule, the accumulator word length and fraction
length are calculated automatically. For information about how the accumulator word and
fraction lengths are calculated when an internal rule is used, see “Inherit via Internal Rule”.

• When you select Same as input, these characteristics match those of the input to the block.

 Matrix Sum (Obsolete)

2-907

• When you select Binary point scaling, you can enter the word length and the fraction
length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the word length, in bits, and the
slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as accumulator, these characteristics match those of the
accumulator.

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word length and the fraction

length of the output, in bits.
• When you select Slope and bias scaling, you can enter the word length, in bits, and the

slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you specify in this block mask from being
overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page
for more information.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Matrix Product DSP System Toolbox
Matrix Multiply DSP System Toolbox
sum MATLAB

Introduced in R2008b

2 Blocks

2-908

Matrix Viewer
(To be removed) Display matrices as color images

Note The Matrix Viewer block will be removed in a future release. Use a different scope instead, see
“Scopes and Data Logging”.

Library
Sinks

dspsnks4

Description
The Matrix Viewer block displays an M-by-N matrix input by mapping the matrix element values to a
specified range of colors. The display is updated as each new input is received. This block treats an
unoriented length M vector input as an M-by-1 matrix.

You can use the Matrix Viewer block in models running in Normal or Accelerator simulation modes.
The software does not support this block in models running in Rapid Accelerator or External mode.
For more information about these modes, see “How Acceleration Modes Work” (Simulink) in the
Simulink User's Guide.

Image Properties

Select the Image Properties tab to show the image property parameters, which control the
colormap and display.

You specify the mapping of matrix element values to colors in the Colormap matrix, Minimum
input value, and Maximum input value parameters. For a colormap with L colors, the colormap
matrix has dimension L-by-3, with one row for each color and one column for each element of the
RGB triple that defines the color. Examples of RGB triples are

[1 0 0] (red)
[0 0 1] (blue)
[0.8 0.8 0.8] (light gray)

MATLAB provides a number of functions for generating predefined colormaps, such as hot, cool,
bone, and autumn. Each of these functions accepts the colormap size as an argument, and can be
used in the Colormap matrix parameter. For example, when you specify gray(128) for the
Colormap matrix parameter, the matrix is displayed in 128 shades of gray. The color in the first row
of the colormap matrix represents the value specified by the Minimum input value parameter, and
the color in the last row represents the value specified by the Maximum input value parameter.

 Matrix Viewer

2-909

Values between the minimum and maximum are quantized and mapped to the intermediate rows of
the colormap matrix.

The documentation for the MATLAB colormap function provides complete information about
specifying colormap matrices, and includes a complete list of the available colormap functions.

Axis Properties

Select the Axis Properties tab to show the axis property parameters, which control labeling and
positioning.

The Axis origin parameter determines where the first element of the input matrix, U(1,1), is
displayed. When you specify Upper left corner, the matrix is displayed in matrix orientation, with
U(1,1) in the upper-left corner.

U11 U12 U13 U14
U21 U22 U23 U24
U31 U32 U33 U34
U41 U42 U43 U44

When you specify Lower left corner, the matrix is flipped vertically to image orientation, with
U(1,1) in the lower-left corner.

U41 U42 U43 U44
U31 U32 U33 U34
U21 U22 U23 U24
U11 U12 U13 U14

Axis zoom, when selected, causes the image display to completely fill the figure window. Axis titles
are not displayed. This option can also be selected from the pop-up menu that is displayed when you
right-click in the figure window. When Axis zoom is cleared, the axis labels and titles are displayed in
a gray border surrounding the image axes.

To customize the axis tick range, set Axis tick mode to User-defined and specify a two-element
row vector, [Minvalue Maxvalue], in X-tick range and Y-tick range. The matrix data does not
change even when the axes ticks change. For example, consider displaying a matrix on axes with
ticks ranging from 0 to 10. When you set X-tick range and Y-tick range to [0 1], the range of ticks
changes from [0 10] to [0 1].

Figure Window

The image title in the figure title bar is the same as the block title. The axis tick marks reflect the size
of the input matrix; the x-axis is numbered from 1 to N (number of columns), and the y-axis is
numbered from 1 to M (number of rows).

Right-click the image in the figure window to access the following menu items:

• Refresh erases all data on the scope display except for the most recent image.
• Autoscale recomputes the minimum and maximum input values to fit the range of values

observed in a series of 10 consecutive inputs. The numerical limits selected by the autoscale
feature are shown in the Minimum input value and Maximum input value parameters, where
you can make further adjustments to them manually.

2 Blocks

2-910

• Axis zoom, when selected, causes the image to completely fill the figure window. Axis titles are
not displayed. When Axis zoom is cleared, the axis labels and titles are displayed in a gray border
surrounding the scope axes. This option can also be set in the Axis Properties pane of the
parameter dialog box.

• Colorbar, when selected, displays a bar with the specified colormap to the right of the image
axes.

• Save Position automatically updates the Figure position parameter in the Axis Properties
pane to reflect the figure window's current position and size on the screen. To make the scope
window open at a particular location on the screen when the simulation runs, drag the window to
the desired location, resize it, and select Save Position. The parameter dialog box must be closed
when you select Save Position for the Figure position parameter to be updated.

Dialog Box
The Image Properties pane of the Matrix Viewer block appears as follows.

Colormap matrix
A 3-column matrix defining the colormap as a set of RGB triples, or a call to a colormap-
generating function such as hot or spring.

• See the colormap function for a list of colormap-generating functions.
• A color name or a short name: 'red' (or 'r'), 'green' (or 'g'), 'blue' (or 'b'), 'cyan'

(or 'c'), 'magenta' (or 'm'), 'yellow' (or 'y'), 'black' (or 'k'), 'white' (or 'w').

 Matrix Viewer

2-911

• An RGB triplet specified as a 1-by-3 vector whose elements are the intensities of the red,
green, and blue components of a color. The intensities must be in the range [0, 1]. For
example, [0.7 0.8 1] specifies light blue.

Tunable (Simulink).
Minimum input value

The input value to be mapped to the color defined in the first row of the colormap matrix. Right-
click in the figure window and select Autoscale from pop-up menu to set this parameter to the
minimum value observed in a series of 10 consecutive matrix inputs. Tunable (Simulink).

Maximum input value
The input value to be mapped to the color defined in the last row of the colormap matrix. Right-
click in the figure window and select Autoscale from the pop-up menu to set this parameter to
the maximum value observed in a series of 10 consecutive matrix inputs. Tunable (Simulink).

Display colorbar
Select to display a bar with the selected colormap to the right of the image axes. Tunable
(Simulink).

The Axis Properties pane of the Matrix Viewer block appears as follows.

Axis origin
The position within the axes where the first element of the input matrix, U(1,1), is plotted; bottom
left or top left. Tunable (Simulink).

2 Blocks

2-912

Axis tick mode
The mode used to specify the axis tick range. When you select Auto, the x-axis tick range and y-
axis tick range are chosen based on the input signal. When you select User-defined, the axis
tick range is set based on the values you specify in X-tick range and Y-tick range. The default is
Auto.

X-tick range
x-axis tick range, specified as a two-element row vector of real scalars, [Xmin Xmax]. This parameter
applies only when you set Axis tick mode to User-defined. When you change X-tick range
during simulation, the axis range on the Matrix Viewer block updates in real time. The default is
[0 1].

Y-tick range
y-axis tick range, specified as a two-element row vector of real scalars, [Ymin Ymax]. This parameter
applies only when you set Axis tick mode to User-defined. When you change Y-tick range
during simulation, the axis range on the Matrix Viewer block updates in real time. The default is
[0 1].

X-axis title
The text to be displayed below the x-axis. Tunable (Simulink).

Y-axis title
The text to be displayed to the left of the y-axis. Tunable (Simulink).

Colorbar title
The text to be displayed to the right of the color bar, when Display colorbar is currently
selected. Tunable (Simulink).

Figure position, [x y width height]
A 4-element vector of the form [x y width height] specifying the position of the figure
window, where (0,0) is the lower-left corner of the display. Tunable (Simulink).

Axis zoom
Resizes the image to fill the figure window. Tunable (Simulink).

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Compatibility Considerations
Matrix Viewer block will be removed
Not recommended starting in R2020b

The Matrix Viewer block will be removed in a future release. Use a different scope instead, see
“Scopes and Data Logging”.

 Matrix Viewer

2-913

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Spectrum Analyzer | colormap | image

Introduced before R2006a

2 Blocks

2-914

Maximum
Maximum values of input or sequence of inputs
Library: DSP System Toolbox / Statistics

DSP System Toolbox HDL Support / Statistics

Description
The Maximum block identifies the value and position of the largest element in each row or column of
the input, or along vectors of a specified dimension of the input. It can also compute the maximum
value of the entire input. The Maximum block can also track the maximum values in a sequence of
inputs over a period of time. The Mode parameter specifies the block's mode of operation and can be
set to one of the following:

• Value — The block outputs the maximum values in the specified dimension.
• Index — The block outputs the index array of the maximum values in the specified dimension.
• Value and Index — The block outputs the maximum values and the corresponding index array

in the specified dimension.
• Running — The block tracks the maximum values in a sequence of inputs over a period of time.

You can specify the dimension using the Find the maximum value over parameter.

Note The Running mode in the Maximum block will be removed in a future release. To compute the
running maximum in Simulink, use the Moving Maximum block instead.

Ports
Input

In — Data input
vector | matrix | N-D array

The block accepts real-valued or complex-valued multichannel and multidimensional inputs. The input
can be floating-point, fixed-point, or Boolean. Real fixed-point inputs can be either signed or
unsigned. Complex fixed-point inputs must be signed.

This port is unnamed until you set the Mode parameter to Running and the Reset port parameter to
any option other than None.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Rst — Reset port
scalar

 Maximum

2-915

Specify the reset event that causes the block to reset the running maximum. The sample time of the
Rst input must be a positive integer multiple of the input sample time.

Dependencies

To enable this port, set the Mode parameter to Running and the Reset port parameter to any option
other than None.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | Boolean

Output

Val — Maximum values along the specified dimension
scalar | vector | matrix | N-D array

The data type of the maximum value matches the data type of the input.

When the Mode parameter is set to either Value and Index or Value, the following applies:

• The size of the dimension for which the block computes the maximum value is 1. The sizes of all
other dimensions match those of the input array. For example, when the input is an M-by-N-by-P
array, with the dimension set to 1, the block outputs a 1-by-N-by-P array. When the dimension is
set to 3, the block outputs a two-dimensional M-by-N matrix.

• When the input is an M-by-N matrix, with the dimension set to 1, the block outputs a 1-by-N
matrix.

If you specify the block to compute the maximum value over the entire input, the block outputs a
scalar.

When the Mode parameter is set Running, the block tracks the maximum value of each channel in a
time sequence of M-by-N inputs. In this mode, you must also specify the Input processing
parameter as one of the following:

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each yijk element of the output contains the maximum value observed in
element uijk for all inputs since the last reset.

When a reset event occurs, the running maximum yijk in the current frame is reset to the element
uijk.

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support an N-dimensional input signal, where N > 2. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the maximum value observed in the jth column of all inputs since the last
reset, up to and including element uij of the current input.

When a reset event occurs, the running maximum for each channel becomes the maximum value
of all the samples in the current input frame, up to and including the current input sample.

The block resets the running maximum whenever a reset event is detected at the optional Rst port.
The reset sample time must be a positive integer multiple of the input sample time.

Dependencies

To enable this port, set the Mode parameter to either Value and Index or Value.

2 Blocks

2-916

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Idx — Index of the maximum values along the specified dimension
scalar | vector | matrix | N-D array

When the input is double, the index values are also double. Otherwise, the index values are
uint32.

Dependencies

To enable this port, set the Mode parameter to either Value and Index or Index.
Data Types: double | uint32

Parameters
Main Tab

Mode — Mode in which the block operates
Value and Index (default) | Value | Index | Running

When the Mode parameter is set to:

• Value — The block computes the maximum value in each row or column of the input, or along
vectors of a specified dimension of the input. It can also compute the maximum value of the entire
input at each sample time, and outputs the array, y. Each element in the output is the maximum
value in the corresponding column, row, vector, or entire input. The output y depends on the
setting of the Find the maximum value over parameter. Consider a three dimensional input
signal of size M-by-N-by-P. Set Find the maximum value over to:

• Each row — The output y at each sample time consists of an M-by-1-by-P array, where each
element contains the maximum value of each vector over the second dimension of the input.
For an M-by-N matrix input, the output at each sample time is an M-by-1 column vector.

• Each column — The output y at each sample time consists of a 1-by-N-by-P array, where each
element contains the maximum value of each vector over the first dimension of the input. For
an M-by-N matrix input, the output at each sample time is a 1-by-N row vector.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column vectors.
• Entire input — The output y at each sample time is a scalar that contains the maximum

value in the M-by-N-by-P input matrix.
• Specified dimension — The output y at each sample time depends on Dimension. If

Dimension is set to 1, the output is the same as when you select Each column. If Dimension
is set to 2, the output is the same as when you select Each row. If Dimension is set to 3, the
output at each sample time is an M-by-N matrix containing the maximum value of each vector
over the third dimension of the input.

Complex Inputs

For complex inputs, the block selects the value in each row or column of the input, along vectors
of a specified dimension of the input, or of the entire input that has the maximum magnitude
squared as shown in the following figure. For complex value u = a + bi, the magnitude squared is
a2 + b2.

 Maximum

2-917

• Index — The block computes the maximum value in each row or column of the input, along
vectors of a specified dimension of the input, or of the entire input, and outputs the index array I.
Each element in I is an integer indexing the maximum value in the corresponding column, row,
vector, or entire input. The output I depends on the setting of the Find the maximum value over
parameter. Consider a three-dimensional input signal of size M-by-N-by-P:

• Each row — The output I at each sample time consists of an M-by-1-by-P array, where each
element contains the index of the maximum value of each vector over the second dimension of
the input. For an input that is an M-by-N matrix, the output at each sample time is an M-by-1
column vector.

• Each column — The output I at each sample time consists of a 1-by-N-by-P array, where each
element contains the index of the maximum value of each vector over the first dimension of the
input. For an input that is an M-by-N matrix, the output at each sample time is a 1-by-N row
vector.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column vectors.
• Entire input — The output I at each sample time is a 1-by-3 vector that contains the

location of the maximum value in the M-by-N-by-P input matrix. For an input that is an M-by-N
matrix, the output is a 1-by-2 vector.

• Specified dimension — The output I at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as when you select Each column. If Dimension
is set to 2, the output is the same as when you select Each row. If Dimension is set to 3, the
output at each sample time is an M-by-N matrix containing the indices of the maximum values
of each vector over the third dimension of the input.

When a maximum value occurs more than once, the computed index corresponds to the first
occurrence. For example, when the input is the column vector [3 2 1 2 3]', the computed one-
based index of the maximum value is 1, rather than 5 when Each column is selected.

• Value and Index — The block outputs the maximum value in each row or column of the input,
along vectors of a specified dimension of the input, or of the entire input, and the corresponding
index array I.

• Running — The block tracks the maximum value of each channel in a time sequence of M-by-N
inputs. In this mode, you must also specify the Input processing parameter as one of the
following:

• Elements as channels (sample based) — The block treats each element of the input as
a separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs
an M-by-N-by-P array. Each yijk element of the output contains the maximum value observed in
element uijk for all inputs since the last reset.

When a reset event occurs, the running maximum yijk in the current frame is reset to the
element uijk.

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support an N-dimensional input signal, where N > 2.

2 Blocks

2-918

For a two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each
element yij of the output contains the maximum value observed in the jth column of all inputs
since the last reset, up to and including element uij of the current input.

When a reset event occurs, the running maximum for each channel becomes the maximum
value of all the samples in the current input frame, up to and including the current input
sample.

The block resets the running maximum whenever a reset event is detected at the optional Rst
port. The reset sample time must be a positive integer multiple of the input sample time.

Running Mode for Variable-Size Inputs

When the input is a variable-size signal, and you set the Mode to Running, then:

• If you set the Input processing parameter to Elements as channels (sample based),
the state is reset.

• If you set the Input processing parameter to Columns as channels (frame based),
then:

• When the input size difference is in the number of channels (columns), the state is reset.
• When the input size difference is in the length of channels (rows), there is no reset and the

running operation is carried out as usual.

Index base — Base of the maximum value index
One (default) | Zero

Specify whether the index of the maximum value is reported using one-based or zero-based
numbering.

Dependencies

To enable this parameter, set Mode to either Index or Value and Index.

Find the maximum value over — Dimension over which the block computes the maximum
value
Each column (default) | Each row | Entire input | Specified dimension

• Each column — The block outputs the maximum value over each column.
• Each row — The block outputs the maximum value over each row.
• Entire input — The block outputs the maximum value over the entire input.
• Specified dimension — The block outputs the maximum value over the dimension, specified in

the Dimension parameter.

Dependencies

To enable this parameter, set Mode to Value and Index, Value, or Index.

Dimension — Custom dimension
1 (default) | scalar

Specify the dimension (one-based value) of the input signal over which the block computes the
maximum. The value of this parameter must be greater than 0 and less than the number of
dimensions in the input signal.

 Maximum

2-919

Dependencies

To enable this parameter, set Find the maximum value over to Specified dimension.

Input processing — Method to process the input in running mode
Columns as channels (frame based) (default) | Elements as channels (sample based)

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support an N-dimensional input signal, where N > 2. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the maximum value observed in the jth column of all inputs since the last
reset, up to and including element uij of the current input.

When a reset event occurs, the running maximum for each channel becomes the maximum value
of all the samples in the current input frame, up to and including the current input sample.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each yijk element of the output contains the maximum value observed in
element uijk for all inputs since the last reset.

When a reset event occurs, the running maximum yijk in the current frame is reset to the element
uijk.

Dependencies

To enable this parameter, set Mode to Running.

Reset port — Reset event
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

The block resets the running maximum whenever a reset event is detected at the optional Rst port.
The reset sample time must be a positive integer, which is a multiple of the input sample time.

• None — Disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to a positive value or zero.
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero.

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

2 Blocks

2-920

• Falls from a positive value to a negative value or zero.
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero.

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge.

• Non-zero sample — Triggers a reset operation at each sample time that the Rst input is not
zero.

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-
sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the
reset port rate before the block applies the reset. For more information on latency and the
Simulink tasking modes, see “Excess Algorithmic Delay (Tasking Latency)” and “Time-Based
Scheduling and Code Generation” (Simulink Coder).

Dependencies

To enable this parameter, set Mode to Running.

Data Types Tab

Note To use these parameters, the data input must be complex and fixed-point.

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.

 Maximum

2-921

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Product output — Product output data type
Inherit: Same as input (default) | fixdt([],16,0)

Product output specifies the data type of the output of a product operation in the Maximum block.
For more information on the product output data type, see “Multiplication Data Types”.

• Inherit: Same as input — The block specifies the product output data type to be the same as
the input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Product output data type by using the Data Type Assistant. To use

the assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Accumulator — Accumulator data type
Inherit: Same as product output (default) | Inherit: Same as input | fixdt([],16,0)

Accumulator specifies the data type of the output of an accumulation operation in the Maximum
block.

• Inherit: Same as product output — The block specifies the accumulator data type to be
the same as the product output data type.

• Inherit: Same as input — The block specifies the accumulator data type to be the same as
the input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

2 Blocks

2-922

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
Maximum

When you set Mode to one of Value, Index, or Value and Index, and specify a dimension, the
block produces results identical to the MATLAB max function, when it is called as [y,I] = max(u,
[],D).

• u is the data input.
• D is the dimension.
• y is the maximum value.
• I is the index of the maximum value.

The maximum value along the entire input is identical to calling the max function as [y,I] =
max(u(:)).

Running Maximum

When you set Mode to Running, and Input processing to Columns as channels (frame
based), the block treats each column of the input as a separate channel. In this example, the block
processes a two-channel signal with a frame size of three under these settings.

 Maximum

2-923

The block outputs the maximum value over each channel since the last reset. At t = 2, the reset event
occurs. The maximum value in the second column changes to 6, even though 6 is less than 9, which
was the maximum value since the previous reset event.

When you set Mode to Running, and Input processing to Elements as channels (sample
based), the block treats each element of the input as a separate channel. In this example, the block
processes a two-channel signal with a frame size of three under these settings.

2 Blocks

2-924

Each yij element of the output contains the maximum value observed in element uij for all inputs since
the last reset. The reset event occurs at t = 2. When a reset event occurs, the running maximum, yij,
in the current frame is reset to element uij.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and
Validation Model” (HDL Coder).

 Maximum

2-925

Architecture Additional cycles of latency Description
default
Tree

0 Generates a tree structure of
comparators.

Cascade 1, when block has a single vector
input port.

This implementation is optimized for
latency * area, with medium speed.
See “Cascade Architecture Best
Practices” (HDL Coder).

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

InstantiateStages Generate a VHDL® entity or Verilog® module for each cascade stage.
The default is off. See also “InstantiateStages” (HDL Coder).

SerialPartition Specify partitions for Cascade-serial implementations as a vector of the
lengths of each partition. The default setting uses the minimum number of
stages. See also “SerialPartition” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The parameters on the Data Types Tab of the block are used only for complex fixed-point inputs. The
sum of the squares of the real and imaginary parts of such an input are formed before a comparison
is made, as described under the 'Mode' parameter in “Main Tab” on page 2-917. The results of the
squares of the real and imaginary parts are placed into the product output data type. The result of
the sum of the squares is placed into the accumulator data type. These parameters are ignored for
other types of inputs.

See Also
Functions
max | cummax

Objects
dsp.MovingMinimum | dsp.MovingMaximum

Blocks
Minimum | Moving Maximum | Moving Minimum | Mean

2 Blocks

2-926

Introduced before R2006a

 Maximum

2-927

Mean
Find mean value of input or sequence of inputs
Library: DSP System Toolbox / Statistics

Description
The Mean block computes the mean of each row or column of the input, or along vectors of a
specified dimension of the input. It can also compute the mean of the entire input. You can specify the
dimension using the Find the mean value over parameter. The Mean block can also track the mean
value in a sequence of inputs over a period of time. To track the mean value in a sequence of inputs,
select the Running mean parameter.

Note The Running mode in the Mean block will be removed in a future release. To compute the
running mean in Simulink, use the Moving Average block instead.

Ports
Input

I — Data input
vector | matrix | N-D array

The block accepts real-valued or complex-valued multichannel and multidimensional inputs. The input
data type must be double precision, single precision, integer, or fixed point with power-of-two slope
and zero bias.

This port is unnamed until you select the Running mean parameter and set the Reset port
parameter to any option other than None.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Rst — Reset port
scalar

Specify the reset event that causes the block to reset the running mean. The sample time of the Rst
input must be a positive integer multiple of the input sample time.

Dependencies

To enable this port, select the Running mean parameter and set the Reset port parameter to any
option other than None.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

2 Blocks

2-928

Output

Port_1 — Mean value along the specified dimension
scalar | vector | matrix | N-D array

The data type of the output matches the data type of the input.

When you do not select the Running mean parameter, the block computes the mean value in each
row or column of the input, or along vectors of a specified dimension of the input. It can also compute
the mean of the entire input at each individual sample time. Each element in the output array y is the
mean value of the corresponding column, row, or entire input. The output array y depends on the
setting of the Find the mean value over parameter. Consider a three-dimensional input signal of
size M-by-N-by-P. When you set Find the mean value over to:

• Entire input — The output at each sample time is a scalar that contains the mean value of the
M-by-N-by-P input matrix.

• Each row — The output at each sample time consists of an M-by-1-by-P array, where each
element contains the mean value of each vector over the second dimension of the input. For an M-
by-N matrix input, the output at each sample time is an M-by-1 column vector.

• Each column — The output at each sample time consists of a 1-by-N-by-P array, where each
element contains the mean value of each vector over the first dimension of the input. For an M-by-
N matrix input, the output at each sample time is a 1-by-N row vector.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column vectors.
• Specified dimension — The output at each sample time depends on the value of the

Dimension parameter. If you set the Dimension to 1, the output is the same as when you select
Each column. If you set the Dimension to 2, the output is the same as when you select Each
row. If you set the Dimension to 3, the output at each sample time is an M-by-N matrix
containing the mean value of each vector over the third dimension of the input.

When you select Running mean, the block tracks the mean value of each channel in a time sequence
of inputs. In this mode, you must also specify a value for the Input processing parameter.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each element yijk of the output contains the mean value of the element uijk for
all inputs since the last reset.

When a reset event occurs, the running mean yijk in the current frame is reset to the element uijk.
• Columns as channels (frame based) — The block treats each column of the input as a

separate channel. This option does not support an N-dimensional input signal, where N > 2. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the mean of the values in the jth column of all inputs since the last reset, up
to and including the element uij of the current input.

When a reset event occurs, the running mean for each channel becomes the mean value of all the
samples in the current input frame, up to and including the current input sample.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

 Mean

2-929

Parameters
Main Tab

Running mean — Option to select running mean
off (default) | on

When you select the Running mean parameter, the block tracks the mean value of each channel in a
time sequence of inputs.

Find the mean value over — Dimension over which the block computes the mean value
Each column (default) | Entire input | Each row | Specified dimension

• Each column — The block outputs the mean value over each column.
• Each row — The block outputs the mean value over each row.
• Entire input — The block outputs the mean value over the entire input.
• Specified dimension — The block outputs the mean value over the dimension, specified in the

Dimension parameter.

Dependencies

To enable this parameter, clear the Running mean parameter.

Dimension — Custom dimension
1 (default) | scalar

Specify the dimension (one-based value) of the input signal over which the mean is computed. The
value of this parameter must be greater than 0 and less than the number of dimensions in the input
signal.

Dependencies

To enable this parameter, set Find the mean value over to Specified dimension.

Input processing — Method to process the input in running mode
Columns as channels (frame based) (default) | Elements as channels (sample based)

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support an N-dimensional input signal, where N > 2. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the mean of the values in the jth column of all inputs since the last reset, up
to and including the element uij of the current input.

When a reset event occurs, the running mean for each channel becomes the mean value of all the
samples in the current input frame, up to and including the current input sample.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each element yijk of the output contains the mean value of the element uijk for
all inputs since the last reset.

When a reset event occurs, the running mean yijk in the current frame is reset to the element uijk.

Variable-Size Inputs

2 Blocks

2-930

When your inputs are of variable size, and you select the Running mean parameter, then:

• If you set the Input processing parameter to Elements as channels (sample based),
the state is reset.

• If you set the Input processing parameter to Columns as channels (frame based),
then:

• When the input size difference is in the number of channels (number of columns), the state
is reset.

• When the input size difference is in the length of channels (number of rows), there is no
reset and the running operation is carried out as usual.

Dependencies

To enable this parameter, select the Running mean parameter.

Reset port — Reset event
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

The block resets the running mean whenever a reset event is detected at the optional Rst port. The
reset sample time must be a positive integer multiple of the input sample time.

When a reset event occurs while the Input processing parameter is set to Elements as channels
(sample based), the running mean for each channel is initialized to the value in the corresponding
channel of the current input. Similarly, when the Input processing parameter is set to Columns as
channels (frame based), the running mean for each channel becomes the mean value of all the
samples in the current input frame, up to and including the current input sample.

Use this parameter to specify the reset event.

• None — Disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to either a positive value or zero.
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero.

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

• Falls from a positive value to a negative value or zero.
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero.

 Mean

2-931

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge.

• Non-zero sample — Triggers a reset operation at each sample time, when the Rst input is not
zero.

Note When running simulations in the Simulink multitasking mode, reset signals have a one-sample
latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port
rate before the block applies the reset. For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” and “Time-Based Scheduling and Code
Generation” (Simulink Coder).

Dependencies

To enable this parameter, select the Running mean parameter.

Data Types Tab

Note To use these parameters, the data input must be fixed-point. For all other inputs, the
parameters on the Data Types tab are ignored.

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

2 Blocks

2-932

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Accumulator — Accumulator data type
Inherit: Same as input (default) | fixdt([],16,0)

Accumulator specifies the data type of the output of an accumulation operation in the Mean block.
See “Fixed Point” on page 2-936 for illustrations depicting the use of the accumulator data type in
this block. You can set this parameter to:

• Inherit: Same as input — The block specifies the accumulator data type to be the same as
the input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Output — Output data type
Inherit: Same as accumulator (default) | fixdt([],16,0)

Output specifies the data type of the output of the Mean block. See “Fixed Point” on page 2-936 for
illustrations depicting the use of the output data type in this block. You can set it to:

• Inherit: Same as accumulator — The block specifies the output data type to be the same as
the accumulator data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Output data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Output Minimum — Minimum value the block can output
[] (default) | scalar

Specify the minimum value that the block can output. The default value is [] (unspecified). Simulink
uses this value to perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Output Maximum — Maximum value the block can output
[] (default) | scalar

Specify the maximum value that the block can output. The default value is [] (unspecified). Simulink
uses this value to perform:

 Mean

2-933

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
the block.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
Mean

When you clear the Running mean parameter and specify a dimension, the block produces results
identical to the MATLAB mean function, when it is called as y = mean(u,D).

• u is the data input.
• D is the dimension.
• y is the mean value.

The mean value along the entire input is identical to calling the mean function as y = mean(u(:)).

The mean of a complex input is computed independently for the real and imaginary components.

Running Mean

When you select the Running mean parameter, and set the Input processing parameter to
Columns as channels (frame based), the block treats each column of the input as a separate
channel. In this example, the block processes a two-channel signal with a frame size of three under
these settings.

2 Blocks

2-934

The block outputs the mean value over each channel since the last reset. At t = 2, the reset event
occurs. The window of data in the second column now contains only 6.

When you select the Running mean parameter, and set the Input processing parameter to
Elements as channels (sample based), the block treats each element of the input as a
separate channel. In this example, the block processes a two-channel signal with a frame size of three
under these settings.

 Mean

2-935

Each yij element of the output contains the mean value observed in element uij for all inputs since the
last reset. The reset event occurs at t = 2. When a reset event occurs, the running mean, yij, in the
current frame is reset to element uij.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The following diagram shows the data types used within the Mean block for fixed-point signals.

2 Blocks

2-936

See Also
Functions
mean

Objects
dsp.MovingAverage | dsp.MedianFilter

Blocks
Moving Average | Maximum | Median | Median Filter | Minimum

Introduced before R2006a

 Mean

2-937

Median
Median value of input
Library: DSP System Toolbox / Statistics

Description
The Median block computes the median of each row or column of the input, or along vectors of a
specified dimension of the input. It can also compute the median of the entire input. You can specify
the dimension using the Find the median value over parameter. While computing the median, the
block first sorts the input values. If the number of values is odd, the median is the middle value. If the
number of values is even, the median is the average of the two middle values. To sort the data, you
can specify the Sort algorithm parameter as either Quick sort or Insertion sort. The block
sorts complex inputs according to their magnitude.

Ports
Input

Port_1 — Data input
vector | matrix | N-D array

The block accepts real-valued or complex-valued multichannel and multidimensional inputs. The input
data type must be double precision, single precision, integer, or fixed point, with power-of-two slope
and zero bias.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Median value along specified dimension
vector | matrix | N-D array

The block computes the median value in each row or column of the input, or along vectors of a
specified dimension of the input. It can also compute the median of the entire input. Each element in
the output array y is the median value of the corresponding column, row, or entire input. The output
array y depends on the setting of the Find the median value over parameter.

Consider a three-dimensional input signal of size M-by-N-by-P. When you set Find the median value
over to:

• Entire input — The output at each sample time is a scalar that contains the median value of
the M-by-N-by-P input matrix.

• Each row — The output at each sample time consists of an M-by-1-by-P array, where each
element contains the median value of each vector over the second dimension of the input. For an
M-by-N matrix input, the output is an M-by-1 column vector.

2 Blocks

2-938

• Each column — The output at each sample time consists of a 1-by-N-by-P array, where each
element contains the median value of each vector over the first dimension of the input. For an M-
by-N matrix input, the output at each sample time is a 1-by-N row vector.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column vectors.
• Specified dimension — The output at each sample time depends on the value of the

Dimension parameter. If you set the Dimension to 1, the output is the same as when you select
Each column. If you set the Dimension to 2, the output is the same as when you select Each
row. If you set the Dimension to 3, the output at each sample time is an M-by-N matrix
containing the median value of each vector over the third dimension of the input.

The data type of the output matches the data type of the input.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Main Tab

Sort algorithm — Sort method
Quick sort (default) | Insertion sort

Specify the sorting algorithm as either Quick sort or Insertion sort.

Find the median value over — Dimension over which the median is computed
Each column (default) | Entire input | Each row | Specified dimension

• Each column — The block outputs the median value over each column.
• Each row — The block outputs the median value over each row.
• Entire input — The block outputs the median value over the entire input.
• Specified dimension — The block outputs the median value over the dimension specified in

the Dimension parameter.

Dimension — Custom dimension
1 (default) | scalar

Specify the dimension (one-based value) of the input signal over which the block computes the
median. The value of this parameter must be greater than 0 and less than or equal to the number of
dimensions in the input signal.
Dependencies

To enable this parameter, set Find the median value over to Specified dimension.

Data Types Tab

Note To use these parameters, the data input must be fixed point. For all other inputs, the
parameters on the Data Types tab are ignored.

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

 Median

2-939

Specify the rounding mode for fixed-point operations. For more details, see rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Product output — Product output data type
Inherit: Same as input (default) | fixdt([],16,0)

Specify the data type of the output of a product operation in the Median block. For more information,
see “Fixed Point” on page 2-942 and “Multiplication Data Types”.

You can set this parameter to:

• Inherit: Same as input — The product output data type is the same as the input data type.
• fixdt([],16,0) — The product output data type is an autosigned, binary-point, scaled, fixed-
point data type with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Product output data type by using the Data Type Assistant. To use

the assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Accumulator — Accumulator data type
Inherit: Same as product output (default) | Inherit: Same as input | fixdt([],16,0)

Specify the data type of the output of an accumulation operation in the Median block. For more
details, see “Fixed Point” on page 2-942.

You can set this parameter to:

• Inherit: Same as product output — The accumulator data type is the same as the product
output data type.

• Inherit: Same as input — The accumulator data type is the same as the input data type.
• fixdt([],16,0) — The accumulator data type is an autosigned, binary-point, scaled, fixed-point

data type with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Output — Output data type
Inherit: Same as accumulator (default) | Inherit: Same as input | Inherit: Same as
product output | fixdt([],16,0)

Output specifies the data type of the output of the Median block. For more details, see “Fixed Point”
on page 2-942.

2 Blocks

2-940

You can set this parameter to:

• Inherit: Same as accumulator — The output data type is the same as the accumulator data
type.

• Inherit: Same as input — The output data type is the same as the input data type.
• Inherit: Same as product output — The output data type is the same as the product

output data type.
• fixdt([],16,0) — The output data type is an autosigned, binary-point, scaled, fixed-point data

type with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Output data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Output Minimum — Minimum output value
[] (default) | scalar

Specify the minimum value that the block can output. The default value is [] (unspecified). Simulink
uses this value to perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Output Maximum — Maximum output value
[] (default) | scalar

Specify the maximum value that the block can output. The default value is [] (unspecified). Simulink
uses this value to perform:

• Simulation range checking. See “Specify Signal Ranges” (Simulink).
• Automatic scaling of fixed-point data types.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
the block.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes

 Median

2-941

Zero-Crossing
Detection

no

Algorithms
Median

The median of a set of data is calculated using the following steps:

1 The values are sorted using the specified sorting algorithm.
2 If the number of values is odd, the median is the middle value.
3 If the number of values is even, the median is the average of the two middle values.

The block produces results identical to the MATLAB median function when called as y =
median(u,D), where

• u is the data input.
• D is the dimension.
• y is the median value.

When the block calculates the median value along the entire input, the result is identical to calling
the median function as y = median(u(:)).

When the input is complex, the block sorts the data according to the magnitude of each value. The
magnitude in this case is defined as the sum of the squares of the real and imaginary components of
the complex input.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

For fixed-point inputs, you can specify the Accumulator, Product output, and Output data types in
the block dialog box. Not all of these fixed-point parameters are applicable to all types of fixed-point
inputs. The table shows when each kind of data type and scaling is used.

M is the length of the sorted data along the specified dimension. X indicates that the particular data
type is applicable.

 Output data type Accumulator data type Product output data type
Even M X X Not Applicable
Odd M X Not Applicable Not Applicable
Odd M and complex X X X
Even M and complex X X X

2 Blocks

2-942

When M is even, the Accumulator and Output data types and scalings are used for fixed-point
signals. While calculating the average of the two central rows of the input matrix, the result of the
sum is stored in the Accumulator data type and scaling. The total result of the average, which is the
median of the data, is stored in the Output data type and scaling.

When the fixed-point inputs are complex, both the Accumulator and the Product output data types
are used in addition to the Output data type. Before sorting the data, the block computes the sum of
the squares of the real and imaginary components of the complex input. The results of the squares
are stored in the Product output data type and scaling. The result of the sum of the squares is
stored in the Accumulator data type and scaling.

For fixed-point inputs that are both complex and have even M, the Accumulator data type also stores
the sum of the two central rows of the input matrix. The average of the two central rows, which is the
median of the data, is stored in the Output data type.

See Also
Functions
median

Objects
dsp.MedianFilter | dsp.HampelFilter | dsp.MovingAverage

Blocks
Median Filter | Hampel Filter | Variance | Standard Deviation | Sort | Minimum

Introduced before R2006a

 Median

2-943

Median Filter
Median filter
Library: DSP System Toolbox / Filtering / Filter Designs

DSP System Toolbox / Statistics

Description
The Median Filter block computes the moving median of the input signal along each channel
independently over time. The block uses the sliding window method to compute the moving median.
In this method, a window of specified length moves over each channel sample by sample, and the
block computes the median of the data in the window. This block performs median filtering on the
input data over time. For more details, see “Algorithms” on page 2-945.

Input/Output Ports
Input

Port_1 — Data input
column vector | row vector | matrix

Data over which the block computes moving median. The block accepts real-valued or complex-valued
multichannel inputs, that is, m-by-n size inputs, where m ≥ 1, and n ≥ 1. The block also accepts
variable-size inputs. During simulation, you can change the size of each input channel. However, the
number of channels cannot change.
Data Types: single | double

Output

Port_1 — Moving median output
column vector | row vector | matrix

The size of the moving median output matches the size of the input. The block uses the sliding
window method to compute the moving median. For more details, see “Algorithms” on page 2-945.
Data Types: single | double

Parameters
Window length — Length of the sliding window
5 (default) | positive scalar integer

Window length specifies the length of the sliding window in samples.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

2 Blocks

2-944

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster simulation speed
than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals Yes

Algorithms
Sliding Window Method

In the sliding window method, the output for each input sample is the median of the current sample
and the Len - 1 previous samples. Len is the length of the window in samples. To compute the first
Len - 1 outputs, when the window does not have enough data yet, the algorithm fills the window with
zeros. As an example, to compute the median value when the second input sample comes in, the
algorithm fills the window with Len - 2 zeros. The data vector, x, is then the two data samples
followed by Len - 2 zeros. This object performs median filtering on the input data over time.

Consider an example of computing the moving median of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. With each input sample that comes in, the
window of length 4 moves along the data.

 Median Filter

2-945

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Median | Moving RMS | Moving Maximum | Moving Minimum | Moving Standard Deviation | Moving
Variance | Moving Average

2 Blocks

2-946

Objects
dsp.MedianFilter | dsp.MovingRMS | dsp.MovingMaximum | dsp.MovingMinimum |
dsp.MovingStandardDeviation | dsp.MovingVariance | dsp.MovingAverage

Topics
“What Are Moving Statistics?”
“Streaming Signal Statistics”
“Remove High-Frequency Noise from Gyroscope Data”

Introduced in R2016b

 Median Filter

2-947

MIDI Controls
Output values from controls on MIDI control surface

Note In a future release, the MIDI Controls block will require Audio Toolbox.

Library
Sources

dspsrcs4

Description
The MIDI Controls block outputs values from controls on a MIDI control surface in real time.

Use the MIDI device parameter to specify the name of the MIDI control surface device from which
to receive control values. You can choose:

• Default
• Specify other

If you choose Default, the block looks for a MATLAB preference with a group named midi and
preference named DefaultDevice. You can set this preference using the MATLAB setpref
function. For example, if the desired device is named BCF2000, you can type the following command
at the MATLAB command line:

>> setpref('midi', 'DefaultDevice', 'BCF2000');

If the block does not find this preference, it then attempts to choose a device using an algorithm that
is unspecified and platform dependent.

If you choose Specify other, then a MIDI device name edit box appears for you to enter a
MATLAB expression for the device name. Enter any MATLAB expression that can evaluate to a string.
Literal names must be enclosed in quotes, (for example, 'BCF2000').

You can determine the name of your MIDI device using the MATLAB function midiid, discussed in
“Identifying MIDI Device Names and Control Numbers” on page 2-949.

Use the MIDI controls parameter to specify the controls on the MIDI device to which the block
should respond. This parameter also determines the size of the block output port. You can choose:

• Respond to any control

2 Blocks

2-948

• Respond to specified controls

If you choose Respond to any control, then the block output will be a scalar. This scalar outputs
the value from any and all controls that are manipulated on the MIDI device. Use this option in simple
cases when you need only a single control value and the control to which it responds is unimportant.

If you choose Respond to specified controls, then a MIDI control numbers edit box opens.
In this box, enter a MATLAB expression for the device control numbers. Enter any MATLAB
expression that can evaluate to a row vector of real double-precision values. The block outputs a 1-D
vector with one element corresponding to the output of each specified control.

Use the Initial values parameter to specify the value of the block output when simulation starts. The
MIDI protocol transmits control values only when a control changes. This protocol provides no means
for the block to query the current value of a control. Thus, the block must have some initial value to
output until it receives a control change from the device.

Use the Send initial values to device at start check box to synchronize the device controls with
the block outputs when simulation starts. Some MIDI control surfaces are bidirectional, meaning that
they not only send control values but can also receive them. For example, some devices have
motorized controls that move to the appropriate position when they receive a control value. If you
have such a bidirectional device, select this check box. The block attempts to send the initial values to
the device when the simulation starts. No diagnostic message appears if the attempt fails.

The generated code for this block relies on prebuilt .dll files. You can run this code outside the
MATLAB environment, or redeploy. However you must account for these extra .dll files when doing
so. The packNGo function creates a single .zip file containing all of the pieces required to run or
rebuild this code. See packNGo for more information.

Output Port

The MIDI Controls block output is a vector whose width is determined by the MIDI controls and
MIDI control numbers parameters previously described. The output data type can be either real
double-precision floating point, or uint8 integer if the output mode is 'Raw MIDI'. The output values
range from 0.0 to 1.0, inclusively, and in the raw mode, they range from 0 to 127, inclusively. The
output port back inherits its sample time.

Identifying MIDI Device Names and Control Numbers

To specify a particular control on a particular MIDI device, you must know the name assigned to the
device by the operating system. In addition, a number is always associated with the control. You can
interactively discover this information using the MATLAB function, midiid. Follow these steps to
identify device names and control numbers:

1 Verify that MIDI control surface device is correctly connected to the host computer running
MATLAB.

Note For the most consistent behavior, MathWorks recommends that you connect your MIDI
control surface device to your computer before starting MATLAB. In some circumstances
MATLAB may not be able to find your device if you connect it after starting your MATLAB
session. Also, it may not find your device if you disconnect it and reconnect it during your
MATLAB session.

2 Type the following command at the MATLAB command line.

>> [ctlnum devname] = midiid

 MIDI Controls

2-949

You are prompted to move the control in which you are interested.

>> [ctlnum devname] = midiid
Move the control you wish to identify; type ^C to abort.
Waiting for control message ...

3 Move the control. midiid detects the movement and returns the device name and control
number.

>> [ctlnum devname] = midiid
Move the control you wish to identify; type ^C to abort.
Waiting for control message ... done
ctlnum =
 1081
devname =
 BCF2000
>>

4 Use the device name in the block dialog, or set it as the default device using setpref. Then,
enter the control number in the block dialog. Concatenate the number with other control
numbers as needed.

Examples
How to Output Values from Controls

Use this example to familiarize yourself with how to set controls in the MIDI Controls block as it
interacts with the MIDI control surface.

Open the ex_simplemidi model, and follow these steps:

Connect a MIDI device to the computer.

Use midiid to determine the name of the device, and set it on the MIDI Controls block.

Verify that any control changes the display value.

Use midiid to determine the number of a particular control, and set that on the MIDI Controls block.

Verify that a particular control changes the display value and that other controls do not.

Use midiid to determine the number of a few more controls, and set those on the MIDI Controls
block.

Verify that the display block shows the correct number of values. Also verify that the controls you
specified change the appropriate display values and that the other controls do not change the values.

Set each control to have a unique initial value.

Verify that the correct initial values appear on the display when the model starts.

2 Blocks

2-950

matlab:ex_simplemidi

If your MIDI device is bidirectional, on the MIDI Controls block, select the Send initial values to
device at start check box.

Verify that the controls are set to the correct initial values when the model starts.

Parameters
MIDI device

Specify whether to use a default MIDI device, or specify a particular device by name.
MIDI device name

Specify the name of a particular MIDI control surface device from which to receive control
values.

MIDI controls
Specify whether to respond to any control on the MIDI device or respond to particular specified
controls.

MIDI control numbers
Specify particular controls to which the block should respond.

Initial values
Specify initial values to output when simulation starts.

Send initial values to device at start
Select this check box to attempt to synchronize a bidirectional MIDI device with block initial
values when simulation starts.

Output mode
Specify the mode in which the control values are generated. When you set Output mode to
Normalized (0-1), the block generates control values in the range [0 1]. In this mode, control
values are represented as a fraction of a full-scale. Hence, you can easily scale this range to your
particular application. When you set Output mode to RAW MIDI (0-127), the block generates
byte-oriented MIDI control values in the range [0 127]. By default, this parameter is set to
Normalized (0-1).

Supported Data Types
Port Supported Data Types
Output • Double-precision floating point, uint8 integer

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Host computer only. Excludes Simulink Desktop Real-Time code generation.

Introduced in R2012a

 MIDI Controls

2-951

Minimum
Minimum values of input or sequence of inputs
Library: DSP System Toolbox / Statistics

DSP System Toolbox HDL Support / Statistics

Description
The Minimum block identifies the value and position of the smallest element in each row or column of
the input, or along vectors of a specified dimension of the input. It can also compute the minimum
value of the entire input. The Minimum block can also track the minimum values in a sequence of
inputs over a period of time. The Mode parameter specifies the block's mode of operation and can be
set to one of the following:

• Value — The block outputs the minimum values in the specified dimension.
• Index — The block outputs the index array of the minimum values in the specified dimension.
• Value and Index — The block outputs the minimum values and the corresponding index array

in the specified dimension.
• Running — The block tracks the minimum values in a sequence of inputs over a period of time.

You can specify the dimension using the Find the minimum value over parameter.

Note The Running mode in the Minimum block will be removed in a future release. To compute the
running minimum in Simulink, use the Moving Minimum block instead.

Ports
Input

In — Data input
vector | matrix | N-D array

The block accepts real-valued or complex-valued multichannel and multidimensional inputs. The input
can be floating-point, fixed-point, or Boolean. Real fixed-point inputs can be either signed or
unsigned. Complex fixed-point inputs must be signed.

This port is unnamed until you set the Mode parameter to Running and the Reset port parameter to
any option other than None.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Rst — Reset port
scalar

2 Blocks

2-952

Specify the reset event that causes the block to reset the running minimum. The sample time of the
Rst input must be a positive integer multiple of the input sample time.

Dependencies

To enable this port, set the Mode parameter to Running and the Reset port parameter to any option
other than None.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Val — Minimum values along the specified dimension
scalar | vector | matrix | N-D array

The data type of the minimum value matches the data type of the input.

When the Mode parameter is set to either Value and Index or Value, the following applies:

• The size of the dimension for which the block computes the minimum value is 1. The sizes of all
other dimensions match those of the input array. For example, when the input is an M-by-N-by-P
array, with the dimension set to 1, the block outputs a 1-by-N-by-P array. When the dimension is
set to 3, the block outputs a two-dimensional M-by-N matrix.

• When the input is an M-by-N matrix, with the dimension set to 1, the block outputs a 1-by-N
matrix.

If you specify the block to compute the minimum value over the entire input, the block outputs a
scalar.

When the Mode parameter is set Running, the block tracks the minimum value of each channel in a
time sequence of M-by-N inputs. In this mode, you must also specify the Input processing
parameter as one of the following:

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each yijk element of the output contains the minimum value observed in
element uijk for all inputs since the last reset.

When a reset event occurs, the running minimum yijk in the current frame is reset to the element
uijk.

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support an N-dimensional input signal, where N > 2. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the minimum value observed in the jth column of all inputs since the last
reset, up to and including element uij of the current input.

When a reset event occurs, the running minimum for each channel becomes the minimum value of
all the samples in the current input frame, up to and including the current input sample.

The block resets the running minimum whenever a reset event is detected at the optional Rst port.
The reset sample time must be a positive integer multiple of the input sample time.

Dependencies

To enable this port, set the Mode parameter to either Value and Index or Value.

 Minimum

2-953

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Idx — Index of the minimum values along the specified dimension
scalar | vector | matrix | N-D array

When the input is double, the index values are also double. Otherwise, the index values are
uint32.

Dependencies

To enable this port, set the Mode parameter to either Value and Index or Index.
Data Types: double | uint32

Parameters
Main Tab

Mode — Mode in which the block operates
Value and Index (default) | Value | Index | Running

When the Mode parameter is set to:

• Value— The block computes the minimum value in each row or column of the input, along vectors
of a specified dimension of the input, or of the entire input at each sample time, and outputs the
array y. Each element in y is the minimum value in the corresponding column, row, vector, or
entire input. The output y depends on the setting of the Find the minimum value over
parameter. Consider a three dimensional input signal of size M-by-N-by-P. Set Find the
minimum value over to:

• Each row — The output y at each sample time consists of an M-by-1-by-P array, where each
element contains the minimum value of each vector over the second dimension of the input.
For an input that is an M-by-N matrix, the output at each sample time is an M-by-1 column
vector.

• Each column — The output y at each sample time consists of a 1-by-N-by-P array, where each
element contains the minimum value of each vector over the first dimension of the input. For
an input that is an M-by-N matrix, the output at each sample time is a 1-by-N row vector.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column vectors.
• Entire input — The output y at each sample time is a scalar that contains the minimum

value in the M-by-N-by-P input matrix.
• Specified dimension — The output y at each sample time depends on Dimension. If

Dimension is set to 1, the output is the same as when you select Each column. If Dimension
is set to 2, the output is the same as when you select Each row. If Dimension is set to 3, the
output at each sample time is an M-by-N matrix containing the minimum value of each vector
over the third dimension of the input.

Complex Inputs

For complex inputs, the block selects the value in each row or column of the input, along vectors
of a specified dimension of the input, or of the entire input that has the minimum magnitude
squared in the following figure. For complex value u = a + bi, the magnitude squared is a2 + b2.

2 Blocks

2-954

• Index — The block computes the minimum value in each row or column of the input, along
vectors of a specified dimension of the input, or of the entire input, and outputs the index array I.
Each element in I is an integer indexing the minimum value in the corresponding column, row,
vector, or entire input. The output I depends on the setting of the Find the minimum value over
parameter. Consider a three dimensional input signal of size M-by-N-by-P:

• Each row — The output I at each sample time consists of an M-by-1-by-P array, where each
element contains the index of the minimum value of each vector over the second dimension of
the input. For an input that is an M-by-N matrix, the output at each sample time is an M-by-1
column vector.

• Each column — The output I at each sample time consists of a 1-by-N-by-P array, where each
element contains the index of the minimum value of each vector over the first dimension of the
input. For an input that is an M-by-N matrix, the output at each sample time is a 1-by-N row
vector.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column vectors.
• Entire input — The output I at each sample time is a 1-by-3 vector that contains the

location of the minimum value in the M-by-N-by-P input matrix. For an input that is an M-by-N
matrix, the output is a 1-by-2 vector.

• Specified dimension — The output I at each sample time depends on Dimension. If
Dimension is set to 1, the output is the same as when you select Each column. If Dimension
is set to 2, the output is the same as when you select Each row. If Dimension is set to 3, the
output at each sample time is an M-by-N matrix containing the indices of the minimum values
of each vector over the third dimension of the input.

When a minimum value occurs more than once, the computed index corresponds to the first
occurrence. For example, when the input is the column vector [3 2 1 2 3]', the computed one-
based index of the minimum value is 1, rather than 5 when Each column is selected.

• Value and Index — The block outputs the minimum value in each row or column of the input,
along vectors of a specified dimension of the input, or of the entire input, and the corresponding
index array I.

• Running — The block tracks the minimum value of each channel in a time sequence of M-by-N
inputs. The block resets the running minimum whenever a reset event is detected at the optional
Rst port. The reset sample time must be a positive integer multiple of the input sample time. In
this mode, you must also specify the Input processing parameter as one of the following:

• Elements as channels (sample based) — The block treats each element of the input as
a separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs
an M-by-N-by-P array. Each yijk element of the output contains the minimum value observed in
element uijk for all inputs since the last reset.

When a reset event occurs, the running minimum yijk in the current frame is reset to the
element uijk.

 Minimum

2-955

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support an N-dimensional input signal, where N > 2.
For a two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each
element yij of the output contains the minimum value observed in the jth column of all inputs
since the last reset, up to and including element uij of the current input.

When a reset event occurs, the running minimum for each channel becomes the minimum
value of all the samples in the current input frame, up to and including the current input
sample.

The block resets the running minimum whenever a reset event is detected at the optional Rst
port. The reset sample time must be a positive integer multiple of the input sample time.

Running Mode for Variable-Size Inputs

When the input is a variable-size signal, and you set the Mode to Running, then:

• If you set the Input processing parameter to Elements as channels (sample based),
the state is reset.

• If you set the Input processing parameter to Columns as channels (frame based),
then:

• When the input size difference is in the number of channels (columns), the state is reset.
• When the input size difference is in the length of channels (rows), there is no reset and the

running operation is carried out as usual.

Index base — Base of the minimum value index
One (default) | Zero

Specify whether the index of the minimum value is reported using one-based or zero-based
numbering.

Dependencies

To enable this parameter, set Mode to either Index or Value and Index.

Find the minimum value over — Dimension over which the block computes the minimum
value
Each column (default) | Each row | Entire input | Specified dimension

• Each column — The block outputs the minimum value over each column.
• Each row — The block outputs the minimum value over each row.
• Entire input — The block outputs the minimum value over the entire input.
• Specified dimension — The block outputs the minimum value over the dimension specified in

the Dimension parameter.

Dependencies

To enable this parameter, set Mode to Value and Index, Value, or Index.

Dimension — Custom dimension
1 (default) | scalar

2 Blocks

2-956

Specify the dimension (one-based value) of the input signal over which the block computes the
minimum. The value of this parameter must be greater than 0 and less than the number of
dimensions in the input signal.
Dependencies

To enable this parameter, set Find the minimum value over to Specified dimension.

Input processing — Method to process the input in running mode
Columns as channels (frame based) (default) | Elements as channels (sample based)

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support an N-dimensional input signal, where N > 2. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the minimum value observed in the jth column of all inputs since the last
reset, up to and including element uij of the current input.

When a reset event occurs, the running minimum for each channel becomes the minimum value of
all the samples in the current input frame, up to and including the current input sample.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each yijk element of the output contains the minimum value observed in
element uijk for all inputs since the last reset.

When a reset event occurs, the running minimum yijk in the current frame is reset to the element
uijk.

Dependencies

To enable this parameter, set Mode to Running.

Reset port — Reset event
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

The block resets the running minimum whenever a reset event is detected at the optional Rst port.
The reset sample time must be a positive integer which is a multiple of the input sample time.

• None — Disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to a positive value or zero.
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero.

 Minimum

2-957

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

• Falls from a positive value to a negative value or zero.
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero.

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge.

• Non-zero sample — Triggers a reset operation at each sample time that the Rst input is not
zero.

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-
sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the
reset port rate before the block applies the reset. For more information on latency and the
Simulink tasking modes, see “Excess Algorithmic Delay (Tasking Latency)” and “Time-Based
Scheduling and Code Generation” (Simulink Coder).

Dependencies

To enable this parameter, set Mode to Running.

Data Types Tab

Note To use these parameters, the data input must be complex fixed-point.

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest

2 Blocks

2-958

• Zero

For more details, see rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Product output — Product output data type
Inherit: Same as input (default) | fixdt([],16,0)

Product output specifies the data type of the output of a product operation in the Minimum block.
For more information on the product output data type, see “Multiplication Data Types”.

• Inherit: Same as input — The block specifies the product output data type to be the same as
the input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Product output data type by using the Data Type Assistant. To use

the assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Accumulator — Accumulator data type
Inherit: Same as product output (default) | Inherit: Same as input | fixdt([],16,0)

Accumulator specifies the data type of the output of an accumulation operation in the Minimum
block.

• Inherit: Same as product output — The block specifies the accumulator data type to be
the same as the product output data type.

• Inherit: Same as input — The block specifies the accumulator data type to be the same as
the input data type.

• fixdt([],16,0) — The block specifies an autosigned, binary-point, scaled, fixed-point data type
with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

 Minimum

2-959

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
Minimum

When you set Mode to one of Value, Index, or Value and Index, and specify a dimension, the
block produces results identical to the MATLAB min function, when it is called as [y,I] = min(u,
[],D).

• u is the data input.
• D is the dimension.
• y is the minimum value.
• I is the index of the minimum value.

The minimum value along the entire input is identical to calling the min function as [y,I] =
min(u(:)).

Running Minimum

When you set Mode to Running, and Input processing to Columns as channels (frame
based), the block treats each column of the input as a separate channel. In this example, the block
processes a two-channel signal with a frame size of three under these settings.

2 Blocks

2-960

The block outputs the minimum value over each channel since the last reset. At t = 2, the reset event
occurs. The minimum value in the second column changes to 6, and then 2, even though these values
are greater than 1, which was the minimum value since the previous reset event.

When you set Mode to Running, and Input processing to Elements as channels (sample
based), the block treats each element of the input as a separate channel. In this example, the block
processes a two-channel signal with a frame size of three under these settings.

 Minimum

2-961

Each element yij of the output contains the minimum value observed in element uij for all inputs since
the last reset. The reset event occurs at t = 2. When a reset event occurs, the running minimum, yij,
in the current frame is reset to the element uij.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the generated code.
To see the added latency, view the generated model or validation model. See “Generated Model and
Validation Model” (HDL Coder).

2 Blocks

2-962

Architecture Additional cycles of latency Description
default
Tree

0 Generates a tree structure of
comparators.

Cascade 1, when block has a single vector
input port.

This implementation is optimized for
latency * area, with medium speed.
See “Cascade Architecture Best
Practices” (HDL Coder).

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

InstantiateStages Generate a VHDL entity or Verilog module for each cascade stage. The
default is off. See also “InstantiateStages” (HDL Coder).

SerialPartition Specify partitions for Cascade-serial implementations as a vector of the
lengths of each partition. The default setting uses the minimum number of
stages. See also “SerialPartition” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The parameters on the Data Types Tab of the block are used only for complex fixed-point inputs. The
sum of the squares of the real and imaginary parts of such an input are formed before a comparison
is made, as described under the 'Mode' parameter in “Main Tab” on page 2-954. The results of the
squares of the real and imaginary parts are placed into the product output data type. The result of
the sum of the squares is placed into the accumulator data type. These parameters are ignored for
other types of inputs.

See Also
Functions
min | cummin

Objects
dsp.MovingMinimum | dsp.MovingMaximum

Blocks
Maximum | Moving Maximum | Moving Minimum | Mean

 Minimum

2-963

Introduced before R2006a

2 Blocks

2-964

Modified Covariance AR Estimator
Compute estimate of autoregressive (AR) model parameters using modified covariance method

Library
Estimation / Parametric Estimation

dspparest3

Description
The Modified Covariance AR Estimator block uses the modified covariance method to fit an
autoregressive (AR) model to the input data. This method minimizes the forward and backward
prediction errors in the least squares sense. The input is a frame of consecutive time samples, which
is assumed to be the output of an AR system driven by white noise. The block computes the
normalized estimate of the AR system parameters, A(z), independently for each successive input.

H(z) = G
A(z) = G

1 + a(2)z−1 + … + a(p + 1)z−p

You specify the order, p, of the all-pole model in the Estimation order parameter. To guarantee a
valid output, you must set the Estimation order parameter to be less than or equal to two thirds the
input vector length.

The output port labeled A outputs the normalized estimate of the AR model coefficients in descending
powers of z.

[1 a(2) ... a(p+1)]

The scalar gain, G, is output from the output port labeled G.

See the Burg AR Estimator block reference page for a comparison of the Burg AR Estimator,
Covariance AR Estimator, Modified Covariance AR Estimator, and Yule-Walker AR Estimator blocks.

Parameters
Estimation order

Specify the order of the AR model, p.

References
Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall,
1988.

 Modified Covariance AR Estimator

2-965

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall,
1987.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
A • Double-precision floating point

• Single-precision floating point
G • Double-precision floating point

• Single-precision floating point

The output data type is the same as the input data type.

See Also
Burg AR Estimator DSP System Toolbox
Covariance AR Estimator DSP System Toolbox
Modified Covariance Method DSP System Toolbox
Yule-Walker AR Estimator DSP System Toolbox
armcov Signal Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-966

Modified Covariance Method
Power spectral density estimate using modified covariance method

Library
Estimation / Power Spectrum Estimation

dspspect3

Description
The Modified Covariance Method block estimates the power spectral density (PSD) of the input using
the modified covariance method. This method fits an autoregressive (AR) model to the signal. It does
so by minimizing the forward and backward prediction errors in the least squares sense. The
Estimation order parameter value specifies the order of the all-pole model. To guarantee a valid
output, the Estimation order parameter must be less than or equal to two thirds of the input vector
length. The block computes the spectrum from the FFT of the estimated AR model parameters.

The input must be a column vector. This input represents a frame of consecutive time samples from a
single-channel signal. The block outputs a column vector containing the estimate of the power
spectral density of the signal at Nfft equally spaced frequency points. The frequency points are in the
range [0,Fs), where Fs is the sampling frequency of the signal.

Selecting Inherit FFT length from estimation order, specifies that Nfft is one greater than the
estimation order. Clearing the Inherit FFT length from estimation order parameter allows you to
use the FFT length parameter to specify Nfft as a power of 2. The block zero-pads or wraps the input
to Nfft before computing the FFT.

When you select the Inherit sample time from input check box, the block computes the frequency
data from the sample period of the input signal. For the block to produce valid output, the following
conditions must hold:

• The input to the block is the original signal, with no samples added or deleted (by insertion of
zeros, for example).

• The sample period of the time-domain signal in the simulation equals the sample period of the
original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then
specify a sample time using the Sample time of original time series parameter.

See the Burg Method block reference for a comparison of the Burg Method, Covariance Method,
Modified Covariance Method, and Yule-Walker Method blocks.

 Modified Covariance Method

2-967

Parameters
Estimation order

Specify the order of the AR model. To guarantee a valid output, the Estimation order parameter
must be less than or equal to two thirds of the input vector length.

Inherit FFT length from estimation order
When you select this check box, the option specifies that the FFT length is one greater than the
estimation order. To specify the number of points on which to perform the FFT, clear this check
box. You can then specify a power of two FFT length using the FFT length parameter.

FFT length
Enter the number of data points, Nfft, on which to perform the FFT. When Nfft is larger than the
input frame size, the block zero-pads each frame as needed. When Nfft is smaller than the input
frame size, the block wraps each frame as needed. This parameter becomes visible only when you
clear the Inherit FFT length from estimation order check box.

Inherit sample time from input
If you select the Inherit sample time from input check box, the block computes the frequency
data from the sample period of the input signal. For the block to produce valid output, the
following conditions must hold:

• The input to the block is the original signal, with no samples added or deleted (by insertion of
zeros, for example).

• The sample period of the time-domain signal in the simulation equals the sample period of the
original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can
then specify a sample time using the Sample time of original time series parameter.

Sample time of original time series
Specify the sample time of the original time-domain signal. This parameter becomes visible only
when you clear the Inherit sample time from input check box.

References
Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall,
1988.

Marple, S. L. Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall,
1987.

Orfanidis, S. J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1995.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point

2 Blocks

2-968

Port Supported Data Types
Output • Double-precision floating point

• Single-precision floating point

The output data type is the same as the input data type.

See Also
Burg Method DSP System Toolbox
Covariance Method DSP System Toolbox
Modified Covariance AR
Estimator

DSP System Toolbox

Short-Time FFT DSP System Toolbox
Yule-Walker Method DSP System Toolbox

See “Spectral Analysis” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Modified Covariance Method

2-969

Moving Average
Moving average
Library: DSP System Toolbox / Statistics

Description
The Moving Average block computes the moving average of the input signal along each channel
independently over time. The block uses either the sliding window method or the exponential
weighting method to compute the moving average. In the sliding window method, a window of
specified length moves over the data sample by sample, and the block computes the average over the
data in the window. In the exponential weighting method, the block multiplies the data samples with a
set of weighting factors and then sums the weighted data to compute the average. For more details
on these methods, see “Algorithms” on page 2-972.

Input/Output Ports
Input

x — Data input
column vector | row vector | matrix

Data over which the block computes the moving average. The block accepts real-valued or complex-
valued multichannel inputs, that is, m-by-n size inputs, where m ≥ 1 and n ≥ 1. The block also
accepts variable-size inputs. During simulation, you can change the size of each input channel.
However, the number of channels cannot change.

This port is unnamed until you set Method to Exponential weighting and select the Specify
forgetting factor from input port parameter.
Data Types: single | double

lambda — Forgetting factor
positive real scalar in the range (0,1]

The forgetting factor determines how much weight past data is given. A forgetting factor of 0.9 gives
more weight to the older data than does a forgetting factor of 0.1. A forgetting factor of 1.0 indicates
infinite memory – all previous samples are given an equal weight.

Dependencies

This port appears when you set Method to Exponential weighting and select the Specify
forgetting factor from input port parameter.
Data Types: single | double

2 Blocks

2-970

Output

Port_1 — Moving average output
column vector | row vector | matrix

The size of the moving average output matches the size of the input. The block uses either the sliding
window method or the exponential weighting method to compute the moving average, as specified by
the Method parameter. For more details, see “Algorithms” on page 2-972.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Method — Averaging method
Sliding window (default) | Exponential weighting

• Sliding window — A window of length Window length moves over the input data along each
channel. For every sample the window moves over, the block computes the average over the data
in the window.

• Exponential weighting — The block multiplies the samples by a set of weighting factors. The
magnitude of the weighting factors decreases exponentially as the age of the data increases, but
the magnitude never reaches zero. To compute the average, the algorithm sums the weighted
data.

Specify window length — Flag to specify window length
on (default) | off

When you select this check box, the length of the sliding window is equal to the value you specify in
Window length. When you clear this check box, the length of the sliding window is infinite. In this
mode, the block computes the average of the current sample and all previous samples in the channel.

Dependencies

This parameter appears when you set Method to Sliding window.

Window length — Length of sliding window
4 (default) | positive scalar integer

Specifies the length of the sliding window in samples.

Dependencies

This parameter appears when you set Method to Sliding window and select the Specify window
length check box.

Specify forgetting factor from input port — Flag to specify forgetting factor
off (default) | on

When you select this check box, the forgetting factor is input through the lambda port. When you
clear this check box, the forgetting factor is specified on the block dialog through the Forgetting
factor parameter.

 Moving Average

2-971

Dependencies

This parameter appears only when you set Method to Exponential weighting.

Forgetting factor — Exponential weighting factor
0.9 (default) | positive real scalar in the range (0,1]

The forgetting factor determines how much weight past data is given. A forgetting factor of 0.9 gives
more weight to the older data than does a forgetting factor of 0.1. A forgetting factor of 1.0 indicates
infinite memory – all previous samples are given an equal weight.

Tunable: Yes
Dependencies

This parameter appears when you set Method to Exponential weighting and clear the Specify
forgetting factor from input port check box.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster simulation speed
than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals Yes

Algorithms
Sliding Window Method

In the sliding window method, the output for each input sample is the average of the current sample
and the Len – 1 previous samples. Len is the length of the window in samples. To compute the first
Len – 1 outputs, when the window does not have enough data yet, the algorithm fills the window with
zeros. As an example, to compute the average when the second input sample comes in, the algorithm
fills the window with Len – 2 zeros. The data vector, x, is then the two data samples followed by Len –
2 zeros.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the moving average of the current sample and all the previous samples in the
channel.

2 Blocks

2-972

For an example, see “Sliding Window Method and Exponential Weighting Method”.

Exponential Weighting Method

In the exponential weighting method, the moving average is computed recursively using these
formulas:

wN, λ = λwN − 1, λ + 1

xN, λ = 1− 1
wN, λ

xN − 1, λ + 1
wN, λ

xN

• xN, λ — Moving average at the current sample
• xN — Current data input sample
• xN − 1, λ — Moving average at the previous sample
• λ — Forgetting factor
• wN, λ — Weighting factor applied to the current data sample
• 1− 1

wN, λ
xN − 1, λ — Effect of the previous data on the average

For the first sample, where N = 1, the algorithm chooses wN, λ = 1. For the next sample, the
weighting factor is updated and used to compute the average, as per the recursive equation. As the
age of the data increases, the magnitude of the weighting factor decreases exponentially and never
reaches zero. In other words, the recent data has more influence on the current average than the
older data.

The value of the forgetting factor determines the rate of change of the weighting factors. A forgetting
factor of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. A forgetting
factor of 1.0 indicates infinite memory. All the previous samples are given an equal weight.

For an example, see “Sliding Window Method and Exponential Weighting Method”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Moving RMS | Moving Maximum | Moving Minimum | Moving Standard Deviation | Moving Variance |
Median Filter

Objects
dsp.MovingAverage | dsp.MovingRMS | dsp.MovingMaximum | dsp.MovingMinimum |
dsp.MovingStandardDeviation | dsp.MovingVariance | dsp.MedianFilter

Topics
“What Are Moving Statistics?”
“Sliding Window Method and Exponential Weighting Method”

 Moving Average

2-973

Introduced in R2016b

2 Blocks

2-974

Moving Maximum
Moving maximum
Library: DSP System Toolbox / Statistics

Description
The Moving Maximum block determines the moving maximum of the input signal along each channel
independently over time. The block uses the sliding window method to determine the moving
maximum. In this method, a window of specified length moves over each channel sample by sample,
and the block determines the maximum over the data in the window. For more details, see
“Algorithms” on page 2-976.

Input/Output Ports
Input

Port_1 — Data input
column vector | row vector | matrix

Data over which the moving maximum is determined using the sliding window method. The block
accepts real-valued or complex-valued multichannel inputs, that is, m-by-n size inputs, where m ≥ 1
and n ≥ 1. The block also accepts variable-size inputs. During simulation, you can change the size of
each input channel. However, the number of channels cannot change.
Data Types: single | double

Output

Port_1 — Moving maximum output
column vector | row vector | matrix

Moving maximum output, determined using the sliding window method. The size of the output
matches the size of the input. The window slides column-wise along each channel, and the block
determines the maximum of the data in the window. For more details, see “Algorithms” on page 2-
976.
Data Types: single | double

Parameters
Specify window length — Flag to specify window length
on (default) | off

When you select this check box, the length of the sliding window is equal to the value you specify
through the Window length parameter. When you clear this check box, the length of the sliding

 Moving Maximum

2-975

window is infinite. In this mode, the block determines the maximum of the current sample and all
previous samples in the channel.

Window length — Length of the sliding window
4 (default) | positive scalar integer

Window length specifies the length of the sliding window in samples.

Dependencies

This parameter appears when you select the Specify window length check box.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster simulation speed
than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

Block Characteristics
Data Types double | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
Sliding Window Method

In the sliding window method, the output for each input sample is the maximum of the current
sample and the Len - 1 previous samples. Len is the length of the window in samples. When the
algorithm computes the first Len - 1 outputs, the length of the window is the length of the data that is
available.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the maximum of the current sample and all the previous samples in the channel.

Consider an example of computing the moving maximum of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. With each input sample that comes in, the
window of length 4 moves along the data.

2 Blocks

2-976

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Moving Maximum

2-977

See Also
Blocks
Maximum | Moving Minimum | Moving Average | Moving RMS | Moving Standard Deviation | Moving
Variance | Median Filter

Objects
dsp.MovingMaximum | dsp.MovingMinimum | dsp.MovingAverage | dsp.MovingRMS |
dsp.MovingStandardDeviation | dsp.MovingVariance | dsp.MedianFilter

Topics
“Streaming Signal Statistics”
“What Are Moving Statistics?”

Introduced in R2016b

2 Blocks

2-978

Moving Minimum
Moving minimum
Library: DSP System Toolbox / Statistics

Description
The Moving Minimum block determines the moving minimum of the input signal along each channel
independently over time. The block uses the sliding window method to determine the moving
minimum. In this method, a window of specified length moves over each channel sample by sample,
and the block determines the minimum over the data in the window. For more details, see
“Algorithms” on page 2-980.

Input/Output Ports
Input

Port_1 — Data input
column vector | row vector | matrix

Data over which the moving minimum is determined using the sliding window method. The block
accepts real-valued or complex-valued multichannel inputs, that is, m-by-n size inputs, where m ≥ 1
and n ≥ 1. The block also accepts variable-size inputs. During simulation, you can change the size of
each input channel. However, the number of channels cannot change.
Data Types: single | double

Output

Port_1 — Moving minimum output
column vector | row vector | matrix

Moving minimum output, determined using the sliding window method. The size of the output
matches the size of the input. The window slides column-wise along each channel, and the block
determines the minimum of the data in the window. For more details, see “Algorithms” on page 2-
980.
Data Types: single | double

Parameters
Specify window length — Flag to specify window length
on (default) | off

When you select this check box, the length of the sliding window is equal to the value you specify
through the Window length parameter. When you clear this check box, the length of the sliding
window is infinite. In this mode, the block determines the minimum of the current sample and all the
previous samples in the channel.

 Moving Minimum

2-979

Window length — Length of the sliding window
4 (default) | positive scalar integer

Window length specifies the length of the sliding window in samples.

Dependencies

This parameter appears when you select the Specify window length check box.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster simulation speed
than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

Block Characteristics
Data Types double | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
Sliding Window Method

In the sliding window method, the output for each input sample is the minimum of the current sample
and the Len - 1 previous samples. Len is the length of the window in samples. When the algorithm
computes the first Len - 1 outputs, the length of the window is the length of the data that is available.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the minimum of the current sample and all the previous samples in the channel.

Consider an example of computing the moving minimum of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. With each input sample that comes in, the
window of length 4 moves along the data.

2 Blocks

2-980

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Moving Minimum

2-981

See Also
Blocks
Minimum | Moving Maximum | Moving Average | Moving RMS | Moving Standard Deviation | Moving
Variance | Median Filter

Objects
dsp.MovingMinimum | dsp.MovingMaximum | dsp.MovingAverage | dsp.MovingRMS |
dsp.MovingStandardDeviation | dsp.MovingVariance | dsp.MedianFilter

Introduced in R2016b

2 Blocks

2-982

Moving RMS
Moving RMS
Library: DSP System Toolbox / Statistics

Description
The Moving RMS block computes the moving root mean square (RMS) of the input signal along each
channel independently over time. The block uses either the sliding window method or the exponential
weighting method to compute the moving RMS. In the sliding window method, a window of specified
length moves over the data sample by sample, and the block computes the RMS over the data in the
window. In the exponential weighting method, the block squares the data samples, multiplies them
with a set of weighting factors, and sums the weighed data. The block then computes the RMS by
taking the square root of the sum. For more details on these methods, see “Algorithms” on page 2-
985.

Input/Output Ports
Input

x — Data input
column vector | row vector | matrix

Data over which the block computes the moving RMS. The block accepts real-valued or complex-
valued multichannel inputs, that is, m-by-n size inputs, where m ≥ 1 and n ≥ 1. The block also
accepts variable-size inputs. During simulation, you can change the size of each input channel.
However, the number of channels cannot change.

This port is unnamed until you set Method to Exponential weighting and select the Specify
forgetting factor from input port parameter.
Data Types: single | double

lambda — Forgetting factor
positive real scalar in the range (0,1]

The forgetting factor determines how much weight past data is given. A forgetting factor of 0.9 gives
more weight to the older data than does a forgetting factor of 0.1. A forgetting factor of 1.0 indicates
infinite memory – all previous samples are given an equal weight.

Dependencies

This port appears when you set Method to Exponential weighting and select the Specify
forgetting factor from input port parameter.
Data Types: single | double

 Moving RMS

2-983

Output

Port_1 — Moving RMS output
column vector | row vector | matrix

The size of the moving RMS output matches the size of the input. The block uses either the sliding
window method or the exponential weighting method to compute the moving RMS, as specified by the
Method parameter. For more details, see “Algorithms” on page 2-985.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Method — Moving RMS method
Sliding window (default) | Exponential weighting

• Sliding window — A window of length Window length moves over the input data along each
channel. For every sample the window moves over, the block computes the RMS over the data in
the window.

• Exponential weighting — The block multiplies the squares of the samples by a set of
weighting factors. The magnitude of the weighting factors decreases exponentially as the age of
the data increases, but the magnitude never reaches zero. To compute the RMS, the algorithm
sums the weighted data and takes a square root of the sum.

Specify window length — Flag to specify window length
on (default) | off

When you select this check box, the length of the sliding window is equal to the value you specify in
Window length. When you clear this check box, the length of the sliding window is infinite. In this
mode, the block computes the RMS of the current sample and all the previous samples in the
channel.

Dependencies

This parameter appears when you set Method to Sliding window.

Window length — Length of sliding window
4 (default) | positive scalar integer

Specifies the length of the sliding window in samples.

Dependencies

This parameter appears when you set Method to Sliding window and select the Specify window
length check box.

Specify forgetting factor from input port — Flag to specify forgetting factor
off (default) | on

When you select this check box, the forgetting factor is input through the lambda port. When you
clear this check box, the forgetting factor is specified on the block dialog through the Forgetting
factor parameter.

2 Blocks

2-984

Dependencies

This parameter appears only when you set Method to Exponential weighting.

Forgetting factor — Exponential weighting factor
0.9 (default) | positive real scalar in the range (0,1]

The forgetting factor determines how much weight past data is given. A forgetting factor of 0.9 gives
more weight to the older data than does a forgetting factor of 0.1. A forgetting factor of 1.0 indicates
infinite memory – all previous samples are given an equal weight.

Tunable: Yes

Dependencies

This parameter appears when you set Method to Exponential weighting and clear the Specify
forgetting factor from input port check box.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster simulation speed
than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals Yes

Algorithms
Sliding Window Method

In the sliding window method, the output for each input sample is the RMS of the current sample and
the Len – 1 previous samples. Len is the length of the window in samples. To compute the first Len – 1
outputs, when the window does not have enough data yet, the algorithm fills the window with zeros.
As an example, to compute the RMS when the second input sample comes in, the algorithm fills the
window with Len – 2 zeros. The data vector, x, is then the two data samples followed by Len – 2 zeros.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the moving RMS of the current sample and all the previous samples in the
channel.

 Moving RMS

2-985

Consider an example of computing the moving RMS of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. With each input sample that comes in, the
window of length 4 moves along the data.

Exponential Weighting Method

In the exponential weighting method, the moving RMS is computed recursively using these formulas:

wN, λ = λwN − 1, λ + 1

x_rmsN, λ = 1− 1
wN, λ

x_rmsN − 1, λ + 1
wN, λ

x2
N

2 Blocks

2-986

• x_rmsN, λ — Moving RMS at the current sample
• x2

N — Square of the current input data sample
• x_rmsN − 1, λ — Moving RMS at the previous sample
• λ — Forgetting factor
• wN, λ — Weighting factor applied to the current data sample
• 1− 1

wN, λ
x_rmsN − 1, λ — Effect of the previous data on the RMS

For the first sample, where N = 1, the algorithm chooses wN, λ = 1. For the next sample, the
weighting factor is updated and used to compute the RMS, as per the recursive equation. As the age
of the data increases, the magnitude of the weighting factor decreases exponentially and never
reaches zero. In other words, the recent data has more influence on the current RMS than the older
data.

The value of the forgetting factor determines the rate of change of the weighting factors. A forgetting
factor of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. A forgetting
factor of 1.0 indicates infinite memory. All the previous samples are given an equal weight.

Here is an example of computing the moving RMS using the exponential weighting method. The
forgetting factor is 0.9.

 Moving RMS

2-987

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
RMS | Moving Average | Moving Maximum | Moving Minimum | Moving Standard Deviation | Moving
Variance | Median Filter

Objects
dsp.MovingRMS | dsp.MovingAverage | dsp.MovingMaximum | dsp.MovingMinimum |
dsp.MovingStandardDeviation | dsp.MovingVariance | dsp.MedianFilter

Topics
“What Are Moving Statistics?”
“Sliding Window Method and Exponential Weighting Method”
“Streaming Signal Statistics”
“Energy Detection in the Time Domain”

2 Blocks

2-988

Introduced in R2016b

 Moving RMS

2-989

Moving Variance
Moving variance
Library: DSP System Toolbox / Statistics

Description
The Moving Variance block computes the moving variance of the input signal along each channel
independently over time. The block uses either the sliding window method or the exponential
weighting method to compute the moving variance. In the sliding window method, a window of
specified length moves over the data sample by sample, and the block computes the variance over the
data in the window. In the exponential weighting method, the block subtracts each sample of the data
from the average, squares the difference, and multiplies the squared result by a weighting factor. The
block then computes the variance by adding all the weighted data. For more details on these
methods, see “Algorithms” on page 2-992.

Input/Output Ports
Input

x — Data input
column vector | row vector | matrix

Data over which the block computes the moving variance. The block accepts real-valued or complex-
valued multichannel inputs, that is, m-by-n size inputs, where m ≥ 1, and n ≥ 1. The block also
accepts variable-size inputs. During simulation, you can change the size of each input channel.
However, the number of channels cannot change.

This port is unnamed until you set Method to Exponential weighting and select the Specify
forgetting factor from input port parameter.
Data Types: single | double

lambda — Forgetting factor
positive real scalar in the range (0,1]

The forgetting factor determines how much weight past data is given. A forgetting factor of 0.9 gives
more weight to the older data than does a forgetting factor of 0.1. A forgetting factor of 1.0 indicates
infinite memory – all previous samples are given an equal weight.

Dependencies

This port appears when you set Method to Exponential weighting and select the Specify
forgetting factor from input port parameter.
Data Types: single | double

2 Blocks

2-990

Output

Port_1 — Moving variance output
column vector | row vector | matrix

The size of the moving variance output matches the size of the input. The block uses either the sliding
window method or the exponential weighting method to compute the moving variance, as specified by
the Method parameter. For more details, see “Algorithms” on page 2-992.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Method — Moving variance method
Sliding window (default) | Exponential weighting

• Sliding window — A window of length Window length moves over the input data along each
channel. For every sample the window moves over, the block computes the variance over the data
in the window.

• Exponential weighting — The block subtracts each sample of the data from the average,
squares the difference, and multiplies the squared result by a weighting factor. The block then
computes the variance by adding all the weighted data. The magnitude of the weighting factors
decreases exponentially as the age of the data increases, but the magnitude never reaches zero.

For more details on these methods, see “Algorithms” on page 2-992.

Specify window length — Flag to specify window length
on (default) | off

When you select this check box, the length of the sliding window is equal to the value you specify in
Window length. When you clear this check box, the length of the sliding window is infinite. In this
mode, the block computes the variance of the current sample with respect to all the previous samples
in the channel.
Dependencies

This parameter appears when you set Method to Sliding window.

Window length — Length of sliding window
4 (default) | positive scalar integer

Specifies the length of the sliding window in samples.
Dependencies

This parameter appears when you set Method to Sliding window and select the Specify window
length check box.

Specify forgetting factor from input port — Flag to specify forgetting factor
off (default) | on

When you select this check box, the forgetting factor is input through the lambda port. When you
clear this check box, the forgetting factor is specified on the block dialog through the Forgetting
factor parameter.

 Moving Variance

2-991

Dependencies

This parameter appears only when you set Method to Exponential weighting.

Forgetting factor — Exponential weighting factor
0.9 (default) | positive real scalar in the range (0,1]

The forgetting factor determines how much weight past data is given. A forgetting factor of 0.9 gives
more weight to the older data than does a forgetting factor of 0.1. A forgetting factor of 1.0 indicates
infinite memory – all previous samples are given an equal weight.

Tunable: Yes
Dependencies

This parameter appears when you set Method to Exponential weighting and clear the Specify
forgetting factor from input port check box.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster simulation speed
than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals Yes

Algorithms
Sliding Window Method

In the sliding window method, the output at the current sample is the variance of the current sample
with respect to the data in the window. To compute the first Len – 1 outputs, when the window does
not have enough data yet, the algorithm fills the window with zeros. As an example, to compute the
variance when the second input sample comes in, the algorithm fills the window with Len – 2 zeros.
Len is the length of the window in samples. The data vector, x, is then the two data samples followed
by Len – 2 zeros.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the moving variance of the current sample with respect to all previous samples in
the channel.

2 Blocks

2-992

Consider an example of computing the moving variance of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. With each input sample that comes in, the
window of length 4 moves along the data.

Exponential Weighting Method

In the exponential weighting method, the moving variance is computed recursively using these
formulas:

 Moving Variance

2-993

s2
N, λ = 1

vN, λ
∑

k = 1

N
λN − k xk− xN, λ

2

vN, λ = 2λ(1− λN − 1)
(1− λ)(1 + λ)

To compute the moving variance, the algorithm implements these equations recursively.

• s2
N, λ — Moving variance of the current data sample with respect to the rest of the data in the

channel.
• xN, λ — Moving average at the current sample. For details on computing the moving average, see

dsp.MovingAverage.
• xk− xN, λ

2 — Difference between each data sample and the average of the data, squared.
•
∑

k = 1

N
λN − k xk− xN, λ

2 — Difference between each data sample and the average of the data,

squared and multiplied with the forgetting factor. All the squared terms are added.
• 1

vN, λ
 — Weighting factor applied to the sum.

• λ — Forgetting factor you can specify through the ForgettingFactor property.

As the age of the data increases, the magnitude of the weighting factor decreases exponentially, and
never reaches zero. In other words, the recent data has more influence on the current variance, than
the older data.

The value of the forgetting factor determines the rate of change of the weighting factors. A forgetting
factor of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. A forgetting
factor of 1.0 indicates infinite memory. All the past samples are given an equal weight.

Consider an example of computing the moving variance using the exponential weighting method. The
forgetting factor is 0.9.

2 Blocks

2-994

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Variance | Moving Average | Moving Maximum | Moving Minimum | Moving Standard Deviation |
Moving RMS | Median Filter

Objects
dsp.MovingVariance | dsp.MovingAverage | dsp.MovingMaximum | dsp.MovingMinimum |
dsp.MovingStandardDeviation | dsp.MovingRMS | dsp.MedianFilter

Topics
“What Are Moving Statistics?”
“Sliding Window Method and Exponential Weighting Method”
“Streaming Signal Statistics”

 Moving Variance

2-995

Introduced in R2016b

2 Blocks

2-996

Moving Standard Deviation
Moving standard deviation
Library: DSP System Toolbox / Statistics

Description
The Moving Standard Deviation block computes the moving standard deviation of the input signal
along each channel independently over time. The block uses either the sliding window method or the
exponential weighting method to compute the moving standard deviation. In the sliding window
method, a window of specified length moves over the data sample by sample, and the block computes
the standard deviation over the data in the window. In the exponential weighting method, the block
computes the exponentially weighted moving variance and takes the square root. For more details on
these methods, see “Algorithms” on page 2-999.

Input/Output Ports
Input

x — Data input
column vector | row vector | matrix

Data over which the block computes the moving standard deviation. The block accepts real-valued or
complex-valued multichannel inputs, that is, m-by-n size inputs, where m ≥ 1 and n ≥ 1. The block
also accepts variable-size inputs. During simulation, you can change the size of each input channel.
However, the number of channels cannot change.

This port is unnamed until you set Method to Exponential weighting and select the Specify
forgetting factor from input port parameter.
Data Types: single | double

lambda — Forgetting factor
positive real scalar in the range (0,1]

The forgetting factor determines how much weight past data is given. A forgetting factor of 0.9 gives
more weight to the older data than does a forgetting factor of 0.1. A forgetting factor of 1.0 indicates
infinite memory – all previous samples are given an equal weight.

Dependencies

This port appears when you set Method to Exponential weighting and select the Specify
forgetting factor from input port parameter.
Data Types: single | double

 Moving Standard Deviation

2-997

Output

Port_1 — Moving standard deviation output
column vector | row vector | matrix

The size of the moving standard deviation output matches the size of the input. The block uses either
the sliding window method or the exponential weighting method to compute the moving standard
deviation, as specified by the Method parameter. For more details, see “Algorithms” on page 2-999.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Method — Moving standard deviation method
Sliding window (default) | Exponential weighting

• Sliding window — A window of length Window length moves over the input data along each
channel. For every sample the window moves by, the block computes the standard deviation over
the data in the window.

• Exponential weighting — The block computes the exponentially weighted moving standard
deviation and takes the square root. The magnitude of the weighting factors decreases
exponentially as the age of the data increases, but the magnitude never reaches zero.

For more details on these methods, see “Algorithms” on page 2-999.

Specify window length — Flag to specify window length
on (default) | off

When you select this check box, the length of the sliding window is equal to the value you specify in
Window length. When you clear this check box, the length of the sliding window is infinite. In this
mode, the block computes the standard deviation of the current sample with respect to all the
previous samples in the channel.

Dependencies

This parameter appears when you set Method to Sliding window.

Window length — Length of sliding window
4 (default) | positive scalar integer

Specifies the length of the sliding window in samples.

Dependencies

This parameter appears when you set Method to Sliding window and select the Specify window
length check box.

Specify forgetting factor from input port — Flag to specify forgetting factor
off (default) | on

When you select this check box, the forgetting factor is input through the lambda port. When you
clear this check box, the forgetting factor is specified on the block dialog through the Forgetting
factor parameter.

2 Blocks

2-998

Dependencies

This parameter appears only when you set Method to Exponential weighting.

Forgetting factor — Exponential weighting factor
0.9 (default) | positive real scalar in the range (0,1]

The forgetting factor determines how much weight past data is given. A forgetting factor of 0.9 gives
more weight to the older data than does a forgetting factor of 0.1. A forgetting factor of 1.0 indicates
infinite memory – all previous samples are given an equal weight.

Tunable: Yes
Dependencies

This parameter appears when you set Method to Exponential weighting and clear the Specify
forgetting factor from input port check box.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster simulation speed
than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals Yes

Algorithms
Sliding Window Method

In the sliding window method, the output at the current sample is the standard deviation of the
current sample with respect to the data in the window. To compute the first Len – 1 outputs, when the
window does not have enough data yet, the algorithm fills the window with zeros. As an example, to
compute the standard deviation when the second input sample comes in, the algorithm fills the
window with Len – 2 zeros. Len is the length of the window in samples. The data vector, x, is then the
two data samples followed by Len – 2 zeros.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the moving standard deviation of the current sample with respect to all the
previous samples in the channel.

 Moving Standard Deviation

2-999

Consider an example of computing the moving standard deviation of a streaming input data using the
sliding window method. The algorithm uses a window length of 4. With each input sample that comes
in, the window of length 4 moves along the data.

Exponential Weighting Method

In the exponential weighting method, the moving standard deviation is computed recursively using
these formulas:

2 Blocks

2-1000

sN, λ = 1
vN, λ

∑
k = 1

N
λN − k xk− xN, λ

2

vN, λ = 2λ(1− λN − 1)
(1− λ)(1 + λ)

• sN, λ — Moving standard deviation of the current data sample with respect to the rest of the data.
• xk− xN, λ

2 — Difference between each data sample and the average of the data, squared.
•
∑

k = 1

N
λN − k xk− xN, λ

2 — Difference between each data sample and the average of the data,

squared and multiplied with the forgetting factor. All the squared terms are added.
• 1

vN, λ
 — Weighting factor applied to the sum.

• λ — Forgetting factor.

As the age of the data increases, the magnitude of the weighting factor decreases exponentially and
never reaches zero. In other words, the recent data has more influence on the current standard
deviation than the older data.

The value of the forgetting factor determines the rate of change of the weighting factors. A forgetting
factor of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. A forgetting
factor of 1.0 indicates infinite memory. All previous samples are given an equal weight.

Consider an example of computing the moving standard deviation using the exponential weighting
method. The forgetting factor is 0.9.

 Moving Standard Deviation

2-1001

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Standard Deviation | Moving Average | Moving Maximum | Moving Minimum | Moving Variance |
Moving RMS | Median Filter

Objects
dsp.MovingStandardDeviation | dsp.MovingAverage | dsp.MovingMaximum |
dsp.MovingMinimum | dsp.MovingVariance | dsp.MovingRMS | dsp.MedianFilter

Topics
“What Are Moving Statistics?”
“Sliding Window Method and Exponential Weighting Method”
“Streaming Signal Statistics”

2 Blocks

2-1002

Introduced in R2016b

 Moving Standard Deviation

2-1003

Multiphase Clock
Generate multiple binary clock signals
Library: DSP System Toolbox / Signal Management / Switches and

Counters
DSP System Toolbox / Sources

Description
The Multiphase Clock block generates a 1-by-N vector of clock signals, where you specify the integer
N in the Number of phases parameter. Each of the N phases has the same frequency, f, specified in
hertz by the Clock frequency parameter.

The clock signal indexed by the Starting phase parameter is the first to become active, at t=0. The
other signals in the output vector become active in turn, each one lagging the preceding signal's
activation by 1/(Nf) seconds, the phase interval. The period of the output is therefore 1/(Nf) seconds.

The active level can be either high (1) or low (0), as specified by the Active level (polarity)
parameter. You specify the duration of the active level, D, as an integer between 1 and N-1 using the
Number of phase intervals over which the clock is active parameter. This value specifies the
number of phase intervals that each signal remains in the active state after becoming active. The
active duty cycle of the signal is D/N.

Ports
Output

Port_1 — Vector of clock signals
vector

1-by-N vector of clock signals, where you specify N using the Number of phases parameter. For
more information, see “Description” on page 2-1004.
Data Types: single | double | Boolean

Parameters
Clock frequency (Hz) — Frequency of all clock signals
1 (default) | positive scalar

The frequency of all output clock signals, specified as a positive scalar.

Number of phases, N — Number of phases in output vector
4 (default) | positive integer

The number of different phases, N, in the output vector, specified as a positive integer scalar.

Starting phase (1 to N) — Vector index for starting phase
1 (default) | integer from 1 to N

2 Blocks

2-1004

The vector index of the output signal to first become active, specified as a scalar integer from 1 to N.

Number of phase intervals over which clock is active (1 to N-1) — Duration of
active level for each output
3 (default) | integer from 1 to N-1

The duration of the active level, D, for every output signal specified as a scalar integer from 1 to N-1.
The value you specify determines the number of phase intervals that each signal remains in the active
state after becoming active. The active duty cycle of the signal is D/N.

Active level (polarity) — Active level
High (1) (default) | Low (0)

The active level of the output, specified as High (1) or Low (0).

Output data type — Output data type
Logical (default) | Boolean

The output data type, specified as Logical or Boolean.

Block Characteristics
Data Types double | single | Boolean
Multidimensional
Signals

No

Variable-Size Signals No

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Clock | Counter | Pulse Generator | Event-Count Comparator

Introduced before R2006a

 Multiphase Clock

2-1005

Multiport Selector
Distribute arbitrary subsets of input rows or columns to multiple output ports

Library
Signal Management / Indexing

dspindex

Description
The Multiport Selector block extracts multiple subsets of rows or columns from M-by-N input matrix
u, and propagates each new submatrix to a distinct output port. The block treats an unoriented
length-M vector input as an M-by-1 matrix.

The Indices to output parameter is a cell array whose kth cell contains a one-dimensional indexing
expression specifying the subset of input rows or columns to be propagated to the kth output port.
The total number of cells in the array determines the number of output ports on the block.

When you set the Select parameter to Rows, the block uses the one-dimensional indices you specify
to select matrix rows, and all elements on the chosen rows are included. When you set the Select
parameter to Columns, the block uses the one-dimensional indices you specify to select matrix
columns, and all elements on the chosen columns are included. A given input row or column can
appear any number of times in any of the outputs, or not at all.

When an index references a nonexistent row or column of the input, the block reacts with the action
you specify using the Invalid index parameter.

Examples
Example 1

Consider the following Indices to output cell array:

{4,[1:2 5],[7;8],10:-1:6}

This is a four-cell array, which requires the block to generate four independent outputs (each at a
distinct port). The table below shows the dimensions of these outputs when Select = Rows and the
input dimension is M-by-N.

Cell Expression Description Output Size
1 4 Row 4 of input 1-by-N
2 [1:2 5] Rows 1, 2, and 5 of input 3-by-N
3 [7;8] Rows 7 and 8 of input 2-by-N

2 Blocks

2-1006

Cell Expression Description Output Size
4 10:-1:6 Rows 10, 9, 8, 7, and 6 of input 5-by-N

Parameters
Select

Specify the dimension of the input to select, Rows or Columns.
Indices to output

A cell array specifying the row- or column-subsets to propagate to each of the output ports. The
number of cells in the array determines the number of output ports on the block.

Invalid index
Specify how the block handles an invalid index value. You can select one of the following options:

• Clip index — Clip the index to the nearest valid value, and do not issue an alert.

For example, if the block receives a 64-by-4 input and the Select parameter is set to Rows, the
block clips an index of 72 to 64. For the same input, if the Select parameter is set to
Columns, the block clips an index of 72 to 4. In both cases, the block clips an index of -2 to 1.

• Clip and warn — Clip the index to the nearest valid value and display a warning message at
the MATLAB command line.

• Generate error — Display an error dialog box and terminate the simulation.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Enumerated

Outputs • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Enumerated

See Also
Permute Matrix DSP System Toolbox

 Multiport Selector

2-1007

Selector Simulink
Submatrix DSP System Toolbox
Variable Selector DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

2 Blocks

2-1008

N-Sample Enable
Output ones or zeros for specified number of sample times
Library: DSP System Toolbox / Sources

DSP System Toolbox / Signal Management / Switches and
Counters

Description
The N-Sample Enable block outputs the inactive value (0 or 1, whichever is not selected in the Active
level parameter) during the first N sample times, where N is the Trigger count value. Beginning
with output sample N+1, the block outputs the active value (1 or 0, whichever you select in the
Active level parameter) until a reset event occurs or the simulation terminates.

The output of the block is always a scalar.

The Reset input check box enables the Rst input port. At any time during the count, a trigger event
at the input port resets the counter to its initial state. You specify the type of trigger event using the
Trigger type parameter. This block supports triggered subsystems when you select the Reset input
check box.

Ports
Input

Rst — Reset signal
scalar

Reset input signal, specified as a scalar. At any time during the count, a trigger event at the input
port resets the counter to its initial state.

Tip The N-Sample Enable block supports triggered subsystems when you select the Reset input
check box to enable the Rst input port.

Dependencies

To enable this input port, select the Reset input check box.
Data Types: Boolean

Output

Port_1 — Output signal
scalar

Scalar output containing the inactive value (0 or 1, whichever is not selected in the Active level
parameter) during the first N sample times, where N is the Trigger count value. Beginning with

 N-Sample Enable

2-1009

output sample N+1, the block outputs the active value (1 or 0, whichever you select in the Active
level parameter) until a reset event occurs or the simulation terminates.
Data Types: Boolean

Parameters
Trigger count, N — Number of samples to output the active value
8 (default) | scalar integer

Specify the number of samples for which the block outputs the active value as a scalar integer,
greater than or equal to zero.

Tunable: Yes

Active level — Active level
Low (0) (default) | High (1)

Specify the value to output after the first N sample times as 0 or 1.

Tunable: Yes

Reset input — Enable reset input port
off (default) | on

To enable the reset (Rst) input port, select this check box. When you clear this check box, the Rst
input port is disabled.

Tip When you select the Reset input check box, the N-Sample Enable block supports triggered
subsystems.

Trigger type — Type of triggering event
Rising edge (default) | Falling edge | Either edge | Non-zero sample

Select type of event that triggers a reset when the Rst port is enabled.

You can specify the triggering event as:

• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero (see the following figure)

2 Blocks

2-1010

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero (see the following figure)

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge.

• Non-zero sample — Triggers a reset operation at each sample time that the Rst input is not
zero.

Dependencies

To enable this parameter, select the Reset input check box.

Sample time — Output sample period
1 (default) | positive scalar

Specify the sample period, Ts, for the block's counter as a positive finite scalar. The block switches
from the active value to the inactive value at t=Ts(N+1).

Output data type — Output data type
Logical (default) | Boolean

Specify the output data type as Logical or Boolean.

 N-Sample Enable

2-1011

Block Characteristics
Data Types Boolean | double
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Counter | N-Sample Switch

Introduced before R2006a

2 Blocks

2-1012

N-Sample Switch
Switch between two inputs after specified number of sample periods

Library
Signal Management / Switches and Counters

dspswit3

Description
The N-Sample Switch block outputs the signal connected to the top input port during the first N
sample times after the simulation begins or the block is reset, where you specify N in the Switch
count parameter. Beginning with output sample N+1, the block outputs the signal connected to the
bottom input until the next reset event or the end of the simulation.

You specify the sample period of the output in the Sample time parameter (that is, the output
sample period is not inherited from the sample period of either input). The block applies a zero-order
hold at the input ports, so the value the block reads from a given port between input sample times is
the value of the most recent input to that port.

Both inputs must have the same dimension, except in the following two cases:

• When one input is a scalar, the block expands the scalar input to match the size of the other input.
• When one input is an unoriented vector and the other input is a row or column vector with the

same number of elements, the block reshapes the unoriented vector to match the dimension of the
other input.

The Reset input check box enables the Rst input port. At any time during the count, a trigger event
at the Rst port resets the counter to zero. The reset sample time must be a positive integer multiple
of the input sample time. This block supports triggered subsystems when you select the Reset input
check box.

You specify the triggering event in the Trigger type pop-up menu, and can be one of the following:

• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero (see the following figure)

 N-Sample Switch

2-1013

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero (see the following figure)

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge (as described above).

• Non-zero sample — Triggers a reset operation at each sample time that the Rst input is not
zero.

Parameters
Switch count

The number of sample periods, N, for which the output is connected to the top input before
switching to the bottom input. Tunable (Simulink).

Reset input
Enables the Rst input port when selected. The rate of the reset signal must be a positive integer
multiple of the rate of the data signal input.

Trigger type
The type of event at the Rst port that resets the block's counter. This parameter is enabled when
you select Reset input. Tunable (Simulink).

Sample time
The sample period, Ts, for the block's counter. The block switches inputs at t=Ts*(N+1).

2 Blocks

2-1014

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean — The block accepts Boolean inputs to the Rst port, which is enabled when you set the

Reset input parameter.
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Counter DSP System Toolbox
N-Sample Enable DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 N-Sample Switch

2-1015

NCO
Generate real or complex sinusoidal signals
Library: DSP System Toolbox / Signal Operations

DSP System Toolbox / Sources

Description
The NCO block generates a multichannel real or complex sinusoidal signal, with independent
frequency and phase in each output channel. The amplitude of the created signal is always 1. The
NCO block supports real inputs only. All outputs are real except for the output signal in Complex
exponential mode. For more information on how the block computes the output, see “Algorithms”
on page 2-1022.

To produce a multichannel output, specify a vector quantity for the Phase increment and Phase
offset parameters. Both parameters must have the same length, which defines the number of output
channels. Each element of each vector is applied to a different output channel.

Ports
Input

inc — Phase increment
scalar | vector

Phase increment signal, specified as a real-valued scalar or vector. The input must have an integer
data type, or a fixed-point data type with zero fraction length. The dimensions of the phase increment
signal depend on how you choose to specify the Phase offset parameter:

• When you specify the Phase offset on the block dialog box, the Phase increment must be a
scalar or a vector with the same length as the Phase offset value. The block applies each element
of the vector to a different channel, and therefore the vector length defines the number of output
channels.

• When you specify the Phase offset via the an input port, the offset port treats each column of the
input as an independent channel. The Phase increment length must equal the number of
columns in the input to the offset port.

Dependencies

To enable this port, set Phase increment source to Input port.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | fixed point

2 Blocks

2-1016

offset — Phase offset
scalar | vector | matrix

Phase offset signal, specified as a real-valued scalar, vector, or a full matrix. The input must have an
integer data type, or a fixed-point data type with zero fraction length. The block treats each column of
the input to the offset port as an independent channel. The number of channels in the phase offset
must match the number of channels in the data input. For each frame of the input, the block can
apply different phase offsets to each sample and channel.

Dependencies

To enable this port, set Phase offset source to Input port.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | fixed point

Output

sin — Sine output
scalar | vector | matrix

Sinusoidal output signal specified as a scalar, vector, or matrix. You can specify the data type of the
signal using the Output data type parameter.

Dependencies

To enable this port, set Output signal to Sine or Sine and cosine.
Data Types: single | double | fixed point

cos — Cosine output
scalar | vector | matrix

Cosinusoidal output signal specified as a scalar, vector, or matrix. You can specify the data type of the
signal using the Output Data Type parameter.

Dependencies

To enable this port, set Output signal to Cosine or Sine and cosine.
Data Types: single | double | fixed point

exp — Complex exponential
scalar | vector | matrix

Complex exponential output, specified as a scalar, vector, or matrix. You can specify the data type of
the signal using the Output Data Type parameter.

Dependencies

To enable this port, set Output signal to Complex exponential.
Data Types: single | double | fixed point
Complex Number Support: Yes

Qerr — Phase quantization error
scalar | vector | matrix

Phase quantization error specified as a scalar, vector, or matrix.

 NCO

2-1017

Dependencies

To enable this port, select the Show phase quantization error port check box.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | fixed point

Parameters
Main

Phase adder parameters

Phase increment source — Source of phase increment value
Specify via dialog | Input port

Choose how you specify the phase increment. The phase increment can come from an input port or
from the dialog box parameter.

• If you select Input port, the inc input port appears on the block icon.
• If you select Specify via dialog, the Phase increment parameter appears.

Dependencies

When the block comes from the Signal Operations library, the default value of the Phase increment
Source parameter is Input port.

When the block comes from the Sources library, the default value of the Phase increment Source
parameter is Specify via dialog.

Phase increment — Phase increment value
100 (default) | scalar | vector

Specify the phase increment as an integer-valued scalar or vector. Only integer data types, including
fixed-point data types with zero fraction length, are allowed. The dimensions of the phase increment
depend on those of the phase offset:

• When you specify the phase offset on the block dialog box, the phase increment must be a scalar
or a vector with the same length as the phase offset. The block applies each element of the vector
to a different channel, and therefore the vector length defines the number of output channels.

• When you specify the phase offset via an input port, the offset port treats each column of the input
as an independent channel. The phase increment length must equal the number of columns in the
input to the offset port.

Dependencies

To enable this parameter, set Phase increment source to Specify via dialog.

Phase offset source — Source of phase offset
Specify via dialog (default) | Input port

Choose how you specify the phase offset. The phase offset can come from an input port or from the
dialog box.

• If you select Input port, the offset port appears on the block icon.

2 Blocks

2-1018

• If you select Specify via dialog, the Phase offset parameter appears.

Phase offset — Phase offset value
0 (default) | scalar | vector

Specify the phase offset as an integer-valued scalar or vector. Only integer data types, including fixed-
point data types with zero fraction length, are allowed. When you specify the phase offset using this
dialog box parameter, it must be a scalar or vector with the same length as the phase increment.
Scalars are expanded to a vector with the same length as the phase increment. Each element of the
phase offset vector is applied to a different channel of the input, and therefore the vector length
defines the number of output channels.

Dependencies

To enable this parameter, set Phase offset source to Specify via dialog.

Add internal dither — Add internal dithering
on (default) | off

Select to add internal dithering to the NCO algorithm. Dithering is added using the PN Sequence
Generator from the Communications Toolbox™ product.

Number of dither bits — Number of dither bits
4 (default) | positive integer

Specify the number of dither bits as a positive integer.

Dependencies

To enable this port, select the Add internal dither check box.

Quantize phase — Enable quantization of accumulated phase
on (default) | off

To enable quantization of the accumulated phase, select this check box.

Number of quantized accumulator bits — Number of quantized accumulator bits
12 (default) | integer scalar

Specify the number of quantized accumulator bits as a scalar integer greater than one, and less than
the accumulator word length. This value determines the number of entries in the lookup table.

Dependencies

To enable this port, select the Quantize phase check box.

Show phase quantization error port — Output quantization error
off (default) | on

Select to output the phase quantization error. When you select this check box, the Qerr port appears
on the block icon.

Dependencies

To enable this parameter, select the Quantize phase check box.

 NCO

2-1019

Output Parameters

Output signal — Output signal
Sine (default) | Cosine | Complex exponential | Sine and cosine

Choose whether the block outputs a Sine, Cosine, Complex exponential, or both Sine and
cosine signals. If you select Sine and cosine, the two signals output on different ports.

Sample time — Output sample period
1 (default) | positive scalar

When the block is acting as a source, specify the sample time in seconds as a positive scalar.

Dependencies

To enable this parameter, both Phase increment source and Phase offset source must be set to
Specify via dialog. When either the phase increment or phase offset come in via a block input
port, the sample time is inherited and this parameter is not visible.

Samples per frame — Samples per frame
1 (default) | positive integer

Specify the number of samples per frame as a positive integer. When the value is greater than one,
the phase increment and phase offset can vary from channel to channel and from frame to frame, but
they are constant along each channel in a given frame.

When the phase offset input port exists, it has the same frame status as any output port present.
When the phase increment input port exists, it does not support frames.

Dependencies

To enable this parameter set Phase increment source and/or Phase offset source to Specify
via dialog.

Data Types

Rounding mode — Rounding method
Floor (default)

This property is read-only.

When the input is fixed point, the NCO block always uses the rounding mode Floor.

Overflow mode — Overflow method
Wrap (default)

This property is read-only.

When the input is fixed point, the NCO block always uses the overflow mode Wrap.

Accumulator Word Length — Accumulator word length
16 (default) | integer from 2 to 128

Specify a Word length for the Accumulator as a positive integer from 2 to 128. The Data Type is
always Binary point scaling, and the Fraction length is always 0.

2 Blocks

2-1020

Output Data Type — Output data type
double (default) | single | Binary point scaling

Specify a Data Type for the block Output.

• Choose double or single for a floating-point implementation.
• When you select Binary point scaling, you can enter the word length and the fraction length

of the output, in bits.

Note The lookup table for this block is constructed from double-precision floating-point values. Thus,
the maximum amount of precision you can achieve in your output is 53 bits. Setting the word length
of the Output data type to values greater than 53 bits does not improve the precision of your output.

Output Word Length — Output word length
16 (default) | integer from 2 to 128

Specify a Word length for the block Output as a positive integer from 2 to 128.

Dependencies

To enable this parameter, set the Data Type for the Output to Binary point scaling.

Output Fraction Length — Output fraction length
14 (default) | integer

Specify a Fraction length for the block Output as a scalar integer.

Dependencies

To enable this parameter, set the Data Type for the Output to Binary point scaling.

NCO Characterization

The NCO Characterization pane provides you with read-only details on the NCO signal currently
being implemented by the block:

Number of data points for lookup table — Number of points in lookup table
no default

The lookup table is implemented as a quarter-wave sine table. The number of lookup table data points
is defined by

2number of quantized accumulator bits−2 + 1

Example: 1025

Quarter wave sine lookup table size — Size of quarter wave sine lookup table
no default

The quarter wave sine lookup table size is defined by

(number of data points for lookup table) ⋅ output word length
8 bytes

 NCO

2-1021

Example: 2050 bytes

Theoretical spurious free dynamic range — Spurious free dynamic range
no default

The spurious free dynamic range (SFDR) is calculated as follows for a lookup table with 2P entries:

SFDR = 6P dB without dither
SFDR = 6P + 12 dB with dither

Example: 84 dBc

Frequency resolution — Frequency resolution
no default

The frequency resolution is the smallest possible incremental change in frequency and is defined by:

Δf = 1
Ts ⋅ 2N Hz

Example: 15.2588 uHz

Dependencies

The frequency resolution only appears when you set Phase increment source and Phase offset
source to Specify via dialog.

Block Characteristics
Data Types fixed point | integer
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
The block implements the algorithm as shown in the following diagram:

2 Blocks

2-1022

The implementation of a numerically controlled oscillator (NCO) has two distinct parts. First, a phase
accumulator accumulates the phase increment and adds in the phase offset. In this stage, an optional
internal dither signal can also be added. The NCO output is then calculated by quantizing the results
of the phase accumulator section and using them to select values from a lookup table. Since the
lookup table contains a finite set of entries, in its normal mode of operation, the NCO block allows the
adder’s numeric values to overflow and wrap around. The Fixed-Point infrastructure then causes
overflow warnings to appear on the command line. This overflow is of no consequence.

Given a desired output frequency F0, calculate the value of the Phase increment block parameter
with

phaseincrement = (
F0 ⋅ 2N

Fs
)

where N is the accumulator word length and

Fs = 1
Ts

= 1
sampletime

The frequency resolution of an NCO is defined by

Δf = 1
Ts ⋅ 2N Hz

Given a desired phase offset (in radians), calculate the Phase offset block parameter with

phaseof f set = 2N ⋅ desiredphaseof f set
2π

The spurious free dynamic range (SFDR) is estimated as follows for a lookup table with 2P entries,
where P is the number of quantized accumulator bits:

SFDR = 6P dB without dither
SFDR = 6P + 12 dB with dither

The NCO block uses a quarter-wave lookup table technique that stores table values from 0 to π/2. The
block calculates other values on demand using the accumulator data type, then casts them into the

 NCO

2-1023

output data type. This can lead to quantization effects at the range limits of a given data type. For
example, consider a case where you would expect the value of the sine wave to be –1 at π. Because
the lookup table value at that point must be calculated, the block might not yield exactly –1,
depending on the precision of the accumulator and output data types.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL support for the NCO block will be removed in a future release. Use the NCO HDL Optimized
block instead.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The following diagram shows the data types used within the NCO block.

• You can set the accumulator and output data types in the block dialog box as discussed in “Data
Types” on page 2-1020.

Note The lookup table for this block is constructed from double-precision floating-point values.
Thus, the maximum amount of precision you can achieve in your output is 53 bits. Setting the

2 Blocks

2-1024

word length of the Output data type to values greater than 53 bits does not improve the precision
of your output.

• The phase increment and phase offset inputs must be integers or fixed-point data types with zero
fraction length.

• You specify the number of quantized accumulator bits in the Number of quantized accumulator
bits parameter.

• The phase quantization error word length is equal to the accumulator word length minus the
number of quantized accumulator bits, and the fraction length is zero.

See Also
Blocks
PN Sequence Generator | Sine Wave | Digital Down-Converter | Digital Up-Converter

Objects
dsp.NCO

Introduced before R2006a

 NCO

2-1025

NCO HDL Optimized
Generate real or complex sinusoidal signals—optimized for HDL code generation
Library: DSP System Toolbox HDL Support / Signal Operations

DSP System Toolbox HDL Support / Sources

Description
The NCO HDL Optimized block generates real or complex sinusoidal signals, while providing
hardware-friendly control signals.

A numerically-controlled oscillator (NCO) accumulates a phase increment and uses the quantized
output of the accumulator as the index to a lookup table that contains the sine wave values. The wrap
around of the fixed-point accumulator and quantizer data types provide periodicity of the sine wave,
and quantization reduces the necessary size of the table for a given frequency resolution.

For an example of how to generate a sine wave using the NCO HDL Optimized block, see “Generate a
Sine Wave”. For more information on configuration and implementation, refer to the “Algorithms” on
page 2-1033 section.

The block also provides these features:

• Optional frame-based output.
• A lookup table compression option to reduce the lookup table size. This compression results in

less than one LSB loss in precision. See “Lookup Table Compression” on page 2-1034 for more
information.

• An optional input port for external dither.
• An optional reset port that resets the phase accumulator to its initial value.
• An optional output port for the current NCO phase.

Ports

Note

2 Blocks

2-1026

• This block appears in the Sources libraries with Phase increment source parameter set to
Property. The only input port is valid.

• This block appears in the Signal Operations libraries with Phase increment source parameter
set to Input port. This configuration shows the optional input port inc.

This icon shows the optional ports of the NCO HDL Optimized block.

Input

inc — Phase increment (optional)
scalar integer

Phase increment, specified as a scalar integer. The block casts this value to match the accumulator
word length.

double and single data types are supported for simulation but not for HDL code generation.

Dependencies

To enable this port, set the Phase increment source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

offset — Phase offset (optional)
scalar integer

Phase offset, specified as a scalar integer.

double and single data types are supported for simulation but not for HDL code generation.

Dependencies

To enable this port, set the Phase offset source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

dither — Dither (optional)
integer | column vector of integers

Dither, specified as an integer or a column vector of integers. The length of the vector must equal the
Samples per frame parameter value.

double and single data types are supported for simulation but not for HDL code generation.

 NCO HDL Optimized

2-1027

Dependencies

To enable this port, set the Dither source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

valid — Control signal that enables NCO operation
scalar

Control signal that enables NCO operation, specified as a Boolean scalar. When this signal is 1, the
block increments the phase and captures any input values. When this signal is 0, the block holds the
phase accumulator and ignores any input values.

When the Samples per frame parameter is greater than 1, this value enables processing of
Samples per frame samples.
Data Types: Boolean

reset accum — Control signal that resets the accumulator (optional)
scalar

Control signal that resets the accumulator, specified as a Boolean scalar. When this signal is 1, the
block resets the accumulator to its initial value. This signal does not reset the output samples in the
pipeline.

Dependencies

To enable this port, select the Enable accumulator reset input port parameter.
Data Types: Boolean

Output

sin, cos, exp — Generated waveform
scalar | column vector

Generated waveform, returned as a scalar or as a column vector with length equal to the Samples
per frame parameter value. The output can be a single port that returns sin or cos values, a single
port that returns exp values representing cosine + j*sine, or two ports that return sin and cos
values, respectively. When all input values are fixed-point type or all input ports are disabled, the
block determines the output type using the Output data type parameter. When any input value is
floating-point type, the block ignores the Output data type parameter. In this case, the block returns
the waveform as floating-point values.

Floating-point data types are supported for simulation but not for HDL code generation.

Dependencies

By default, this output port is a sine wave, sin. The port label and format changes based on the Type
of output signal parameter.

phase — Current phase of NCO (optional)
scalar | column vector

Current phase of NCO, returned as a scalar or as a column vector with length equal to the Samples
per frame parameter value. The phase is the output of the quantized accumulator with offset and

2 Blocks

2-1028

increment applied. If quantization is disabled, this port returns the output of the accumulator with
offset and increment applied.

The values are of type fixdt(1,N,0), where N is the Number of quantizer accumulator bits
parameter value. If quantization is disabled, then N is the Accumulator Word length parameter
value. If any input value is floating-point type, the block returns the phase as a floating-point value.

Floating-point data types are supported for simulation but not for HDL code generation.

Dependencies

To enable this port, select the Enable phase port parameter.
Data Types: single | double | fixdt(1,N,0)

valid — Control signal that indicates validity of output data
scalar

Control signal that indicates validity of output data, returned as a Boolean scalar. When output valid
is 1, the values on the sin, cos, exp, and phase ports are valid. When output valid is 0, the values on
the output ports are not valid.

When the Samples per frame parameter is greater than 1, this signal indicates the validity of all
elements in the output vector.
Data Types: Boolean

Parameters
Main

Note This block supports double and single input for simulation but not for HDL code generation.
When all input values are fixed-point type or all input ports are disabled, the block determines the
output type using the Output data type parameter. When any input value is floating-point type, the
block ignores the Output data type parameter. In this case, the block returns the waveform and
optional phase as floating-point values.

To use the Fixed-Point Designer data type override feature, you can obtain a double output value by
applying double input data to one of the optional ports.

Phase increment source — Source of phase increment
Input port (default) | Property

You can set the phase increment with an input port or by entering a value for the parameter. If you
select Property, the Phase increment parameter appears for you to enter a value. If you select
Input port, the inc port appears on the block.

Phase increment — Phase increment for generated waveform
100 (default) | integer

Phase increment for the generated the waveform, specified as an integer. The block casts this value
to match the accumulator word length.

 NCO HDL Optimized

2-1029

Dependencies

To enable this parameter, set the Phase increment source parameter to Property.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixdt([],N,0)

Phase offset source — Source of phase offset
Input port (default) | Property

You can set the phase offset with an input port or by entering a value for the parameter. If you select
Property, the Phase offset parameter appears for you to enter a value. If you select Input port,
the offset port appears on the block.

Phase offset — Phase offset for generated waveform
0 (default) | integer

Phase offset for the generated waveform, specified as an integer.

Dependencies

To enable this parameter, set the Phase offset source parameter to Property.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixdt([],N,0)

Dither source — Source of number of dither bits
Property (default) | Input port | None

You can set the dither from an input port or from a parameter. If you select Property, the Number
of dither bits parameter appears. If you select Input port, a port appears on the block. If you
select None, the block does not add dither.

Number of dither bits — Bits used to express dither
4 (default) | positive integer

Number of dither bits, specified as a positive integer.

Dependencies

To enable this parameter, set the Dither source parameter to Property.

Samples per frame — Vector size for frame-based input and output
1 (default) | positive integer

When you set this value to 1, the block has scalar input and output. When this value is greater than 1,
the dither port expects a column vector of length Samples per frame and the sin, cos, exp, and
phase ports return column vectors of length Samples per frame.

Enable look up table compression method — Compress the lookup table
off (default) | on

By default, the block implements a noncompressed lookup table, and the output of this block matches
the output of the NCO block. When you enable this option, the block implements a compressed
lookup table. The Sunderland compression method reduces the size of the lookup table, losing less
than one LSB of precision. The spurious free dynamic range (SFDR) is empirically 1–3 dB lower than
the noncompressed case. The hardware savings of the compressed lookup table allow room to
improve performance by increasing the word length of the accumulator and the number of quantize
bits. For detail of the compression method, see “Algorithms” on page 2-1033.

2 Blocks

2-1030

Enable accumulator reset input port — Enable reset control signal
off (default) | on

Select this parameter to enable the reset accum port. When reset accum is 1, the block resets the
accumulator to its initial value.

Type of output signal — Format of output waveform
Sine (default) | Cosine | Complex exponential | Sine and cosine

If you select Sine or Cosine, the block shows the applicable port, sin or cos. If you select Complex
exponential, the output is of the form cosine + j*sine and the port is labeled exp. If you select
Sine and cosine, the block shows two ports, sin and cos.

Enable phase port — Output current phase
off (default) | on

Select this parameter to return the current NCO phase on the phase port. The phase is the output of
the quantized accumulator, with offset and increment applied. If quantization is disabled, this port
returns the output of the accumulator, with offset and increment applied.

Data Types

Rounding Mode — Rounding mode for fixed-point operations
Floor (default)

Rounding mode for fixed-point operations. Rounding Mode is a read-only parameter with value
Floor.

Overflow mode — Overflow mode for fixed-point operations
Wrap (default)

Overflow mode for fixed-point operations. Overflow mode is a read-only parameter. Fixed-point
numbers wrap around on overflow.

Accumulator Data Type — Accumulator data type
Binary point scaling (default)

Accumulator data type description. This parameter is read-only, with value Binary point scaling.
The block defines the fixed-point data type using the Accumulator Signed, Accumulator Word
length, and Accumulator Fraction length parameters.

Accumulator Signed — Signed or unsigned accumulator data format
Signed (default)

This parameter is read-only. All output is signed format.

Accumulator Word length — Accumulator word length
16 (default) | integer

Units are in bits. This value must include the sign bit.

If you clear the Quantize phase parameter, then Accumulator word length determines the LUT
size. For HDL code generation, the LUT size must be between 2 and 217 entries. When you select
Enable look up table compression method, this parameter must be an integer in the range [5,21].
When you clear Enable look up table compression method, this parameter must be an integer in

 NCO HDL Optimized

2-1031

the range [3,19]. For more information on how this parameter affects the LUT size, see the
“Algorithms” on page 2-1033 section.

When you select the Quantize phase parameter, there is no limit to the Accumulator word length
parameter value.

Accumulator Fraction length — Accumulator fraction length
0 (default) | integer

This parameter is read-only. The accumulator fraction length is zero bits.

The accumulator operates on integers. If the phase increment is fixdt type with a fractional part,
the block returns an error.

Quantize phase — Quantize accumulated phase
off (default) | on

When you select Quantize phase, the block quantizes the result of the phase accumulator to a fixed
bit-width. The block uses this quantized value to select a waveform value from the lookup table.
Quantizing the output of the phase accumulator enables you to reduce the lookup table size without
lowering the frequency resolution. Select the size of the lookup table by using the Number of
quantizer accumulator bits parameter.

When you clear Quantize phase, the block uses the full accumulator value as the address of the
lookup table.

Number of quantizer accumulator bits — Number of quantizer accumulator bits
12 (default) | integer

Number of quantizer accumulator bits, specified as an integer scalar less than the accumulator word
length. For HDL code generation, this parameter value must result in a LUT size between 2 and 217

entries. When you select Enable look up table compression method, this parameter must be an
integer in the range [5,21]. When you clear Enable look up table compression method, this
parameter must be an integer in the range [3,19]. For more information on how this parameter
affects the LUT size, see the “Algorithms” on page 2-1033 section.
Dependencies

To enable this parameter, select the Quantize phase parameter.

Output Data Type — Output data type
Binary point scaling (default) | double | single

Specify the data type for the sin, cos, and exp ports. This parameter is ignored if any input is of
floating-point type. In that case, the output data type is floating-point.

If you select Binary point scaling, the block defines the fixed-point data type using the Output
Signed, Output Word length, and Output Fraction length parameters.

Output Signed — Signed or unsigned output data format
Signed (default)

This parameter is read-only. All output is signed format.

Output Word length — Output word length
16 (default) | integer

2 Blocks

2-1032

Units are in bits. This value must include the sign bit.

Output Fraction length — Output fraction length
14 (default) | integer

Units are in bits.

Algorithms
The frequency resolution of the sine wave depends on the size of the accumulator. Given a sample
time, Ts, and the desired output frequency resolution Δf, calculate the necessary accumulator word
length, N.

N = ceil log2
1

Ts ⋅ Δf

For a desired output frequency Fo, calculate the phase increment.

phaseincrement = round(F0Ts2N)

Quantizing the output of the phase accumulator enables you to reduce the lookup table size without
lowering the frequency resolution. Calculate the quantized word length to achieve a desired spurious
free dynamic range (SFDR).

Q = ceil SFDR− 12
6

Phase offset and dither are optionally added at the accumulator stage. For a desired phase offset (in
radians) of the output waveform, calculate the phase offset value that the block adds in the
accumulator.

phaseof f set = 2N ⋅ desiredphaseof f set
2π

The NCO implementation depends on whether you select Enable look up table compression
method.

Without lookup table compression, the block uses the same quarter-sine lookup table as the NCO
block. The size of the LUT is 2Q-2×W bits, where Q is Number of quantizer accumulator bits and
W is Output word length.

 NCO HDL Optimized

2-1033

The block casts the phase increment value to match the accumulator word length.

If you do not enable Quantize phase, then Q = N, where N is Accumulator Word length. Consider
the impact on simulator memory and hardware resources when you select these parameters.

For an example of how to generate a sine wave using the NCO HDL Optimized block, see “Generate a
Sine Wave”.

Lookup Table Compression

When you select lookup table (LUT) compression, the NCO HDL Optimized block applies the
Sunderland compression method. Sunderland techniques use trigonometric identities to divide each
phase of the quarter sine wave into three components and express it as:

sin(A + B + C) = sin(A + B)cos(C) + cos(A)cos(B)sin(C)− sin(A)sin(B)sin(C)

If the quarter-sine phase has Q-2 bits, then the phase components A and B have a word length of
LA=LB=ceil((Q-2)/3). Phase component C contains the remaining phase bits. If the phase has 12
bits, then the quarter sine phase has 10 bits, and the components are defined as:

• A, the four most significant bits

(0 ≤ A ≤ π
2)

• B, the next four bits

(0 ≤ B ≤ π
2 × 2−4)

• C, the remaining two least significant bits

(0 ≤ C ≤ π
2 × 2−8)

Given the relative sizes of A, B, and C, the equation can be approximated by:

sin(A + B + C) ≈ sin(A + B) + cosAsinC

The NCO HDL Optimized block implements this equation with one LUT for sin(A + B) and one LUT for
cos(A)sin(C). The second term is a fine correction factor that you can truncate to fewer bits without
losing precision. Therefore, the second LUT returns a four-bit result.

2 Blocks

2-1034

With the default accumulator size of 16 bits, and the default quantized phase width of 12 bits, the
LUTs use 28×16 plus 26×4 bits (4.5 kb). For comparison, a quarter-sine lookup table without
compression uses 210×16 bits (16 kb). The compression approximation is accurate within one LSB,
resulting in an SNR of at least 60 dB on the output. See [1].

Control Signals

The block has two input control signals, reset accum (optional) and valid, and one output control
signal, valid. When reset accum is 1, the block sets the phase accumulator to its initial value. When
the input valid is 1, the block increments the phase and captures any input values. When this signal
is 0, the block holds the phase accumulator and ignores any input values. When the output valid
signal is 1, the values on the other output ports are valid.

Latency

The latency of the NCO HDL Optimized block is six cycles.

Compatibility Considerations
HDL-optimized NCO requires valid input port
Behavior changed in R2020a

In previous releases, the input validIn port of the NCO HDL Optimized block was optional. It is now
required, and renamed valid. If you are using no other input ports, the block uses the valid signal as
an enable signal.

HDL-optimized NCO with floating-point inputs applies phase quantization
Behavior changed in R2020a

The output waveform returned from floating-point input values has changed. The output waveform
now matches that returned from the same input values specified in fixed-point types.

Prior to R2020a, when using floating-point input types, the NCO HDL Optimized block did not
quantize the phase internally. The block expected floating-point phase increment and phase offset
inputs specified in radians. Now, the block quantizes the phase internally, and you must specify the
input phase increment and offset in terms of the quantized size, for both floating-point and fixed-point
input types.

For example, prior to R2020a, for a floating-point HDL NCO to generate output samples with a
desired output frequency of F0 and sample frequency of Fs, you had to specify the phase increment as
2π(F0/Fs) and phase offset as π/2.

Starting in R2020a, you must specify the phase increment and phase offset in terms of the quantized
size, N. These input values are the same as the input values you use with fixed-point types. Specify
the phase increment as (F0×2N)/Fs, and the phase offset as (π/2)×2N/2π, or 2N/4.

NCO HDL Optimized block now ignores LUTRegisterResetType parameter
Behavior changed in R2020a

In previous releases, you could choose from two options for the LUTRegisterResetType parameter
on the HDL Block Properties dialog of the NCO HDL Optimized block. The two options were
default, and none. Starting in R2020a, the block ignores the parameter setting and uses none for
this parameter value. This option does not connect a reset signal to the LUT registers. This

 NCO HDL Optimized

2-1035

configuration enables the synthesis tool to determine whether to implement the lookup tables with
LUTs or BRAM.

References
[1] Cordesses, L., "Direct Digital Synthesis: A Tool for Periodic Wave Generation (Part 1)." IEEE

Signal Processing Magazine. Volume 21, Issue 4, July 2004, pp. 50–54.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• When you set Dither source to Property, the block adds random dither every cycle. If you
generate a validation model with these settings, a warning is displayed. Random generation of the
internal dither can cause mismatches between the models. You can increase the error margin for
the validation comparison to account for the difference. You can also disable dither or set Dither
source to Input port to avoid this issue.

• You cannot use the NCO HDL Optimized block inside a Resettable Synchronous Subsystem.

2 Blocks

2-1036

See Also
Blocks
NCO

Objects
dsp.HDLNCO

Introduced in R2013a

 NCO HDL Optimized

2-1037

Normalization
Perform vector normalization along rows, columns, or specified dimension

Library
Math Functions / Math Operations

dspmathops

Description
The Normalization block independently normalizes each row, column, or vector of the specified
dimension of the input. The block accepts both fixed- and floating-point signals in the squared 2-norm
mode, but only floating-point signals in the 2-norm mode. The output always has the same dimensions
as the input.

This block treats an arbitrarily dimensioned input U as a collection of vectors oriented along the
specified dimension. The block normalizes these vectors by either their norm or the square of their
norm.

For example, consider a 3-dimensional input U(i,j,k) and assume that you want to normalize along the
second dimension. First, define the 2-dimensional intermediate quantity V(i,k) such that each element
of V is the norm of one of the vectors in U:

V(i, k) = ∑
j = 1

J
U2(i, j, k)

1/2

Given V, the output of the block Y(i, j,k) in 2-norm mode is

Y(i, j, k) = U(i, j, k)
V(i, k) + b

In squared 2-norm mode, the block output is

Y(i, j, k) = U(i, j, k)
V(i, k)2 + b

The normalization bias, b, is typically chosen to be a small positive constant (for example, 1e-10) that
prevents potential division by zero.

Fixed-Point Data Types

The following diagram shows the data types used within the Normalization block for fixed-point
signals (squared 2-norm mode only).

2 Blocks

2-1038

The output of the multiplier is in the product output data type when the input is real. When the input
is complex, the result of the multiplication is in the accumulator data type. For details on the complex
multiplication performed, see “Multiplication Data Types”. You can set the accumulator, product
output, and output data types in the block dialog as discussed in “Parameters” on page 2-1039.

Examples
See “Zero Algorithmic Delay” in the DSP System Toolbox User's Guide for an example.

Parameters
Main Tab

Norm
Specify the type of normalization to perform, 2-norm or Squared 2-norm. 2-norm mode
supports floating-point signals only. Squared 2-norm supports both fixed-point and floating-
point signals.

Normalization bias
Specify the real value b to be added in the denominator to avoid division by zero. Tunable
(Simulink).

Normalize over
Specify whether to normalize along rows, columns, or the dimension specified in the Dimension
parameter.

Dimension
Specify the one-based value of the dimension over which to normalize. The value of this
parameter cannot exceed the number of dimensions in the input signal. This parameter is only
visible if Specified dimension is selected for the Normalize over parameter.

Data Types Tab

Note The parameters on this pane are only applicable to fixed-point signals when the block is in
squared 2-norm mode. See “Fixed-Point Data Types” on page 2-1038 for a diagram of how the
product output, accumulator, and output data types are used in this case.

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

 Normalization

2-1039

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.
Saturate on integer overflow

When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 2-1038 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-1038 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same as product output
• A rule that inherits a data type, for example, Inherit: Same as input
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-1038 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as product output
• A rule that inherits a data type, for example, Inherit: Same as input

2 Blocks

2-1040

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Output Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Output Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Normalization

2-1041

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
norm

Blocks
Array-Vector Multiply | Reciprocal Condition

Introduced before R2006a

2 Blocks

2-1042

Notch-Peak Filter
Design second-order tunable notching and peaking IIR filter

Library
Filtering / Filter Designs

dspfdesign

Description
The Notch-Peak Filter block filters each channel of the input signal over time using a specified center
frequency and 3 dB bandwidth. This block offers tunable filter design parameters, which enable you
to tune the filter characteristics while the simulation is running.

The block designs the filter according to the filter parameters set in the block dialog box. The output
port properties such as datatype, complexity, and dimension, are identical to the input port
properties.

Each column of the input signal is treated as a separate channel. If the input is a two-dimensional
signal, the first dimension represents the channel length (or frame size) and the second dimension
represents the number of channels. If the input is a one-dimensional signal, then it is interpreted as a
single channel.

This block supports variable-size input, enabling you to change the channel length during simulation.
To enable variable-size input, clear the Inherit sample rate from input check box. The number of
channels must remain constant.

Algorithms
This block brings the capabilities of the dsp.NotchPeakFilter System object to the Simulink
environment.

The filter uses a coupled allpass structure to optimize joint computation of the peak and notch
response. For information on the algorithms used by the Notch-Peak filter block, see the “Algorithms”
on page 4-1107 section of dsp.NotchPeakFilter.

Parameters
Filter specification

Parameters or coefficients used to design the filter, specified as one of the following:

• Bandwidth and center frequency (default) — Design the filter using 3 dB bandwidth
(Hz) and Notch/Peak center frequency (Hz).

 Notch-Peak Filter

2-1043

• Coefficients — Design the filter using Bandwidth coefficient and Center frequency
coefficient.

• Quality factor and center frequency — Design the filter using Quality factor and
Notch/Peak center frequency (Hz).

This parameter is nontunable.
Specify bandwidth from input port

When you select this check box, the 3 dB bandwidth is input through the BW port. When you
clear this check box, the 3 dB bandwidth is specified on the block dialog through the 3 dB
bandwidth (Hz) parameter.

This parameter applies when you set Filter specification to Bandwidth and center
frequency.

3 dB bandwidth (Hz)
3 dB bandwidth of the filter, specified as a finite positive numeric scalar that is less than half the
sample rate of the input signal. This parameter applies when you set Filter specification to
Bandwidth and center frequency, and clear the Specify bandwidth from input port
parameter. The default is 2205. This parameter is tunable.

Specify center frequency from input port
When you select this check box, the center frequency is input through the Fc port. When you
clear this check box, the center frequency is specified on the block dialog through the Notch/
Peak center frequency (Hz) parameter.

This parameter applies when you set Filter specification to Bandwidth and center
frequency or Quality factor and center frequency.

Notch/Peak center frequency (Hz)
Center frequency of the notch and peak of the filter, specified as a finite positive numeric scalar
that is less than half the sample rate of the input signal. This parameter applies when you set
Filter specification to Bandwidth and center frequency or Quality factor and
center frequency, and clear the Specify center frequency from input port parameter. The
default is 11025. This parameter is tunable.

Specify bandwidth coefficient from input port
When you select this check box, the bandwidth coefficient is input through the port, BWCoeff.
When you clear this check box, the bandwidth coefficient is specified on the block dialog through
the Bandwidth coefficient parameter.

This parameter applies when you set Filter specification to Coefficients.
Bandwidth coefficient

Coefficient that determines the 3 dB bandwidth of the filter, specified as a finite numeric scalar in
the range [-1 1].

• -1 corresponds to the maximum 3 dB bandwidth (one-fourth the sample rate of the input
signal).

• 1 corresponds to the minimum bandwidth (0 Hz, that is, an allpass filter).

This parameter applies when you set Filter specification to Coefficients and clear the
Specify bandwidth coefficient from input port parameter. The default is 0.72654. This
parameter is tunable.

2 Blocks

2-1044

Specify center frequency coefficient from input port
When you select this check box, the center frequency coefficient is input through the FcCoeff
port. When you clear this check box, the center frequency coefficient is specified on the block
dialog through the Center frequency coefficient parameter.

This parameter applies when you set Filter specification to Coefficients.
Center frequency coefficient

Coefficient that determines the center frequency of the filter, specified as a finite numeric scalar
in the range [-1 1].

• -1 corresponds to the minimum center frequency (0 Hz).
• 1 corresponds to the maximum center frequency (half the sample rate of the input signal).

This parameter applies when you set Filter specification to Coefficients and clear the
Specify center frequency coefficient from input port parameter. The default is 0, which
corresponds to quarter the sample rate of the input signal. This parameter is tunable.

Specify quality factor from input port
When you select this check box, the quality factor is input through the Q port. When you clear
this check box, the quality factor is specified on the block dialog through the Quality factor
parameter.

This parameter applies when you set Filter specification to Quality factor and center
frequency.

Quality factor
Quality factor of the notch and peak filter, specified as a real positive scalar. The quality factor is
defined as Notch/Peak center frequency (Hz) / 3 dB bandwidth (Hz). A higher quality factor
corresponds to a narrower peak or dip. This parameter applies when you set Filter specification
to Quality factor and center frequency and clear the Specify quality factor from
input port parameter. The default is 5. This parameter is tunable.

Output
Output of the filter block, specified as one of the following:

• Notch and Peak (default) — The block outputs the notch and peak responses of the filter.
• Notch — The block outputs the notch response of the filter.
• Peak — The block outputs the peak response of the filter.

This parameter is nontunable.
Inherit sample rate from input

When you select this check box, the block sample rate is computed as N/Ts, where N is the frame
size of the input signal, and Ts is the sample time of the input signal. When you clear this check
box, the block’s sample rate is the value specified in Input sample rate (Hz). By default, this
check box is selected.

Input sample rate (Hz)
Sample rate of the input signal, specified as a positive scalar value. The default is 44100. This
parameter applies when you clear the Inherit sample rate from input check box. This
parameter is nontunable.

View Filter Response
Opens the dynamic filter visualizer and displays the magnitude response of the notch-peak filter.
The response is based on the parameters you select in the Block Parameters dialog box. To

 Notch-Peak Filter

2-1045

update the magnitude response while the dynamic filter visualizer is running, modify the
parameters in the dialog box and click Apply.

You can configure the plot settings and the signal measurements from the interface of the
visualizer.

On the Plot tab, the Configuration section allows you to modify the plot settings.

2 Blocks

2-1046

On the Measurements tab, you can measure the signal statistics, place data cursors, and display
the peak values of the selected signal.

 Notch-Peak Filter

2-1047

For more details on the dynamic filter visualizer interface and its tools, see
dsp.DynamicFilterVisualizer.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

2 Blocks

2-1048

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Upper Saddle River, NJ: Prentice-Hall,
1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
dsp.NotchPeakFilter

Blocks
Parametric EQ Filter

Introduced in R2015a

 Notch-Peak Filter

2-1049

Nyquist Filter
Design Nyquist filter

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

This block supports SIMD code generation. For details, see “Code Generation” on page 2-1054.

Dialog Box
See “Nyquist Filter Design — Main Pane” on page 5-613 for more information about the parameters
of this block. The Data Types and Code Generation panes are not available for blocks in the DSP
System Toolbox Filter Designs library.

Parameters of this block that do not change filter order or structure are tunable.

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

In this group, you specify your filter format, such as the impulse response and the filter order.

Band
Specifies the location of the center of the transition region between the passband and the
stopband. The center of the transition region, Fc, is calculated using the value for Band:

Fc = Fs/(2·Band).

2 Blocks

2-1050

The default value, 2, corresponds to a halfband filter.
Impulse response

Select either FIR or IIR from the drop-down list. FIR is the default. When you choose an impulse
response, the design methods and structures you can use to implement your filter change
accordingly. These options are both available only when Band is 2. For values of Band greater
than 2, only FIR designs are supported.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down list. Selecting Specify
enables the Order option (see the following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, the block specifies a single-rate filter.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

Order
Enter the filter order. This option is enabled only if Specify was selected for Filter order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default value is 2.

Interpolation Factor
Enter the interpolation factor. This option is enabled only if the Filter type is set to
Interpolator or Sample-rate converter. The default value is 2.

Frequency Specifications

The parameters in this group allow you to specify your filter response curve.

Frequency constraints
Select the filter features that the block uses to define the frequency response characteristics.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0–1) to enter frequencies in normalized form. This behavior is
the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the

 Nyquist Filter

2-1051

specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Transition width
Specify the width of the transition between the end of the passband and the edge of the stopband.
Specify the value in normalized frequency units or the absolute units you select in Frequency
units.

Magnitude Specifications

Parameters in this group specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. From the drop-down
list, select one of the following options:

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)
• Squared — Specify the magnitude in squared units.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure of your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is
Butterworth, and the default FIR method is Kaiser window.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options
The options for each design are specific for each design method. This section does not present all
of the available options for all designs and design methods. There are many more that you
encounter as you select different design methods and filter specifications. The following options
represent some of the most common ones available.
Density factor

Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in
the grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter
but increases the time required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal filter and the time to
design the filter.

2 Blocks

2-1052

Minimum order
When you select this parameter, the design method determines and design the minimum
order filter to meet your specifications. Some filters do not provide this parameter. Select
Any, Even, or Odd from the drop-down list to direct the design to be any minimum order, or
minimum even order, or minimum odd order.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the
frequency increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. The block applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation

(1/f)n to define the stopband decay. The block applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter.

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

 Nyquist Filter

2-1053

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Nyquist Filter block supports SIMD code generation using Intel AVX2 technology under these
conditions:

• Filter type is set to Single-rate, Decimator, or Interpolator.
• For Filter type that is set to Single-rate, Structure is set to Direct-form FIR or Direct-

form FIR transposed.
• For Filter type that is set to Decimator, Structure is set to Direct-form FIR polyphase

decimator and Rate options is set to Enforce single-rate processing.
• For Filter type that is set to Interpolator:

• Interpolation Factor cannot be equal to 1.
• Rate options is set to Enforce single-rate processing.

• Input processing is set to Columns as channels (frame based).

2 Blocks

2-1054

• Input signal has a data type of single or double.
• Input port dimensions cannot be equal to [1 1].

The SIMD technology significantly improves the performance of the generated code.

Introduced in R2006b

 Nyquist Filter

2-1055

Octave Filter
Design octave filter

Compatibility

Note The Octave Filter block will be removed from DSP System Toolbox in a future release. Existing
instances of the block continue to run. For new code, use the Octave Filter block from Audio Toolbox
instead.

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Dialog Box
See “Octave Filter Design — Main Pane” on page 5-617 for more information about the parameters
of this block. The Data Types and Code Generation panes are not available for blocks in the DSP
System Toolbox Filter Designs library.

Parameters of this block that do not change filter order or structure are tunable.

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

2 Blocks

2-1056

Filter Specifications

Order
Specify filter order. Possible values are: 4, 6, 8, 10.

Bands per octave
Specify the number of bands per octave. Possible values are: 1, 3, 6, 12, 24.

Frequency units
Specify frequency units as Hz or kHz.

Input sample rate
Specify the input sampling frequency in the frequency units specified previously.

Center Frequency
Select from the drop-down list of available center frequency values.

Algorithm

Design Method
Butterworth is the design method used for this type of filter.

Scale SOS filter coefficients to reduce chance of overflow
Select the check box to scale the filter coefficients.

Filter Implementation

Structure
Specify filter structure. Choose from:

• Direct-form I SOS
• Direct-form II SOS
• Direct-form I transposed SOS
• Direct-form II transposed SOS

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Optimize for unit-scale values
Select this check box to scale unit gains between sections in SOS filters. This parameter is
available only for SOS filters.

 Octave Filter

2-1057

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2007a

2 Blocks

2-1058

Offset
Truncate vectors by removing or keeping beginning or ending values

Library
Signal Operations

dspsigops

Description
The Offset block removes or keeps values from the beginning or end of the input vectors. You specify
the length of the output vectors using the Output port length parameter. The inputs to the In ports
(In1, In2, ...) can be scalars or vectors, but they must be the same size and data type. The offset
values are the inputs to the O ports (O1, O2, ...); they must be scalar values with the same data type.
These offset values should be integer values because they determine the number of values the block
discards or retains from each input vector. The block rounds any offset value that is a noninteger
value to the nearest integer value. There is one output port for each pair of In and O ports.

Use the Mode parameter to determine which values the block discards or retains from the input
vector. To discard the initial values of the vector, select Remove beginning samples. To discard
the final values of the vector, select Remove ending samples. To retain the initial values of the
vector, select Keep beginning samples. To retain the final values of a vector, select Keep ending
samples.

Use the Number of input data-offset pairs parameter to specify the number of inputs to the block.
The number of input ports is twice the scalar value you enter. For example, if you enter 3, ports In1,
O1, In2, O2, In3, and O3 appear on the block.

The block uses the Output port length parameter to determine the length of the output vectors. If
you select Same as input, the block outputs vectors that are the same length as the input to the In
ports. If you select User-defined, the Output length parameter appears. Enter a scalar that
represents the desired length of the output vectors. If your desired output length is greater than the
number of values you extracted from your input vector, the block zero-pads the end of the vector to
reach the length you specified.

Use the Action for out of range offset value parameter to determine how the block behaves when
an offset value is not in the range 0 ≤ offset value ≤ N, where N is the input vector length. Select
Clip if you want any offset values less than 0 to be set to 0 and any offset values greater than N to be
set to N. Select Clip and warn if you want to be warned when any offset values less than 0 are set
to 0 and any offset values greater than N are set to N. Select Error if you want the simulation to stop
and display an error when the offset values are out of range.

 Offset

2-1059

Parameters
Mode

Use this parameter to determine which values the block discards or retains from the input vector.
Your choices are Remove beginning samples, Remove ending samples, Keep beginning
samples, and Keep ending samples.

Number of input data-offset pairs
Specify the number of inputs to the block. The number of input ports is twice the scalar value you
enter.

Output port length
Use this parameter to specify the length of the output vectors. If you select Same as input, the
output vectors are the same length as the input vectors. If you select User-defined, you can
enter the desired length of the output vectors.

Output length
Enter a scalar that represents the desired length of the output vectors. This parameter is visible
if, for the Output port length parameter, you select User-defined.

Action for out of range offset value
Use this parameter to determine how the block behaves when an offset value is not in the range
such that 0 ≤ offset value ≤ N, where N is the input vector length. When you want any offset
values less than 0 to be set to 0 and any offset values greater than N to be set to N, select Clip.
When you want to be warned when any offset values less than 0 are set to 0 and any offset values
greater than N are set to N, select Clip and warn. When you want the simulation to stop and
display an error when the offset values are out of range, select Error.

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

O • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-1060

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

Introduced before R2006a

 Offset

2-1061

Overlap-Add FFT Filter (Obsolete)
Implement overlap-add method of frequency-domain filtering

Library
Filtering / Filter Implementations

dsparch4

Description

Note The Overlap-Add FFT Filter block has been replaced with the Frequency-Domain FIR Filter
block. Existing instances of the Overlap-Add FFT Filter block continue to run.

The Overlap-Add FFT Filter block uses an FFT to implement the overlap-add method, a technique
that combines successive frequency-domain filtered sections of an input sequence.

The block accepts vector or matrix inputs, and treats each column of the input as an individual
channel. The block unbuffers the input data into row vectors such that the length of the output vector
is equal to the number of channels in the input. The data output rate of the block is M times faster
than its data input rate, where M is the length of the columns in the input (frame-size).

The block breaks the scalar input sequence u, of length nu, into length-L nonoverlapping data
sections,

which it linearly convolves with the filter's FIR coefficients,

H(z) = B(z) = b1 + b2z−1 + … + bn + 1z−n

The numerator coefficients for H(z) are specified as a vector by the FIR coefficients parameter. The
coefficient vector, b = [b(1) b(2) ... b(n+1)], can be generated by one of the filter design
functions in the Signal Processing Toolbox product, such as fir1. All filter states are internally
initialized to zero.

When either the filter coefficients or the inputs to the block are complex, the Output parameter
should be set to Complex. Otherwise, the default Output setting, Real, instructs the block to take
only the real part of the solution.

The block's overlap-add operation is equivalent to

y = ifft(fft(u(i:i+L-1),nfft) .* fft(b,nfft))

2 Blocks

2-1062

where you specify nfft in the FFT size parameter as a power-of-two value greater (typically much
greater) than n+1. Values for FFT size that are not powers of two are rounded upwards to the
nearest power-of-two value to obtain nfft.

The block overlaps successive output sections by n points and sums them.

The first L samples of each summation are output in sequence. The block chooses the parameter L
based on the filter order and the FFT size.

L = nfft - n

Latency

In single-tasking operation, the Overlap-Add FFT Filter block has a latency of nfft-n+1 samples.
The first nfft-n+1 consecutive outputs from the block are zero; the first filtered input value appears
at the output as sample nfft-n+2.

In multitasking operation, the Overlap-Add FFT Filter block has a latency of 2*(nfft-n)+1 samples.
The first 2*(nfft-n)+1 consecutive outputs from the block are zero; the first filtered input value
appears at the output as sample 2*(nfft-n)+3.

Note For more information on latency and the Simulink software tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation” (Simulink
Coder).

Parameters
FFT size

The size of the FFT, which should be a power-of-two value greater than the length of the specified
FIR filter.

FIR coefficients
The filter numerator coefficients.

Output
The complexity of the output; Real or Complex. When the input signal or the filter coefficients
are complex, this should be set to Complex.

References
Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice
Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall,
1996.

 Overlap-Add FFT Filter (Obsolete)

2-1063

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Overlap-Save FFT Filter DSP System Toolbox product

Introduced before R2006a

2 Blocks

2-1064

Overlap-Save FFT Filter (Obsolete)
Implement overlap-save method of frequency-domain filtering

Library
Filtering / Filter Implementations

dsparch4

Description

Note The Overlap-Save FFT Filter block has been replaced with the Frequency-Domain FIR Filter
block. Existing instances of the Overlap-Save FFT Filter block continue to run.

The Overlap-Save FFT Filter block uses an FFT to implement the overlap-save method, a technique
that combines successive frequency-domain filtered sections of an input sequence.

The block accepts vector or matrix inputs, and treats each column of the input as an individual
channel. The block unbuffers the input data into row vectors such that the length of the output vector
is equal to the number of channels in the input. The data output rate of the block is M times faster
than its data input rate, where M is the length of the columns in the input (frame-size).

Overlapping sections of input u are circularly convolved with the FIR filter coefficients

H(z) = B(z) = b1 + b2z−1 + … + bn + 1z−n

The numerator coefficients for H(z) are specified as a vector by the FIR coefficients parameter. The
coefficient vector, b = [b(1) b(2) ... b(n+1)], can be generated by one of the filter design
functions in the Signal Processing Toolbox product, such as fir1. All filter states are internally
initialized to zero.

When either the filter coefficients or the inputs to the block are complex, the Output parameter
should be set to Complex. Otherwise, the default Output setting, Real, instructs the block to take
only the real part of the solution.

The circular convolution of each section is computed by multiplying the FFTs of the input section and
filter coefficients, and computing the inverse FFT of the product.

y = ifft(fft(u(i:i+(L-1)),nfft) .* fft(b,nfft))

where you specify nfft in the FFT size parameter as a power of two value greater (typically much
greater) than n+1. Values for FFT size that are not powers of two are rounded upwards to the
nearest power-of-two value to obtain nfft.

 Overlap-Save FFT Filter (Obsolete)

2-1065

The first n points of the circular convolution are invalid and are discarded. The Overlap-Save FFT
Filter block outputs the remaining nfft-n points, which are equivalent to the linear convolution.

Latency

In single-tasking operation, the Overlap-Save FFT Filter block has a latency of nfft-n+1 samples.
The first nfft-n+1 consecutive outputs from the block are zero; the first filtered input value appears
at the output as sample nfft-n+2.

In multitasking operation, the Overlap-Save FFT Filter block has a latency of 2*(nfft-n+1)
samples. The first 2*(nfft-n+1) consecutive outputs from the block are zero; the first filtered input
value appears at the output as sample 2*(nfft-n)+3.

Note For more information on latency and the Simulink environment tasking modes, see “Excess
Algorithmic Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation” (Simulink
Coder).

Parameters
FFT size

The size of the FFT, which should be a power of two value greater than the length of the specified
FIR filter.

FIR coefficients
The filter numerator coefficients.

Output
The complexity of the output; Real or Complex. When the input signal or the filter coefficients
are complex, this should be set to Complex.

References
Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice
Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall,
1996.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Overlap-Add FFT Filter DSP System Toolbox

Introduced before R2006a

2 Blocks

2-1066

Overwrite Values
Overwrite submatrix or subdiagonal of input

Library
• Math Functions / Matrices and Linear Algebra / Matrix Operations

dspmtrx3
• Signal Management / Indexing

dspindex

Description
The Overwrite Values block overwrites a contiguous submatrix or subdiagonal of an input matrix. You
can provide the overwriting values by typing them in a block parameter, or through an additional
input port, which is useful for providing overwriting values that change at each time step.

The block accepts scalars, vectors and matrices. The output always has the same size as the original
input signal, not necessarily the same size as the signal containing the overwriting values. The
input(s) and output of this block must have the same data type.

Specifying the Overwriting Values

The Source of overwriting value(s) parameter determines how you must provide the overwriting
values, and has the following settings.

• Specify via dialog — You must provide the overwriting value(s) in the Overwrite with
parameter. The block uses the same overwriting values to overwrite the specified portion of the
input at each time step. To learn how to specify valid overwriting values, see “Valid Overwriting
Values” on page 2-1068.

• Second input port — You must provide overwriting values through a second block input port,
V. Use this setting to provide different overwriting values at each time step. The output inherits its
size and rate from the input signal, not the overwriting values.

 Overwrite Values

2-1067

The rate at which you provide the overwriting values through input port V must match the rate at
which the block receives each input matrix at input port A. In other words, the input signals must
have the same Simulink sample time.

Valid Overwriting Values

The overwriting values can be a single constant, vector, or matrix, depending on the portion of the
input you are overwriting, regardless of whether you provide the overwriting values through an input
port or by providing them in the Overwrite with parameter.

2 Blocks

2-1068

Valid Overwriting Values

Portion of Input to
Overwrite

Valid Overwriting Values Example

A single element in the input Any constant value, v v = 9

A length-k portion of the
diagonal

Any length-k column or row vector, v
k = 3 v = 2 4 6 or

2
4
6

A length-k portion of a row Any length-k row vector, v k = 3 v = 2 4 6

A length-k portion of a
column

Any length-k column vector, v
k = 2 v =

4
6

An m-by-n submatrix Any m-by-n matrix, v m = 2
n = 3

 v =
4 5 6
7 8 9

This block supports Simulink virtual buses.

 Overwrite Values

2-1069

Parameters

Note Only some of the following parameters are visible in the dialog box at any one time.

Overwrite
Determines whether to overwrite a specified submatrix or a specified portion of the diagonal.

Source of overwriting value(s)
Determines where you must provide the overwriting values: either through an input port, or by
providing them in the Overwrite with parameter. For more information, see “Specifying the
Overwriting Values” on page 2-1067.

Overwrite with
The value(s) with which to overwrite the specified portion of the input matrix. Enabled only when
Source of overwriting value(s) is set to Specify via dialog. To learn how to specify valid
overwriting values, see “Valid Overwriting Values” on page 2-1068.

Row span
The range of input rows to be overwritten. Options are All rows, One row, or Range of rows.
For descriptions of these options, see “Parameters” on page 2-1070.

Row/Starting row
The input row that is the first row of the submatrix that the block overwrites. For a description of
the options for the Row and Starting row parameters, see Settings for Row, Column, Starting
Row, and Starting Column Parameters. Row is enabled when Row span is set to One row, and
Starting row when Row span is set to Range of rows.

Row index/Starting row index
Index of the input row that is the first row of the submatrix that the block overwrites. See how to
use these parameters in Settings for Row, Column, Starting Row, and Starting Column
Parameters. Row index is enabled when Row is set to Index, and Starting row index when
Starting row is set to Index.

Row offset/Starting row offset
The offset of the input row that is the first row of the submatrix that the block overwrites. See
how to use these parameters in Settings for Row, Column, Starting Row, and Starting Column
Parameters. Row offset is enabled when Row is set to Offset from middle or Offset from
last, and Starting row offset is enabled when Starting row is set to Offset from middle or
Offset from last.

Ending row
The input row that is the last row of the submatrix that the block overwrites. For a description of
this parameter's options, see Settings for Ending Row and Ending Column Parameters. This
parameter is enabled when Row span is set to Range of rows, and Starting row is set to any
option but Last.

Ending row index
Index of the input row that is the last row of the submatrix that the block overwrites. See how to
use this parameter in Settings for Ending Row and Ending Column Parameters. Enabled when
Ending row is set to Index.

2 Blocks

2-1070

Ending row offset
The offset of the input row that is the last row of the submatrix that the block overwrites. See
how to use this parameter in Settings for Ending Row and Ending Column Parameters. Enabled
when Ending row is set to Offset from middle or Offset from last.

Column span
The range of input columns to be overwritten. Options are All columns, One column, or
Range of columns. For descriptions of the analogous row options, see “Parameters” on page 2-
1070.

Column/Starting column
The input column that is the first column of the submatrix that the block overwrites. For a
description of the options for the Column and Starting column parameters, see Settings for
Row, Column, Starting Row, and Starting Column Parameters. Column is enabled when Column
span is set to One column, and Starting column when Column span is set to Range of
columns.

Column index/Starting column index
Index of the input column that is the first column of the submatrix that the block overwrites. See
how to use these parameters in Settings for Row, Column, Starting Row, and Starting Column
Parameters. Column index is enabled when Column is set to Index, and Starting column
index when Starting column is set to Index.

Column offset/Starting column offset
The offset of the input column that is the first column of the submatrix that the block overwrites.
See how to use these parameters in Settings for Row, Column, Starting Row, and Starting Column
Parameters. Column offset is enabled when Column is set to Offset from middle or Offset
from last, and Starting column offset is enabled when Starting column is set to Offset
from middle or Offset from last.

Ending column
The input column that is the last column of the submatrix that the block overwrites. For a
description of this parameter's options, see Settings for Ending Row and Ending Column
Parameters. This parameter is enabled when Column span is set to Range of columns, and
Starting column is set to any option but Last.

Ending column index
Index of the input column that is the last column of the submatrix that the block overwrites. See
how to use this parameter in Settings for Ending Row and Ending Column Parameters. This
parameter is enabled when Ending column is set to Index.

Ending column offset
The offset of the input column that is the last column of the submatrix that the block overwrites.
See how to use this parameter in Settings for Ending Row and Ending Column Parameters. This
parameter is enabled when Ending column is set to Offset from middle or Offset from
last.

Diagonal span
The range of diagonal elements to be overwritten. Options are All elements, One element, or
Range of elements. For descriptions of these options, see “Overwriting a Subdiagonal” on
page 2-1075.

Element/Starting element
The input diagonal element that is the first element in the subdiagonal that the block overwrites.
For a description of the options for the Element and Starting element parameters, see Element

 Overwrite Values

2-1071

and Starting Element Parameters. Element is enabled when Element span is set to One
element, and Starting element when Element span is set to Range of elements.

Element index/Starting element index
Index of the input diagonal element that is the first element of the subdiagonal that the block
overwrites. See how to use these parameters in Element and Starting Element Parameters.
Element index is enabled when Element is set to Index, and Starting element index when
Starting element is set to Index.

Element offset/Starting element offset
The offset of the input diagonal element that is the first element of the subdiagonal that the block
overwrites. See how to use these parameters in Element and Starting Element Parameters.
Element offset is enabled when Element is set to Offset from middle or Offset from
last, and Starting element offset is enabled when Starting element is set to Offset from
middle or Offset from last.

Ending element
The input diagonal element that is the last element of the subdiagonal that the block overwrites.
For a description of this parameter's options, see Ending Element Parameters. This parameter is
enabled when Element span is set to Range of elements, and Starting element is set to any
option but Last.

Ending element index
Index of the input diagonal element that is the last element of the subdiagonal that the block
overwrites. See how to use this parameter in Ending Element Parameters. This parameter is
enabled when Ending element is set to Index.

Ending element offset
The offset of the input diagonal element that is the last element of the subdiagonal that the block
overwrites. See how to use this parameter in Ending Element Parameters. This parameter is
enabled when Ending element is set to Offset from middle or Offset from last.

Examples
Overwriting a Submatrix

To overwrite a submatrix, follow these steps:

1 Set the Overwrite parameter to Submatrix.
2 Specify the overwriting values as described in “Specifying the Overwriting Values” on page 2-

1067.
3 Specify which rows and columns of the input matrix are contained in the submatrix that you want

to overwrite by setting the Row span parameter to one of the following options and the Column
span to the analogous column-related options:

• All rows — The submatrix contains all rows of the input matrix.
• One row — The submatrix contains only one row of the input matrix, which you must specify

in the Row parameter, as described in the following table.
• Range of rows — The submatrix contains one or more rows of the input, which you must

specify in the Starting Row and Ending row parameters, as described in the following
tables.

4 When you set Row span to One row or Range of rows, you need to further specify the row(s)
contained in the submatrix by setting the Row or Starting row and Ending row parameters.

2 Blocks

2-1072

Likewise, when you set Column span to One column or Range of columns, you must further
specify the column(s) contained in the submatrix by setting the Column or Starting column
and Ending column parameters. For descriptions of the settings for these parameters, see the
following tables.

Settings for Row, Column, Starting Row, and Starting Column Parameters

Settings for
Specifying the
Submatrix's
First Row or
Column

First Row of Submatrix
(Only row for Row span = One row)

First Column of Submatrix
(Only row for Row span = One row)

First First row of the input First column of the input
Index Input row specified in the Row index

parameter
Input column specified in the Column index
parameter

Offset from
last

Input row with the index
M - rowOffset
where M is the number of input rows, and
rowOffset is the value of the Row offset or
Starting row offset parameter

Input column with the index
N - colOffset
where N is the number of input columns, and
colOffset is the value of the Column offset
or Starting column offset parameter

Last Last row of the input Last column of the input
Offset from
middle

Input row with the index
floor(M/2 + 1 - rowOffset)
where M is the number of input rows, and
rowOffset is the value of the Row offset or
Starting row offset parameter

Input column with the index floor(N/2 + 1
- rowOffset) where N is the number of
input columns, and colOffset is the value of
the or Column offset or Starting column
offset parameter

Middle Input row with the index
floor(M/2 + 1)
where M is the number of input rows

Input columns with the index floor(N/2 +
1) where N is the number of input columns

 Overwrite Values

2-1073

Settings for Ending Row and Ending Column Parameters

Settings for
Specifying the
Submatrix's
Last Row or
Column

Last Row of Submatrix Last Column of Submatrix

Index Input row specified in the Ending row
index parameter

Input column specified in the Ending
column index parameter

Offset from
last

Input row with the index
M - rowOffset
where M is the number of input rows, and
rowOffset is the value of the Ending row
offset parameter

Input column with the index
N - colOffset
where N is the number of input columns, and
colOffset is the value of the Ending
column offset parameter

Last Last row of the input Last column of the input
Offset from
middle

Input row with the index
floor(M/2 + 1 - rowOffset)
where M is the number of input rows, and
rowOffset is the value of the Ending row
offset parameter

Input column with the index
floor(N/2 + 1 - rowOffset)
where N is the number of input columns, and
colOffset is the value of the Ending
column offset parameter

Middle Input row with the index
floor(M/2 + 1)
where M is the number of input rows

Input columns with the index floor(N/2 +
1) where N is the number of input columns

For example, to overwrite the lower-right 2-by-3 submatrix of a 3-by-5 input matrix with all zeros,
enter the following set of parameters:

• Overwrite = Submatrix
• Source of overwriting value(s) = Specify via dialog
• Overwrite with = 0
• Row span = Range of rows
• Starting row = Index
• Starting row index = 2
• Ending row = Last
• Column span = Range of columns
• Starting column = Offset from last
• Starting column offset = 2
• Ending column = Last

The following figure shows the block with the above settings overwriting a portion of a 3-by-5 input
matrix.

2 Blocks

2-1074

There are often several possible parameter combinations that select the same submatrix from the
input. For example, instead of specifying Last for Ending column, you could select the same
submatrix by specifying

• Ending column = Index
• Ending column index = 5

Overwriting a Subdiagonal

To overwrite a subdiagonal, follow these steps:

1 Set the Overwrite parameter to Diagonal.
2 Specify the overwriting values as described in “Specifying the Overwriting Values” on page 2-

1067.
3 Specify the subdiagonal that you want to overwrite by setting the Diagonal span parameter to

one of the following options:

• All elements — Overwrite the entire input diagonal.
• One element — Overwrite one element in the diagonal, which you must specify in the

Element parameter (described below).
• Range of elements — Overwrite a portion of the input diagonal, which you must specify in

the Starting element and Ending element parameters, as described in the following table.
4 When you set Diagonal span to One element or Range of elements, you need to further

specify which diagonal element(s) to overwrite by setting the Element or Starting element and
Ending element parameters. See the following tables.

Element and Starting Element Parameters

Settings for Element and
Starting Element
Parameters

First Element in Subdiagonal
(Only element when Diagonal span = One element)

First Diagonal element in first row of the input
Index kth diagonal element, where k is the value of the Element index or Starting

element index parameter
Offset from last Diagonal element in the row with the index

M - offset
where M is the number of input rows, and offset is the value of the Element
offset or Starting element offset parameter

Last Diagonal element in the last row of the input
Offset from middle Diagonal element in the input row with the index

floor(M/2 + 1 - offset)
where M is the number of input rows, and offset is the value of the Element
offset or Starting element offset parameter

Middle Diagonal element in the input row with the index
floor(M/2 + 1)
where M is the number of input rows

 Overwrite Values

2-1075

Ending Element Parameters

Settings for Ending
Element Parameter

Last Element in Subdiagonal

Index kth diagonal element, where k is the value of the Ending element index
parameter

Offset from last Diagonal element in the row with the index
M - offset
where M is the number of input rows, and offset is the value of the Ending
element offset parameter

Last Diagonal element in the last row of the input
Offset from middle Diagonal element in the input row with the index

floor(M/2 + 1 - offset)
where M is the number of input rows, and offset is the value of the Ending
element offset parameter

Middle Diagonal element in the input row with the index
floor(M/2 + 1)
where M is the number of input rows

Supported Data Types
The input(s) and output of this block must have the same data type.

Port Supported Data Types
A • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

V • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

B • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

2 Blocks

2-1076

See Also
Reshape Simulink
Selector Simulink
Submatrix DSP System Toolbox
Variable Selector DSP System Toolbox
reshape MATLAB

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 Overwrite Values

2-1077

Pad
Pad or truncate specified dimension(s)
Library: DSP System Toolbox / Signal Operations

Description
The Pad block extends or crops the dimensions of an input signal by padding or truncating along its
columns, rows, columns and rows, or along any other dimension(s) that you specify. The block
truncates the input when you specify output dimensions that are shorter than the corresponding
input dimensions. If the input and output lengths are the same, the block acts as a pass-through.

You can enter the pad value in the block mask or via an input port. You can enter output sizes in the
block mask, or have the block pad the specified dimensions until their length is the next highest
power of two. The Pad signal at parameter controls whether the block pads or truncates the input
signal dimensions at the beginning, end, or both. For odd pad or truncation lengths, the extra pad or
truncation value is applied at the end of the signal. When the block is in the Specified
dimensions mode, you can specify either the output size or the pad size.

You can configure the block to warn or error when an input signal is truncated using the Action
when truncation occurs parameter.

Ports
Input

Input 1 — Data input
scalar | vector | matrix | N-D array

Specify the input as a scalar, vector, matrix, or an N-D array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Output 1 — Padded or truncated output
scalar | vector | matrix | N-D array

Output of the Pad block. The size and dimension of the output depends on whether the block has
padded or truncated the input along the specified dimension. The data type and complexity of the
output matches that of the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

2 Blocks

2-1078

Parameters
Pad over — Dimension over which to pad or truncate
Columns (default) | Rows | Columns and rows | None | Specified dimensions

Specify the dimensions over which to pad or truncate:

• Columns
• Rows
• Columns and rows
• None
• Specified dimensions

Dimensions to pad — Specify dimension over which to pad or truncate
1 (default) | scalar | vector

Specify the one-based dimension(s) over which to pad or truncate. The value for this parameter can
be a scalar or a vector. For example, specify 1 to pad columns. Specify [1 2] to pad columns and
rows. Specify [1 3 5] to pad the first, third, and fifth dimensions.

Dependencies

This parameter appears only when you set Pad over to Specified dimensions.

Pad value source — Source of pad value
Specify via dialog (default) | Input port

Choose how you specify the pad value. The pad value can come from the dialog or from an input port:

• If you select Specify via dialog, the Pad value parameter appears.
• If you select Input port, the PVal port appears on the block icon.

Pad value — Pad value
0 (default) | scalar

Specify the constant scalar value with which to pad the input.

Tunable: Yes

Dependencies

This parameter appears only when you set Pad value source to Specify via dialog.

Output column mode — Mode of specifying column length
User-specified | Next power of two

Choose how you specify the column length of the output:

• If you select User-specified, the Column size parameter appears.
• If you select Next power of two, the block pads the output columns until their length is the

next highest power of two. If the column length is already a power of two, the block does not pad
the columns.

 Pad

2-1079

Dependencies

This parameter appears only when you set Pad over to Columns or Columns and rows.

Column size — Column length of output
1 | scalar

Specify the column length of the output. If the specified column length is longer than the input
column length, the block pads the columns. If the specified column length is shorter than the input
column length, the block truncates the columns.

Dependencies

This parameter appears only when you set Output column mode to User-specified.

Output row mode — Mode of specifying row length
User-specified (default) | Next power of two

Choose how you specify the row length of the output:

• If you select User-specified, the Row size parameter appears.
• If you select Next power of two, the block pads the output rows until their length is the next

highest power of two. If the row length is already a power of two, the block does not pad the rows.

Dependencies

This parameter appears only when you set Pad over to Rows or Columns and rows.

Row size — Row length of output
1 | scalar

Specify the row length of the output. If the specified row length is longer than the input row length,
the block pads the rows. If the specified row length is shorter than the input row length, the block
truncates the rows.

Dependencies

This parameter appears only when you set Output row mode to User-specified.

Specify — Specify output size or pad size
Output size (default) | Pad size

Choose whether you want to control the output length of the specified dimensions by specifying the
output size or the pad size.

Dependencies

This parameter appears only when you set Pad over to Specified dimensions.

Output size mode — Mode of specifying output length
User-specified | Next power of two

Choose how you specify the output length of the specified dimensions:

• If you select User-specified, the Output size parameter appears.

2 Blocks

2-1080

• If you select Next power of two, the block pads the specified dimensions until their length is
the next highest power of two. If the dimension length is already a power of two, the block does
not pad in that dimension.

Dependencies

This parameter appears only when you set Pad over to Specified dimensions and the Specify
parameter to Output size.

Output size — Output length along specified dimension
1 | scalar | vector

Specify the output length of the specified dimension(s). This parameter must be a scalar or a vector
with the same number of elements as the Dimensions to pad parameter. Each element in the
Output size vector gives the output length for the corresponding dimension in the Dimensions to
pad vector. If the specified length is longer than the input length for a given dimension, the block
pads that dimension. If the specified length is shorter than the input length for a given dimension, the
block truncates that dimension.
Dependencies

This parameter appears only when you set Pad over to Specified dimensions and the Specify
parameter to Output size.

Pad size at beginning — Specify number of values to add to beginning of input signal
0 | scalar | vector

Specify how many values to add to the beginning of the input signal along the specified dimension(s).
This parameter must be a scalar or a vector with the same number of elements as the Dimensions to
pad parameter. Each element in the Pad size at beginning parameter gives the pad length at the
beginning of the corresponding dimension in the Dimensions to pad parameter. Values of this
parameter must be nonnegative integers.
Dependencies

This parameter appears only when you set Pad over to Specified dimensions and the Specify
parameter to Pad size.

Pad size at end — Specify number of values to add to end of input signal
0 | scalar | vector

Specify how many values to add to the end of the input signal along the specified dimension(s). This
parameter must be a scalar or a vector with the same number of elements as the Dimensions to pad
parameter. Each element in the Pad size at end parameter gives the pad length at the end of the
corresponding dimension in the Dimensions to pad parameter. Values of this parameter must be
nonnegative integers.
Dependencies

This parameter appears only when you set Pad over to Specified dimensions and the Specify
parameter to Pad size.

Pad signal at — Specify where to pad or truncate signal
End (default) | Beginning | Beginning and end

Specify whether to pad or truncate the signal at the Beginning, End, or Beginning and end of the
specified dimension(s). When you select Beginning and end, half the pad length is added to the

 Pad

2-1081

beginning of the signal and the other half is added to the end of the signal. For an odd pad length, the
extra value is added to the end of the signal. When you specify to truncate the signal in this mode, an
equal number of values are truncated from the beginning and the end of the signal. In the case of an
odd truncation length, the extra value is removed from the end of the signal.

Dependencies

This parameter appears only when you set Pad over to Columns, Rows, and Columns and rows.

Action when truncation occurs — Action to take when truncation occurs
None | Warning | Error

Specify the action the block takes when it truncates the input.

• None –– The block does not notify when the input is truncated.
• Warning –– The block displays a warning when the input is truncated.
• Error –– The block displays an error message and terminates the simulation when the input is

truncated.

Dependencies

This parameter appears only when you set Pad over to Columns, Rows, and Columns and rows.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Concatenate | Variable Selector | Repeat | Submatrix | Upsample

Introduced before R2006a

2 Blocks

2-1082

Parametric Equalizer
Design parametric equalizer

Compatibility

Note The Parametric Equalizer block has been replaced by the Parametric EQ Filter block. Existing
instances of the Parametric Equalizer block will continue to operate. For new models, use the
Parametric EQ Filter block.

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Dialog Box
See “Parametric Equalizer Filter Design — Main Pane” on page 5-618 for more information about
the parameters of this block. The Data Types and Code Generation panes are not available for
blocks in the DSP System Toolbox Filter Designs library.

Parameters of this block that do not change filter order or structure are tunable.

 Parametric Equalizer

2-1083

2 Blocks

2-1084

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

Order mode
Select Minimum to design a minimum order filter that meets the design specifications, or
Specify to enter a specific filter order. The order mode also affects the possible frequency
constraints, which in turn limit the gain specifications. For example, if you specify a Minimum
order filter, the available frequency constraints are:

• Center frequency, bandwidth, passband width
• Center frequency, bandwidth, stopband width

If you select Specify, the available frequency constraints are:

• Center frequency, bandwidth
• Center frequency, quality factor
• Shelf type, cutoff frequency, quality factor
• Shelf type, cutoff frequency, shelf slope parameter
• Low frequency, high frequency

Order
Specify the filter order. This parameter is enabled only if the Order mode is set to Specify.

Frequency specifications

Depending on the filter order, the possible frequency constraints change. Once you choose the
frequency constraints, the input boxes in this area change to reflect the selection.

Frequency constraints
Select the specification to represent the frequency constraints. The following options are
available:

• Center frequency, bandwidth, passband width (available for minimum order only)
• Center frequency, bandwidth, stopband width (available for minimum order only)
• Center frequency, bandwidth (available for a specified order only)
• Center frequency, quality factor (available for a specified order only)
• Shelf type, cutoff frequency, quality factor (available for a specified order only)
• Shelf type, cutoff frequency, shelf slope parameter (available for a specified

order only)

 Parametric Equalizer

2-1085

• Low frequency, high frequency (available for a specified order only)

Frequency units
Select the frequency units from the available drop down list (Normalized, Hz, kHz, MHz, GHz). If
Normalized is selected, then the Input Fs box is disabled for input.

Input Fs
Enter the input sampling frequency. This input box is disabled for input if Normalized is selected
in the Frequency units input box.

Center frequency
Enter the center frequency in the units specified by the value in Frequency units.

Bandwidth
The bandwidth determines the frequency points at which the filter magnitude is attenuated by the
value specified as the Bandwidth gain in the Gain specifications section. By default, the
Bandwidth gain defaults to db(sqrt(.5)), or –3 dB relative to the center frequency. The
Bandwidth property only applies when the Frequency constraints are: Center frequency,
bandwidth, passband width, Center frequency, bandwidth, stopband width, or
Center frequency, bandwidth.

Passband width
The passband width determines the frequency points at which the filter magnitude is attenuated
by the value specified as the Passband gain in the Gain specifications section. This option is
enabled only if the filter is of minimum order, and the frequency constraint selected is Center
frequency, bandwidth, passband width.

Stopband width
The stopband width determines the frequency points at which the filter magnitude is attenuated
by the value specified as the Stopband gain in the Gain specifications section. This option is
enabled only if the filter is of minimum order, and the frequency constraint selected is Center
frequency, bandwidth, stopband width.

Low frequency
Enter the low frequency cutoff. This option is enabled only if the filter order is user specified and
the frequency constraint selected is Low frequency, high frequency. The filter magnitude
is attenuated by the amount specified in Bandwidth gain.

High frequency
Enter the high frequency cutoff. This option is enabled only if the filter order is user specified and
the frequency constraint selected is Low frequency, high frequency. The filter magnitude
is attenuated by the amount specified in Bandwidth gain.

Gain Specifications

Depending on the filter order and frequency constraints, the possible gain constraints change. Also,
once you choose the gain constraints the input boxes in this area change to reflect the selection.

Gain constraints
Select the specification array to represent gain constraints, and remember that not all of these
options are available for all configurations. The following is a list of all available options:

• Reference, center frequency, bandwidth, passband
• Reference, center frequency, bandwidth, stopband

2 Blocks

2-1086

• Reference, center frequency, bandwidth, passband, stopband
• Reference, center frequency, bandwidth

Gain units
Specify the gain units either dB or squared. These units are used for all gain specifications in the
dialog box.

Reference gain
The reference gain determines the level to which the filter magnitude attenuates in Gain units.
The reference gain is a floor gain for the filter magnitude response. For example, you may use the
reference gain together with the Center frequency gain to leave certain frequencies
unattenuated (reference gain of 0 dB) while boosting other frequencies.

Bandwidth gain
Specifies the gain in Gain units at which the bandwidth is defined. This property applies only
when the Frequency constraints specification contains a bandwidth parameter, or is Low
frequency, high frequency.

Center frequency gain
Specify the center frequency in Gain units

Passband gain
The passband gain determines the level in Gain units at which the passband is defined. The
passband is determined either by the Passband width value, or the Low frequency and High
frequency values in the Frequency specifications section.

Stopband gain
The stopband gain is the level in Gain units at which the stopband is defined. This property
applies only when the Order mode is minimum and the Frequency constraints are Center
frequency, bandwidth, stopband width.

Boost/cut gain
The boost/cut gain applies only when the designing a shelving filter. Shelving filters include the
Shelf type parameter in the Frequency constraints specification. The gain in the passband of
the shelving filter is increased by Boost/cut gain dB from a floor gain of 0 dB.

Algorithm

Design method
Select the design method from the drop-down list. Different methods are available depending on
the chosen filter constraints.

Scale SOS filter coefficients to reduce chance of overflow
Select the check box to scale the filter coefficients.

Filter Implementation

Structure
Specify filter structure. Choose from:

• Direct-form I SOS
• Direct-form II SOS
• Direct-form I transposed SOS

 Parametric Equalizer

2-1087

• Direct-form II transposed SOS

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Optimize for unit-scale values
Select this check box to scale unit gains between sections in SOS filters. This parameter is
available only for SOS filters.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Note The Inherited (this choice will be removed — see release notes) option
will be removed in a future release. See “Frame-Based Processing” in the DSP System Toolbox
Release Notes for more information.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

2 Blocks

2-1088

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

Introduced in R2007a

 Parametric Equalizer

2-1089

Parametric EQ Filter (Obsolete)
(Removed) Model second-order parametric equalizer filter

Note The Parametric EQ Filter block requires Audio Toolbox. Existing models using the Parametric
EQ Filter block continue to run. For new models, use the Parametric EQ block from Audio Toolbox.

Library
dspobslib

Description
The Parametric EQ Filter block filters each channel of the input signal over time using a specified
center frequency, bandwidth, and peak (dip) gain. This block offers tunable filter design parameters,
which enable you to tune the filter characteristics while the simulation is running.

The block designs the filter according to the filter parameters set in the block dialog box. The output
port properties, such as datatype, complexity, and dimension, are identical to the input port
properties.

Each column of the input signal is treated as a separate channel. If the input is a two-dimensional
signal, the first dimension represents the channel length (or frame size) and the second dimension
represents the number of channels. If the input is a one-dimensional signal, then it is interpreted as a
single channel.

This block supports variable-size input, enabling you to change the channel length during simulation.
To enable variable-size input, clear the Inherit sample rate from input check box. The number of
channels must remain constant.

Algorithms
This block brings the capabilities of the dsp.ParametricEQFilter System object to the Simulink
environment.

The filter uses a coupled allpass structure to optimize joint computation of the peak and notch
response. For information on the algorithms used by the Parametric EQ Filter block, see the
“Algorithm” on page 4-1114 section of dsp.ParametricEQFilter.

Parameters
Filter specification

Parameters or coefficients used to design the filter, specified as one of the following:

2 Blocks

2-1090

• Bandwidth and center frequency (default) — Design the filter using Filter bandwidth
(Hz), Equalizer center frequency (Hz), and Gain (dB).

• Coefficients — Design the filter using Bandwidth coefficient, Center frequency
coefficient, and Gain (Linear Units).

• Quality factor and center frequency — Design the filter using Equalizer center
frequency (Hz), Gain (dB), and Quality factor.

This parameter is nontunable.
Specify bandwidth from input port

When you select this check box, the filter bandwidth is input through the BW port. When you
clear this check box, the filter bandwidth is specified on the block dialog through the Filter
bandwidth (Hz) parameter.

This parameter applies when you set Filter specification to Bandwidth and center
frequency.

Filter bandwidth (Hz)
Bandwidth of the filter, specified as a finite positive numeric scalar that is less than half the
sample rate of the input signal. This parameter applies when you set Filter specification to
Bandwidth and center frequency and clear the Specify bandwidth from input port
parameter. The default is 2205. This parameter is tunable.

Specify center frequency from input port
When you select this check box, the equalizer center frequency is input through the Fc port.
When you clear this check box, the equalizer center frequency is specified on the block dialog
through the Equalizer center frequency (Hz) parameter.

This parameter applies when you set Filter specification to Bandwidth and center
frequency or Quality factor and center frequency.

Equalizer center frequency (Hz)
Center frequency of the filter, specified as a finite positive scalar that is less than half the sample
rate of the input signal. This parameter applies when you set Filter specification to Bandwidth
and center frequency or Quality factor and center frequency, and clear the
Specify center frequency from input port parameter. The default is 11025. This parameter is
tunable.

Specify gain (dB) from input port
When you select this check box, the peak or dip gain of the filter in dB is input through the
PGaindB port. When you clear this check box, the filter gain is specified on the block dialog
through the Gain (dB) parameter.

This parameter applies when you set Filter specification to Bandwidth and center
frequency or Quality factor and center frequency.

Gain (dB)
Peak or dip gain of the filter, specified as a real scalar in dB. A value greater than zero
corresponds to a peak. A value less than zero corresponds to a dip. This parameter applies when
you set Filter specification to Bandwidth and center frequency or Quality factor and
center frequency, and clear the Specify gain (dB) from input port parameter. The default
is 6.0206. This parameter is tunable.

 Parametric EQ Filter (Obsolete)

2-1091

Specify bandwidth coefficient from input port
When you select this check box, the bandwidth coefficient is input through the BWCoeff port.
When you clear this check box, the bandwidth coefficient is specified on the block dialog through
the Bandwidth coefficient parameter.

This parameter applies when you set Filter specification to Coefficients.
Bandwidth coefficient

Coefficient that determines the filter bandwidth, specified as a finite numeric scalar in the range
[-1 1].

• -1 corresponds to the maximum bandwidth (one-fourth the sample rate of the input signal).
• 1 corresponds to the minimum bandwidth (0 Hz, that is, an allpass filter).

This parameter applies when you set Filter specification to Coefficients and clear the
Specify bandwidth coefficient from input port parameter. The default is 0.72654. This
parameter is tunable.

Specify center frequency coefficient from input port
When you select this check box, the center frequency coefficient is input through the FcCoeff
port. When you clear this check box, the center frequency coefficient is specified on the block
dialog through the Center frequency coefficient parameter.

This parameter applies when you set Filter specification to Coefficients.
Center frequency coefficient

Coefficient that determines the center frequency of the filter, specified as a finite numeric scalar
in the range [-1 1].

• -1 corresponds to the minimum center frequency (0 Hz).
• 1 corresponds to the maximum center frequency (half the sample rate of the input signal).

This parameter applies when you set Filter specification to Coefficients and clear the
Specify center frequency coefficient from input port parameter. The default is 0, which
corresponds to one-fourth the sample rate of the input signal. This parameter is tunable.

Specify gain from input port
When you select this check box, the peak or dip gain of the filter in linear units is input through
the PGain port. When you clear this check box, the filter gain is specified on the block dialog
through the Gain (Linear Units) parameter.

This parameter applies when you set Filter specification to Coefficients.
Gain (Linear Units)

Peak or dip gain of the filter, specified as a real positive scalar in linear units. A value greater
than one boosts the input signal. A value less than one attenuates the input signal. This
parameter applies when you set Filter specification to Coefficients and clear the Specify
gain from input port parameter. The default is 2. This parameter is tunable.

Specify quality factor from input port
When you select this check box, the quality factor is input through the Q port. When you clear
this check box, the quality factor is specified on the block dialog through the Quality factor
parameter.

2 Blocks

2-1092

This parameter applies when you set Filter specification to Quality factor and center
frequency.

Quality factor
Quality factor of the filter, specified as a real positive scalar. The quality factor is defined as
Equalizer center frequency (Hz) / Filter bandwidth (Hz). A higher quality factor corresponds
to a narrower peak or dip. This parameter applies when you set Filter specification to Quality
factor and center frequency and clear the Specify quality factor from input port
parameter. The default is 5. This parameter is tunable.

Inherit sample rate from input
When you select this check box, the block’s sample rate is computed as N/Ts, where N is the
frame size of the input signal, and Ts is the sample time of the input signal. When you clear this
check box, the block sample rate is the value specified in Input sample rate (Hz). By default,
this check box is selected.

Input sample rate (Hz)
Sample rate of the input signal, specified as a positive scalar value. The default is 44100. This
parameter applies when you clear the Inherit sample rate from input check box. This
parameter is nontunable.

View Filter Response
Opens the Filter Visualization Tool FVTool and displays the magnitude/phase response of the
Parametric EQ Filter. The response is based on the block dialog box parameters. Changes made
to these parameters update FVTool.

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

 Parametric EQ Filter (Obsolete)

2-1093

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing . Upper Saddle River, NJ: Prentice-Hall,
1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2015a

2 Blocks

2-1094

Peak Finder
Determine whether each value of input signal is local minimum or maximum

Library
Signal Operations

dspsigops

Description
The Peak Finder block counts the number of local extrema in each column of the real-valued input
signal. The block outputs the number of local extrema at the Cnt port. You can also configure the
block to output the extrema indices, the extrema values, and a binary indicator of whether or not the
extrema are maxima or minima.

To qualify as an extrema, a point has to be larger (or smaller) than both of its neighboring points.
Thus, end points are never considered extrema.

If you select the Output peak indices check box, the Idx port appears on the block. The block
outputs the extrema indices at the Idx port. If Index base is set to Zero, the block outputs zero-
based extrema indices. If Index base is set to One, the block outputs one-based extrema indices.

If you select the Output peak values check box, the Val port appears on the block. The block outputs
the extrema values at the Val port. If you select either of these check boxes and set the Peak type(s)
to Maxima and Minima, the Pol port also appears on the block. If the signal value is a maximum, the
block outputs a 1 at the Pol ("Polarity") port. If the signal value is a minimum, the block outputs a 0 at
the Pol port.

Use the Maximum number of peaks to find parameter to specify how many extrema to look for in
each input signal. The block stops searching the input signal once this maximum number of extrema
has been found.

If you select the Ignore peaks within threshold of neighboring values check box, the block no
longer detects low-amplitude peaks. This feature allows the block to ignore noise within a threshold
value that you define. Enter a threshold value for the Threshold parameter. Now, the current value is
a maximum if (current – previous) > threshold and (current – next) > threshold. The current value is
a minimum if (current – previous) < –threshold and (current – next) < –threshold.

 Peak Finder

2-1095

Examples
Example 1

Consider the input vector

[9 6 10 3 4 5 0 12]

The table below shows the analysis made by the Peak Finder block. Note that the first and last input
signal values are not considered:

Previous, current, and next values 9 6 10 6 10 3 10 3 4 3 4 5 4 5 0 5 0 12
Current value if it is an extremum 6 10 3 — 5 0
Index of current value if it is an extremum 1 2 3 — 5 6
Polarity of current value if it is an extremum 0 1 0 — 1 0

For this example, the outputs at the block ports are:

Cnt: 5

Idx: [1 2 3 5 6]

Val: [6 10 3 5 0]

Pol: [0 1 0 1 0]

Example 2

The Overflow mode parameter can affect the output of the block when the input is fixed point.
Consider the following model:

In this model, the settings in the Constant block are:

2 Blocks

2-1096

• Constant value — [-1 0.5 -1]
• Interpret vector parameters as 1–D — not selected
• Sampling mode — Sample based
• Sample time — 1
• Output data type — <data type expression>
• Mode — Fixed point
• Sign — Signed
• Scaling — Binary point
• Word length — 16
• Fraction length — 15

The settings in the Peak Finder blocks are:

• Peak type(s) — Maxima
• Output peak indices — not selected
• Output peak values — selected
• Maximum number of peaks to find — 2
• Ignore peaks within threshold of neighboring values — selected
• Threshold — 0.25
• Overflow mode — Wrap for Peak Finder Wrap, Saturate for Peak Finder Saturate

Setting the Overflow mode parameter of the Peak Finder Wrap block to Wrap causes the calculations
(current – previous) > threshold and (current – next) > threshold to wrap on overflow, thereby
causing the maximum to be missed.

Dialog Box
Parameters

Peak type(s)
Specify whether you are looking for maxima, minima, or both.

Index base
Specify the base of the extrema indices as either:

• Zero (default) –– The first index starts with 0. For example, consider an input vector [-1.5, 0.5,
0]. The peak value of this vector is 0.5 and the index of this peak value is 1.

• One –– In this setting, the first index starts with 1. The index of the peak value in [-1.5, 0.5, 0]
is 2.

Output peak indices
Select this check box if you want the block to output the extrema indices at the Idx port.

Output peak values
Select this check box if you want the block to output the extrema values at the Val port.

 Peak Finder

2-1097

Maximum number of peaks to find
Enter the number of extrema to look for in each input signal. The block stops searching the input
signal for extrema once the maximum number of extrema has been found. The value of this
parameter must be an integer greater than or equal to one.

Ignore peaks within threshold of neighboring values
Select this check box if you want to eliminate the detection of peaks whose amplitudes are within
a specified threshold of neighboring values.

Threshold
Enter your threshold value. This parameter appears if you select the Ignore peaks within
threshold of neighboring values check box.

When you select the Ignore peaks within threshold of neighboring values check box, the Fixed-
point operational parameters section appears.

Fixed-point operational parameters

Saturate on integer overflow
When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Cnt • 32-bit unsigned integers
Idx • 32-bit unsigned integers
Val • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pol • Boolean

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

2 Blocks

2-1098

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Maximum | Minimum

Introduced before R2006a

 Peak Finder

2-1099

Peak-Notch Filter
Design peak or notch filter

Compatibility

Note The Peak-Notch Filter block has been replaced by the Notch-Peak Filter block. Existing
instances of the Peak-Notch Filter block will continue to operate. For new models, use the Notch-Peak
Filter block.

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Dialog Box
See “Peak/Notch Filter Design — Main Pane” on page 5-621 for more information about the
parameters of this block. The Data Types and Code Generation panes are not available for blocks in
the DSP System Toolbox Filter Designs library.

Parameters of this block that do not change filter order or structure are tunable.

2 Blocks

2-1100

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.

 Peak-Notch Filter

2-1101

• Impulse response and step response in the time domain.
• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

In this area you can specify whether you want to design a peaking filter or a notching filter, as well as
the order of the filter.

Response
Select Peak or Notch from the drop-down list. The rest of the parameters that specify are
equivalent for either filter type.

Order
Enter the filter order. The order must be even.

Frequency Specifications

This group of parameters allows you to specify frequency constraints and units.

Frequency Constraints
Select the frequency constraints for filter specification. There are two choices as follows:

• Center frequency and quality factor
• Center frequency and bandwidth

Frequency units
The frequency units are normalized by default. If you specify units other than normalized, the
block assumes that you wish to specify an input sampling frequency, and enables this input box.
The choice of frequency units are: Normalized (0 to 1), Hz, kHz, MHz, GHz.

Input Fs
This input box is enabled if Frequency units other than Normalized (0 to 1) are specified.
Enter the input sampling frequency.

Center frequency
Enter the center frequency in the units specified previously.

Quality Factor
This input box is enabled only when Center frequency and quality factor is chosen for
the Frequency Constraints. Enter the quality factor.

Bandwidth
This input box is enabled only when Center frequency and bandwidth is chosen for the
Frequency Constraints. Enter the bandwidth.

Magnitude Specifications

This group of parameters allows you to specify the magnitude constraints, as well as their values and
units.

2 Blocks

2-1102

Magnitude Constraints
Depending on the choice of constraints, the other input boxes are enabled or disabled. Select
from four magnitude constraints available:

• Unconstrained
• Passband ripple
• Stopband attenuation
• Passband ripple and stopband attenuation

Magnitude units
Select the magnitude units: either dB or squared.

Apass
This input box is enabled if the magnitude constraints selected are Passband ripple or
Passband ripple and stopband attenuation. Enter the passband ripple.

Astop
This input box is enabled if the magnitude constraints selected are Stopband attenuation or
Passband ripple and stopband attenuation. Enter the stopband attenuation.

Algorithm

The parameters in this group allow you to specify the design method and structure of your filter.

Design Method
Lists all design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter the methods available to design filters changes as
well.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Filter Implementation

Structure
Specify filter structure. Choose from:

• Direct-form I SOS
• Direct-form II SOS
• Direct-form I transposed SOS
• Direct-form II transposed SOS

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

 Peak-Notch Filter

2-1103

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Optimize for unit-scale values
Select this check box to scale unit gains between sections in SOS filters. This parameter is
available only for SOS filters.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Note The Inherited (this choice will be removed — see release notes) option
will be removed in a future release. See “Frame-Based Processing” in the DSP System Toolbox
Release Notes for more information.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point

2 Blocks

2-1104

Port Supported Data Types
Output • Double-precision floating point

• Single-precision floating point

Introduced in R2007a

 Peak-Notch Filter

2-1105

Periodogram
Power spectral density or mean-square spectrum estimate using periodogram method
Library: DSP System Toolbox / Estimation / Power Spectrum

Estimation

Description
The Periodogram block estimates the power spectral density (PSD) or mean-square spectrum (MSS)
of the input. The block uses the periodogram method and Welch's averaged, modified periodogram
method. The block averages the squared magnitude of the FFT function computed over windowed
sections of the input. It then normalizes the spectral average by the square of the sum of the window
samples. For more information, see “Periodogram” and “Welch's Method”.

Ports
Input

Port_1 — Input signal
vector | matrix

Input signal, specified as a vector or a matrix.

The block treats M-by-N matrix input as M sequential time samples from N independent channels.
Data Types: single | double

Output

Port_1 — Output signal
vector | matrix

Output signal, returned as a vector or a matrix.

Each column of the output matrix contains the estimate of the power spectral density of the
corresponding input column at Nfft equally spaced frequency points. The frequency points are in the
range [0,Fs), where Fs is the sampling frequency of the signal.

The block computes a separate estimate for each of the N independent channels and generates an
Nfft-by-N matrix output.
Data Types: single | double

2 Blocks

2-1106

Parameters
Measurement — Measurement type
Power spectral density (default) | Mean-square spectrum

Specify the type of measurement for the block to perform: Power spectral density or Mean-
square spectrum.

Tunable: No

Window — Window type
Hamming (default) | Bartlett | Blackman | Boxcar | Chebyshev | Hann | Hanning | Kaiser |
Triang

Select the type of window to apply.

For details, see the Window Function block reference page.

Tunable: Yes

Beta — Beta
5 (default) | scalar

Enter the β parameter for the Kaiser window. Increasing Beta widens the mainlobe and decreases the
amplitude of the sidelobes in the displayed frequency magnitude response.

For more details, see the Window Function block reference page.

Tunable: Yes

Dependencies

This parameter becomes visible if, for the Window parameter, you chose Kaiser.

Window sampling — Window sampling
Symmetric (default) | Periodic

From the list, choose Symmetric or Periodic.

See the Window Function block reference page for more details.

Tunable: Yes

Dependencies

This parameter becomes visible only if you set the Window parameter to one of Blackman, Hamming,
Hann, or Hanning.

FFT implementation — FFT implementation
Auto (default) | Radix-2 | FFTW

Set this parameter to FFTW to support an arbitrary length input signal. The block restricts generated
code with an FFTW implementation to MATLAB host computers.

Set this parameter to Radix-2 for bit-reversed processing, fixed or floating-point data, or for
portable C-code generation by using Simulink Coder. The first dimension M of the input matrix must

 Periodogram

2-1107

be a power of two. To work with other input sizes, use the Pad block to pad or truncate these
dimensions to powers of two, or if possible, choose the FFTW implementation.

Set this parameter to Auto to enable the block choose the FFT implementation. For non-power-of-two
transform lengths, the block restricts generated code to MATLAB host computers.

Tunable: No

Stopband attenuation in dB — Stopband attenuation in dB
50 (default) | scalar

Enter the level, in decibels (dB), of stopband attenuation, Rs, for the Chebyshev window.

Tunable: Yes

Dependencies

This parameter becomes visible if, for the Window parameter, you choose Chebyshev.

Inherit FFT length from input dimensions — Inherit FFT length
off (default) | on

When you select this check box, the block uses the input frame size as the number of data points, Nfft,
on which to perform the FFT. To specify the number of points on which to perform the FFT, clear the
Inherit FFT length from input dimensions check box. You can then specify a power of two FFT
length by using the “FFT length” on page 2-0 parameter.

Tunable: No

FFT length — Number of data points
256 (default) | scalar

Enter the number of data points on which to perform the FFT, Nfft. When Nfft is larger than the input
frame size, the block zero-pads each frame as needed. When Nfft is smaller than the input frame size,
the block wraps each frame as needed.

When you set the FFT implementation parameter to Radix-2, this value must be a power of two.

Tunable: No

Dependencies

This parameter becomes visible only when you clear the “Inherit FFT length from input dimensions”
on page 2-0 check box.

Number of spectral averages — Number of spectral averages
4 (default) | scalar

Specify the number of spectral to average. When you set this value to 1, the block computes the
periodogram of the input. When you set this value greater 1, the block implements “Welch's Method”
to compute a modified periodogram of the input.

Tunable: No

Inherit sample time from input — Inherit sample time from input
on (default) | off

2 Blocks

2-1108

If you select the Inherit sample time from input check box, the block computes the frequency data
from the sample period of the input signal. For the block to produce valid output, the following
conditions must hold:

• The input to the block is the original signal, with no samples added or deleted (by insertion of
zeros, for example).

• The sample period of the time-domain signal in the simulation equals the sample period of the
original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then
specify a sample time by using the Sample time of original time series parameter.

Dependencies

This parameter becomes visible only if you set the Measurement parameter to Power spectral
density.

Sample time of original time series — Sample time of original time series
1 (default) | scalar

Specify the sample time of the original time-domain signal.

Tunable: No

Dependencies

This parameter becomes visible only when you clear the Inherit sample time from input
check box.

Block Characteristics
Data Types double | single
Multidimensional
Signals

No

Variable-Size Signals No

References
[1] FFTW (http://www.fftw.org)

[2] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the FFT,” Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing , Vol. 3, 1998,
pp. 1381-1384.

[3] Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing . Englewood Cliffs, NJ:
Prentice Hall, 1989.

[4] Orfanidis, S. J. Introduction to Signal Processing . Englewood Cliffs, NJ: Prentice-Hall, 1995.

[5] Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall,
1996.

 Periodogram

2-1109

http://www.fftw.org

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Generated code relies on memcpy or memset functions (string.h) under certain conditions.
• When the following conditions apply, the executable generated from this block relies on prebuilt

dynamic library files (.dll files) included with MATLAB:

• FFT implementation is set to FFTW.
• Inherit FFT length from input dimensions is cleared and FFT length is set to a value that

is not a power of two.

Use the packNGo function to package the code generated from this block and all the relevant files
in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your project in
another development environment where MATLAB is not installed. For more details, see “How To
Run a Generated Executable Outside MATLAB”.

• When the FFT length is a power of two, you can generate standalone C and C++ code from this
block.

See Also
Blocks
Burg Method | Inverse Short-Time FFT | Magnitude FFT | Short-Time FFT | Spectrum Analyzer |
Window Function | Yule-Walker Method

Topics
“Spectral Analysis”
“Welch’s Algorithm of Averaging Modified Periodograms”

Introduced before R2006a

2 Blocks

2-1110

Permute Matrix
Reorder matrix rows or columns
Library: DSP System Toolbox / Math Functions / Matrices and Linear

Algebra / Matrix Operations

Description
The Permute Matrix block reorders the rows or columns of an M-by-N input matrix A as specified by
indexing input P.

Ports
Input

A — Input matrix
scalar | vector | matrix

Input matrix, specified as a scalar, vector, or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

P — Index matrix
scalar | vector

Index matrix, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | enumerated

Output

Port_1 — Output signal
vector | matrix

Output signal, specified as a vector or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Parameters
Permute — Permute method
Columns (default) | Rows

 Permute Matrix

2-1111

Method of constructing the output matrix by permuting rows or columns of the input.

When the Permute parameter is set to:

• Rows –– The block uses the rows of A to create a matrix that has the same column dimension.
Input P is a length-L vector whose elements determine where each row from A must be placed in
the L-by-N output matrix.
y = [A(P(1),:) ; A(P(2),:) ; A(P(3),:) ; ... ; A(P(end),:)] % Equivalent MATLAB code

For row permutation, the block treats the length-M unoriented vector input at the port A as an M-
by-1 matrix.

• Columns –– The block uses the columns of A to create a matrix that has the same row dimension.
Input P is a length-L vector whose elements determine where each column from A must be placed
in the M-by-L output matrix.
% Equivalent MATLAB code y = [A(:,P(1)) A(:,P(2)) A(:,P(3)) ... A(:,P(end))]

For column permutation, the block treats the length-N unoriented vector input at port A as a 1-by-
N matrix.

Index mode — Index mode
Zero-based (default) | One-based

When set to One-based, a value of 1 in the permutation vector P refers to the first row or column of
the input matrix A. When set to Zero-based, a value of 0 in P refers to the first row or column of A.

Invalid permutation index — Response to an invalid index value
Clip index (default) | Clip and warn | Generate error

Response to an invalid index value. When an index value in input P references a nonexistent row or
column of matrix A, the block reacts as specified in this parameter. These options are available:

• Clip index –– Clip the index to the nearest valid value (1 or M for row permutation and 1 or N
for column permutation) and do not issue an alert. Example: For a 3-by-7 input matrix, a column
index of 9 is clipped to 7 and a row index of -2 is clipped to 1.

• Clip and warn –– Display a warning message in the MATLAB Command Window and clip the
index as described in the preceding bullet.

• Generate error –– Display an error dialog box and terminate the simulation.

Tunable: Yes

Error when length of P is not equal to Permute dimension size — Error message
for P length
off (default) | on

Option to display an error dialog box and terminate the simulation when the length of the
permutation vector P is not equal to the number of rows or columns of the input matrix A.

You can choose to open an error dialog box and terminate the simulation by setting this parameter to
on.

2 Blocks

2-1112

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Submatrix | Variable Selector

Functions
permute

Topics
“Reorder Channels in Multichannel Signals”

Introduced before R2006a

 Permute Matrix

2-1113

Phase Extractor
Extract the unwrapped phase of a complex input
Library: DSP System Toolbox / Signal Operations

Description
The Phase Extractor block extracts the unwrapped phase of a complex input.

Ports
Input

Input 1 — Input signal
vector | matrix

Specify the input signal as a vector or a matrix. When the input is a matrix, the block treats each
column of the signal as an independent channel. The first dimension is the length of the channel. The
second dimension is the number of channels. The block treats one dimensional inputs as one channel.
Data Types: single | double

Output

Output 1 — Unwrapped phase
vector | matrix

The block returns the unwrapped phase of the signal.

The block preserves the input size and dimension, and the output port rate equals the input port rate.
Data Types: single | double

Parameters
Unwrap phase only within the frame — Unwrap phase only within the frame
off (default) | on

When you clear this check box, the block ignores boundaries between the input frames. When you
select this check box, the block treats each frame of input data independently, and resets the initial
phase value for each new input frame.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Code generation

2 Blocks

2-1114

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster simulation speed
than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has slower
simulation speed than Code generation.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
Consider an input frame of length N:

x1
x2

⋮
xN

The step method acts on this frame and produces this output:

Φ1
Φ2

⋮
ΦN

where:

Φi = Φi− 1 + angle(xi− 1* xi)

Here, i runs from 1 to N. The angle function returns the phase angle in radians.

If the input signal consists of multiple frames:

• If you set TreatFramesIndependently to true, the step method treats each frame
independently. Therefore, in each frame, the step method calculates the phase using the
preceding formula where:

• Φ0 is 0.

 Phase Extractor

2-1115

• x0 is 1.
• If you set TreatFramesIndependently to false, the step method ignores boundaries between

frames. Therefore, in each frame, the step method calculates the phase using the preceding
formula where:

• Φ0 is the last unwrapped phase from the previous frame.
• x0 is the last sample from the previous frame.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
dsp.PhaseExtractor

Introduced in R2014b

2 Blocks

2-1116

Polynomial Evaluation
Evaluate polynomial expression

Library
Math Functions / Polynomial Functions

dsppolyfun

Description
The Polynomial Evaluation block applies a polynomial function to the real or complex input at the In
port.

y = polyval(u) % Equivalent MATLAB code

The Polynomial Evaluation block performs these types of operation more efficiently than the
equivalent construction using Simulink Sum and Math Function blocks.

When you select the Use constant coefficients check box, you specify the polynomial expression in
the Constant coefficients parameter. When you do not select Use constant coefficients, a variable
polynomial expression is specified by the input to the Coeffs port. In both cases, the polynomial is
specified as a vector of real or complex coefficients in order of descending exponents.

The table below shows some examples of the block's operation for various coefficient vectors.

Coefficient Vector Equivalent Polynomial Expression
[1 2 3 4 5] y = u4 + 2u3 + 3u2 + 4u + 5
[1 0 3 0 5] y = u4 + 3u2 + 5
[1 2+i 3 4-3i 5i] y = u4 + 2 + i u3 + 3u2 + 4− 3i u + 5i

Each element of a vector or matrix input to the In port is processed independently, and the output
size is the same as the input.

Parameters
Use constant coefficients

Select to enable the Constant coefficients parameter and disable the Coeffs input port.
Constant coefficients

Specify the vector of polynomial coefficients to apply to the input, in order of descending
exponents. This parameter is enabled when you select the Use constant coefficients check box.

 Polynomial Evaluation

2-1117

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Least Squares Polynomial Fit DSP System Toolbox
Math Function Simulink
Sum Simulink
polyval MATLAB

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

2 Blocks

2-1118

Polynomial Stability Test
Use Schur-Cohn algorithm to determine whether all roots of input polynomial are inside unit circle

Library
Math Functions / Polynomial Functions

dsppolyfun

Description
The Polynomial Stability Test block uses the Schur-Cohn algorithm to determine whether all roots of a
polynomial are within the unit circle.

y = all(abs(roots(u)) < 1) % Equivalent MATLAB code

Each column of the M-by-N input matrix u contains M coefficients from a distinct polynomial,

f (x) = u1xM − 1 + u2xM − 2 + … + uM

arranged in order of descending exponents, u1, u2, ..., uM. The polynomial has order M-1 and positive
integer exponents.

Inputs to the block represent the polynomial coefficients as shown in the previous equation. The block
always treats length-M unoriented vector input as an M-by-1 matrix.

The output is a 1-by-N matrix with each column containing the value 1 or 0. The value 1 indicates
that the polynomial in the corresponding column of the input is stable; that is, the magnitudes of all
solutions to f(x) = 0 are less than 1. The value 0 indicates that the polynomial in the corresponding
column of the input might be unstable; that is, the magnitude of at least one solution to f(x) = 0 is
greater than or equal to 1.

Applications

This block is most commonly used to check the pole locations of the denominator polynomial, A(z), of
a transfer function, H(z).

H(z) = B(z)
A(z) =

b1 + b2z−1 + … + bmz−(m− 1)

a1 + a2z−1 + … + anz−(n− 1)

The poles are the n-1 roots of the denominator polynomial, A(z). When any poles are located outside
the unit circle, the transfer function H(z) is unstable. As is typical in DSP applications, the transfer
function above is specified in descending powers of z-1 rather than z.

 Polynomial Stability Test

2-1119

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Boolean — Block outputs are always Boolean.

See Also
Least Squares Polynomial Fit DSP System Toolbox
Polynomial Evaluation DSP System Toolbox
polyfit MATLAB

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-1120

Power Meter
Measure power of voltage signal
Library: DSP System Toolbox / Statistics

Description
The Power Meter block computes the power measurements of a voltage signal. The power
measurements include average power, peak power, and peak-to-average power ratio. The block uses
the sliding window method to compute these measurements. For more details, see “Algorithms” on
page 2-1123.

Ports
Input

Port_1 — Input signal
vector | matrix

Specify the input signal in volts as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The power measurement is computed along each channel using the “Sliding
Window Method” on page 2-1123.
Data Types: single | double

Output

Avg — Average power
vector | matrix

Average power of the voltage signal, returned as a vector or a matrix, and measured in the units
determined by the Power units parameter. For details on how the block computes the average
power, see “Average Power” on page 2-1123.
Dependencies

To enable this port, set Measurement to Average power or All.
Data Types: single | double

Peak — Peak power
vector | matrix

Peak power of the voltage signal, returned as a vector or a matrix, and measured in the units
determined by the Power units parameter. For details on how the block computes the peak power,
see “Peak Power” on page 2-1124.
Dependencies

To enable this port, set Measurement to Peak power or All.

 Power Meter

2-1121

Data Types: single | double

PAPR — Peak-to-average power ratio
vector | matrix

Peak-to-average power ratio of the voltage signal, returned as a vector or a matrix. For details on how
the block computes the peak-to-average power ratio, see “Peak-to-Average Power Ratio” on page 2-
1124.

Dependencies

To enable this port, set Measurement to Peak-to-average power ratio or All.
Data Types: single | double

Parameters
Measurement — Desired power measurement
Average power (default) | Peak power | Peak-to-average power ratio | All

Specify the desired power measurement as one of the following:

• Average power (default)
• Peak power
• Peak-to-average power ratio
• All

For details on how the block computes these measurements, see “Algorithms” on page 2-1123.

Window length — Window length
256 (default) | positive integer

Specify the window length over which the measurement is computed as a positive integer.

Reference load (ohms) — Reference load in ohms
1 (default) | positive scalar in ohms

Specify the reference load that the power meter uses to compute power values as a real, positive
scalar in ovohms.

Tunable: Yes

Power units — Units of measured power values
dBm (default) | dBW | Watts

Specify the units of the measured power values as one of the following:

• dBm
• dBW
• Watts

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

2 Blocks

2-1122

• Code generation: Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent simulations, as long
as the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution: Simulate model using the MATLAB interpreter. This option shortens
startup time but has slower simulation speed than Code generation.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
Sliding Window Method

In the sliding window method, the power measurement is computed over a finite duration of the
signal. The window length defines the length of the data over which the algorithm computes the
power value. The window moves as the new data comes in. The output for each input sample is the
measurement done over the current sample and the Len – 1 previous samples. Len is the length of the
sliding window in samples. To compute the first Len – 1 outputs, when the window does not have
enough data yet, the algorithm fills the window with zeros. As an example, to compute the average
power when the second input sample comes in, the algorithm fills the window with Len – 2 zeros. The
input signal x is then the two data samples followed by Len – 2 zeros.

For a more detailed example, see “Sliding Window Method”.

If the window is large, the power computed is closer to the stationary power of the data. For data that
does not change rapidly, use a long window to get a smoother measurement. For data that changes
fast, use a smaller window.

Average Power

The average power of the voltage signal is computed using the Sliding Window Method on page 2-
1123 and is given by the following equations:

AvgPowerdBm = 10log10 movAvg x 2 /R + 30

AvgPowerdBW = 10log10 movAvg x 2 /R

AvgPowerWatts = movAvg x 2 /R

where,

 Power Meter

2-1123

• x is the input voltage signal.
• R is the reference load (in ohms) that is used to compute the power value.
• movAvg computes the moving average using the sliding window method. The powermeter object

in MATLAB uses the dsp.MovingAverage object and the Power Meter block in Simulink uses the
Moving Average block.

Peak Power

The peak power of the voltage signal is computed using the Sliding Window Method on page 2-1123
and is given by the following equations:

PeakPowerdBm = 10log10 movMax x 2 /R + 30

PeakPowerdBW = 10log10 movMax x 2 /R

PeakPowerWatts = movMax x 2 /R

where,

• x is the input voltage signal.
• R is the reference load (in ohms) that is used to compute the power value.
• movMax computes the moving maximum using the sliding window method. The powermeter

object in MATLAB uses the dsp.MovingMaximum object and the Power Meter block in Simulink
uses the Moving Maximum block.

Peak-to-Average Power Ratio

The peak-to-average power ratio of the voltage signal is computed using the Sliding Window Method
on page 2-1123 and is given by the following equations:

pkAvgPwrdBm = 10log10 movMax x 2 /movAvg x 2

pkAvgPwrdBW = 10log10 movMax x 2 /movAvg x 2

pkAvgPwrWatts = movMax x 2 /movAvg x 2

where,

• x is the input voltage signal.
• movAvg computes the moving average using the sliding window method. The powermeter object

in MATLAB uses the dsp.MovingAverage object and the Power Meter block in Simulink uses the
Moving Average block.

• movMax computes the moving maximum using the sliding window method. The powermeter
object in MATLAB uses the dsp.MovingMaximum object and the Power Meter block in Simulink
uses the Moving Maximum block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

2 Blocks

2-1124

See Also
Objects
powermeter

Blocks
Moving Average | Moving Maximum | Spectrum Estimator | Spectrum Analyzer

Introduced in R2021a

 Power Meter

2-1125

Pseudoinverse
Compute Moore-Penrose pseudoinverse of matrix

Library
Math Functions / Matrices and Linear Algebra / Matrix Inverses

dspinverses

Description
The Pseudoinverse block computes the Moore-Penrose pseudoinverse of input matrix A.

[U,S,V] = svd(A,0) % Equivalent MATLAB code

The pseudoinverse of A is the matrix A† such that

A† = VS†U∗

where U and V are orthogonal matrices, and S is a diagonal matrix. The pseudoinverse has the
following properties:

• AA† = (AA†)∗

• A†A = (A†A)∗

• AA†A = A
• A†AA† = A†

Parameters
Show error status port

Select to enable the E output port, which reports a failure to converge. The possible values you
can receive on the port are:

• 0 — The pseudoinverse calculation converges.
• 1 — The pseudoinverse calculation does not converge.

If the pseudoinverse calculation fails to converge, the output at port X is an undefined matrix of
the correct size.

Simulate using
Type of simulation to run. You can set this parameter to:

2 Blocks

2-1126

• Interpreted execution (default)

Simulate model using the MATLAB interpreter. This option shortens startup time. For this
block, the simulation speed in this mode is faster than in Code generation.

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but the simulation
speed increases with subsequent simulations.

References
Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins
University Press, 1996.

Supported Data Types
Port Supported Data Types
A • Double-precision floating point

• Single-precision floating point
X • Double-precision floating point

• Single-precision floating point
E • Boolean

See Also
Cholesky Inverse DSP System Toolbox
LDL Inverse DSP System Toolbox
LU Inverse DSP System Toolbox
Singular Value Decomposition DSP System Toolbox
inv MATLAB

See “Matrix Inverses” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

 Pseudoinverse

2-1127

Pulse Shaping Filter (Obsolete)
(Removed) Design pulse shaping filter

Compatibility

Note The Pulse Shaping Filter block has been removed from DSP System Toolbox block library.
Existing instances of the Pulse Shaping Filter block will continue to operate. For new models, use the
Raised Cosine Receive Filter and Raised Cosine Transmit Filter blocks from the Communications
Toolbox library. These blocks replace the functionality of Pulse Shaping Filter block, when Filter
Type is set to Decimator and Interpolator, respectively.

Library
Filtering / Filter Designs

dspfdesign

Description
This block brings the filter design capabilities of the filterbuilder function to the Simulink
environment.

Dialog Box
See “Pulse-shaping Filter Design —Main Pane” on page 5-623 for more information about the
parameters of this block. The Data Types and Code panes are not available for blocks in the DSP
System Toolbox Filter Designs library.

Parameters of this block that do not change filter order or structure are tunable.

2 Blocks

2-1128

View filter response
This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox
product. You can use the tool to display:

• Magnitude response, phase response, and group delay in the frequency domain.
• Impulse response and step response in the time domain.

 Pulse Shaping Filter (Obsolete)

2-1129

• Pole-zero information.

The tool also helps you evaluate filter performance by providing information about filter order,
stability, and phase linearity. For more information on FVTool, see the Signal Processing Toolbox
documentation.

Filter Specifications

In this group, you specify the shape and length of the filter.

Pulse shape
Select the shape of the impulse response from the following options:

• Raised Cosine
• Square Root Raised Cosine
• Gaussian

Order mode
This specification is only available for raised cosine and square root raised cosine filters. For
these filters, select one of the following options:

• Minimum— This option will result in the minimum-length filter satisfying the user-specified
Frequency specifications.

• Specify order—This option allows the user to construct a raised cosine or square root
cosine filter of a specified order by entering an even number in the Order input box. The
length of the impulse response will be Order+1 .

• Specify symbols—This option enables the user to specify the length of the impulse
response in an alternative manner. If Specify symbols is chosen, the Order input box
changes to the Number of symbols input box.

Samples per symbol
Specify the oversampling factor. Increasing the oversampling factor guards against aliasing and
improves the FIR filter approximation to the ideal frequency response. If Order is specified in
Number of symbols, the filter length will be Number of symbols*Samples per symbol+1.
The product Number of symbols*Samples per symbol must be an even number.

If a Gaussian filter is specified, the filter length must be specified in Number of symbols and
Samples per symbol. The product Number of symbols*Samples per symbol must be an even
number. The filter length will be Number of symbols*Samples per symbol+1.

Frequency specifications

In this group, you specify the frequency response of the filter. For raised cosine and square root
raised cosine filters, the frequency specifications include:

Rolloff factor
The rolloff factor takes values in the range [0,1]. The smaller the rolloff factor, the steeper the
transition in the stopband.

Frequency units
The frequency units are normalized by default. If you specify units other than normalized, the
block assumes that you wish to specify an input sampling frequency, and enables this input box.
The choice of frequency units are: Normalized (0 to 1), Hz, kHz, MHz, GHz

2 Blocks

2-1130

For a Gaussian pulse shape, the available frequency specifications are:

Bandwidth-time product
This option allows the user to specify the width of the Gaussian filter. Note that this is
independent of the length of the filter. The bandwidth-time product (BT) must be a positive real
number. Smaller values of the bandwidth-time product result in larger pulse widths in time and
steeper stopband transitions in the frequency response.

Frequency units
The frequency units are normalized by default. If you specify units other than normalized, the
block assumes that you wish to specify an input sampling frequency, and enables this input box.
The choice of frequency units are: Normalized (0 to 1), Hz, kHz, MHz, GHz

Magnitude specifications

If the Order mode is specified as minimum, the magnitude units may be selected from:

• dB — Specify the magnitude in decibels (default).
• Linear — Specify the magnitude in linear units.

Algorithm

The only design method available for FIR pulse-shaping filters is the window method.

Filter Implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. FIR filters use direct-form structure.

Use basic elements to enable filter customization
Select this check box to implement the filter as a subsystem of basic Simulink blocks. Clear the
check box to implement the filter as a high-level subsystem. By default, this check box is cleared.

The high-level implementation provides better compatibility across various filter structures,
especially filters that would contain algebraic loops when constructed using basic elements. On
the other hand, using basic elements enables the following optimization parameters:

• Optimize for zero gains — Terminate chains that contain Gain blocks with a gain of zero.
• Optimize for unit gains — Remove Gain blocks that scale by a factor of one.
• Optimize for delay chains — Substitute delay chains made up of n unit delays with a single

delay by n.
• Optimize for negative gains — Use subtraction in Sum blocks instead of negative gains in

Gain blocks.

Optimize for unit-scale values
Select this check box to scale unit gains between sections in SOS filters. This parameter is
available only for SOS filters.

Input processing
Specify how the block should process the input. The available options may vary depending on he
settings of the Filter Structure and Use basic elements for filter customization parameters.
You can set this parameter to one of the following options:

 Pulse Shaping Filter (Obsolete)

2-1131

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Note The Inherited (this choice will be removed — see release notes) option
will be removed in a future release. See “Frame-Based Processing” in the DSP System Toolbox
Release Notes for more information.

Rate options
When the Filter type parameter specifies a multirate filter, select the rate processing rule for the
block from following options:

• Enforce single-rate processing — When you select this option, the block maintains the
sample rate of the input.

• Allow multirate processing — When you select this option, the block adjusts the rate at
the output to accommodate an increased or reduced number of samples. To select this option,
you must set the Input processing parameter to Elements as channels (sample
based).

Use symbolic names for coefficients
Select this check box to enable the specification of coefficients using MATLAB variables. The
available coefficient names differ depending on the filter structure. Using symbolic names allows
tuning of filter coefficients in generated code. By default, this check box is cleared.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

See Also
Blocks
Raised Cosine Receive Filter | Raised Cosine Transmit Filter

Introduced in R2009b

2 Blocks

2-1132

QR Factorization
Factor arbitrary matrix into unitary and upper triangular components

Library
Math Functions / Matrices and Linear Algebra / Matrix Factorizations

dspfactors

Description
The QR Factorization block uses a sequence of Householder transformations to triangularize the
input matrix A. The block factors a column permutation of the M-by-N input matrix A as

Ae = QR

The column-pivoted matrix Ae contains the columns of A permuted as indicated by the contents of
length-N permutation vector E.

Ae = A(:,E) % Equivalent MATLAB code

The block selects a column permutation vector E, which ensures that the diagonal elements of matrix
R are arranged in order of decreasing magnitude.

ri + 1, j + 1 < ri, j i = j

The size of matrices Q and R depends on the setting of the Output size parameter:

• When you select Economy for the output size, Q is an M-by-min(M,N) unitary matrix, and R is a
min(M,N)-by-N upper-triangular matrix.

[Q R E] = qr(A,0) % Equivalent MATLAB code
• When you select Full for the output size, Q is an M-by-M unitary matrix, and R is a M-by-N

upper-triangular matrix.

[Q R E] = qr(A) % Equivalent MATLAB code

The block treats length-M unoriented vector input as an M-by-1 matrix.

QR factorization is an important tool for solving linear systems of equations because of good error
propagation properties and the invertibility of unitary matrices:

Q –1 = Q'

where Q' is the complex conjugate transpose of Q.

 QR Factorization

2-1133

Unlike LU and Cholesky factorizations, the matrix A does not need to be square for QR factorization.
However, QR factorization requires twice as many operations as LU Factorization (Gaussian
elimination).

Examples
The Output size parameter of the QR factorization block has two settings: Economy and Full. When
the M-by-N input matrix A has dimensions such that M > N, the dimensions of output matrices Q and
R differ depending on the setting of the Output size parameter. If, however, the size of the input
matrix A is such that M ≤ N, output matrices Q and R have the same dimensions, regardless of
whether the Output size is set to Economy or Full.

The input to the QR Factorization block in the following model is a 5-by-2 matrix A. When you change
the setting of the Output size parameter from Economy to Full, the dimensions of the output given
by the QR Factorization block also change.

1 Open the model by typing ex_qrfactorization_ref at the MATLAB command line.
2 Double-click the QR Factorization block, set the Output size parameter to Economy, and run the

model.

The QR Factorization block outputs a 5-by-2 matrix Q and a 2-by-2 matrix R.
3 Change the Output size parameter of the QR Factorization block to Full and rerun the model.

2 Blocks

2-1134

matlab:ex_qrfactorization_ref

The QR Factorization block outputs a 5-by-5 matrix Q and a 5-by-2 matrix R.

Parameters
Output size

Specify the size of output matrices Q and R:

• Economy — When this output size is selected, the block outputs an M-by-min(M,N) unitary
matrix Q and a min(M,N)-by-N upper-triangular matrix R.

• Full — When this output size is selected, the block outputs an M-by-M unitary matrix Q and a
M-by-N upper-triangular matrix R.

Simulate using

• Interpreted execution (default)

Simulate model using the MATLAB interpreter. This option shortens startup time and has
faster simulation speed compared to Code generation.

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
subsequent simulations.

References
Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins
University Press, 1996.

 QR Factorization

2-1135

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Blocks
Cholesky Factorization | LU Factorization | QR Solver | Singular Value Decomposition

Functions
qr

Topics
“Matrix Factorizations”

Introduced before R2006a

2 Blocks

2-1136

QR Solver
Find minimum-norm-residual solution to AX=B

Library
Math Functions / Matrices and Linear Algebra / Linear System Solvers

dspsolvers

Description
The QR Solver block solves the linear system AX=B, which can be overdetermined, underdetermined,
or exactly determined. The system is solved by applying QR factorization to the M-by-N matrix, A, at
the A port. The input to the B port is the right side M-by-L matrix, B. The block treats length-M
unoriented vector input as an M-by-1 matrix.

The output at the x port is the N-by-L matrix, X. X is chosen to minimize the sum of the squares of the
elements of B-AX. When B is a vector, this solution minimizes the vector 2-norm of the residual (B-AX
is the residual). When B is a matrix, this solution minimizes the matrix Frobenius norm of the
residual. In this case, the columns of X are the solutions to the L corresponding systems AXk=Bk,
where Bk is the kth column of B, and Xk is the kth column of X.

X is known as the minimum-norm-residual solution to AX=B. The minimum-norm-residual solution is
unique for overdetermined and exactly determined linear systems, but it is not unique for
underdetermined linear systems. Thus when the QR Solver is applied to an underdetermined system,
the output X is chosen such that the number of nonzero entries in X is minimized.

Parameters
Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time and has faster
simulation speed compared to Code generation.

• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink generates C
code for the block. The C code is reused for subsequent simulations, as long as the model does not
change. This option requires additional startup time but provides faster subsequent simulations.

 QR Solver

2-1137

Algorithm
QR factorization factors a column-permuted variant (Ae) of the M-by-N input matrix A as

Ae = QR

where Q is a M-by-min(M,N) unitary matrix, and R is a min(M,N)-by-N upper-triangular matrix.

The factored matrix is substituted for Ae in

AeX = Be

and

QRX = Be

is solved for X by noting that Q-1 = Q* and substituting Y = Q*Be. This requires computing a matrix
multiplication for Y and solving a triangular system for X.

RX = Y

Supported Data Types
• Double-precision floating point
• Single-precision floating point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Blocks
Levinson-Durbin | LDL Solver | LU Solver | QR Factorization | SVD Solver

Topics
“Linear System Solvers”

Introduced before R2006a

2 Blocks

2-1138

Queue
Store inputs in FIFO register

Library
Signal Management / Buffers

dspbuff3

Description
The Queue block stores a sequence of input samples in a first in, first out (FIFO) register. The register
capacity is set by the Register size parameter, and inputs can be scalars, vectors, or matrices.

The block pushes the input at the In port onto the end of the queue when a trigger event is received
at the Push port. When a trigger event is received at the Pop port, the block pops the first element
off the queue and holds the Out port at that value. The first input to be pushed onto the queue is
always the first to be popped off.

A trigger event at the optional Rst port empties the queue contents. When you select Clear output
port on reset, then a trigger event at the Rst port empties the queue and sets the value at the Out

 Queue

2-1139

port to zero. This setting also applies when a disabled subsystem containing the Queue block is
reenabled; the Out port value is only reset to zero in this case when you select Clear output port on
reset.

When you select the Allow direct feedthrough check box and two or more of the control input ports
are triggered at the same time step, the operations are executed in the following order:

1 Rst
2 Push
3 Pop

When you clear the Allow direct feedthrough check box and two or more of the control input ports
are triggered at the same time step, the operations are executed in the following order:

1 Rst
2 Pop
3 Push

The rate of the trigger signal must be the same as the rate of the data signal input. You specify the
triggering event for the Push, Pop, and Rst ports by the Trigger type pop-up menu:

• Rising edge — Triggers execution of the block when the trigger input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero; see the following figure

• Falling edge — Triggers execution of the block when the trigger input does one of the
following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero; see the following figure

2 Blocks

2-1140

• Either edge — Triggers execution of the block when the trigger input is a Rising edge or
Falling edge (as described above).

• Non-zero sample — Triggers execution of the block at each sample time that the trigger input
is not zero.

Note If your model contains any referenced models that use a Queue block with the Push onto full
register parameter set to Dynamic reallocation, you cannot simulate your top-level model in
Simulink Accelerator mode.

The Push onto full register parameter specifies the block's behavior when a trigger is received at
the Push port but the register is full. The Pop empty register parameter specifies the block's
behavior when a trigger is received at the Pop port but the register is empty. The following options
are available for both cases:

• Ignore — Ignore the trigger event, and continue the simulation.
• Warning — Ignore the trigger event, but display a warning message in the MATLAB Command

Window.
• Error — Display an error dialog box and terminate the simulation.

Note The Push onto full register and Pop empty register parameters are diagnostic parameters.
Like all diagnostic parameters on the Configuration Parameters dialog box, they are set to Ignore in
the code generated for this block by Simulink Coder code generation software.

The Push onto full register parameter additionally offers the Dynamic reallocation option, which
dynamically resizes the register to accept as many additional inputs as memory permits. To find out
how many elements are on the queue at a given time, enable the Num output port by selecting the
Show number of register entries port parameter.

Note When Dynamic reallocation is selected, the System target file parameter on the Code
Generation pane of the Model Configuration Parameters dialog box must be set to grt_malloc.tlc
– Generic Real-Time Target with dynamic memory allocation.

 Queue

2-1141

Examples
Example 1

The table below illustrates the Queue block's operation for a Register size of 4, Trigger type of
Either edge, and Clear output port on reset enabled. Because the block triggers on both rising
and falling edges in this example, each transition from 1 to 0 or 0 to 1 in the Push, Pop, and Rst
columns below represents a distinct trigger event. A 1 in the Empty column indicates an empty
queue, while a 1 in the Full column indicates a full queue.

In Push Pop Rst Queue Out Empty Full Num
1 0 0 0 0 1 0 0

2 1 0 0 0 0 0 1

3 0 0 0 0 0 0 2

4 1 0 0 0 0 0 3

5 0 0 0 0 0 1 4

6 0 1 0 2 0 0 3

7 0 0 0 3 0 0 2

8 0 1 0 4 0 0 1

9 0 0 0 5 1 0 0

10 1 0 0 5 0 0 1

11 0 0 0 5 0 0 2

12 1 0 1 0 0 0 1

Note that at the last step shown, the Push and Rst ports are triggered simultaneously. The Rst
trigger takes precedence, and the queue is first cleared and then pushed.

Parameters
Register size

The number of entries that the FIFO register can hold.
Trigger type

The type of event that triggers the block's execution. The rate of the trigger signal must be the
same as the rate of the data signal input.

Push onto full register
Response to a trigger received at the Push port when the register is full. Inputs to this port must
have the same built-in data type as inputs to the Pop and Rst input ports.

2 Blocks

2-1142

When Dynamic reallocation is selected, the System target file parameter on the Code
Generation pane of the Model Configuration Parameters dialog box must be set to
grt_malloc.tlc – Generic Real-Time Target with dynamic memory allocation.

Pop empty register
Response to a trigger received at the Pop port when the register is empty. Inputs to this port
must have the same built-in data type as inputs to the Push and Rst input ports.

Show empty register indicator port
Enable the Empty output port, which is high (1) when the queue is empty, and low (0) otherwise.

Show full register indicator port
Enable the Full output port, which is high (1) when the queue is full, and low (0) otherwise. The
Full port remains low when you select Dynamic reallocation from the Push onto full
register parameter.

Show number of register entries port
Enable the Num output port, which tracks the number of entries currently on the queue. When
inputs to the In port are double-precision values, the outputs from the Num port are double-
precision values. Otherwise, the outputs from the Num port are 32-bit unsigned integer values.

Show reset port to clear internal stack buffer
Enable the Rst input port, which empties the queue when the trigger specified by the Trigger
type is received. Inputs to this port must have the same built-in data type as inputs to the Push
and Pop input ports.

Clear output port on reset
Reset the Out port to zero, in addition to clearing the queue, when a trigger is received at the
Rst input port.

Allow direct feedthrough
When you select this check box, the input data is available immediately at the output port of the
block. You can turn off direct feedthrough and delay the input data by an extra frame by clearing
the Allow direct feedthrough check box.

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

 Queue

2-1143

Port Supported Data Types
Push • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type as inputs to the Pop and
Rst input ports

Pop • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type as inputs to the Push and
Rst input ports.

Rst • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type as inputs to the Push and
Pop input ports.

Out • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Empty • Double-precision floating point
• Boolean

Full • Double-precision floating point
• Boolean

Num • Double-precision floating point

The block outputs a double-precision floating-point value at this port when the data
type of the In port is double-precision floating-point.

• 32-bit unsigned integers

The block outputs a 32-bit unsigned integer value at this port when the data type
of the In port is anything other than double-precision floating-point.

2 Blocks

2-1144

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The following limitations apply:

• Generated code relies on memcpy or memset functions (string.h) under certain conditions.
• When Dynamic reallocation is selected, the System target file parameter on the Code

Generation pane of the Configuration Parameters dialog box must be set to grt_malloc.tlc -
Generic Real-Time Target with dynamic memory allocation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Buffer | Delay Line | Stack

Topics
“Queues”

Introduced before R2006a

 Queue

2-1145

Random Source
Generate randomly distributed values
Library: DSP System Toolbox / Sources

Description
The Random Source block generates a frame of M values drawn from a uniform or Gaussian
pseudorandom distribution. Specify M in the Samples per frame parameter.

Ports
Output

Port_1 — Signal of random values
scalar | vector | matrix

Signal of random values with uniform or Gaussian (normal) distribution.
Data Types: single | double

Parameters
Source type — Uniform or Gaussian
Uniform (default) | Gaussian

The distribution from which to draw the random values, Uniform or Gaussian.

When you set the Source type parameter to Uniform, the output samples are drawn from a uniform
distribution whose minimum and maximum values are specified by the Minimum and Maximum
parameters, respectively. All values in this range are equally likely to be selected. A length-N vector
specified for one or both of these parameters generates an N-channel output (M-by-N matrix)
containing a unique random distribution in each channel.

For example, specify

• Minimum = [0 0 -3 -3]
• Maximum = [10 10 20 20]

to generate a four-channel output whose first and second columns contain random values in the
range [0, 10], and whose third and fourth columns contain random values in the range [-3, 20]. When
you specify only one of the Minimum and Maximum parameters as a vector, the block scalar
expands the other parameter so it is the same length as the vector.

When you set the Source type parameter to Gaussian, you must also set the Method parameter,
which determines the method by which the block computes the output.

Method — Method of computing Gaussian random values
Ziggurat (default) | Sum of uniform values

2 Blocks

2-1146

The method by which the block computes the Gaussian random values:

• Ziggurat — Produces Gaussian random values by using the ziggurat method.
• Sum of uniform values — Produces Gaussian random values by adding and scaling uniformly

distributed random signals based on the central limit theorem. This theorem states that the
probability distribution of the sum of a sufficiently high number of random variables approaches
the Gaussian distribution. You must set the Number of uniform values to sum parameter, which
determines the number of uniformly distributed random numbers to sum to produce a single
Gaussian random value.

For both settings of the Method parameter, the output samples are drawn from the normal
distribution defined by the Mean and Variance parameters. A length-N vector specified for one or
both of the Mean and Variance parameters generates an N-channel output (M-by-N frame matrix)
containing a distinct random distribution in each column. When you specify only one of these
parameters as a vector, the block scalar expands the other parameter so it is the same length as the
vector.

Dependencies

To enable this parameter, set Source type to Gaussian. For more information, see “Source type” on
page 2-0 .

Number of uniform values to sum — Number of uniform values to sum
12 (default)

The number of uniformly distributed random values to sum to compute a single number in a Gaussian
random distribution.

Dependencies

To enable this parameter, set Source type to Gaussian and Method to Sum of uniform values.
For more information, see “Source type” on page 2-0 .

Minimum — Minimum value of uniform distribution
0 (default) | scalar | vector

The minimum value in the uniform distribution specified as a finite scalar or vector.

Tunable: Yes

Dependencies

To enable this parameter, set Source type to Uniform.

Limitations

Tunable (Simulink) in Simulation mode only.

Maximum — Maximum value of uniform distribution
1 (default) | scalar | vector

The maximum value in the uniform distribution specified as a finite scalar or vector.

Tunable: Yes

 Random Source

2-1147

Dependencies

To enable this parameter, set Source type to Uniform.

Limitations

Tunable (Simulink) in Simulation mode only.

Mean — Mean value of Gaussian distribution
0 (default) | scalar | vector

The mean of the Gaussian (normal) distribution specified as a finite scalar or vector.

Tunable: Yes

Dependencies

To enable this parameter, set Source type to Gaussian.

Limitations

Tunable (Simulink) in Simulation mode only.

Variance — Variance of Gaussian distribution
1 (default) | scalar | vector

The variance of the Gaussian (normal) distribution.

Dependencies

To enable this parameter, set Source type to Gaussian.

Limitations

Tunable (Simulink) in Simulation mode only.

Repeatability — Repeatability of block output
Specify seed (default) | Repeatable | Not repeatable

The Repeatability parameter determines if the block outputs the same signal each time you run the
simulation. You can set the parameter to one of the following options:

• Repeatable — Outputs the same signal each time you run the simulation. The first time you run
the simulation, the block randomly selects an initial seed. The block reuses these same initial
seeds every time you rerun the simulation.

• Specify seed — Outputs the same signal each time you run the simulation. Every time you run
the simulation, the block uses the initial seeds specified in the Initial seed parameter. Also see
“Initial seed” on page 2-0 .

• Not repeatable — Does not output the same signal each time you run the simulation. Every
time you run the simulation, the block randomly selects an initial seed.

Initial seed — Initial seed for random number generator
1 (default) | scalar | vector

The initial seed(s) to use for the random number generator specified as a finite scalar or vector. The
generator produces an identical sequence of pseudorandom numbers each time it is executed with a
particular initial seed.

2 Blocks

2-1148

To specify the N initial seeds for an N-channel real-valued output, set the Complexity parameter to
Real and provide one of the following in the Initial seed parameter:

• Length-N vector of initial seeds — Uses each vector element as an initial seed for the
corresponding channel in the N-channel output.

• Single scalar — Uses the scalar to generate N random values as the seeds for the N-channel
output.

To specify the initial seeds for an N-channel complex-valued output, set the Complexity parameter to
Complex and provide one of the following in the Initial seed parameter:

• Length-N vector of initial seeds — Uses each vector element as an initial seed for generating N
channels of real random values. The block uses pairs of adjacent values in each of these channels
as the real and imaginary components of the final output, as illustrated in the following figure.

• Single scalar — Uses the scalar to generate N random values as the seeds for generating N
channels of real random values. The block uses pairs of adjacent values in each of these channels
as the real and imaginary components of the final output, as illustrated in the following figure.

Tunable: Yes

Dependencies

To enable this parameter, set Repeatability to Specify seed.

Limitations

Tunable (Simulink) in Simulation mode only.

Inherit output port attributes — Inherit output port parameters from downstream
block
off (default) | on

When you select this check box, the block inherits the sample mode, sample time, output data type,
complexity, and signal dimensions of the signal from the downstream block. When you select this
check box, the Sample mode, Sample time, Samples per frame, Output data type, and
Complexity parameters are disabled.

Suppose that you want to back propagate a 1-D vector. The output of the Random Source block is a 1-
D vector of length M, where length M is inherited from the downstream block. When the Minimum,

 Random Source

2-1149

Maximum, Mean, or Variance parameter specifies N channels, the 1-D vector output contains M/N
samples from each channel. An error occurs in this case when M is not an integer multiple of N.

Suppose that you want to back propagate a M-by-N signal. When N>1, your signal has N channels.
When N = 1, your signal has M channels. The value of the Minimum, Maximum, Mean, or
Variance parameter can be a scalar or a vector of length equal to the number of channels. You can
specify these parameters as either row or column vectors, except when the signal is a row vector. In
this case, the Minimum, Maximum, Mean, or Variance parameter must also be specified as a row
vector.

Sample mode — Discrete or continuous
Discrete (default) | Continuous

The sample mode, specified as Continuous or Discrete.

When you set Sample mode to Discrete, the Sample time parameter value, Ts, specifies the
random sequence sample period. In this mode, the block generates the number of samples specified
by the Samples per frame parameter value, M, and outputs this frame with a period of MTs.

When you set Sample mode to Continuous, the block is configured for continuous-time operation,
and the Sample time and Samples per frame parameters are disabled. Note that many DSP System
Toolbox blocks do not accept continuous-time inputs.
Dependencies

To enable this parameter, clear the Inherit output port attributes check box.

Sample time — Output sample period
1 (default) | scalar

The sample period, Ts, of the random output sequence when the Sample mode is Discrete,
specified as a positive, finite, scalar. The output frame period is MTs.
Dependencies

To enable this parameter, clear the Inherit output port attributes check box and set Sample mode
to Discrete.

Samples per frame — Samples per output frame
1 (default) | positive integer

The number of samples, M, in each output frame, specified as a positive integer. The output frame
period is MTs.
Dependencies

To enable this parameter, clear the Inherit output port attributes check box and set Sample mode
to Discrete.

Output data type — Output data type
Double (default) | Single

The data type of the output, specified as single-precision or double-precision.
Dependencies

To enable this parameter, clear the Inherit output port attributes check box.

2 Blocks

2-1150

Complexity — Complexity of output
Real (default) | Complex

The complexity of the output, specified as Real or Complex. These settings control all channels of
the output, so real and complex data cannot be combined in the same output. For complex output
with a Uniform distribution, the real and imaginary components in each channel are both drawn
from the same uniform random distribution, defined by the Minimum and Maximum parameters for
that channel.

For complex output with a Gaussian distribution, the real and imaginary components in each
channel are drawn from normal distributions with different means. In this case, the Mean parameter
for each channel should specify a complex value; the real component of the Mean parameter
specifies the mean of the real components in the channel, while the imaginary component specifies
the mean of the imaginary components in the channel. When either the real or imaginary component
is omitted from the Mean parameter, a default value of 0 is used for the mean of that component.

For example, a Mean parameter setting of [5+2i 0.5 3i] generates a three-channel output with
the following means.

Channel 1 mean real = 5 imaginary = 2
Channel 2 mean real = 0.5 imaginary = 0
Channel 3 mean real = 0 imaginary = 3

For complex output, the Variance parameter, σ2, specifies the total variance for each output channel.
This is the sum of the variances of the real and imaginary components in that channel.

σ2 = σRe
2 + σIm

2

The specified variance is equally divided between the real and imaginary components, so that

σRe
2 = σ2

2

σIm
2 = σ2

2

Dependencies

To enable this parameter, clear the Inherit output port attributes check box.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

 Random Source

2-1151

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Blocks
Discrete Impulse | Maximum | Minimum | Signal From Workspace | Standard Deviation | Variance |
Constant | Random Number | Signal Generator

Functions
rand | randn | RandStream

Topics
“Estimate the Transfer Function of an Unknown System”

Introduced before R2006a

2 Blocks

2-1152

Real Cepstrum
Compute real cepstrum of input

Library
Transforms

dspxfrm3

Description
The Real Cepstrum block computes the real cepstrum of each column in the real-valued M-by-N input
matrix, u. The block treats each column of the input as an independent channel containing M
consecutive samples. The block always processes unoriented vector inputs as a single channel, and
returns the result as a length-M column vector. The block does not accept complex-valued inputs.

The output is a real Mo-by-N matrix, where you specify Mo in the FFT length parameter. Each output
column contains the length-Mo real cepstrum of the corresponding input column.

y = real(ifft(log(abs(fft(u,Mo)))))

or, more compactly,

y = rceps(u,Mo)

When you select the Inherit FFT length from input port dimensions check box, the output frame
size matches the input frame size (Mo=M).

The output port rate is the same as the input port rate.

Parameters
Inherit FFT length from input port dimensions

When you select this check box, the output frame size matches the input frame size.
FFT length

The number of frequency points at which to compute the FFT, which is also the output frame size,
Mo. This parameter is visible only when you clear the Inherit FFT length from input port
dimensions check box.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

 Real Cepstrum

2-1153

See Also
Complex Cepstrum DSP System Toolbox
DCT DSP System Toolbox
FFT DSP System Toolbox
rceps Signal Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-1154

Reciprocal Condition
Compute reciprocal condition of square matrix in 1-norm

Library
Math Functions / Matrices and Linear Algebra / Matrix Operations

dspmtrx3

Description
The Reciprocal Condition block computes the reciprocal of the condition number for a square input
matrix A.

y = rcond(A) % Equivalent MATLAB code

or

y = 1
κ = 1

A−1
1 A 1

where κ is the condition number (κ ≥ 1), and y is the scalar output (0 ≤ y < 1).

The matrix 1-norm, A 1, is the maximum column-sum in the M-by-M matrix A.

A 1 = 1 ≤ j ≤ M
max

∑
i = 1

M
ai j

For a 3-by-3 matrix:

 Reciprocal Condition

2-1155

References
Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins
University Press, 1996.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Matrix 1-Norm DSP System Toolbox
Normalization DSP System Toolbox
rcond MATLAB

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-1156

Repeat
Resample input at higher rate by repeating values

Library
Signal Operations

dspsigops

Description
The Repeat block upsamples each channel of the Mi-by-N input to a rate L times higher than the input
sample rate. To do so, the block repeats each consecutive input sample L times at the output. You
specify the integer L in the Repetition count parameter.

You can use the Repeat block inside of triggered subsystems when you set the Rate options
parameter to Enforce single-rate processing.

Frame-Based Processing

When you set the Input processing parameter to Columns as channels (frame based), the
block upsamples each column of the input over time. In this mode, the block can perform either
single-rate or multirate processing. You can use the Rate options parameter to specify how the block
upsamples the input:

• When you set the Rate options parameter to Enforce single-rate processing, the input
and output of the block have the same sample rate. In this mode, the block outputs a signal with a
proportionally larger frame size than the input. The block upsamples each channel independently
by repeating each row of the input matrix L times at the output. For upsampling by a factor of L,
the output frame size is L times larger than the input frame size (Mo = Mi*L), but the input and
output frame rates are equal.

For an example of single-rate upsampling, see the Single-Rate Processing example in
“Examples” on page 2-1158.

• When you set the Rate options parameter to Allow multirate processing, the block treats
an Mi-by-N matrix input as N independent channels. The block generates the output at the faster
(upsampled) rate by using a proportionally shorter frame period at the output port than at the
input port. For L repetitions of the input, the output frame period is L times shorter than the input
frame period (Tfo = Tfi/L). In this mode, the output always has the same frame size as the input.

See Multirate, Frame-Based Processing example in “Examples” on page 2-1158 for an
example that uses the Repeat block in this mode.

Sample-Based Processing

When you set the Input processing parameter to Elements as channels (sample based), the
block treats an M-by-N matrix input as M*N independent channels, and upsamples each channel over

 Repeat

2-1157

time. The block upsamples each channel over time such that the output sample rate is L times higher
than the input sample rate (Tso = Tsi/L). In this mode, the output is always the same size as the input.

Zero Latency

The Repeat block has zero-tasking latency for all single-rate operations. The block is in a single-rate
mode if you set the Repetition count parameter to 1 or if you set the Input processing parameter
to Columns as channels (frame based) and the Rate options parameter to Enforce
single-rate processing.

The Repeat block also has zero-tasking latency for multirate operations if you run your model in
Simulink single-tasking mode.

Zero-tasking latency means that the block repeats the first input (received at t=0) for the first L
output samples, the second input for the next L output samples, and so on.

Nonzero Latency

The Repeat block has tasking latency for multirate, multitasking operation:

• In multirate, sample-based processing mode, the initial condition for each channel is repeated for
the first L output samples. The channel's first input appears as output sample L+1. The Initial
conditions parameter can be an Mi-by-N matrix containing one value for each channel, or a
scalar to be applied to all signal channels.

• In multirate, frame-based processing mode, the first row of the initial condition matrix is repeated
for the first L output samples, the second row of the initial condition matrix is repeated for the
next L output samples, and so on. The first row of the first input matrix appears in the output as
sample MiL+1. The Initial conditions parameter can be an Mi-by-N matrix, or a scalar to be
repeated across all elements of the Mi-by-N matrix.

Note For more information on latency and the Simulink tasking modes, see “Excess Algorithmic
Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation” (Simulink Coder).

Examples
Example 2.1. Example: Single-Rate Processing

In the ex_repeat_ref2 model, the Repeat block resamples a single-channel input with a frame size of
16. The block repeats input values to upsample the input by a factor of 4. Thus, the output of the
block has a frame size of 64. The input and output frame rates are identical.

2 Blocks

2-1158

matlab:ex_repeat_ref2

Example 2.2. Example: Multirate, Frame-Based Processing

In the ex_repeat_ref1 model, the Repeat block resamples a single-channel input with a frame period
of 1 second. The block repeats input values to upsample the input by a factor of 4. Thus, the output of
the block has a frame period of 0.25 seconds. The input and output frame sizes are identical.

 Repeat

2-1159

matlab:ex_repeat_ref1

Parameters
Repetition count

The integer number of times, L, that the input value is repeated at the output. This is the factor
by which the block increases the output frame size or sample rate.

Input processing
Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel. In this mode, the block can perform single-
rate or multirate processing.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel. In this mode, the block always performs
multirate processing.

Rate options
Specify the method by which the block upsamples the input. You can select one of the following
options:

• Enforce single-rate processing — When you select this option, the block maintains the
input sample rate by increasing the output frame size by a factor of L. To select this option,
you must set the Input processing parameter to Columns as channels (frame based).

• Allow multirate processing — When you select this option, the block resamples the
signal such that the output sample rate is L times faster than the input sample rate.

Initial conditions
The value with which the block is initialized for cases of nonzero latency; a scalar or matrix. This
parameter appears only when you configure the block to perform multirate processing.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

2 Blocks

2-1160

See Also
FIR Interpolation DSP System Toolbox
Upsample DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Best Practices

The Repeat block uses fewer hardware resources than the Upsample block. If your algorithm does
not require zero-padding upsampling, use the Repeat block.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

Input processing set to Columns as channels (frame based) is not supported.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 Repeat

2-1161

RLS Adaptive Filter (Obsolete)
Compute filter estimates for input using RLS adaptive filter algorithm

Library
dspobslib

Description

Note The RLS Adaptive Filter block is still supported but is likely to be obsoleted in a future release.
We strongly recommend replacing this block with the RLS Filter block.

The RLS Adaptive Filter block recursively computes the recursive least squares (RLS) estimate of the
FIR filter coefficients.

The corresponding RLS filter is expressed in matrix form as

k(n) = λ−1P(n− 1)u(n)
1 + λ−1uH(n)P(n− 1)u(n)

y(n) = wH(n− 1)u(n)
e(n) = d(n)− y(n)
w(n) = w(n− 1) + k(n)e*(n)

P(n) = λ−1P(n− 1)− λ−1k(n)uH(n)P(n− 1)

where λ-1 denotes the reciprocal of the exponential weighting factor. The variables are as follows

Variable Description
n The current algorithm iteration
u(n) The buffered input samples at step n
P(n) The inverse correlation matrix at step n
k(n) The gain vector at step n
w(n) The vector of filter-tap estimates at step n
y(n) The filtered output at step n
e(n) The estimation error at step n
d(n) The desired response at step n
λ The exponential memory weighting factor

2 Blocks

2-1162

The block icon has port labels corresponding to the inputs and outputs of the RLS algorithm. Note
that inputs to the In and Err ports must be sample-based scalars. The signal at the Out port is a
scalar, while the signal at the Taps port is a sample-based vector.

Block Ports Corresponding Variables
In u, the scalar input, which is internally buffered into the vector u(n)
Out y(n), the filtered scalar output
Err e(n), the scalar estimation error
Taps w(0), the vector of filter-tap estimates

An optional Adapt input port is added when you select the Adapt input check box in the dialog box.
When this port is enabled, the block continuously adapts the filter coefficients while the Adapt input
is nonzero. A zero-valued input to the Adapt port causes the block to stop adapting, and to hold the
filter coefficients at their current values until the next nonzero Adapt input.

The implementation of the algorithm in the block is optimized by exploiting the symmetry of the
inverse correlation matrix P(n). This decreases the total number of computations by a factor of two.

The FIR filter length parameter specifies the length of the filter that the RLS algorithm estimates.
The Memory weighting factor corresponds to λ in the equations, and specifies how quickly the
filter “forgets” past sample information. Setting λ=1 specifies an infinite memory; typically,
0.95≤λ≤1.

The Initial value of filter taps specifies the initial value w(0) as a vector, or as a scalar to be
repeated for all vector elements. The initial value of P(n) is

I 1
σ 2

where you specifyσ 2 in the Initial input variance estimate parameter.

Examples
The rlsdemo example illustrates a noise cancellation system built around the RLS Adaptive Filter
block.

Parameters
FIR filter length

The length of the FIR filter.
Memory weighting factor

The exponential weighting factor, in the range [0,1]. A value of 1 specifies an infinite memory.
Tunable (Simulink).

Initial value of filter taps
The initial FIR filter coefficients.

Initial input variance estimate
The initial value of 1/P(n).

 RLS Adaptive Filter (Obsolete)

2-1163

matlab:rlsdemo

Adapt input
Enables the Adapt port.

References
Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Kalman Adaptive Filter
(Obsolete)

DSP System Toolbox

LMS Adaptive Filter (Obsolete) DSP System Toolbox

See “Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter” for related information.

Introduced in R2008b

2 Blocks

2-1164

RLS Filter
Compute filtered output, filter error, and filter weights for given input and desired signal using RLS
adaptive filter algorithm

Library
Filtering / Adaptive Filters

dspadpt3

Description
The RLS Filter block recursively computes the least squares estimate (RLS) of the FIR filter weights.
The block estimates the filter weights, or coefficients, needed to convert the input signal into the
desired signal. Connect the signal you want to filter to the Input port. The input signal can be a scalar
or a column vector. Connect the signal you want to model to the Desired port. The desired signal
must have the same data type, complexity, and dimensions as the input signal. The Output port
outputs the filtered input signal. The Error port outputs the result of subtracting the output signal
from the desired signal.

The corresponding RLS filter is expressed in matrix form as

k(n) = λ−1P(n− 1)u(n)
1 + λ−1uH(n)P(n− 1)u(n)

y(n) = w(n− 1)u(n)
e(n) = d(n)− y(n)

w(n) = w(n− 1) + kH(n)e(n)

P(n) = λ−1P(n− 1)− λ−1k(n)uH(n)P(n− 1)

where λ-1 denotes the reciprocal of the exponential weighting factor. The variables are as follows

Variable Description
n The current time index
u(n) The vector of buffered input samples at step n
P(n) The inverse covariance matrix at step n
k(n) The gain vector at step n
w(n) The vector of filter-tap estimates at step n

 RLS Filter

2-1165

Variable Description
y(n) The filtered output at step n
e(n) The estimation error at step n
d(n) The desired response at step n
λ The forgetting factor

The implementation of the algorithm in the block is optimized by exploiting the symmetry of the
inverse covariance matrix P(n). This decreases the total number of computations by a factor of two.

Use the Filter length parameter to specify the length of the filter weights vector.

The Forgetting factor (0 to 1) parameter corresponds to λ in the equations. It specifies how quickly
the filter “forgets” past sample information. Setting λ=1 specifies an infinite memory. Typically,
1− 1

2L < λ < 1, where L is the filter length. You can specify a forgetting factor using the input port,
Lambda, or enter a value in the Forgetting factor (0 to 1) parameter in the Block Parameters: RLS
Filter dialog box.

Enter the initial filter weights, w(0), as a vector or a scalar for the Initial value of filter weights
parameter. When you enter a scalar, the block uses the scalar value to create a vector of filter
weights. This vector has length equal to the filter length and all of its values are equal to the scalar
value.

The initial value of P(n) is

1
σ2 I

where you specify σ2 in the Initial input variance estimate parameter.

When you select the Adapt port check box, an Adapt port appears on the block. When the input to
this port is nonzero, the block continuously updates the filter weights. When the input to this port is
zero, the filter weights remain at their current values.

When you want to reset the value of the filter weights to their initial values, use the Reset input
parameter. The block resets the filter weights whenever a reset event is detected at the Reset port.
The reset signal rate must be the same rate as the data signal input.

From the Reset input list, select None to disable the Reset port. To enable the Reset port, select one
of the following from the Reset input list:

• Rising edge — Triggers a reset operation when the Reset input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero; see the following figure

2 Blocks

2-1166

• Falling edge — Triggers a reset operation when the Reset input does one of the following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero; see the following figure

• Either edge — Triggers a reset operation when the Reset input is a Rising edge or Falling
edge, as described above

• Non-zero sample — Triggers a reset operation at each sample time that the Reset input is not
zero

Select the Output filter weights check box to create a Wts port on the block. For each iteration, the
block outputs the current updated filter weights from this port.

Examples
The rlsdemo example illustrates a noise cancellation system built around the RLS Filter block.

Parameters
Filter length

Enter the length of the FIR filter weights vector.
Specify forgetting factor via

Select Dialog to enter a value for the forgetting factor in the Block parameters: RLS Filter
dialog box. Select Input port to specify the forgetting factor using the Lambda input port.

 RLS Filter

2-1167

matlab:rlsdemo

Forgetting factor (0 to 1)
Enter the exponential weighting factor in the range 0 ≤λ≤1. A value of 1 specifies an infinite
memory. Tunable (Simulink).

Initial value of filter weights
Specify the initial values of the FIR filter weights.

Initial input variance estimate
The initial value of 1/P(n).

Adapt port
Select this check box to enable the Adapt input port.

Reset input
Select this check box to enable the Reset input port.

Output filter weights
Select this check box to export the filter weights from the Wts port.

References
Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons, 1996.

Supported Data Types
• Double-precision floating point
• Single-precision floating point

See Also
Kalman Adaptive Filter
(Obsolete)

DSP System Toolbox

LMS Filter DSP System Toolbox
Block LMS Filter DSP System Toolbox
Fast Block LMS Filter DSP System Toolbox

See “Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-1168

RMS
Root mean square value of input or sequence of inputs
Library: DSP System Toolbox / Statistics

Description
The RMS block computes the root mean square (RMS) value of each row or column of the input, or
along vectors of a specified dimension of the input. It can also compute the RMS value of the entire
input. You can specify the dimension using the Find the RMS value over parameter. The RMS block
can also track the RMS value in a sequence of inputs over a period of time. To track the RMS value in
a sequence of inputs, select the Running RMS parameter.

Note The Running mode in the RMS block will be removed in a future release. To compute the
running RMS in Simulink, use the Moving RMS block instead.

Ports
Input

In — Data input
vector | matrix | N-D array

The block accepts real-valued or complex-valued multichannel and multidimensional inputs.

This port is unnamed until you select the Running RMS parameter and set the Reset port
parameter to any option other than None.
Data Types: single | double

Rst — Reset port
scalar

Specify the reset event that causes the block to reset the running RMS. The sample time of the Rst
input must be a positive integer multiple of the input sample time.

Dependencies

To enable this port, select the Running RMS parameter and set the Reset port parameter to any
option other than None.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Port_1 — RMS value along the specified dimension
scalar | vector | matrix | N-D array

 RMS

2-1169

The data type of the output matches the data type of the input.

When you do not select the Running RMS parameter, the block computes the RMS value in each
row or column of the input, or along vectors of a specified dimension of the input. It can also compute
the RMS value of the entire input at each individual sample time. Each element in the output array y
is the RMS value of the corresponding column, row, or entire input. The output array y depends on
the setting of the Find the RMS value over parameter. Consider a three-dimensional input signal of
size M-by-N-by-P. When you set Find the RMS value over to:

• Entire input — The output at each sample time is a scalar that contains the RMS value of the
M-by-N-by-P input matrix.

• Each row — The output at each sample time consists of an M-by-1-by-P array, where each
element contains the RMS value of each vector over the second dimension of the input. For an M-
by-N matrix input, the output at each sample time is an M-by-1 column vector.

• Each column — The output at each sample time consists of a 1-by-N-by-P array, where each
element contains the RMS value of each vector over the first dimension of the input. For an M-by-
N matrix input, the output at each sample time is a 1-by-N row vector.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column vectors.
• Specified dimension — The output at each sample time depends on the value of the

Dimension parameter. If you set the Dimension to 1, the output is the same as when you select
Each column. If you set the Dimension to 2, the output is the same as when you select Each
row. If you set the Dimension to 3, the output at each sample time is an M-by-N matrix
containing the RMS value of each vector over the third dimension of the input.

When you select Running RMS, the block tracks the RMS value of each channel in a time sequence
of inputs. In this mode, you must also specify a value for the Input processing parameter.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each element yijk of the output contains the RMS value of the element uijk for
all inputs since the last reset.

When a reset event occurs, the running RMS yijk in the current frame is reset to the element uijk.
• Columns as channels (frame based) — The block treats each column of the input as a

separate channel. This option does not support input signals with more than two dimensions. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the RMS value of the elements in the jth column of all inputs since the last
reset, up to and including the element uij of the current input.

When a reset event occurs, the running RMS for each channel becomes the RMS value of all the
samples in the current input frame, up to and including the current input sample.

Data Types: single | double

Parameters
Main Tab

Running RMS — Option to select running RMS
off (default) | on

2 Blocks

2-1170

When you select the Running RMS parameter, the block tracks the RMS value of each channel in a
time sequence of inputs.

Find the RMS value over — Dimension over which the block computes the RMS value
Each column (default) | Entire input | Each row | Specified dimension

• Each column — The block outputs the RMS value over each column.
• Each row — The block outputs the RMS value over each row.
• Entire input — The block outputs the RMS value over the entire input.
• Specified dimension — The block outputs the RMS value over the dimension specified in the

Dimension parameter.

Dependencies

To enable this parameter, clear the Running RMS parameter.

Dimension — Custom dimension
1 (default) | scalar

Specify the dimension (one-based value) of the input signal over which the RMS value is computed.
The value of this parameter must be greater than 0 and less than the number of dimensions in the
input signal.

Dependencies

To enable this parameter, set Find the RMS value over to Specified dimension.

Input processing — Method to process the input in running mode
Columns as channels (frame based) (default) | Elements as channels (sample based)

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support input signals with more than two dimensions. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the RMS value of the elements in the jth column of all inputs since the last
reset, up to and including the element uij of the current input.

When a reset event occurs, the running RMS for each channel becomes the RMS value of all the
samples in the current input frame, up to and including the current input sample.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each element yijk of the output contains the RMS value of the element uijk for
all inputs since the last reset.

When a reset event occurs, the running RMS yijk in the current frame is reset to the element uijk.

Variable-Size Inputs

When your inputs are of variable size, and you select the Running RMS parameter, then:

• If you set the Input processing parameter to Elements as channels (sample based),
the state is reset.

• If you set the Input processing parameter to Columns as channels (frame based),
then:

 RMS

2-1171

• When the input size difference is in the number of channels (number of columns), the state
is reset.

• When the input size difference is in the length of channels (number of rows), there is no
reset and the running operation is carried out as usual.

Dependencies

To enable this parameter, select the Running RMS parameter.

Reset port — Reset event
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

The block resets the running RMS whenever a reset event is detected at the optional Rst port. The
reset sample time must be a positive integer multiple of the input sample time.

When a reset event occurs while the Input processing parameter is set to Elements as channels
(sample based), the running RMS for each channel is initialized to the value in the corresponding
channel of the current input. Similarly, when the Input processing parameter is set to Columns as
channels (frame based), the running RMS for each channel becomes the RMS value of all the
samples in the current input frame, up to and including the current input sample.

Use this parameter to specify the reset event.

• None — Disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to either a positive value or zero.
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero.

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

• Falls from a positive value to a negative value or zero.
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero.

2 Blocks

2-1172

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge.

• Non-zero sample — Triggers a reset operation at each sample time, when the Rst input is not
zero.

Note When running simulations in the Simulink multitasking mode, reset signals have a one-sample
latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port
rate before the block applies the reset. For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” and “Time-Based Scheduling and Code
Generation” (Simulink Coder).

Dependencies

To enable this parameter, select the Running RMS parameter.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
Root Mean Square (RMS)

The RMS value of a discrete-time signal is the square root of the arithmetic mean of the squares of
the signal sample values.

For an M-by-N input matrix u, the RMS value of the jth column of the input is given by:

y j =
∑

i = 1

M
ui j

2

M 1 ≤ j ≤ N

 RMS

2-1173

Algorithms
Root Mean Square (RMS)

When you clear the Running RMS parameter in the block and specify a dimension, the block
produces results identical to the MATLAB rms function, when it is called as y = rms(u,D).

• u is the data input.
• D is the dimension.
• y is the RMS value.

The RMS value along the entire input is identical to calling the rms function as y = rms(u(:)).

When inputs are complex, the block computes the RMS value of the magnitude of the complex input.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
rms

Objects
dsp.MovingRMS

Blocks
Moving RMS | Mean

Introduced before R2006a

2 Blocks

2-1174

Sample and Hold
Sample and hold input signal
Library: DSP System Toolbox / Signal Operations

DSP System Toolbox HDL Support / Signal Operations

Description
The Sample and Hold block acquires the input at the signal port whenever it receives a trigger event

at the trigger port (marked by). The block then holds the output at the acquired input value until
the next triggering event occurs.

Ports
Input

In — Signal port
scalar | vector | matrix

The signal port can accept data in the form of a scalar, vector, or matrix.
Dependencies

This port is named In<Lo> when you select the Latch (buffer) input parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Trigger — Trigger port
scalar

The trigger input must be a sample-based scalar with sample rate equal to the input frame rate at the
signal port. You specify the trigger event using the Trigger type parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Sample and hold value
scalar | vector | matrix

Sample and hold output, returned as a scalar, vector, or a matrix. The block acquires input at the
signal port whenever it receives a trigger event at the trigger port. The block then holds the acquired
data until the next triggering event occurs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

 Sample and Hold

2-1175

Parameters
Trigger type — Type of trigger
Rising edge (default) | Falling edge | Either edge

The type of event that triggers the block to acquire the input signal:

• Rising edge –– The trigger input rises from a negative value or zero to a positive value.
• Falling edge –– The trigger input falls from a positive value or zero to a negative value.
• Either edge –– The trigger input either rises from a negative value or zero to a positive value or

falls from a positive value or zero to a negative value.

Initial condition — Block output prior to first trigger event
0 (default) | scalar | vector | matrix

Specify the block's output before the first trigger event using the Initial condition parameter. When
the acquired input is an M-by-N matrix, the Initial condition can be an M-by-N matrix or a scalar
repeated across all elements of the matrix. When the input is a length-M unoriented vector, the
Initial condition can be a length-M row or column vector, or a scalar to be repeated across all
elements of the vector.

Latch (buffer) input — Latch buffer input
off (default) | on

If you select the Latch (buffer) input check box, the block outputs the value of the input from the
previous time step until the next triggering event occurs. To use this block in a loop, select this check
box.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL code for the Sample and Hold block is generated as a Triggered Subsystem. Similar restrictions
apply to both blocks. See “Using Triggered Subsystems for HDL Code Generation” (HDL Coder).

2 Blocks

2-1176

HDL Block Properties

For HDL block property descriptions, see “HDL Block Properties: General” (HDL Coder).

Best Practices

When using the Sample and Hold block in models targeted for HDL code generation, consider the
following:

• For synthesis results to match Simulink results, drive the trigger port with registered logic (with a
synchronous clock) on the FPGA.

• It is good practice to put a unit delay on the output signal. Doing so prevents the code generator
from inserting extra bypass registers in the HDL code.

• The use of triggered subsystems, such as the Sample and Hold block, can affect synthesis results
in the following ways:

• In some cases, the system clock speed can drop by a small percentage.
• Generated code uses more resources, scaling with the number of triggered subsystem

instances.

Restrictions

The Sample and Hold block must meet the following conditions:

• The DUT (i.e., the top-level subsystem for which code is generated) must not be the Sample and
Hold block.

• The trigger signal must be a scalar.
• The data type of the trigger signal must be either boolean or ufix1.
• The output of the Sample and Hold block must have an initial value of 0.
• The input, output, and trigger signal of the Sample and Hold block must run at the same rate. If

one of the input or the trigger signals is an output of a Signal Builder block, see “Using the Signal
Builder Block” (HDL Coder) for how to match rates.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Downsample | N-Sample Switch

Introduced before R2006a

 Sample and Hold

2-1177

Sample-Rate Converter
Multistage sample-rate conversion

Library
Signal Operations

dspsigops

Description
The Sample-Rate Converter block implements a multistage FIR sample-rate converter. This
multistage FIR converter converts the rate of each channel of the input signal from the input sample
rate to the output sample rate. Multistage implementations minimize the amount of computation
required by the sample-rate conversions by first reducing the sample rate of the input signal. Next,
the block determines the optimal number of decimators and interpolators required based on the
parameters specified in the block dialog box. Then the block designs filters in the individual stages
accordingly.

The input frame size must be a multiple of the decimation factor of the rate converter. The decimation
factor depends on the parameter setting of the converter. To determine the decimation factor, in the
block dialog box, click View Info .

Each column of a two-dimensional input signal is treated as a separate channel. If the input is a two-
dimensional signal, the first dimension represents the channel length (or frame size), and the second
dimension represents the number of channels. If the input is a one-dimensional signal, then it is
interpreted as a single channel. The inputs to the block can be single or double, and real or complex.

This block supports SIMD code generation. For details, see “Code Generation” on page 2-1181.

Parameters
Sample rate of input signal (Hz)

Sample rate of the input signal, specified as a positive scalar in Hz. The input sample rate must
be greater than the bandwidth of interest. The default is 48e3.

Sample rate of output signal (Hz)
Sample rate of the output signal, specified as a positive scalar in Hz. The output sample rate must
be greater than the bandwidth of interest. The default is 96e3.

Tolerance for output sample rate
Maximum allowed tolerance for output sample rate, specified as a positive scalar in the range
[0,1]. The default is 0.

2 Blocks

2-1178

The actual output sample rate varies but is within the specified range. For example, suppose that
you set the Tolerance for output sample rate, to 0.01. Then the actual output sample rate is in
the range given by sample rate of output signal ± 1%. This flexibility allows for a simpler filter
design.

Two-sided bandwidth of interest (Hz)
Two-sided bandwidth of interest (after the rate of conversion), specified as a positive scalar in Hz.
The default is 40e3.

Stopband attenuation (dB)
Minimum amount of attenuation for aliased components in the stopband, specified as a positive
scalar in dB. The default is 80. This parameter is the minimum amount by which any aliasing
involved in the process is attenuated.

View Filter Response
Opens the Filter Visualization Tool FVTool and displays the magnitude/phase response of the
Sample-Rate Converter. The response is based on the block dialog box parameters. Changes
made to these parameters update FVTool.

To update the magnitude response while FVTool is running, modify the dialog box parameters and
click Apply.

View Info
Displays information about the filter system of the Sample-Rate Converter block:

• Overall Interpolation Factor

 Sample-Rate Converter

2-1179

• Overall Decimation Factor
• Number of Filters
• Multiplication per Input Sample
• Number of Coefficients
• Filters

The button brings the functionality of the info method into the Simulink environment.
Simulate using

Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

2 Blocks

2-1180

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

See Also
dsp.SampleRateConverter DSP System Toolbox
Farrow Rate Converter DSP System Toolbox

Algorithms
This block brings the capabilities of the dsp.SampleRateConverter System object to the Simulink
environment.

For information on the algorithms used by this block, see the “Algorithms” on page 4-1209 section of
dsp.SampleRateConverter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Sample-Rate Converter block supports SIMD code generation using Intel AVX2 technology under
these conditions:

• For upsampling, the ratio of output sample rate to input sample rate must be an integer.
• For downsampling, the ratio of input sample rate to output sample rate must be an integer.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

Introduced in R2015b

 Sample-Rate Converter

2-1181

Scalar Quantizer (Obsolete)
Convert input signal into set of quantized output values or index values, or convert set of index values
into quantized output signal

Library
dspobslib

Description

Note The Scalar Quantizer block is still supported but is likely to be obsoleted in a future release. We
strongly recommend replacing this block with the Scalar Quantizer Encoder block or the Scalar
Quantizer Decoder block.

The Scalar Quantizer block has three modes of operation. In Encoder mode, the block maps each
input value to a quantization region by comparing the input value to the quantizer boundary points
defined in the Boundary points parameter. The block outputs the index of the associated region. In
Decoder mode, the block transforms the input index values into quantized output values, defined in
the Codebook parameter. In the Encoder and Decoder mode, the block performs both the
encoding and decoding operations. The block outputs the index values and the quantized output
values.

You can select how you want to enter the Boundary points and/or Codebook values using the
Source of quantizer parameters. When you select Specify via dialog, type the parameters into
the block parameters dialog box. Select Input ports, and port B and/or C appears on the block. In
Encoder and Encoder and decoder mode, the input to port B is used as the Boundary points. In
Decoder and Encoder and decoder mode, the input to port C is used as the Codebook.

In Encoder and Encoder and decoder mode, the Boundary points are the values used to break
up the input signal into regions. Each region is specified by an index number. When your first
boundary point is -inf and your last boundary point is inf, your quantizer is unbounded. When your
first and last boundary point is finite, your quantizer is bounded. When only your first or last
boundary point is -inf or inf, your quantizer is semi-bounded.

For instance, when your input signal ranges from 0 to 11, you can create a bounded quantizer using
the following boundary points:

[0 0.5 3.7 5.8 6.0 11]

The boundary points can have equal or varied spacing. Any input values between 0 and 0.5 would
correspond to index 0. Input values between 0.5 and 3.7 would correspond to index 1, and so on.

2 Blocks

2-1182

Suppose you wanted to create an unbounded quantizer with the following boundary points:

[-inf 0 2 5.5 7.1 10 inf]

When your input signal has values less than 0, these values would be assigned to index 0. When your
input signal has values greater than 10, these values would be assigned to index 6.

When an input value is the same as a boundary point, the Tie-breaking rule parameter defines the
index to which the value is assigned. When you want the input value to be assigned to the lower index
value, select Choose the lower index. To assign the input value with the higher index, select
Choose the higher index.

In Decoder and Encoder and decoder mode, the Codebook is a vector of quantized output values
that correspond to each index value.

In Encoder and Encoder and decoder mode, the Searching method determines how the
appropriate quantizer index is found. Select Linear and the Scalar Quantizer block compares the
input value to the first region defined by the first two boundary points. When the input value does not
fall within this region, the block then compares the input value to the next region. This process
continues until the input value is determined to be within a region and is associated with the
appropriate index value. The computational cost of this process is of the order P, where P is the
number of boundary points.

Select Binary for the Searching method and the block compares the input value to the middle
value of the boundary points vector. When the input value is larger than this boundary point, the
block discards the boundary points that are lower than this middle value. The block then compares
the input value to the middle boundary point of the new range, defined by the remaining boundary
points. This process continues until the input value is associated with the appropriate index value.
The computational cost of this process is of the order log2P, where P is the number of boundary
points. In most cases, the Binary option is faster than the Linear option.

In Decoder mode, the input to this block is a vector of index values, where 0 ≤ index <N and N is the
length of the codebook vector. Use the Action for out of range input parameter to determine what
happens when an input index value is out of this range. When you want any index values less than 0
to be set to 0 and any index values greater than or equal to N to be set to N -1, select Clip. When
you want to be warned when any index values less than 0 are set to 0 and any index values greater
than or equal to N are set to N -1, select Clip and warn. When you want the simulation to stop and
display an error when the index values are out of range, select Error.

In Encoder and decoder mode, you can select the Output the quantization error check box.
The quantization error is the difference between the input value and the quantized output value.
Select this check box to output the quantization error for each input value from the Err port on this
block.

Data Type Support

In Encoder mode, the input data values and the boundary points can be the input to the block at
ports U and B. Similarly, in Encoder and decoder mode, the codebook values can also be the input
to the block at port C. The data type of the input data values, boundary points, and codebook values
can be double, single, uint8, uint16, uint32, int8, int16, or int32. In Decoder mode, the
input to the block can be the index values and the codebook values. The data type of the index input
to the block at port Idx can be uint8, uint16, uint32, int8, int16, or int32. The data type of the
codebook values can be double, single, uint8, uint16, uint32, int8, int16, or int32.

 Scalar Quantizer (Obsolete)

2-1183

In Encoder mode, the output of the block is the index values. In Encoder and decoder mode, the
output can also include the quantized output values and the quantization error. In Encoder and
Encoder and decoder mode, use the Output index data type parameter to specify the data type
of the index output from the block at port Idx. The data type of the index output can be uint8,
uint16, uint32, int8, int16, or int32. The data type of the quantized output and the quantization
error can be double, single, uint8, uint16, uint32, int8, int16, or int32. In Decoder mode,
the output of the block is the quantized output values. Use the Output data type parameter to
specify the data type of the quantized output values. The data type can be double, single, uint8,
uint16, uint32, int8, int16, int32.

Note The input data, codebook values, boundary points, quantization error, and the quantized output
values must have the same data type whenever they are present in any of the quantizer modes.

Parameters
Quantizer mode

Specify Encoder, Decoder, or Encoder and decoder as a mode of operation.
Source of quantizer parameters

Choose Specify via dialog to type the parameters into the block parameters dialog box.
Select Input ports to specify the parameters using the block's input ports. In Encoder and
Encoder and decoder mode, input the Boundary points using port B. In Decoder and
Encoder and decoder mode, input the Codebook values using port C.

Boundary points
Enter a vector of values that represent the boundary points of the quantizer regions. Tunable
(Simulink).

Codebook
Enter a vector of quantized output values that correspond to each index value. Tunable
(Simulink).

Searching method
Select Linear and the block finds the region in which the input value is located using a linear
search. Select Binary and the block finds the region in which the input value is located using a
binary search.

Tie-breaking rule
Set this parameter to determine the behavior of the block when the input value is the same as the
boundary point. When you select Choose the lower index, the input value is assigned to
lower index value. When you select Choose the higher index, the value is assigned to the
higher index.

Action for out of range input
Choose the block's behavior when an input index value is out of range, where 0 ≤ index <N and
N is the length of the codebook vector. Select Clip, when you want any index values less than 0
to be set to 0 and any index values greater than or equal to N to be set to N -1. Select Clip and
warn, when you want to be warned when any index values less than 0 are set to 0 and any index
values greater than or equal to N are set to N -1. Select Error, when you want the simulation to
stop and display an error when the index values are out of range.

2 Blocks

2-1184

Output the quantization error
In Encoder and decoder mode, select this check box to output the quantization error from the
Err port on this block.

Output index data type
In Encoder and Encoder and decoder mode, specify the data type of the index output from
the block at port Idx. The data type can be uint8, uint16, uint32, int8, int16, or int32.
This parameter becomes visible when you select the Show additional parameters check box.

Output data type
In Decoder mode, specify the data type of the quantized output. The data type can be uint8,
uint16, uint32, int8, int16, int32, single, or double. This parameter becomes visible
when you select Specify via dialog for the Source of quantizer parameters and you select
the Show additional parameters check box.

References
Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic
Publishers, 1992.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

For more information on what data types are supported for each quantizer mode, see “Data Type
Support” on page 2-1183.

See Also
Quantizer Simulink
Scalar Quantizer Decoder DSP System Toolbox
Scalar Quantizer Encoder DSP System Toolbox
Uniform Encoder DSP System Toolbox
Uniform Decoder DSP System Toolbox

Introduced in R2008b

 Scalar Quantizer (Obsolete)

2-1185

Scalar Quantizer Decoder
Convert each index value into quantized output value

Library
Quantizers

dspquant2

Description
The Scalar Quantizer Decoder block transforms the zero-based input index values into quantized
output values. The set of all possible quantized output values is defined by the Codebook values
parameter.

Use the Codebook values parameter to specify a matrix containing all possible quantized output
values. You can select how you want to enter the codebook values using the Source of codebook
parameter. When you select Specify via dialog, type the codebook values into the block
parameters dialog box. When you select Input port, port C appears on the block. The block uses
the input to port C as the Codebook values parameter.

The input to this block is a vector of integer index values, where 0 ≤ index <N and N is the number of
distinct codeword vectors in the codebook matrix. Use the Action for out of range index value
parameter to determine what happens when an input index value is outside this range. When you
want any index value less than 0 to be set to 0 and any index value greater than or equal to N to be
set to N -1, select Clip. When you want to be warned when clipping occurs, select Clip and warn.
When you want the simulation to stop and the block to display an error when the index values are out
of range, select Error.

Data Type Support

The data type of the index values input at port I can be uint8, uint16, uint32, int8, int16, or
int32. The data type of the codebook values input at port C can be double, single, or Fixed-point.

The output of the block is the quantized output values. If, for the Source of codebook parameter,
you select Specify via dialog, the Codebook and output data type parameter appears. You
can use this parameter to specify the data type of the codebook and quantized output values. In this
case, the data type of the output values can be Same as input, double, single, Fixed-point, or
User-defined. If, for the Source of codebook parameter you select Input port, the quantized
output values have the same data type as the codebook values input at port C.

2 Blocks

2-1186

Dialog Box
The Main pane of the Scalar Quantizer Decoder block dialog appears as follows.

Action for out of range index value
Use this parameter to determine the block's behavior when an input index value is out of range,
where 0 ≤ index <N and N is the length of the codebook vector. Select Clip, when you want any
index values less than 0 to be set to 0 and any index values greater than or equal to N to be set to
N -1. Select Clip and warn, when you want to be warned when clipping occurs. Select Error,
when you want the simulation to stop and the block to display an error when the index values are
outside the range.

Source of codebook
Choose Specify via dialog to type the codebook values into the block parameters dialog box.
Select Input port to specify the codebook using input port C.

Codebook values
Enter a vector of quantized output values that correspond to each index value. Tunable
(Simulink).

The Data Types pane of the Scalar Quantizer Decoder block dialog appears as follows.

 Scalar Quantizer Decoder

2-1187

Codebook and output data type
Specify the data type of the codebook and quantized output values. You can select one of the
following:

• A rule that inherits a data type, for example, Inherit: Same as input.
• A built in data type, such as double
• An expression that evaluates to a valid data type, for example, fixdt(1,16)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output data type parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

This parameter is available only when you set the Source of codebook parameter to Specify
via dialog. If you set the Source of codebook parameter to Input port, the output values
have the same data type as the input codebook values.

References
Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic
Publishers, 1992.

Supported Data Types
Port Supported Data Types
I • 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

2 Blocks

2-1188

Port Supported Data Types
C • Double-precision floating point

• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers

Q(U) • Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

For more information on what data types are supported for each quantizer mode, see “Data Type
Support” on page 2-1186.

See Also
Quantizer Simulink
Scalar Quantizer Encoder DSP System Toolbox
Uniform Encoder DSP System Toolbox
Uniform Decoder DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 Scalar Quantizer Decoder

2-1189

Scalar Quantizer Design
(Removed) Start Scalar Quantizer Design Tool (SQDTool) to design scalar quantizer using Lloyd
algorithm

Note The Scalar Quantizer Design block and the associated SQDTool have been removed. For more
information, see “Compatibility Considerations”.

Library
Quantizers

dspquant2

Description
Double-click on the Scalar Quantizer Design block to start SQDTool, a GUI that allows you to design
and implement a scalar quantizer. Based on your input values, SQDTool iteratively calculates the
codebook values that minimize the mean squared error until the stopping criteria for the design
process is satisfied. The block uses the resulting quantizer codebook values and boundary points to
implement your scalar quantizer encoder and/or decoder.

For the Training Set parameter, enter a set of observations, or samples, of the signal you want to
quantize. This data can be any variable defined in the MATLAB workspace including a variable
created using a MATLAB function, such as the default value randn(10000,1).

You have two choices for the Source of initial codebook parameter. Select Auto-generate to have
the block choose the values of the initial codebook vector. In this case, the minimum training set
value becomes the first codeword, and the maximum training set value becomes the last codeword.
Then, the remaining initial codewords are equally spaced between these two values to form a
codebook vector of length N, where N is the Number of levels parameter. When you select User
defined, enter the initial codebook values in the Initial codebook field. Then, set the Source of
initial boundary points parameter. You can select Mid-points to locate the boundary points at the
midpoint between the codewords. To calculate the mid-points, the block internally arranges the initial
codebook values in ascending order. You can also choose User defined and enter your own
boundary points in the Initial boundary points (unbounded) field. Only one boundary point can be
located between two codewords. When you select User defined for the Source of initial
boundary points parameter, the values you enter in the Initial codebook and Initial boundary
points (unbounded) fields must be arranged in ascending order.

Note This block assumes that you are designing an unbounded quantizer. Therefore, the first and
last boundary points are always -inf and inf regardless of any other boundary point values you
might enter.

After you have specified the quantization parameters, the block performs an iterative process to
design the optimal scalar quantizer. Each step of the design process involves using the Lloyd
algorithm to calculate codebook values and quantizer boundary points. Then, the block calculates the
squared quantization error and checks whether the stopping criteria has been satisfied.

2 Blocks

2-1190

The two possible options for the Stopping criteria parameter are Relative threshold and
Maximum iteration. When you want the design process to stop when the fractional drop in the
squared quantization error is below a certain value, select Relative threshold. Then, for
Relative threshold, type the maximum acceptable fractional drop. When you want the design
process to stop after a certain number of iterations, choose Maximum iteration. Then, enter the
maximum number of iterations you want the block to perform in the Maximum iteration field. For
Stopping criteria, you can also choose Whichever comes first and enter a Relative threshold
and Maximum iteration value. The block stops iterating as soon as one of these conditions is
satisfied.

With each iteration, the block quantizes the training set values based on the newly calculated
codebook values and boundary points. When the training point lies on a boundary point, the
algorithm uses the Tie-breaking rules parameter to determine which region the value is associated
with. When you want the training point to be assigned to the lower indexed region, select Lower
indexed codeword. To assign the training point with the higher indexed region, select Higher
indexed codeword.

The Searching methods parameter determines how the block compares the training points to the
boundary points. Select Linear search and SQDTool compares each training point to each
quantization region sequentially. This process continues until all the training points are associated
with the appropriate regions.

Select Binary search for the Searching methods parameter and the block compares the training
point to the middle value of the boundary points vector. When the training point is larger than this
boundary point, the block discards the lower boundary points. The block then compares the training
point to the middle boundary point of the new range, defined by the remaining boundary points. This
process continues until the training point is associated with the appropriate region.

Click Design and Plot to design the quantizer with the parameter values specified on the left side of
the GUI. The performance curve and the staircase character of the quantizer are updated and
displayed in the figures on the right side of the GUI.

Note You must click Design and Plot to apply any changes you make to the parameter values in the
SQDTool dialog box.

SQDTool can export parameter values that correspond to the figures displayed in the GUI. Click the
Export Outputs button, or press Ctrl+E, to export the Final Codebook, Final Boundary Points,
and Error values to the workspace, a text file, or a MAT-file. The Error values represent the mean
squared error for each iteration.

In the Model section of the GUI, specify the destination of the block that will contain the parameters
of your quantizer. For Destination, select Current model to create a block with your parameters in
the model you most recently selected. Type gcs in the MATLAB Command Window to display the
name of your current model. Select New model to create a block in a new model file.

From the Block type list, select Encoder to design a Scalar Quantizer Encoder block. Select
Decoder to design a Scalar Quantizer Decoder block. Select Both to design a Scalar Quantizer
Encoder block and a Scalar Quantizer Decoder block.

In the Encoder block name field, enter a name for the Scalar Quantizer Encoder block. In the
Decoder block name field, enter a name for the Scalar Quantizer Decoder block. When you have a
Scalar Quantizer Encoder and/or Decoder block in your destination model with the same name, select

 Scalar Quantizer Design

2-1191

the Overwrite target block(s) check box to replace the block's parameters with the current
parameters. When you do not select this check box, a new Scalar Quantizer Encoder and/or Decoder
block is created in your destination model.

Click Generate Model. SQDTool uses the parameters that correspond to the current plots to set the
parameters of the Scalar Quantizer Encoder and/or Decoder blocks.

Parameters
Training Set

Enter the samples of the signal you would like to quantize. This data set can be a MATLAB
function or a variable defined in the MATLAB workspace. The typical length of this data vector is
1e6.

Source of initial codebook
Select Auto-generate to have the block choose the initial codebook values. Select User
defined to enter your own initial codebook values.

Number of levels
Enter the length of the codebook vector. For a b-bit quantizer, the length should be N = 2b.

Initial codebook
Enter your initial codebook values. From the Source of initial codebook list, select User
defined in order to activate this parameter.

Source of initial boundary points
Select Mid-points to locate the boundary points at the midpoint between the codebook values.
Choose User defined to enter your own boundary points. From the Source of initial
codebook list, select User defined in order to activate this parameter.

Initial boundary points (unbounded)
Enter your initial boundary points. This block assumes that you are designing an unbounded
quantizer. Therefore, the first and last boundary point are -inf and inf, regardless of any other
boundary point values you might enter. From the Source of initial boundary points list, select
User defined in order to activate this parameter.

Stopping criteria
Choose Relative threshold to enter the maximum acceptable fractional drop in the squared
quantization error. Choose Maximum iteration to specify the number of iterations at which to
stop. Choose Whichever comes first and the block stops the iteration process as soon as the
relative threshold or maximum iteration value is attained.

Relative threshold
Type the value that is the maximum acceptable fractional drop in the squared quantization error.

Maximum iteration
Enter the maximum number of iterations you want the block to perform. From the Stopping
criteria list, select Maximum iteration in order to activate this parameter.

Searching methods
Choose Linear search to use a linear search method when comparing the training points to the
boundary points. Choose Binary search to use a binary search method when comparing the
training points to the boundary points.

2 Blocks

2-1192

Tie-breaking rules
When a training point lies on a boundary point, choose Lower indexed codeword to assign the
training point to the lower indexed quantization region. Choose Higher indexed codeword to
assign the training point to the higher indexed region.

Design and Plot
Click this button to display the performance curve and the staircase character of the quantizer in
the figures on the right side of the GUI. These plots are based on the current parameter settings.

You must click Design and Plot to apply any changes you make to the parameter values in the
SQDTool GUI.

Export Outputs
Click this button, or press Ctrl+E, to export the Final Codebook, Final Boundary Points, and
Error values to the workspace, a text file, or a MAT-file.

Destination
Choose Current model to create a Scalar Quantizer block in the model you most recently
selected. Type gcs in the MATLAB Command Window to display the name of your current model.
Choose New model to create a block in a new model file.

Block type
Select Encoder to design a Scalar Quantizer Encoder block. Select Decoder to design a Scalar
Quantizer Decoder block. Select Both to design a Scalar Quantizer Encoder block and a Scalar
Quantizer Decoder block.

Encoder block name
Enter a name for the Scalar Quantizer Encoder block.

Decoder block name
Enter a name for the Scalar Quantizer Decoder block.

Overwrite target block(s)
When you do not select this check box and a Scalar Quantizer Encoder and/or Decoder block with
the same block name exists in the destination model, a new Scalar Quantizer Encoder and/or
Decoder block is created in the destination model. When you select this check box and a Scalar
Quantizer Encoder and/or Decoder block with the same block name exists in the destination
model, the parameters of these blocks are overwritten by new parameters.

Generate Model
Click this button and SQDTool uses the parameters that correspond to the current plots to set the
parameters of the Scalar Quantizer Encoder and/or Decoder blocks.

References
Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic
Publishers, 1992.

Supported Data Types
• Double-precision floating point

 Scalar Quantizer Design

2-1193

See Also
Quantizer Simulink
Scalar Quantizer Decoder DSP System Toolbox
Scalar Quantizer Encoder DSP System Toolbox
Uniform Encoder DSP System Toolbox
Uniform Decoder DSP System Toolbox

Compatibility Considerations
Scalar Quantizer Design block has been removed

The Scalar Quantizer Design block and the associated SQDTool have been removed.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

2 Blocks

2-1194

Scalar Quantizer Encoder
Encode each input value by associating it with index value of quantization region

Library
Quantizers

dspquant2

Description
The Scalar Quantizer Encoder block maps each input value to a quantization region by comparing the
input value to the quantizer boundary points defined in the Boundary points parameter. The block
outputs the zero-based index of the associated region.

You can select how you want to enter the Boundary points using the Source of quantizer
parameters. When you select Specify via dialog, type the boundary points into the block
parameters dialog box. When you select Input port, port B appears on the block. The block uses
the input to port B as the Boundary points parameter.

Use the Boundary points parameter to specify the boundary points for your quantizer. These values
are used to break up the set of input numbers into regions. Each region is specified by an index
number.

Let N be the number of quantization regions. When the codebook is defined as [c1 c2 c3 ... cN],
and the Boundary points parameter is defined as [p0 p1 p2 p3 ... pN], then
p0<c1<p1<c2 ... p(N-1)<cN<pN for a regular quantizer. When your quantizer is bounded, from
the Partitioning list, select Bounded. You need to specify N+1 boundary points, or [p0 p1 p2
p3 ... pN]. When your quantizer is unbounded, from the Partitioning list, select Unbounded. You
need to specify N-1 boundary points, or[p1 p2 p3 ... p(N-1)]; the block sets p0 equal to -inf
and pN equal to inf.

The block uses the Partitioning parameter to interpret the boundary points you enter. For instance,
to create a bounded quantizer, from the Partitioning list, select Bounded and enter the following
boundary points:

[0 0.5 3.7 5.8 6.0 11]

The block assigns any input values between 0 and 0.5 to index 0, input values between 0.5 and 3.7 to
index 1, and so on. The block assigns any values that are less than 0 to index 0, the lowest index
value. The block assigns any values that are greater than 11 to index 4, the highest index value.

 Scalar Quantizer Encoder

2-1195

To create an unbounded quantizer, from the Partitioning list, select Unbounded and enter the
following boundary points:

[0 0.5 3.7 5.8 6.0 11]

The block assigns any input values between 0 and 0.5 to index 1, input values between 0.5 and 3.7 to
index 2, and so on. The block assigns any input values less than 0 to index 0 and any values greater
than 11 to index 6.

The Searching method parameter determines how the appropriate quantizer index is found. When
you select Linear, the Scalar Quantizer Encoder block compares the input value to the first region
defined by the first two boundary points. When the input value does not fall within this region, the
block then compares the input value to the next region. This process continues until the input value is
determined to be within a region and is associated with the appropriate index value. The
computational cost of this process is of the order P, where P is the number of boundary points.

When you select Binary for the Searching method, the block compares the input value to the
middle value of the boundary points vector. When the input value is larger than this boundary point,
the block discards the boundary points that are lower than this middle value. The block then
compares the input value to the middle boundary point of the new range, defined by the remaining
boundary points. This process continues until the input value is associated with the appropriate index
value. The computational cost of this process is of the order log2P, where P is the number of boundary
points. In most cases, the Binary option is faster than the Linear option.

When an input value is the same as a boundary point, the Tie-breaking rule parameter determines
the region to which the value is assigned. When you want the input value to be assigned to the lower
indexed region, select Choose the lower index. To assign the input value with the higher indexed
region, select Choose the higher index.

Select the Output codeword check box to output the codeword values that correspond to each index
value at port Q(U).

Select the Output the quantization error check box to output the quantization error for each input
value from the Err port on this block. The quantization error is the difference between the input value
and the quantized output value.

When you select either the Output codeword check box or the Output quantization error check
box, you must also enter your codebook values. If, from the Source of quantizer parameters list,
you choose Specify via dialog, use the Codebook parameter to enter a vector of quantized
output values that correspond to each region. If, from the Source of quantizer parameters list, you
choose Input port, use input port C to specify your codebook values.

If, for the Partitioning parameter, you select Bounded, the Output clipping status check box and
the Action for out of range input parameter appear. When you select the Output clipping status
check box, port S appears on the block. Any time an input value is outside the range defined by the
Boundary points parameter, the block outputs a 1 at the S port. When the value is inside the range,
the blocks outputs a 0.

You can use the Action for out of range input parameter to determine the block's behavior when
an input value is outside the range defined by the Boundary points parameter. Suppose the
boundary points for a bounded quantizer are defined as [p0 p1 p2 p3 ... pN] and the possible
index values are defined as [i0 i1 i2 ... i(N-1)], where i0=0 and i0<i1<i2<...<i(N-1).
When you want any input value less than p0 to be assigned to index value i0 and any input values
greater than pN to be assigned to index value i(N-1), select Clip. When you want to be warned

2 Blocks

2-1196

when clipping occurs, select Clip and warn. When you want the simulation to stop and the block to
display an error when the index values are out of range, select Error.

The Scalar Quantizer Encoder block accepts real floating-point and fixed-point inputs. For more
information on the data types accepted by each port, see “Data Type Support” on page 2-1197 or
“Supported Data Types” on page 2-1199.

Data Type Support

The input data values, boundary points, and codebook values can be input to the block at ports U, B,
and C, respectively. The data type of the inputs can be double, single, or Fixed-point.

The outputs of the block can be the index values, the quantized output values, the quantization error,
and the clipping status. Use the Index output data type parameter to specify the data type of the
index output from the block at port I. You can choose int8, uint8, int16, uint16, int32, or
uint32. The data type of the quantized output and the quantization error can be double, single, or
Fixed-point. The clipping status values output at port S are Boolean values.

Note The input data, boundary points, codebook values, quantized output values, and the
quantization error must have the same data type whenever they are present.

Dialog Box
Main Tab

Source of quantizer parameters
Choose Specify via dialog to enter the boundary points and codebook values using the block
parameters dialog box. Select Input port to specify the parameters using the block's input
ports. Input the boundary points and codebook values using ports B and C, respectively.

Partitioning
When your quantizer is bounded, select Bounded. When your quantizer is unbounded, select
Unbounded.

Boundary points
Enter a vector of values that represent the boundary points of the quantizer regions. This
parameter is visible when you select Specify via dialog from the Source of quantizer
parameters list. Tunable (Simulink).

Searching method
When you select Linear, the block finds the region in which the input value is located using a
linear search. When you select Binary, the block finds the region in which the input value is
located using a binary search.

Tie-breaking rule
Set this parameter to determine the behavior of the block when the input value is the same as the
boundary point. When you select Choose the lower index, the input value is assigned to
lower indexed region. When you select Choose the higher index, the value is assigned to the
higher indexed region.

Output codeword
Select this check box to output the codeword values that correspond to each index value at port
Q(U).

 Scalar Quantizer Encoder

2-1197

Output quantization error
Select this check box to output the quantization error for each input value at port Err.

Codebook
Enter a vector of quantized output values that correspond to each index value. If, for the
Partitioning parameter, you select Bounded and your boundary points vector has length N, then
you must specify a codebook of length N-1. If, for the Partitioning parameter, you select
Unbounded and your boundary points vector has length N, then you must specify a codebook of
length N+1.

This parameter is visible when you select Specify via dialog from the Source of quantizer
parameters list and you select either the Output codeword or Output quantization error
check box. Tunable (Simulink).

Output clipping status
When you select this check box, port S appears on the block. Any time an input value is outside
the range defined by the Boundary points parameter, the block outputs a 1 at this port. When
the value is inside the range, the block outputs a 0. This parameter is visible when you select
Bounded from the Partitioning list.

Action for out of range input
Use this parameter to determine the behavior of the block when an input value is outside the
range defined by the Boundary points parameter. Suppose the boundary points are defined as
[p0 p1 p2 p3 ... pN] and the index values are defined as [i0 i1 i2 ... i(N-1)]. When
you want any input value less than p0 to be assigned to index value i0 and any input values
greater than pN to be assigned to index value i(N-1), select Clip. When you want to be warned
when clipping occurs, select Clip and warn. When you want the simulation to stop and the
block to display an error when the index values are out of range, select Error. This parameter is
visible when you select Bounded from the Partitioning list.

Index output data type
Specify the data type of the index output from the block at port I. You can choose int8, uint8,
int16, uint16, int32, uint32, or Inherit via back propagation.

Data Types Tab

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.
Saturate on integer overflow

When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

2 Blocks

2-1198

References
Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic
Publishers, 1992.

Supported Data Types
Port Supported Data Types
U • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

B • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

C • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

I • 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Q(U) • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

Err • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

S • Boolean

For more information on what data types are supported for each quantizer mode, see “Data Type
Support” on page 2-1197.

See Also
Quantizer Simulink
Scalar Quantizer Decoder DSP System Toolbox
Uniform Encoder DSP System Toolbox
Uniform Decoder DSP System Toolbox

 Scalar Quantizer Encoder

2-1199

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

Introduced before R2006a

2 Blocks

2-1200

Short-Time FFT
Nonparametric estimate of spectrum using short-time, fast Fourier transform (FFT) method

Library
Transforms

dspxfrm3

Description
The Short-Time FFT block computes a nonparametric estimate of the spectrum. The block buffers,
applies a window, and zero pads the input signal. The block then takes the FFT of the signal,
transforming it into the frequency domain.

Connect your single-channel analysis window to the w(n) port. For the Analysis window length
parameter, enter the length of the analysis window, W. The block buffers the input signal such that it
has a frame length of W

Connect your single-channel or multichannel input signal to the x(n) port. After the block buffers and
windows this signal, it zero-pads the signal before computing the FFT. For the FFT length parameter,
enter the length to which the block pads the input signal. For the Overlap between consecutive
windows (in samples) parameter, enter the number of samples to overlap each frame of the input
signal.

The block outputs the complex-valued, single-channel or multichannel short-time FFT at port X(n,k).

Fixed-Point Data Types

The following diagram shows the data types used within the Short-Time FFT subsystem block for
fixed-point signals.

The settings for the fixed-point parameters of the Array-Vector Multiply block in the diagram above
are as follows:

• Rounding Mode — Floor

 Short-Time FFT

2-1201

• Saturate on integer overflow — Wrap
• Product output — Inherit via internal rule
• Accumulator — Inherit via internal rule
• Output — Same as first input

The settings for the fixed-point parameters of the FFT block in the diagram above are as follows:

• Rounding Mode — Floor
• Saturate on integer overflow — Wrap
• Sine table — Same word length as input
• Product output — Inherit via internal rule
• Accumulator — Inherit via internal rule
• Output — Inherit via internal rule

See the FFT and Array-Vector Multiply block reference pages for more information.

Examples
The dspstsa example illustrates how to use the Short-Time FFT and Inverse Short-Time FFT blocks
to remove the background noise from a speech signal. To open the dspstsa model, type dspstsa in
the MATLAB command prompt.

Parameters
Analysis window length

Specify the frame length of the analysis window. The Analysis window length must be a positive
integer value greater than one.

Overlap between consecutive windows (in samples)
Enter the number of samples of overlap for each frame of the input signal.

FFT length
Enter the length to which the block pads the input signal.

Supported Data Types
Port Supported Data Types
x(n) • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

w(n) • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

2 Blocks

2-1202

matlab:dspstsa

Port Supported Data Types
X(n,k) • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

References
[1] Quatieri, Thomas E. Discrete-Time Speech Signal Processing. Englewood Cliffs, NJ: Prentice-Hall,

2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Generated code relies on memcpy or memset functions (string.h) under certain conditions.
• When the FFT length is not a power of two, the executable generated from this block relies on

prebuilt dynamic library files (.dll files) included with MATLAB. Use the packNGo function to
package the code generated from this block and all the relevant files in a compressed zip file.
Using this zip file, you can relocate, unpack, and rebuild your project in another development
environment where MATLAB is not installed. For more details, see “How To Run a Generated
Executable Outside MATLAB”.

When the FFT length is a power of two, you can generate standalone C and C++ code from this
block.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Objects
dsp.SpectrumEstimator | dsp.STFT

Blocks
Spectrum Estimator | Inverse Short-Time FFT | Magnitude FFT | Periodogram | Spectrum Analyzer |
Window Function | Yule-Walker Method

Topics
“Spectral Analysis”

Introduced before R2006a

 Short-Time FFT

2-1203

Signal From Workspace
Import signal from MATLAB workspace
Library: DSP System Toolbox / Sources

Description
The Signal From Workspace block imports a signal from the MATLAB workspace into the Simulink
model. The Signal parameter specifies the name of a MATLAB workspace variable containing the
signal to import, or any valid MATLAB expression defining a matrix or 3-D array.

Unlike the Simulink From Workspace block, the Signal From Workspace block holds the output value
constant between successive output frames (that is, no linear interpolation takes place). Also, the
initial signal values are always produced immediately at t=0.

Ports
Output

Port_1 — Signal imported from workspace
scalar | vector | matrix | 3-D array

Signal imported from workspace, as a scalar, vector, matrix, or 3-D array.

When the Signal parameter specifies an M-by-N matrix (M≠1), each of the N columns is treated as a
distinct channel. You specify the frame size in the Samples per frame parameter, Mo. The output is
an Mo-by-N matrix containing Mo consecutive samples from each signal channel. You specify the
output sample period in the Sample time parameter, Ts, and the output frame period is MoTs. For
convenience, an imported row vector (M=1) is treated as a single channel, so the output dimension is
Mo-by-1.

When the Signal parameter specifies an M-by-N-by-P array, each of the P pages (an M-by-N matrix) is
output in sequence with period Ts. The Samples per frame parameter must be set to 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Signal — Signal to import
1:10 (default) | MATLAB workspace variable | MATLAB expression

The name of the MATLAB workspace variable from which to import the signal, or a valid MATLAB
expression specifying the signal.

Sample time — Output sample period
1 (default) | scalar | vector

The sample period, Ts, of the output, specified as a scalar or vector. The output frame period is MoTs.

2 Blocks

2-1204

Samples per frame — Samples per frame
1 (default) | positive integer

The number of samples, Mo, to buffer into each output frame, specified as a positive integer scalar.
This value must be 1 when you specify a 3-D array in the Signal parameter.

Form output after final data value by — Values to output after final imported signal
value
Setting to zero (default) | Holding final value | Cyclic repetition

Specifies the output after all of the specified signal samples have been generated.

• When you specify Setting To Zero, the block generates zero-valued outputs for the duration of
the simulation after generating the last frame of the signal.

• When you specify Holding Final Value, the block repeats the final sample for the duration of
the simulation after generating the last frame of the signal.

• When you specify Cyclic Repetition, the block repeats the signal from the beginning after it
reaches the last sample in the signal. If the frame size you specify in the Samples per frame
parameter does not evenly divide the input length, a buffer block is inserted into the Signal From
Workspace subsystem, and the model becomes multirate. If you do not want your model to become
multirate, make sure that the frame size evenly divides the input signal length.

The block does not extrapolate the imported signal beyond the last sample.

Warn when frame size does not evenly divide input length — Warn when input
length is not an integer multiple of frame size
off (default) | on

Select the Warn when frame size does not evenly divide input length parameter to be alerted
when the input length is not an integer multiple of the frame size. When the input length is not an
integer multiple of the frame size, the model becomes multirate. Use the Model Explorer to turn
these warnings on or off model-wide:

a In the Modeling tab, click Model Explorer.
b In the Search bar of the Model Explorer, search by Property Name for the

ignoreOrWarnInputAndFrameLengths property. Each block with the Warn when frame size
does not evenly divide input length check box appears in the list in the Contents pane.

c Select each of the blocks for which you want to toggle the warning parameter, and select or clear
the check box in the ignoreOrWarnInputAndFrameLengths column.

Dependencies

To enable this parameter set Form output after final data value by to Cyclic Repetition.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no

 Signal From Workspace

2-1205

Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Signal To Workspace | From Workspace | To Workspace | Triggered Signal From Workspace

Objects
dsp.SignalSource | dsp.SignalSink

Topics
“Filter Frames of a Noisy Sine Wave Signal in Simulink”
“Create Signals for Sample-Based Processing”
“Create Signals for Frame-Based Processing”
“Import and Export Signals for Sample-Based Processing”
“Import and Export Signals for Frame-Based Processing”

Introduced before R2006a

2 Blocks

2-1206

Signal To Workspace
Write data to MATLAB workspace

Compatibility

Note The Signal To Workspace block has been replaced by the To Workspace block in Simulink.
Replace existing instances of the Signal To Workspace block with To Workspace block. For new
models, use the To Workspace block.

Library
Sinks

dspsnks4

Description
The Signal To Workspace block writes data from your simulation into an array or structure in the
main MATLAB workspace. You can specify a name for the workspace variable as well as whether the
data is saved as an array, structure, or structure with time.

When the Save format is set to Array or Structure, the dimensions of the output depend on the
input dimensions and the setting of the Save 2-D signals as parameter. The following table
summarizes the output dimensions under various conditions. In the table, K represents the value of
the Limit data points to last parameter.

Input Signal Dimensions Save 2-D Signals as ... Signal To Workspace Output
Dimension

M-by-N matrix 2-D array (concatenate
along first dimension)

K-by-N matrix.

If you set the Limit data points
to last parameter to inf, K
represents the total number of
samples acquired in each
column by the end of simulation.
This is equivalent to multiplying
the input frame size (M) by the
total number of M-by-N inputs
acquired by the block.

 Signal To Workspace

2-1207

Input Signal Dimensions Save 2-D Signals as ... Signal To Workspace Output
Dimension

M-by-N matrix 3-D array (concatenate
along third dimension)

M-by-N-by-K array.

If you set the Limit data points
to last parameter to inf, K
represents the total number of
M-by-N inputs acquired by the
end of the simulation.

Length-N unoriented vector Any setting K-by-N matrix
N-dimensional array where N >
2

Any setting Array with N+1 dimensions,
where the size of the last
dimension is equal to K. If you
set the Limit data points to
last parameter to inf, K
represents the total number of
M-by-N inputs acquired by the
end of simulation

Examples
Example 1: Save 2-D Signals as a 2-D Array

In the ex_signaltoworkspace_ref2 model, the Signal To Workspace block receives a 2-by-4
matrix input and logs 11 frames (two samples per frame) by the end of the simulation. Because the
Save 2-D signals as parameter is set to 2-D array (concatenate along first dimension),
the block concatenates the input along the first dimension to create a 22-by-4 matrix, A, in the
MATLAB workspace.

The following figure illustrates the behavior of the Signal to Workspace block in this example.

In the 2-D output mode, there is no indication of where one frame ends and another begins. To log
input frames separately, set the Save 2-D signals as parameter to 3-D array (concatenate
along third dimension), as shown in Example 2.

2 Blocks

2-1208

Example 2: Save 2-D Signals as a 3-D Array

In the ex_signaltoworkspace_ref1 model, the input to the Signal To Workspace block is a 2-by-4
matrix. The Save 2-D signals as parameter is set to 3-D array (concatenate along third
dimension), so by the end of the simulation the Signal To Workspace block logs 11 frames of data as
a 2-by-4-by-11 array, A, in the MATLAB workspace.

The following figure illustrates the behavior of the Signal to Workspace block in this example.

Parameters
Variable name

Specify the name of the array or structure into which the block logs the simulation data. The
block creates this variable in the MATLAB workspace only after the simulation stops running.
When you enter the name of an existing workspace variable, the block overwrites that variable
with the simulation data.

Limit data points to last
Specify the maximum number of samples or frames the block will save. When the simulation
generates more than the specified maximum number of samples or frames, the simulation saves
only the most recently generated data. To capture all data, set this parameter to inf. See the
table in the Description on page 2-1207 section for more information on how this parameter
affects the dimensions of the logged data.

Decimation
Specify a positive integer d to determine how often the block writes data to the workspace array
or structure. The block writes data to the array or structure every dth sample. With the default
decimation value of 1, the block writes data at every time step.

Save format
Specify the format in which to save simulation output to the workspace. You can select one of the
following options:

• Array — Select this option to save the data as an N-dimensional array. If the input signal is an
unoriented vector, the resulting workspace array is 2-D. Each input vector is saved in a row of
the output matrix, vertically concatenated onto the previous vector. If the input signal is 2-
dimensional, the dimensions of the resulting workspace array depend on the setting of the
Save 2-D signals as parameter.

 Signal To Workspace

2-1209

• Structure — Select this option to save the data as a structure consisting of three fields:
time, signals and blockName. In this mode, the time field is empty, and the blockName
field contains the name of the Signal To Workspace block. The signals field contains a
structure with three additional fields: values, dimensions, and label. The values field
contains the array of signal values, the dimensions field specifies the dimensions of the
values array, and the label field contains the label of the input line.

• Structure with time — This option is the same as Structure, except that the time field
contains a vector of simulation time steps. This is the only output format that can be read
directly by a From Workspace block. When you select this option, the Save 2-D signals as
parameter is not available. In this mode, the block always saves 2-D input arrays as a 3-D
array.

The default setting of this parameter is Array.
Save 2-D signals as

Specify whether the block outputs 2-D signals as a 2-D or 3-D array in the MATLAB workspace:

• 2-D array (concatenate along first dimension) — When you select this option, the
block saves an M-by-N input signal as a (K*M)-by-N matrix, where K*M is the total number of
samples acquired by the end of the simulation. The block vertically concatenates each M-by-N
matrix input with the previous input to produce the 2-D output array. See “Example 1: Save 2-
D Signals as a 2-D Array” on page 2-1208 for more information about this mode.

• 3-D array (concatenate along third dimension) — When you select this option, the
block saves an M-by-N input signal as an M-by-N-by-K array, where K is the number of M-by-N
inputs logged by the end of the simulation. K has an upper bound equal to the value of the
Limit data points to last parameter. See “Example 2: Save 2-D Signals as a 3-D Array” on
page 2-1209 for more information about this mode.

This parameter is visible only when you set the Save format parameter to Array or Structure.
When you set the Save format parameter to Structure with time, the block outputs the 2-D
input signal as a 3-D array.

Note The Inherit from input (this choice will be removed - see release
notes) option will be removed in a future release. See “Signal To Workspace Block Changes” in
the DSP System Toolbox Release Notes for more information.

Log fixed-point data as a fi object
Select this check box to log fixed-point data to the MATLAB workspace as a Fixed-Point Designer
fi object. Otherwise, fixed-point data is logged to the workspace as double.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

2 Blocks

2-1210

See Also
Triggered To Workspace DSP System Toolbox
To Workspace Simulink

Introduced before R2006a

 Signal To Workspace

2-1211

Sine Wave
Generate continuous or discrete sine wave
Library: DSP System Toolbox / Sources

DSP System Toolbox HDL Support / Sources

Description
The Sine Wave block generates a multichannel real or complex sinusoidal signal, with independent
amplitude, frequency, and phase in each output channel. The block supports floating point and signed
fixed-point data types.

The block generates a real sinusoidal signal when you set the Output complexity parameter to
Real. The real sinusoidal output is defined by an expression of the type

y = Asin 2πf t + ϕ

where you specify A in the Amplitude parameter, f in hertz in the Frequency parameter, and ϕ in
radians in the Phase offset parameter.

The block generates a complex exponential signal when you set the Output complexity parameter to
Complex. This complex exponential signal is defined by an expression of the type

y = Ae j(2πf t + ϕ) = A cos 2πf t + ϕ + jsin 2πf t + ϕ

Generating Multichannel Outputs

For both real and complex sinusoids, the Amplitude, Frequency, and Phase offset parameter
values (A, f, and ϕ) can be scalars or length-N vectors, where N is the desired number of channels in
the output. When you specify at least one of these parameters as a length-N vector, scalar values
specified for the other parameters are applied to every channel.

For example, to generate the three-channel output containing the following real sinusoids, set the
block parameters as shown:

y =

sin 2000πt (channel 1)
2sin 1000πt (channel 2)

3sin 500πt + π
2 (channel 3)

• Output complexity = Real
• Amplitude = [1 2 3]
• Frequency = [1000 500 250]
• Phase offset = [0 0 pi/2]

2 Blocks

2-1212

Ports
Output

Port_1 — Sinusoidal signal
scalar | vector | matrix

Output a sinusoidal signal as a scalar or vector. For more information about output complexity, see
“Description” on page 2-1212. For information about multichannel support, see “Generating
Multichannel Outputs” on page 2-1212.

Tip To output fixed-point data types, you must set Sample mode to Discrete and Computation
method to Table lookup.

Data Types: single | double | fixed point
Complex Number Support: Yes

Parameters
Main

Amplitude — Amplitude of sine waves
1 (default) | scalar | vector

A length-N vector containing the amplitudes of the sine waves in each of N output channels, or a
scalar to be applied to all N channels. The vector length must be the same as that specified for the
Frequency and Phase offset parameters.

Tip This parameter is tunable (Simulink) only when the Computation method is Trigonometric
fcn or Differential.

Tunable: Yes

Frequency (Hz) — Frequency of each sine wave
100 (default) | scalar | vector

A length-N vector containing frequencies, in hertz, of the sine waves in each of N output channels, or
a scalar to be applied to all N channels. The vector length must be the same as that specified for the
Amplitude and Phase offset parameters. You can specify positive, zero, or negative frequencies.

Tip This parameter is tunable (Simulink) when you set either:

• Sample mode to Continuous.
• Sample mode to Discrete and Computation method to Trigonometric fcn.

Tunable: Yes

 Sine Wave

2-1213

Phase offset (rad) — Phase offset
0 (default) | scalar | vector

A length-N vector containing the phase offsets, in radians, of the sine waves in each of N output
channels, or a scalar to be applied to all N channels. The vector length must be the same as that
specified for the Amplitude and Frequency parameters.

Tip This parameter is tunable (Simulink) when you set either:

• Sample mode to Continuous.
• Sample mode to Discrete and Computation method to Trigonometric fcn.

Tunable: Yes

Sample mode — Continuous or discrete sampling mode
Discrete (default) | Continuous

Specify the sampling mode as Continuous or Discrete:

• Continuous

In continuous mode, the sinusoid in the ith channel, yi, is computed as a continuous function,

yi = Aisin 2πf it + ϕi (real)

or

yi = Aie
j 2πfit + ϕi (complex)

and the block's output is continuous. In this mode, the block operates the same as the Simulink
Sine Wave block with Sample time set to 0. This mode offers high accuracy, but requires
trigonometric function evaluations at each simulation step, which is computationally expensive.
Also, because this method tracks absolute simulation time, a discontinuity will eventually occur
when the time value reaches its maximum limit.

Note also that many DSP System Toolbox blocks do not accept continuous-time inputs.
• Discrete

In discrete mode, the block can generate discrete-time output by directly evaluating the
trigonometric function, by table lookup, or by a differential method. For more information on these
computation methods, see “Algorithms” on page 2-1216.

Output complexity — Real or complex waveform
Real (default) | Complex

The type of waveform to generate: Real specifies a real sine wave, Complex specifies a complex
exponential.

Computation method — Method for computing discrete-time sinusoids
Trigonometric fcn (default) | Table lookup | Differential

2 Blocks

2-1214

The method by which discrete-time sinusoids are generated: Trigonometric fcn, Table lookup,
or Differential. For more information on each of the available options, see “Algorithms” on page
2-1216.
Dependencies

This parameter is only visible when you set the Sample mode to Discrete.

Note To generate fixed-point sinusoids, you must set the Computation method to Table lookup.

Optimize table for — Optimize for speed or memory
Speed (default) | Memory

Optimizes the table of sine values for Speed or Memory. When optimized for speed, the table contains
k elements, and when optimized for memory, the table contains k/4 elements, where k is the number
of input samples in one full period of the sine wave.
Dependencies

This parameter is only visible when you set the Computation method parameter to Table lookup.

Sample time — Sample period
1/1000 (default) | scalar

The period with which the sine wave is sampled, Ts, as a finite scalar, greater than zero. The output
frame period of the block is MTs, where you specify M in the Samples per frame parameter.
Dependencies

To enable this parameter, set Sample mode to Discrete.

Samples per frame — Samples per frame
1 (default) | positive integer

The number of consecutive samples from each sinusoid to buffer into the output frame, M, specified
as a positive scalar integer. This parameter is not tunable.

The block output is an M-by-N matrix with frame period MTs, where you specify Ts in the Sample
time parameter.
Dependencies

To enable this parameter, set Sample mode to Discrete.

Resetting states when re-enabled — State behavior inside enabled subsystems
Restart at time zero (default) | Catch up to simulation time

This parameter determines the behavior of the Sine Wave block when an enabled subsystem is
reenabled. The block can either reset itself to its starting state (Restart at time zero), or
resume generating the sinusoid based on the current simulation time (Catch up to simulation
time).
Dependencies

This parameter only applies when the Sine Wave block is located inside an enabled subsystem and the
States when enabling parameter of the Enable block is set to reset.

 Sine Wave

2-1215

Data Types

Output data type — Output data type
double (default) | single | fixdt(1,16) | fixdt(1,16,0) | <data type expression> |
Inherit:Inherit via back propagation

Select how you would like to specify the data type properties of the Output data type. You can
choose:

• Inherit — Lets you specify a rule for inheriting a data type, for example, Inherit: Inherit
via back propagation

• Built in— Lets you specify a built in data type, for example, double
• Fixed point — Lets you specify the fixed-point attributes of the data type.
• Expression — Lets you specify an expression that evaluates to a valid data type, for example,

fixdt(1,16)

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
When you select Discrete from the Sample mode parameter, the secondary Computation
method parameter provides three options for generating the discrete sinusoid: Trigonometric
fcn, Table lookup, and Differential.

Trigonometric Fcn

The trigonometric function method computes the sinusoid in the ith channel, yi, by sampling the
continuous function

yi = Aisin 2πf it + ϕi (real)

or

yi = Aie
j 2πfit + ϕi (complex)

with a period of Ts, where you specify Ts in the Sample time parameter. This mode of operation has
the same benefits and liabilities as the Continuous sample mode.

At each sample time, the block evaluates the sine function at the appropriate time value within the
first cycle of the sinusoid. By constraining trigonometric evaluations to the first cycle of each
sinusoid, the block avoids the imprecision of computing the sine of very large numbers, and
eliminates the possibility of discontinuity during extended operations (when an absolute time variable

2 Blocks

2-1216

might overflow). This method therefore avoids the memory demands of the table lookup method at
the expense of many more floating-point operations.

Table Lookup

The table lookup method precomputes the unique samples of every output sinusoid at the start of the
simulation, and recalls the samples from memory as needed. Because a table of finite length can only
be constructed when all output sequences repeat, the method requires that the period of every
sinusoid in the output be evenly divisible by the sample period. That is, 1/(fiTs) = ki must be an
integer value for every channel i = 1, 2, ..., N.

When the Optimize table for parameter is set to Speed, the table constructed for each channel
contains ki elements. When the Optimize table for parameter is set to Memory, the table
constructed for each channel contains ki/4 elements.

For long output sequences, the table lookup method requires far fewer floating-point operations than
any of the other methods, but can demand considerably more memory, especially for high sample
rates (long tables). This method is recommended for models that are intended to emulate or generate
code for DSP hardware, and that therefore must be optimized for execution speed.

Note The lookup table for this block is constructed from double-precision floating-point values. Thus,
when you use the Table lookup computation mode, the maximum amount of precision you can
achieve in your output is 53 bits. Setting the word length of the Output or User-defined data type to
values greater than 53 bits does not improve the precision of your output.

Tip To generate fixed-point sinusoids, you must select Table Lookup.

Differential

The differential method uses an incremental algorithm. This algorithm computes the output samples
based on the output values computed at the previous sample time (and precomputed update terms)
by using the following identities.

sin t + Ts = sin t cos Ts + cos t sin Ts
cos t + Ts = cos t cos Ts − sin t sin Ts

The update equations for the sinusoid in the ith channel, yi, can therefore be written in matrix form as

sin 2πf i t + Ts + ϕi
cos 2πf i t + Ts + ϕi

=
cos 2πf iTs sin 2πf iTs
−sin 2πf iTs cos 2πf iTs

sin 2πf it + ϕi
cos 2πf it + ϕi

where you specify Ts in the Sample time parameter. Since Ts is constant, the right-hand matrix is a
constant and can be computed once at the start of the simulation. The value of Aisin[2πfi(t+Ts)+ϕi] is
then computed from the values of sin(2πfit+ϕi) and cos(2πfit+ϕi) by a simple matrix multiplication at
each time step.

This mode offers reduced computational load, but is subject to drift over time due to cumulative
quantization error. Because the method is not contingent on an absolute time value, there is no
danger of discontinuity during extended operations (when an absolute time variable might overflow).

 Sine Wave

2-1217

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Sine Wave block references absolute simulation time when configured in continuous sample
mode.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

Restrictions

For HDL code generation, you must select the following Sine Wave block settings:

• Computation method: Table lookup
• Sample mode: Discrete

Output:

• The output port cannot have data types single or double.

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Blocks
Chirp | Signal From Workspace | Signal Generator | Sine Wave | Enabled Subsystem

Functions
sin

Objects
dsp.SineWave

Introduced before R2006a

2 Blocks

2-1218

Singular Value Decomposition
Factor matrix using singular value decomposition

Library
Math Functions / Matrices and Linear Algebra / Matrix Factorizations

dspfactors

Description
The Singular Value Decomposition block factors the M-by-N input matrix A such that

A = U ⋅ diag(S) ⋅ V*

where

• U is an M-by-P matrix
• V is an N-by-P matrix
• S is a length-P vector
• P is defined as min(M,N)

When

• M = N, U and V are both M-by-M unitary matrices
• M > N, V is an N-by-N unitary matrix, and U is an M-by-N matrix whose columns are the first N

columns of a unitary matrix
• N > M, U is an M-by-M unitary matrix, and V is an N-by-M matrix whose columns are the first M

columns of a unitary matrix

In all cases, S is an unoriented vector of positive singular values having length P.

Length-N row inputs are treated as length-N columns.

Note that the first (maximum) element of output S is equal to the 2-norm of the matrix A.

Parameters
Show singular vector ports

Select to enable the U and V output ports.
Show error status port

Select to enable the E output port, which reports a failure to converge. The possible values you
can receive on the port are:

 Singular Value Decomposition

2-1219

• 0 — The singular value decomposition calculation converges.
• 1 — The singular value decomposition calculation does not converge.

If the singular value decomposition calculation fails to converge, the output at ports U, S, and V
are undefined matrices of the correct size.

Simulate using
Type of simulation to run. You can set this parameter to:

• Interpreted execution (default)

Simulate model using the MATLAB interpreter. This option shortens startup time.
• Code generation

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time.

References
Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins
University Press, 1996.

Supported Data Types
Port Supported Data Types
A • Double-precision floating point

• Single-precision floating point
U • Double-precision floating point

• Single-precision floating point
S • Double-precision floating point

• Single-precision floating point
V • Double-precision floating point

• Single-precision floating point
E • Boolean

See Also
Autocorrelation LPC DSP System Toolbox
Cholesky Factorization DSP System Toolbox
LDL Factorization DSP System Toolbox
LU Inverse DSP System Toolbox
Pseudoinverse DSP System Toolbox
QR Factorization DSP System Toolbox
SVD Solver DSP System Toolbox

2 Blocks

2-1220

svd MATLAB

See “Matrix Factorizations” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Singular Value Decomposition

2-1221

Sort
Sort input elements by value
Library: DSP System Toolbox / Statistics

Description
The Sort block ranks the values of the input elements along each channel (column) in an Ascending
or a Descending order, based on the Sort order you specify. Complex inputs are sorted by their
magnitude, which is the sum of the squares of the real and imaginary components of the input. You
can choose the Sort algorithm to be either Quick sort or Insertion sort. The quick sort
algorithm uses a recursive sort method and is faster at sorting more than 32 elements. The insertion
sort algorithm uses a nonrecursive method and is faster at sorting fewer than 32 elements. When you
generate code, use the insertion sort algorithm to avoid recursive function calls.

The Mode parameter specifies the block's mode of operation, which you can set to Value, Index, or
Value and Index.

Ports
Input

Port_1 — Data input
vector | matrix

The block accepts real-valued or complex-valued multichannel inputs. The input data type must be
double precision, single precision, integer, or fixed point, with power-of-two slope and zero bias.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Val — Sorted data
vector | matrix

The block sorts the data along each channel and outputs the sorted data through this port. The size,
data type, and complexity of the sorted data matches that of the input data. The block sorts complex
inputs according to their magnitude.
Dependencies

To enable this port, set the Mode parameter to Value and index or Value.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Idx — Index of the sorted data
vector | matrix

2 Blocks

2-1222

The output at this port contains the indices of the sorted data.

Dependencies

To enable this port, set the Mode parameter to Value and index or Index.
Data Types: uint32

Parameters
Main Tab

Mode — Specify whether block returns values, indices, or both
Value and Index (default) | Value | Index

When the Mode parameter is set to:

• Value — The block sorts the elements in each channel of the M-by-N input matrix in an ascending
or descending order, based on what you specify in the Sort order parameter. The output at each
sample time, Val, is an M-by-N matrix that contains the sorted columns of the input.

The block sorts complex inputs according to their magnitude.
• Index — The block sorts the elements in each channel of the M-by-N input matrix, and outputs

the index array, I. Each element in I is an integer of type uint32 that indexes the sorted value in
the corresponding column of the input.

• Value and index — The block outputs the sorted values of the input data, Val, and the
corresponding indices in the index array, I.

Sort order — Order of sorting
Ascending (default) | Descending

Specify to sort the input data in either ascending or descending order.

Sort algorithm — Sort method
Quick sort (default) | Insertion sort

The quick sort algorithm uses a recursive sort method and is faster at sorting more than 32 elements.
The insertion sort algorithm uses a nonrecursive method and is faster at sorting fewer than 32
elements. When you generate code, to avoid recursive function calls, use the insertion sort algorithm.

Data Types Tab

Note To use these parameters, the data input must be complex and fixedpoint. For all other inputs,
the parameters on the Data Types tab are ignored.

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more details, see rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

 Sort

2-1223

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Product output — Product output data type
Inherit: Same as input (default) | fixdt([],16,0)

The squares of the real and imaginary parts of the complex input are stored in the Product output
data type.

You can set this parameter to:

• Inherit: Same as input — The product output data type is the same as the input data type.
• fixdt([],16,0) — The product output data type is an autosigned, binary-point, scaled, fixed-
point data type with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Product output data type by using the Data Type Assistant. To use

the assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Accumulator — Accumulator data type
Inherit: Same as product output (default) | Inherit: Same as input | fixdt([],16,0)

The result of the sum of the squares of the real and imaginary parts of the complex input are stored
in the Accumulator data type.

You can set this parameter to:

• Inherit: Same as product output — The accumulator data type is the same as the product
output data type.

• Inherit: Same as input — The accumulator data type is the same as the input data type.
• fixdt([],16,0) — The accumulator data type is an autosigned, binary-point, scaled, fixed-point

data type with a word length of 16 bits and a fraction length of 0.

Alternatively, you can set the Accumulator data type by using the Data Type Assistant. To use the

assistant, click the Show data type assistant button .

For more information on the data type assistant, see “Specify Data Types Using Data Type Assistant”
(Simulink) in Simulink User's Guide (Simulink).

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
the block.

2 Blocks

2-1224

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
Sort

The block produces results identical to the MATLAB sort function.

The output of the block is equivalent to the following MATLAB code, when Sort order is set to:

• Ascending — [Val,I] = sort(u,'ascend')
• Descending — [Val,I] = sort(u,'descend')

where:

• u is the data input.
• Val is the sorted output.
• I is the index of the sorted output.

When the input is complex, the block sorts the data according to the magnitude. The block computes
the magnitude by taking the sum of the squares of the real and imaginary components of the complex
input. This is identical to calling the sort function as [Val,I] =
sort(u,...,'ComparisonMethod','abs').

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The parameters on the Data Types tab are used only for complex fixed-point inputs. Complex inputs
are sorted by their magnitude, which is the sum of the squares of the real and imaginary components
of the input. The results of the squares of the real and imaginary parts are stored in the Product
output data type. The result of the sum of the squares is stored in the Accumulator data type. The
parameters on the Data Types tab are ignored for all other inputs.

 Sort

2-1225

See Also
Functions
sort

Blocks
Median Filter | Histogram | Median

Introduced before R2006a

2 Blocks

2-1226

Spectrum Analyzer
Display frequency spectrum
Library: DSP System Toolbox / Sinks

DSP System Toolbox HDL Support / Sinks

Description
The Spectrum Analyzer block, referred to here as the scope, displays the frequency spectra of
signals.

You can use the Spectrum Analyzer block in models running in Normal or Accelerator simulation
modes. You can also use the Spectrum Analyzer block in models running in Rapid Accelerator or
External simulation modes, with some limitations.

You can use the Spectrum Analyzer block inside all subsystems and conditional subsystems.
Conditional subsystems include enabled subsystems, triggered subsystems, enabled and triggered
subsystems, and function-call subsystems. See “Conditionally Executed Subsystems Overview”
(Simulink) for more information.

Measurements

• Cursors — Measure signal values using vertical and horizontal cursors.

 Spectrum Analyzer

2-1227

• Peak Finder — Find maxima, showing the x-axis values at which they occur.
• Channel Measurements — Measure the occupied bandwidth or adjacent channel power ratio

(ACPR).
• Distortion Measurements — Measure harmonic distortion and intermodulation distortion.
• CCDF Measurements — Measure the complimentary cumulative distribution function. CCDF

measurements show the probability of a signal’s instantaneous power being a specified level
above the signal’s average power.

• “Spectral Masks” — Visualize spectrum limits and compare spectrum values to specification
values.

Programmatic Control

You can configure and display Spectrum Analyzer settings from the command line with the
SpectrumAnalyzerConfiguration object.

Ports
Input

Port_1 — Signals to visualize
scalar | vector | matrix | array

Connect the signals you want to visualize. You can have up to 96 input ports. Input signals can have
these characteristics:

• Signal Domain — Frequency or time signals
• Type — Discrete (sample-based and frame-based).
• Data type — Any data type that Simulink supports. See “Data Types Supported by Simulink”

(Simulink).
• Dimension — One dimensional (vector), two dimensional (matrix), or multidimensional (array).

Input must have fixed number of channels. See “Signal Dimensions” (Simulink) and “Determine
Signal Dimensions” (Simulink).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Spectrum Settings

The Spectrum Settings pane appears at the right side of the Spectrum Analyzer window. These
settings control how the spectrum is calculated. To show the Spectrum Settings, in the Spectrum

Analyzer menu, select View > Spectrum Settings or use the button in the toolbar.

Main options

Input domain — Domain of the input signal
Time (default) | Frequency

The domain of the input signal you want to visualize. If you visualize time-domain signals, the signal
is transformed to the frequency spectrum based on the algorithm specified by the Method parameter.

2 Blocks

2-1228

Programmatic Use

See InputDomain.

Type — Type of spectrum to display
Power (default) | Power density | RMS

Power — Spectrum Analyzer shows the power spectrum.

Power density — Spectrum Analyzer shows the power spectral density. The power spectral density
is the magnitude of the spectrum normalized to a bandwidth of 1 hertz.

RMS — Spectrum Analyzer shows the root mean squared spectrum.

Tunable: Yes

Dependency

To use this parameter, set “Input domain” on page 2-0 to Time.

Programmatic Use

See SpectrumType.

View — Spectrum view
Spectrum (default) | Spectrogram | Spectrum and spectrogram

Spectrum — Spectrum Analyzer shows the spectrum.

Spectrogram — Spectrum Analyzer shows the spectrogram, which displays frequency content over
time. The most recent spectrogram update is at the bottom of the display, and time scrolls from the
bottom to the top of the display.

Spectrum and spectrogram — Spectrum Analyzer shows both the spectrum and spectrogram.

Tunable: Yes

Programmatic Use

See ViewType.

Sample rate — Sample rate of the input signal in hertz
Inherited (default) | positive scalar

Sample rate of the input signal in hertz, specified as either

• Inherited to use the same sample rate as the input signal.
• Positive scalar. The specified sample rate must be at least twice the input signal sample rate.

Otherwise, you might see unexpected behavior in your signal visualization due to aliasing.

Programmatic Use

See SampleRate.

Method — Spectrum estimation method
Filter Bank (default) | Welch

 Spectrum Analyzer

2-1229

Select Welch or Filter Bank as the spectrum estimation method. For more details about the two
spectrum estimation algorithms, see “Algorithms” on page 2-1245.

Tunable: No
Dependency

To use this parameter, set “Input domain” on page 2-0 to Time.
Programmatic Use

See Method.

Full frequency span — Use entire Nyquist frequency interval
on (default) | off

Select this check box to compute and plot the spectrum over the entire “Nyquist frequency interval”
on page 2-1249.

Tunable: Yes
Dependency

To use this parameter, set “Input domain” on page 2-0 to Time.
Programmatic Use

See FrequencySpan.

Span (Hz) — Frequency span in hertz
10e3 (default) | real positive scalar

Specify the frequency span in hertz. Use this parameter with the CF (Hz) parameter to define the
frequency span around a center frequency. This parameter defines the range of values shown on the
Frequency axis in the Spectrum Analyzer window.

Tunable: Yes
Dependencies

To use this parameter, you must:

• Set “Input domain” on page 2-0 to Time.
• Clear the “Full frequency span” on page 2-0 check box.
• Set the Span (Hz)/Fstart (Hz) drop-down to Span (Hz).

Programmatic Use

See FrequencySpan and Span.

CF (Hz) — Center frequency in hertz
0 (default) | scalar

Specify the center frequency, in hertz. Use this parameter with the “Span (Hz)” on page 2-0
parameter to define the frequency span around a center frequency. This parameter defines the value
shown at the middle point of the Frequency axis on the Spectrum Analyzer window.

Tunable: Yes

2 Blocks

2-1230

Dependencies

To use this parameter, you must:

• Set “Input domain” on page 2-0 to Time.
• Clear the “Full frequency span” on page 2-0 check box.
• Set the Span (Hz)/Fstart (Hz) drop-down to “Span (Hz)” on page 2-0 .

Programmatic Use

See CenterFrequency.

FStart (Hz) — Start frequency in hertz
-5e3 (default) | scalar

Specify the start frequency in hertz. Use this parameter with the “FStop (Hz)” on page 2-0
parameter to define the range of frequency-axis values using start frequency and stop frequency. This
parameter defines the value shown at the leftmost side of the Frequency axis on the Spectrum
Analyzer window.

Tunable: Yes

Dependencies

To use this parameter, you must:

• Set “Input domain” on page 2-0 to Time.
• Clear the “Full frequency span” on page 2-0 check box.
• Set the Span (Hz)/FStart (Hz) drop-down to FStart (Hz).

Programmatic Use

See StartFrequency.

FStop (Hz) — Stop frequency in hertz
5e3 (default) | scalar

Specify the stop frequency, in hertz. Use this parameter with the “FStart (Hz)” on page 2-0
parameter to define the range of Frequency axis values. This parameter defines the value shown at
the rightmost side of the Frequency axis on the Spectrum Analyzer window.

Tunable: Yes

Dependencies

To use this parameter, you must:

• Set “Input domain” on page 2-0 to Time.
• Clear the “Full frequency span” on page 2-0 check box.
• Set the Span (Hz)/FStart (Hz) drop-down to “FStart (Hz)” on page 2-0 .

Programmatic Use

See StopFrequency.

 Spectrum Analyzer

2-1231

Frequency (Hz) — Frequency vector
Auto (default) | Input port | monotonically increasing vector

Set the frequency vector which determines the x-axis of the display.

• Auto — The frequency vector is calculated from the length of the input. See “Frequency Vector”
on page 4-1304.

• Input port — When selected, an input port appears on the block for the frequency vector input.
• Custom vector — Enter a custom vector as the frequency vector. The length of the custom vector

must be equal to the frame size of the input signal.

Tunable: No

Dependency

To use this parameter, set “Input domain” on page 2-0 to Frequency.

Programmatic Use

See FrequencyVector.

RBW (Hz) — Resolution bandwidth
Auto (default) | Input port | positive scalar

The resolution bandwidth in hertz. This parameter defines the smallest positive frequency that can be
resolved. By default, this parameter is set to Auto. In this case, the Spectrum Analyzer determines
the appropriate value to ensure that there are 1024 RBW intervals over the specified frequency span.

If you set this parameter to a numeric value, the value must allow at least two RBW intervals over the
specified frequency span. In other words, the ratio of the overall frequency span to RBW must be
greater than two:

span
RBW > 2

For frequency input only, you can use an input port to set the RBW value.

Tunable: Yes

Dependency

To use this parameter, set either:

• “Input domain” on page 2-0 to Time and the RBW (Hz)/Window length/Number of
frequency bands drop-down to RBW (Hz).

• “Input domain” on page 2-0 to Frequency.

Programmatic Use

See RBW.

Input units — Units of frequency input
Auto (default) | dBm | dBV | dBW | Vrms | Watts

Select the units of the frequency-domain input. This property allows the Spectrum Analyzer to scale
frequency data if you choose a different display unit with the “Units” on page 2-0 property.

2 Blocks

2-1232

Tunable: No

Dependency

This option is only available when “Input domain” on page 2-0 is set to Frequency.

Programmatic Use

See InputUnits.

Window length — Length of window in samples
1024 (default) | integer greater than 2

The length of the window, in samples. The window length used to control the frequency resolution
and compute the spectral estimates. The window length must be an integer greater than 2.

Dependencies

To use this parameter, set:

• “Method” on page 2-0 to Welch
• Set the RBW (Hz)/Window length/Number of frequency bands drop-down to Window

Length

Dependency

To use this parameter, set “Input domain” on page 2-0 to Time.

Programmatic Use

See WindowLength.

Number of frequency bands — FFT length
Auto (default) | positive integer

Specify the fast Fourier transform (FFT) length to control the number of frequency bands. If the value
is Auto, the Spectrum Analyzer uses the entire frame size to estimate the spectrum. If you specify the
number of frequency bands, you set the input buffer size.

Dependencies

To use this parameter, set:

• “Method” on page 2-0 to Filter Bank
• Set the RBW (Hz)/Window length/Number of frequency bands drop-down to Number of

frequency bands

Programmatic Use

See FFTLength

Taps per band — Number of filter taps
12 (default) | positive even integer

Specify the number of filter taps or coefficients for each frequency band. This number must be a
positive even integer. This value corresponds to the number of filter coefficients per polyphase
branch. The total number of filter coefficients is equal to Taps Per Band + FFT Length.

 Spectrum Analyzer

2-1233

Dependency

To use this parameter, you must set the RBW (Hz)/Window length/Number of frequency bands
drop-down to “Number of frequency bands” on page 2-0 .
Programmatic Use

See NumTapsPerBand.

NFFT — Number of FFT points
Auto (default) | positive integer

Specify the length of the FFT that Spectrum Analyzer uses to compute spectral estimates. Acceptable
options are Auto or a positive integer.

The NFFT value must be greater than or equal to the value of the Window length parameter. By
default, when NFFT is set to Auto, the Spectrum Analyzer sets NFFT equal to the value of Window
length. When in RBW mode, the specified RBW value is used to calculate an FFT length that equals
the window length.

When this parameter is set to a positive integer, this parameter is equivalent to the n parameter of
the fft function.
Dependencies

To use this parameter, you must set the RBW (Hz)/Window length/Number of frequency bands
drop-down to “Window length” on page 2-0 .
Programmatic Use

See FFTLength.

Samples/update — Required number of input samples
positive scalar

This property is read-only.

The number of input samples required to compute one spectral update. You cannot modify this
parameter; it is shown in the spectrum analyzer for informational purposes only. This parameter is
directly related to RBW (Hz)/Window length/Number of frequency bands. For more details, see
“Algorithms” on page 2-1245.

If the input does not have enough samples to achieve the resolution bandwidth that you specify,
Spectrum Analyzer produces a message on the display.

Spectrogram Settings

Channel — Spectrogram channel
channel name

Select the signal channel for which the spectrogram settings apply.

2 Blocks

2-1234

Dependencies

To use this option, set “View” on page 2-0 to Spectrogram or Spectrum and spectrogram.

Programmatic Use

See SpectrogramChannel.

Time res. (s) — Time resolution in seconds
Auto (default) | positive number

Time resolution is the amount of data, in seconds, used to compute a spectrogram line. The minimum
attainable resolution is the amount of time it takes to compute a single spectral estimate. The tooltip
displays the minimum attainable resolution given the current settings.

The time resolution value is determined based on frequency resolution method, the RBW setting, and
the time resolution setting.

Method Frequency
Resolution
Method

Frequenc
y
Resoluti
on
Setting

Time
Resolution
Setting

Resulting Time Resolution
in Seconds

Welch or Filter
Bank

RBW (Hz) Auto Auto 1/RBW

Welch or Filter
Bank

RBW (Hz) Auto Manually
entered

Time Resolution

Welch or Filter
Bank

RBW (Hz) Manually
entered

Auto 1/RBW

Welch or Filter
Bank

RBW (Hz) Manually
entered

Manually
entered

Must be equal to or greater
than the minimum attainable
time resolution, 1/RBW.
Several spectral estimates
are combined into one
spectrogram line to obtain
the desired time resolution.
Interpolation is used to
obtain time resolution values
that are not integer multiples
of 1/RBW.

Welch Window length — Auto 1/RBW

 Spectrum Analyzer

2-1235

Method Frequency
Resolution
Method

Frequenc
y
Resoluti
on
Setting

Time
Resolution
Setting

Resulting Time Resolution
in Seconds

Welch Window length — Manually
entered

Must be equal to or greater
than the minimum attainable
time resolution. Several
spectral estimates are
combined into one
spectrogram line to obtain
the desired time resolution.
Interpolation is used to
obtain time resolution values
that are not integer multiples
of 1/RBW.

Filter Bank Number of
frequency
bands

— Auto 1/RBW

Filter Bank Number of
frequency
bands

— Manually
entered

Must be equal to or greater
than the minimum attainable
time resolution, 1/RBW.

Tunable: Yes
Dependency

To use this option, set “View” on page 2-0 to Spectrogram or Spectrum and spectrogram.
Programmatic Use

See TimeResolution.

Time span — Time span in seconds
Auto (default) | positive scalar

The time span over which the Spectrum Analyzer displays the spectrogram specified in seconds. The
time span is the product of the desired number of spectral lines and the time resolution. The tooltip
displays the minimum allowable time span, given the current settings. If the time span is set to Auto,
100 spectral lines are used.

Tunable: Yes
Dependency

To use this option, set “View” on page 2-0 to Spectrogram or Spectrum and spectrogram.
Programmatic Use

See TimeSpan.

Window Options

Overlap (%) — Segment overlap percentage
0 (default) | scalar between 0 and 100

2 Blocks

2-1236

This parameter defines the amount of overlap between the previous and current buffered data
segments. The overlap creates a window segment that is used to compute a spectral estimate. The
value must be greater than or equal to zero and less than 100.

Tunable: Yes
Programmatic Use

See OverlapPercent.

Window — Windowing method
Hann (default) | Rectangular | Blackman-Harris | Chebyshev | Flat Top | Hamming | Kaiser |
custom window function name

The windowing method to apply to the spectrum. Windowing is used to control the effect of sidelobes
in spectral estimation. The window you specify affects the window length required to achieve a
resolution bandwidth and the required number of samples per update. For more information about
windowing, see “Windows”.

Tunable: Yes
Programmatic Use

See Window.

Attenuation — Sidelobe attenuation
60 (default) | scalar greater than or equal to 45

The sidelobe attenuation in decibels (dB). The value must be greater than or equal to 45.
Dependency

This parameter applies only when you set the Window parameter to Chebyshev or Kaiser.
Programmatic Use

See SidelobeAttenuation.

NENBW — Normalized effective noise bandwidth
scalar

This property is read-only.

The normalized effective noise bandwidth of the window. You cannot modify this parameter; it is
shown for informational purposes only. This parameter is a measure of the noise performance of the
window. The value is the width of a rectangular filter that accumulates the same noise power with the
same peak power gain.

The rectangular window has the smallest NENBW, with a value of 1. All other windows have a larger
NENBW value. For example, the Hann window has an NENBW value of approximately 1.5.

Trace Options

Units — Spectrum units
dBm (default) | dBW | Watts | Vrms | dBV | dBFS

The units of the spectrum. The available values depend on the value of the “Type” on page 2-0
parameter.

 Spectrum Analyzer

2-1237

Tunable: Yes

Programmatic Use

See SpectrumUnits.

Full scale — Full scale for dBFS units
Auto (default) | positive real scalar

The full scale used for the decibel full scale (dBFS) units. By default, the Spectrum Analyzer uses the
entire spectrum scale. Specify a positive real scalar for the dBFS full scale.

Tunable: Yes

Dependencies

To enable this parameter, set:

• “Input domain” on page 2-0 to Time
• “Units” on page 2-0 to dBFS

Programmatic Use

See FullScale.

Averaging method — Smoothing method
Exponential (default) | Running

Specify the smoothing method as:

• Exponential — Weighted average of samples. Use the Forgetting factor property to specify
the weighted forgetting factor.

• Running — Running average of the last n samples. Use the Averages property to specify n.

For more information about the averaging methods, see “Averaging Method” on page 2-1253.

Programmatic Use

See AveragingMethod.

Averages — Number of spectral averages
1 (default) | positive integer

Specify the number of spectral averages as a positive integer. The spectrum analyzer computes the
current power spectrum estimate by computing a running average of the last N power spectrum
estimates. This parameter defines the number of spectral averages, N.

Dependencies

This parameter applies only when:

• View is Spectrum or Spectrum and spectrogram.
• Averaging method is Running.

Programmatic Use

See SpectralAverages.

2 Blocks

2-1238

Forgetting factor — Weighting forgetting factor
0.9 (default) | scalar in the range (0,1]

Specify the exponential weighting as a scalar value greater than 0 and less than or equal to 1.

Dependency

This parameter applies only when the Averaging method is Exponential.

Programmatic Use

See ForgettingFactor.

Reference load — Reference load
1 (default) | positive real scalar

The reference load in ohms that the Spectrum Analyzer uses as a reference to compute power values.

Programmatic Use

See ReferenceLoad.

Scale — Scale of frequency axis
Linear (default) | Logarithmic

Choose a linear or logarithm scale for the frequency axis. When the frequency span contains negative
frequency values, you cannot choose the logarithmic option.

Programmatic Use

See FrequencyScale.

Offset — Constant frequency offset
0 (default) | scalar

The constant frequency offset to apply to the entire spectrum, or a vector of frequencies to apply to
each spectrum for multiple inputs. The offset parameter is added to the values on the Frequency axis
in the Spectrum Analyzer window. This parameter is not used in any spectral computations. You must
take the parameter into consideration when you set the Span (Hz) and CF (Hz) parameters to
ensure that the frequency span is within the “Nyquist frequency interval” on page 2-1249.

Dependency

To use this parameter, set “Input domain” on page 2-0 to Time.

Programmatic Use

See FrequencyOffset.

Normal trace — Normal trace view
on (default) | off

When this check box is selected, the Spectrum Analyzer calculates and plots the power spectrum or
power spectrum density. Spectrum Analyzer performs a smoothing operation by averaging several
spectral estimates.

 Spectrum Analyzer

2-1239

Dependencies

To clear this check box, you must first select either the “Max hold trace” on page 2-0 or the “Min
hold trace” on page 2-0 parameter. This parameter applies only when “View” on page 2-0 is
Spectrum or Spectrum and spectrogram.

Programmatic Use

See PlotNormalTrace.

Max hold trace — Maximum hold trace view
off (default) | on

Select this check box to enable Spectrum Analyzer to plot the maximum spectral values of all the
estimates obtained.

Dependency

This parameter applies only when “View” on page 2-0 is Spectrum or Spectrum and
spectrogram.

Programmatic Use

See PlotMaxHoldTrace.

Min hold trace — Minimum hold trace view
off (default) | on

Select this check box to enable Spectrum Analyzer to plot the minimum spectral values of all the
estimates obtained.

Dependency

This parameter applies only when “View” on page 2-0 is Spectrum or Spectrum and
spectrogram.

Programmatic Use

See PlotMinHoldTrace.

Two-sided spectrum — Enable two-sided spectrum view
off (default) | on

Select this check box to enable a two-sided spectrum view. In this view, both negative and positive
frequencies are shown. If you clear this check box, Spectrum Analyzer shows a one-sided spectrum
with only positive frequencies. Spectrum Analyzer requires that this parameter is selected when the
input signal is complex-valued.

Programmatic Use

See PlotAsTwoSidedSpectrum.

Configuration Properties

The Configuration Properties dialog box controls visual aspects of the Spectrum Analyzer. To open
the Configuration Properties, in the Spectrum Analyzer menu, select View > Configuration

Properties or select the button in the toolbar drop-down.

2 Blocks

2-1240

Title — Display title
character vector | string

Specify the display title. Enter %<SignalLabel> to use the signal labels in the Simulink model as the
axes titles.

Tunable: Yes

Programmatic Use

See Title.

Show legend — Display signal legend
off (default) | on

Show signal legend. The names listed in the legend are the signal names from the model. For signals
with multiple channels, a channel index is appended after the signal name. Continuous signals have
straight lines before their names and discrete signals have step-shaped lines.

From the legend, you can control which signals are visible. This control is equivalent to changing the
visibility in the Style parameters. In the scope legend, click a signal name to hide the signal in the
scope. To show the signal, click the signal name again. To show only one signal, right-click the signal
name, which hides all other signals. To show all signals, press ESC.

Note The legend only shows the first 20 signals. Any additional signals cannot be viewed or
controlled from the legend.

Dependency

To enable this parameter, set “View” on page 2-0 to Spectrum or Spectrum and spectrogram.

Programmatic Use

See ShowLegend.

Show grid — Show internal grid lines
on (default) | off

Show internal grid lines on the Spectrum Analyzer

Programmatic Use

See ShowGrid.

Y-limits (minimum) — Y-axis minimum
-80 (default) | scalar

Specify the minimum value of the y-axis.

Programmatic Use

See YLimits.

Y-limits (maximum) — Y-axis maximum
20 (default) | scalar

 Spectrum Analyzer

2-1241

Specify the maximum value of the y-axis.

Programmatic Use

See YLimits.

Y-label — Y-axis label
character vector | string

To display signal units, add (%<SignalUnits>) to the label. At the beginning of a simulation,
Simulink replaces (%SignalUnits) with the units associated with the signals. For example, if you
have a signal for velocity with units of m/s enter

Velocity (%<SignalUnits>)

Programmatic Use

See YLabel.

Color map — Spectrogram colormap
jet(256) (default) | hot(256) | bone(256) | cool(256) | copper(256) | gray(256) |
parula(256) | 3-column matrix

Select the colormap for the spectrogram, or enter a three-column matrix expression for the colormap.
For more information about colormaps, see colormap.

Tunable: Yes

Dependency

To use this parameter, set “View” on page 2-0 to Spectrogram or Spectrum and
spectrogram.

Color-limits (minimum) — Spectrogram minimum
-80 (default) | scalar

Specify the signal power for the minimum color value of the spectrogram.

Tunable: Yes

Dependency

To use this parameter, set “View” on page 2-0 to Spectrogram or Spectrum and
spectrogram.

Programmatic Use

See ColorLimits.

Color-limits (maximum) — Spectrogram maximum
20 (default) | scalar

Specify the signal power for the maximum color value of the spectrogram.

Tunable: Yes

2 Blocks

2-1242

Dependency

To use this parameter, set “View” on page 2-0 to Spectrogram or Spectrum and
spectrogram.

Programmatic Use

See ColorLimits.

Style

The Style dialog box controls how to Spectrum Analyzer appears. To open the Style properties, in the
Spectrum Analyzer menu, select View > Style or select the button in the toolbar drop-down.

Figure color — Window background
gray (default) | color picker

Specify the color that you want to apply to the background of the scope figure.

Plot type — Plot type
Line (default) | Stem

Specify whether to display a Line or Stem plot.

Programmatic Use

See PlotType.

Axes colors — Axes background color
black (default) | color picker

Specify the color that you want to apply to the background of the axes.

Properties for line — Channel for visual property settings
channel names

Specify the channel for which you want to modify the visibility, line properties, and marker
properties.

Visible — Channel visibility
on (default) | off

Specify whether the selected channel is visible. If you clear this check box, the line disappears. You
can also change signal visibility using the scope legend.

Line — Line style
line, 0.5, yellow (default)

Specify the line style, line width, and line color for the selected channel.

Marker — Data point markers
none (default)

Specify marks for the selected channel to show at its data points. This parameter is similar to the
'Marker' property for plots. You can choose any of the marker symbols from the drop-down.

 Spectrum Analyzer

2-1243

Axes Scaling

The Axes Scaling dialog box controls the axes limits of the Spectrum Analyzer. To open the Axes
Scaling properties, in the Spectrum Analyzer menu, select Tools > Axes Scaling > Axes Scaling
Properties.

Axes scaling/Color scaling — Automatic axes scaling
Auto (default) | Manual | After N Updates

Specify when the scope automatically scales the y-axis. If the spectrogram is displayed, specify when
the scope automatically scales the color axis. By default, this parameter is set to Auto, and the scope
does not shrink the y-axis limits when scaling the axes or color. You can select one of the following
options:

• Auto — The scope scales the axes or color as needed, both during and after simulation. Selecting
this option shows the Do not allow Y-axis limits to shrink or Do not allow color limits to
shrink.

• Manual — When you select this option, the scope does not automatically scale the axes or color.
You can manually scale the axes or color in any of the following ways:

• Select Tools > Scaling Properties.
• Press one of the Scale Axis Limits toolbar buttons.
• When the scope figure is the active window, press Ctrl+A.

• After N Updates — Selecting this option causes the scope to scale the axes or color after a
specified number of updates. This option is useful, and most efficient, when your frequency signal
values quickly reach steady-state after a short period. Selecting this option shows the Number of
updates edit box where you can modify the number of updates to wait before scaling.

Tunable: Yes

Programmatic Use

See AxesScaling.

Do not allow Y-axis/color limits to shrink — Axes scaling limits
on (default) | off

When you select this parameter, the y-axis is allowed to grow during axes scaling operations. If the
spectrogram is displayed, selecting this parameter allows the color limits to grow during axis scaling.
If you clear this check box, the y-axis or color limits can shrink during axes scaling operations.

Dependency

This parameter appears only when you select Auto for the Axis scaling or Color scaling parameter.
When you set the Axes scaling or Color scaling parameter to Manual or After N Updates, the y-
axis or color limits can shrink.

Number of updates — Number of updates before scaling
10 (default) | positive number

The number of updates after which the axes scale, specified as a positive integer. If the spectrogram
is displayed, this parameter specifies the number of updates after which the color axes scales.

Tunable: Yes

2 Blocks

2-1244

Dependency

This parameter appears only when you set “Axes scaling/Color scaling” on page 2-0 to After N
Updates.

Programmatic Use

See AxesScalingNumUpdates.

Scale limits at stop — Scale axes at stop
off (default) | on

Select this check box to scale the axes when the simulation stops. If the spectrogram is displayed,
select this check box to scale the color when the simulation stops. The y-axis is always scaled. The x-
axis limits are only scaled if you also select the Scale X-axis limits check box.

Data range (%) — Percent of axes
100 (default) | number in the range [1,100]

Set the percentage of the axis that the scope uses to display the data when scaling the axes. If the
spectrogram is displayed, set the percentage of the power values range within the colormap. Valid
values are from 1 through 100. For example, if you set this parameter to 100, the scope scales the
axis limits such that your data uses the entire axis range. If you then set this parameter to 30, the
scope increases the y-axis or color range such that your data uses only 30% of the axis range.

Tunable: Yes

Align — Alignment along axes
Center (default) | Bottom | Top | Left | Right

Specify where the scope aligns your data along the axis when it scales the axes. If the spectrogram is
displayed, specify where the scope aligns your data along the axis when it scales the color. If you are
using CCDF Measurements, the x axis is also configurable.

Tunable: Yes

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
Spectrum Estimation — Welch's Method

When you choose the Welch method, the power spectrum estimate is averaged modified
periodograms.

 Spectrum Analyzer

2-1245

Given the signal input, x, the Spectrum Analyzer does the following:

1 Multiplies x by the given window and scales the result by the window power. The Spectrum
Analyzer uses the RBW or the Window Length setting in the Spectrum Settings pane to
determine the data window length.

2 Computes the FFT of the signal, Y, and takes the square magnitude using Z = Y.*conj(Y).
3 Computes the current power spectrum estimate by taking the moving average of the last N

number of Z's, and scales the answer by the sample rate. For details on the moving average
methods, see “Averaging Method” on page 2-1253.

Spectrum Analyzer requires that a minimum number of samples to compute a spectral estimate. This
number of input samples required to compute one spectral update is shown as Samples/update in
the Main options pane. This value is directly related to resolution bandwidth, RBW, by the following
equation, or to the window length, by the equation shown in step 2.

Nsamples =
1−

Op
100 × NENBW × Fs

RBW

The normalized effective noise bandwidth, NENBW, is a factor that depends on the windowing
method. Spectrum Analyzer shows the value of NENBW in the Window Options pane of the
Spectrum Settings pane. Overlap percentage, Op, is the value of the Overlap % parameter in the
Window Options pane of the Spectrum Settings pane. Fs is the sample rate of the input signal.
Spectrum Analyzer shows sample rate in the Main Options pane of the Spectrum Settings pane.

1 When in RBW (Hz) mode, the window length required to compute one spectral update, Nwindow,
is directly related to the resolution bandwidth and normalized effective noise bandwidth:

Nwindow =
NENBW × Fs

RBW

When in Window Length mode, the window length is used as specified.
2 The number of input samples required to compute one spectral update, Nsamples, is directly

related to the window length and the amount of overlap by the following equation.

Nsamples = 1−
Op
100 Nwindow

When you increase the overlap percentage, fewer new input samples are needed to compute a
new spectral update. For example, if the window length is 100, then the number of input samples
required to compute one spectral update is given as shown in the following table.

Op Nsamples

0% 100
50% 50
80% 20

3 The normalized effective noise bandwidth, NENBW, is a window parameter determined by the
window length, Nwindow, and the type of window used. If w(n) denotes the vector of Nwindow
window coefficients, then NENBW is given by the following equation.

2 Blocks

2-1246

NENBW = Nwindow ×
∑

n = 1

Nwindow
w2(n)

∑
n = 1

Nwindow
w(n)

2

4 When in RBW (Hz) mode, you can set the resolution bandwidth using the value of the RBW
(Hz) parameter on the Main options pane of the Spectrum Settings pane. You must specify a
value to ensure that there are at least two RBW intervals over the specified frequency span. The
ratio of the overall span to RBW must be greater than two:

span
RBW > 2

By default, the RBW (Hz) parameter on the Main options pane is set to Auto. In this case, the
Spectrum Analyzer determines the appropriate value to ensure that there are 1024 RBW
intervals over the specified frequency span. When you set RBW (Hz) to Auto, RBW is calculated
as:

RBWauto = span
1024

5 When in Window Length mode, you specify Nwindow and the resulting RBW is:

NENBW × Fs
Nwindow

Sometimes, the number of input samples provided are not sufficient to achieve the resolution
bandwidth that you specify. When this situation occurs, Spectrum Analyzer displays a message:

Spectrum Analyzer removes this message and displays a spectral estimate when enough data has
been input.

Note The number of FFT points (Nfft) is independent of the window length (Nwindow). You can set them
to different values if Nfft is greater than or equal to Nwindow.

Spectrum Estimation — Filter Bank

When you choose the Filter Bank method, the Spectrum Analyzer uses an analysis filter bank to
estimate the power spectrum.

The filter bank splits the broadband input signal, x(n), of sample rate fs, into multiple narrow band
signals, y0(m), y1(m), … , yM-1(m), of sample rate fs/M.

 Spectrum Analyzer

2-1247

The variable M represents the number of frequency bands in the filter bank. When the frequency
resolution method is set to NumFrequencyBands, M is equal to the value you specify for the number
of frequency bands. When the frequency resolution method is set to RBW, M is equal to the number of
data points that are needed to achieve the specified RBW value or 1024, whichever is larger. The
number of taps per frequency band specifies the number of filter coefficients for each frequency band
of the filter bank. The total number of filter coefficients is equal to number of taps per band times the
number of frequency bands, M. For more information on the analysis filter bank and how it is
implemented, see the “More About” on page 4-218 and the “Algorithm” on page 4-220 sections in
dsp.Channelizer.

After the broadband input signal is split into multiple narrow bands, the Spectrum Analyzer computes
the power in each narrow band using the following equation. Each Zi value becomes the estimate of
the power over that narrow frequency band.

Zi = 1
L ∑m = 0

L− 1
yi[m] 2

L is length of the narrow band signal, yi(m), and i = 1, 2, …, M−1.

The power values in all the narrow bands (denoted by the Zi) form the Z vector.

Z = [Z0, Z1, Z2,⋯, ZM − 1]

The current Z vector is averaged with the previous Z vectors using one of the two moving average
methods: Running or Exponential weighting. The output of the averaging operation forms the
spectral estimate vector. For details on the two averaging methods, see “Averaging Method” on page
2-1253.

The Spectrum Analyzer uses the RBW (Hz) or the Number of frequency band property in the
Spectrum Settings pane to determine the input frame length.

Spectrum Analyzer requires a minimum number of samples to compute a spectral estimate. This
number of input samples required to compute one spectral update is shown as Samples/update in
the Main options pane. This value is directly related to resolution bandwidth, RBW, by the following
equation.

2 Blocks

2-1248

Nsamples =
Fs

RBW

Fs is the sample rate of the input signal. Spectrum Analyzer shows sample rate in the Main Options
pane of the Spectrum Settings pane.

1 When in RBW (Hz) mode, you can set the resolution bandwidth using the value of the RBW
(Hz) parameter on the Main options pane of the Spectrum Settings pane. You must specify a
value to ensure that there are at least two RBW intervals over the specified frequency span. The
ratio of the overall span to RBW must be greater than two:

span
RBW > 2

By default, the RBW parameter on the Main options pane is set to Auto. In this case, the
Spectrum Analyzer determines the appropriate value to ensure that there are 1024 RBW
intervals over the specified frequency span. Thus, when you set RBW to Auto, it is calculated by
the following equation.RBWauto = span

1024
2 When in Number of frequency bands mode, you specify the input frame size. When the number

of frequency bands is Auto, the resulting RBW is:

RBW =
Fs

Input Frame Size

When the number of frequency bands is manually specified, the resulting RBW is:

RBW =
Fs

FFTLength

Sometimes, the number of input samples provided are not sufficient to achieve the resolution
bandwidth that you specify. When this situation occurs, Spectrum Analyzer displays a message:

Spectrum Analyzer removes this message and displays a spectral estimate when enough data has
been input.

Nyquist frequency interval

When the PlotAsTwoSidedSpectrum property is set to true, the interval is
−SampleRate

2 , SampleRate
2 + FrequencyOf f set hertz.

When the PlotAsTwoSidedSpectrum property is set to false, the interval is
0, SampleRate

2 + FrequencyOf f set hertz.

 Spectrum Analyzer

2-1249

Periodogram and Spectrogram

Spectrum Analyzer calculates and plots the power spectrum, power spectrum density, and RMS
computed by the modified Periodogram estimator. For more information about the Periodogram
method, see periodogram.

Power Spectral Density — The power spectral density (PSD) is given by the following equation.

PSD f = 1
P ∑p = 1

P ∑
n = 1

NFFT
xp n e− j2πf (n− 1)T

2

Fs × ∑
n = 1

Nwindow
w2 n

In this equation, x[n] is the discrete input signal. On every input signal frame, Spectrum Analyzer
generates as many overlapping windows as possible, with each window denoted as x(p)[n], and
computes their periodograms. Spectrum Analyzer displays a running average of the P most current
periodograms.

Power Spectrum — The power spectrum is the product of the power spectral density and the
resolution bandwidth, as given by the following equation.

Pspectrum f = PSD f × RBW = PSD f ×
Fs × NENBW

Nwindow
= 1

P ∑p = 1

P ∑
n = 1

NFFT
xp n e− j2πf (n− 1)T

2

∑
n = 1

Nwindow
w n

2

Spectrogram — You can plot any power as a spectrogram. Each line of the spectrogram is one
periodogram. The time resolution of each line is 1/RBW, which is the minimum attainable resolution.
Achieving the resolution you want may require combining several periodograms. You then use
interpolation to calculate noninteger values of 1/RBW. In the spectrogram display, time scrolls from
top to bottom, so the most recent data is shown at the top of the display. The offset shows the time
value at which the center of the most current spectrogram line occurred.

Frequency Vector

When set to Auto, the frequency vector for frequency-domain input is calculated by the software.

When the PlotAsTwoSidedSpectrum property is set to true, the frequency vector is:

−SampleRate
2 , SampleRate

2

When the PlotAsTwoSidedSpectrum property is set to false, the frequency vector is:

0, SampleRate
2

Occupied BW

The Occupied BW is calculated as follows.

2 Blocks

2-1250

1 Calculate the total power in the measured frequency range.
2 Determine the lower frequency value. Starting at the lowest frequency in the range and moving

upward, the power distributed in each frequency is summed until this result is

100− OccupiedBW%
2

of the total power.
3 Determine the upper frequency value. Starting at the highest frequency in the range and moving

downward, the power distributed in each frequency is summed until the result reaches

100− OccupiedBW%
2

of the total power.
4 The bandwidth between the lower and upper power frequency values is the occupied bandwidth.
5 The frequency halfway between the lower and upper frequency values is the center frequency.

Distortion Measurements

The Distortion Measurements are computed as follows.

1 Spectral content is estimated by finding peaks in the spectrum. When the algorithm detects a
peak, it records the width of the peak and clears all monotonically decreasing values. That is, the
algorithm treats all these values as if they belong to the peak. Using this method, all spectral
content centered at DC (0 Hz) is removed from the spectrum and the amount of bandwidth
cleared (W0) is recorded.

2 The fundamental power (P1) is determined from the remaining maximum value of the displayed
spectrum. A local estimate (Fe1) of the fundamental frequency is made by computing the central
moment of the power near the peak. The bandwidth of the fundamental power content (W1) is
recorded. Then, the power from the fundamental is removed as in step 1.

3 The power and width of the higher-order harmonics (P2, W2, P3, W3, etc.) are determined in
succession by examining the frequencies closest to the appropriate multiple of the local estimate
(Fe1). Any spectral content that decreases monotonically about the harmonic frequency is
removed from the spectrum first before proceeding to the next harmonic.

4 Once the DC, fundamental, and harmonic content is removed from the spectrum, the power of
the remaining spectrum is examined for its sum (Premaining), peak value (Pmaxspur), and median
value (Pestnoise).

5 The sum of all the removed bandwidth is computed as Wsum = W0 + W1 + W2 +...+ Wn.

The sum of powers of the second and higher-order harmonics are computed as Pharmonic = P2 + P3
+ P4 +...+ Pn.

6 The sum of the noise power is estimated as:

Pnoise = (Premaining ⋅ dF + Pest . noise ⋅Wsum)/RBW

Where dF is the absolute difference between frequency bins, and RBW is the resolution
bandwidth of the window.

7 The metrics for SNR, THD, SINAD, and SFDR are then computed from the estimates.

 Spectrum Analyzer

2-1251

THD = 10 ⋅ log10
Pharmonic

P1

SINAD = 10 ⋅ log10
P1

Pharmonic + Pnoise

SNR = 10 ⋅ log10
P1

Pnoise

SFDR = 10 ⋅ log10
P1

max Pmaxspur, max P2, P3, ..., Pn

Harmonic Measurements

1 The harmonic distortion measurements use the spectrum trace shown in the display as the input
to the measurements. The default Hann window setting of the Spectrum Analyzer may exhibit
leakage that can completely mask the noise floor of the measured signal.

The harmonic measurements attempt to correct for leakage by ignoring all frequency content
that decreases monotonically away from the maximum of harmonic peaks. If the window leakage
covers more than 70% of the frequency bandwidth in your spectrum, you may see a blank
reading (–) reported for SNR and SINAD. If your application can tolerate the increased
equivalent noise bandwidth (ENBW), consider using a Kaiser window with a high attenuation (up
to 330 dB) to minimize spectral leakage.

2 Blocks

2-1252

2 The DC component is ignored.
3 After windowing, the width of each harmonic component masks the noise power in the

neighborhood of the fundamental frequency and harmonics. To estimate the noise power in each
region, Spectrum Analyzer computes the median noise level in the nonharmonic areas of the
spectrum. It then extrapolates that value into each region.

4 Nth order intermodulation products occur at A*F1 + B*F2,

where F1 and F2 are the sinusoid input frequencies and |A| + |B| = N. A and B are integer
values.

5 For intermodulation measurements, the third-order intercept (TOI) point is computed as follows,
where P is power in decibels of the measured power referenced to 1 milliwatt (dBm):

• TOIlower = PF1 + (PF2 - P(2F1-F2))/2
• TOIupper = PF2 + (PF1 - P(2F2-F1))/2
• TOI = + (TOIlower + TOIupper)/2

Averaging Method

The moving average is calculated using one of the two methods:

• Running — For each frame of input, average the last N-scaled Z vectors, which are computed by
the algorithm. The variable N is the value you specify for the number of spectral averages. If the
algorithm does not have enough Z vectors, the algorithm uses zeros to fill the empty elements.

 Spectrum Analyzer

2-1253

• Exponential — The moving average algorithm using the exponential weighting method updates
the weights and computes the moving average recursively for each Z vector that comes in by
using the following recursive equations:

wN = λwN − 1 + 1

zN = 1− 1
wN

zN − 1 + 1
wN

zN

• λ — Forgetting factor
• wN — Weighting factor applied to the current Z vector
• zN — Current Z vector
• zN − 1 — Moving average until the previous Z vector
• 1− 1

wN
zN − 1 — Effect of the previous Z vectors on the average

• zN — Moving average including the current Z vector

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

2 Blocks

2-1254

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

This block can be used for simulation visibility in systems that generate PLC code, but is not included
in the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block accepts fixed-point input, but converts it to double for display.

See Also
Objects
SpectrumAnalyzerConfiguration | dsp.SpectrumAnalyzer

Functions
getSpectralMaskStatus | getSpectrumData | getMeasurementsData

Blocks
Time Scope | Array Plot

Topics
“Display Frequency-Domain Data in Spectrum Analyzer”
“Spectral Analysis”
“Display Frequency-Domain Data in Spectrum Analyzer”

Introduced in R2014b

 Spectrum Analyzer

2-1255

Spectrum Estimator
Estimate power spectrum or power-density spectrum

Library
Estimation / Power Spectrum Estimation

dspspect3

Description
The Spectrum Estimator block outputs the power spectrum or power-density spectrum of a real or
complex input signal, using the Welch method of averaged modified periodograms and the filter bank
approach.

When you choose the filter bank approach, the block uses an analysis filter bank to estimate the
power spectrum. The filter bank approach produces a spectral estimate with a higher resolution, a
more accurate noise floor, and more precise peaks than the Welch method, with low or no spectral
leakage. They come at the expense of increased computation and slower tracking.

When you choose the Welch method, the block computes the averaged modified periodograms to
compute the spectral estimate. The block buffers the input data into overlapping segments. Use the
block parameters to set the length of the data segments, the amount of data overlap between
consecutive segments, and other features of the power spectrum.

For more information on the Welch method and the filter bank method, see “Algorithms” on page 2-
1263.

Each column of the input signal is treated as a separate channel. If the input is a two-dimensional
signal, the first dimension represents the channel length (or frame size) and the second dimension
represents the number of channels. If the input is a one-dimensional signal, then it is interpreted as a
single channel.

Parameters
Main Tab

Method
Specify the spectral estimation method.

• Filter bank (default) — An analysis filter bank splits the broadband input signal into
multiple narrow subbands. The block computes the power in each narrow frequency band, and
the computed value is the spectral estimate over the respective frequency band.

2 Blocks

2-1256

• Welch — The block uses the Welch averaged modified periodograms method to compute the
power spectrum over the narrow subbands.

Number of taps per band
Specify the number of filter coefficients, or taps, for each frequency band. This value corresponds
to the number of filter coefficients per polyphase branch. The total number of filter coefficients is
equal to Number of taps per band times the FFT length.

This parameter applies when you set Method to Filter bank. The default is 12.
Spectrum type

Type of spectrum to compute. You can set this parameter to:

• Power (default) — Compute the power spectrum.
• Power density — Compute the power spectral density.

This parameter is nontunable.
Frequency resolution method

Frequency resolution method. You can set this parameter to:

• Auto (default) — The Spectrum Estimator block computes the resolution bandwidth (RBW) so
that the frequency span fits 1024 RBW intervals.

• Welch method — The window length, winLen, is calculated using
winLen = NENBW × Fs/RBW. NENBW is the equivalent noise bandwidth of the window
and Fs is the sample rate.

• Filter bank method — The FFT length is the ceiling of the ratio of Sample rate (Hz) to the
computed resolution bandwidth.

• RBW — Specify the resolution bandwidth, which is used to determine the window length (Welch
method) or the FFT length (filter bank method). When the block uses the Welch method, the
behavior is equivalent to that of the Spectrum Analyzer block. The window length is calculated
using winLen = NENBW × Fs/RBW. NENBW is the equivalent noise bandwidth of the window
and Fs is the sample rate. The FFT length is equal to the ceiling of the ratio of Sample rate
(Hz) to RBW (Hz).

• Window length — Specify the window or segment length to use in the Welch algorithm. This
option appears when you set Method to Welch.

• Number of frequency bands — Specify the number of polyphase branches of the analysis
filter bank. This value corresponds to the FFT length that the filter bank uses. This option
appears when you set Method to Filter bank.

This parameter is nontunable.
RBW (Hz)

Resolution bandwidth, specified as a positive scalar in Hz. The default is 5. This parameter
applies when you set Frequency resolution method to RBW. The ceiling of the ratio of the
frequency span to RBW must be greater than 2.

This parameter is nontunable.
Number of bands source

Source of the number of frequency bands. This parameter applies when you set Method to
Filter bank and Frequency resolution method to Number of frequency bands. You can
set this parameter to:

 Spectrum Estimator

2-1257

• Same as input frame length (default) — The FFT length is set to the frame size of the
input.

• Specify on dialog — The FFT length is the value you specify in Number of bands.

This parameter is nontunable.
Number of bands

Number of frequency bands, or the FFT length the filter bank uses to compute the power spectral
estimate, specified as a positive scalar. The default is 1024. This parameter applies when you set
Method to Filter bank, Frequency resolution method to Number of frequency bands,
and Number of bands source to Specify on dialog. This parameter is nontunable.

Window length source
Source of the window length value. This parameter applies when you set Method to Welch and
Frequency resolution method to Window length. You can set this parameter to:

• Same as input frame length (default) — Window length is set to the frame size of the
input. Specify this option to obtain behavior equivalent to that of the Periodogram block.

• Specify on dialog — Window length is the value you specify in the Window length
parameter.

This parameter is nontunable.
Window length

Length of the window used to compute the spectrum estimate, specified as a positive integer
scalar greater than 2. The default is 1024. This parameter applies when you set Method to
Welch, Frequency resolution method to Window length, and Window length source to
Specify on dialog. This parameter is nontunable.

FFT length source
Source of the FFT length value. This parameter applies when you set Method to Welch and
Frequency resolution method to Window length. You can set this parameter to:

• Auto (default) — The block sets the FFT length to the frame size of the input.
• Property — The block sets the FFT length to the value you specify in FFT length.

This parameter is nontunable.
FFT length

Length of the FFT used to compute the spectrum estimates, specified as a positive integer scalar.
This parameter applies when you set Method to Welch, Frequency resolution method to
Window length, and FFT length source to Property. The default is 1024. This parameter is
nontunable.

Inherit sample rate from input
When you select this check box, the block sample rate is computed as N/Ts, where N is the frame
size of the input signal and Ts is the sample time of the input signal.

This check box applies when you do one of the following:

• Set Method to Welch and Frequency resolution method to Window length.
• Set Method to Filter bank and Frequency resolution method to Number of

frequency bands.

2 Blocks

2-1258

When you clear this check box, the block sample rate is the value you specify in Sample rate
(Hz). By default, this check box is selected. This parameter is nontunable.

Sample rate (Hz)
Sample rate of the input signal, specified as a positive scalar. The default is 44100. This
parameter applies when you do one of the following:

• Set Frequency resolution method to Auto or RBW.
• Set Method to Welch, Frequency resolution method to Window length, and clear the

Inherit sample rate from input check box.
• Set Method to Filter bank, Frequency resolution method to Number of frequency

bands, and clear the Inherit sample rate from input check box.

This parameter is nontunable.
Window function

Window function the Welch algorithm uses, specified as one of Chebyshev | Flat Top |
Hamming | Hann | Kaiser | Rectangular. This parameter appears when you set Method to
Welch. The default is Hann. This parameter is nontunable.

Sidelobe attenuation of window (dB)
Sidelobe attenuation of the window, specified as a real positive scalar greater than or equal to 45,
in dB. The default is 60. This parameter appears when you set Method to Welch and Window
function to Chebyshev or Kaiser. This parameter is nontunable.

Averaging method
Specify the averaging method as Exponential (default) or Running. In the exponential method,
the block computes the average over samples weighted by an exponentially decaying forgetting
factor. In the running averaging method, the block computes an equally weighted average of
specified number of spectrum estimates defined by Number of spectral averages parameter.

Number of spectral averages
Number of spectral averages, specified as a positive integer scalar. The default is 1. The spectrum
estimator computes the current power spectrum estimate by averaging the last N power
spectrum estimates, where N is the number of spectral averages defined in Number of spectral
averages. This parameter is nontunable.

This parameter applies when Averaging method is set to Running.
Specify forgetting factor from input port

Select this check box to specify the forgetting factor from an input port. When you do not select
this check box, the forgetting factor is specified through the Forgetting factor parameter.

This parameter applies when Averaging method is set to Exponential.
Forgetting factor

Specify the exponential weighting forgetting factor as a scalar value greater than zero and
smaller than or equal to one. The default is 0.9.

This parameter applies when you set Averaging method to Exponential and clear the Specify
forgetting factor from input port parameter.

 Spectrum Estimator

2-1259

Advanced Tab

Window overlap (%)
Percentage of overlap between successive data windows, specified as a scalar from 0 and 100.
The default value is 0. To enable this parameter, on the Main Tab, set Method to Welch. This
parameter is nontunable.

Reference load (ohms)
Load used as a reference to compute the power values, specified as a real positive scalar
expressed in ohms. The default value is 1. This parameter is nontunable.

Frequency range
Frequency range of the spectrum estimator. You can set this parameter to:

• One-sided — The spectrum estimator computes the one-sided spectrum of a real input
signal. When the FFT length, NFFT, is even, the spectrum estimate has length (NFFT/2) + 1
and is computed over the frequency range [0 SampleRate/2]. SampleRate is the sample
rate of the input signal. When NFFT is odd, the spectrum estimate has length (NFFT + 1)/2 and
is computed over the frequency range [0 SampleRate/2).

• Two-sided — The spectrum estimator computes the two-sided spectrum of a complex or real
input signal. The length of the spectrum estimate is equal to the FFT length. The spectrum
estimate is computed over the frequency range [0 SampleRate), where SampleRate is the
sample rate of the input signal.

• Centered (default) — The spectrum estimator computes the centered two-sided spectrum of a
complex or real input signal. The length of the spectrum estimate is equal to the FFT length.
The spectrum estimate is computed over the frequency range (-SampleRate/
2 SampleRate/2] when the FFT length is even and (-SampleRate/2 SampleRate/2)
when the FFT length is odd.

This parameter is nontunable.
Power units

Units used to measure power. You can set this parameter to:

• 'Watts' (default) — The spectrum estimator measures power in watts.
• 'dBw' — The spectrum estimator measures power in decibel-watts.
• 'dBm' — The spectrum estimator measures power in decibel-milliwatts.

This parameter is nontunable.
Output max-hold spectrum

When you select this check box, the block computes the max-hold spectrum of the input signal by
keeping, at each frequency bin, the maximum value of all the power spectrum estimates. By
default, this check box is not selected. This parameter is nontunable.

Output min-hold spectrum
When you select this check box, the block computes the min-hold spectrum of the input signal by
keeping, at each frequency bin, the minimum value of all the power spectrum estimates. By
default, this check box is not selected. This parameter is nontunable.

Output frequency vector
When you select this check box, the block outputs the frequency vector. By default, this check box
is not selected. This parameter is nontunable.

2 Blocks

2-1260

Output effective RBW
When you select this check box, the block computes the effective resolution bandwidth. By
default, this check box is not selected. This parameter is nontunable.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default) — Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup
time but provides faster simulation speed than Interpreted execution.

• Interpreted execution — Simulate model using the MATLAB interpreter. This option
shortens startup time but has slower simulation speed than Code generation.

Example
Estimate the Power Spectral Density (PSD) of a chirp signal using the Spectrum Estimator block.
Compare the PSD data with a Bluetooth® spectral mask and determine if the PSD data complies with
the mask.

To view the complete model, enter ex_psd_spectralmask in the MATLAB command prompt.

Input Signal

The input to the Spectrum Estimator block is a chirp signal embedded in Gaussian noise with zero
mean and a variance of 0.01. The chirp signal is amplified with a gain factor in the range [0 1].

 Spectrum Estimator

2-1261

Spectral Mask

The Spectral mask is created using the MATLAB Function block. The mask is based on the Bluetooth
standard described in [5].

Live Processing

The Spectrum Estimator block estimates the PSD of the chirp. In this example, the PSD data is
compared with the spectral mask. The Display block shows a 1 or 0, depending on whether the
spectral data is within the mask or not. During simulation, you can change the power in the input
signal by moving the slider in the Slider Gain block. Simultaneously, you can view this change in the
Array Plot block.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

2 Blocks

2-1262

Algorithms
Welch's Method of Averaged Modified Periodograms

When you choose the Welch method, the power spectrum estimate is averaged modified
periodograms.

Given the signal input, x:

1 Multiply x by the window and scale the result by the window power.
2 Compute the FFT of the signal, Y, and take the square magnitude using Z = Y.*conj(Y).
3 Compute the current power spectrum estimate by taking the moving average of the last N

number of Z's, and scaling the answer by the sample rate. For details on the moving average
methods, see “Averaging Method” on page 2-1264.

Filter Bank

The filter-bank-based spectrum estimator uses an analysis filter bank to estimate the power spectrum.
The filter bank splits a broadband input signal, x(n), of sample rate fs into multiple narrow band
signals, y0(m), y1(m), … , yM-1(m), of sample rate fs/M.

The variable M represents the number of frequency bands in the filter bank. When you specify FFT
length, M equals the FFT length. When you do not specify FFT length, M is equal to the number of
rows in the input signal. The number of taps per frequency band sets the number of filter coefficients
for each frequency band of the filter bank. The total number of filter coefficients is equal to number of
taps per band times the number of frequency bands M. For more information on the analysis filter
bank and how it is implemented, see the “More About” on page 4-218 and the “Algorithm” on page
4-220 sections in dsp.Channelizer.

After the broadband input signal is split into multiple narrow bands, the spectrum estimator
computes the power in each narrow band using the following equation. Each Zi value becomes the
estimate of the power over that narrow frequency band.

Zi = 1
L ∑m = 0

L− 1
yi[m] 2

L is length of the narrow band signal yi(m), where i = 1, 2, …, M−1.

The power values in all the narrow bands (denoted by Zi) form the Z vector.

Z = [Z0, Z1, Z2,⋯, ZM − 1]

The filter bank estimator algorithm averages the current Z vector with the previous Z vectors using
one of the two moving average methods: running or exponential weighting. The output of the
averaging operation forms the spectral estimate vector. For details on the two averaging methods,
see “Averaging Method” on page 2-1264.

 Spectrum Estimator

2-1263

Averaging Method

The moving average is calculated using one of the two methods:

• Running — For each frame of input, average the last N-scaled Z vectors, which are computed by
the algorithm. The variable N is the value you specify for the number of spectral averages. If the
algorithm does not have enough Z vectors, the algorithm uses zeros to fill the empty elements.

• Exponential — The moving average algorithm using the exponential weighting method updates
the weights and computes the moving average recursively for each Z vector that comes in by
using the following recursive equations:

2 Blocks

2-1264

wN = λwN − 1 + 1

zN = 1− 1
wN

zN − 1 + 1
wN

zN

• λ — Forgetting factor
• wN — Weighting factor applied to the current Z vector

• zN — Current Z vector

• zN − 1 — Moving average until the previous Z vector

• 1− 1
wN

zN − 1 — Effect of the previous Z vectors on the average

• zN — Moving average including the current Z vector

References
[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling. Hoboken, NJ: John Wiley &

Sons, 1996.

[2] Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ:
Prentice Hall, 1999.

[3] Stoica, Petre, and Randolph L. Moses. Spectral Analysis of Signals. Englewood Cliffs, NJ: Prentice
Hall, 2005.

[4] Welch, P. D. “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method
Based on Time Averaging Over Short, Modified Periodograms.” IEEE Transactions on Audio
and Electroacoustics. Vol. 15, No. 2, June 1967, pp. 70–73.

[5] Bluetooth Specification Version 4.2. Bluetooth SIG. December 2014, p. 217. Specification of the
Bluetooth System

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
dsp.SpectrumEstimator

Blocks
Cross-Spectrum Estimator | Discrete Transfer Function Estimator | Periodogram | Spectrum Analyzer

Topics
“Streaming Power Spectrum Estimation Using Welch's Method”

Introduced in R2015b

 Spectrum Estimator

2-1265

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439

Stack
Store inputs into LIFO register

Library
Signal Management / Buffers

dspbuff3

Description
The Stack block stores a sequence of input samples in a last in, first out (LIFO) register. The register
capacity is set by the Stack depth parameter, and inputs can be scalars, vectors, or matrices.

The block pushes the input at the In port onto the top of the stack when a trigger event is received at
the Push port. When a trigger event is received at the Pop port, the block pops the top element off
the stack and holds the Out port at that value. The last input to be pushed onto the stack is always
the first to be popped off.

A trigger event at the optional Rst port empties the stack contents. When you select Clear output
port on reset, then a trigger event at the Rst port empties the stack and sets the value at the Out
port to zero. This setting also applies when a disabled subsystem containing the Stack block is
reenabled; the Out port value is only reset to zero in this case when you select Clear output port on
reset.

2 Blocks

2-1266

When two or more of the control input ports are triggered at the same time step, the operations are
executed in the following order:

1 Rst
2 Push
3 Pop

The rate of the trigger signal must be the same as the rate of the data signal input. You specify the
triggering event for the Push, Pop, and Rst ports in the Trigger type pop-up menu:

• Rising edge — Triggers execution of the block when the trigger input does one of the following:

• Rises from a negative value to a positive value or zero
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero (see the following figure)

• Falling edge — Triggers execution of the block when the trigger input does one of the
following:

• Falls from a positive value to a negative value or zero
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero (see the following figure)

• Either edge — Triggers execution of the block when the trigger input is a Rising edge or
Falling edge (as described above).

• Non-zero sample — Triggers execution of the block at each sample time that the trigger input
is not zero.

 Stack

2-1267

Note If your model contains any referenced models that use a Stack block with the Push full stack
parameter set to Dynamic reallocation, you cannot simulate your top-level model in Simulink
Accelerator mode.

The Push full stack parameter specifies the block's behavior when a trigger is received at the Push
port but the register is full. The Pop empty stack parameter specifies the block's behavior when a
trigger is received at the Pop port but the register is empty. The following options are available for
both cases:

• Ignore — Ignore the trigger event, and continue the simulation.
• Warning — Ignore the trigger event, but display a warning message in the MATLAB command

window.
• Error — Display an error dialog box and terminate the simulation.

Note The Push full stack and Pop empty stack parameters are diagnostic parameters. Like all
diagnostic parameters on the Configuration Parameters dialog box, they are set to Ignore in the
code generated for this block by Simulink Coder code generation software.

The Push full stack parameter additionally offers the Dynamic reallocation option, which
dynamically resizes the register to accept as many additional inputs as memory permits. To find out
how many elements are on the stack at a given time, enable the Num output port by selecting the
Show number of stack entries port parameter.

Note When Dynamic reallocation is selected, the System target file parameter on the Code
Generation pane of the Model Configuration Parameters dialog box must be set to grt_malloc.tlc
– Generic Real-Time Target with dynamic memory allocation.

Examples
Example 1

The table below illustrates the Stack block's operation for a Stack depth of 4, Trigger type of
Either edge, and Clear output port on reset enabled. Because the block triggers on both rising
and falling edges in this example, each transition from 1 to 0 or 0 to 1 in the Push, Pop, and Rst
columns below represents a distinct trigger event. A 1 in the Empty column indicates an empty
buffer, while a 1 in the Full column indicates a full buffer.

In Push Pop Rst Stack Out Empty Full Num
1 0 0 0 0 1 0 0

2 1 0 0 0 0 0 1

3 0 0 0 0 0 0 2

4 1 0 0 0 0 0 3

5 0 0 0 0 0 1 4

2 Blocks

2-1268

In Push Pop Rst Stack Out Empty Full Num
6 0 1 0 5 0 0 3

7 0 0 0 4 0 0 2

8 0 1 0 3 0 0 1

9 0 0 0 2 1 0 0

10 1 0 0 2 0 0 1

11 0 0 0 2 0 0 2

12 1 0 1 0 0 0 1

Note that at the last step shown, the Push and Rst ports are triggered simultaneously. The Rst
trigger takes precedence, and the stack is first cleared and then pushed.

Parameters
Stack depth

The number of entries that the LIFO register can hold.
Trigger type

The type of event that triggers the block's execution. The rate of the trigger signal must be the
same as the rate of the data signal input.

Push full stack
Response to a trigger received at the Push port when the register is full. Inputs to this port must
have the same built-in data type as inputs to the Pop and Rst input ports.

When Dynamic reallocation is selected, the System target file parameter on the Code
Generation pane of the Model Configuration Parameters dialog box must be set to
grt_malloc.tlc – Generic Real-Time Target with dynamic memory allocation.

Pop empty stack
Response to a trigger received at the Pop port when the register is empty. Inputs to this port
must have the same built-in data type as inputs to the Push and Rst input ports.

Show empty stack indicator port
Enable the Empty output port, which is high (1) when the stack is empty, and low (0) otherwise.

Show full stack indicator port
Enable the Full output port, which is high (1) when the stack is full, and low (0) otherwise. The
Full port remains low when you select Dynamic reallocation from the Push full stack
parameter.

Show number of stack entries port
Enable the Num output port, which tracks the number of entries currently on the stack. When
inputs to the In port are double-precision values, the outputs from the Num port are double-
precision values. Otherwise, the outputs from the Num port are 32-bit unsigned integer values.

 Stack

2-1269

Show reset port to clear internal stack buffer
Enable the Rst input port, which empties the stack when the trigger specified by the Trigger
type is received. Inputs to this port must have the same built-in data type as inputs to the Push
and Pop input ports.

Clear output port on reset
Reset the Out port to zero (in addition to clearing the stack) when a trigger is received at the Rst
input port.

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Push • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type as inputs to the Pop and
Rst input ports

Pop • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type as inputs to the Push and
Rst input ports.

Rst • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Inputs to this port must have the same built-in data type as inputs to the Push and
Pop input ports.

2 Blocks

2-1270

Port Supported Data Types
Out • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Empty • Double-precision floating point
• Boolean

Full • Double-precision floating point
• Boolean

Num • Double-precision floating point

The block outputs a double-precision floating-point value at this port when the data
type of the In port is double-precision floating-point.

• 32-bit unsigned integers

The block outputs a 32-bit unsigned integer value at this port when the data type
of the In port is anything other than double-precision floating-point.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The following limitations apply:

• Generated code relies on memcpy or memset functions (string.h) under certain conditions.
• When Dynamic reallocation is selected, the System target file parameter on the Code

Generation pane of the Configuration Parameters dialog box must be set to grt_malloc.tlc -
Generic Real-Time Target with dynamic memory allocation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Buffer | Delay Line | Queue

Topics
“Queues”

Introduced before R2006a

 Stack

2-1271

Standard Deviation
Standard deviation of input or sequence of inputs
Library: DSP System Toolbox / Statistics

Description
The Standard Deviation block computes the standard deviation of each row or column of the input, or
along vectors of a specified dimension of the input. It can also compute the standard deviation of the
entire input. You can specify the dimension using the Find the standard deviation value over
parameter. The Standard Deviation block can also track the standard deviation in a sequence of
inputs over a period of time. To track the standard deviation in a sequence of inputs, select the
Running standard deviation parameter.

Note The Running mode in the Standard Deviation block will be removed in a future release. To
compute the running standard deviation in Simulink, use the Moving Standard Deviation block
instead.

Ports
Input

In — Data input
vector | matrix | N-D array

The block accepts real-valued or complex-valued multichannel and multidimensional inputs.

This port is unnamed until you select the Running standard deviation parameter and set the Reset
port parameter to any option other than None.
Data Types: single | double

Rst — Reset port
scalar

Specify the reset event that causes the block to reset the running standard deviation. The sample
time of the Rst input must be a positive integer multiple of the input sample time.

Dependencies

To enable this port, select the Running standard deviation parameter and set the Reset port
parameter to any option other than None.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

2 Blocks

2-1272

Output

Port_1 — Standard deviation along the specified dimension
scalar | vector | matrix | N-D array

The data type of the output matches the data type of the input.

When you do not select the Running standard deviation parameter, the block computes the
standard deviation in each row or column of the input, or along vectors of a specified dimension of
the input. It can also compute the standard deviation of the entire input at each individual sample
time. Each element in the output array y is the standard deviation of the corresponding column, row,
or entire input. The output array y depends on the setting of the Find the standard deviation value
over parameter. Consider a three-dimensional input signal of size M-by-N-by-P. When you set Find
the standard deviation value over to:

• Entire input — The output at each sample time is a scalar that contains the standard deviation
of the M-by-N-by-P input matrix.

• Each row — The output at each sample time consists of an M-by-1-by-P array, where each
element contains the standard deviation of each vector over the second dimension of the input.
For an M-by-N matrix input, the output at each sample time is an M-by-1 column vector.

• Each column — The output at each sample time consists of a 1-by-N-by-P array, where each
element contains the standard deviation of each vector over the first dimension of the input. For
an M-by-N matrix input, the output at each sample time is a 1-by-N row vector.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column vectors.
• Specified dimension — The output at each sample time depends on the value of the

Dimension parameter. If you set the Dimension to 1, the output is the same as when you select
Each column. If you set the Dimension to 2, the output is the same as when you select Each
row. If you set the Dimension to 3, the output at each sample time is an M-by-N matrix
containing the standard deviation of each vector over the third dimension of the input.

When you select Running standard deviation, the block tracks the standard deviation of each
channel in a time sequence of inputs. In this mode, you must also specify a value for the Input
processing parameter.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each element yijk of the output contains the standard deviation of the element
uijk for all inputs since the last reset.

When a reset event occurs, the running standard deviation yijk in the current frame is reset to the
element uijk.

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support input signals with more than two dimensions. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the standard deviation of the elements in the jth column of all inputs since
the last reset, up to and including the element uij of the current input.

When a reset event occurs, the running standard deviation for each channel becomes the standard
deviation of all the samples in the current input frame, up to and including the current input
sample.

Data Types: single | double

 Standard Deviation

2-1273

Parameters
Main Tab

Running standard deviation — Option to select running standard deviation
off (default) | on

When you select the Running standard deviation parameter, the block tracks the standard
deviation value of each channel in a time sequence of inputs.

Find the standard deviation value over — Dimension over which the block computes
the standard deviation
Each column (default) | Entire input | Each row | Specified dimension

• Each column — The block outputs the standard deviation over each column.
• Each row — The block outputs the standard deviation over each row.
• Entire input — The block outputs the standard deviation over the entire input.
• Specified dimension — The block outputs the standard deviation over the dimension,
specified in the Dimension parameter.

Dependencies

To enable this parameter, clear the Running standard deviation parameter.

Dimension — Custom dimension
1 (default) | scalar

Specify the dimension (one-based value) of the input signal over which the standard deviation is
computed. The value of this parameter must be greater than 0 and less than the number of
dimensions in the input signal.
Dependencies

To enable this parameter, set Find the standard deviation value over to Specified dimension.

Input processing — Method to process the input in running mode
Columns as channels (frame based) (default) | Elements as channels (sample based)

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support input signals with more than two dimensions. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the standard deviation of the elements in the jth column of all inputs since
the last reset, up to and including the element uij of the current input.

When a reset event occurs, the running standard deviation for each channel becomes the standard
deviation of all the samples in the current input frame, up to and including the current input
sample.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each element yijk of the output contains the standard deviation of the element
uijk for all inputs since the last reset.

When a reset event occurs, the running standard deviation yijk in the current frame is reset to the
element uijk.

2 Blocks

2-1274

Variable-Size Inputs

When your inputs are of variable size, and you select the Running standard deviation
parameter, then:

• If you set the Input processing parameter to Elements as channels (sample based),
the state is reset.

• If you set the Input processing parameter to Columns as channels (frame based),
then:

• When the input size difference is in the number of channels (number of columns), the state
is reset.

• When the input size difference is in the length of channels (number of rows), no reset
occurs and the running operation is carried out as usual.

Dependencies

To enable this parameter, select the Running standard deviation parameter.

Reset port — Reset event
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

The block resets the running standard deviation whenever a reset event is detected at the optional
Rst port. The reset sample time must be a positive integer multiple of the input sample time.

When a reset event occurs while the Input processing parameter is set to Elements as channels
(sample based), the running standard deviation for each channel is initialized to the value in the
corresponding channel of the current input. Similarly, when the Input processing parameter is set
to Columns as channels (frame based), the running standard deviation for each channel
becomes the standard deviation of all the samples in the current input frame, up to and including the
current input sample.

Use this parameter to specify the reset event.

• None — Disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to either a positive value or zero.
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero.

 Standard Deviation

2-1275

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

• Falls from a positive value to a negative value or zero.
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero.

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge.

• Non-zero sample — Triggers a reset operation at each sample time, when the Rst input is not
zero.

Note When running simulations in the Simulink multitasking mode, reset signals have a one-sample
latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port
rate before the block applies the reset. For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” and “Time-Based Scheduling and Code
Generation” (Simulink Coder).

Dependencies

To enable this parameter, select the Running standard deviation parameter.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
Standard Deviation

The standard deviation of a discrete-time signal is the square root of the variance of the signal.

2 Blocks

2-1276

Standard deviation gives a measure of deviation of the signal from its mean value.

For purely real or imaginary input, u, of size M-by-N, the standard deviation is given by the following
equation:

y = σ =
∑

i = 1

M
∑

j = 1

N
ui j

2−
∑

i = 1

M
∑

j = 1

N
ui j

2

M * N
M * N − 1

• uij is the input data element at indices i, j.
• M is the length of the jth column.
• N is the number of columns.

For complex inputs, the standard deviation is given by the following equation:

σ = σRe2 + σIm2

• σRe
2 is the variance of the real part of the complex input.

• σIm
2 is the variance of the imaginary part of the complex input.

Algorithms
Standard Deviation

When you clear the Running standard deviation parameter in the block and specify a dimension,
the block produces results identical to the MATLAB std function, when it is called as y =
std(u,0,D).

• u is the data input.
• D is the dimension.
• y is the standard deviation along the specified dimension.

The standard deviation along the entire input is identical to calling the std function as y =
std(u(:)).

For a complex input signal, the standard deviation is the square root of the sum of the variances of
the real and imaginary parts.

σ = σRe2 + σIm2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
std

 Standard Deviation

2-1277

Objects
dsp.MovingStandardDeviation

Blocks
Moving Standard Deviation

Introduced before R2006a

2 Blocks

2-1278

Submatrix
Select subset of elements (submatrix) from matrix input
Library: DSP System Toolbox / Signal Management / Indexing

DSP System Toolbox / Math Functions / Matrices and Linear
Algebra / Matrix Operations

Description
The Submatrix block extracts a contiguous submatrix, y, from the M-by-N input matrix u. For more
information about selecting the rows and columns to extract, see “Range Specification Options” on
page 2-1283.

Ports
Input

Port_1 — Input signal
vector | matrix

Input signal, from which the block extracts the specified submatrix.

This block supports Simulink virtual buses.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

Port_1 — Selected submatrix
vector | matrix

Submatrix selected from the input signal. The data type of the output is the same as the input.

This block supports Simulink virtual buses.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Parameters
For more information about selecting the subset of elements to form the submatrix, see “Range
Specification Options” on page 2-1283.

Row span — Range of rows
All rows (default) | One row | Range of rows

The range of input rows to be retained in the output.

 Submatrix

2-1279

Row — First row of output
First (default) | Index | Offset from last | Last | Offset from middle | Middle

The input row to be used as the first and only row of the output.
Dependencies

To enable this parameter, set Row span to One row.

Starting row — First row of output
First (default) | Index | Offset from last | Last | Offset from middle | Middle

The input row to be used as the first row of the output.
Dependencies

To enable this parameter, set Row span to Range of rows.

Row index — Index of first row
1 (default) | positive integer

The index of the input row to be used as the first and only row of the output, specified as an integer
greater than or equal to one.
Dependencies

To enable this parameter, set Row span to One row and Row to Index.

Starting row index — Index of first row
1 (default) | positive integer

The index of the input row to be used as the first row of the output, specified as an integer greater
than or equal to one.
Dependencies

To enable this parameter, set Row span to Range of rows and Starting row to Index.

Row offset — Offset of first row
1 (default) | positive integer

The offset of the input row to be used as the first and only row of the output, specified as an integer
greater than or equal to one.
Dependencies

To enable this parameter, set Row span to One row and Row to Offset from last or Offset
from middle.

Starting row offset — Offset of first row
1 (default) | positive integer

The offset of the input row to be used as the first row of the output, specified as an integer greater
than or equal to one.
Dependencies

To enable this parameter, set Row span to Range of rows and Starting row to Offset from
last or Offset from middle.

2 Blocks

2-1280

Ending row — Last row
Last (default) | Index | Offset from last | Offset from middle | Middle

The input row to be used as the last row of the output.

Dependencies

To enable this parameter, set Row span to Range of rows and set Starting row to any value
except Last.

Ending row index — Index of last row
1 (default) | positive integer

The index of the input row to be used as the last row of the output, specified as an integer greater
than or equal to one.

Dependencies

To enable this parameter, set Ending row to Index.

Ending row offset — Offset of last row
1 (default) | positive integer

The offset of the input row to be used as the last row of the output.

Dependencies

To enable this parameter, set Ending row to Offset from middle or Offset from last.

Column span — Range of input columns
All columns (default) | One column | Range of columns

The range of input columns to be retained in the output.

Column — First column
First (default) | Index | Offset from last | Last | Offset from middle | Middle

The input column to be used as the first and only column of the output.

Dependencies

To enable this parameter, set Column span to One column.

Starting column — First column
First (default) | Index | Offset from last | Last | Offset from middle | Middle

The input column to be used as the first column of the output.

Dependencies

To enable this parameter, set Column span to Range of columns.

Starting column index — Index of first column
1 (default) | positive integer

The index of the input column to be used as the first column of the output, specified as an integer
greater than or equal to one.

 Submatrix

2-1281

Dependencies

To enable this parameter, set Column span to Range of columns and Starting column to Index.

Column index — Index of first column
1 (default) | positive integer

The index of the input column to be used as the first and only column of the output, specified as an
integer greater than or equal to one.
Dependencies

To enable this parameter, set Column span to One column and Column to Index.

Column offset — Offset of first column
1 (default) | positive integer

The offset of the input column to be used as the first and only column of the output, specified as an
integer greater than or equal to one.
Dependencies

To enable this parameter, set Column span to One column and Column to Offset from last or
Offset from middle.

Starting column offset — Offset of first column
1 (default) | positive integer

The offset of the input column to be used as the first column of the output, specified as an integer
greater than or equal to one.
Dependencies

To enable this parameter, set Column span to Range of columns and Starting column to
Offset from last or Offset from middle.

Ending column — Last column
Last (default) | Index | Offset from last | Offset from middle | Middle

The input column to be used as the last column of the output.
Dependencies

To enable this parameter, set Column span to Range of columns and set Starting column to any
value except Last.

Ending column index — Index of last column
1 (default) | positive integer

The index of the input column to be used as the last column of the output, specified as an integer
greater than or equal to one.
Dependencies

To enable this parameter, set Ending column to Index.

Ending column offset — Offset of last column
1 (default) | positive integer

2 Blocks

2-1282

The offset of the input column to be used as the last column of the output.
Dependencies

To enable this parameter, set Ending column to Offset from middle or Offset from last.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Range Specification Options

The block treats length-M unoriented vector input as an M-by-1 matrix. The Row span parameter
provides three options for specifying the range of rows in u to be retained in submatrix output y:

• All rows

Specifies that y contains all M rows of u.
• One row

Specifies that y contains only one row from u. Selecting One row enables the Row parameter to
allow selection of the desired row.

• Range of rows

Specifies that y contains a range of rows from u. Selecting Range of rows enables the Starting
row and Ending row parameters to allow selection of the desired range of rows.

The Column span parameter contains a corresponding set of three options for specifying the range
of columns in u to be retained in submatrix y: All columns, One column, or Range of columns.
The One column option enables the Column parameter, and Range of columns options enable
the Starting column and Ending column parameters.

When you select One row or Range of rows from the Row span parameter, you specify the desired
row or range of rows in the Row parameter, or the Starting row and Ending row parameters.
Similarly, when you select One column or Range of columns from the Column span parameter,
you specify the desired column or range of columns in the Column parameter, or the Starting
column and Ending column parameters.

The Row, Column, Starting row, or Starting column can be specified in six ways:

• First

For rows, this specifies that the first row of u should be used as the first row of y. When all
columns are to be included, this is equivalent to y(1,:) = u(1,:).

 Submatrix

2-1283

For columns, this specifies that the first column of u should be used as the first column of y. When
all rows are to be included, this is equivalent to y(:,1) = u(:,1).

• Index

For rows, this specifies that the row of u, firstrow, forward-indexed by the Row index
parameter or the Starting row index parameter, should be used as the first row of y. When all
columns are to be included, this is equivalent to y(1,:) = u(firstrow,:).

For columns, this specifies that the column of u, forward-indexed by the Column index parameter
or the Starting column index parameter, firstcol, should be used as the first column of y.
When all rows are to be included, this is equivalent to y(:,1) = u(:,firstcol).

• Offset from last

For rows, this specifies that the row of u offset from row M by the Row offset or Starting row
offset parameter, firstrow, should be used as the first row of y. When all columns are to be
included, this is equivalent to y(1,:) = u(M-firstrow,:).

For columns, this specifies that the column of u offset from column N by the Column offset or
Starting column offset parameter, firstcol, should be used as the first column of y. When all
rows are to be included, this is equivalent to y(:,1) = u(:,N-firstcol).

• Last

For rows, this specifies that the last row of u should be used as the only row of y. When all
columns are to be included, this is equivalent to y = u(M,:).

For columns, this specifies that the last column of u should be used as the only column of y. When
all rows are to be included, this is equivalent to y = u(:,N).

• Offset from middle

When you select this option, the block selects the first row or column of the output y by adding
the specified offset to the middle row or column of the input u. When the number, X, of input rows
or columns is even, the block defines the middle as X/2 +1. When the number of input rows or
columns is odd, the block defines the middle as ceil(X/2).

When all columns are to be included, the following code defines the starting row: y(1,:) =
u(MiddleRow+Offset,:), where Offset is the value of the Row offset or Starting row offset
parameter. When all rows are to be included, the following code defines the starting column:
y(1,:) = u(:,MiddleColumn+Offset), where Offset is the value of the Column offset or
Starting column offset parameter.

• Middle

When you select this option, the block uses the middle row or column of the input u as the first
row or column of the output y. When the number, X, of input rows or columns is even, the block
defines the middle as X/2 +1. When the number of input rows or columns is odd, the block defines
the middle as ceil(X/2).

When all columns are to be included, the following code defines the starting row: y =
u(MiddleRow,:). When all rows are to be included, the following code defines the starting
column: y = u(:,MiddleColumn).

The Ending row or Ending column can similarly be specified in five ways:

2 Blocks

2-1284

• Index

For rows, this specifies that the row of u forward-indexed by the Ending row index parameter,
lastrow, should be used as the last row of y. When all columns are to be included, this is
equivalent to y(end,:) = u(lastrow,:).

For columns, this specifies that the column of u forward-indexed by the Ending column index
parameter, lastcol, should be used as the last column of y. When all rows are to be included,
this is equivalent to y(:,end) = u(:,lastcol).

• Offset from last

For rows, this specifies that the row of u offset from row M by the Ending row offset parameter,
lastrow, should be used as the last row of y. When all columns are to be included, this is
equivalent to y(end,:) = u(M-lastrow,:).

For columns, this specifies that the column of u offset from column N by the Ending column
offset parameter, lastcol, should be used as the last column of y. When all rows are to be
included, this is equivalent to y(:,end) = u(:,N-lastcol).

• Last

For rows, this specifies that the last row of u should be used as the last row of y. When all columns
are to be included, this is equivalent to y(end,:) = u(M,:).

For columns, this specifies that the last column of u should be used as the last column of y. When
all rows are to be included, this is equivalent to y(:,end) = u(:,N).

• Offset from middle

When you select this option, the block selects the last row or column of the output y by adding the
specified offset to the middle row or column of the input u. When the number, X, of input rows or
columns is even, the block defines the middle as X/2 +1. When the number of input rows or
columns is odd, the block defines the middle as ceil(X/2).

When all columns are to be included, the following code defines the ending row: y(end,:) =
u(MiddleRow+Offset,:), where Offset is the value of the Ending row offset parameter.
When all rows are to be included, the following code defines the ending column: y(:,end) =
u(:,MiddleColumn+Offset), where Offset is the value of the Ending column offset
parameter.

• Middle

When you select this option, the block uses the middle row or column of the input u as the last row
or column of the output y. When the number, X, of input rows or columns is even, the block
defines the middle as X/2 +1. When the number of input rows or columns is odd, the block defines
the middle as ceil(X/2).

When all columns are to be included, the following code defines the ending row: y(end,:) =
u(MiddleRow,:). When all rows are to be included, the following code defines the ending
column: y(:,end) = u(:,MiddleColumn).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Submatrix

2-1285

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Variable Selector | Reshape | Selector

Functions
reshape

Topics
“Split Multichannel Signals into Several Multichannel Signals”

Introduced before R2006a

2 Blocks

2-1286

SVD Solver
Solve AX=B using singular value decomposition

Library
Math Functions / Matrices and Linear Algebra / Linear System Solvers

dspsolvers

Description
The SVD Solver block solves the linear system AX=B, which can be overdetermined,
underdetermined, or exactly determined. The system is solved by applying singular value
decomposition (SVD) factorization to the M-by-N matrix A, at the A port. The input to the B port is the
right side M-by-L matrix, B. The block treats length-M unoriented vector input as an M-by-1 matrix.

The output at the X port is the N-by-L matrix, X. X is chosen to minimize the sum of the squares of the
elements of B-AX (the residual). When B is a vector, this solution minimizes the vector 2-norm of the
residual. When B is a matrix, this solution minimizes the matrix Frobenius norm of the residual. In
this case, the columns of X are the solutions to the L corresponding systems AXk=Bk, where Bk is the
kth column of B, and Xk is the kth column of X.

X is known as the minimum-norm-residual solution to AX=B. The minimum-norm-residual solution is
unique for overdetermined and exactly determined linear systems, but it is not unique for
underdetermined linear systems. Thus when the SVD Solver block is applied to an underdetermined
system, the output X is chosen such that the number of nonzero entries in X is minimized.

Parameters
Show error status port

Select to enable the E output port, which reports a failure to converge. The possible values you
can receive on the port are:

• 0 — The singular value decomposition calculation converges.
• 1 — The singular value decomposition calculation does not converge.

If the singular value decomposition calculation fails to converge, the output at port X is an
undefined matrix of the correct size.

 SVD Solver

2-1287

Supported Data Types
Port Supported Data Types
A • Double-precision floating point

• Single-precision floating point
B • Double-precision floating point

• Single-precision floating point
X • Double-precision floating point

• Single-precision floating point
E • Boolean

See Also
Autocorrelation LPC DSP System Toolbox
Cholesky Solver DSP System Toolbox
LDL Solver DSP System Toolbox
Levinson-Durbin DSP System Toolbox
LU Inverse DSP System Toolbox
Pseudoinverse DSP System Toolbox
QR Solver DSP System Toolbox
Singular Value Decomposition DSP System Toolbox

See “Linear System Solvers” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-1288

Time Scope
Display and analyze signals generated during simulation and log signal data to MATLAB
Library: DSP System Toolbox / Sinks

DSP System Toolbox HDL Support / Sinks

Description
The Simulink Scope block and DSP System Toolbox Time Scope block display time domain signals.

 Time Scope

2-1289

2 Blocks

2-1290

The two blocks have identical functionality, but different default settings. The Time Scope is
optimized for discrete time processing. The Scope is optimized for general time-domain simulation.
For a side-by-side comparison, see “Simulink Scope Versus DSP System Toolbox Time Scope”
(Simulink).

Oscilloscope features:

• Triggers — Set triggers to sync repeating signals and pause the display when events occur.
• Cursor Measurements — Measure signal values using vertical and horizontal cursors.
• Signal Statistics — Display the maximum, minimum, peak-to-peak difference, mean, median, and

RMS values of a selected signal.
• Peak Finder — Find maxima, showing the x-axis values at which they occur.
• Bilevel Measurements — Measure transitions, overshoots, undershoots, and cycles.

You must have a Simscape™ or DSP System Toolbox license to use the Peak Finder, Bilevel
Measurements, and Signal Statistics.

Scope display features:

• Simulation control — Debug models from a Scope window using Run, Step Forward, and Step
Backward toolbar buttons.

• Multiple signals — Plot multiple signals on the same y-axis (display) using multiple input ports.
• Multiple y-axes (displays) — Display multiple y-axes. All the y-axes have a common time range on

the x-axis.
• Modify parameters — Modify scope parameter values before and during a simulation.
• Axis autoscaling — Autoscale axes during or at the end of a simulation. Margins are drawn at the

top and bottom of the axes.
• Display data after simulation — Scope data is saved during a simulation. If a scope is closed at the

start of a simulation, when you open the scope after a simulation, the scope displays simulation
results for attached input signals.

Note If you have a high sample rate or long simulation time, you may run into issues with
memory or system performance because the scope saves data internally. To limit the amount of
data saved for scope visualization, use the Limit data points to last property.

For information on controlling a scope programmatically, see “Control Scope Blocks
Programmatically” (Simulink).

Limitations
• Do not use scope blocks in a Library. If you place a scope block inside a library block with a locked

link or in a locked library, Simulink displays an error when trying to open the scope window. To
display internal data from a library block, add an output port to the library block, and then
connect the port to a Scope block in your model.

• If you step through a model, the scope only updates when the scope block runs. This means that
the time shown in the status bar may not match the model time.

• When connected to a constant signal, a scope block may plot a single point.
• The scope shows gaps in the display when the signal value is NaN.

 Time Scope

2-1291

• When you visualize multiple frame-based signals in the scope, some samples of signals with a
frame size of 1 might not be displayed. To visualize these signals, move the signals with frame size
of 1 to a separate scope.

• Scope displays have limitations in Rapid Accelerator mode. See “Behavior of Scopes and Viewers
with Rapid Accelerator Mode” (Simulink)

• When the Scope is in a ForEach subsystem, the scope only displays the last index.

Ports
Input

Port_1 — Signal or signals to visualize
scalar | vector | matrix | array | bus | nonvirtual bus

Connect the signals you want to visualize. You can have up to 96 input ports. Input signals can have
these characteristics:

• Type — Continuous (sample-based) or discrete (sample-based and frame-based).
• Data type — Any data type that Simulink supports. See “Data Types Supported by Simulink”

(Simulink).
• Dimension — Scalar, one dimensional (vector), two dimensional (matrix), or multidimensional

(array). Display multiple channels within one signal depending on the dimension. See “Signal
Dimensions” (Simulink) and “Determine Signal Dimensions” (Simulink).

Input Limitations

• When the input is a constant signal, the scope plots a single point.
• The scope shows gaps in the display when the signal value is NaN.
• When you visualize multiple frame-based signals in the scope, some samples of signals with a

frame size of 1 might not be displayed. To visualize these signals, move the signals with frame size
of 1 to a separate scope.

Bus Support

You can connect nonvirtual bus and arrays of bus signals to a scope. To display the bus signals, use
normal or accelerator simulation mode. The scope displays each bus element signal in the order the
elements appear in the bus, from the top to the bottom. Nested bus elements are flattened.

To log nonvirtual bus signals with a scope, set the Save format parameter to Dataset. You can use
any Save format to log virtual bus signals.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated | bus

Properties
Configuration Properties

The Configuration Properties dialog box controls various properties about the scope displays. From
the scope menu, select View > Configuration Properties.

2 Blocks

2-1292

Main

Open at simulation start — Specify when scope window opens
off (default for Scope) | on (default for Time Scope)

Select this check box to open the scope window when simulation starts.
Programmatic Use

See OpenAtSimulationStart.

Display the full path — Display block path on scope title bar
off (default) | on

Select this check box to display the block path in addition to the block name.

Number of input ports — Number of input ports on scope block
1 (default) | integer

Specify number of input ports on a Scope block, specified as an integer. The maximum number of
input ports is 96.
Programmatic Use

See NumInputPorts.

Layout — Number and arrangement of displays
1-by-1 display (default) | an arrangement of m-by-n axes

Specify number and arrangement of displays. The maximum layout is 16 rows by 16 columns.

To expand the layout grid beyond 4 by 4, click within the dialog box and drag. Maximum of 16 rows
by 16 columns.

If the number of displays is equal to the number of ports, signals from each port appear on separate
displays. If the number of displays is less than the number of ports, signals from additional ports
appear on the last display. For layouts with multiple columns and rows, ports are mapped down then
across.
Programmatic Use

See LayoutDimensions.

 Time Scope

2-1293

Sample time — Simulation interval between scope updates
-1 (for inherited) (default) | positive real number

Specify the time interval between updates of the scope display. This property does not apply to
floating scopes and scope viewers. For a more detailed explanation of sample time with the scope, see
“Sample Time with Scope Blocks” (Simulink)

Programmatic Use

See SampleTime.

Input processing — Channel or element signal processing
Elements as channels (sample based) (default for Scope) | Columns as channels (frame
based) (default for Time Scope)

• Elements as channels (sample based) - Process each element as a unique sample.
• Columns as channels (frame based) - Process signal values in a channel as a group of

values from multiple time intervals. Frame-based processing is available only with discrete input
signals.

Programmatic Use

See FrameBasedProcessing.

Maximize axes — Maximize size of plots
Off (default for Scope) | Auto (default for Time Scope) | On

• Auto - If “Title” on page 2-0 and “Y-label” on page 2-0 properties are not specified,
maximize all plots.

• On - Maximize all plots. Values in Title and Y-label are hidden.
• Off - Do not maximize plots.

Programmatic Use

See MaximizeAxes.

Time

Time span — Length of x-axis to display
Auto (default) | User defined | One frame period

• Auto — Difference between the simulation start and stop times.

The block calculates the beginning and end times of the time range using the “Time display offset”
on page 2-0 and “Time span” on page 2-0 properties. For example, if you set the Time
display offset to 10 and the Time span to 20, the scope sets the time range from 10 to 30.

• User defined — Enter any value less than the total simulation time.
• One frame period — Use the frame period of the input signal to the Time Scope block. This

option is only available when the Input processing parameter is set to Columns as channels
(frame based).

Programmatic Use

See TimeSpan.

2 Blocks

2-1294

Time span overrun action — Display data beyond visible x-axis
Wrap (default) | Scroll

Specify how to display data beyond the visible x-axis range.

You can see the effects of this option only when plotting is slow with large models or small step sizes.

• Wrap — Draw a full screen of data from left to right, clear the screen, and then restart drawing
the data from the left.

• Scroll — Move data to the left as new data is drawn on the right. This mode is graphically
intensive and can affect run-time performance.

Programmatic Use

See TimeSpanOverrunAction.

Time units — x-axis units
None (default for Scope) | Metric (default for Time Scope) | Seconds

• Metric — Display time units based on the length of “Time span” on page 2-0 .
• Seconds — Display time in seconds.
• None — Do not display time units.

Programmatic Use

See TimeUnits.

Time display offset — x-axis offset
0 (default) | scalar | vector

Offset the x-axis by a specified time value, specified as a real number or vector of real numbers.

For input signals with multiple channels, you can enter a scalar or vector:

• Scalar — Offset all channels of an input signal by the same time value.
• Vector — Independently offset the channels.

Programmatic Use

See TimeDisplayOffset.

Time-axis labels — Display of x-axis labels
Bottom Displays Only (default for Scope) | All (default for Time Scope) | None

Specify how x-axis (time) labels display:

• All — Display x-axis labels on all y-axes.
• None — Do not display labels. Selecting None also clears the Show time-axis label check box.
• Bottom displays only — Display x-axis label on the bottom y-axis.

Dependencies

To enable this property, set:

 Time Scope

2-1295

• “Show time-axis label” on page 2-0 to on.
• “Maximize axes” on page 2-0 to off.

The “Active display” on page 2-0 property determines which display is affected.
Programmatic Use

See TimeAxisLabels.

Show time-axis label — Display or hide x-axis labels
off (default for Scope) | on (default for Time Scope)

Select this check box to show the x-axis label for the active display
Dependencies

To enable this property, set “Time-axis labels” on page 2-0 to All or Bottom Displays Only.

The “Active display” on page 2-0 property determines which display is affected.
Programmatic Use

See ShowTimeAxisLabel.

Display

Active display — Selected display
1 (default) | positive integer

Selected display. Use this property to control which display is changed when changing style
properties and axes-specific properties.

Specify the desired display using a positive integer that corresponds to the column-wise placement
index. For layouts with multiple columns and rows, display numbers are mapped down and then
across.
Programmatic Use

See ActiveDisplay.

Title — Display name
%<SignalLabel> (default) | string

Title for a display. The default value %<SignalLabel> uses the input signal name for the title.
Dependency

The “Active display” on page 2-0 property determines which display is affected.
Programmatic Use

See Title.

Show legend — Display signal legend
off (default) | on

Toggle signal legend. The names listed in the legend are the signal names from the model. For signals
with multiple channels, a channel index is appended after the signal name. Continuous signals have
straight lines before their names, and discrete signals have step-shaped lines.

2 Blocks

2-1296

From the legend, you can control which signals are visible. This control is equivalent to changing the
visibility in the Style properties. In the scope legend, click a signal name to hide the signal in the
scope. To show the signal, click the signal name again. To show only one signal, right-click the signal
name, which hides all other signals. To show all signals, press Esc.

Note The legend only shows the first 20 signals. Any additional signals cannot be controlled from the
legend.

Dependency

The “Active display” on page 2-0 property determines which display is affected.

Programmatic Use

See ShowLegend.

Show grid — Show internal grid lines
on (default) | off

Select this check box to show grid lines.

Dependency

The “Active display” on page 2-0 property determines which display is affected.

Programmatic Use

See ShowGrid.

Plot signals as magnitude and phase — Split display into magnitude and phase plots
off (default) | on

• On — Display magnitude and phase plots. If the signal is real, plots the absolute value of the
signal for the magnitude. The phase is 0 degrees for positive values and 180 degrees for negative
values. This feature is useful for complex-valued input signals. If the input is a real-valued signal,
selecting this check box returns the absolute value of the signal for the magnitude.

• Off — Display signal plot. If the signal is complex, plots the real and imaginary parts on the same
y-axis.

Dependency

The “Active display” on page 2-0 property determines which display is affected.

Programmatic Use

See PlotAsMagnitudePhase.

Y-limits (Minimum) — Minimum y-axis value
-10 (default) | real scalar

Specify the minimum value of the y-axis as a real number.

Tunable: Yes

 Time Scope

2-1297

Dependency

If you select Plot signals as magnitude and phase, this property only applies to the magnitude
plot. The y-axis limits of the phase plot are always [-180 180].

The “Active display” on page 2-0 property determines which display is affected.

Programmatic Use

See YLimits.

Y-limits (Maximum) — Maximum y-axis value
10 (default) | real scalar

Specify the maximum value of the y-axis as a real number.

Tunable: Yes

Dependency

If you select Plot signals as magnitude and phase, this property only applies to the magnitude
plot. The y-axis limits of the phase plot are always [-180 180].

The “Active display” on page 2-0 property determines which display is affected.

Programmatic Use

See YLimits.

Y-label — Y-axis label
none (default for Scope) | Amplitude (default for Time Scope) | string

Specify the text to display on the y-axis. To display signal units, add (%<SignalUnits>) to the label.
At the beginning of a simulation, Simulink replaces (%SignalUnits) with the units associated with
the signals.
Example: For a velocity signal with units of m/s, enter Velocity (%<SignalUnits>).

Dependency

If you select Plot signals as magnitude and phase, this property does not apply. The y-axes are
labeled Magnitude and Phase.

The “Active display” on page 2-0 property determines which display is affected.

Programmatic Use

See YLabel.

Logging

Limit data points to last — Limit buffered data values
off and 5000 (default) | on | positive integer

Limit data saved by the scope internally. By default all data points are saved so that you can view the
scope visualization after the simulation finishes. For simulations with Stop time set to inf, consider
selecting Limit data points to last.

2 Blocks

2-1298

Note If you do not select Limit data points to last and you have a high sample rate or long
simulation time, you may run into issues with memory or system performance.

When you select this property, the scope saves the latest n data points, where n the specified number
of data points.

• Off — Save and plot all data values.
• On — Save specified number of data values for each signal. If the signal is frame-based, the

number of buffered data values is the specified number of data values multiplied by the frame
size.

In some cases, selecting this property can have the effect of plotting signals for less than the
entire time range of a simulation (for example if your sample time is small). If the scope plots a
portion of your signals, consider increasing the number of data points to save.

This property limits the data values plotted in the scope and the data values saved to a MATLAB
variable specified in “Variable name” on page 2-0 .

Programmatic Use

See DataLoggingLimitDataPoints and DataLoggingMaxPoints.

Decimation — Reduce amount of scope data to display and save
off, 2 (default) | on | positive integer

• On — Plot and log (save) scope data every Nth data point, where N is the decimation factor entered
in the text box. A value of 1 buffers all data values.

• Off — Save all scope data values.

Dependency

To enable this property, select “Log data to workspace” (Simulink).

This property limits the data values plotted in the scope and the data values saved to a MATLAB
variable specified in “Variable name” on page 2-0 .

Programmatic Use

See DataLoggingDecimateData and DataLoggingDecimation.

Log data to workspace — Save data to MATLAB workspace
off (default) | on

Select this check box to enable logging and enable the Variable name, Save format, and
Decimation properties. This property does not apply to floating scopes and scope viewers.

For an example of saving signals to the MATLAB Workspace using a Scope block, see “Save
Simulation Data Using Scope Block” (Simulink).

Programmatic Use

See DataLogging.

Variable name — Name of saved data variable
ScopeData (default) | string

 Time Scope

2-1299

Specify a variable name for saving scope data in the MATLAB workspace. This property does not
apply to floating scopes and scope viewers.

Dependency

To enable this property, select “Log data to workspace” (Simulink).

Programmatic Use

See DataLoggingVariableName.

Save format — MATLAB variable format
Dataset (default) | Structure With Time | Structure | Array

Select variable format for saving data to the MATLAB workspace. This property does not apply to
floating scopes and scope viewers.

• Dataset — Save data as a Dataset object, by default a timeseries object.
• Structure With Time — Save data as a structure with associated time information.
• Structure — Save data as a structure.
• Array — Save data as an array with associated time information. This format does not support

variable-size data.

Dependency

To enable this property, select “Log data to workspace” (Simulink).

Programmatic Use

See DataLoggingSaveFormat.

Axes Scaling Properties

The Axes Scaling dialog controls the axes limits of the scope. To open the Axes Scaling properties, in
the scope menu, select Tools > Axes Scaling > Axes Scaling Properties.

Axes scaling — Y-axis scaling mode
Manual (default) | Auto | After N Updates

• Manual — Manually scale the y-axis range with the Scale Y-axis Limits toolbar button.
• Auto — Scale the y-axis range during and after simulation. Selecting this option displays the Do

not allow Y-axis limits to shrink check box. If you want the y-axis range to increase and
decrease with the maximum value of a signal, set Axes scaling to Auto and clear the Do not
allow Y-axis limits to shrink check box.

• After N Updates — Scale y-axis after the number of time steps specified in the Number of
updates text box (10 by default). Scaling occurs only once during each run.

Programmatic Use

See AxesScaling.

Do not allow Y-axis limits to shrink — When y-axis limits can change
on (default) | off

Allow y-axis range limits to increase but not decrease during a simulation.

2 Blocks

2-1300

Dependency

To use this property, set Axes scaling to Auto.

Number of updates — Number of updates before scaling
10 (default) | integer

Set this property to delay auto scaling the y-axis.

Dependency

To use this property, set Axes scaling to After N Updates.

Programmatic Use

See AxesScalingNumUpdates.

Scale axes limits at stop — When y-axis limits can change
on (default) | off

• On — Scale axes when simulation stops.
• Off — Scale axes continually.

Dependency

To use this property, set Axes scaling to Auto.

Y-axis Data range (%) — Percent of y-axis to use for plotting
80 (default) | integer between [1, 100]

Specify the percentage of the y-axis range used for plotting data. If you set this property to 100, the
plotted data uses the entire y-axis range.

Y-axis Align — Alignment along y-axis
Center (default) | Top | Bottom

Specify where to align plotted data along the y-axis data range when Y-axis Data range is set to less
than 100 percent.

• Top — Align signals with the maximum values of the y-axis range.
• Center — Center signals between the minimum and maximum values.
• Bottom — Align signals with the minimum values of the y-axis range.

Autoscale X-axis limits — Scale x-axis range limits
off (default) | on

Scale x-axis range to fit all signal values. If Axes scaling is set to Auto, the data currently within the
axes is scaled, not the entire signal in the data buffer.

X-axis Data range (%) — Percent of x-axis to use for plotting
100 (default) | integer in the range [1, 100]

Specify the percentage of the x-axis range to plot data on. For example, if you set this property to
100, plotted data uses the entire x-axis range.

 Time Scope

2-1301

X-axis Align — Alignment along x-axis
Center (default) | Top | Bottom

Specify where to align plotted data along the x-axis data range when X-axis Data range is set to less
than 100 percent.

• Top — Align signals with the maximum values of the x-axis range.
• Center — Center signals between the minimum and maximum values.
• Bottom — Align signals with the minimum values of the x-axis range.

Style Properties

To open the Style dialog box, from the scope menu, select View > Style.

Figure color — Background color for window
black (default) | color

Background color for the scope.

Plot type — How to plot signal
Auto (default for Scope) | Line (default for Time Scope) | Stairs | Stem

When you select Auto, the plot type is a line graph for continuous signals, a stair-step graph for
discrete signals, and a stem graph for Simulink message signals.

Axes colors — Background and axes color for individual displays
black (default) | color

Select the background color for axes (displays) with the first color palette. Select the grid and label
color with the second color palette.

Preserve colors for copy to clipboard — Copy scope without changing colors
off (default) | on

Specify whether to use the displayed color of the scope when copying.

When you select File > Copy to Clipboard, the software changes the color of the scope to be printer
friendly (white background, visible lines). If you want to copy and paste the scope with the colors
displayed, select this check box.

Properties for line — Line to change
Channel 1 (default)

Select active line for setting line style properties.

Visible — Line visibility
on (default) | off

Show or hide a signal on the plot.

Dependency

The values of “Active display” on page 2-0 and “Properties for line” on page 2-0 determine
which line is affected.

2 Blocks

2-1302

Line — Line style
solid line (default style) | 0.75 (default width) | yellow (default color)

Select line style, width, and color.

Dependency

The values of “Active display” on page 2-0 and “Properties for line” on page 2-0 determine
which line is affected.

Marker — Data point marker style
None (default) | marker shape

Select marker shape.

Dependency

The values of “Active display” on page 2-0 and “Properties for line” on page 2-0 determine
which line is affected.

Block Characteristics
Data Types Boolean | busa | double | enumerated | fixed point | half | integer

| single
Direct Feedthrough no
Multidimensional
Signals

yes

Variable-Size Signals yes
Zero-Crossing
Detection

no

a. Virtual bus not supported. Nonvirtual bus supported only in normal and accelerator mode simulation. Data logging for
nonvirtual bus supported only in the dataset format

Tips
If you run your simulation for a long time, you may run into out-of-memory issues because the scope
saves data. To limit the amount of data saved for scope visualization, use the Limit data points to last
property.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

 Time Scope

2-1303

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block accepts fixed-point input, but converts it to double for display.

See Also
Blocks
Floating Scope | Scope Viewer

Objects
timescope

Topics
“Simulate a Model Interactively” (Simulink)
“Step Through a Simulation” (Simulink)
“Common Scope Block Tasks” (Simulink)
“Floating Scope and Scope Viewer Tasks” (Simulink)
“Scope Triggers Panel” (Simulink)
“Cursor Measurements Panel” (Simulink)
“Scope Signal Statistics Panel” (Simulink)
“Scope Bilevel Measurements Panel” (Simulink)
“Peak Finder Measurements Panel” (Simulink)
“Control Scope Blocks Programmatically” (Simulink)

Introduced in R2015b

2 Blocks

2-1304

Toeplitz
Generate matrix with Toeplitz symmetry

Library
Math Functions / Matrices and Linear Algebra / Matrix Operations

dspmtrx3

Description
The Toeplitz block generates a Toeplitz matrix from inputs defining the first column and first row. The
top input (Col) is a vector containing the values to be placed in the first column of the matrix, and the
bottom input (Row) is a vector containing the values to be placed in the first row of the matrix.

y = toeplitz(Col,Row) % Equivalent MATLAB code

The other elements of the matrix obey the relationship

y(i,j) = y(i-1,j-1)

and the output has dimension [length(Col) length(Row)]. The y(1,1) element is inherited from
the Col input. For example, the following inputs

Col = [1 2 3 4 5]
Row = [7 7 3 3 2 1 3]

produce the Toeplitz matrix

1 7 3 3 2 1 3
2 1 7 3 3 2 1
3 2 1 7 3 3 2
4 3 2 1 7 3 3
5 4 3 2 1 7 3

When you select the Symmetric check box, the block generates a symmetric (Hermitian) Toeplitz
matrix from a single input, u, defining both the first row and first column of the matrix.

y = toeplitz(u) % Equivalent MATLAB code

The output has dimension [length(u) length(u)]. For example, the Toeplitz matrix generated
from the input vector [1 2 3 4] is

 Toeplitz

2-1305

1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

The Toeplitz block supports real and complex floating-point and fixed-point inputs.

Parameters
Symmetric

When selected, enables the single-input configuration for symmetric Toeplitz matrix output.
Saturate on integer overflow

When you generate a symmetric Toeplitz matrix with this block, if the input vector is complex, the
output is a symmetric Hermitian matrix whose elements satisfy the relationship

y(i, j) = conj(y(j, i))

For fixed-point signals the conjugate operation could result in an overflow. When you select this
parameter, overflows saturate. This parameter is only visible with the Symmetric parameter is
selected. This parameter is ignored for floating-point signals.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers (real signals only)

Toep Col • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Toep Row • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

2 Blocks

2-1306

Port Supported Data Types
Output • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
toeplitz MATLAB

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 Toeplitz

2-1307

To Audio Device
Write audio data to computer's audio device

Compatibility

Note The To Audio Device block will be removed in a future release. Existing instances of the block
continue to run. For new models, use the Audio Device Writer block instead.

Library
Sinks

dspsnks4

Description
The To Audio Device block sends audio data to your computer's audio device. This block is not
supported for use with the Simulink Model block.

Use the Device parameter to specify the device to which you want to send the audio data. This
parameter is automatically populated based on the audio devices installed on your system.

Select the Inherit sample rate from input check box if you want the block to inherit the sample
rate of the audio signal from the input to the block. If you clear this check box, the Sample rate (Hz)
parameter appears on the block. Use this parameter to specify the number of samples per second in
the signal.

The range of supported audio device sample rates and data type formats, depend on both the sound
card and the API which is chosen for the sound card.

Use the Device data type to specify the data type of the audio data that is sent to the device. You can
choose:

• 8-bit integer
• 16-bit integer
• 24-bit integer
• 32-bit float
• Determine from input data type

If you choose Determine from input data type, the following table summarizes the block's
behavior.

2 Blocks

2-1308

Input Data Type Device Data Type
Double-precision floating point or single-precision
floating point

32-bit floating point

32-bit integer 24-bit integer
16-bit integer 16-bit integer
8-bit integer 8-bit integer

If you choose Determine from input data type and the device does not support the input data
type, the block uses the next lowest-precision data type supported by the device.

The generated code for this block relies on prebuilt .dll files. You can run this code outside the
MATLAB environment, or redeploy it, but be sure to account for these extra .dll files when doing so.
The packNGo function creates a single zip file containing all of the pieces required to run or rebuild
this code. See packNGo for more information.

Buffering

The To Audio Device block buffers the data from a Simulink signal using the process illustrated by the
following figure.

1 At the start of the simulation, the queue is filled with silence. Specify the size of this queue using
the Queue duration (seconds) parameter. As Simulink runs, the block appends Simulink
frames to the bottom of the queue.

2 At each time step, the blocks sends a buffer of samples from the top of the queue to the audio
device. Select the Automatically determine buffer size check box to allow the block to use a
conservative buffer size. See the From Audio Device block reference page for the equation the
block uses to calculate this buffer size. If you clear this check box, the Buffer size (samples)
parameter appears on the block. Use this parameter to specify the size of the buffer in samples.

3 The block writes the buffer of audio data to the device. If the queue did not contain enough data
to completely fill the buffer, the block fills the remaining portion of the buffer with zeros. This
data has a the data type specified by the Device data type parameter.

When the simulation throughput rate is lower than the hardware throughput rate, the queue, which is
initially full, becomes empty. If the queue is empty, the block sends zeros (silence) to the audio device.
You can monitor inserted zeroes using the optional Underrun output port. When the simulation
throughput rate is higher than the hardware throughput rate, the To Audio Device block waits to
write data to the queue.

 To Audio Device

2-1309

To minimize the chance of dropouts, the block checks to make sure the queue duration is at least as
large as the maximum of the buffer size and the frame size. If it is not, the queue duration is
automatically set to this maximum value.

Channel Mapping

The term Channel Mapping refers to a 1-to-1 mapping that associates channels on the selected audio
device to channels of the data. When you play audio, channel mapping allows you to specify which
channel of the audio device directs input to a specific channel of audio data. You can specify channel
mapping as a vector of output channel indices corresponding to each output channel of data being
written. The default value in the Device Output Channels parameter is 1:MAXOUTPUTCHANNELS.
If you do not select the default mapping, you must specify the Device Output Channels parameter
in the dialog box.

Example: The selected output audio device contains 8 channels. The data being output has
dimensions N×3 (3–channel data). You want the output to be redirected as follows:

• First data channel to Audio Device channel 3
• Second data channel to Audio Device channel 1
• Third data channel to Audio Device channel 8

Thus, you would specify the Device Output Channels as [3 1 8].

Troubleshooting
Not Keeping Up in Real Time

When Simulink cannot keep up with an audio device that is operating in real time, the queue becomes
empty and gaps occur in the audio data that the block sends to the device. Select the Output
number of samples by which the queue was underrun check box to add an output port indicating
when the queue was empty. Here are several ways to deal with this situation:

• Increase the queue duration.

The Queue duration (seconds) parameter specifies the duration of the signal, in seconds, that
can be buffered during the simulation. This is the maximum length of time that the block's data
supply can lag the hardware's data demand.

• Increase the buffer size.

The size of the buffer processed in each interrupt from the audio device affects the performance of
your model. If the buffer is too small, a large portion of hardware resources are used to write data
to the device. If the buffer is too big, Simulink must wait for the device to empty the buffer before
it can write the data to the queue, which introduces latency.

• Increase the simulation throughput rate.

Two useful methods for improving simulation throughput rates are increasing the signal frame
size and compiling the simulation into native code:

• Increase frame sizes and use frame-based processing throughout the model to reduce the
amount of block-to-block communication overhead. This can increase throughput rates in many
cases. However, larger frame sizes generally result in greater model latency due to initial
buffering operations.

• Generate executable code with Simulink Coder code generation software. Native code runs
much faster than Simulink and should provide rates adequate for real-time audio processing.

2 Blocks

2-1310

Other ways to improve throughput rates include simplifying the model and running the simulation on
a faster PC processor. For other ideas on improving simulation performance, see “Delay and Latency”
and “Optimize Performance” (Simulink).

Running an Executable Outside MATLAB

To run your generated standalone executable application in Shell, you need to set your environment
to the following:

Platform Command
Mac setenv DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/bin/
maci64 (csh/tcsh)

export DYLD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
maci64 (Bash)

Linux setenv LD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
glnxa64 (Bash)

Windows set PATH = $MATLABROOT\bin\win64;%PATH
%

Channel-to-Speaker Mapping on Windows Operating Systems

The To Audio Device and From Audio Device blocks can support multiple channels. On Windows
operating systems, the channel-to-speaker mapping is defined as listed below. This mapping only
applies when your sound card is properly configured and capable of receiving the audio data you
send. If the number of channels on the card does not match the number of channels on the block, or if
you specify a data type for the Device data type parameter that is not supported by your device, the
Windows mixer intervenes to translate from one format to another. If the Windows mixer does
intervene, the channel-to-speaker mapping might differ from what is specified here.

• Single channel input — Front center speaker

On systems with two speakers, the front center channel is split between the right and left
speakers.

• Multichannel input — Channels are assigned to speakers as follows:

• One channel — Front center
• Two channels — Front left, front right
• Four channels — Front left, front right, rear left, rear right
• Six channels — Front left, front right, front center, low frequency, rear left, rear right
• Eight channels — Front left, front right, front center, low frequency, rear left, rear right, front

left center, front right center
• For all other channel combinations, the channel assignment is dictated by the audio card.

 To Audio Device

2-1311

Audio Hardware API

The To Audio Device and From Audio Device blocks use the open-source PortAudio library in order to
communicate with the audio hardware on a given computer. The PortAudio library supports a range
of API’s designed to communicate with the audio hardware on a given platform. The following API
choices were made when building the PortAudio library for the DSP System Toolbox product:

• Windows: DirectSound, WDM-KS, ASIO
• Linux: ALSA, OSS
• Mac: CoreAudio

For Windows, the default is DirectSound, for Linux, the default is ALSA, and for Mac there is only one
choice.

To determine the audio hardware API currently selected, type the following command in the MATLAB
command prompt.

getpref('dsp','portaudioHostApi')

The output is a scalar indicating the choice of the API.

• 1 — DirectSound
• 3 — ASIO
• 7 — OSS
• 8 — ALSA
• 11 — WDM-KS

To select a particular API, type the following command in the MATLAB command prompt.

setpref('dsp','portaudioHostApi',N)

where N is a scalar. Choose N based on the API choice above.

Parameters
Device

Specify which device to send the audio data to.
Inherit sample rate from input

Select this check box if you want the block to inherit the sample rate of the audio signal from the
input to the block.

Sample rate (Hz)
Specify the number of samples per second in the signal. This parameter is visible when the
Inherit sample rate from input check box is cleared.

Device data type
Specify the data type of the audio data sent to the device.

Automatically determine buffer size
Select this check box to allow the block to calculate a conservative buffer size.

2 Blocks

2-1312

Buffer size (samples)
Specify the size of the buffer. This parameter is visible when the Automatically determine
buffer size check box is cleared.

Queue duration (seconds)
Specify the size of the queue in seconds.

Use default mapping between Data and Device Output Channels
Select this check box to have the default mapping, where the data from the first channel of audio
device is sent to the first channel of the input data, data from second channel of audio device is
sent to second channel of data and so on. The maximum number of channels in the input data is
determined by the Number of channels property.

Device Output Channels
Specify the channel mapping. This parameter is visible when the Use default mapping between
Device Input Channels and Data check box is disabled.

Output number of samples by which the queue was underrun
Select this check box to output the number of zero samples inserted into the audio stream due to
queue underrun since the last transfer of a frame to the audio device. You can use this value to
debug throughput problems and adjust the queues and buffers in your model. To learn how to
improve throughput, see “Troubleshooting” on page 2-1310.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• 32-bit signed integers
• 16-bit signed integers
• 8-bit unsigned integers

Underrun 32-bit unsigned integer

See Also
From Audio Device DSP System Toolbox
To Multimedia File DSP System Toolbox
audioplayer MATLAB
sound MATLAB

Introduced in R2007b

 To Audio Device

2-1313

To Multimedia File
Stream video frames and audio samples to multimedia file

Library
Sinks

dspsnks4

Description
The To Multimedia File block writes video frames, audio samples, or both to a multimedia
(.avi, .wav, .wma, .mp4, .ogg, .flac, or .wmv) file.

You can compress the video frames or audio samples by selecting a compression algorithm. You can
connect as many of the input ports as you want. Therefore, you can control the type of video and/or
audio the multimedia file receives.

Note This block supports code generation for platforms that have file I/O available. You cannot use
this block with Simulink Desktop Real-Time software, because that product does not support file I/O.

This block performs best on platforms with Version 11 or later of Windows Media Player software.
This block supports only uncompressed RGB24 AVI files on Linux and Mac platforms.

Windows 7 UAC (User Account Control), may require administrative privileges to encode WMV and
WMA files.

The generated code for this block relies on prebuilt library files. You can run this code outside the
MATLAB environment, or redeploy it, but be sure to account for these extra library files when doing
so. The packNGo function creates a single zip file containing all of the pieces required to run or
rebuild this code. See packNGo for more information.

To run an executable file that was generated from a model containing this block, you may need to add
precompiled shared library files to your system path. See “Understanding C Code Generation in DSP
System Toolbox” for details.

Cross-Platform Supported File Formats for Audio Files

Audio files can be of the following formats on all platforms:

• WAV
• FLAC

2 Blocks

2-1314

• OGG
• MPEG4 (only on Windows 7 and macOS)

The default format is WAV. This block supports MPEG-4 AAC audio files on Windows 7, and macOS.
You can use both M4A and MP4 extensions. The following platform specific restrictions apply when
writing these files:

Windows 7 macOS
• Only sample rates of 44100 and 48000 Hz are

supported.
• Only mono or stereo outputs are allowed for

MPEG-4 AAC file format. For all other formats,
more than two audio output channels are
allowed.

• Only mono or stereo outputs are allowed for
MPEG-4 AAC file format. For all other formats,
more than two audio output channels are
allowed.

• The output data is padded on both the front
and back of the signal, with extra samples of
silence.

Windows AAC encoder places sharp fade-in
and fade-out on audio signal, causing signal to
be slightly longer in samples when written to
disk.

• Not all sampling rates are supported,
although the Mac Audio Toolbox API do not
explicitly specify a restriction.

• A minimum of 1025 samples per channel must
be written to the MPEG-4 AAC file.

Ports

Port Description
Image M-by-N-by-3 matrix RGB, Intensity, or YCbCr 4:2:2 signal.
R, G, B Matrix that represents one plane of the RGB video stream. Inputs to the R, G,

or B port must have the same dimensions and data type.
Audio M-by-N matrix. M is the number of samples in each channel, and N is the

number of channels.
Y, Cb, Cr Matrix that represents one frame of the YCbCr video stream. The Y, Cb, and Cr

ports use the following dimensions:
Y: M x N
Cb: M xN

2
Cr: M xN

2

Dialog Box
The Main pane of the To Multimedia File block dialog appears as follows.

 To Multimedia File

2-1315

File name
Specify the name of the multimedia file. The block saves the file in your current folder. To specify
a different file or location, click the Save As... button.

File type
Specify the file type of the multimedia file. You can select AVI, WAV, MJ2000, WMA, WMV, MPEG4,
FLACC, or OGG. By default, the File type is set to WAV.

Write
Specify whether the block writes video frames, audio samples, or both to the multimedia file. You
can select Video and audio, Video only, or Audio only. This parameter is visible only
when you set File type to AVI, MPEG4, or OGG.

Audio compressor
Select the type of compression algorithm to use to compress the audio data. This compression
reduces the size of the multimedia file. Choose None (uncompressed) to save uncompressed
audio data to the multimedia file.

Note The other items available in this parameter list are the audio compression algorithms
installed on your system. For information about a specific audio compressor, see the
documentation for that compressor.

Audio data type
Select the audio data type. You can use the Audio data type parameter only for uncompressed
wave files.

2 Blocks

2-1316

Video compressor
Select the type of compression algorithm to use to compress the video data. This compression
reduces the size of the multimedia file. Choose None (uncompressed) to save uncompressed
video data to the multimedia file.

Note The other items available in this parameter list are the video compression algorithms
installed on your system. For information about a specific video compressor, see the
documentation for that compressor.

Compression Factor (>1)
Specify the compression factor as an integer scalar greater than 1. This parameter is applicable
only when the File type is set to MJ2000 and Video compressor is set to Lossy. By default, this
parameter is set to 10.

File color format
Select the color format of the data stored in the file. You can select either RGB or YCbCr 4:2:2.

Image signal
Specify how the block accepts a color video signal. If you select One multidimensional
signal, the block accepts an M-by-N-by-P color video signal, where P is the number of color
planes, at one port. If you select Separate color signals, additional ports appear on the
block. Each port accepts one M-by-N plane of an RGB video stream.

Video Quality (0-100)
Quality of the video specified as an integer scalar in the range [0 100]. This parameter is
applicable only when File name is set to MPEG4 and Write is set to Video only. By default, this
parameter is set to 75.

Troubleshooting
Running an Executable Outside MATLAB

To run your generated standalone executable application in Shell, you need to set your environment
to the following:

Platform Command
Mac setenv DYLD_LIBRARY_PATH "$

{DYLD_LIBRARY_PATH}:$MATLABROOT/bin/
maci64" (csh/tcsh)

export DYLD_LIBRARY_PATH=
$DYLD_LIBRARY_PATH:$MATLABROOT/bin/
maci64 (Bash)

For more information, see Append library path to
"DYLD_LIBRARY_PATH" in MAC.

 To Multimedia File

2-1317

https://www.mathworks.com/matlabcentral/answers/374930-append-library-path-to-dyld_library_path-in-mac
https://www.mathworks.com/matlabcentral/answers/374930-append-library-path-to-dyld_library_path-in-mac

Platform Command
Linux setenv LD_LIBRARY_PATH $

{LD_LIBRARY_PATH}:$MATLABROOT/bin/
glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH=
$LD_LIBRARY_PATH:$MATLABROOT/bin/
glnxa64 (Bash)

Windows set PATH=%PATH%;%MATLABROOT%\bin\win64

Supported Data Types
For the block to display video data properly, double- and single-precision floating-point pixel values
must be between 0 and 1. Any other data type requires the pixel values between the minimum and
maximum values supported by their data type.

Check the specific codecs you are using for supported audio rates.

Port Supported Data Types Supports Complex Values?
Image • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16- 32-bit signed integers
• 8-, 16- 32-bit unsigned integers

No

R, G, B Same as Image port No
Audio • Double-precision floating point

• Single-precision floating point
• 16-bit signed integers
• 32-bit signed integers
• 8-bit unsigned integers

No

Y, Cb, Cr Same as Image port No

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Host computer only. Excludes Simulink Desktop Real-Time code generation.
• The executable generated from this block relies on prebuilt dynamic library files (.dll files)

included with MATLAB. Use the packNGo function to package the code generated from this block
and all the relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and
rebuild your project in another development environment where MATLAB is not installed. For
more details, see “How To Run a Generated Executable Outside MATLAB”.

2 Blocks

2-1318

See Also
Blocks
From Multimedia File

Topics
“How To Run a Generated Executable Outside MATLAB”

Introduced before R2006a

 To Multimedia File

2-1319

To Wave Device (Obsolete)
Send audio data to standard Windows audio device in real time

Library
dspwin32

Description

Note The To Wave Device block is still supported but is likely to be obsoleted in a future release. We
strongly recommend replacing this block with the To Audio Device block.

The To Wave Device block sends audio data to a standard Windows audio device in real time. It is
compatible with most popular Windows hardware, including Sound Blaster cards. The data is sent to
the hardware in uncompressed pulse code modulation (PCM) format, and should typically be sampled
at one of the standard Windows audio device rates: 8000, 11025, 22050, or 44100 Hz. Some
hardware might support other rates in addition to these.

Note Models that contain both the To Wave Device block and the From Wave Device block require a
duplex-capable sound card.

The Use default audio device check box allows the To Wave Device block to detect and use the
system's default audio hardware. You should select this option for systems that have a single sound
device installed, or when the default sound device on a multiple-device system is your desired target.
When the default sound device is not your desired output device, clear Use default audio device,
and set the desired hardware in the Audio device parameter. This parameter lists the names of the
installed audio devices.

The block input can contain audio data from a mono or stereo signal. A mono signal is represented as
either a sample-based scalar or a frame-based length-M vector, where M is frame size. A stereo signal
is represented as a sample-based length-2 vector or a frame-based M-by-2 matrix.

When the input data type is uint8, the block conveys the signal samples to the audio device using 8
bits. When the input data type is double, single, int16, or fixed point with a word length of 16 and
a fraction length of 15, the block conveys the signal samples to the audio device using 16 bits by
default. For inputs of data type double and single, you can also set the block to convey the signal
samples using 24 bits by selecting the Enable 24-bit output for double- and single-precision
input signals check box. The 24-bit sample width requires more memory but in general yields better
fidelity.

The amplitude of the input must be in a valid range that depends on the input data type, as shown in
the following table. Amplitudes outside the valid range are clipped to the nearest allowable value.

2 Blocks

2-1320

Input Data Type Valid Input Amplitude Range
double −1 ≤ amplitude < 1
single −1 ≤ amplitude < 1
int16 −32768 ≤ amplitude ≤ 32767
uint8 0 ≤ amplitude ≤ 255
Fixed point with a word
length of 16 and a
fraction length of 15

−1 ≤ amplitude ≤ 1− 2−15

Buffering

Because audio devices generate real-time audio output, the Simulink environment must maintain a
continuous flow of data to a device throughout simulation. Delays in passing data to the audio
hardware can result in hardware errors or distortion of the output. This means that the To Wave
Device block must in principle supply data to the audio hardware as quickly as the hardware reads
the data. However, the To Wave Device block often cannot match the throughput rate of the audio
hardware, especially when the simulation is running within Simulink rather than as generated code.
Simulink execution speed can vary during the simulation as the host operating system services other
processes. The block must therefore rely on a buffering strategy to ensure that signal data is
available to the hardware on demand.

Note This block requires real-time execution of the parent model for best performance.

The following block parameters control the memory management for this block:

• Queue duration
• Automatically determine internal buffer size or User-defined internal buffer size
• Initial output delay

The Queue duration parameter defines the overall size of the block's buffer. The block reads in
chunks of data in the size of the input dimensions and stores them in the buffer. The internal buffer
size defines the dimensions of the block output to the hardware. You can define the internal buffer
size yourself in the User-defined internal buffer size parameter. If you select Automatically
determine internal buffer size instead, the internal buffer size is calculated for you according to
the following rules:

• If the input to the block has a frame size of 32 samples or larger, the internal buffer size be the
same as the input frame size.

• If the input to the block has a frame size smaller than 32 samples, the internal buffer size is based
on the input sample rate according to the following table, where

Fs = samplingf requency = 1
sampletime

 To Wave Device (Obsolete)

2-1321

Fs (Hz) Internal Buffer Size (samples)
Fs < 8000 min(64, 2 * Fs)

8000 ≤ Fs < 22, 050 128
22, 050 ≤ Fs < 44, 100 256
44, 100 ≤ Fs < 96, 000 512

Fs ≥ 96, 000 1024

To minimize the chance of dropouts, the block checks to make sure that the queue duration is at least
as big as twice the internal buffer size. If it is not, the queue duration is automatically set to twice the
internal buffer size.

The Initial output delay parameter enables you to preload the buffer before the block starts to
output data to the audio device, which can be helpful for models that do not run in real time.
However, for real-time applications, it is best to set the initial output delay to zero (one frame of
delay), or as close to zero as possible.

Troubleshooting

If you are getting undesirable audio output using the To Wave Device block, first determine whether
your model can run in real time. Replace the To Wave Device block with a To Wave File block, run the
model, and compare the model's simulation stop time to the elapsed time on your watch. If the model
simulation stop time is less than the elapsed time on your watch, your model can probably run in real
time. Then,

• If your model can run in real time,

1 Select Automatically determine internal buffer size. This alone might solve the problem.
If not,

2 Try increasing the Queue duration parameter to a relatively large value, such as 0.5 s.

If one or both of these options restores desirable audio output, you can try reducing the internal
buffer size and/or queue duration until the quality of the audio output again degrades.

• If your model is not running in real time, try to make it run in real time by

1 Optimizing the model (using a more efficient implementation), or
2 Using a Simulink “Acceleration” (Simulink) mode, or
3 Generating stand-alone code

If none of these are possible, but the model only runs for a short period of time, set the Queue
duration parameter to a size equal to a significant fraction of the model stop time and use a
similarly large initial delay. This is not an optimal solution, but might work in some cases.

Parameters
Queue duration (seconds)

Specify the overall buffer size. To minimize the chance of dropouts, the block checks to make sure
that the queue duration is as least as large as twice the internal buffer size. If it is not, the queue
duration is automatically set to twice the internal buffer size.

2 Blocks

2-1322

Automatically determine internal buffer size
Select to have the block automatically select the internal buffer size for you. For details, see
“Buffering” on page 2-1321.

User-defined internal buffer size (samples)
Define the internal buffer size, or the size of the chunks of data sent by the block to the audio
hardware device.

This parameter is only visible when Automatically determine internal buffer size is not
selected.

Initial output delay (seconds)
Specify the amount of time by which to delay the initial output to the audio device. During this
time data accumulates in the block's buffer. Any value less than or equal to the queue duration
specifies the smallest possible initial delay, which is a single frame.

Use default audio device
Select to direct audio output to the system's default audio device.

Audio device
This parameter lists the names of the installed audio devices. Specify the name of the audio
device to receive the audio output. Select Use default audio device when the system has only a
single audio card installed.

This parameter is only enabled when the Use default audio device check box is not selected.
Enable 24-bit output for double and single precision input signals

Select to output 24-bit data when inputs are double- or single-precision. Otherwise, the block
outputs 16-bit data for double- and single-precision inputs.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed point with a word length of 16 and a fraction length of 15
• 16-bit signed integers
• 8-bit unsigned integers

See Also
From Wave Device (Obsolete) DSP System Toolbox
To Wave File (Obsolete) DSP System Toolbox
audioplayer MATLAB
sound MATLAB

Introduced in R2008b

 To Wave Device (Obsolete)

2-1323

To Wave File (Obsolete)
Write audio data to file in Microsoft Wave (.wav) format

Library
dspwin32

Description

Note The To Wave File block is still supported but is likely to be obsoleted in a future release. We
strongly recommend replacing this block with the To Multimedia File block.

The To Wave File block streams audio data to a Microsoft Wave (.wav) file in the uncompressed pulse
code modulation (PCM) format. For compatibility reasons, the sample rate of the discrete-time input
signal should typically be one of the standard Windows audio device rates (8000, 11025, 22050, or
44100 Hz), although the block supports arbitrary rates.

The input to the block, u, can contain audio data with one or more channels. A signal with C channels
is represented as a sample-based length-C vector or a frame-based M-by-C matrix. The amplitude of
the input should be in the range ±1. Values outside this range are clipped to the nearest allowable
value.

wavwrite(u,Fs,bits,'filename') % Equivalent MATLAB code

Note AVI files are the only supported file type for non-Windows platforms.

Parameters
File name

Specify the path and name of the file to write. Paths can be relative or absolute. You do not need
to specify the.wav extension.

Sample width (bits)
Specify the number of bits used to represent the signal samples in the file. The higher sample
width settings require more memory but yield better fidelity for double- and single-precision
inputs:

• 8 — Allocates 8 bits to each sample, allowing a resolution of 256 levels
• 16 — Allocates 16 bits to each sample, allowing a resolution of 65536 levels
• 24 — Allocates 24 bits to each sample, allowing a resolution of 16777216 levels

2 Blocks

2-1324

• 32 — Allocates 32 bits to each sample, allowing a resolution of 232 levels ranging from -1 to 1

The 8-, 16-, and 24-bit modes output integer data, while the 32-bit mode outputs single-precision
floating-point data.

Minimum number of samples for each write to file
Specify the number of consecutive samples, L, to write with each file access. To reduce the
required number of file accesses, the block writes L consecutive samples to the file during each
access forL ≥ M. For L < M, the block instead writes M consecutive samples during each access.
Larger values of L result in fewer file accesses, which reduces run-time overhead.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed point with a word length of 16 and a fraction length of 15
• 16-bit signed integers
• 8-bit unsigned integers

See Also
From Multimedia File DSP System Toolbox
To Audio Device DSP System Toolbox
To Workspace Simulink

Introduced in R2010a

 To Wave File (Obsolete)

2-1325

Triggered Delay Line (Obsolete)
Buffer sequence of inputs into frame-based output

Library
dspobslib

Description

Note The Triggered Delay Line block is still supported but is likely to be obsoleted in a future
release. We strongly recommend replacing this block with the Delay Line block.

The Triggered Delay Line block acquires a collection of Mo input samples into a frame, where you
specify Mo in the Delay line size parameter. The block buffers a single sample from input 1
whenever it is triggered by the control signal at input 2 (). When the next triggering event occurs,
the newly acquired input sample is appended to the output frame so that the new output overlaps the
previous output by Mo-1 samples. Between triggering events the block ignores input 1 and holds the
output at its last value.

You specify the triggering event at input 2 in the Trigger type pop-up menu:

• Rising edge triggers execution of the block when the trigger input rises from a negative value
to zero or a positive value, or from zero to a positive value.

• Falling edge triggers execution of the block when the trigger input falls from a positive value
to zero or a negative value, or from zero to a negative value.

• Either edge triggers execution of the block when either a rising or falling edge (as described
above) occurs.

The Triggered Delay Line block has zero latency, so the new input appears at the output in the same
simulation time step. The output frame period is the same as the input sample period, Tfo=Tsi.

Sample-Based Operation

In sample-based operation, the Triggered Delay Line block buffers a sequence of sample-based
length-N vector inputs (1-D, row, or column) into a sequence of overlapping sample-based Mo-by-N
matrix outputs, where you specify Mo in the Delay line size parameter (Mo>1). That is, each input
vector becomes a row in the sample-based output matrix. When Mo=1, the input is simply passed
through to the output, and retains the same dimension. Sample-based full-dimension matrix inputs
are not accepted.

Frame-Based Operation

In frame-based operation, the Triggered Delay Line block rebuffers a sequence of frame-based Mi-by-
N matrix inputs into an sequence of overlapping frame-based Mo-by-N matrix outputs, where Mo is

2 Blocks

2-1326

the output frame size specified by the Delay line size parameter (that is, the number of consecutive
samples from the input frame to rebuffer into the output frame). Mo can be greater or less than the
input frame size, Mi. Each of the N input channels is rebuffered independently.

Initial Conditions

The Triggered Delay Line block's buffer is initialized to the value specified by the Initial condition
parameter. The block always outputs this buffer at the first simulation step (t=0). When the block's
output is a vector, the Initial condition can be a vector of the same size or a scalar value to be
repeated across all elements of the initial output. When the block's output is a matrix, the Initial
condition can be a matrix of the same size or a scalar to be repeated across all elements of the initial
output.

Parameters
Trigger type

The type of event that triggers the block's execution.
Delay line size

The length of the output frame (number of rows in output matrix), Mo.
Initial condition

The value of the block's initial output, a scalar, vector, or matrix.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Trigger • Any data type supported by the Trigger block
Output • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Buffer DSP System Toolbox
Delay Line DSP System Toolbox

 Triggered Delay Line (Obsolete)

2-1327

Unbuffer DSP System Toolbox

Introduced in R2008b

2 Blocks

2-1328

Triggered Signal From Workspace
Import signal samples from MATLAB workspace when triggered
Library: DSP System Toolbox / Signal Operations

Description
The Triggered Signal From Workspace block imports signal samples from the MATLAB workspace
into the Simulink model when triggered by the control signal at the input port (). The Signal
parameter specifies the name of a MATLAB workspace variable containing the signal to import, or
any valid MATLAB expression defining a matrix or 3-D array.

Ports
Input

trigger — Trigger signal
scalar | vector | matrix

Triggering input signal, specified as a scalar, vector, or matrix. This port is labelled with .
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

Port_1 — Signal imported from workspace
scalar | vector | matrix | 3-D array

The block outputs the signal imported from the workspace when triggered by the control signal at the
input port.

When the Signal parameter specifies an M-by-N matrix (M≠1), each of the N columns is treated as a
distinct channel. You specify the frame size in the Samples per frame parameter, Mo. When
triggered, the block outputs an Mo-by-N matrix containing Mo consecutive samples from each signal
channel. For convenience, an imported row vector (M=1) is treated as a single channel, so the output
dimension is Mo-by-1.

When the Signal parameter specifies an M-by-N-by-P array, the block generates a single page of the
array (an M-by-N matrix) at each trigger time. The Samples per frame parameter must be set to 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Signal — Signal to import
1:10 (default) | MATLAB workspace variable | MATLAB expression

 Triggered Signal From Workspace

2-1329

The name of the MATLAB workspace variable from which to import the signal, or a valid MATLAB
expression specifying the signal.

When the Signal parameter specifies an M-by-N matrix (M≠1), each of the N columns is treated as a
distinct channel. You specify the frame size in the Samples per frame parameter, Mo. When
triggered, the block outputs an Mo-by-N matrix containing Mo consecutive samples from each signal
channel. For convenience, an imported row vector (M=1) is treated as a single channel, so the output
dimension is Mo-by-1.

When the Signal parameter specifies an M-by-N-by-P array, the block generates a single page of the
array (an M-by-N matrix) at each trigger time. The Samples per frame parameter must be set to 1.

Trigger type — Type of triggering event
Rising edge (default) | Falling edge | Either edge

The type of event that triggers the block to execute.

• Rising edge triggers execution of the block when the trigger input rises from a negative value
to zero or a positive value, or from zero to a positive value.

• Falling edge triggers execution of the block when the trigger input falls from a positive value
to zero or a negative value, or from zero to a negative value.

• Either edge triggers execution of the block when either a rising or falling edge occurs.

Initial output — Initial output value
0 (default) | scalar | vector | matrix

The value to output until the first trigger event is received. Between trigger events, the block holds
the output value constant at its most recent value (that is, no linear interpolation takes place). For
single-channel signals, the Initial output can be a vector of length Mo or a scalar to repeat across
the Mo elements of the initial output frames. For matrix outputs (Mo-by-N or M-by-N), the Initial
output parameter value can be a matrix of the same size or a scalar to be repeated across all
elements of the initial output.

Samples per frame — Samples per frame
1 (default) | positive integer

The number of samples, Mo, to buffer into each output frame specified as a positive integer scalar.
This value must be 1 when you specify a 3-D array in the Signal parameter.

Form output after final data value by — Values to output after final imported signal
value
Setting to zero (default) | Holding final value | Cyclic repetition

Specifies the output after all of the specified signal samples have been generated.

• When you specify Setting To Zero, the block generates zero-valued outputs for the duration of
the simulation after generating the last frame of the signal.

• When you specify Holding Final Value, the block repeats the final sample for the duration of
the simulation after generating the last frame of the signal.

• When you specify Cyclic Repetition, the block repeats the signal from the beginning after
generating the last frame. When there are not enough samples at the end of the signal to fill the
final frame, the block zero-pads the final frame as necessary to ensure that the output for each
cycle is identical. For example, the ith frame of one cycle contains the same samples as the ith
frame of any other cycle.

2 Blocks

2-1330

The block does not extrapolate the imported signal beyond the last sample.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Signal From Workspace | To Workspace | Triggered To Workspace

Introduced before R2006a

 Triggered Signal From Workspace

2-1331

Triggered To Workspace
Write input sample to MATLAB workspace when triggered

Library
Sinks

dspsnks4

Description
The Triggered To Workspace block creates a matrix or array variable in the MATLAB workspace,
where it stores the acquired inputs at the end of a simulation. The block overwrites an existing
variable with the same name.

When you set the Save 2-D signals as parameter to 2-D array (concatenate along first
dimension, the block saves an M-by-N input as a P-by-N matrix, where P is the Maximum number
of rows parameter. When the simulation progresses long enough for the block to acquire more than P
samples, the block stores only the most recent P samples. The Decimation factor, D, allows you to
store only every Dth input matrix.

When you set the Save 2-D signals as parameter to 3-D array (concatenate along third
dimension, the block saves an M-by-N input as a three-dimensional array in which each M-by-N
page represents a single sample from each of the M*N channels (the most recent input matrix
occupies the last page). The maximum size of this variable is limited to M-by-N-by-P, where P is the
Maximum number of rows parameter. When the simulation progresses long enough for the block to
acquire more than P inputs, it stores only the last P inputs. The Decimation factor, D, allows you to
store only every Dth input matrix.

The block acquires and buffers a single frame from input 1 whenever it is triggered by the control
signal at input 2 (). At all other times, the block ignores input 1. You specify the triggering event at
input 2 in the Trigger type pop-up menu:

• Rising edge triggers execution of the block when the trigger input rises from a negative value
to zero or a positive value, or from zero to a positive value.

• Falling edge triggers execution of the block when the trigger input falls from a positive value
to zero or a negative value, or from zero to a negative value.

• Either edge triggers execution of the block when either a rising or falling edge (as described
above) occurs.

To save a record of the sample time corresponding to each sample value, open the Configuration
Parameters dialog box. In the Select pane, click Data Import/Export and select the Time check
box.

The nontriggered version of this block is the To Workspace block.

2 Blocks

2-1332

Parameters
Trigger type

The type of event that triggers the block's execution.
Variable name

The name of the workspace variable in which to store the data.
Maximum number of rows

The maximum number of rows (one row per time step) to be saved, P.
Decimation

The decimation factor, D.
Save 2-D signals as

Specify whether the block saves 2-D signals as a 2-D or 3-D array in the MATLAB workspace:

• 2-D array (concatenate along first dimension) — When you select this option, the
block vertically concatenates each M-by-N matrix input with the previous input to produce a 2-
D output array.

• 3-D array (concatenate along third dimension) — When you select this option, the
block saves an M-by-N input signal as a 3-D array. The maximum size of this 3-D array is
limited to M-by-N-by-P, where P is the Maximum number of rows parameter. When the
simulation progresses long enough for the block to acquire more than P inputs, the block
stores only the last P inputs. The Decimation factor, D, allows you to store only every Dth
input matrix.

Log fixed-point data as a fi object
Select to log fixed-point data to the MATLAB workspace as a Fixed-Point Designer fi object.
Otherwise, fixed-point data is logged to the workspace as double.

Supported Data Types
Port Supported Data Types
Input • Any data type supported by the To Workspace block
Trigger • Any data type supported by the Trigger block

See Also
Signal From Workspace DSP System Toolbox
To Workspace Simulink
Triggered Signal From Workspace DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 Triggered To Workspace

2-1333

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

2 Blocks

2-1334

Two-Channel Analysis Subband Filter
Decompose signal into high-frequency and low-frequency subbands

Library
Filtering / Multirate Filters

dspmlti4

Description
The Two-Channel Analysis Subband Filter block decomposes the input into high-frequency and low-
frequency subbands, each with half the bandwidth and half the sample rate of the input.

The block filters the input with a pair of highpass and lowpass FIR filters, and then downsamples the
results by 2, as illustrated in the following figure.

The block implements the FIR filtering and downsampling steps together using a polyphase filter
structure, which is more efficient than the straightforward filter-then-decimate algorithm shown in
the preceding figure. Each subband is the first phase of the respective polyphase filter. You can
implement a multilevel dyadic analysis filter bank by connecting multiple copies of this block or by
using the Dyadic Analysis Filter Bank block. See “Creating Multilevel Dyadic Analysis Filter Banks”
on page 2-1337 for more information.

You must provide a vector of filter coefficients for the lowpass and highpass FIR filters. Each filter
should be a half-band filter that passes the frequency band that the other filter stops.

See the following topics for more information about this block:

• “Specifying the FIR Filters” on page 2-1335
• “Frame-Based Processing” on page 2-1336
• “Sample-Based Processing” on page 2-1336
• “Latency” on page 2-1336
• “Creating Multilevel Dyadic Analysis Filter Banks” on page 2-1337

Specifying the FIR Filters

You must provide the vector of numerator coefficients for the lowpass and highpass filters in the
Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters.

 Two-Channel Analysis Subband Filter

2-1335

For example, to specify a filter with the following transfer function, enter the vector [b(1)
b(2) ... b(m)].

H z = B z = b1 + b2z−1 + … + bmz−(m− 1)

Each filter should be a half-band filter that passes the frequency band that the other filter stops. You
can use the Two-Channel Synthesis Subband Filter block to reconstruct the input to this block. To do
so, you must design perfect reconstruction filters to use in the synthesis subband filter.

The best way to design perfect reconstruction filters is to use the Wavelet Toolbox wfilters function
in to design both the filters both in this block and in the Two-Channel Synthesis Subband Filter block.
You can also use other DSP System Toolbox and Signal Processing Toolbox functions.

The Two-Channel Analysis Subband Filter block initializes all filter states to zero.

Frame-Based Processing

When you set the Input processing parameter to Columns as channels (frame based), the
block accepts an M-by-N matrix. The block treats each column of the input as the high- or low-
frequency subbands of the corresponding output channel. You can use the Rate options parameter
to specify how the block resamples the input:

• When you set the Rate options parameter to Enforce single-rate processing, the input to
the block can be an M-by-N matrix, where M is a multiple of two. The block treats each column of
the input as an independent channel and decomposes each channel over time. The block outputs
two matrices, where each column of the output is the high- or low-frequency subband of the
corresponding input column. To maintain the input sample rate, the block decreases the output
frame size by a factor of two.

• When you set the Rate options parameter to Allow multirate processing, the block treats
an Mi-by-N matrix input as N independent channels and decomposes each channel over time. The
block outputs two M-by-N matrices, where each column of the output is the high- or low-frequency
subband of the corresponding input column. The input and output frame sizes are the same, but
the frame rate of the output is half that of the input. Thus, the overall sample rate of the output is
half that of the input.

In this mode, the block has one frame of latency, as described in the “Latency” on page 2-1336
section.

Sample-Based Processing

When you set the Input processing parameter to Elements as channels (sample based), the
block treats an M-by-N matrix input as M · N independent channels. The block decomposes each
channel over time and outputs two M-by-N matrices whose sample rates are half the input sample
rate. Each element in the output matrix is the high- or low-frequency subband output of the
corresponding element of the input matrix.

Depending on the setting of your Simulink configuration parameters, the output may have one sample
of latency, as described in the “Latency” on page 2-1336 section.

Latency

When you set the Input processing parameter to Columns as channels (frame based) and
the Rate options parameter to Enforce single-rate processing, the Two-Channel Analysis

2 Blocks

2-1336

Subband Filter block always has zero-tasking latency. Zero-tasking latency means that the block
propagates the first input sample (received at time t=0) as the first output sample.

When you set the Rate options parameter to Allow multirate processing, the Two-Channel
Analysis Subband Filter block may exhibit latency. The amount of latency depends on the setting of
the Input processing parameter of this block, and the setting of the Simulink Treat each discrete
rate as a separate task configuration parameter. The following table summarizes the conditions that
produce latency when the block is performing multirate processing.

Input processing Treat each discrete rate as
a separate task

Latency

Elements as channels
(sample based)

Off None.
On One sample. The first output sample in

each channel always has a value of 0.
Columns as channels
(frame based)

On or Off One frame. All samples in the first
output frame have a value of 0.

Note For more information on latency and the Simulink tasking modes, see “Excess Algorithmic
Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation” (Simulink Coder).

Creating Multilevel Dyadic Analysis Filter Banks

The Two-Channel Analysis Subband Filter block is the basic unit of a dyadic analysis filter bank. You
can connect several of these blocks to implement an n-level filter bank, as illustrated in the following
figure. For a review of dyadic analysis filter banks, see the Dyadic Analysis Filter Bank block
reference page.

When you create a filter bank by connecting multiple copies of this block, the output values of the
filter bank differ depending on whether there is latency. Though the output values differ, both sets of
values are valid; the difference arises from changes in latency. See the “Latency” on page 2-1336
section for more information about when latency can occur in the Two-Channel Analysis Subband
Filter block.

In some cases, rather than connecting several Two-Channel Analysis Subband Filter blocks, you can
use the Dyadic Analysis Filter Bank block, which is faster and requires less memory. In particular, the
Dyadic Analysis Filter Bank block is more efficient under the following conditions:

• The frame size of the signal you are decomposing is a multiple of 2n.
• You are decomposing the signal into n+1 or 2n subbands.

In all other cases, use Two-Channel Analysis Subband Filter blocks to implement your filter banks.

 Two-Channel Analysis Subband Filter

2-1337

The Dyadic Analysis Filter Bank block allows you to specify the filter bank filters by providing vectors
of filter coefficients, just as this block does. The Dyadic Analysis Filter Bank block provides an
additional option of using wavelet-based filters that the block designs by using a wavelet you specify.

Fixed-Point Data Types

The Two-Channel Analysis Subband Filter Bank block is composed of two FIR Decimation blocks as
shown in the following diagram.

For fixed-point signals, you can set the coefficient, product output, accumulator, and output data
types of the FIR Decimation blocks as discussed in “Parameters” on page 2-1338. For a diagram
showing the usage of these data types, see the FIR Decimation block reference page.

Parameters
Main Tab

Lowpass FIR filter coefficients
Specify a vector of lowpass FIR filter coefficients, in descending powers of z. The lowpass filter
should be a half-band filter that passes the frequency band stopped by the filter specified in the
Highpass FIR filter coefficients parameter. The default values of this parameter specify a filter

2 Blocks

2-1338

based on a third-order Daubechies wavelet. When you use the Two-Channel Synthesis Subband
Filter block to reconstruct the input to this block, you need to design perfect reconstruction
filters to use in the synthesis subband filter. For more information, see “Specifying the FIR
Filters” on page 2-1335.

Highpass FIR filter coefficients
Specify a vector of highpass FIR filter coefficients, in descending powers of z. The highpass filter
should be a half-band filter that passes the frequency band stopped by the filter specified in the
Lowpass FIR filter coefficients parameter. The default values of this parameter specify a filter
based on a third-order Daubechies wavelet. When you use the Two-Channel Synthesis Subband
Filter block to reconstruct the input to this block, you need to design perfect reconstruction
filters to use in the synthesis subband filter. For more information, see “Specifying the FIR
Filters” on page 2-1335.

Input processing
Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) (default) — When you select this option, the block
treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options
Specify the rate processing rule for the block. You can set this parameter to one of the following
options:

• Enforce single-rate processing — When you select this option, the block treats each
column of the input as an independent channel and decomposes each channel over time. The
output has the same sample rate as the input, but the output frame size is half that of the
input frame size. To select this option, you must set the Input processing parameter to
Columns as channels (frame based).

• Allow multirate processing — When you select this option, the input and output of the
block are the same size, but the sample rate of the output is half that of the input.

Some settings of this parameter cause the block to have nonzero latency. See “Latency” on page
2-1336 for more information.

Data Types Tab

Rounding mode
Select the rounding mode for fixed-point operations. The filter coefficients do not obey this
parameter; they are always rounded to Nearest.

Note The Rounding mode and Saturate on integer overflow settings have no effect on
numerical results when all the following conditions exist:

• Product output is Inherit: Inherit via internal rule
• Accumulator is Inherit: Inherit via internal rule
• Output is Inherit: Same as accumulator

With these data type settings, the block is effectively operating in full precision mode.

 Two-Channel Analysis Subband Filter

2-1339

Saturate on integer overflow
When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numeric results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in full-precision mode.

Coefficients
Specify the coefficients data type. See “Fixed-Point Data Types” on page 2-1338 and
“Multiplication Data Types” for illustrations depicting the use of the coefficients data type in this
block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Coefficients parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Coefficients Minimum
Specify the minimum value of the filter coefficients. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Automatic scaling of fixed-point data types

Coefficients Maximum
Specify the maximum value of the filter coefficients. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Automatic scaling of fixed-point data types

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 2-1338 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

Note The actual product output word length may be equal to or greater than the calculated
ideal product output word length, depending on the settings on the Hardware
Implementation pane of the Configuration Parameters dialog box.

2 Blocks

2-1340

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-1338 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-1338 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Output Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Output Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

 Two-Channel Analysis Subband Filter

2-1341

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

References
[1] Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West

Sussex, England: John Wiley & Sons, 1994.

[2] Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press,
1996.

[3] Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice Hall, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Functions
fir1 | fir2 | firls

Blocks
DWT | Dyadic Analysis Filter Bank | FIR Decimation | IDWT | Two-Channel Synthesis Subband Filter

Topics
“Multirate and Multistage Filters”

Introduced before R2006a

2 Blocks

2-1342

Two-Channel Synthesis Subband Filter
Reconstruct signal from high-frequency and low-frequency subbands

Library
Filtering / Multirate Filters

dspmlti4

Description
The Two-Channel Synthesis Subband Filter block reconstructs a signal from its high-frequency and
low-frequency subbands, each with half the bandwidth and half the sample rate of the original signal.
Use this block to reconstruct signals decomposed by the Two-Channel Analysis Subband Filter block.

The block upsamples the high- and low-frequency subbands by 2, and then filters the results with a
pair of highpass and lowpass FIR filters, as illustrated in the following figure.

The block implements the FIR filtering and downsampling steps together using a polyphase filter
structure, which is more efficient than the straightforward interpolate-then-filter algorithm shown in
the preceding figure. You can implement a multilevel dyadic synthesis filter bank by connecting
multiple copies of this block or by using the Dyadic Synthesis Filter Bank block. For more
information, see “Creating Multilevel Dyadic Synthesis Filter Banks” on page 2-1345.

You must provide a vector of filter coefficients for the lowpass and highpass FIR filters. Each filter
should be a half-band filter that passes the frequency band that the other filter stops. You can use this
block to reconstruct the output of a Two-Channel Analysis Subband Filter block. To do so, you must
design the filters in this block such that they perfectly reconstruct the outputs of the analysis filters.

See the following topics for more information about this block:

• “Specifying the FIR Filters” on page 2-1344
• “Frame-Based Processing” on page 2-1344
• “Sample-Based Processing” on page 2-1344
• “Latency” on page 2-1345
• “Creating Multilevel Dyadic Synthesis Filter Banks” on page 2-1345

 Two-Channel Synthesis Subband Filter

2-1343

Specifying the FIR Filters

You must provide the vector of numerator coefficients for the lowpass and highpass filters in the
Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters.

For example, to specify a filter with the following transfer function, enter the vector [b(1)
b(2) ... b(m)].

H z = B z = b1 + b2z−1 + … + bmz−(m− 1)

Each filter should be a half-band filter that passes the frequency band that the other filter stops. You
can use this block to reconstruct the output of a Two-Channel Analysis Subband Filter block. To do so,
you must design the filters in this block such that they perfectly reconstruct the outputs of the
analysis filters.

The best way to design perfect reconstruction filters is to use the Wavelet Toolbox wfilters function
for the filters in both this block and in the corresponding Two-Channel Analysis Subband Filter block.
You can also use DSP System Toolbox and Signal Processing Toolbox functions.

The Two-Channel Synthesis Subband Filter block initializes all filter states to zero.

Frame-Based Processing

When you set the Input processing parameter to Columns as channels (frame based), the
block accepts any two M-by-N matrices with the same frame rates. The block treats each column of
the input as the high- or low-frequency subbands of the corresponding output channel. You can use
the Rate options parameter to specify how the block resamples the input:

• When you set the Rate options parameter to Enforce single-rate processing, the input to
the block can be any two M-by-N matrices with the same frame rate. The block treats each input
column as the high- or low-frequency subbands of the corresponding output channel. The input to
the topmost input port should contain the high-frequency subbands. The block outputs one matrix,
where each column is reconstructed from the corresponding columns of each input matrix. The
input and output frame rates are the same, but the frame size of the output is twice that of the
input.

• When you set the Rate options parameter to Allow multirate processing, the block treats
each column of the input as the high- or low-frequency subbands of the corresponding output
channel. The input to the topmost input port should contain the high-frequency subbands. The
block outputs one matrix, where each column is reconstructed from the corresponding columns of
the input matrices. The input and output frame sizes are the same, but the frame rate of the
output is twice that of the input. Thus, the overall sample rate of the output is twice that of the
input sample rate.

In this mode, the block has one frame of latency, as described in the “Latency” on page 2-1345
section.

Sample-Based Processing

When you set the Input processing parameter to Elements as channels (sample based), the
block accepts any two M-by-N matrices with the same sample rates. The block treats each M-by-N
matrix as M · N independent subbands. Each element of the input matrices is the high- or low-
frequency subband of the corresponding channel in the output matrix. The input to the topmost input
port should contain the high-frequency subbands. The block outputs one matrix with the same

2 Blocks

2-1344

dimensions as the input matrices, but a sample rate that is twice that of the input. The block
reconstructs each element of the output from the corresponding elements in the input matrices.

Depending on the setting of your Simulink configuration parameters, the output may have one sample
of latency, as described in the “Latency” on page 2-1345 section.

Latency

When you set the Input processing parameter to Columns as channels (frame based) and
the Rate options parameter to Enforce single-rate processing, the Two-Channel Synthesis
Subband Filter block always has zero-tasking latency. Zero-tasking latency means that the block
propagates the first input sample (received at time t= 0) as the first output sample.

When you set the Rate options parameter to Allow multirate processing, the Two-Channel
Synthesis Subband Filter block may exhibit latency. The amount of latency depends on the setting of
the Input processing parameter of this block and the setting of the Simulink Treat each discrete
rate as a separate task configuration parameter. The following table summarizes the conditions that
produce latency when the block is performing multirate processing.

Input processing Treat each discrete rate as
a separate task

Latency

Elements as channels
(sample based)

Off None.
On One sample. The first output sample in

each channel always has a value of 0.
Columns as channels
(frame based)

Off or On One frame. All samples in the first
output frame have a value of 0.

Note For more information on latency and the Simulink tasking modes, see “Excess Algorithmic
Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation” (Simulink Coder).

Creating Multilevel Dyadic Synthesis Filter Banks

The Two-Channel Synthesis Subband Filter block is the basic unit of a dyadic synthesis filter bank.
You can connect several of these blocks to implement an n-level filter bank, as illustrated in the
following figure. For a review of dyadic synthesis filter banks, see the Dyadic Synthesis Filter Bank
block reference page.

When you create a filter bank by connecting multiple copies of this block, the output values of the
filter bank differ depending on whether there is latency. Though the output values differ, both sets of
values are valid; the difference arises from changes in latency. See the “Latency” on page 2-1345
section for more information about when latency can occur in the Two-Channel Analysis Subband
Filter block.

In some cases, rather than connecting several Two-Channel Analysis Subband Filter blocks, you can
use the Dyadic Analysis Filter Bank block, which is faster and requires less memory. In particular, the
Dyadic Analysis Filter Bank block is more efficient under the following conditions:

• You are reconstructing a signal from 2n or n+ 1 subbands.
• The frame size of the signal you are reconstructing is a multiple of 2n.

 Two-Channel Synthesis Subband Filter

2-1345

• The properties of the subbands you are working with match those of the outputs of the Dyadic
Analysis Filter Bank block. These properties are described in the Dyadic Analysis Filter Bank
reference page.

The Dyadic Synthesis Filter Bank block allows you to specify the filter bank filters by providing
vectors of filter coefficients, just as this block does. The Dyadic Synthesis Filter Bank block provides
an additional option of using wavelet-based filters that the block designs by using a wavelet you
specify.

Fixed-Point Data Types

The Two-Channel Synthesis Subband Filter block is composed of two FIR Interpolation blocks as
shown in the following diagram.

For fixed-point signals, you can set the coefficient, product output, accumulator, and output data
types used in the FIR Interpolation blocks as discussed in “Parameters” on page 2-1347. For a
diagram showing the usage of these data types within the FIR blocks, see the FIR Interpolation block
reference page.

In addition, the inputs to the Sum block shown in the previous diagram are accumulated using the
accumulator data type. The output of the Sum block is then cast from the accumulator data type to
the output data type. Therefore the output of the Two-Channel Synthesis Subband Filter block is in

2 Blocks

2-1346

the output data type. You also set these data types in the block dialog box as discussed in the
“Parameters” on page 2-1347 section.

Parameters
Main Tab

Lowpass FIR filter coefficients
A vector of lowpass FIR filter coefficients, in descending powers of z. The lowpass filter should be
a half-band filter that passes the frequency band stopped by the filter specified in the Highpass
FIR filter coefficients parameter. To use this block to reconstruct the output of a Two-Channel
Analysis Subband Filter block, you must design the filters in this block to perfectly reconstruct
the outputs of the analysis filters. For more information, see “Specifying the FIR Filters” on page
2-1344.

Highpass FIR filter coefficients
A vector of highpass FIR filter coefficients, in descending powers of z. The highpass filter should
be a half-band filter that passes the frequency band stopped by the filter specified in the Lowpass
FIR filter coefficients parameter. To use this block to reconstruct the output of a Two-Channel
Analysis Subband Filter block, you must design the filters in this block to perfectly reconstruct
the outputs of the analysis filters. For more information, see “Specifying the FIR Filters” on page
2-1344.

Input processing
Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) (default) — When you select this option, the block
treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options
Specify the rate processing rule for the block. You can set this parameter to one of the following
options:

• Enforce single-rate processing — When you select this option, the block treats each
column of the input as an independent channel and reconstructs each channel over time. The
output has the same sample rate as the input, but the output frame size is twice that of the
input frame size. To select this option, you must set the Input processing parameter to
Columns as channels (frame based).

• Allow multirate processing — When you select this option, the input and output of the
block are the same size, but the sample rate of the output is twice that of the input.

Some settings of this parameter cause the block to have nonzero latency. See “Latency” on page
2-1345 for more information.

Data Types Tab

Rounding mode
Select the rounding mode for fixed-point operations. The filter coefficients do not obey this
parameter; they always round to Nearest.

 Two-Channel Synthesis Subband Filter

2-1347

Note The Rounding mode and Saturate on integer overflow settings have no effect on
numerical results when all the following conditions exist:

• Product output is Inherit: Inherit via internal rule
• Accumulator is Inherit: Inherit via internal rule
• Output is Inherit: Same as accumulator

With these data type settings, the block is effectively operating in full precision mode.

Saturate on integer overflow
When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Note The Rounding mode and Saturate on integer overflow parameters have no effect on
numeric results when all these conditions are met:

• Product output data type is Inherit: Inherit via internal rule.
• Accumulator data type is Inherit: Inherit via internal rule.

With these data type settings, the block operates in full-precision mode.

Coefficients
Specify the coefficients data type. See “Fixed-Point Data Types” on page 2-1346 and
“Multiplication Data Types” for illustrations depicting the use of the coefficients data type in this
block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same word length as input
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Coefficients parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Coefficients Minimum
Specify the minimum value of the filter coefficients. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Automatic scaling of fixed-point data types

Coefficients Maximum
Specify the maximum value of the filter coefficients. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Automatic scaling of fixed-point data types

2 Blocks

2-1348

Product output
Specify the product output data type. See “Fixed-Point Data Types” on page 2-1346 and
“Multiplication Data Types” for illustrations depicting the use of the product output data type in
this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

Note The actual product output word length may be equal to or greater than the calculated
ideal product output word length, depending on the settings on the Hardware
Implementation pane of the Configuration Parameters dialog box.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Product output parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Accumulator
Specify the accumulator data type. See “Fixed-Point Data Types” on page 2-1346 for illustrations
depicting the use of the accumulator data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Inherit via internal rule. For
more information on this rule, see “Inherit via Internal Rule”.

• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Accumulator parameter.

See “Specify Data Types Using Data Type Assistant” (Simulink) in Simulink User's Guide
(Simulink) for more information.

Output
Specify the output data type. See “Fixed-Point Data Types” on page 2-1346 for illustrations
depicting the use of the output data type in this block. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as accumulator
• An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

Output Minimum
Specify the minimum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

 Two-Channel Synthesis Subband Filter

2-1349

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Output Maximum
Specify the maximum value that the block should output. The default value is [] (unspecified).
Simulink software uses this value to perform:

• Simulation range checking (see “Specify Signal Ranges” (Simulink))
• Automatic scaling of fixed-point data types

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent the fixed-point tools from overriding the data types you specify
on the block mask.

Supported Data Types
• Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

References
[1] Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West

Sussex, England: John Wiley & Sons, 1994.

[2] Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press,
1996.

[3] Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice Hall, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

See Also
Functions
fir1 | fir2 | firls

2 Blocks

2-1350

Blocks
DWT | Dyadic Synthesis Filter Bank | FIR Interpolation | IDWT | Two-Channel Analysis Subband Filter

Topics
“Multirate and Multistage Filters”

Introduced before R2006a

 Two-Channel Synthesis Subband Filter

2-1351

UDP Receive
Receive uint8 vector as UDP message

Library
Sources

dspsrcs4

Description
The UDP Receive block receives UDP packets from an IP network port and saves them to its buffer.
With each sample, the block outputs the contents of a single UDP packet as a data vector. The local IP
port number on which the block receives the UDP packets is tunable in the generated code.

The generated code for this block relies on prebuilt .dll files. You can run this code outside the
MATLAB environment or redeploy it, but you must account for the extra .dll files. The packNGo
function creates a ZIP file that contains the pieces required to run or rebuild this code. For more
details, see “How To Run a Generated Executable Outside MATLAB”.

Parameters
Local IP port — Number of IP port
25000 (default) | scalar in the range [1, 65535]

Specify the IP port number on which to receive UDP packets. This parameter is tunable in the
generated code but is not tunable during simulation.

On Linux, to set the IP port number below 1024, run MATLAB with root privileges. For example, at
the Linux command line, enter:

sudo matlab

Remote IP address ('0.0.0.0' to accept all) — IP address from which to accept
packets
'0.0.0.0' (default) | IP address

Specify the IP address from which to accept UDP packets. Specify a specific IP address to block UDP
packets from other addresses. To accept packets from any IP address, specify '0.0.0.0'.

Receive buffer size (bytes) — Size of buffer that receives UDP packets
8192 (default) | scalar in the range [1, 67108864]

2 Blocks

2-1352

Specify the size of the buffer, in bytes, that receives the UDP packets. Make the buffer large enough
to avoid data loss caused by buffer overflows.

Maximum length for Message — Maximum length of output data
255 (default) | scalar

Specify the maximum length, in vector elements, of the data output vector. Set this parameter to a
value equal or greater than the data size of a UDP packet. The system truncates data that exceeds
this length.

Parameter Dependencies

If you disable Output variable-size signal, the block output is the length specified by this
parameter.

Data type for Message — Data type of message
uint8 (default) | single | double | int8 | int16 | int32 | int64 | uint16 | uint32 | uint64 | boolean | fixed
point | enumerated | bus

Specify the data type of the vector elements in the message output. Match the data type to the data
input used to create the UDP packets.

Message is complex — Message data complexity
off (default) | on

Specify whether the block receives a message as complex data. Select this parameter to receive a
message as complex data. Clear this parameter if a received message is real data.

Output variable-size signal — Message output that varies in length
on (default) | off

Specify whether your model supports signals of varying length. If your model supports signals of
varying length, select this parameter. In that case:

• The output vector varies in length, depending on the amount of data in the UDP packet.
• The block emits the data vector from a single unlabeled output.

If your model does not support signals of varying length, clear this parameter. In that case:

• The block emits a fixed-length output that is the same length as specified by Maximum length
for Message.

• If the UDP packet contains less data than the fixed-length output, the difference contains invalid
data.

• The block emits the data vector from the Message output.
• The block emits the length of the valid data from the Length output.
• The Data type for Length parameter is enabled.

Parameter Dependencies

If you disable this parameter, the block emits output that is the length specified by Maximum length
for Message.

Blocking time (seconds) — Number of seconds to wait for UDP packet
inf (default) | scalar

 UDP Receive

2-1353

For each sample, specify the number of seconds to wait for a UDP packet before returning control to
the scheduler. To wait indefinitely, specify inf.

Note This parameter applies to the Embedded Coder® UDP Receive block only.

Sample time (seconds) — Frequency of calls to block
0.01 (default) | scalar

Specify the frequency at which the scheduler calls the UDP Receive block, in seconds. Enter a value
greater than zero. In real-time operation, setting this parameter to a smaller value reduces the
likelihood of dropped UDP messages.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• The executable generated from this block relies on prebuilt dynamic library files (.dll files)
included with MATLAB. Use the packNGo function to package the code generated from this block
and all the relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and
rebuild your project in another development environment where MATLAB is not installed. For
more details, see “How To Run a Generated Executable Outside MATLAB”.

• The Local IP port parameter is tunable in the generated code, but not tunable during simulation.
You can control the parameter tunability in the generated code through several ways. One of the
ways is to configure the parameter as a tunable field of a global structure in the generated code.
Other ways include applying a built-in storage class or custom storage class to a
Simulink.Parameter object and using this object to set the value of the block parameter. For
details, see “Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder).

See Also
Objects
dsp.UDPReceiver | dsp.UDPSender

Blocks
UDP Send

Introduced in R2010a

2 Blocks

2-1354

UDP Send
Send UDP message

Library
Sinks

dspsnks4

Description
The UDP Send block transmits an input data vector as a UDP packet to a remote IP network port. The
remote IP port number to which the block sends the UDP packets is tunable in the generated code.

Some Simulink blocks and .exe files built from models that contain those blocks require shared
libraries, such as .dll files on Windows. The UDP Send block requires the networkdevice.dll
library file. To meet this requirement, follow the example on the packNGo function page to package
the code files for your model. The resulting compressed folder contains the .dll files that the model
requires, including networkdevice.dll. To run this type of .exe file outside of a MATLAB
environment, place the required .dll files in the same folder as the .exe file or place them in a
folder on the Windows system path. For more details, see “How To Run a Generated Executable
Outside MATLAB”.

Parameters
Remote IP address ('255.255.255.255' for broadcast) — IP address from which to
accept UDP packets
'255.255.255.255' (default) | IP address | string

Specify the IP address or host name to which to send UDP packets. If you specify a host name, specify
it as a string. To broadcast a UDP packet, specify '255.255.255.255'.

Remote IP port — Number of remote IP port
25000 (default) | scalar in the range [1, 65535] |

Specify the IP port number to which to send UDP packets. This parameter is tunable in the generated
code but is not tunable during simulation.

On Linux, to set the IP port number below 1024, run MATLAB with root privileges. For example, at
the Linux command line, enter:

sudo matlab

 UDP Send

2-1355

Local IP port source — Source of local IP port
Automatically determine (default) | Specify via dialog

Specify whether the block uses a local port number that the system assigns or that you specify by
using the Local IP port parameter. For the system to assign the port number, select Automatically
determine. If the receiving address expects UDP packets from a specific port number, select
Specify via dialog and specify the port number by using the Local IP port parameter.
Parameter Dependencies

To enable the Local IP port parameter, select Specify via dialog.

Local IP port — Number of local IP port
-1 (default) | scalar in the range [1, 65535]

Specify the IP port number from which the block sends UDP packets. Use this parameter when the
receiving address expects messages from a specific port number.
Parameter Dependencies

To enable this parameter, set Local IP port source to Specify via dialog.

Send buffer size (bytes) — Size of buffer that sends UDP packets
8192 (default) | scalar in the range [1, 67108864]

Specify the size of the buffer, in bytes, that sends the UDP packets. Make the buffer large enough to
avoid data loss caused by buffer overflows.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• The executable generated from this block relies on prebuilt dynamic library files (.dll files)
included with MATLAB. Use the packNGo function to package the code generated from this block
and all the relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and
rebuild your project in another development environment where MATLAB is not installed. For
more details, see “How To Run a Generated Executable Outside MATLAB”.

• The Remote IP port parameter is tunable in the generated code, but not tunable during
simulation. You can control the parameter tunability in the generated code through several ways.
One of the ways is to configure the parameter as a tunable field of a global structure in the
generated code. Other ways include applying a built-in storage class or custom storage class to a
Simulink.Parameter object, and using this object to set the value of the block parameter. For
details, see “Create Tunable Calibration Parameter in the Generated Code” (Simulink Coder).

See Also
Objects
dsp.UDPReceiver | dsp.UDPSender

Blocks
UDP Receive

2 Blocks

2-1356

Introduced in R2010a

 UDP Send

2-1357

Unbuffer
Unbuffer input frame into sequence of scalar outputs

Library
Signal Management / Buffers

dspbuff3

Description
The Unbuffer block unbuffers an Mi-by-N input into a 1-by-N output. That is, inputs are unbuffered
row-wise so that each matrix row becomes an independent time-sample in the output. The rate at
which the block receives inputs is generally less than the rate at which the block produces outputs.

The block adjusts the output rate so that the sample period is the same at both the input and output,
Tso=Tsi. Therefore, the output sample period for an input of frame size Mi and frame period Tfi is
Tfi/Mi, which represents a rate Mi times higher than the input frame rate. In the example above, the
block receives inputs only once every three sample periods, but produces an output once every
sample period. To rebuffer inputs to a larger or smaller frame size, use the Buffer block.

In the model below, the block unbuffers a four-channel input with a frame size of three. The Initial
conditions parameter is set to zero and the tasking mode is set to multitasking, so the first three
outputs are zero vectors.

2 Blocks

2-1358

matlab:ex_unbuffer_ref1

Zero Latency

The Unbuffer block has zero-tasking latency in Simulink single-tasking mode. Zero-tasking latency
means that the first input sample (received at t=0) appears as the first output sample.

Nonzero Latency

For multitasking operation, the Unbuffer block's buffer is initialized with the value specified by the
Initial conditions parameter, and the block begins unbuffering this frame at the start of the
simulation. Inputs to the block are therefore delayed by one buffer length, or Mi samples.

The Initial conditions parameter can be one of the following:

• A scalar to be repeated for the first Mi output samples of every channel
• A length-Mi vector containing the values of the first Mi output samples for every channel
• An Mi-by-N matrix containing the values of the first Mi output samples in each of N channels

Note For more information on latency and the Simulink tasking modes, see “Excess Algorithmic
Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation” (Simulink Coder).

Parameters
Initial conditions

The value of the block's initial output for cases of nonzero latency. You can specify a scalar, vector,
or matrix.

 Unbuffer

2-1359

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Buffer DSP System Toolbox

See “Unbuffer Frame Signals into Sample Signals” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

2 Blocks

2-1360

Uniform Decoder
Decode integer input into floating-point output

Library
Quantizers

dspquant2

Description
The Uniform Decoder block performs the inverse operation of the Uniform Encoder block, and
reconstructs quantized floating-point values from encoded integer input. The block adheres to the
definition for uniform decoding specified in ITU-T Recommendation G.701.

Inputs can be real or complex values of the following six integer data types: uint8, uint16, uint32,
int8, int16, or int32.

The block first casts the integer input values to floating-point values, and then uniquely maps
(decodes) them to one of 2B uniformly spaced floating-point values in the range [-V, (1-21-B)V], where
you specify B in the Bits parameter (as an integer between 2 and 32) and V is a floating-point value
specified by the Peak parameter. The smallest input value representable by B bits (0 for an unsigned
input data type; -2B-1 for a signed input data type) is mapped to the value -V. The largest input value
representable by B bits (2B-1 for an unsigned input data type; 2B-1-1 for a signed input data type) is
mapped to the value (1-21-B)V. Intermediate input values are linearly mapped to the intermediate
values in the range [-V, (1-21-B)V].

To correctly decode values encoded by the Uniform Encoder block, the Bits and Peak parameters of
the Uniform Decoder block should be set to the same values as the Bits and Peak parameters of the
Uniform Encoder block. The Overflow mode parameter specifies the Uniform Decoder block's
behavior when the integer input is outside the range representable by B bits. When you select
Saturate, unsigned input values greater than 2B-1 saturate at 2B-1; signed input values greater than
2B-1-1 or less than -2B-1 saturate at those limits. The real and imaginary components of complex inputs
saturate independently.

When you select Wrap, unsigned input values, u, greater than 2B-1 are wrapped back into the range
[0, 2B-1] using mod-2B arithmetic.

u = mod(u,2^B)

Signed input values, u, greater than 2B-1-1 or less than -2B-1 are wrapped back into that range using
mod-2B arithmetic.

u = (mod(u+2^B/2,2^B)-(2^B/2))

The real and imaginary components of complex inputs wrap independently.

 Uniform Decoder

2-1361

The Output type parameter specifies whether the decoded floating-point output is single or double
precision. Either level of output precision can be used with any of the six integer input data types.

Examples
See example model ex_uniform_decoder.

In this example, the input to the block is the uint8 output of a Uniform Encoder block. This block has
comparable settings: Peak = 2, Bits = 3, and Output type = Unsigned. (Comparable settings
ensure that inputs to the Uniform Decoder block do not saturate or wrap. See the example on the
Uniform Encoder block reference page for more about these settings.)

The real and complex components of each input are independently mapped to one of 23 distinct levels
in the range [-2.0,1.5].

0 is mapped to -2.0
1 is mapped to -1.5
2 is mapped to -1.0
3 is mapped to -0.5
4 is mapped to 0.0
5 is mapped to 0.5
6 is mapped to 1.0
7 is mapped to 1.5

Parameters
Peak

Specify the largest amplitude represented in the encoded input. To correctly decode values
encoded with the Uniform Encoder block, set the Peak parameters in both blocks to the same
value.

Bits
Specify the number of input bits, B, used to encode the data. (This can be less than the total
number of bits supplied by the input data type.) To correctly decode values encoded with the
Uniform Encoder block, set the Bits parameters in both blocks to the same value.

Overflow mode
Specify the block's behavior when the integer input is outside the range representable by B bits.
Out-of-range inputs can either saturate at the extreme value, or wrap back into range.

Output type
Specify the precision of the floating-point output, single or double.

References
General Aspects of Digital Transmission Systems: Vocabulary of Digital Transmission and
Multiplexing, and Pulse Code Modulation (PCM) Terms, International Telecommunication Union, ITU-
T Recommendation G.701, March, 1993

2 Blocks

2-1362

matlab:ex_uniform_decoder

Supported Data Types
Port Supported Data Types
Input • 8-, 16-, and 32-bit integers
Output • Double-precision floating point

• Single-precision floating point

See Also
Data Type Conversion Simulink
Quantizer Simulink
Scalar Quantizer Decoder DSP System Toolbox
Uniform Encoder DSP System Toolbox
udecode Signal Processing Toolbox
uencode Signal Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Uniform Decoder

2-1363

Uniform Encoder
Quantize and encode floating-point input into integer output

Library
Quantizers

dspquant2

Description
The Uniform Encoder block performs the following two operations on each floating-point sample in
the input vector or matrix:

1 Quantizes the value using the same precision
2 Encodes the quantized floating-point value to an integer value

In the first step, the block quantizes an input value to one of 2B uniformly spaced levels in the range [-
V, (1-21-B)V], where you specify B in the Bits parameter and you specify V in the Peak parameter. The
quantization process rounds both positive and negative inputs downward to the nearest quantization
level, with the exception of those that fall exactly on a quantization boundary. The real and imaginary
components of complex inputs are quantized independently.

The number of bits, B, can be any integer value between 2 and 32, inclusive. Inputs greater than
(1-21-B)V or less than -V saturate at those respective values. The real and imaginary components of
complex inputs saturate independently.

In the second step, the quantized floating-point value is uniquely mapped (encoded) to one of 2B

integer values. When the Output type is set to Unsigned integer, the smallest quantized floating-
point value, -V, is mapped to the integer 0, and the largest quantized floating-point value, (1-21-B)V, is
mapped to the integer 2B-1. Intermediate quantized floating-point values are linearly (uniformly)
mapped to the intermediate integers in the range [0, 2B-1]. For efficiency, the block automatically
selects an unsigned output data type (uint8, uint16, or uint32) with the minimum number of bits
equal to or greater than B.

When the Output type is set to Signed integer, the smallest quantized floating-point value, -V, is
mapped to the integer -2B-1, and the largest quantized floating-point value, (1-21-B)V, is mapped to the
integer 2B-1-1. Intermediate quantized floating-point values are linearly mapped to the intermediate
integers in the range [-2B-1, 2B-1-1]. The block automatically selects a signed output data type (int8,
int16, or int32) with the minimum number of bits equal to or greater than B.

Inputs can be real or complex, double or single precision. The output data types that the block uses
are shown in the table below. Note that most of the DSP System Toolbox blocks accept only double-
precision inputs. Use the Simulink Data Type Conversion block to convert integer data types to
double precision. See “About Data Types in Simulink” (Simulink) for a complete discussion of data
types, as well as a list of Simulink blocks capable of reduced-precision operations.

2 Blocks

2-1364

Bits Unsigned Integer Signed Integer
2 to 8 uint8 int8
9 to 16 uint16 int16
17 to 32 uint32 int32

The Uniform Encoder block operations adhere to the definition for uniform encoding specified in ITU-
T Recommendation G.701.

Examples
See example model ex_uniform_encoder.

In this example, the following parameters are set:

• Peak = 2
• Bits = 3
• Output type = Unsigned

The following figure illustrates uniform encoding.

The real and complex components of each input (horizontal axis) are independently quantized to one
of 23 distinct levels in the range [-2,1.5]. These components are then mapped to one of 23 integer
values in the range [0,7].

-2.0 is mapped to 0
-1.5 is mapped to 1
-1.0 is mapped to 2
-0.5 is mapped to 3
 0.0 is mapped to 4
 0.5 is mapped to 5
 1.0 is mapped to 6
 1.5 is mapped to 7

This table shows the results for a few particular inputs.

Input Quantized Input Output Notes
1.6 1.5+0.0i 7+4i

 Uniform Encoder

2-1365

matlab:ex_uniform_encoder

Input Quantized Input Output Notes
-0.4 -0.5+0.0i 3+4i
-3.2 -2.0+0.0i 4i Saturation (real)
0.4-1.2i 0.0-1.5i 4+i
0.4-6.0i 0.0-2.0i 4 Saturation (imaginary)
-4.2+3.5i -2.0+2.0i 7i Saturation (real and

imaginary)

The output data type is automatically set to uint8, the most efficient format for this input range.

Parameters
Peak

The largest input amplitude to be encoded, V. Real or imaginary input values greater than (1-21-
B)V or less than -V saturate (independently for complex inputs) at those limits.

Bits
Specify the number of bits, B, needed to represent the integer output. The number of levels at
which the block quantizes the floating-point input is 2B.

Output type
The data type of the block's output, Unsigned integer or Signed integer. Unsigned outputs
are uint8, uint16, or uint32, while signed outputs are int8, int16, or int32.

References
General Aspects of Digital Transmission Systems: Vocabulary of Digital Transmission and
Multiplexing, and Pulse Code Modulation (PCM) Terms, International Telecommunication Union, ITU-
T Recommendation G.701, March, 1993

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • 8-, 16-, and 32-bit integers

See Also
Data Type Conversion Simulink
Quantizer Simulink
Scalar Quantizer Decoder DSP System Toolbox
Uniform Decoder DSP System Toolbox
udecode Signal Processing Toolbox
uencode Signal Processing Toolbox

2 Blocks

2-1366

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Uniform Encoder

2-1367

Unwrap
Unwrap signal phase
Library: DSP System Toolbox / Signal Operations

Description
The Unwrap block unwraps each channel of the input by adding or subtracting appropriate multiples
of 2π to each channel element. The block recognizes phase discontinuities larger than the value of the
Tolerance parameter. For more information on phase unwrapping, see “Definition of Phase Unwrap”
on page 2-1370.

Ports
Input

Port_1 — Signal input
scalar | vector | matrix

Signal input to unwrap, specified as a scalar, vector, or matrix. The input must have radian phase
entries.
Data Types: single | double

Output

Port_1 — Signal output
scalar | vector | matrix

Unwrapped signal output, returned as a scalar, vector, or matrix.

The block preserves the input size and dimension, and the output port rate equals the input port rate.
Data Types: single | double

Parameters
Tolerance (radians) — Jump size
pi (default) | scalar value

The jump size that the block recognizes as a true phase discontinuity. The default is set to π (rather
than a smaller value) to avoid altering legitimate signal features. To increase the block's sensitivity,
set the Tolerance to a value slightly less than π.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Input processing — Method to process the input
Columns as channels (frame based) (default) | Elements as channels (sample based)

Specify how the block should process the input. You can set this parameter to one of thse options:

2 Blocks

2-1368

• Columns as channels (frame based) (default) — When you select this option, the block
treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Do not unwrap phase discontinuities between successive frames — Checking
successive frames
off (default) | on

When you clear this check box, the block ignores boundaries between input frames and does not
reset the initial phase value to zero each time a new input is received. In this mode, the block
continuously unwraps the data in each column of the input.

This figure illustrates how the block unwraps data in this mode.

When you select this check box, the block treats each frame of input data independently and resets
the initial phase value for each new input frame.

This figure illustrates how the block unwraps data in this mode.

 Unwrap

2-1369

For more information, see “Frame-Based Processing” on page 2-1372.
Dependencies

To enable this parameter, set the Input processing parameter to Columns as channels (frame
based). In sample-based processing mode, the block does not reset the initial phase value to zero for
each new input. See “Sample-Based Processing” on page 2-1373 for more information.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Definition of Phase Unwrap

Phase unwrap or unwrap is a process often used to reconstruct a signal's original phase. Unwrap
algorithms add appropriate multiples of 2π to each phase input to restore original phase values, as
illustrated in the diagram. For more information on the unwrap algorithm used by this block, see
“Unwrap Method” on page 2-1371.

2 Blocks

2-1370

Algorithms that compute the phase of a signal often only output phases between –π and π. For
instance, such algorithms compute the phase of sin(2π + 3) to be 3, since sin(3) = sin(2π + 3), and
since the actual phase, 2π + 3, is not between –π and π. Such algorithms compute the phases of sin(–
4π + 3) and sin(16π + 3) to be 3 as well.

Unwrap Method

The Unwrap block unwraps each channel of its input matrix or input vector by adding 2πk to each
successive channel element, and updating k at each phase jump. A phase jump occurs when the
difference between two adjacent phase value entries exceeds the value of the Tolerance parameter.

This code shows how the block unwraps the data in a given input channel u.
k=0; % initialize k to 0
i=1; % initialize the counter to 1
alpha=pi; % set alpha to the desired Tolerance. In this case, pi

 Unwrap

2-1371

for i = 1:(size(u)-1)
 yout(i,:)=u(i)+(2*pi*k); % add 2*pi*k to ui
 if((abs(u(i+1)-u(i)))>(abs(alpha))) %if diff is greater than alpha, increment or decrement k

 if u(i+1)<u(i) % if the phase jump is negative, increment k
 k=k+1;
 else % if the phase jump is positive, decrement k
 k=k-1;
 end
 end
end
yout((i+1),:)=u(i+1)+(2*pi*k); % add 2*pi*k to the last element of the input

Frame-Based Processing

When you configure the block to perform frame-based processing, by setting the Input processing
parameter to Columns as channels (frame based), the block supports two different unwrap
modes. In both modes, the block adds 2πk to each input channel's elements, and updates k at each
phase discontinuity. The difference between the two modes is how often the block resets the initial
phase value (k) to zero. You can choose to unwrap data across frame boundaries (default), or to
unwrap only within input frames, by resetting the initial phase value each time a new input frame is
received.

Unwrapping Across Frame Boundaries

In the default mode, the block ignores boundaries between input frames, and continues to unwrap the
data in each channel without resetting the initial phase value to zero. To specify this mode, clear the
Do not unwrap phase discontinuities between successive frames check box. This figure
illustrates how the block unwraps data in this mode.

Unwrapping Within Frames

2 Blocks

2-1372

When you select the Do not unwrap phase discontinuities between successive frames check
box, the block treats each frame of input data independently. In this mode, the block resets the initial
phase value to zero each time a new input frame is received. This figure illustrates how the block
unwraps data in this mode.

Sample-Based Processing

When you configure the block to perform sample-based processing, by setting the Input processing
parameter to Elements as channels (sample based), the block treats each element of the
input as an individual channel. The block unwraps the data in each channel of the input, and does not
reset the initial phase to zero each time a new input is received. This figure illustrates how the block
unwraps data when performing sample-based processing.

 Unwrap

2-1373

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

See Also
Functions
unwrap

Introduced before R2006a

2 Blocks

2-1374

Upsample
Resample input at higher rate by inserting zeros

Library
Signal Operations

dspsigops

Description
The Upsample block resamples each channel of the Mi-by-N input at a rate L times higher than the
input sample rate by inserting L-1 zeros between consecutive samples. You specify the integer L in
the Upsample factor parameter. The Sample offset parameter, D, allows you to delay the output
samples by an integer number of sample periods. Doing so enables you to select any of the L possible
output phases. The value you specify for the Sample offset parameter must be in the range
0 ≤ D < L− 1 .

You can use this block inside of triggered subsystems when you set the Rate options parameter to
Enforce single-rate processing.

Frame-Based Processing

When you set the Input processing parameter to Columns as channels (frame based), the
block upsamples each column of the input over time. In this mode, the block can perform either
single-rate or multirate processing. You can use the Rate options parameter to specify how the block
upsamples the input:

• When you set the Rate options parameter to Enforce single-rate processing, the input
and output of the block have the same sample rate. In this mode, the block outputs a signal with a
proportionally larger frame size than the input. For upsampling by a factor of L, the output frame
size is L times larger than the input frame size (Mo = Mi*L), but the input and output frame rates
are equal.

For an example of single-rate upsampling, see the Single-Rate Processing example.
• When you set the Rate options parameter to Allow multirate processing, the block treats

an Mi-by-N matrix input as N independent channels. The block upsamples each column of the
input over time by keeping the frame size constant (Mi=Mo), and making the output frame period
(Tfo) L times shorter than the input frame period (Tfo = Tfi/L).

See the Multirate, Frame-Based Processing example to see the Upsample block in this mode.

Sample-Based Processing

When you set the Input processing parameter to Elements as channels (sample based), the
block treats an M-by-N matrix input as M*N independent channels, and upsamples each channel over

 Upsample

2-1375

time. In this mode, the block always performs multirate processing. The output sample rate is L times
higher than the input sample rate (Tso = Tsi/L), and the input and output sizes are identical.

Zero Latency

The Upsample block has zero-tasking latency for all single-rate operations. The block is in a single-
rate mode if you set the Upsample factor parameter to 1 or if you set the Input processing
parameter to Columns as channels (frame based) and the Rate options parameter to
Enforce single-rate processing.

The Upsample block also has zero-tasking latency for multirate operations if you run your model in
Simulink single-tasking mode.

Zero-tasking latency means that the block propagates the first input (received at t=0) immediately
following the D consecutive zeros specified by the Sample offset parameter. This output (D+1) is
followed in turn by the L-1 inserted zeros and the next input sample.

Nonzero Latency

The Upsample block has tasking latency for multirate, multitasking operation:

• In multirate, sample-based processing mode, the initial condition for each channel appears as
output sample D+1, and is followed by L-1 inserted zeros. The channel's first input appears as
output sample D+L+1. The Initial conditions parameter can be an Mi-by-N matrix containing
one value for each channel, or a scalar to be applied to all signal channels.

• In multirate, frame-based processing mode, the first row of the initial condition matrix appears as
output sample D+1, and is followed by L-1 inserted rows of zeros, the second row of the initial
condition matrix, and so on. The first row of the first input matrix appears in the output as sample
MiL+D+1. The Initial conditions parameter can be an Mi-by-N matrix, or a scalar to be repeated
across all elements of the input matrix.

Note For more information on latency and the Simulink tasking modes, see “Excess Algorithmic
Delay (Tasking Latency)” and “Time-Based Scheduling and Code Generation” (Simulink Coder).

Examples
Example 2.3. Example: Single-Rate Processing

In the ex_upsample_ref2 model, the Upsample block resamples a single-channel input with a frame
size of 16. The block upsamples the input by a factor of 4. Thus, the output of the block has a frame
size of 64. Because the block is in single-rate processing mode, the input and output frame rates are
identical.

2 Blocks

2-1376

matlab:ex_upsample_ref2

Example 2.4. Example: Multirate, Frame-Based Processing

In the ex_upsample_ref1 model, the Upsample block resamples a single-channel input with a frame
period of 1 second. The block upsamples the input by a factor of 4. Thus, the output of the block has a
frame period of 0.25 seconds. Because the block is in multirate processing mode, the input and
output frame sizes are identical.

Parameters
Upsample factor

The integer factor, L, by which to increase the input sample rate.
Sample offset

The sample offset, D, which must be an integer in the range [0,L-1].
Input processing

Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel. In this mode, the block can perform single-
rate or multirate processing.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel. In this mode, the block always performs
multirate processing.

 Upsample

2-1377

matlab:ex_upsample_ref1

Rate options
Specify the method by which the block upsamples the input. You can select one of the following
options:

• Enforce single-rate processing — When you select this option, the block maintains the
input sample rate by increasing the output frame size by a factor of L. To select this option,
you must set the Input processing parameter to Columns as channels (frame based).

• Allow multirate processing — When you select this option, the block resamples the
signal such that the output sample rate is L times faster than the input sample rate.

Initial conditions
The value with which the block is initialized for cases of nonzero latency, a scalar or matrix. This
value appears in the output as sample D+1. This parameter appears only when you configure the
block to perform multirate processing.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Downsample DSP System Toolbox
FIR Interpolation DSP System Toolbox
FIR Rate Conversion DSP System Toolbox
Repeat DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

2 Blocks

2-1378

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Best Practices

Consider whether your model can use the Repeat block instead of the Upsample block. The Repeat
block uses fewer hardware resources, so it is a best practice to use Upsample only when your
algorithm requires zero-padding upsampling.

See also “Multirate Model Requirements for HDL Code Generation” (HDL Coder).

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

Input processing set to Columns as channels (frame based) is not supported.

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

 Upsample

2-1379

Variable Bandwidth FIR Filter
Design tunable bandwidth FIR filter

Library
Filtering / Filter Designs

dspfdesign

Description
The Variable Bandwidth FIR Filter block filters each channel of the input signal over time using
specified FIR filter specifications. This block offers tunable filter design parameters, which enable you
to tune the filter characteristics while the simulation is running.

The block designs the FIR filter according to the filter parameters set in the block dialog box. The
output port properties, such as datatype, complexity, and dimension, are identical to the input port
properties.

Each column of the input signal is treated as a separate channel. If the input is a two-dimensional
signal, the first dimension represents the channel length (or frame size) and the second dimension
represents the number of channels. If the input is a one-dimensional signal, then it is interpreted as a
single channel.

This block supports variable-size input, enabling you to change the channel length during simulation.
To enable variable-size input, clear the Inherit sample rate from input check box. The number of
channels must remain constant.

This block also supports SIMD code generation. For details, see “Code Generation” on page 2-1386.

Algorithms
This block brings the capabilities of dsp.VariableBandwidthFIRFilter System object to the
Simulink environment.

The FIR filter is designed using the window method. For information on the algorithms used by the
Variable Bandwidth FIR Filter block, see the “Algorithms” on page 4-1435 section of
dsp.VariableBandwidthFIRFilter.

Examples
• “System Identification Using RLS Adaptive Filtering”

2 Blocks

2-1380

Parameters
FIR filter order

Order of the FIR filter, specified as a positive integer scalar. The default is 30. This parameter is
nontunable.

Filter type
Type of FIR filter. You can set this parameter to:

• Lowpass (default)
• Highpass
• Bandpass
• Bandstop

This parameter is nontunable.
Specify cutoff frequency from input port

When you select this check box, the cutoff frequency is input through the Fcut port. When you
clear this check box, the cutoff frequency is specified on the block dialog through the Filter
Cutoff frequency (Hz) parameter.

This parameter applies when you set Filter type to Lowpass or Highpass.
Filter Cutoff frequency (Hz)

Cutoff frequency of the FIR filter, specified as a real positive scalar that is less than half the
sample rate of the input signal. This parameter applies when you set Filter type to Lowpass or
Highpass, and clear the Specify cutoff frequency from input port parameter. The default is
1000. This parameter is tunable.

Specify center frequency from input port
When you select this check box, the center frequency is input through the Fc port. When you
clear this check box, the center frequency is specified on the block dialog through the Filter
center frequency (Hz) parameter.

This parameter applies when you set Filter type to Bandpass or Bandstop.
Filter center frequency (Hz)

Center frequency of the FIR filter, specified as a real positive scalar that is less than half the
sample rate of the input signal. This parameter applies when you set Filter type to Bandpass or
Bandstop, and clear the Specify center frequency from input port parameter. The default is
10000. This parameter is tunable.

Specify bandwidth from input port
When you select this check box, the filter bandwidth is input through the BW port. When you
clear this check box, the filter bandwidth is specified on the block dialog through the Filter
bandwidth (Hz) parameter.

This parameter applies when you set Filter type to Bandpass or Bandstop.
Filter bandwidth (Hz)

Bandwidth of the FIR filter, specified as a real positive scalar that is less than half the sample rate
of the input signal. This parameter applies when you set Filter type to Bandpass or Bandstop,
and clear the Specify bandwidth from input port parameter. The default is 2000. This
parameter is tunable.

 Variable Bandwidth FIR Filter

2-1381

Window function
Window function used to design the FIR filter. You can set this parameter to:

• Hann (default)
• Hamming
• Chebyshev
• Kaiser

This parameter is nontunable.
Chebyshev window sidelobe attenuation (dB)

Sidelobe attenuation of chebyshev window, specified as a real positive scalar. This parameter
applies when you set Window function to Chebyshev. The default is 60. This parameter is
nontunable.

Kaiser window parameter
Kaiser window parameter, specified as a real scalar. This parameter applies when you set
Window function to Kaiser. The default is 0.5. This parameter is nontunable.

Inherit sample rate from input
When you select this check box, the block’s sample rate is computed as N / Ts, where N is the
frame size of the input signal and Ts is the sample time of the input signal. When you clear this
check box, the block’s sample rate is the value specified in Input sample rate (Hz). By default,
this check box is selected.

Input sample rate (Hz)
Sample rate of the input signal, specified as a positive scalar. The default is 44100. This
parameter applies when you clear the Inherit sample rate from input check box. This
parameter is nontunable.

View Filter Response
Opens the dynamic filter visualizer and displays the magnitude response of the variable
bandwidth FIR filter. The response is based on the parameters you select in the Block Parameters
dialog box. To update the magnitude response while the dynamic filter visualizer is running,
modify the parameters in the dialog box and click Apply.

2 Blocks

2-1382

You can configure the plot settings and the signal measurements from the interface of the
visualizer.

On the Plot tab, the Configuration section allows you to modify the plot settings.

 Variable Bandwidth FIR Filter

2-1383

On the Measurements tab, you can measure the signal statistics, place data cursors, and display
the peak values of the selected signal.

2 Blocks

2-1384

For more details on the dynamic filter visualizer interface and its tools, see
dsp.DynamicFilterVisualizer.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

 Variable Bandwidth FIR Filter

2-1385

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

References

[1] Jarske, P., Y. Neuvo, and S. K. Mitra. "A Simple Approach to the Design of Linear Phase FIR Digital
Filters with Variable Characteristics." Signal Processing 14, no. 4 *(1988): 313-326.

See Also
Biquad Filter DSP System Toolbox
Variable Bandwidth IIR Filter DSP System Toolbox
dsp.VariableBandwidthFIRFilter DSP System Toolbox
dsp.VariableBandwidthIIRFilter DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Variable Bandwidth FIR Filter block supports SIMD code generation using Intel AVX2 technology
when the input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

Introduced in R2015a

2 Blocks

2-1386

Variable Bandwidth IIR Filter
Design tunable bandwidth IIR filter

Library
Filtering / Filter Designs

dspfdesign

Description
The Variable Bandwidth IIR Filter block filters each channel of the input signal over time using
specified IIR filter specifications. This block offers tunable filter design parameters, which enable you
to tune the filter characteristics while the simulation is running.

The block designs the IIR filter according to the filter parameters set in the block dialog box. The
output port properties, such as datatype, complexity, and dimension, are identical to the input port
properties.

Each column of the input signal is treated as a separate channel. If the input is a two-dimensional
signal, the first dimension represents the channel length (or frame size) and the second dimension
represents the number of channels. If the input is a one-dimensional signal, then it is interpreted as a
single channel.

This block supports variable-size input, enabling you to change the channel length during simulation.
To enable variable-size input, clear the Inherit sample rate from input check box. The number of
channels must remain constant.

Algorithms
This block brings the capabilities of dsp.VariableBandwidthIIRFilter System object to the
Simulink environment.

The IIR filter is designed using the elliptical method. The IIR filter is tuned using IIR spectral
transformations based on allpass filters. For more information on the algorithms used by the Variable
Bandwidth IIR Filter block, see the “Algorithms” on page 4-1443 section of
dsp.VariableBandwidthIIRFilter.

Examples
• “Tunable Lowpass Filtering of Noisy Input in Simulink”

 Variable Bandwidth IIR Filter

2-1387

Parameters
Filter type

Type of IIR filter. You can set this parameter to:

• Lowpass (default)
• Highpass
• Bandpass
• Bandstop

This parameter is nontunable.
IIR filter order

Order of the IIR filter, specified as a positive integer scalar. The default is 8. This parameter is
nontunable.

Specify passband frequency from input port
When you select this check box, the filter passband frequency is input through the Fp port. When
you clear this check box, the passband frequency is specified on the block dialog through the
Filter passband frequency (Hz) parameter.

This parameter applies when you set Filter type to Lowpass or Highpass.
Filter passband frequency (Hz)

Passband frequency of the IIR filter, specified as a real positive scalar that is less than half the
sample rate of the input signal. This parameter applies when you set Filter type to Lowpass or
Highpass, and clear the Specify passband frequency from input port parameter. The default
is 1000. This parameter is tunable.

Specify center frequency from input port
When you select this check box, the center frequency of the IIR filter is input through the Fc port.
When you clear this check box, the center frequency is specified on the block dialog through the
Filter center frequency (Hz) parameter.

This parameter applies when you set Filter type to Bandpass or Bandstop.
Filter center frequency (Hz)

Center frequency of the IIR filter, specified as a real positive scalar that is less than half the
sample rate of the input signal. This parameter applies when you set Filter type to Bandpass or
Bandstop, and clear the Specify center frequency from input port parameter. The default is
10000. This parameter is tunable.

Specify bandwidth from input port
When you select this check box, the bandwidth of the IIR filter is input through the BW port.
When you clear this check box, the filter bandwidth is specified on the block dialog through the
Filter bandwidth (Hz) parameter.

This parameter applies when you set Filter type to Bandpass or Bandstop.
Filter bandwidth (Hz)

Bandwidth of the IIR filter, specified as a real positive scalar that is less than half the sample rate
of the input signal. This parameter applies when you set Filter type to Bandpass or Bandstop,
and clear the Specify bandwidth from input port parameter. The default is 2000. This
parameter is tunable.

2 Blocks

2-1388

Filter passband ripple (dB)
Passband ripple of the IIR filter, specified as a real positive scalar. The default is 1. This
parameter is nontunable.

Filter Stopband attenuation (dB)
Stopband attenuation of the IIR filter, specified as a real positive scalar. The default is 60. This
parameter is nontunable.

Inherit sample rate from input
When you select this check box, the block’s sample rate is computed as N / Ts, where N is the
frame size of the input signal and Ts is the sample time of the input signal. When you clear this
check box, the block’s sample rate is the value specified in Input sample rate (Hz). By default,
this check box is selected.

Input sample rate (Hz)
Sample rate of the input signal, specified as a positive scalar. The default is 44100. This
parameter applies when you clear the Inherit sample rate from input check box. This
parameter is nontunable.

View Filter Response
Opens the dynamic filter visualizer and displays the magnitude response of the variable
bandwidth IIR filter. The response is based on the parameters you select in the Block Parameters
dialog box. To update the magnitude response while the dynamic filter visualizer is running,
modify the parameters in the dialog box and click Apply.

You can configure the plot settings and the signal measurements from the interface of the
visualizer.

 Variable Bandwidth IIR Filter

2-1389

On the Plot tab, the Configuration section allows you to modify the plot settings.

On the Measurements tab, you can measure the signal statistics, place data cursors, and display
the peak values of the selected signal.

2 Blocks

2-1390

For more details on the dynamic filter visualizer interface and its tools, see
dsp.DynamicFilterVisualizer.

Simulate using
Type of simulation to run. You can set this parameter to:

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation, Simulink
generates C code for the block. The C code is reused for subsequent simulations, as long as
the model does not change. This option requires additional startup time but provides faster
simulation speed than Interpreted execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time but has
slower simulation speed than Code generation.

 Variable Bandwidth IIR Filter

2-1391

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

References

[1] A. G. Constantinides. "Spectral Transformations for Digital Filters." Proceedings of the Institution
of Electrical Engineers 117, no. 8 (1970):1585-1590.

See Also
Biquad Filter DSP System Toolbox
Variable Bandwidth FIR Filter DSP System Toolbox
dsp.VariableBandwidthFIRFilter DSP System Toolbox
dsp.VariableBandwidthIIRFilter DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2015a

2 Blocks

2-1392

Variable Fractional Delay
Delay input by time-varying fractional number of sample periods
Library: DSP System Toolbox / Signal Operations

Description
The Variable Fractional Delay block delays the input signal by a specified number of fractional
samples along each channel of the input. The block can also concurrently compute multiple delayed
versions (taps) of the same signal. For an example, see “Delay Signal Using Multitap Fractional
Delay”.

When the delay has a fractional value, the block interpolates the input signal to obtain new samples
at noninteger sampling intervals. You can set Interpolation mode parameter to one of Linear, FIR,
or Farrow. The block supports time-varying delay values. That is, the delay value can vary within a
frame from sample to sample.

The block assumes that the input values at the Delay port are between Dmin and Dmax, where Dmin
appears in the Valid delay range section on the Main tab of the block dialog, and Dmax is the
value of the Maximum delay (Dmax) in samples parameter. The block clips delay values less than
Dmin to Dmin and delay values greater than Dmax to Dmax.

You must consider additional factors when selecting valid Delay values for the FIR and Farrow
interpolation modes. For details, see “Algorithms” on page 2-1406.

Ports
Input

In — Data input
vector | matrix

Specify the data input as a vector or matrix. The data input must have the same data type as the
delay input.

This block supports variable-size input signal. That is, you can change the number of input rows
during the simulation. However, the number of channels must remain constant.
Example: [1 2 3 4;5 1 4 2;2 6 2 3;1 2 3 2;3 4 5 6;1 2 3 1]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Delay — Delay input
scalar | vector | matrix | N-D array

Specify the delay input as a scalar, vector, matrix, or N-D array. The delay can be an integer or a
fractional value. The block interpolates the signal to obtain new samples at noninteger sampling
intervals. The delay input must have the same data type as the data input.

 Variable Fractional Delay

2-1393

This block supports variable-size delay signal. That is, you can change one or both of the dimensions
of the delay signal during simulation. However, the block must make sure that the resulting number
of output channels remains constant throughout the simulation.

When the Input processing parameter is set to Columns as channels (frame based), the
table below shows the effect of the dimension of the delay input on the data input. For an example,
see “Delay Signal Using Multitap Fractional Delay”.

Data Input Delay Input Output Effect of Delay Input
on Data Input

N (unoriented, one
channel)

scalar Unoriented (N) One delay value applied
to the input channel

N (unoriented, one
channel)

Unoriented (N) Unoriented (N) Delay value varies
within the frame from
sample to sample

N (unoriented, one
channel)

1-by-P N-by-P P taps. Each column in
the output is a delayed
version of the input. The
delay value is specified
by the corresponding
element in the delay
input vector.

N (unoriented, one
channel)

N-by-P N-by-P P taps. In addition,
delay varies within each
frame from sample to
sample.

N-by-1 (one channel
with frame size equal to
N)

scalar N-by-1 One delay value applied
to the input channel

N-by-1 (one channel
with frame size equal to
N)

Unoriented (N) N-by-1 Delay value varies
within the frame from
sample to sample

N-by-1 (one channel
with frame size equal to
N)

N-by-1 N-by-1 Delay value varies
within the frame from
sample to sample

N-by-1 (one channel
with frame size equal to
N)

1-by-P N-by-P P taps. Each column in
the output is a delayed
version of the input. The
delay value is specified
by the corresponding
element in the delay
input vector.

N-by-1 (one channel
with frame size equal to
N)

N-by-P N-by-P P taps. In addition,
delay varies within each
frame from sample to
sample.

N-by-L (L channels with
frame size equal to N)

scalar N-by-L One delay value applied
to all input channels

2 Blocks

2-1394

Data Input Delay Input Output Effect of Delay Input
on Data Input

N-by-L (L channels with
frame size equal to N)

1-by-L N-by-L Unique delay value for
each input channel

N-by-L (L channels with
frame size equal to N)

N-by-1 N-by-L Delay value varies
within the frame from
sample to sample. Same
set of delay values for
all channels.

N-by-L (L channels with
frame size equal to N)

N-by-L N-by-L Delay value varies
within the frame from
sample to sample.
Different delay values
for each input channel.

N-by-L (L channels with
frame size equal to N)

1-by-1-by-P N-by-L-by-P L channels. P taps per
channel. Same delay for
all channels.

N-by-L (L channels with
frame size equal to N)

1-by-L-by-P N-by-L-by-P L channels. P taps per
channel. Taps vary
across channels.

N-by-L (L channels with
frame size equal to N)

N-by-1-by-P N-by-L-by-P L channels. P taps per
channel. Delay varies
within the frame from
sample to sample. Same
set of delay values for
each channel.

N-by-L (L channels with
frame size equal to N)

N-by-L-by-P N-by-L-by-P L channels. P taps per
channel. Delay varies
within the frame from
sample to sample.
Different set of delay
values for each channel.

When the Input processing parameter is set to Elements as channels (sample based), the
table below shows the effect of the dimension of the delay input on the data input.

Data Input Delay Input Output Effect of Delay Input
on Data Input

N (unoriented, one
channel)

scalar Unoriented (N) One delay value applied
to the input channel

N (unoriented, one
channel)

Unoriented (N) Unoriented (N) Delay value varies
within the frame from
sample to sample

N-by-1 (one channel
with frame size equal to
N)

scalar N-by-1 One delay value applied
to the input channel

 Variable Fractional Delay

2-1395

Data Input Delay Input Output Effect of Delay Input
on Data Input

N-by-1 (one channel
with frame size equal to
N)

Unoriented (N) N-by-1 Delay value varies
within the frame from
sample to sample

N-by-1 (one channel
with frame size equal to
N)

N-by-1 N-by-1 Delay value varies
within the frame from
sample to sample

N-by-L (L channels with
N samples in each
channel)

scalar N-by-L One delay value applied
to all input channels

N-by-L (L channels with
N samples in each
channel)

1-by-L N-by-L Unique delay value for
each input channel

N-by-L (L channels with
N samples in each
channel)

N-by-1 N-by-L Delay value varies
within the frame from
sample to sample. Same
set of delay values for
all channels.

N-by-L (L channels with
N samples in each
channel)

N-by-L N-by-L Delay value varies
within the frame from
sample to sample.
Different delay values
for each input channel.

Example: [2 3 4 5]
Example: [2.5]
Example: [5.6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Output

Port_1 — Delayed output
vector | matrix

Delayed output, returned as a vector or matrix. The data type and complexity of the output match the
data type and complexity of the data input.

When the Input processing parameter is set to Columns as channels (frame based), the
table below shows the effect of the dimension of the delay input on the data input.

Data Input Delay Input Output Effect of Delay Input
on Data Input

N (unoriented, one
channel)

scalar Unoriented (N) One delay value applied
to the input channel

2 Blocks

2-1396

Data Input Delay Input Output Effect of Delay Input
on Data Input

N (unoriented, one
channel)

Unoriented (N) Unoriented (N) Delay value varies
within the frame from
sample to sample

N (unoriented, one
channel)

1-by-P N-by-P P taps. Each column in
the output is a delayed
version of the input. The
delay value is specified
by the corresponding
element in the delay
input vector.

N (unoriented, one
channel)

N-by-P N-by-P P taps. In addition,
delay varies within each
frame from sample to
sample.

N-by-1 (one channel
with frame size equal to
N)

scalar N-by-1 One delay value applied
to the input channel

N-by-1 (one channel
with frame size equal to
N)

Unoriented (N) N-by-1 Delay value varies
within the frame from
sample to sample

N-by-1 (one channel
with frame size equal to
N)

N-by-1 N-by-1 Delay value varies
within the frame from
sample to sample

N-by-1 (one channel
with frame size equal to
N)

1-by-P N-by-P P taps. Each column in
the output is a delayed
version of the input. The
delay value is specified
by the corresponding
element in the delay
input vector.

N-by-1 (one channel
with frame size equal to
N)

N-by-P N-by-P P taps. In addition,
delay varies within each
frame from sample to
sample.

N-by-L (L channels with
frame size equal to N)

scalar N-by-L One delay value applied
to all input channels

N-by-L (L channels with
frame size equal to N)

1-by-L N-by-L Unique delay value for
each input channel

N-by-L (L channels with
frame size equal to N)

N-by-1 N-by-L Delay value varies
within the frame from
sample to sample. Same
set of delay values for
all channels.

 Variable Fractional Delay

2-1397

Data Input Delay Input Output Effect of Delay Input
on Data Input

N-by-L (L channels with
frame size equal to N)

N-by-L N-by-L Delay value varies
within the frame from
sample to sample.
Different delay values
for each input channel.

N-by-L (L channels with
frame size equal to N)

1-by-1-by-P N-by-L-by-P L channels. P taps per
channel. Same delay for
all channels.

N-by-L (L channels with
frame size equal to N)

1-by-L-by-P N-by-L-by-P L channels. P taps per
channel. Taps vary
across channels.

N-by-L (L channels with
frame size equal to N)

N-by-1-by-P N-by-L-by-P L channels. P taps per
channel. Delay varies
within the frame from
sample to sample. Same
set of delay values for
each channel.

N-by-L (L channels with
frame size equal to N)

N-by-L-by-P N-by-L-by-P L channels. P taps per
channel. Delay varies
within the frame from
sample to sample.
Different set of delay
values for each channel.

When the Input processing parameter is set to Elements as channels (sample based), the
table below shows the effect of the dimension of the delay input on the data input.

Data Input Delay Input Output Effect of Delay Input
on Data Input

N (unoriented, one
channel)

scalar Unoriented (N) One delay value applied
to the input channel

N (unoriented, one
channel)

Unoriented (N) Unoriented (N) Delay value varies
within the frame from
sample to sample

N-by-1 (one channel
with frame size equal to
N)

scalar N-by-1 One delay value applied
to the input channel

N-by-1 (one channel
with frame size equal to
N)

Unoriented (N) N-by-1 Delay value varies
within the frame from
sample to sample

N-by-1 (one channel
with frame size equal to
N)

N-by-1 N-by-1 Delay value varies
within the frame from
sample to sample

2 Blocks

2-1398

Data Input Delay Input Output Effect of Delay Input
on Data Input

N-by-L (L channels with
N samples in each
channel)

scalar N-by-L One delay value applied
to all input channels

N-by-L (L channels with
N samples in each
channel)

1-by-L N-by-L Unique delay value for
each input channel

N-by-L (L channels with
N samples in each
channel)

N-by-1 N-by-L Delay value varies
within the frame from
sample to sample. Same
set of delay values for
all channels.

N-by-L (L channels with
N samples in each
channel)

N-by-L N-by-L Delay value varies
within the frame from
sample to sample.
Different delay values
for each input channel.

Example: [0 0 0 0;0 0 0 0;1 0 0 0;5 2 0 0;2 1 3 0;1 6 4 4]
Example: [0 0 0 0;0 0 0 0;0.5 1.0 1.5 2.0;3 1.5 3.5 3.0;3.5 3.5 3.0 2.5;1.5 4.0 2.5 2.5]
Example: [0 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0;0.4 0.8 1.2 1.6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Interpolation mode — Method of interpolation
Linear (default) | FIR | Farrow

Specify the method of interpolation. Using this method, the block interpolates the signal to obtain
new samples at noninteger sampling intervals.

• Linear –– Linear interpolation. In this mode, the block stores the Dmax+1 most recent samples
the In port receives for each channel. Dmax is the value you specify in the Maximum delay
(Dmax) in samples parameter.

• FIR –– Polyphase FIR interpolation. In this mode, the block stores the Dmax+P+1 most recent
samples the In port receives for each channel. P is the value you specify in the Interpolation
filter half-length (P) parameter.

• Farrow –– LaGrange method. In this mode, the block stores the Dmax+
N
2 +1 most recent samples

the In port receives for each channel. N is the value you specify in the Farrow filter length (N)
parameter.

For more details on these methods, see “Algorithms” on page 2-1406.

Interpolation filter half-length (P) — Half length of interpolation filter
4 (default) | positive integer in the range [1 65535]

 Variable Fractional Delay

2-1399

Half-length of the FIR interpolation filter. For periodic signals, a larger value of this property, which
indicates a higher order filter, yields a better estimate of the delayed output sample. A property value
of 4 to 6, which corresponds to a 7th-order to 11th-order filter, is usually adequate.
Example: 6
Example: 10

Dependencies

This parameter applies only when you set Interpolation mode to FIR.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Interpolation points per input sample — Number of interpolation points per input
sample
10 (default) | positive integer in the range [2, 65,535]

Number of interpolation points per input sample at which a unique FIR interpolation filter is
computed.
Example: 20
Example: 5

Dependencies

This parameter applies only when you set Interpolation mode to FIR.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Normalized input bandwidth (0 to 1) — Normalized input bandwidth
1 (default) | real scalar in the range (0, 1]

Normalized input bandwidth at which to constrain the interpolated output samples. A value of 1
equals the Nyquist frequency, or half the sampling frequency, Fs. Use this property to take advantage
of the bandlimited frequency content of the input. For example, if the input signal does not have
frequency content above Fs/4, you can specify a value of 0.5.
Example: 0.5
Example: 0.8

Dependencies

This parameter applies only when you set Interpolation mode to FIR.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Farrow filter length (N) — Length of Farrow filter
4 (default) | integer greater than or equal to 2

Length of the FIR filter implemented using the Farrow structure. If the length equals 2, the filter
performs linear interpolation.
Example: 4
Example: 10

2 Blocks

2-1400

Dependencies

This parameter applies only when you set Interpolation mode to Farrow.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Maximum delay (Dmax) in samples — Maximum delay
100 (default) | integer in the range [0 65535]

Maximum delay the block can produce, Dmax. Input delay values exceeding this maximum are clipped
to Dmax.
Example: 200
Example: 500
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Input processing — Method to process the input
Columns as channels (frame based) (default) | Elements as channels (sample based)

Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) (default) — When you select this option, the block
treats each column of the input as a separate channel. The block treats each of the R input
columns as independent channels containing Mi sequential time samples.

The input to the Delay port, v, contains floating-point values that specify the number of sample
intervals to delay the current input.

The input to the Delay port can be a scalar value to uniformly delay every sample in every
channel. It can also be a length-M column vector, containing one delay for each sample in the
input frame. The block applies the set of delays contained in the vector identically to every
channel of a multichannel input. The Delay port entry can also be a length-R row vector,
containing one delay for each channel. Finally, the Delay port entry can be an M-by-R matrix,
containing a different delay for each corresponding element of the input.

For example, if v is the Mi-by-1 matrix [v(1) v(2) ... v(Mi)]', the earliest sample in the
current frame is delayed by v(1) fractional sample intervals, the following sample in the frame is
delayed by v(2) fractional sample intervals, and so on. The block applies the set of fractional
delays contained in v identically to every channel of a multichannel input.

• Elements as channels (sample based) –– When you select this option, the block treats
each element of the input as a separate channel. The block treats each element of the N-D input
array, u, as an independent channel. The input to the Delay port, v, must either be an N-D array of
the same size and dimension as the input u, or be a scalar value, such that Dmin ≤ v ≤ Dmax.

For example, consider an M-by-R input matrix. The block treats each of the M*R matrix elements
as independent channels. The input to the Delay port can be an M-by-R matrix of floating-point
values in the range Dmin ≤ v ≤ Dmax that specifies the number of sample intervals to delay each
channel of the input, or it can be a scalar floating-point value, Dmin ≤ v ≤ Dmax, by which to equally
delay all channels.

In sample-based processing mode, the block treats an unoriented vector input as an M-by-1
matrix. In this mode, the output is also an unoriented vector.

 Variable Fractional Delay

2-1401

InitialConditions — Initial values in the memory
0 (default) | scalar | 1-by-R-by-D array | 1-by-R-by-(D+L) array

Specify the values with in the block's memory at the start of the simulation. The dimensions of this
parameter can vary depending on whether you want fixed or time-varying initial conditions. The block
treats each of the R input columns as a frame containing M sequential time samples from an
independent channel.

For an M-by-R input matrix, u, you can set this parameter as follows:

• To specify fixed initial conditions, set this parameter to a scalar value. The block initializes every
sample of every channel in memory using the value you specify.

• The dimensions you specify for time-varying initial conditions depend on the interpolation method.
To specify different time-varying initial conditions for each channel, set this parameter as follows:

• If you set the Interpolation mode to Linear, set the Initial conditions to an array of size 1-
by-R-by-D, where D is the value in Maximum delay (Dmax) in samples parameter.

• If you set the Interpolation mode to FIR or Farrow, set the Initial conditions to an array of
size 1-by-R-by-(D+L), where D is the value of the maximum delay. For FIR interpolation, L is
the value of the interpolation filter half length. For Farrow interpolation, L equals floor of half
the value of the farrow filter length (floor(farrow filter length/2)).

Example: 1
Example: randn(1,3,104)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Disable direct feedthrough by increasing minimum possible delay by one —
Disable direct feedthrough
off (default) | on

Select this box to disable direct feedthrough by increasing the minimum possible delay value. When
you set the Input processing parameter to Columns as channels (frame based), the block
increases the minimum possible delay value by frame size – 1. Similarly, when you set the Input
processing parameter to Elements as channels (sample based), the block increases the
minimum possible delay value by one sample.

Checking this box allows you to use the Variable Fractional Delay block in feedback loops.

For small input delay values — Action to take for small input delay values
Clip to the minimum value necessary for centered kernel (default) | Use off-
centered kernel | Switch to linear interpolation if kernel cannot be centered

Specify the block's behavior when the input delay values are too small to center the kernel.

You can specify how the block handles input delay values that are too small for the kernel to be
centered using one of the following choices:

• In both FIR and Farrow interpolation modes, you can select Clip to the minimum value
necessary for centered kernel. This option forces the block to increase Dmin to the smallest
value necessary to keep the kernel centered.

• In FIR interpolation mode, you can select Switch to linear interpolation if kernel
cannot be centered. This option forces the block to preserve the value of Dmin and compute all
interpolated values using Linear interpolation.

2 Blocks

2-1402

• In Farrow interpolation mode, you can select Use off-centered kernel. This option forces
the block to preserve the value of Dmin and compute the interpolated values using a farrow filter
with an off-centered kernel.

Dependencies

This parameter applies only when Interpolation mode is set to FIR or Farrow.

Valid delay range (in samples) — Range of valid delay values
[0 100] (default) | [Dmin Dmax]

This property is read-only.

The delay range values [Dmin Dmax] are calculated (in samples) by the block based on the current
parameter settings. Dmin is the smallest possible valid delay value (in samples). The block clips all
input delay values less than Dmin to Dmin. Dmax is the maximum valid delay value (in samples). The
block clips all input delay values greater than Dmax to Dmax.

When the Interpolation mode is set to one of the following:

• Linear –– Dmin equal 0. Dmax equals the value you specify in the Maximum delay (Dmax) in
samples parameter.

• FIR –– Dmin equals P – 1, where P is the value you specify in Interpolation filter half-length (P).
Dmax equals the value you specify in the Maximum delay (Dmax) in samples parameter.

• Farrow –– Dmin equals N/2 – 1, where N is the value you specify in Farrow filter length (N). Dmax
equals the value you specify in the Maximum delay (Dmax) in samples parameter.

Example: [1 100]
Example: [2 100]
Example: [3 100]

Fixed-Point Properties

Fixed-Point Properties

Rounding mode — Rounding method for fixed-point operations
Zero (default) | Ceiling | Convergent | Floor | Nearest | Round | Simplest

Specify the rounding mode for fixed-point operations as one of the following:

• Zero
• Ceiling
• Convergent
• Floor
• Nearest
• Round
• Simplest

For more details, see rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

 Variable Fractional Delay

2-1403

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Coefficients — Data type of the coefficients
Same word length as input (default) | Specify word length

Specify the data type of the filter coefficients as one of the following:

• Same word length as input –– The word length of the filter coefficients matches that of the
input to the block. The fraction length of the coefficients is automatically set to the binary-point
only scaling that provides you with the best precision possible given the value and word length of
the coefficients.

• Specify word length –– Specify the word length of the coefficients, in bits. In this mode, the
fraction length of the coefficients is automatically set to the binary-point only scaling that provides
you with the best precision possible given the value and word length of the coefficients.

For more information on the coefficients data type this block uses, see the “Fixed Point” on page 2-
1408 section.

Product output — Data type of the product output
Same as first input (default) | Binary point scaling

Specify the data type of the product output as one of the following:

• Same as first input –– The block specifies the product output data type to be the same as
that of the data input.

• Binary point scaling –– Specify the word length and the fraction length of the product
output, in bits.

For more information on the product output data type, see “Multiplication Data Types” and the “Fixed
Point” on page 2-1408 section.

Accumulator — Data type of accumulation operation
Same as product output (default) | Same as first input | Binary point scaling

Specify the data type of an accumulation operation as one of the following:

• Same as product output –– The block specifies the accumulator data type to be the same as
that of the product output data type.

• Same as first input –– The block specifies the accumulator data type to be the same as that
of the data input.

• Binary point scaling –– Specify the word length and the fraction length of the accumulator
output, in bits.

For more information on the accumulator data type this block uses, see the “Fixed Point” on page 2-
1408.

Product output polyval — Data type of the product polynomial value
Same as first input (default) | Binary point scaling

Specify the data type of the product polynomial value as one of the following:

2 Blocks

2-1404

• Same as first input –– The block specifies the product polynomial value data type to be the
same as that of the data input.

• Binary point scaling –– Specify the word length and the fraction length of the product output
polynomial, in bits.

For more information on the product polynomial value data type this block uses, see the “Fixed Point”
on page 2-1408 section.

Dependencies

This property applies when you set Interpolation mode to Farrow.

Accumulator polyval — Data type of the accumulator polynomial value
Same as first input (default) | Binary point scaling

Specify the data type of the accumulator polynomial value as one of the following:

• Same as first input –– The block specifies the accumulator polynomial value data type to be
the same as that of the data input.

• Binary point scaling –– Specify the word length and the fraction length of the accumulator
polynomial value, in bits.

For more information on the accumulator polynomial value data type that this block uses, see the
“Fixed Point” on page 2-1408 section.

Dependencies

This property applies when you set Interpolation mode to Farrow.

Multiplicand polyval — Data type of multiplicand polynomial value
Same as first input (default) | Binary point scaling

Specify the data type of the multiplicand polynomial value as one of the following:

• Same as first input –– The block specifies the multiplicand polynomial value data type to be
the same as that of the data input.

• Binary point scaling –– Specify the word length and the fraction length of the multiplicand
polynomial value, in bits.

For more information on the multiplicand polynomial value data type this block uses, see the “Fixed
Point” on page 2-1408 section.

Dependencies

This property applies when you set Interpolation mode to Farrow.

Output — Data type of block output
Same as accumulator (default) | Same as first input | Binary point scaling

Specify the data type of the block output as one of the following:

• Same as accumulator –– The block specifies the output data type to be the same as that of the
accumulator output data type.

• Same as first input –– The block specifies the output data type to be the same as that of the
data input.

 Variable Fractional Delay

2-1405

• Binary point scaling –– Specify the word length and the fraction length of the block output,
in bits.

For more information on the output data type this block uses, see the “Fixed Point” on page 2-1408
section.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The delay value specified at the Delay port serves as an index into the block's memory, U, which
stores, at a minimum, the Dmax+1 most recent samples received at the In port for each channel. For
example, an integer delay of 5 on a scalar input sequence retrieves and outputs the fifth most recent
input sample from the block's memory, U(6). The block computes fractional delays by interpolating
between stored samples. The block uses a linear, FIR, or farrow interpolation method to interpolate
signal values at noninteger sample intervals.

Linear Interpolation Mode

For noninteger delays, at each sample time, the linear interpolation method uses the two samples in
memory nearest to the specified delay to compute a value for the sample at that time.

For a vector data input, the output vector, y, is computed using the following relation:

vi = floor(v)
vf = v-vi
y(i) = U(i-vi-1)*vf + U(i-vi)*(1-vf)

where,

• i –– Index of the current sample
• v –– Fractional delay
• vi –– Integer part of the delay
• vf –– Fractional part of the delay
• U –– Input data vector

2 Blocks

2-1406

• y –– Output data vector
• U(i-vi), U(i-vi-1) –– Two samples in memory nearest to the specified delay
• i-vi –– Distance, in samples, between the current index and the nearest point in the interpolation

line.

The variable fractional delay stores the Dmax+1 most recent samples received at the input for each
channel, where Dmax is the maximum delay specified. U represents the stored samples.

FIR Interpolation Mode

In the FIR interpolation mode, the block stores the Dmax+P+1 most recent samples received at the
input for each channel, where P is the specified interpolation filter half-length.

In this mode, the block provides a discrete set of fractional delays:

v + i
L , v ≥ P − 1, i = 0, 1, ..., L− 1

If v is less than P – 1, the behavior depends on the For small input delay values parameter. You can
specify the block's behavior when the input delay value is too small to center the kernel (less than
P-1), by setting the For small input delay values parameter:

• Clip to the minimum value necessary for centered kernel –– The FIR interpolation
method remains in use. The small input delay values are clipped to the smallest value necessary to
center the kernel.

• Switch to linear interpolation if kernel cannot be centered –– Fractional delays
are computed using linear interpolation when the input delay value is less than P-1.

In the FIR interpolation mode, the algorithm implements a polyphase structure to compute a value for
each sample at the specified delay. Each arm of the structure corresponds to a different delay value.
The output computed for each sample corresponds to the output of the arm with a delay value
nearest to the specified input delay. Therefore, only a discrete set of delays is actually possible. The
number of coefficients in each of the L filter arms of the polyphase structure is 2P. In most cases,
using values of P between 4 and 6 provides you with reasonably accurate interpolation values.

The designMultirateFIR function designs the FIR interpolation filter.

For example, when you set the following values:

• Interpolation filter half-length (P) to 4
• Interpolation points per input sample to 10
• Normalized input bandwidth to 1
• Stopband attenuation to 80 dB

The filter coefficients are given by:

b = designMultirateFIR(10,1,4,80);

The algorithm then implements this filter as a polyphase structure.

Increasing the filter half length (P) increases the accuracy of the interpolation, but also increases the
number of computations performed per input sample. The amount of memory needed to store the
filter coefficients increases too. Increasing the interpolation points per sample (L) increases the

 Variable Fractional Delay

2-1407

number of representable discrete delay points, but also increases the simulation's memory
requirements. The computational load per sample is not affected.

The normalized input bandwidth from 0 to 1 allows you to take advantage of the bandlimited
frequency content of the input. For example, if you know that the input signal does not have
frequency content above Fs/4, you can specify 0.5 normalized bandwidth to constrain the frequency
content of the output to that range.

Note You can consider each of the L interpolation filters to correspond to one output phase of an
upsample-by-L FIR filter. Therefore, the normalized input value improves the stopband in critical
regions and relaxes the stopband requirements in frequency regions without signal energy.

Farrow Interpolation Mode

In the farrow interpolation mode, the block stores the Dmax+N/2+1 most recent samples received at
the input for each channel, where N is the specified farrow filter length.

The algorithm uses the LaGrange method to interpolate values.

To increase the minimum possible delay value, select the Disable direct feedthrough by
increasing minimum possible delay by one check box. Checking this box prevents algebraic loops
from occurring when you use the block inside a feedback loop.

To specify the behavior when the input delay value is too small to center the kernel (less than N2 – 1),
use the Farrow small delay action setting.

• Clip to the minimum value necessary for centered kernel –– The block clips small
input delay values to the smallest value necessary to keep the kernel centered. This increases Dmin
but yields more accurate interpolation values.

• Use off-centered kernel –– The fractional delays are computed using a Farrow filter with an
off-centered kernel. This mode does not increase Dmin, but the results for input delay values less
than N2 – 1 are less accurate than the results achieved by keeping the kernel centered.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The diagrams in the following sections show the data types used within the Variable Fractional Delay
for fixed-point signals.

Although you can specify most of these data types, the following data types are computed internally
by the block and cannot be directly specified on the block dialog box.

2 Blocks

2-1408

Data Type Word Length Fraction Length
vf data type Same word length as the

coefficients
Same as the word length

HoldInteger data type Same word length as the input
delay value

0 bits

Integer data type 32 bits 0 bits

Note When the input is fixed point, all internal data types are signed fixed point.

To compute the integer (vi) and fractional (vf) parts of the input delay value (v), the Variable
Fractional Delay block uses the following equations:

Dmin < v < Dmax
vi= floor(v)
vf = v− vi

v ≤ Dmin
vi = Dmin
vf = 0

 v ≥ Dmax
vi= Dmax
vf = 0

Linear Interpolation Mode

The following diagram shows the fixed-point data types used by the Linear interpolation mode of the
Variable Fractional Delay block.

FIR Interpolation Mode

The following diagram illustrates how the Variable Fractional Delay block selects the arm of the
polyphase filter structure that most closely matches the fractional delay value (vf).

The following diagram shows the fixed-point data types used by the variable fractional delay
algorithm in the FIR interpolation mode.

 Variable Fractional Delay

2-1409

You can set the coefficient, product output, accumulator, and output data types in the block. This
diagram shows that input data is stored in the input buffer with the same data type and scaling as the
input. The block stores filtered data and any initial conditions in the output buffer using the output
data type and scaling that you set.

When at least one of the inputs to the multiplier is real, the output of the multiplier is in the product
output data type. When both inputs to the multiplier are complex, the result of the multiplication is in
the accumulator data type. For details on the complex multiplication, see “Multiplication Data Types”.

Farrow Interpolation Mode

The following diagram shows the fixed-point data types used by the Farrow interpolation mode when:

• Farrow filter length is set to 4
• Farrow small delay action is set to Clip to the minimum value necessary for centered

kernel

2 Blocks

2-1410

The following diagram shows the fixed-point data types used by the Farrow interpolation mode when:

• Farrow filter length is set to 4.
• Farrow small delay action is set to Use off-centered kernel.

 Variable Fractional Delay

2-1411

Diff is computed from the integer part of the delay value (vi) and the farrow filter length (N)
according to the following equation:

Dif f = vi−
N − 1

2
Dif f ≥ 0 Dif f = 0
Dif f < 0 Dif f = − Dif f

The following diagram shows the fixed-point data types used by the Digital Filter's FIR direct form
filter.

2 Blocks

2-1412

See Also
Objects
dsp.VariableFractionalDelay

Blocks
Delay | Unit Delay | Variable Integer Delay

Topics
“Fractional Delay Filters Using Farrow Structures”

Introduced before R2006a

 Variable Fractional Delay

2-1413

Variable Integer Delay (Obsolete)
Delay input by time-varying integer number of sample periods

Library
dspobslib

Description

Note The Variable Integer Delay block has been replaced with the Simulink Variable Integer Delay
block. Existing instances of the DSP block will continue to operate, but certain functionality will be
disabled in future releases. See “Functionality being removed or replaced for blocks and System
objects”.

The Variable Integer Delay block delays the discrete-time input at the In port by the integer number
of sample intervals specified by the input to the Delay port. The sample rate of the input signal at the
Delay port must be the same as the sample rate of the input signal at the In port. When these sample
rates are not the same, you need to insert a Zero-Order Hold or Rate Transition block in order to
make the sample rates identical. When you set the Input processing parameter to Elements as
channels (sample based), the delay for an N-D input can be a scalar value to uniformly delay
every sample in every channel, or a matrix containing one delay value for each channel of the input.
When you set the Input processing parameter to Columns as channels (frame based), the
delay can be a scalar value to uniformly delay every sample in every channel, a vector containing one
delay value for each sample in the input frame, or a vector containing one delay value for each
channel in the input frame.

The delay values should be in the range of 0 to D, where D is the Maximum delay. Delay values
greater than D or less than 0 are clipped to those respective values and noninteger delays are
rounded to the nearest integer value.

The Variable Integer Delay block differs from the Delay block in the following ways.

Variable Integer Delay Block Delay Block
The delay is provided as an input to the Delay
port.

You specify the delay as a parameter setting in the
dialog box.

Delay can vary with time; for example, when
the block performs frame-based processing,
the nth element's delay in the first input frame
can differ from the nth element's delay in the
second input frame.

Delay cannot vary with time; for example, when the
block performs frame-based processing, the nth
element's delay is the same for every input frame.

2 Blocks

2-1414

Variable Integer Delay Block Delay Block
When you use the Variable Integer Delay block
in a feedback loop, you must check the
Disable direct feedthrough by increasing
minimum possible delay by one check box.
This prevents the occurrence of an algebraic
loop when the delay of the Variable Integer
Delay block is driven to zero.

You can use the Delay block to break an algebraic
loop.

Sample-Based Processing

When you set the Input processing parameter to Elements as channels (sample based), the
Variable Integer Delay block supports N-D input arrays. When the input is an M-by-N-by-P array, the
block treats each of the M*N*P elements as independent channels, and applies the delay at the Delay
port to each channel.

The Variable Integer Delay block stores the D+1 most recent samples received at the In port for each
channel. At each sample time the block outputs the stored sample(s) indexed by the input to the
Delay port.

For example, when the input to the In port, u, is a scalar signal, the block stores a vector, U, of the D
+1 most recent signal samples. When the current input sample is U(1), the previous input sample is
U(2), and so on, then the block's output is

y = U(v+1); % Equivalent MATLAB code

where v is the input to the Delay port. A delay value of 0 (v=0) causes the block to pass through the
sample at the In port in the same simulation step that it is received. The block's memory is initialized
to the Initial conditions value at the start of the simulation (see below).

The next figure shows the block output for a scalar ramp sequence at the In port, a Maximum delay
of 5, an Initial conditions of 0, and a variety of different delays at the Delay port.

The current input at each time step is immediately stored in memory as U(1). This allows the current
input to be available at the output for a delay of 0 (v=0).

 Variable Integer Delay (Obsolete)

2-1415

The Initial conditions parameter specifies the values in the block's memory at the start of the
simulation. Unlike the Delay block, the Variable Integer Delay block does not have a fixed initial delay
period during which the initial conditions appear at the output. Instead, the initial conditions are
propagated to the output only when they are indexed in memory by the value at the Delay port. Both
fixed and time-varying initial conditions can be specified in a variety of ways to suit the dimensions of
the input sequence.

Fixed Initial Conditions

The settings in this section specify fixed initial conditions. For a fixed initial condition, the block
initializes each of D samples in memory to the value entered in the Initial conditions parameter. A
fixed initial condition in sample-based mode can be specified in one of the following ways:

• Scalar value with which to initialize every sample of every channel in memory. For a general M-by-
N input and the parameter settings in this figure,

the block initializes 100 M-by-N matrices in memory with zeros.
• Array of size M-by-N-by-D. In this case, you can specify different fixed initial conditions for each

channel. See the Array bullet in “Time-Varying Initial Conditions” on page 2-1416 below for
details.

Time-Varying Initial Conditions

The following settings specify time-varying initial conditions. For a time-varying initial condition, the
block initializes each of D samples in memory to one of the values entered in the Initial conditions
parameter. This allows you to specify a unique output value for each sample in memory. A time-
varying initial condition in sample-based mode can be specified in one of the following ways:

• Vector containing D elements with which to initialize memory samples U(2:D+1), where D is the
Maximum delay. For a scalar input and the parameters in the next figure, the block initializes
U(2:6) with values [-1, -1, -1, 0, 1].

• Array of dimension M-by-N-by-D with which to initialize memory samples U(2:D+1), where D is
the Maximum delay and M and N are the number of rows and columns, respectively, in the input
matrix. For a 2-by-3 input and the following parameters, the block initializes memory locations
U(2:5) with values

U(2) =
1 1 1
1 1 1

, U(3) =
2 2 2
2 2 2

, U(4) =
3 3 3
3 3 3

, U(5) =
4 4 4
4 4 4

2 Blocks

2-1416

An M-by-N-by-P-by-D array can be entered for the Initial Conditions parameter when the input is
an M-by-N-by-P array. The (M,N,P,T)th sample of the Initial Conditions matrix provides the
initial condition value for the (M,N,P)th channel of the input matrix at delay = D–t+1 samples.

Frame-Based Processing

When you set the Input processing parameter to Columns as channels (frame based), the
input can be an M-by-N matrix. The block treats each of the N input columns as independent
channels containing M sequential time samples.

In this mode, the input at the Delay port can be a scalar value to uniformly delay every sample in
every channel. It can also be a length-M column vector containing one delay value for each sample in
the input frame(s). The set of delays contained in the vector is applied identically to every channel of
a multichannel input. The Delay port entry can also be a length-N row vector, containing one delay for
each channel. Finally, the Delay port entry can be an M-by-N matrix, containing a different delay for
each corresponding element of the input.

Vector v does not specify when the samples in the current input frame will appear in the output.
Rather, v indicates which previous input samples (stored in memory) should be included in the
current output frame. The first sample in the current output frame is the input sample v(1) intervals
earlier in the sequence, the second sample in the current output frame is the input sample v(2)
intervals earlier in the sequence, and so on.

The illustration below shows how this works for an input with a sample period of 1 and frame size of
4. The Maximum delay (Dmax) is 5, and the Initial conditions parameter is set to -1. The delay
input changes from [1 3 0 5] to [2 0 0 2] after the second input frame. The samples in each
output frame are the values in memory indexed by the elements of v:

y(1) = U(v(1)+1)
y(2) = U(v(2)+1)
y(3) = U(v(3)+1)
y(4) = U(v(4)+1)

 Variable Integer Delay (Obsolete)

2-1417

The Initial conditions parameter specifies the values in the block's memory at the start of the
simulation. Both fixed and time-varying initial conditions can be specified.

Fixed Initial Conditions

The settings shown in this section specify fixed initial conditions. For a fixed initial condition, the
block initializes each of D samples in memory to the value entered in the Initial conditions
parameter. A fixed initial condition in frame-based mode can be one of the following:

• Scalar value with which to initialize every sample of every channel in memory. For a general M-by-
N input with the parameter settings below, the block initializes five samples in memory with zeros.

• Array of size 1-by-N-by-D. In this case, you can specify different fixed initial conditions for each
channel. See the Array bullet in “Time-Varying Initial Conditions” on page 2-1418 below for
details.

Time-Varying Initial Conditions

The following setting specifies a time-varying initial condition. For a time-varying initial condition, the
block initializes each of D samples in memory to one of the values entered in the Initial conditions
parameter. This allows you to specify a unique output value for each sample in memory. When the
block is performing frame-based processing, you can specify a time-varying initial condition in the
following ways:

• Vector containing D elements. In this case, all channels have the same set of time-varying initial
conditions specified by the entries of the vector. For the ramp input [1:100; 1:100]' with a

2 Blocks

2-1418

frame size of 4, delay of 5, and the following parameter settings, the block outputs the following
sequence of frames at the start of the simulation:

−1 −1
−2 −2
−3 −3
−4 −4

,

−5 −5
1 1
2 2
3 3

,

4 4
5 5
6 6
7 7

, …

• Array of size 1-by-N-by-D. In this case, you can specify different time-varying initial conditions for
each channel. For the ramp input [1:100; 1:100]' with a frame size of 4, delay of 5, and the
following parameter settings, the block outputs the following sequence of frames at the start of
the simulation:

−1 −11
−2 −22
−3 −33
−4 −44

,

−5 −55
1 1
2 2
3 3

,

4 4
5 5
6 6
7 7

, …

By specifying a 1-by-N-by-D initial condition array such that each 1-by-N vector entry is identical,
you can implement different fixed initial conditions for each channel.

Examples
See “Basic Algorithmic Delay” in the DSP System Toolbox User's Guide.

Parameters
Maximum delay

The maximum delay that the block can produce for any sample. Delay input values exceeding this
maximum are clipped at the maximum.

Initial conditions
The values with which the block's memory is initialized.

Input processing
Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

 Variable Integer Delay (Obsolete)

2-1419

Note The Inherited (this choice will be removed - see release notes) option
will be removed in a future release. See “Frame-Based Processing” in the DSP System Toolbox
Release Notes for more information.

Disable direct feedthrough by increasing minimum possible delay by one
Select this box to disable direct feedthrough by adding one to the minimum possible delay value.
When you set the Input processing parameter to Columns as channels (frame based),
the block increases the minimum possible delay value by frame size – 1. Similarly, when you
set the Input processing parameter to Elements as channels (sample based), the block
increases the minimum possible delay value by one sample.

Checking this box allows you to use the Variable Integer Delay block in feedback loops.

Supported Data Types
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Delay • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Delay DSP System Toolbox
Variable Fractional Delay DSP System Toolbox

Introduced in R2014b

2 Blocks

2-1420

Variable Selector
Select subset of rows or columns from input
Library: DSP System Toolbox / Signal Management / Indexing

DSP System Toolbox HDL Support / Signal Management

Description
The Variable Selector block extracts a subset of rows or columns from the M-by-N input matrix u at
each input port. You specify the number of input and output ports in the Number of input signals
parameter.

When an element of the indexing vector references a nonexistent row or column of the input, the
block implements the action that you specify by using the Invalid index parameter.

When the indexing vector elements are of the Boolean data type, the block performs logical indexing.
Select Fill empty spaces in outputs (for logical indexing) to access the Fill values parameter.
These values are appended to the output to make it as long as the input elements.

Note The Variable Selector block always copies the selected input rows or columns to a contiguous
block of memory (unlike the Simulink Selector block).

Ports
Input

InN — Nth input signal
scalar | vector | matrix

Nth input signal, where N is the number of inputs specified in the “Number of input signals” on page
2-0 parameter.

When the input is an unoriented vector, the “Select” on page 2-0 parameter is ignored and the
output is an unoriented vector of length L containing those elements specified by the length-L
indexing vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Idx — Index vector
scalar | vector

Specify a scalar value or vector containing the indices of the input rows or columns that appear in the
output matrix.

 Variable Selector

2-1421

Dependencies

This port appears only when you set the “Selector mode” on page 2-0 to Variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Output

OutN — Nth Output signal
scalar | vector | matrix

Nth output signal, corresponding to the Nth input signal, where N is the number of inputs specified in
the “Number of input signals” on page 2-0 parameter. The output is returned as a scalar, vector,
or matrix as the same type, size, and complexity as the corresponding input.

For variable and fixed indexing modes, the row selection operation is equivalent to

y = u(idx,:) % Equivalent MATLAB code

and the column selection operation is equivalent to

y = u(:,idx) % Equivalent MATLAB code

where idx is the length-L indexing vector. The row selection output size is L-by-N and the column
selection output size is M-by-L. Input rows or columns can appear any number of times in the output,
or not at all.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | enumerated

Parameters
Number of input signals — Number of inputs
1 (default) | positive integer

Specify the number of input signals as a positive integer. An input port is created on the block for
each input signal.

Select — Select dimension
Rows (default) | Columns

Specify the dimension of the input to select, Rows or Columns.

When Select is set to:

• Rows –– The block extracts rows from each input matrix.
• Columns –– The block extracts columns from each input matrix.

When the input is an unoriented vector, the Select parameter is ignored. The output is an unoriented
vector of length L containing those elements specified by the length-L indexing vector.

Selector mode — Indexing mode
Variable (default) | Fixed

Specify the type of indexing operation to perform, Variable or Fixed.

2 Blocks

2-1422

When Selector mode is set to:

• Variable –– The length-L vector input to the “Idx” on page 2-0 port selects L rows or columns
of each input to pass through to the output. You can update the elements of the indexing vector at
each sample time, but the vector length must remain the same throughout the simulation.

• Fixed –– The Idx port is disabled. The length-L vector that you specified in the “Elements” on
page 2-0 parameter selects L rows or columns of each input to pass through to the output. The
Elements parameter is tunable, so you can change the values of the indexing vector elements at
any time during the simulation but the vector length must remain the same.

Elements — Selected elements
[1 3] (default) | scalar | vector

Specify a vector containing the indices of the input rows or columns that appear in the output matrix.

Tunable: Yes

Dependencies

This parameter appears only when you set the “Selector mode” on page 2-0 to Fixed.

Index mode — Index mode
Zero-based (default) | One-based

When set to One-based, an index value of 1 refers to the first row or column of the input. When set
to Zero-based, an index value of 0 refers to the first row or column of the input.

Invalid index — Error handling
Clip Index (default) | Clip and Warn | Generate Error

Specify how the block handles an invalid index value. You can select one of these options:

• Clip index — Clip the index to the nearest valid value and do not issue an alert.

For example, if the block receives a 64-by-4 input and the “Select” on page 2-0 parameter is
set to:

• Rows –– The block clips an index of 72 to 64.
• Columns –– The block clips an index of 72 to 4.

In both cases, the block clips an index of -2 to 1.
• Clip and warn — Clip the index to the nearest valid value and display a warning message at the

MATLAB command line.
• Generate error — Display an error dialog box and terminate the simulation.

Tunable: Yes

Fill empty spaces in outputs (for logical indexing) — Fill in empty spaces in
outputs
on (default) | off

When the indexing vector elements are of a Boolean data type, the block performs logical indexing.
Logical indexing can cause empty spaces in the output. Select this parameter to designate values to
be appended to the output in the “Fill values” on page 2-0 parameter.

 Variable Selector

2-1423

Fill values — Fill values
0 (default) | scalar value | integer

Specify the fill values when the block performs logical indexing.

Dependencies

This parameter appears only when you select the “Fill empty spaces in outputs (for logical indexing)”
on page 2-0 parameter.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

2 Blocks

2-1424

Complex Data Support

This block supports code generation for complex signals.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Multiport Selector | Permute Matrix | Selector | Submatrix

Introduced before R2006a

 Variable Selector

2-1425

Variance
Variance of input or sequence of inputs
Library: DSP System Toolbox / Statistics

Description
The Variance block computes the unbiased variance of each row or column of the input, or along
vectors of a specified dimension of the input. It can also compute the variance of the entire input. You
can specify the dimension using the Find the variance value over parameter. The Variance block
can also track the variance in a sequence of inputs over a period of time. To track the variance in a
sequence of inputs, select the Running variance parameter.

Note The Running mode in the Variance block will be removed in a future release. To compute the
running variance in Simulink, use the Moving Variance block instead.

Ports
Input

In — Data input
vector | matrix | N-D array

The block accepts real-valued or complex-valued multichannel and multidimensional inputs.

This port is unnamed until you select the Running variance parameter and set the Reset port
parameter to any option other than None.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Rst — Reset port
scalar

Specify the event that causes the block to reset the running variance. The sample time of the Rst
input must be a positive integer multiple of the input sample time.

Dependencies

To enable this port, select the Running variance parameter and set the Reset port parameter to
any option other than None.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Port_1 — Variance along the specified dimension
scalar | vector | matrix | N-D array

2 Blocks

2-1426

When you do not select the Running variance parameter, the block computes the variance in each
row or column of the input, or along vectors of a specified dimension of the input. It can also compute
the variance of the entire input at each individual sample time. Each element in the output array y is
the variance of the corresponding column, row, or entire input. The output array y depends on the
setting of the Find the variance value over parameter.

Consider a three-dimensional input signal of size M-by-N-by-P. When you set Find the variance
value over to:

• Entire input — The output at each sample time is a scalar that contains the variance of the M-
by-N-by-P input matrix.

• Each row — The output at each sample time consists of an M-by-1-by-P array, where each
element contains the variance of each vector over the second dimension of the input. For an M-by-
N matrix input, the output at each sample time is an M-by-1 column vector.

• Each column — The output at each sample time consists of a 1-by-N-by-P array, where each
element contains the variance of each vector over the first dimension of the input. For an M-by-N
matrix input, the output at each sample time is a 1-by-N row vector.

In this mode, the block treats length-M unoriented vector inputs as M-by-1 column vectors.
• Specified dimension — The output at each sample time depends on the value of the

Dimension parameter. If you set the Dimension to 1, the output is the same as when you select
Each column. If you set the Dimension to 2, the output is the same as when you select Each
row. If you set the Dimension to 3, the output at each sample time is an M-by-N matrix
containing the variance of each vector over the third dimension of the input.

When you select Running variance, the block tracks the variance of each channel in a time
sequence of inputs. In this mode, you must also specify a value for the Input processing parameter.
When you set Input processing to:

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each element yijk of the output contains the variance of the element uijk for all
inputs since the last reset.

When a reset event occurs, the running variance yijk in the current frame is reset to the element
uijk.

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support input signals with more than two dimensions. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the variance of the elements in the jth column of all inputs since the last
reset, up to and including the element uij of the current input.

When a reset event occurs, the running variance for each channel becomes the variance of all the
samples in the current input frame, up to and including the current input sample.

The data type of the output matches the data type of the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

 Variance

2-1427

Parameters
Main Tab

Running variance — Option to select running variance
off (default) | on

When you select the Running variance parameter, the block tracks the variance value of each
channel in a time sequence of inputs.

Find the variance value over — Dimension over which variance is computed
Each column (default) | Entire input | Each row | Specified dimension

• Each column — The block outputs the variance over each column.
• Each row — The block outputs the variance over each row.
• Entire input — The block outputs the variance over the entire input.
• Specified dimension — The block outputs the variance over the dimension specified in the

Dimension parameter.

Dependencies

To enable this parameter, clear the Running variance parameter.

Dimension — Custom dimension
1 (default) | scalar

Specify the dimension (one-based value) of the input signal over which the variance is computed. The
value of this parameter must be greater than 0 and less than or equal to the number of dimensions in
the input signal.

Dependencies

To enable this parameter, set Find the variance value over to Specified dimension.

Input processing — Method to process the input in running mode
Columns as channels (frame based) (default) | Elements as channels (sample based)

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel. This option does not support input signals with more than two dimensions. For a
two-dimensional input signal of size M-by-N, the block outputs an M-by-N matrix. Each element yij
of the output contains the variance of the elements in the jth column of all inputs since the last
reset, up to and including the element uij of the current input.

When a reset event occurs, the running variance for each channel becomes the variance of all the
samples in the current input frame, up to and including the current input sample.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel. For a three-dimensional input signal of size M-by-N-by-P, the block outputs an
M-by-N-by-P array. Each element yijk of the output contains the variance of the element uijk for all
inputs since the last reset.

When a reset event occurs, the running variance yijk in the current frame is reset to the element
uijk.

Variable-Size Inputs

2 Blocks

2-1428

When your inputs are of variable size, and you select the Running variance parameter, then:

• If you set the Input processing parameter to Elements as channels (sample based),
the state is reset.

• If you set the Input processing parameter to Columns as channels (frame based),
then:

• When the input size difference is in the number of channels (number of columns), the state
is reset.

• When the input size difference is in the length of channels (number of rows), the state is not
reset, and the running operation is carried out as usual.

Dependencies

To enable this parameter, select the Running variance parameter.

Reset port — Reset event
None (default) | Rising edge | Falling edge | Either edge | Non-zero sample

The block resets the running variance whenever a reset event is detected at the optional Rst port.
The reset sample time must be a positive integer multiple of the input sample time.

When a reset event occurs while the Input processing parameter is set to Elements as channels
(sample based), the running variance for each channel is initialized to the value in the
corresponding channel of the current input. Similarly, when the Input processing parameter is set
to Columns as channels (frame based), the running variance for each channel becomes the
variance of all the samples in the current input frame, up to and including the current input sample.

Use this parameter to specify the reset event.

• None — Disables the Rst port.
• Rising edge — Triggers a reset operation when the Rst input does one of the following:

• Rises from a negative value to either a positive value or zero.
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero.

• Falling edge — Triggers a reset operation when the Rst input does one of the following:

• Falls from a positive value to a negative value or zero.
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero.

 Variance

2-1429

• Either edge — Triggers a reset operation when the Rst input is a Rising edge or Falling
edge.

• Non-zero sample — Triggers a reset operation at each sample time, when the Rst input is not
zero.

Note When running simulations in the Simulink multitasking mode, reset signals have a one-sample
latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port
rate before the block applies the reset. For more information on latency and the Simulink tasking
modes, see “Excess Algorithmic Delay (Tasking Latency)” and “Time-Based Scheduling and Code
Generation” (Simulink Coder).

Dependencies

To enable this parameter, select the Running variance parameter.

Data Types Tab

Note To use these parameters, the data input must be fixed point. For all other inputs, the
parameters on the Data Types tab are ignored.

Rounding mode — Method of rounding operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more details, see rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

When you select this parameter, the block saturates the result of its fixed-point operation. When you
clear this parameter, the block wraps the result of its fixed-point operation. For details on saturate
and wrap, see overflow mode for fixed-point operations.

Input-squared product output — Data type of the input-squared term
Same as input (default) | Binary point scaling

The squares of the input elements are stored in the Input-squared product output data type. If the
input is complex, the squares of the real and imaginary parts of the input are stored in this data type.
For more details, see “Fixed Point” on page 2-1433.

2 Blocks

2-1430

You can set this parameter to:

• Inherit: Same as input — The data type is same as the input data type.
• Binary point scaling — The Input-squared product output data type uses binary point

scaling. If you select this option, the block displays the fields to specify the Word length and
Fraction length. The Signedness is inherited from the input.

Input-sum-squared product — Data type of the input-sum-squared term
Same as input-squared product (default) | Binary point scaling

The squares of the sum of the input elements are stored in the Input-sum-squared product data
type. If the input is complex, the squares of the sum of the real parts and the squares of the sum of
the imaginary parts are stored in this data type. For more details, see “Fixed Point” on page 2-1433.

You can set this parameter to:

• Same as input-squared product — The data type is the same as the input squared-product
data type.

• Binary point scaling — The Input-sum-squared product data type uses binary point
scaling. If you select this option, the block displays the fields to specify the Word length and
Fraction length. The Signedness is inherited from the input.

Accumulator — Accumulator data type
Same as input-squared product (default) | Same as input | Binary point scaling

Accumulator specifies the data type of the output of an accumulation operation in the Variance
block. See “Fixed Point” on page 2-1433 for illustrations depicting the use of the accumulator data
type in this block.

You can set this parameter to:

• Same as input-squared product — The accumulator data type is the same as the input-
squared product data type.

• Same as input — The accumulator data type is the same as the input data type.
• Binary point scaling — The Accumulator data type uses binary point scaling. If you select

this option, the block displays the fields to specify the Word length and Fraction length. The
Signedness is inherited from the input.

Output — Output data type
Same as input-squared product (default) | Same as accumulator | Same as input |
Binary point scaling

Output specifies the data type of the output of the Variance block. See “Fixed Point” on page 2-1433
for information about the use of the output data type in this block. You can set it to:

• Same as input-squared product — The output data type is the same as the input-squared
product data type.

• Same as accumulator — The output data type is the same as the accumulator data type.
• Same as input — The output data type is the same as the input data type.
• Binary point scaling — The Output data type uses binary point scaling. If you select this

option, the block displays the fields to specify the Word length and Fraction length. The
Signedness is inherited from the input.

 Variance

2-1431

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
the block.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
Variance

The variance of a discrete-time signal is the square of the standard deviation of the signal. Variance
gives a measure of deviation of the signal from its mean value.

For purely real or imaginary input, u, of size M-by-N, the variance is given by:

y = σ2 =
∑

i = 1

M
∑

j = 1

N
ui j

2−
∑

i = 1

M
∑

j = 1

N
ui j

2

M * N
M * N − 1 .

where,

• uij is the input data element at indices i, j.
• M is the length of the jth column.
• N is the number of columns.

For complex inputs, the variance is given by the following equation:

σ2 = σRe2 + σIm2

where,

• σRe
2 is the variance of the real part of the complex input.

• σIm
2 is the variance of the imaginary part of the complex input.

2 Blocks

2-1432

Algorithms
Variance

When you clear the Running variance parameter in the block and specify a dimension, the block
produces results identical to the MATLAB var function when it is called as y = var(u,0,D), where,

• u is the data input.
• D is the dimension.
• y is the variance along the specified dimension.

When this block calculates the variance along the entire input, the result is identical to calling the
var function as y = var(u(:)).

For a complex input signal, the variance is the sum of the variances of the real and imaginary parts.

σ2 = σRe2 + σIm2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

For purely real or imaginary input u of size M-by-N, the variance is given by:

y = σ2 =
∑

i = 1

M
∑

j = 1

N
ui j

2−
∑

i = 1

M
∑

j = 1

N
ui j

2

M * N
M * N − 1 .

The following diagram shows the data types used within the Variance block when the input is fixed-
point.

 Variance

2-1433

For complex inputs, the variance is given by the following equation:

σ2 = σRe2 + σIm2

See Also
Functions
var

Objects
dsp.MovingVariance

Blocks
Moving Variance

Introduced before R2006a

2 Blocks

2-1434

Vector Quantizer Decoder
Find vector quantizer codeword that corresponds to given, zero-based index value

Library
Quantizers

dspquant2

Description
The Vector Quantizer Decoder block associates each input index value with a codeword, a column
vector of quantized output values defined in the Codebook values parameter. When you input
multiple index values into this block, the block outputs a matrix of quantized output vectors. This
matrix is created by horizontally concatenating the codeword vectors that correspond to each index
value.

You can select how you want to enter the codebook values using the Source of codebook parameter.
When you select Specify via dialog, you can type the codebook values into the block parameters
dialog box. Select Input port and port C appears on the block. The block uses the input to port C
as the Codebook values parameter.

The Codebook values parameter is a k-by-N matrix of values, where k ≥ 1 and N ≥ 1. Each column
of this matrix is a codeword vector, and each codeword vector corresponds to an index value. The
index values are zero based; therefore, the first codeword vector corresponds to an index value of 0,
the second codeword vector corresponds to an index value of 1, and so on.

The input to this block is a vector of index values, where 0 ≤ index < N and N is the number of
columns of the codebook matrix. Use the Action for out of range index value parameter to
determine how the block behaves when an input index value is out of this range. When you want any
index values less than 0 to be set to 0 and any index values greater than or equal to N to be set to
N-1, select Clip. When you want to be warned when any index values less than 0 are set to 0 and any
index values greater than or equal to N are set to N-1, select Clip and warn. When you want the
simulation to stop and display an error when the index values are out of range, select Error.

Data Type Support

The input to the block can be the index values and the codebook values. The data type of the index
input to the block at port I can be uint8, uint16, uint32, int8, int16, or int32. The data type of
the codebook values can be double, single, or Fixed-point.

The output of the block is the quantized output values. These quantized output values always have
the same data type as the codebook values. When the codebook values are specified via an input port,

 Vector Quantizer Decoder

2-1435

the block assigns the same data type to the Q(U) output port. When the codebook values are specified
via the dialog, use the Codebook and output data type parameter to specify the data type of the
Q(U) output port. The data type of the codebook and quantized output can be Same as input,
double, single, Fixed-point, User-defined, or Inherit via back propagation.

Dialog Box
The Main pane of the Vector Quantizer Decoder block dialog appears as follows.

Action for out of range index value
Choose the behavior of the block when an input index value is out of range, where 0 ≤ index < N
and N is the length of the codebook vector. Select Clip when you want any index values less than
0 to be set to 0 and any index values greater than or equal to N to be set to N-1. Select Clip and
warn when you want to be warned when any index values less than 0 are set to 0 and any index
values greater than or equal to N are set to N-1. Select Error when you want the simulation to
stop and display an error when the index values are out of range.

Source of codebook
Choose Specify via dialog to type the codebook values into the block parameters dialog box.
Select Input port to specify the codebook values using the block's input port, C.

Codebook values
Enter a k-by-N matrix of quantized output values, where 1 ≤ k and 1 ≤ N . Each column of your
matrix corresponds to an index value. This parameter is visible if, from the Source of codebook
list, you select Specify via dialog.

The Data Types pane of the Vector Quantizer Decoder block dialog appears as follows.

2 Blocks

2-1436

Codebook and output data type
Specify the data type of the codebook and quantized output values. You can select one of the
following:

• A rule that inherits a data type, for example, Inherit: Same as input.
• A built in data type, such as double
• An expression that evaluates to a valid data type, for example, fixdt(1,16)

Click the Show data type assistant button to display the Data Type Assistant, which
helps you set the Output data type parameter.

See “Control Data Types of Signals” (Simulink) in Simulink User's Guide (Simulink) for more
information.

This parameter is available only when you set the Source of codebook parameter to Specify
via dialog. If you set the Source of codebook parameter to Input port, the output values
have the same data type as the input codebook values.

References
Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic
Publishers, 1992.

Supported Data Types
Port Supported Data Types
I • 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

 Vector Quantizer Decoder

2-1437

Port Supported Data Types
C • Double-precision floating point

• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers

Q(U) • Double-precision floating point
• Single-precision floating point
• Fixed point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

See Also
Quantizer Simulink
Scalar Quantizer Decoder DSP System Toolbox
Uniform Encoder DSP System Toolbox
Uniform Decoder DSP System Toolbox
Vector Quantizer Encoder DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced before R2006a

2 Blocks

2-1438

Vector Quantizer Design
(Removed) Design vector quantizer using Vector Quantizer Design Tool (VQDTool)

Note The Vector Quantizer Design block has been removed.

Library
Quantizers

dspquant2

Description
Double-click on the Vector Quantizer Design block to start VQDTool, a GUI that allows you to design
and implement a vector quantizer. You can also start VQDTool by typing vqdtool at the MATLAB
command prompt. Based on your specifications, VQDTool iteratively calculates the codebook values
that minimize the mean squared error between the training set and the codebook until the stopping
criteria for the design process is satisfied. The block uses the resulting codebook values to implement
your vector quantizer.

For the Training Set parameter, enter a k-by-M matrix of values you want to use to train the
quantizer codebook. The variable k, where k ≥ 1, is the length of each training vector. It also
represents the dimension of your quantizer. The variable M, where M ≥ 2, is the number of training
vectors. This data can be created using a MATLAB function, such as the default value
randn(10,1000), or it can be any variable defined in the MATLAB workspace.

You have two choices for the Source of initial codebook parameter. Select Auto-generate to have
the block choose the values of the initial codebook. In this case, the block picks N random training
vectors as the initial codebook, where N is the Number of levels parameter and N ≥ 2. When you
select User defined, enter the initial codebook values in the Initial codebook field. The initial
codebook matrix must have the same number of rows as the training set. Each column of the
codebook is a codeword, and your codebook must have at least two codewords.

For the given training set and initial codebook, the block performs an iterative process, using the
Generalized Lloyd Algorithm (GLA), to design a final codebook. For each iteration of the GLA, the
block first associates each training vector with its nearest codeword by calculating the distortion. You
can specify one of the two possible methods for calculating distortion using the Distortion measure
parameter.

When you select Squared error for the Distortion measure parameter, the block finds the nearest
codeword by calculating the squared error (unweighted). Consider the codebook
CB = CW1 CW2 ... CWN . This codebook has N codewords; each codeword has k elements. The i-th
codeword is defined as CWi = a1i a2i ... aki . The training set has M columns and is defined as
U = U1 U2 ... UM , where the p-th training vector is Up = u1p u2p ... ukp ′. The squared error
(unweighted) is calculated using the equation

D = ∑
j = 1

k
a ji− u jp

2

 Vector Quantizer Design

2-1439

When you select Weighted squared error for the Distortion measure parameter, enter a vector
or matrix for the Weighting factor parameter. When the weighting factor is a vector, its length must
be equal to the number of rows in the training set. This weighting factor is used for each training
vector. When the weighting factor is a matrix, it must be the same size as the training set matrix. The
block finds the nearest codeword by calculating the weighted squared error. If the weighting factor
for the p-th column of the training vector, Up, is defined as Wp = w1p w2p ... wkp ′, then the weighted
squared error is defined by the equation

D = ∑
j = 1

k
w jp a ji− u jp

2

Once the block has associated all the training vectors with their nearest codeword vectors, the block
calculates the mean squared error for the codebook and checks to see if the stopping criteria for the
process has been satisfied.

The two possible options for the Stopping criteria parameter are Relative threshold and
Maximum iteration. When you want the design process to stop when the fractional drop in the
squared error is below a certain value, select Relative threshold. Then, type the maximum
acceptable fractional drop in the Relative threshold field. The fraction drop in the squared error is
defined as

error at previous iteration − error at current iteration
error at previous iteration

When you want the design process to stop after a certain number of iterations, choose Maximum
iteration. Then, enter the maximum number of iterations you want the block to perform in the
Maximum iteration field. For Stopping criteria, you can also choose Whichever comes first
and enter Relative threshold and Maximum iteration values. The block stops iterating as soon as
one of these conditions is satisfied.

When a training vector has the same distortion for two different codeword vectors, the algorithm uses
the Tie-breaking rule parameter to determine which codeword vector the training vector is
associated with. When you want the training vector to be associated with the lower indexed
codeword, select Lower indexed codeword. To associate the training vector with the higher
indexed codeword, select Higher indexed codeword.

With each iteration, the block updates the codeword values in order to minimize the distortion. The
Codebook update method parameter defines the way the block calculates these new codebook
values.

Note If, for the Distortion measure parameter, you choose Squared error, the Codebook
update method parameter is set to Mean.

If, for the Distortion measure parameter, you choose Weighted squared error and you choose
Mean for the Codebook update method parameter, the new codeword vector is found as follows.
Suppose there are three training vectors associated with one codeword vector. The training vectors
are

TS1 =
1
2

, TS3 =
10
12

, and TS7 =
11
12

.

2 Blocks

2-1440

The new codeword vector is calculated as CWnew =

1 + 10 + 11
3

2 + 12 + 12
3

where the denominator is the number of training vectors associated with this codeword. If, for the
Codebook update method parameter, you choose Centroid and you specify the weighting factors

W1 =
0.1
0.2

, W3 =
1

0.6
, and W7 =

0.3
0.4

, the new codeword vector is calculated as

CWnew =

0.1 1 + 1 10 + 0.3 11
0.1 + 1 + 0.3

0.2 2 + 0.6 12 + 0.4 12
0.2 + 0.6 + 0.4

Click Design and Plot to design the quantizer with the parameter values specified on the left side of
the GUI. The performance curve and the entropy of the quantizer are updated and displayed in the
figures on the right side of the GUI.

Note You must click Design and Plot to apply any changes you make to the parameter values in the
VQDTool dialog box.

The following is an example of how the block calculates the entropy of the quantizer at each iteration.
Suppose you have a codebook with four codewords and a training set with 200 training vectors. Also
suppose that, at the i-th iteration, 40 training vectors are associated with the first codeword, 60
training vectors are associated with the second codeword, 20 training vectors are associated with the
third codeword, and 80 training vectors are associated with the fourth codeword. The probability that
a training vector is associated with the first codeword is 40

200 . The probabilities that training vectors

are associated with the second, third, and fourth codewords are 60
200 , 20

200 , and 80
200 , respectively. The

GUI uses these probabilities to calculate the entropy according to the equation

H = ∑
i = 1

N
−pilog2pi

where N is the number of codewords. Based on these probabilities, the GUI calculates the entropy of
the quantizer at the i-th iteration as

H = − 40
200log2

40
200 + 60

200log2
60
200 + 20

200log2
20

200 + 80
200log2

80
200

H = 1.8464

VQDTool can export parameter values that correspond to the figures displayed in the GUI. Click the
Export Outputs button, or press Ctrl+E, to export the Final Codebook, Mean Square Error, and
Entropy values to the workspace, a text file, or a MAT-file.

In the Model section of the GUI, specify the destination of the block that will contain the parameters
of your quantizer. For Destination, select Current model to create a block with your parameters in
the model you most recently selected. Type gcs in the MATLAB Command Window to display the
name of your current model. Select New model to create a block in a new model file.

 Vector Quantizer Design

2-1441

From the Block type list, select Encoder to design a Vector Quantizer Encoder block. Select
Decoder to design a Vector Quantizer Decoder block. Select Both to design a Vector Quantizer
Encoder block and a Vector Quantizer Decoder block.

In the Encoder block name field, enter a name for the Vector Quantizer Encoder block. In the
Decoder block name field, enter a name for the Vector Quantizer Decoder block. When you have a
Vector Quantizer Encoder and/or Decoder block in your destination model with the same name, select
the Overwrite target block check box to replace the block's parameters with the current
parameters. When you do not select this check box, a new Vector Quantizer Encoder and/or Decoder
block is created in your destination model.

Click Generate Model. VQDTool uses the parameters that correspond to the current plots to set the
parameters of the Vector Quantizer Encoder and/or Decoder blocks.

Parameters
Training Set

Enter the samples of the signal you would like to quantize. This data set can be a MATLAB
function or a variable defined in the MATLAB workspace. The typical length of this data vector is
1e5.

Source of initial codebook
Select Auto-generate to have the block choose the initial codebook values. Choose User
defined to enter your own initial codebook values.

Number of levels
Enter the number of codeword vectors, N, in your codebook matrix, where N ≥ 2.

Initial codebook
Enter your initial codebook values. From the Source of initial codebook list, select User
defined in order to activate this parameter. The codebook must have the same number of rows
as the training set. You must provide at least two codeword vectors.

Distortion measure
When you select Squared error, the block finds the nearest codeword by calculating the
squared error (unweighted). When you select Weighted squared error, the block finds the
nearest codeword by calculating the weighted squared error.

Weighting factor
Enter a vector or matrix. The block uses these values to compute the weighted squared error.
When the weighting factor is a vector, its length must be equal to the number of rows in the
training set. This weighting factor is used for each training vector. When the weighting factor is a
matrix, it must be the same size as the training set matrix. The individual weighting factors
cannot be negative. The weighting factor vector or matrix cannot contain all zeros.

Stopping criteria
Choose Relative threshold to enter the maximum acceptable fractional drop in the squared
quantization error. Choose Maximum iteration to specify the number of iterations at which to
stop. Choose Whichever comes first and the block stops the iteration process as soon as the
relative threshold or maximum iteration value is attained.

Relative threshold
This parameter is available when you choose Relative threshold or Whichever comes
first for the Stopping criteria parameter. Enter the value that is the maximum acceptable
fractional drop in the squared quantization error.

2 Blocks

2-1442

Maximum iteration
This parameter is available when you choose Maximum iteration or Whichever comes
first for the Stopping criteria parameter. Enter the maximum number of iterations you want
the block to perform.

Tie-breaking rules
When a training vector has the same distortion for two different codeword vectors, select Lower
indexed codeword to associate the training vector with the lower indexed codeword. Select
Higher indexed codeword to associate the training vector with the lower indexed codeword.

Codebook update method
When you choose Mean, the new codeword vector is calculated by taking the average of all the
training vector values that were associated with the original codeword vector. When you choose
Centroid, the block calculates the new codeword vector by taking the weighted average of all
the training vector values that were associated with the original codeword vector Note that if, for
the Distortion measure parameter, you choose Squared error, the Codebook update
method parameter is set to Mean.

Destination
Choose Current model to create a Vector Quantizer block in the model you most recently
selected. Type gcs in the MATLAB Command Window to display the name of your current model.
Choose New model to create a block in a new model file.

Block type
Select Encoder to design a Vector Quantizer Encoder block. Select Decoder to design a Vector
Quantizer Decoder block. Select Both to design a Vector Quantizer Encoder block and a Vector
Quantizer Decoder block.

Encoder block name
Enter a name for the Vector Quantizer Encoder block.

Decoder block name
Enter a name for the Vector Quantizer Decoder block.

Overwrite target block
When you do not select this check box and a Vector Quantizer Encoder and/or Decoder block with
the same block name exists in the destination model, a new Vector Quantizer Encoder and/or
Decoder block is created in the destination model. When you select this check box and a Vector
Quantizer Encoder and/or Decoder block with the same block name exists in the destination
model, the parameters of these blocks are overwritten by new parameters.

Generate Model
Click this button and VQDTool uses the parameters that correspond to the current plots to set the
parameters of the Vector Quantizer Encoder and/or Decoder blocks.

Design and Plot
Click this button to design a quantizer using the parameters on the left side of the GUI and to
update the performance curve and entropy plots on the right side of the GUI.

You must click Design and Plot to apply any changes you make to the parameter values in the
VQDTool GUI.

Export Outputs
Click this button, or press Ctrl+E, to export the Final Codebook, Mean Squared Error, and
Entropy values to the workspace, a text file, or a MAT-file.

 Vector Quantizer Design

2-1443

Supported Data Types
• Double-precision floating point

Compatibility Considerations
Vector Quantizer Design block has been removed

The Vector Quantizer Design block has been removed.

References
[1] Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic

Publishers, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Quantizer | Scalar Quantizer Decoder | Uniform Encoder | Uniform Decoder | Vector Quantizer
Decoder | Vector Quantizer Encoder

Introduced before R2006a

2 Blocks

2-1444

Vector Quantizer Encoder
For given input, find index of nearest codeword based on Euclidean or weighted Euclidean distance
measure

Library
Quantizers

dspquant2

Description
The Vector Quantizer Encoder block compares each input column vector to the codeword vectors in
the codebook matrix. Each column of this codebook matrix is a codeword. The block finds the
codeword vector nearest to the input column vector and returns its zero-based index. This block
supports real floating-point and fixed-point signals on all input ports.

The block finds the nearest codeword by calculating the distortion. The block uses two methods for
calculating distortion: Euclidean squared error (unweighted) and weighted Euclidean squared error.
Consider the codebook, CB = CW1 CW2 ... CWN . This codebook has N codewords; each codeword
has k elements. The i-th codeword is defined as a column vector, CWi = a1i a2i ... aki . The
multichannel input has M columns and is defined as U = U1 U2 ... UM , where the p-th input column
vector is Up = u1p u2p ... ukp ′. The squared error (unweighted) is calculated using the equation

D = ∑
j = 1

k
a ji− u jp

2

The weighted squared error is calculated using the equation

D = ∑
j = 1

k
w j a ji− u jp

2

where the weighting factor is defined as W = w1 w2 ... wk . The index of the codeword that is
associated with the minimum distortion is assigned to the input column vector.

You can select how you want to enter the codebook values using the Source of codebook parameter.
When you select Specify via dialog, you can type the codebook values into the block parameters
dialog box. Select Input port and port C appears on the block. The block uses the input to port C
as the Codebook parameter.

The Codebook parameter is an k-by-N matrix of values, where k ≥ 1 and N ≥ 1. Each input column
vector is compared to this codebook. Each column of the codebook matrix is a codeword, and each

 Vector Quantizer Encoder

2-1445

codeword has an index value. The first codeword vector corresponds to an index value of 0, the
second codeword vector corresponds to an index value of 1, and so on. The codeword vectors must
have the same number of rows as the input, U.

For the Distortion measure parameter, select Squared error when you want the block to
calculate the distortion by evaluating the Euclidean distance between the input column vector and
each codeword in the codebook. Select Weighted squared error when you want to use a
weighting factor to emphasize or deemphasize certain input values.

For the Source of weighting factor parameter, select Specify via dialog to enter a weighting
factor vector in the dialog box. Choose Input port to specify the weighting factor using port W.

Use the Weighting factor parameter to emphasize or deemphasize certain input values when
calculating the distortion measure. For example, consider the p-th input column vector, Up, as
previously defined. When you want to neglect the effect of the first element of this vector, enter [0 1
1 ... 1] as the Weighting factor parameter. This weighting factor is used to calculate the
weighted squared error using the equation

D = ∑
j = 1

k
w j a ji− u jp

2

Because of the weighting factor used in this example, the weighted squared error is not affected by
the first element of the input matrix. Therefore, the first element of the input column vector no longer
impacts the choice of index value output by the Vector Quantizer Encoder block.

Use the Index output data type parameter to specify the data type of the index values output at
port I. The data type of the index values can be int8, uint8, int16, uint16, int32, or uint32.

When an input vector is equidistant from two codewords, the block uses the Tie-breaking rule
parameter to determine which index value the block chooses. When you want the input vector to be
represented by the lower index valued codeword, select Choose the lower index. To represent
the input column vector by the higher index valued codeword, select Choose the higher index.

Select the Output codeword check box to output at port Q(U) the codeword vectors that correspond
to each index value. When the input is a matrix, the corresponding codeword vectors are horizontally
concatenated into a matrix.

Select the Output quantization error check box to output at port D the quantization error that
results when the block represents the input column vector by its nearest codeword. When the input is
a matrix, the quantization error values are horizontally concatenated.

The Vector Quantizer Encoder block accepts real floating-point and fixed-point inputs. For more
information on the data types accepted by each port, see “Data Type Support” on page 2-1446 or
“Supported Data Types” on page 2-1449.

Data Type Support

The input data values, codebook values, and weighting factor values are input to the block at ports U,
C, and W, respectively. The data type of the input data values, codebook values, and weighting factor
values can be double, single, or Fixed-point. The input data, codebook values, and weighting factor
must be the same data type.

The outputs of the block are the index values, output codewords, and quantization error. Use the
Index output data type parameter to specify the data type of the index output from the block at

2 Blocks

2-1446

port I. The data type of the index can be int8, uint8, int16, uint16, int32, or uint32. The data
type of the output codewords and the quantization error can be double, single, or Fixed-point. The
block assigns the data type of the output codewords and the quantization error based on the data
type of the input data.

Fixed-Point Data Types

The following diagram shows the data types used within the Vector Quantizer Encoder block for fixed-
point signals.

You can set the product output, accumulator, and index output data types in the block dialog as
discussed below.

Dialog Box
Main Tab

Source of codebook
Choose Specify via dialog to type the codebook values into the block parameters dialog box.
Select Input port to specify the codebook values using the block's input port, C.

Codebook
Enter a k-by-N matrix of values, where 1 ≤ k and 1 ≤ N, to which your input column vector or
matrix is compared. This parameter is visible if, from the Source of codebook list, you select
Specify via dialog.

Distortion measure
Select Squared error when you want the block to calculate the distortion by evaluating the
Euclidean distance between the input column vector and each codeword in the codebook. Select
Weighted squared error when you want the block to calculate the distortion by evaluating a
weighted Euclidean distance using a weighting factor to emphasize or deemphasize certain input
values.

Source of weighting factor
Select Specify via dialog to enter a value for the weighting factor in the dialog box. Choose
Input port and specify the weighting factor using port W on the block. This parameter is visible
if, for the Distortion measure parameter, you select Weighted squared error.

Weighting factor
Enter a vector of values. This vector must have length equal to the number of rows of the input,
U. This parameter is visible if, for the Source of weighting factor parameter, you select
Specify via dialog.

 Vector Quantizer Encoder

2-1447

Tie-breaking rule
Set this parameter to determine the behavior of the block when an input column vector is
equidistant from two codewords. When you want the input column vector to be represented by
the lower index valued codeword, select Choose the lower index. To represent the input
column vector by the higher index valued codeword, select Choose the higher index.

Output codeword
Select this check box to output the codeword vectors nearest to the input column vectors.

Output quantization error
Select this check box to output the quantization error value that results when the block
represents the input column vector by the nearest codeword.

Index output data type
Select int8, uint8, int16, uint16, int32, or uint32 as the data type of the index output at
port I. To inherit the index output data type, select Inherit via back propagation.

Data Types Tab

Rounding mode
Specify the rounding mode for fixed-point operations as one of the following:

• Floor
• Ceiling
• Convergent
• Nearest
• Round
• Simplest
• Zero

For more details, see rounding mode.
Overflow mode

When you select this parameter, the block saturates the result of its fixed-point operation. When
you clear this parameter, the block wraps the result of its fixed-point operation. For details on
saturate and wrap, see overflow mode for fixed-point operations.

Product output

As depicted above, the output of the multiplier is placed into the product output data type and
scaling. Use this parameter to specify how you would like to designate this product output word
and fraction lengths.

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word length and the fraction

length of the product output, in bits.

2 Blocks

2-1448

Accumulator

As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of
the adder remains in the accumulator data type as each element of the input is added to it. Use
this parameter to specify how you would like to designate the accumulator word and fraction
lengths.

• When you select Same as product output, these characteristics match those of the
product output.

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you can enter the word length and the fraction

length of the accumulator, in bits.

References
Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic
Publishers, 1992.

Supported Data Types
Port Supported Data Types
U • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

C • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

W • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

I • 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

 Vector Quantizer Encoder

2-1449

Port Supported Data Types
Q(U) • Double-precision floating point

• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

D • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)
• 8-, 16-, and 32-bit signed integers

See Also
Quantizer Simulink
Scalar Quantizer Decoder DSP System Toolbox
Uniform Encoder DSP System Toolbox
Uniform Decoder DSP System Toolbox
Vector Quantizer Decoder DSP System Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

Introduced before R2006a

2 Blocks

2-1450

Waterfall
(To be removed) View vectors of data over time

Note The Waterfall block will be removed in a future release. Use a different scope instead, see
“Scopes and Data Logging”.

Library: DSP System Toolbox / Obsolete Blocks

Description
The Waterfall block displays multiple vectors of data at one time. These vectors represent the input
data at consecutive sample times.

The data is displayed in 3D in the Waterfall window. By default, the x-axis represents amplitude, the y-
axis represents samples, and the z-axis represents time. You can adjust the number of sample vectors
that the block displays, move and resize the Waterfall window, and modify block parameter values
during the simulation. The Waterfall window has toolbar buttons that enable you to zoom in on the
displayed data, suspend the data capture, freeze the scope display, save the scope position, and
export data to the workspace.

The toolbar buttons are labeled on the Waterfall window as it appears when you double-click a Waterfall block.

 Waterfall

2-1451

Ports
Input

Port_1 — Signal or signals to visualize
scalar | vector | matrix | array

The Waterfall block accepts most numeric data types as input. However, the input is converted to
double-precision before the block processes the data. The Waterfall block displays only real-valued,
double-precision vectors of data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

Parameters
You can control the display and behavior of the Waterfall window using the Parameters dialog box. To
open the Parameters dialog box, click the Scope parameters button.

You can alter the Waterfall parameters while the simulation is running. However, when you make
changes to values in text boxes, you must click Enter or click outside the text box for the block to
accept your changes.

2 Blocks

2-1452

Display

These parameters control the Waterfall display.

Display traces — Number of data vectors to display
6 (default) | positive integer

Number of data vectors to display in the Waterfall window, specified as a positive integer.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: NumTraces
Type: positive scalar specified as a character vector

Update interval — Number of vectors to store
1 (default) | positive integer

Number of vectors the block should store before it displays them to the window, specified as a
positive integer.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: UpdateInterval
Type: positive scalar specified as a character vector

Colormap — Colors of display
autumn (default) | gray | hot | pink | jet | copper | red | white

Colors for the displayed data, specified as a valid colormap.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: CMapStr
Type: character vector
Type: valid colormap name, see map

Transparency — Transparency of oldest and newest data vectors
newest: opaque, oldest: transparent (default)

Transparency of the oldest and newest data vectors, specified with the sliders. The leftmost position
makes the data vector transparent. The rightmost position makes the data vector opaque. The
intermediate data vectors transition between the two chosen transparency values.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: TNewest and TOldest
Type: number between [0,1] specified as a character vector

Axes

These parameters control the axes in the Waterfall window.

 Waterfall

2-1453

Y Min — Minimum value of y-axis
-1 (default) | integer

Minimum value of the y-axis specified as an integer.
Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: YMin
Type: character vector

Y Max — Maximum value of y-axis
1 (default) | integer

Maximum value of the y-axis specified as an integer
Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: YMax
Type: character vector

Axis color — Color of axes
'w' (default) | RGB triplet | specified color name | hexadecimal color code

Color of the axes, specified as a RGB triplet, specified color name, or hexadecimal color code.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

2 Blocks

2-1454

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: AxisColor
Type: character vector within a character vector
Example: set_param(block,'AxisColor',char("'b'"))

X Axis — x-axis label
Samples (default) | string

Enter the x-axis label.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: XLabel
Type: character vector

Y Axis — y-axis label
Amplitude (default) | string

Enter the y-axis label.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: YLabel
Type: character vector

Z Axis — z-axis label
Time (default) | string

Enter the z-axis label.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: ZLabel
Type: character vector

Data History

These parameters control how many input data vectors the Waterfall block stores. They also control
how the data is exported to the MATLAB workspace.

 Waterfall

2-1455

History traces — Number of vectors to store
10 (default) | positive integer

Number of vectors (traces) that you want the block to store, specified as a positive integer.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: HistoryLength
Type: positive integer specified as a character vector

When the buffer is full — Behavior of full buffer
Overwrite (default) | Suspend | Extend

Use this parameter to control the behavior of the block when the buffer is full:

• Overwrite — The old data is replaced with the new data.
• Suspend — The block stops storing data in the buffer; but the simulation continues to run.
• Extend — The block extends the buffer so that it can continue to store all the input data.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: HistoryFull
Type: character vector

Data logging — Export data from block
Selected (default) | All visible | All history

Use this parameter to control which data is exported from the block:

• Selected — The selected data vector is exported.
• All visible — All of the data vectors displayed in the Waterfall window are exported.
• All history — All of the data vectors stored in the history buffer of the block are exported.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: ExportMode
Type: character vector

Export variable — Variable name of exported data
ExportData (default) | valid MATLAB variable name

Name of the variable that represents your data in the MATLAB workspace.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: MLExportName
Type: character vector

Export at end of simulation — Automatically export data
off (default) | on

2 Blocks

2-1456

Select this check box to automatically export the data to the MATLAB workspace when the simulation
stops.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: AutoExport
Values: 'off' | 'on'

Triggering

These parameters control when the Waterfall block starts and stops capturing data.

Begin recording — When to start capturing data
Immediately (default) | After T seconds | After N inputs | User-defined

This parameter controls when the Waterfall block starts capturing data:

• Immediately — The Waterfall window captures the input data as soon as the simulation starts.
• After T seconds — The Time, T parameter appears in the dialog box. Enter the number of

seconds the block should wait before it begins capturing data.
• After N inputs — The Count, N parameter appears in the dialog box. Enter the number of

inputs the block should receive before it begins capturing data.
• User-defined — The Function name parameter appears in the dialog box. Enter the name of a

MATLAB function that defines when the block should begin capturing data. For more information
about how you define this function, see “Scope Trigger Function”.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: TrigStartMode | TrigStartT | TrigStartN | TrigStartFcn
Type: character vector

Stop recording — When to stop capturing data
Never (default) | After T seconds | After N inputs | User-defined

This parameter controls when the Waterfall block stops capturing data:

• Never — The block captures the input data as long as the simulation is running.
• After T seconds — The Time, T parameter appears in the dialog box. Enter the number of

seconds the block should wait before it stops capturing data.
• After N inputs —The Count, N parameter appears in the dialog box. Enter the number of

inputs the block should receive before it stops capturing data.
• User-defined — The Function name parameter appears in the dialog box. Enter the name of a

MATLAB function that defines when the block should stop capturing data. For more information
about how you define this function, see “Scope Trigger Function”.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: TrigStopMode | TrigStopT | TrigStopN | TrigStopFcn
Type: character vector

 Waterfall

2-1457

Re-arm trigger — When to capture data
Never (default) | After T seconds | After N inputs | User-defined

This parameter controls when the Waterfall block begins waiting to capture data.

• Never — The Waterfall Scope block starts and stops capturing data as defined by the Begin
recording and Stop recording parameters.

• After T seconds — The Time, T parameter appears in the dialog box. Enter the number of
seconds the block should wait before it begins waiting to capture data.

• After N inputs — The Count, N parameter appears in the dialog box. Enter the number of
inputs the block should receive before it begins waiting to capture data.

• User-defined — The Function name parameter appears in the dialog box. Enter the name of a
MATLAB function that defines when the block should begin waiting to capture data. For more
information about how you define this function, see “Scope Trigger Function”.

Dependency

To enable this parameter, set Stop recording to After T seconds, After N inputs, or User-
defined.
Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: TrigRearmMode | TrigRearmT | TrigRearmN | TrigRearmFcn
Type: character vector

Transform

These parameters transform the input data to the Waterfall block. The result of the transform is
displayed in the Waterfall window.

The block assumes that the input to the block corresponds to the Transform parameter you select.
For example, when you choose Complex-> Angle, the block assumes that the input is complex. But
the block does not produce an error when the input is not complex. Therefore, you must verify the
format of your input data to guarantee that a meaningful result is displayed in the Waterfall window.

Transform — Transformation to apply to input
None (default) | Amplitude-> dB | Complex-> Mag Lin | Complex-> Mag dB | ...

Choose a transform that you would like to apply to the input of the Waterfall block:

• None — The input is displayed as it is received by the block.
• Amplitude-> dB — The block converts the input amplitude into decibels.
• Complex-> Mag Lin — The block converts the complex input into linear magnitude.
• Complex-> Mag dB — The block converts the complex input into magnitude in decibels.
• Complex-> Angle — The block converts the complex input into phase.
• FFT-> Mag Lin Fs/2 — The block takes the linear magnitude of the FFT input and plots it from

0 to the Nyquist frequency.
• FFT-> Mag dB Fs/2 — The block takes the magnitude of the FFT input, converts it to decibels,

and plots it from 0 to the Nyquist frequency.
• FFT-> Angle Fs/2 — The block converts the FFT input into phase and plots it from 0 to the

Nyquist frequency.

2 Blocks

2-1458

• Power-> dB — The block converts the input power into decibels.
• User-defined fcn — see “Function” on page 2-0 .
• User-defined expr — see “Expression” on page 2-0 .

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: XFormMode
Type: character vector

Function — Custom transformation function
abs (default)

Enter a function that you would like to apply to the input of the Waterfall block. For more information
about how you define this function, see “Scope Transform Function”.

Dependency

To enable this parameter, set Transform to User-defined fcn.

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: XFormFcn
Type: character vector

Expression — Custom transformation expression
(u+1)/2 (default) | expression with real-valued output

Enter an expression that you would like to apply to the input of the Waterfall block. The result of this
expression must be real-valued. When you write the expression, be sure to include only one unknown
variable. The block assumes this unknown variable represents the input to the block. When the block
believes your expression is invalid, this window appears.

When you click No, your expression is not applied to the input. When you click Yes and your
expression is invalid, your simulation stops and Simulink displays an error.

Dependency

To enable this parameter, set Transform to User-defined expr.

 Waterfall

2-1459

Programmatic Use

Control this parameter from the command-line using set_param and get_param.
Block Parameter: XFormExpr
Type: character vector

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Compatibility Considerations
Waterfall block will be removed
Not recommended starting in R2020b

The Waterfall block will be removed in a future release. Use a different scope instead, see “Scopes
and Data Logging”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

This block can be used for simulation visibility in systems that generate code, but is not included in
the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This block accepts fixed-point input, but converts it to double for display.

See Also
Scope | Time Scope | Spectrum Analyzer

2 Blocks

2-1460

Introduced before R2006a

 Waterfall

2-1461

Window Function
Compute and apply window to input signal
Library: DSP System Toolbox / Signal Operations

Description
The Window Function block has three modes of operation that enable you to apply a window, or
compute a window, or compute and apply a window to an input signal. You can select the mode via
the Operation parameter. In each mode, the block first creates a window vector w by sampling the
window specified in the Window type parameter.

Ports
Input

In — Input signal
vector | matrix | N-D array

Input signal, specified as a vector, matrix, or an N-D array. When the input is fixed point, it can be
signed only.

This port is enabled only when you set Operation to either Apply window to input or Generate
and apply window.

This port is unnamed when you set Operation to Apply window to input.
Data Types: single | double | int8 | int16 | int32 | fixed point

Output

Out — Output
vector | matrix | N-D array

Output signal, returned as a vector, matrix, or an N-D array.

The Out port is enabled only when Operation is set to:

• Apply window to input –– The block computes an M-by-1 window vector w and applies it to
the M-by-N input, where M is the number of rows in the input signal.

2 Blocks

2-1462

• Generate and apply window –– The block generates an M-by-1 window vector w and applies it
to the input.

The output signal has the same dimensions as the input signal. For more details, see “Operation” on
page 2-0 .
Data Types: single | double | int8 | int16 | int32 | fixed point

Win — Window output
vector

Window output, returned as a vector. When Operation is set to Apply window to input or
Generate and apply window, the window vector is of the same length as the number of rows in
the input signal. When Operation is set to Generate window, the length of window vector is
determined by the Window length parameter.
Data Types: single | double | int8 | int16 | int32 | fixed point

Parameters
Main

Operation — Modes of operation
Apply window to input (default) | Generate window | Generate and apply window

The Window Function block has three modes of operation that you can select through the Operation
parameter. In each mode, the block first creates a window vector w by sampling the window specified
in the Window type parameter at M discrete points. The operation modes are:

• Apply window to input

In this mode, the block computes an M-by-1 window vector w and applies it to the input. The
output y always has the same dimension as the input.

When the input is an M-by-N matrix u, the window is multiplied element-wise with each of the N
channels in the input matrix u. This is equivalent to the following MATLAB code:

y = repmat(w,1,N) .* u % Equivalent MATLAB code

The window is always applied to the first dimension:

y(i, j, ..., k) = w(i) * u(i, j, ..., k) i = 1, ..., M, j = 1, ..., N, ..., k = 1, ..., P

A length-M unoriented vector input is treated as an M-by-1 vector.
• Generate window

In this mode, the block generates an unoriented window vector w with length M specified by the
Window length parameter. The In port is disabled for this mode.

• Generate and apply window

In this mode, the block generates an M-by-1 window vector w and applies it to the input. The
block produces two outputs:

• At the Out port, the block produces the result of the multiplication y, which has the same
dimension as the input.

 Window Function

2-1463

• At the Win port, the block produces the M-by-1 window vector w.

When the input is an M-by-N matrix u, the window is multiplied element-wise with each of the N
channels in the input matrix u. This is equivalent to the following MATLAB code:

y = repmat(w,1,N) .* u % Equivalent MATLAB code

The window is always applied to the first dimension:

y(i, j, ..., k) = w(i) * u(i, j, ..., k) i = 1, ..., M, j = 1, ..., N, ..., k = 1, ..., P

A length-M 1-D vector input is treated as an M-by-1 vector.

Window type — Type of window
Hamming (default) | Bartlett | Blackman | ...

This table lists the available window types.

Window Type Description
Bartlett Computes a Bartlett window.

w = bartlett(M)

Blackman Computes a Blackman window.

w = blackman(M)

Boxcar Computes a rectangular window.

w = rectwin(M)

Chebyshev Computes a Chebyshev window with stopband ripple R.

w = chebwin(M,R)

Hamming Computes a Hamming window.

w = hamming(M)

Hann Computes a Hann window (also known as a Hanning window).

w = hann(M)

Hanning Obsolete. This window type is included only for compatibility with older models.
Use the Hann Window type instead of Hanning whenever possible.

Kaiser Computes a Kaiser window with the Kaiser parameter beta.

w = kaiser(M,beta)

Taylor Computes a Taylor window.

w = taylorwin(M)

Triang Computes a triangular window.

w = triang(M)

2 Blocks

2-1464

Window Type Description
User Defined Computes the user-defined window function specified by the entry in the Window

function name parameter, usrwin.

w = usrwin(M) % Window takes no extra parameters
w = usrwin(M,x1,...,xn) % Window takes extra
parameters {x1 ... xn}

Sampling — Type of sampling
Symmetric (default) | Periodic

Specify the window sampling for generalized-cosine windows.

For the generalized-cosine windows (Blackman, Hamming, Hann, and Hanning), the Sampling
parameter determines whether the window samples are computed in a periodic or a symmetric
manner. For example, when Sampling is set to Symmetric, a Hamming window of length M is
computed as:

w = hamming(M) % Symmetric (aperiodic) window

When Sampling is set to Periodic, the same window is computed as:

w = hamming(M+1) % Periodic (asymmetric) window
w = w(1:M)

Tunable (Simulink) in simulation only.

Dependencies

This parameter is visible only when you select Blackman, Hamming, Hann, or Hanning for the
Window type parameter.

Sample mode — Sample mode
Continuous (default) | Discrete

Specify the sample mode for the block, Continuous or Discrete, when it is in the Generate
window mode. In the Apply window to input and Generate and apply window modes, the
block inherits the sample mode from its driving block.

Dependencies

This parameter is visible only when you select Generate window for the Operation parameter.

Sample time — Sample time
1 (default) | real scalar

Specify the sample time for the block when Operation is set to Generate window and Sample
mode is set to Discrete. When Operation is set to Apply window to input and Generate and
apply window, the block inherits the sample time from its driving block.

Dependencies

This parameter is visible only when you set Sample mode to Discrete.

Window length — Length of window
64 (default) | positive integer

 Window Function

2-1465

Specify the length of the window to apply.

Dependencies

This parameter is visible only when you select Generate window for the Operation parameter.
Otherwise, the window vector length is computed to match the length of the first dimension of the
input.

Stopband attenuation in dB — Stopband attenuation in dB
50 (default) | nonnegative scalar

Specify the level of stopband attenuation Rs in decibels.

Tunable (Simulink) in simulation only.

Dependencies

This parameter is visible only when you select Chebyshev for the Window type parameter.

Beta — Kaiser window β parameter
10 (default) | real scalar

Specify the Kaiser window β parameter. Increasing β widens the mainlobe and decreases the
amplitude of the window sidelobes in the window's frequency magnitude response.

Tunable (Simulink) in simulation only.

Dependencies

This parameter is visible only when you select Kaiser for the Window type parameter.

Number of sidelobes — Number of sidelobes
4 (default) | positive integer

Specify the number of sidelobes as a scalar integer value greater than zero.

Dependencies

This parameter is visible only when you select Taylor for the Window type parameter.

Maximum sidelobe level relative to mainlobe (dB) — Maximum sidelobe level
relative to mainlobe
-30 (default) | scalar less than or equal to zero

Specify in decibels the maximum sidelobe level relative to the mainlobe. This parameter must be a
scalar less than or equal to zero. The default value of –30 produces sidelobes with peaks 30 dB down
from the mainlobe peak.

Dependencies

This parameter is visible only when you select Taylor for the Window type parameter.

Window function name — Window function name
hamming (default) | character vector

Specify the name of the user-defined window function to be calculated by the block. The output
window vector returned by the custom window function must be of data type double.

2 Blocks

2-1466

Dependencies

This parameter is visible only when you select User defined for the Window type parameter.

Specify additional arguments to the hamming function — Specify additional
arguments to the window function
off (default) | on

Select to enable the Cell array of additional arguments parameter, when the user-defined window
requires parameters other than the window length.
Dependencies

This parameter is visible only when you select User defined for the Window type parameter.

Cell array of additional arguments — Additional arguments
{'symmetric'} (default) | cell array

Specify the extra parameters required by the user-defined window function, besides the window
length.
Dependencies

This parameter is only available when you select the Specify additional arguments to the
hamming function parameter. The entry must be a cell array.

Data Types

When the Operation parameter on the Main tab is set to Generate window, the following
parameters appear.

Window data type — Window data type
double (default) | single | Fixed-point | User-defined | Inherit via back propagation

Specify the window data type in one of the following ways:

• double
• single
• Fixed-point –– To specify the window data type and scaling in the Signed, Word length, Set

fraction length in output to, and Fraction length parameters.
• User-defined –– To specify the window data type and scaling in the User-defined data type,

Set fraction length in output to, and Fraction length parameters.
• Inherit via back propagation –– To set the window data type and scaling to match the

following block.

Signed — Window output is signed
on (default) | off

Select to output a signed fixed-point signal. Otherwise, the signal is unsigned.
Dependencies

This parameter appears only when you set Window data type to Fixed-point.

Word length — Word length
16 (default) | positive integer in the range [2 128]

 Window Function

2-1467

Specify the word length of the fixed-point window data type in bits.

Dependencies

This parameter is visible only when you set Window data type to Fixed-point.

User-defined data type (e.g. sfix(16), float('single)) — user-defined data type
sfix(16) (default) | built-in data type | fixed-point data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the Fixed-
Point Designer functions sfix, ufix, sint, uint, sfrac, and ufrac.

Dependencies

This parameter is only visible when you set Window data type to User-defined.

Set fraction length in output to — Scaling of fixed-point window data type
Best precision (default) | User-defined

Specify the scaling of the fixed-point window data type by using either of these methods:

• Choose Best precision to have the window data type scaling automatically set such that the
output signal has the best possible precision.

• Choose User-defined to specify the window data type scaling in the Fraction length
parameter.

Dependencies

This parameter is visible only when you set Window data type to Fixed-point or User-defined,
and when the specified window data type is a fixed-point data type.

Fraction length — User-defined fraction length
15 (default) | integer

Specify the fraction length of the fixed-point window data type in bits.

Dependencies

This parameter is visible only when you set Window data type to Fixed-point or User-defined,
and when you set Set fraction length in output to to User-defined.

When the Operation parameter on the Main tab is set to either Apply window to input or
Generate and apply window, the following parameters appear.

Rounding mode — Rounding mode
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Select the rounding mode for fixed-point operations.

The window vector w does not obey this parameter. It always rounds to Nearest.

Note The Rounding mode and Overflow mode settings have no effect on numerical results when
both of these conditions exist:

• Product output is Inherit via internal rule

2 Blocks

2-1468

• Output is Same as product output

With these data type settings, the block is effectively operating in a full-precision mode.

Overflow mode — Overflow mode
Wrap (default) | Saturate

Select the overflow mode for fixed-point operations.

The window vector w does not obey this parameter. It is always saturated.

Window — Window data type
Same word length as input (default) | Specify word length | Binary point scaling |
Slope and bias scaling

Choose how you specify the word length and fraction length of the window vector w.

When you select:

• Same word length as input –– The word length of the window vector elements is the same as
the word length of the input. The fraction length is automatically set to the best precision possible.

• Specify word length –– You can enter the word length of the window vector elements in bits.
The fraction length is automatically set to the best precision possible.

• Binary point scaling –– You can enter the word length and the fraction length of the window
vector elements in bits.

• Slope and bias scaling –– You can enter the word length, in bits, and the slope of the
window vector elements. This block requires power-of-two slope and a bias of zero.

The window vector does not obey the Rounding mode and Overflow mode parameters. It is always
saturated and rounded to Nearest.

Product output — Product output data type
Inherit via internal rule (default) | Same as input | Binary point scaling | Slope
and bias scaling

Use this parameter to specify how you want to designate the product output word and fraction
lengths.

When you select:

• Inherit via internal rule –– The product output word length and fraction length are
calculated automatically. For information on how the product output word and fraction lengths are
calculated when an internal rule is used, see “Inherit via Internal Rule”.

• Same as input –– These characteristics match those of the input to the block.
• Binary point scaling –– You can enter the word length and the fraction length of the product

output in bits.
• Slope and bias scaling –– You can enter the word length in bits and the slope of the product

output. This block requires power-of-two slope and a bias of zero.

Output — Output data type
Same as product output (default) | Same as input | Binary point scaling | Slope and
bias scaling

 Window Function

2-1469

Choose how you specify the word length and fraction length of the output of the block.

When you select:

• Same as product output –– These characteristics match those of the product output.
• Same as input –– These characteristics match those of the input to the block.
• Binary point scaling –– You can enter the word length and the fraction length of the output

in bits.
• Slope and bias scaling –– You can enter the word length in bits and the slope of the output.

This block requires power-of-two slope and a bias of zero.

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in
the block dialog box.

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

The following diagram shows the data types used within the Window Function block for fixed-point
signals for each of the three operating modes.

2 Blocks

2-1470

You can set the window, product output, and output data types in the block dialog box.

See Also
Functions
bartlett | blackman | rectwin | chebwin | hamming | hann | kaiser | taylorwin | triang

Blocks
FFT

Introduced before R2006a

 Window Function

2-1471

Yule-Walker AR Estimator
Compute estimate of autoregressive (AR) model parameters using Yule-Walker method

Library
Estimation / Parametric Estimation

dspparest3

Description
The Yule-Walker AR Estimator block uses the Yule-Walker AR method, also called the autocorrelation
method, to fit an autoregressive (AR) model to the windowed input data by minimizing the forward
prediction error in the least squares sense. This formulation leads to the Yule-Walker equations,
which are solved by the Levinson-Durbin recursion. Block outputs are always nonsingular.

The Yule-Walker AR Estimator block can output the AR model coefficients as polynomial coefficients,
reflection coefficients, or both. The input can be a row vector, a column vector, or an unoriented
vector which is assumed to be the output of an AR system driven by white noise. The block accepts
matrices, and treats each column of the matrix as a channel. If the input is a row vector of length N,
the input is treated as N different channels. If the input is an unoriented vector, the input is treated
as a single channel. The block computes the normalized estimate of the AR system parameters, A(z),
independently for each successive input frame.

H z = G
A z = G

1 + a(2)z−1 + … + a p + 1 z−p

When you select Inherit estimation order from input dimensions, the order p of the all-pole
model is one less than the length of each input channel. Otherwise, the order is the value specified by
the Estimation order parameter. To guarantee a valid output, you must set the Estimation order
parameter to be a scalar less than or equal to half the input channel length. The Yule-Walker AR
Estimator and Burg AR Estimator blocks return similar results for large frame sizes.

When Output(s) is set to A, port A is enabled. For each channel, port A outputs a column of length p
+1 that contains the normalized estimate of the AR model coefficients in descending powers of z

[1 a(2) ... a(p+1)]

2 Blocks

2-1472

When Output(s) is set to K, port K is enabled. For each channel, port K outputs a length-p column
whose elements are the AR model reflection coefficients. When Output(s) is set to A and K, both
port A and K are enabled, and each port outputs the respective AR model coefficients for each
channel.

The square of the model gain, G, is provided at port G. G is a scalar for each channel.

See the Burg AR Estimator block reference page for a comparison of the Burg AR Estimator,
Covariance AR Estimator, Modified Covariance AR Estimator, and Yule-Walker AR Estimator blocks.

Parameters
Output(s)

The type of AR model coefficients output by the block. The block can output polynomial
coefficients (A), reflection coefficients (K), or both (A and K).

Inherit estimation order from input dimensions
When selected, sets the estimation order p to one less than the length of each input channel.

Estimation order
The order of the AR model, p. This parameter is enabled when you do not select Inherit
estimation order from input dimensions.

References
Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall,
1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall,
1987.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
A • Double-precision floating point

• Single-precision floating point
K • Double-precision floating point

• Single-precision floating point
G • Double-precision floating point

• Single-precision floating point

See Also
Burg AR Estimator DSP System Toolbox
Covariance AR Estimator DSP System Toolbox

 Yule-Walker AR Estimator

2-1473

Modified Covariance AR
Estimator

DSP System Toolbox

Yule-Walker Method DSP System Toolbox
aryule Signal Processing Toolbox

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

Introduced before R2006a

2 Blocks

2-1474

Yule-Walker Method
Power spectral density estimate using Yule-Walker method

Library
Estimation / Power Spectrum Estimation

dspspect3

Description
The Yule-Walker Method block estimates the power spectral density (PSD) of the input using the Yule-
Walker AR method. This method, also called the autocorrelation method, fits an autoregressive (AR)
model to the windowed input data. It does so by minimizing the forward prediction error in the least
squares sense. This formulation leads to the Yule-Walker equations, which the Levinson-Durbin
recursion solves. Block outputs are always nonsingular.

The input must be a column vector. This input represents a frame of consecutive time samples from a
single-channel signal. The block outputs a column vector containing the estimate of the power
spectral density of the signal at Nfft equally spaced frequency points. The frequency points are in the
range [0,Fs), where Fs is the sampling frequency of the signal.

When you select Inherit estimation order from input dimensions, the order of the all-pole model
is one less that the input frame size. Otherwise, the Estimation order parameter value specifies the
order. To guarantee a valid output, the Estimation order parameter must be less than or equal to
half the input vector length. The block computes the spectrum from the FFT of the estimated AR
model parameters.

Selecting the Inherit FFT length from estimation order parameter specifies that Nfft is one
greater than the estimation order. Clearing the Inherit FFT length from estimation order
parameter allows you to use the FFT length parameter to specify Nfft as a power of 2. The block
zero-pads or wraps the input to Nfft before computing the FFT.

When you select the Inherit sample time from input check box, the block computes the frequency
data from the sample period of the input signal. For the block to produce valid output, the following
conditions must hold:

• The input to the block is the original signal, with no samples added or deleted (by insertion of
zeros, for example).

• The sample period of the time-domain signal in the simulation equals the sample period of the
original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then
specify a sample time using the Sample time of original time series parameter.

 Yule-Walker Method

2-1475

See the Burg Method block reference for a comparison of the Burg Method, Covariance Method,
Modified Covariance Method, and Yule-Walker AR Estimator blocks. The Yule-Walker AR Estimator
and Burg Method blocks return similar results for large buffer lengths.

Parameters
Inherit estimation order from input dimensions

When you select this option, it sets the estimation order to one less than the length of the input
vector.

Estimation order
Specify the order of the AR model. This parameter is only visible when you clear the Inherit
estimation order from input dimensions check box.

Inherit FFT length from estimation order
When you select the Inherit FFT length from estimation order check box, the FFT length is
one greater than the estimation order. To specify the number of points on which to perform the
FFT, clear the Inherit FFT length from estimation order check box. You can then specify a
power-of-two FFT length using the FFT length parameter.

FFT length
Enter the number of data points on which to perform the FFT, Nfft. When Nfft is larger than the
input frame size, the block zero-pads each frame as needed. When Nfft is smaller than the input
frame size, the block wraps each frame as needed. This parameter becomes visible only when you
clear the Inherit FFT length from input dimensions check box.

Inherit sample time from input
When you select the Inherit sample time from input check box, the block computes the
frequency data from the sample period of the input signal. For the block to produce valid output,
the following conditions must hold:

• The input to the block is the original signal, with no samples added or deleted (by insertion of
zeros, for example).

• The sample period of the time-domain signal in the simulation equals the sample period of the
original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can
then specify a sample time using the Sample time of original time series parameter.

Sample time of original time series
Specify the sample time of the original time-domain signal. This parameter becomes visible only
when you clear the Inherit sample time from input check box.

References
Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall,
1988.

Marple, S. L. Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall,
1987.

Orfanidis, S. J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1995.

2 Blocks

2-1476

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point

The output data type is the same as the input data type.

See Also
Burg Method DSP System Toolbox
Covariance Method DSP System Toolbox
Levinson-Durbin DSP System Toolbox
Autocorrelation LPC DSP System Toolbox
Short-Time FFT DSP System Toolbox
Yule-Walker AR Estimator DSP System Toolbox

See “Spectral Analysis” for related information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

 Yule-Walker Method

2-1477

Zero Crossing
Count number of times signal crosses zero in single time step

Library
Signal Operations

dspsigops

Description
The Zero Crossing block concludes that a signal in a given channel has passed through zero if it
meets any of the following criteria, where xi is the current signal value, xi-1 is the previous signal
value, and so on:

• xi < 0 and xi-1 > 0
• xi > 0 and xi-1 < 0
• For some positive integer L, xi < 0, xi-l = 0, and xi-L-1 > 0, where 0 ≤ l ≤ L.
• For some positive integer L, xi > 0, xi-l = 0, and xi-L-1 < 0, where 0 ≤ l ≤ L.

For the first input value, xi-1 and xi-2 are zero. The block outputs the number of times the signal
crosses zero in a single time step at the Cnt port.

The input to this block must be a real-valued fixed-point or floating-point signal. If you set the Input
processing parameter to Elements as channels (sample based), the block treats each
element of the input as a time-varying channel. If you set the Input processing parameter to
Columns as channels (frame based), the block treats each column of the input as an
independent channel.

Examples
The following example, ex_zero_crossing illustrates the behavior of the Zero Crossing block.

To run the model for one time step, the Stop time is set to 0.

1 Run the model.

Because the signal passes through zero once during the first time step, the Zero Crossing block
finds one zero crossing. The number of detected zero crossings in the first time step is shown in
the Display block in the following figure.

2 Blocks

2-1478

matlab:ex_zero_crossing

2 To run the model for two time steps, change the simulation Stop time to 1. To do so, select
Modeling tab and click Model Settings. In the Solver pane, set Stop time to 1.

3 Run the model.

The Zero Crossing block remembers that the last value of the last frame was 3. Therefore, the
signal passes through zero twice during the second time step. It passes through zero while going
from 3 to -3, and it passes through zero again while going from -3 to 3. The Zero Crossing block
finds two zero crossings in the second time step as shown in the Display block in the following
figure.

Parameters
Input processing

Specify how the block should process the input. You can set this parameter to one of the following
options:

• Columns as channels (frame based) (default) — When you select this option, the block
treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

 Zero Crossing

2-1479

Supported Data Types
Port Supported Data Types
Input • Double-precision floating-point

• Single-precision floating-point
• Fixed point (signed and unsigned)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Cnt • 32-bit unsigned integers

See Also
Hit Crossing Simulink

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced before R2006a

2 Blocks

2-1480

Zoom FFT
High-resolution FFT of a portion of a spectrum
Library: DSP System Toolbox / Transforms

Description
The Zoom FFT block computes the fast Fourier Transform (FFT) of a signal over a portion of
frequencies in the Nyquist interval. By setting an appropriate decimation factor D, and sampling rate
Fs, you can choose the bandwidth of frequencies to analyze BW, where BW = Fs/D. You can also
select a specific range of frequencies to analyze in the Nyquist interval by choosing the center
frequency of the desired band.

The resolution of a signal is the ratio of Fs and the FFT length (L). Using zoom FFT, you can retain
the same resolution you would achieve with a full-size FFT on your original signal by computing a
small FFT on a shorter signal. The shorter signal comes from decimating the original signal. The
savings come from being able to compute a much shorter FFT while achieving the same resolution.
For a decimation factor of D, the new sampling rate, Fsd, is Fs/D, and the new frame size (and FFT
length) is Ld = L/D. The resolution of the decimated signal is Fsd/Ld = Fs/L. To achieve a higher
resolution of the shorter band, use the original FFT length, L, instead of the decimated FFT length,
Ld.

Ports
Input

x — Data input
vector | matrix

Data input whose zoom FFT the block computes, specified as a vector or a matrix. The number of
input rows must be a multiple of the decimation factor.

This block supports variable-size input signals, as long as the input frame size is a multiple of the
decimation factor. That is, you can change the input frame size (number of rows) during the
simulation. However, the number of channels (number of columns) must remain constant.

This port is unnamed until you select the Specify center frequency from input port parameter and
click Apply.
Example: randn(22,2)
Data Types: single | double

Fc — Center frequency input
real scalar

Center frequency of the desired band in Hz, passed through this input port as a real scalar in the
range (– SampleRate/2, SampleRate/2). SampleRate is the input sample rate either inherited from the

 Zoom FFT

2-1481

input signal or specified through the Input sample rate (Hz) parameter. This port appears only
when you select the Specify center frequency from input port check box.

This port appears only when you select the Specify center frequency from input port check box
and click Apply.
Example: 0
Example: 1200
Data Types: single | double

Output Arguments

Port_1 — Zoom FFT output
vector | matrix

Zoom FFT output, returned as a vector or matrix. If you select the Inherit FFT Length from input
dimensions check box, the output frame size equals the input frame size divided by the decimation
factor. If you clear the Inherit FFT Length from input dimensions check box and specify the FFT
length, the output frame size equals the specified FFT length. The output data type matches the input
data type.
Example: randn(11,2)
Data Types: single | double

Parameters
Decimation factor — Decimation factor
2 (default) | positive integer

Decimation factor, specified as a positive integer. This value specifies the factor by which the block
reduces the bandwidth of the input signal. The number of rows in the input signal must be a multiple
of the decimation factor.
Example: 4
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Specify center frequency from input port — Flag to specify center frequency from
input port
'off' (default) | 'on'

When you select this option and click Apply, the input port Fc appears on the block icon. You can
pass the center frequency through this input port as a scalar.

Center frequency (Hz) — Center frequency
0 (default) | real scalar

Center frequency of the desired band in Hz, specified as a real scalar in the range (– SampleRate/2,
SampleRate/2). SampleRate is the input sample rate either inherited from the input or specified
through the Input sample rate (Hz) parameter.
Example: 0.5
Example: 10

2 Blocks

2-1482

Dependencies

This parameter applies when you clear the Specify center frequency from input port check box.
Data Types: single | double

Inherit FFT Length from input dimensions — Flag to inherit FFT length from input
dimensions
'on' (default) | 'off'

When you select this option, the FFT length is the ratio of the input frame size (number of rows in the
input) and the Decimation factor.

FFT length — FFT length
64 (default) | positive scalar

FFT length, specified as a positive integer. The FFT length must be greater than or equal to the ratio
of the frame size (number of input rows) and the Decimation factor.
Example: 24
Example: 52

Dependencies

This parameter applies when you clear the Inherit FFT Length from input dimensions check box.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Inherit Sample rate from input — Flag to inherit sample rate from input
'off' (default) | 'on'

When you clear this check box, the block inherits the sample rate from the input signal.

Input sample rate (Hz) — Input sample rate
44100 (default) | positive real scalar

Input sample rate in Hz, specified as positive real scalar.
Example: 44100
Example: 48000

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option
shortens startup time and has faster simulation speed than Code generation.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
and provides slower simulation speed than Interpreted execution.

Block Characteristics
Data Types double | single

 Zoom FFT

2-1483

Multidimensional
Signals

No

Variable-Size Signals Yes

Algorithms
The zoom FFT algorithm leverages bandpass filtering before computing the FFT of the signal. The
concept of bandpass filtering is that suppose you are interested in the band [F1, F2] of the original
input signal, sampled at the rate Fs Hz. If you pass this signal through a complex (one-sided)
bandpass filter centered at Fc = (F1+F2)/2, with the bandwidth BW = F2 – F1, and then downsample
the signal by a factor of D = floor(Fs/BW), the desired band comes down to the baseband.

If Fc cannot be expressed in the form of k×Fs/D, where k is an integer, then the shifted, decimated
spectrum is not centered at DC. In this case, the center frequency gets translated to Fd.

Fd = Fc− (Fs/D) × f loor((D × Fc + Fs/2)/Fs)

The complex bandpass filter is obtained by first designing a lowpass filter prototype and then
multiplying the lowpass coefficients with a complex exponential. This algorithm uses a multirate,

2 Blocks

2-1484

multistage FIR filter as the lowpass filter prototype. To obtain the bandpass filter, the coefficients of
each stage are frequency shifted. The decimation factor is the cumulative decimation factor of each
stage. The complex bandpass filter followed by the decimator are implemented using an efficient
polyphase structure. For more details on the design of the complex bandpass filter from the multirate
multistage FIR filter prototype, see “Zoom FFT” and “Complex Bandpass Filter Design”.

References
[1] Harris, F.J. Multirate Signal Processing for Communication Systems. Prentice Hall, 2004, pp. 208–

209.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
dsp.ZoomFFT | dsp.FFT | dsp.HDLFFT | dsp.IFFT | dsp.HDLIFFT

Blocks
FFT | FFT HDL Optimized | Magnitude FFT | Short-Time FFT

Topics
“Zoom FFT”
“Complex Bandpass Filter Design”

Introduced in R2017b

 Zoom FFT

2-1485

Analysis Methods for Filter System
Objects

3

Analysis Methods for Filter System Objects
Method Description
Single-rate and Multirate Analysis
fvtool Filter visualization tool
info Filter information
freqz Frequency response of a discrete-time filter
phasez Phase response of a discrete-time filter
zerophase Zero-phase response of a discrete-time filter
grpdelay Group delay of a discrete-time filter
phasedelay Phase delay of a discrete-time filter
impz Impulse response of a discrete-time filter
impzlength Impulse response length
stepz Step response of a discrete-time filter
zplane Pole/Zero plot
cost Cost estimate
measure Measure filter response
order Filter order
firtype Determine the type (1–4) of a linear phase FIR

filter
coeffs Return filter coefficients
Multirate Analysis
polyphase Polyphase decomposition of multirate filters
gain Gain of a Cascaded Integrator-Comb (CIC) filter
Second-order Sections
scale Scale second-order sections
scalecheck Check scale of second-order sections
scaleopts Create options object for sos scaling
cumsec Vector of cumulative second-order section filters
reorder Reorder second-order sections
sos Convert IIR filter to Biquad filter
Code Generation
realizemdl Filter realization diagram
Fixed-point (supported by FIRFilter, IIRFilter, AllpoleFilter, and BiquadFilter only)
noisepsd Power spectral density of filter output due to

roundoff noise
noisepsdopts Create options object for noisepsd computation
freqrespest Frequency response estimate via filtering

3 Analysis Methods for Filter System Objects

3-2

Method Description
freqrespopts Create options object for frequency response

estimate
Other
isallpass True for allpass discrete-time filter
islinphase True for linear discrete-time filter
ismaxphase True if maximum phase
isminphase True if minimum phase
isreal True for discrete-time filter with real coefficients
isstable True if the filter is stable
isfir True if the filter is FIR
issos True if filter is in second order sections form
specifyall Specify all fixed-point properties

 Analysis Methods for Filter System Objects

3-3

System Objects

4

powermeter

Measure power of voltage signal

Description
The powermeter System object computes the power measurements of a voltage signal. The power
measurements include average power, peak power, and peak-to-average power ratio. The object uses
the sliding window method to compute these measurements. For more details, see “Algorithms” on
page 4-7.

To measure the power of a voltage signal:

1 Create the powermeter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
meter = powermeter(len)
meter = powermeter(Len,Overlap)
meter = powermeter(Name,Value)

Description

meter = powermeter(len) returns a power meter object with the WindowLength property set to
len.

meter = powermeter(Len,Overlap) sets the WindowLength property to Len and the
OverlapLength property to Overlap.

meter = powermeter(Name,Value) returns a power meter object with each specified property set
to the specified value. Enclose each property name in quotes. You can use this syntax with the
previous input argument.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-2

Measurement — Desired power measurement
'Average power' (default) | 'Peak power' | 'Peak-to-average power ratio' | 'All'

Desired power measurement, specified as one of the following:

• 'Average power' (default)
• 'Peak power'
• 'Peak-to-average power ratio'
• 'All'

For details on how the object computes these measurements, see “Algorithms” on page 4-7.

WindowLength — Window length
256 (default) | positive integer

Window length over which the measurement is computed, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OverlapLength — Overlap length between windows
WindowLength − 1 (default) | nonnegative integer

Overlap length between sliding windows, specified as a nonnegative integer. The value of overlap
length varies in the range [0, WindowLength − 1]. If not specified, the overlap length is
WindowLength − 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ReferenceLoad — Reference load in ohms
1 (default) | positive scalar in ohms

Reference load that the power meter uses to compute power values, specified as a real, positive
scalar in ohms.

Tunable: Yes
Data Types: single | double

PowerUnits — Units of measured power values
'dBm' (default) | 'dBW' | 'Watts'

Units of the measured power values, specified as one of the following:

• 'dBm'
• 'dBW'
• 'Watts'

Usage

Syntax
avgpwr = meter(x)
peakpwr = meter(x)

 powermeter

4-3

papr = meter(x)
[avgpwr,peakpwr,papr] = meter(x)

Description

avgpwr = meter(x) computes the average power of the input signal x when the Measurement
property is set to 'Average power'. Each column of x is an independent channel. The object
computes the average power of each channel of the input signal independently.

peakpwr = meter(x) computes the peak power of the input signal x when the Measurement
property is set to 'Peak power'. Each column of x is an independent channel. The object computes
the peak power of each channel of the input signal independently.

papr = meter(x) computes the peak-to-average power ratio of the input signal x when the
Measurement property is set to 'Peak-to-average power ratio'. Each column of x is an
independent channel. The object computes the peak-to-average power ratio of each channel of the
input signal independently.

[avgpwr,peakpwr,papr] = meter(x) computes the average power, peak power, and the peak-to-
average power ratio of the input signal x when the Measurement property is set to 'All'. Each
column of x is an independent channel. The object computes the power measurements of each
channel of the input signal independently.

Input Arguments

x — Input voltage signal
vector | matrix

Input voltage signal, specified as a vector or a matrix, and measured in volts. If x is a matrix, each
column is treated as an independent channel. The power measurement is computed along each
channel using the “Sliding Window Method” on page 4-7.

The object also accepts variable-size inputs. That is, once the object is locked, you can change the
size of each input channel, but you cannot change the number of channels.
Data Types: single | double

Output Arguments

avgpwr — Average power
vector | matrix

Average power of the voltage signal, returned as a vector or a matrix, and measured in the units
determined by the PowerUnits property. For details on how the object computes the average power,
see “Average Power” on page 4-7.
Data Types: single | double

peakpwr — Peak power
vector | matrix

Peak power of the voltage signal, returned as a vector or a matrix, and measured in the units
determined by the PowerUnits property. For details on how the object computes the peak power, see
“Peak Power” on page 4-8.
Data Types: single | double

4 System Objects

4-4

papr — Peak-to-average power ratio
vector | matrix

Peak-to-average power ratio of the voltage signal, returned as a vector or a matrix. For details on how
the object computes the peak-to-average power ratio, see “Peak-to-Average Power Ratio” on page 4-
8.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Power Measurements of Voltage Signal

Compute the power measurements of a noisy sinusoidal signal using a power meter. These
measurements include average power, peak power, and peak-to-average power ratio.

Assume the maximum voltage of the signal to be 100 V. The instantaneous values of a sinusoidal
waveform are given by the equation Vi = Vmax × sin 2πft , whereVi is the instantaneous value, Vmax
is the maximum voltage of the signal, and f is the frequency of the signal in Hz.

Initialization

The input signal is a sum of two sine waves with frequencies set to 1 kHz and 10 kHz, respectively.
The frame length and the sampling frequency of the generated signal is 512 samples and 44.1 kHz,
respectively.

To measure the power in this signal, create a powermeter object. Set 'Measurement' to 'All'.
This setting enables the object to measure the average power, peak power, and peak-to-average
power ratio. Set the length of the sliding window to 16 samples and the reference load to 50 Ohms.
Use this object to measure the power in dBm units. Visualize the power measurements using the
timescope object.

FrameLength = 512;
Fs = 44.1e3;
A = 100;
sine1 = dsp.SineWave('Amplitude',A,...
 'Frequency',1e3,...
 'SampleRate',44.1e3,...
 'SamplesPerFrame',FrameLength);
sine2 = dsp.SineWave('Amplitude',A,...

 powermeter

4-5

 'Frequency',10e3,...
 'SampleRate',44.1e3,...
 'SamplesPerFrame',FrameLength);
pm = powermeter(16, 'Measurement', 'All', ...
 'ReferenceLoad', 50, ...
 'PowerUnits', 'dBm');
scope = timescope('NumInputPorts',4,'SampleRate',Fs,...
 'TimeSpanSource','property',...
 'TimeSpan',96,...
 'YLabel','dBm',...
 'YLimits',[-30 90]);
title = 'Power Measurements';
scope.ChannelNames = {'Average power',...
 'Peak power','Peak-to-average power ratio',...
 'Expected Average Power'};
scope.Title = title;

Compute the Power Measurements

Add zero-mean white Gaussian noise with a standard deviation of 0.001 to the sum of sine waves.
Vary the amplitude of the sine waves. Measure the average power, peak power, and the peak-to-
average power ratio of this noisy sinusoidal signal that has a varying amplitude. For details on how
the object measures these power values, see “Algorithms” on page 4-7. Compare the measured
values to the expected value of the average power.

The expected value of the average power P of the noisy sinusoidal signal is given by the following
equation.

P =
A1

2

2R +
A2

2

2R + var noise ,

where,

• A1 is the amplitude of the first sinusoidal signal.
• A2 is the amplitude of the second sinusoidal signal.
• R is the reference load in Ohms.

In dBm, the expected power is computed using the following equation:

expPwrdBm = 10log10 P + 30 .

Compare the expected value with the value computed by the object. All values are in dBm. These
values match very closely. To verify, view the computed measurements using the timescope object.

Vect = [1/8 1/2 1 2 1 1/2 1/8 1/16 1/32];
for index = 1:length(Vect)
 V = Vect(index);
 for i = 1:1000
 x = V*sine1()+V*sine2()+0.001.*randn(FrameLength,1);
 P = (((V*A)^2)/100)+(((V*A)^2)/100)+(0.001)^2;
 expPwr = (10*log10(P)+30)*ones(FrameLength,1);
 [avgPwr,pkPwr,papr] = pm(x);
 scope(avgPwr,pkPwr,papr,expPwr);
 end
end

4 System Objects

4-6

Algorithms
Sliding Window Method

In the sliding window method, the power measurement is computed over a finite duration of the
signal. The window length defines the length of the data over which the algorithm computes the
power value. The window moves as the new data comes in. The output for each input sample is the
measurement done over the current sample and the Len – 1 previous samples. Len is the length of the
sliding window in samples. To compute the first Len – 1 outputs, when the window does not have
enough data yet, the algorithm fills the window with zeros. As an example, to compute the average
power when the second input sample comes in, the algorithm fills the window with Len – 2 zeros. The
input signal x is then the two data samples followed by Len – 2 zeros.

For a more detailed example, see “Sliding Window Method”.

If the window is large, the power computed is closer to the stationary power of the data. For data that
does not change rapidly, use a long window to get a smoother measurement. For data that changes
fast, use a smaller window.

Average Power

The average power of the voltage signal is computed using the Sliding Window Method on page 4-7
and is given by the following equations:

AvgPowerdBm = 10log10 movAvg x 2 /R + 30

 powermeter

4-7

AvgPowerdBW = 10log10 movAvg x 2 /R

AvgPowerWatts = movAvg x 2 /R

where,

• x is the input voltage signal.
• R is the reference load (in ohms) that is used to compute the power value.
• movAvg computes the moving average using the sliding window method. The powermeter object

in MATLAB uses the dsp.MovingAverage object and the Power Meter block in Simulink uses the
Moving Average block.

Peak Power

The peak power of the voltage signal is computed using the Sliding Window Method on page 4-7 and
is given by the following equations:

PeakPowerdBm = 10log10 movMax x 2 /R + 30

PeakPowerdBW = 10log10 movMax x 2 /R

PeakPowerWatts = movMax x 2 /R

where,

• x is the input voltage signal.
• R is the reference load (in ohms) that is used to compute the power value.
• movMax computes the moving maximum using the sliding window method. The powermeter

object in MATLAB uses the dsp.MovingMaximum object and the Power Meter block in Simulink
uses the Moving Maximum block.

Peak-to-Average Power Ratio

The peak-to-average power ratio of the voltage signal is computed using the Sliding Window Method
on page 4-7 and is given by the following equations:

pkAvgPwrdBm = 10log10 movMax x 2 /movAvg x 2

pkAvgPwrdBW = 10log10 movMax x 2 /movAvg x 2

pkAvgPwrWatts = movMax x 2 /movAvg x 2

where,

• x is the input voltage signal.
• movAvg computes the moving average using the sliding window method. The powermeter object

in MATLAB uses the dsp.MovingAverage object and the Power Meter block in Simulink uses the
Moving Average block.

4 System Objects

4-8

• movMax computes the moving maximum using the sliding window method. The powermeter
object in MATLAB uses the dsp.MovingMaximum object and the Power Meter block in Simulink
uses the Moving Maximum block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.MovingAverage | dsp.MovingMaximum | dsp.SpectrumEstimator |
dsp.SpectrumAnalyzer

Blocks
Power Meter

Topics
“Compute Average Power of 256 QAM Signal in MATLAB” (Communications Toolbox)

Introduced in R2021a

 powermeter

4-9

dsp.AdaptiveLatticeFilter
Package: dsp

Adaptive lattice filter

Description
The dsp.AdaptiveLatticeFilter System object computes output, error, and coefficients using a
lattice-based FIR adaptive filter.

To implement the adaptive FIR filter object:

1 Create the dsp.AdaptiveLatticeFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
alf = dsp.AdaptiveLatticeFilter
alf = dsp.AdaptiveLatticeFilter(len)
alf = dsp.AdaptiveLatticeFilter(Name,Value)

Description

alf = dsp.AdaptiveLatticeFilter returns a lattice-based FIR adaptive filter System object,
alf. This System object computes the filtered output and the filter error for a given input and desired
signal.

alf = dsp.AdaptiveLatticeFilter(len) returns an AdaptiveLatticeFilter System object
with the Length property set to len.

alf = dsp.AdaptiveLatticeFilter(Name,Value) returns an AdaptiveLatticeFilter
System object with each specified property set to the specified value. Enclose each property name in
single quotes. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-10

Method — Method to calculate filter coefficients
'Least-squares Lattice' (default) | 'QR-decomposition Least-squares Lattice' |
'Gradient Adaptive Lattice'

Specify the method used to calculate filter coefficients as one of 'Least-squares Lattice', 'QR-
decomposition Least-squares Lattice', 'Gradient Adaptive Lattice'. The default
value is 'Least-squares Lattice'. For algorithms used to implement these three different
methods, refer to [1] [2]. This property is nontunable.

Length — Length of filter coefficients vector
32 (default) | positive integer

Specify the length of the FIR filter coefficients vector as a positive integer value. This property is
nontunable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ForgettingFactor — Least-squares lattice forgetting factor
1 (default) | positive scalar

Specify the least-squares lattice forgetting factor as a scalar positive numeric value less than or equal
to 1. Setting this value to 1 denotes infinite memory during adaptation.

Tunable: Yes

Dependencies

This property applies only if the Method property is set to 'Least-squares Lattice' or 'QR-
decomposition Least-squares Lattice'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StepSize — Joint process step size of gradient adaptive filter
0.1 (default) | positive scalar

Specify the joint process step size of the gradient adaptive lattice filter as a positive numeric scalar
less than or equal to 1.

Tunable: Yes

Dependencies

This property applies only if the Method property is set to 'Gradient Adaptive Lattice'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Offset — Offset for denominator of StepSize normalization term
1 (default) | nonnegative scalar

Specify an offset value for the denominator of the StepSize normalization term as a nonnegative
numeric scalar. A nonzero offset helps avoid a divide-by-near-zero condition when the input signal
amplitude is very small.

Tunable: Yes

 dsp.AdaptiveLatticeFilter

4-11

Dependencies

This property applies only if the Method property is set to 'Gradient Adaptive Lattice'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ReflectionStepSize — Reflection process step size
StepSize property value (default) | positive scalar

Specify the reflection process step size of the gradient adaptive lattice filter as a scalar numeric value
between 0 and 1, both inclusive. The default value is the StepSize property value.

Tunable: Yes

Dependencies

Use this property only if the Method property is set to 'Gradient Adaptive Lattice'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

AveragingFactor — Averaging factor of energy estimator
1 - StepSize (default) | positive scalar

Specify the averaging factor as a positive numeric scalar less than 1. Use this property to compute
the exponentially windowed forward and backward prediction error powers for the coefficient
updates. The default is the value of 1 - StepSize.

Tunable: Yes

Dependencies

This property applies only if the Method property is set to'Gradient Adaptive Lattice.
Data Types: single | double

InitialPredictionErrorPower — Initial prediction error power
1.0 (default) | positive scalar

Specify the initial values for the prediction error vectors as a scalar positive numeric value.

If the Method property is set to 'Least-squares Lattice' or 'QR-decomposition Least-
squares Lattice', the default value is 1.0. If the Method property is set to 'Gradient
Adaptive Lattice', the default value is 0.1.

Tunable: Yes
Data Types: single | double

InitialCoefficients — Initial coefficients of filter
0 (default) | scalar | vector

Specify the initial values of the FIR adaptive filter coefficients as a scalar or a vector of length equal
to the value of the Length property.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

4 System Objects

4-12

LockCoefficients — Locked status of coefficient updates
false (default) | true

Specify whether to lock the filter coefficient values. By default, the value of this property is false,
and the object continuously updates the filter coefficients. If this property is set to true, the filter
coefficients do not update and their values remain the same.

Tunable: Yes

Dependencies

This property is applicable only if the Method property is set to 'Gradient Adaptive Lattice'.

Usage

Syntax
[y,err] = alf(x,d)

Description

[y,err] = alf(x,d) filters the input x, using d as the desired signal, and returns the filtered
output in y and the filter error in err. The System object estimates the filter weights needed to
minimize the error between the output signal and the desired signal. You can access these
coefficients by accessing the Coefficients property of the object. This can be done only after
calling the object. For example, to access the optimized coefficients of the alf filter, call
alf.Coefficients after you pass the input and desired signal to the object.

Input Arguments

x — Data input
scalar | column vector

The signal to be filtered by the adaptive lattice filter. The input, x, and the desired signal, d, must
have the same size and data type.

The input can be a variable-size signal. You can change the number of elements in the column vector
even when the object is locked. The System object locks when you call the object.
Data Types: single | double

d — Desired signal
scalar | column vector

The adaptive lattice filter adapts its coefficients to minimize the error, err, and converge the input
signal x to the desired signal d as closely as possible.

The input, x, and the desired signal, d, must have the same size and data type.

The desired signal can be a variable-size signal. You can change the number of elements in the
column vector even when the object is locked. The System object locks when you call the object.
Data Types: single | double
Complex Number Support: Yes

 dsp.AdaptiveLatticeFilter

4-13

Output Arguments

y — Filtered output
scalar | column vector

Filtered output, returned as a scalar or a column vector. The object adapts its filter coefficients to
converge the input signal x to match the desired signal d. The filter outputs the converged signal.
Data Types: single | double

err — Difference between output and desired signal
scalar | column vector

Difference between the output signal y and the desired signal d, returned as a scalar or a column
vector. The objective of the adaptive lattice filter is to minimize this error. The object adapts its
coefficients to converge towards optimal filter coefficients that produce an output signal that matches
closely with the desired signal. To access the adaptive lattice filter coefficients, call
alf.Coefficients after you pass the input and desired signal to the object algorithm.
Data Types: single | double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.AdaptiveLatticeFilter
msesim Estimated mean squared error for adaptive filters

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

QPSK Adaptive Equalization Using Adaptive Lattice Filter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create the QPSK signal and the noise, filter them to obtain the received signal, and delay the
received signal to obtain the desired signal.

D = 16;
b = exp(1i*pi/4)*[-0.7 1];
a = [1 -0.7];
ntr = 1000;

4 System Objects

4-14

s = sign(randn(1,ntr+D)) + 1i*sign(randn(1,ntr+D));
n = 0.1*(randn(1,ntr+D) + 1i*randn(1,ntr+D));
r = filter(b,a,s) + n;
x = r(1+D:ntr+D);
d = s(1:ntr);

Use the Adaptive Lattice Filter to compute the filtered output and the filter error for the input and
desired signal.

lam = 0.995;
del = 1;
alf = dsp.AdaptiveLatticeFilter('Length', 32, ...
 'ForgettingFactor', lam, 'InitialPredictionErrorPower', del);
[y,e] = alf(x,d);

Plot the In-Phase and the Quadrature components of the desired, output, and the error signals.

subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('time index'); ylabel('signal value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('time index'); ylabel('signal value');

Plot the received and equalized signals’ scatter plots.

 dsp.AdaptiveLatticeFilter

4-15

subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

System Identification of FIR Filter Using Adaptive Lattice Filter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

ha = fir1(31,0.5);
% FIR system to be identified
fir = dsp.FIRFilter('Numerator',ha);
iir = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
x = iir(sign(randn(2000,25)));
% Observation noise signal
n = 0.1*randn(size(x));
 % Desired signal
d = fir(x)+n;
% Filter length
l = 32;
% Decimation factor for analysis

4 System Objects

4-16

% and simulation results
m = 5;
ha = dsp.AdaptiveLatticeFilter(l);
[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);
plot(m*(1:length(simmse)),10*log10(simmse));
xlabel('Iteration');
ylabel('MSE (dB)');
% Plot the learning curve used for
% adaptive lattice filter used in system identification
title('Learning curve')

References
[1] Griffiths, Lloyd J. “A Continuously Adaptive Filter Implemented as a Lattice Structure”.

Proceedings of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Hartford, CT, pp.
683–686, 1977 .

[2] Haykin, S. Adaptive Filter Theory, 4th Ed. Upper Saddle River, NJ: Prentice Hall, 1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 dsp.AdaptiveLatticeFilter

4-17

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.LMSFilter | dsp.RLSFilter | dsp.AffineProjectionFilter |
dsp.FrequencyDomainAdaptiveFilter | dsp.FilteredXLMSFilter | dsp.FIRFilter

Introduced in R2013b

4 System Objects

4-18

dsp.AffineProjectionFilter
Package: dsp

Compute output, error and coefficients using affine projection (AP) Algorithm

Description
The dsp.AffineProjectionFilter System object filters each channel of the input using AP filter
implementations.

To filter each channel of the input:

1 Create the dsp.AffineProjectionFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
apf = dsp.AffineProjectionFilter
apf = dsp.AffineProjectionFilter(len)
apf = dsp.AffineProjectionFilter(Name,Value)

Description

apf = dsp.AffineProjectionFilter returns an adaptive FIR filter System object, apf. This
System object computes the filtered output and the filter error for a given input and desired signal
using the affine projection (AP) algorithm.

apf = dsp.AffineProjectionFilter(len) returns an affine projection filter object with the
Length property set to len.

apf = dsp.AffineProjectionFilter(Name,Value) returns an affine projection filter object
with each specified property set to the specified value. Enclose each property name in single quotes.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 dsp.AffineProjectionFilter

4-19

Method — Method to calculate filter coefficients
Direct Matrix Inversion (default) | Recursive Matrix Update | Block Direct Matrix
Inversion

Specify the method used to calculate filter coefficients as Direct Matrix Inversion, Recursive
Matrix Update, Block Direct Matrix Inversion. This property is nontunable.

Length — Length of filter coefficients vector
32 (default) | positive integer

Specify the length of the FIR filter coefficients vector as a scalar positive integer value. This property
is nontunable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProjectionOrder — Projection order of affine projection algorithm
2 (default) | positive integer

Specify the projection order of the affine projection algorithm as a scalar positive integer value
greater than or equal to 2. This property defines the size of the input signal covariance matrix. This
property is nontunable.
Data Types: double

StepSize — Affine projection step size
1 (default) | nonnegative scalar

Specify the affine projection step size factor as a scalar nonnegative numeric value between 0 and 1,
both inclusive. Setting the step size equal to one provides the fastest convergence during adaptation.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

InitialCoefficients — Initial coefficients of filter
0 (default) | scalar | vector

Specify the initial values of the FIR adaptive filter coefficients as a scalar or a vector of length equal
to the Length property value.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialOffsetCovariance — Initial values of offset input covariance matrix
1 (default) | scalar | square matrix

Specify the initial values for the offset input covariance matrix. This property must be either a scalar
positive numeric value or a positive-definite square matrix with each dimension equal to the
ProjectionOrder property value. If it is a scalar value, the OffsetCovariance property is
initialized to a diagonal matrix with the diagonal elements equal to that scalar value. If it is a square
matrix, the OffsetCovariance property is initialized to the value of that square matrix.

Tunable: Yes

4 System Objects

4-20

Dependencies

This property is applicable only if the Method property is set to Direct Matrix Inversion or
Block Direct Matrix Inversion.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialInverseOffsetCovariance — Initial values of offset input covariance matrix
inverse
20 (default) | scalar | square matrix

Specify the initial values for the offset input covariance matrix inverse. This property must be either a
scalar positive numeric value or a positive-definite square matrix with each dimension equal to the
ProjectionOrder property value. If it is a scalar value, the InverseOffsetCovariance property
is initialized to a diagonal matrix with each diagonal element equal to that scalar value. If it is a
square matrix, the InverseOffsetCovariance property is initialized to the values of that square
matrix.

Tunable: Yes

Dependencies

This property is applicable only if the Method property is set to Recursive Matrix Update.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialCorrelationCoefficients — Initial correlation coefficients
0 (default) | scalar | vector

Specify the initial values of the correlation coefficients of the FIR filter as a scalar or a vector of
length equal to ProjectionOrder –1.

Tunable: Yes

Dependencies

This property is applicable only if the Method property is set to Recursive Matrix Update.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LockCoefficients — Lock coefficient updates
false (default) | true

Specify whether the filter coefficient values should be locked. When you set this property to true, the
filter coefficients are not updated and their values remain the same. The default value is false (filter
coefficients are continuously updated).

Tunable: Yes

Usage

Syntax
[y,err] = apf(x,d)

 dsp.AffineProjectionFilter

4-21

Description

[y,err] = apf(x,d) filters the input x, using d as the desired signal, and returns the filtered
output in y and the filter error in err. The System object estimates the filter weights needed to
minimize the error between the output signal and the desired signal. You can access these
coefficients by accessing the Coefficients property of the object. This can be done only after
calling the object. For example, to access the optimized coefficients of the apf filter, call
apf.Coefficients after you pass the input and desired signal to the object.

Input Arguments

x — Data input
scalar | column vector

The signal to be filtered by the affine projection filter. The input, x, and the desired signal, d, must
have the same size and data type.

The input can be a variable-size signal. You can change the number of elements in the column vector
even when the object is locked. The System object locks when you call the object to run its algorithm.
Data Types: single | double

d — Desired signal
scalar | column vector

The affine projection filter adapts its coefficients to minimize the error, err, and converge the input
signal x to the desired signal d as closely as possible.

The input, x, and the desired signal, d, must have the same size and data type.

The desired signal can be a variable-size signal. You can change the number of elements in the
column vector even when the object is locked. The System object locks when you call the object.
Data Types: single | double
Complex Number Support: Yes

Output Arguments

y — Filtered output
scalar | column vector

Filtered output, returned as a scalar or a column vector. The object adapts its filter coefficients to
converge the input signal x to match the desired signal d. The filter outputs the converged signal.
Data Types: single | double

err — Difference between output and desired signal
scalar | column vector

Difference between the output signal y and the desired signal d, returned as a scalar or a column
vector. The objective of the affine projection filter is to minimize this error. The object adapts its
coefficients to converge towards optimal filter coefficients that produce an output signal that matches
closely with the desired signal. To access the affine projection filter coefficients, call
apf.Coefficients after you pass the input and desired signal to the object.
Data Types: single | double
Complex Number Support: Yes

4 System Objects

4-22

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.AffineProjectionFilter
msesim Estimated mean squared error for adaptive filters

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

QPSK Adaptive Equalization

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

QPSK Adaptive Equalization Using a 32-Coefficient FIR Filter (1000 Iterations)

D = 16; % Number of samples of delay
b = exp(1i*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr = 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + 1i*sign(randn(1,ntr+D)); % Baseband signal
n = 0.1*(randn(1,ntr+D) + 1i*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
mu = 0.1; % Step size
po = 4; % Projection order
offset = 0.05; % Offset for covariance matrix
apf = dsp.AffineProjectionFilter('Length', 32, ...
 'StepSize', mu, 'ProjectionOrder', po, ...
 'InitialOffsetCovariance',offset);
[y,e] = apf(x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('time index'); ylabel('signal value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('time index'); ylabel('signal value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

 dsp.AffineProjectionFilter

4-23

title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

System Identification of FIR Filter Using Affine Projection Filter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

ha = fir1(31,0.5);
% FIR system to be identified
fir = dsp.FIRFilter('Numerator',ha);
iir = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
x = iir(sign(randn(2000,25)));
% Observation noise signal
n = 0.1*randn(size(x));
% Desired signal
d = fir(x)+n;
% Filter length
l = 32;
% Affine Projection filter Step size.
mu = 0.008;
% Decimation factor for analysis
% and simulation results
m = 5;

4 System Objects

4-24

apf = dsp.AffineProjectionFilter(l,'StepSize',mu);
[simmse,meanWsim,Wsim,traceKsim] = msesim(apf,x,d,m);
plot(m*(1:length(simmse)),10*log10(simmse));
xlabel('Iteration'); ylabel('MSE (dB)');
% Plot the learning curve for affine projection filter
% used in system identification
title('Learning curve')

Algorithms
The affine projection algorithm (APA) is an adaptive scheme that estimates an unknown system based
on multiple input vectors [1]. It is designed to improve the performance of other adaptive algorithms,
mainly those that are LMS based. The affine projection algorithm reuses old data resulting in fast
convergence when the input signal is highly correlated, leading to a family of algorithms that can
make trade-offs between computation complexity with convergence speed [2].

The following equations describe the conceptual algorithm used in designing AP filters:

 dsp.AffineProjectionFilter

4-25

Uap(n) =
u(n) … u(n− L)
⋮ ⋱ ⋮

u(n− N) ⋯ u(n− L− N)
= u(n) u(n− 1) ⋯ u(n− L)

yap(n) = UTap(n)w(n) =

y(n)
·
·
·

y(n− L)

dap(n) =

d(n)
·
·
·

d(n− L)

eap(n) = dap(n)− yap(n) =

e(n)
·
·
·

e(n− L)

w(n) = w(n− 1) + μUap(n)(Ueap

where C is either εI if the initial offset covariance is a scalar ε, or R if the initial offset covariance is a
matrix R. The variables are as follows:

Variable Description
n The current time index
u(n) The input sample at step n
Uap(n) The matrix of the last L+1 input signal vectors
w(n) The adaptive filter coefficients vector
y(n) The adaptive filter output
d(n) The desired signal
e(n) The error at step n
L The projection order
N The filter order (i.e., filter length = N+1)
μ The step size

References
[1] K. Ozeki, T. Umeda, “An adaptive Filtering Algorithm Using an Orthogonal Projection to an Affine

Subspace and its Properties”, Electron. Commun. Jpn. 67-A(5), May 1984, pp. 19–27.

[2] Paulo S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, Second Edition.
Boston: Kluwer Academic Publishers, 2002.

4 System Objects

4-26

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.FIRFilter | dsp.LMSFilter | dsp.RLSFilter

Introduced in R2013a

 dsp.AffineProjectionFilter

4-27

dsp.AllpassFilter
Package: dsp

Single section or cascaded allpass filter

Description
The dsp.AllpassFilter object filters each channel of the input using Allpass filter
implementations. To import this object into Simulink, use the MATLAB System block.

Note Cell array support for AllpassCoefficients, WDFCoefficients, and
LatticeCoefficients has been removed. Use an N-by-1 or N-by-2 numeric array instead. For
more information, see “Compatibility Considerations” on page 4-35.

To filter each channel of the input:

1 Create the dsp.AllpassFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
Allpass = dsp.AllpassFilter
Allpass = dsp.AllpassFilter(Name,Value)

Description

Allpass = dsp.AllpassFilter returns an allpass filter System object, Allpass, that filters each
channel of the input signal independently using an allpass filter, with the default structure and
coefficients.

Allpass = dsp.AllpassFilter(Name,Value) returns an allpass filter System object, Allpass,
with each property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-28

Structure — Internal allpass filter structure
Minimum multiplier (default) | Lattice | Wave Digital Filter

You can specify the internal allpass filter implementation structure as one of | Minimum multiplier
| Lattice | Wave Digital Filter. Each structure uses a different set of coefficients,
independently stored in the corresponding object property.

AllpassCoefficients — Allpass polynomial coefficients
[-2^(-1/2) 0.5] (default) | N-by-1 | N-by-2

Specify the real allpass polynomial filter coefficients. Specify this property as either an N-by-1 or N-
by-2 matrix of N first-order or second-order allpass sections. The default value defines a stable
second-order allpass filter with poles and zeros located at ±π/3 in the Z plane.

Tunable: Yes

Dependencies

This property is applicable only when the Structure property is set to Minimum multiplier.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WDFCoefficients — Wave Digital Filter allpass coefficients
[1/2, -2^(1/2)/3] (default) | N-by-1 | N-by-2

Specify the real allpass coefficients in the Wave Digital Filter form. Specify this property as either a
N-by-1 or N-by-2 matrix of N first-order or second-order allpass sections. All elements must have
absolute values less than or equal to 1. This value is a transformed version of the default value of
AllpassCoefficients, computed using allpass2wdf(AllpassCoefficients). These
coefficients define the same stable second-order allpass filter as when Structure is set to 'Minimum
multiplier'.

Tunable: Yes

Dependencies

This property is only applicable when the Structure property is set to Wave Digital Filter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LatticeCoefficients — Lattice allpass coefficients
[-2^(1/2)/3, 1/2] (default) | vector

Specify the real or complex allpass coefficients as lattice reflection coefficients. Specify this property
as either a row vector (single-section configuration) or a column vector. This value is a transformed
and transposed version of the default value of AllpassCoefficients, computed using
transpose(tf2latc([1 h.AllpassCoefficients])). These coefficients define the same stable
second-order allpass filter as when Structure is set to 'Lattice'.

Tunable: Yes

Dependencies

This property is applicable only if the Structure property is set to Lattice.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 dsp.AllpassFilter

4-29

TrailingFirstOrderSection — Indicate if last section is first order
false (default) | true

Indicate if last section is first order or second order. When you set TrailingFirstOrderSection to
true, the last section is considered to be first-order, and the second element of the last row of the N-
by-2 matrix is ignored. When you set TrailingFirstOrderSection to false, the last section is
considered to be second-order.

Usage

Syntax
y = Allpass(x)

Description

y = Allpass(x) filters the input signal x using an allpass filter to produce the output y. Each
column of x is filtered independently as a separate channel over time.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. This object also accepts variable-size inputs. Once the
object is locked, you can change the size of each input channel, but you cannot change the number of
channels.
Data Types: single | double

Output Arguments

y — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix. The size, data type, and complexity of the output
signal matches that of the input signal.
Data Types: double | single

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.AllpassFilter
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
impz Impulse response of discrete-time filter System object
info Information about filter System object

4 System Objects

4-30

coeffs Returns the filter System object coefficients in a structure
cost Estimate cost of implementing filter System object
grpdelay Group delay response of discrete-time filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Lowpass Filtering using Two Allpass Filters

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Construct the Allpass Filters

Fs = 48000; % in Hz
FL = 1024;
APF1 = dsp.AllpassFilter('AllpassCoefficients',...
 [-0.710525516540603 0.208818210000029]);
APF2 = dsp.AllpassFilter('AllpassCoefficients',...
 [-0.940456403667957 0.6;...
 -0.324919696232907 0],...
 'TrailingFirstOrderSection',true);

Construct the Transfer Function Estimator to estimate the transfer function between the random
input and the Allpass filtered output

TFE = dsp.TransferFunctionEstimator('FrequencyRange',...
 'onesided','SpectralAverages',2);

Construct the ArrayPlot to plot the magnitude response

AP = dsp.ArrayPlot('PlotType','Line','YLimits', [-80 5],...
 'YLabel','Magnitude (dB)','SampleIncrement', Fs/FL,...
 'XLabel','Frequency (Hz)','Title','Magnitude Response',...
 'ShowLegend', true,'ChannelNames',{'Magnitude Response'});

Filter the Input and show the magnitude response of the estimated transfer function between the
input and the filtered output

tic;
while toc < 5
 in = randn(FL,1);
 out = 0.5.*(APF1(in) + APF2(in));
 A = TFE(in, out);
 AP(db(A));
end

 dsp.AllpassFilter

4-31

Algorithms
The transfer function of an allpass filter is given by

H(z) = c(n) + c(n− 1)z−1 + ... + z−n

1 + c(1)z−1 + ... + c(n)z−n .

c is allpass polynomial coefficients vector. The order, n, of the transfer function is the length of vector
c.

In the minimum multiplier form and wave digital form, the allpass filter is implemented as a cascade
of either second-order (biquad) sections or first-order sections. When the coefficients are specified as
an N-by-2 matrix, each row of the matrix specifies the coefficients of a second-order filter. The last
element of the last row can be ignored based on the trailing first-order setting. When the coefficients
are specified as an N-by-1 matrix, each element in the matrix specifies the coefficient of a first-order
filter. The cascade of all the filter sections forms the allpass filter.

In the lattice form, the coefficients are specified as a vector.

These structures are computationally more economical and structurally more stable compared to the
generic IIR filters, such as df1, df1t, df2, df2t. For all structures, the allpass filter can be a single-
section or a multiple-section (cascaded) filter. The different sections can have different orders, but
they are all implemented according to the same structure.

4 System Objects

4-32

Minimum Multiplier

This structure realizes the allpass filter with the minimum number of required multipliers, equal to
the order n. It also uses 2n delay units and 2n adders. The multipliers uses the specified coefficients,
which are equal to the polynomial vector c in the allpass transfer function. In this second-order
section of the minimum multiplier structure, the coefficients vector, c, is equal to [0.1 -0.7].

Wave Digital Filter

This structure uses n multipliers, but only n delay units, at the expense of requiring 3n adders. To use
this structure, specify the coefficients in wave digital filter (WDF) form. Obtain the WDF equivalent of
the conventional allpass coefficients using allpass2wdf(allpass_coefficients). To convert
WDF coefficients into the equivalent allpass polynomial form, use wdf2allpass(WDF
coefficients). In this second-order section of the WDF structure, the coefficients vector w is equal
to allpass2wdf([0.1 -0.7]).

 dsp.AllpassFilter

4-33

Lattice

This lattice structure uses 2n multipliers, n delay units, and 2n adders. To use this structure, specify
the coefficients as a vector.

You can obtain the lattice equivalent of the conventional allpass coefficients using
transpose(tf2latc(1, [1 allpass_coefficients])). In the following second-order section
of the lattice structure, the coefficients vector is computed using transpose(tf2latc(1, [1 0.1
-0.7])). Use these coefficients for a filter that is functionally equivalent to the minimum multiplier
structure with coefficients [0.1 -0.7].

4 System Objects

4-34

Compatibility Considerations
Cell Array Support for dsp.AllpassFilter System object is removed
Errors starting in R2018b

The following properties of dsp.AllpassFilter System object have been removed in R2018b:

• LatticeCoefficients
• AllpassCoefficients
• WDFCoefficients

Use an N-by-1 or N-by-2 numeric array instead.

Update Code

This table shows typical usage of the System object and explains how to update your existing code.

If your code has this form: Use this code instead:
allpass = dsp.AllpassFilter;
allpass.AllpassCoefficients = {0.5 0.7}

allpass = dsp.AllpassFilter;
allpass.AllpassCoefficients = [0.5 0.7]

allpass = dsp.AllpassFilter('Structure','Lattice');
allpass.LatticeCoefficients = {-0.4714 0.5000}

allpass = dsp.AllpassFilter('Structure','Lattice');
allpass.LatticeCoefficients = [-0.4714 0.5000]

allpass = dsp.AllpassFilter('Structure','Wave Digital Filter');
allpass.LatticeCoefficients = {0.5000 -0.4714}

allpass = dsp.AllpassFilter('Structure','Wave Digital Filter');
allpass.LatticeCoefficients = [0.5000 -0.4714]

References
[1] Regalia, Philip A. and Mitra Sanjit K. and Vaidyanathan, P. P. (1988) “The Digital All-Pass Filter:

AVersatile Signal Processing Building Block.” Proceedings of the IEEE, Vol. 76, No. 1, 1988,
pp. 19–37

[2] M. Lutovac, D. Tosic, B. Evans, Filter Design for Signal Processing Using MATLAB and
Mathematica. Upper Saddle River, NJ: Prentice Hall, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The System object supports code generation only when the Structure property is set to
Minimum multiplier or Lattice.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
freqz | fvtool | impz | info | coeffs | cost | grpdelay | allpass2wdf

 dsp.AllpassFilter

4-35

Objects
dsp.BiquadFilter | dsp.IIRFilter

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2013a

4 System Objects

4-36

dsp.AllpoleFilter
Package: dsp

IIR Filter with no zeros

Description
The dsp.AllpoleFilter object filters each channel of the input using allpole filter
implementations.

To filter each channel of the input:

1 Create the dsp.AllpoleFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
allpole = dsp.AllpoleFilter
allpole = dsp.AllpoleFilter(Name,Value)

Description

allpole = dsp.AllpoleFilter returns an allpole filter System object, allpole, which
independently filters each channel of the input over successive calls to the algorithm. This System
object uses a specified allpole filter implementation.

allpole = dsp.AllpoleFilter(Name,Value) returns an allpole filter System object, allpole,
with each property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Structure — Filter structure
Direct form (default) | Direct form transposed | Lattice AR

Specify the filter structure as one of | Direct form | Direct form transposed | Lattice AR.
Analysis methods are not supported for fixed-point processing if the structure is Direct form or
Direct form transposed. This property is nontunable.

 dsp.AllpoleFilter

4-37

Denominator — Filter denominator coefficients
[1 0.1] (default) | row vector

Specify the denominator coefficients as a numeric row vector.

Tunable: Yes
Dependencies

This property is applicable when the Structure property is set to one of Direct form | Direct
form transposed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ReflectionCoefficients — Lattice filter coefficients
[0.2 0.4] (default) | row vector

Specify the lattice filter coefficients as a numeric row vector.

Tunable: Yes
Dependencies

This property is applicable when the Structure property is set to Lattice AR.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialConditions — Initial conditions for the filter states
0 (default) | scalar | vector | matrix

Specify the initial conditions of the filter states.

You can specify the initial conditions as a scalar, vector, or matrix. If you specify a scalar value, this
System object initializes all delay elements in the filter to that value. You can also specify a vector
whose length equals the number of delay elements in the filter. When you do so, each vector element
specifies a unique initial condition for the corresponding delay element. The object applies the same
vector of initial conditions to each channel of the input signal.

You can also specify a matrix with the same number of rows as the number of delay elements in the
filter and one column for each channel of the input signal. In this case, each element specifies a
unique initial condition for the corresponding delay element in the corresponding channel.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CoefficientsDataType — Denominator coefficients word- and fraction-length designations
Same word length as input (default) | Custom

Specify the denominator coefficients fixed-point data type as one of Same word length as input |
Custom. This property is nontunable.

ReflectionCoefficientsDataType — Reflection coefficients word- and fraction-length
designations
Same word length as input (default) | Custom

Specify the reflection coefficients fixed-point data type as one of Same word length as input |
Custom. This property is nontunable.

4 System Objects

4-38

Fixed-Point Properties

ProductDataType — Product word- and fraction-length designations
Full precision (default) | Same as input | Custom

Specify the product fixed-point data type as one of | Full precision | Same as input | Custom |.
This property is nontunable.

AccumulatorDataType — Accumulator word- and fraction-length designations
Full precision (default) | Same as input | Same as product | Custom

Specify the accumulator fixed-point data type to one of | Full precision | Same as input | Same
as product | Custom |. This property is nontunable.

OutputDataType — Output word- and fraction-length designations
Same as input (default) | Same as accumulator | Custom

Specify the output fixed-point data type as one of | Same as accumulator | Same as input |
Custom |. This property is nontunable.

StateDataType — State word- and fraction-length designations
Same as accumulator (default) | Same as input | Custom

Specify the state fixed-point data type as one of | Same as input | Same as accumulator |
Custom. This property is nontunable.

CustomCoefficientsDataType — Custom denominator word- and fraction-lengths
numerictype ([],16,15) (default) | numerictype

Specify the denominator coefficients fixed-point type as an autosigned numerictype (Fixed-Point
Designer) object. This property is nontunable.

Dependencies

This property is applicable when the CoefficientsDataType property is Custom.

CustomReflectionCoefficientsDataType — Custom reflection coefficients word- and
fraction-lengths
numerictype ([],16,15) (default) | numerictype

Specify the denominator coefficients fixed-point type as an autosigned numerictype (Fixed-Point
Designer) object. This property is nontunable.

Dependencies

This property is applicable when the ReflectionCoefficientsDataType property is Custom.

CustomProductDataType — Custom Product word- and fraction-lengths
numerictype ([],32,30) (default) | numerictype

Specify the product fixed-point type as an autosigned scaled numerictype object. This property is
nontunable.

Dependencies

This property applies when you set the ProductDataType property to Custom.

 dsp.AllpoleFilter

4-39

CustomAccumulatorDataType — Custom accumulator word- and fraction-lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as an autosigned scaled numerictype object. This property
is nontunable.

Dependencies

This property applies when you set the AccumulatorDataType property to Custom.

CustomStateDataType — Custom state word- and fraction-lengths
numerictype([],16,15) (default) | numerictype

Specify the state fixed-point type as an autosigned scaled numerictype object. This property is
nontunable.

Dependencies

This property applies when you set the StateDataType property to Custom.

CustomOutputDataType — Custom output word- and fraction-lengths
numerictype([],16,15) (default) | numerictype

Specify the output fixed-point type as an autosigned scaled numerictype object. This property is
nontunable.

Dependencies

This property applies when you set the OutputDataType property to Custom.

Usage

Syntax
y = allpole(x)

Description

y = allpole(x) filters the real or complex input signal x using an allpole filter to produce the
output y.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. This object also accepts variable-size inputs. Once the
object is locked, you can change the size of each input channel, but you cannot change the number of
channels.

When the input data is of a fixed-point type, it must be signed. The allpole filter object operates on
each channel of the input signal independently over successive calls to the algorithm.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

4 System Objects

4-40

Output Arguments

y — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix. The size, data type, and complexity of the output
signal matches that of the input signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.AllpoleFilter
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
impz Impulse response of discrete-time filter System object
info Information about filter System object
coeffs Returns the filter System object coefficients in a structure
cost Estimate cost of implementing filter System object
grpdelay Group delay response of discrete-time filter System object
phasez Phase response of discrete-time filter System object (unwrapped)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Lowpass filtering a waveform with two frequencies

Use an Allpole filter to apply a lowpass filter to a waveform with two sinusoidal frequencies.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

 t = (0:1000)./8e3;
 xin = sin(2*pi*1e3*t)+sin(2*pi*3e3*t);

 src = dsp.SignalSource(xin', 4);
 sink = dsp.SignalSink;
 allpole = dsp.AllpoleFilter;
 tt = (-25:25)';
 xsinc = 0.4*sinc(0.4*tt);
 asinc = lpc(xsinc,51);
 allpole.Denominator = asinc;

 dsp.AllpoleFilter

4-41

 sa = dsp.SpectrumAnalyzer('SampleRate',8e3,...
 'PlotAsTwoSidedSpectrum',false,...
 'OverlapPercent', 80,'PowerUnits','dBW',...
 'YLimits', [-150 50]);

while ~isDone(src)
 input = src();
 filteredOutput = allpole(input);
 sink(filteredOutput);
 sa(filteredOutput)
 end

 filteredResult = sink.Buffer;
 fvtool(allpole,'Fs',8000)

4 System Objects

4-42

Algorithms
This object implements the algorithm, inputs, and outputs described on the Allpole Filter block
reference page. The object properties correspond to the block parameters.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the Denominator property is tunable for code generation.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
freqz | fvtool | impz | info | coeffs | cost | grpdelay

Objects
dsp.BiquadFilter | dsp.FIRFilter | dsp.IIRFilter

 dsp.AllpoleFilter

4-43

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2012b

4 System Objects

4-44

dsp.AnalyticSignal
Package: dsp

Analytic signals of discrete-time inputs

Description
The dsp.AnalyticSignal System object computes analytic signals of discrete-time inputs. The real
part of the analytic signal in each channel is a replica of the real input in that channel, and the
imaginary part is the Hilbert transform of the input. In the frequency domain, the analytic signal
doubles the positive frequency content of the original signal while zeroing-out negative frequencies
and retaining the DC component. The object computes the Hilbert transform using an equiripple FIR
filter.

To compute the analytic signal of a discrete-time input:

1 Create the dsp.AnalyticSignal object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
anaSig = dsp.AnalyticSignal
anaSig = dsp.AnalyticSignal(order)
anaSig = dsp.AnalyticSignal(Name,Value)

Description

anaSig = dsp.AnalyticSignal returns an analytic signal object, anaSig, that computes the
complex analytic signal corresponding to each channel of a real M-by-N input matrix.

anaSig = dsp.AnalyticSignal(order) returns an analytic signal object, anaSig, with the
“FilterOrder” on page 4-0 property set to order.

anaSig = dsp.AnalyticSignal(Name,Value) returns an analytic signal object, anaSig, with
each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 dsp.AnalyticSignal

4-45

FilterOrder — Filter order used to compute Hilbert transform
100 (default) | scalar integer

Order of the equiripple FIR filter used in computing the Hilbert transform, specified as an even
integer scalar greater than 3.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
y = anaSig(x)

Description

y = anaSig(x) computes the analytic signal, y, of the M-by-N input matrix x, according to the
equation

Y = X + jH X

where j is the imaginary unit and H X denotes the Hilbert transform.

Each of the N columns in x contains M sequential time samples from an independent channel. The
method computes the analytic signal for each channel.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix.
Data Types: single | double

Output Arguments

y — Analytic signal output
vector | matrix

Analytic signal output, returned as a vector or a matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm

4 System Objects

4-46

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Compute The Analytic Signal

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Compute the analytic signal of a sinusoidal input.

t = (-1:0.01:1)';
x = sin(4*pi*t);
anaSig = dsp.AnalyticSignal(200);
y = anaSig(x);

View the analytic signal.

subplot(2,1,1);
plot(t, x)
title('Original Signal');
subplot(2,1,2), plot(t, [real(y) imag(y)]);
title('Analytic signal of the input')
legend('Real signal','Imaginary signal',...
 'Location','best');

 dsp.AnalyticSignal

4-47

Algorithms
This object implements the algorithm, inputs, and outputs described on the Analytic Signal block
reference page. The object properties correspond to the block parameters.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object also supports SIMD code generation using Intel AVX2 technology under these conditions:

• Input signal is real-valued.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

4 System Objects

4-48

See Also
Objects
dsp.FFT | dsp.IFFT

Introduced in R2012a

 dsp.AnalyticSignal

4-49

dsp.ArrayPlot
Display vectors or arrays

Description
Display vectors or arrays where the data is uniformly spaced along the x-axis.

Creation

Syntax
scope = dsp.ArrayPlot
scope = dsp.ArrayPlot(Name,Value)

Description

scope = dsp.ArrayPlot creates an Array Plot object, scope.

4 System Objects

4-50

scope = dsp.ArrayPlot(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes. For example, scope =
dsp.ArrayPlot("NumInputPorts",3)

Properties
Most properties can be changed from the dsp.ArrayPlot UI.

Plot Configuration

NumInputPorts — Number of input ports
1 (default) | integer between [1, 96]

Number of input ports, specified as a positive integer. Each signal coming through a separate input
becomes a separate channel in the scope. You must invoke the scope with the same number of inputs
as the value of this property.

XDataMode — Source of the x-data spacing
"Sample increment and X-offset" (default) | "Custom"

Specify whether to use the SampleIncrement and XOffset property values to determine spacing,
or specify your own custom spacing. If you specify "Custom", you also must specify the
CustomXData property values.

You can set this property only when creating the object.

Scope Window Use

Open the Plot tab, click Settings, and set X-Data Mode.
Data Types: char | string

CustomXData — X-data values
empty vector (default) | vector

Specify the desired x-data values as a row or column vector of length equal to the frame length of the
individual inputs. If you use the default (empty vector) value, the x-data is uniformly spaced and set to
(0:L–1), where L is the frame length.

You can set this property only when creating the object.
Example: scope =
dsp.ArrayPlot("XDataMode","Custom","CustomXData",logspace(0,log10(44100/2),10
24))

Scope Window Use

Open the Plot tab, click Settings, and set X-Data Mode to Custom and specify Custom X-Data.

Dependency

To use this property, set XDataMode to "Custom".

SampleIncrement — Sample increment of input
1 (default) | finite numeric scalar

 dsp.ArrayPlot

4-51

Specify the spacing between samples along the x-axis as a finite numeric scalar. The input signal is
only y-axis data. x-axis data is set automatically based on the XOffset and SampleIncrement
properties.
Example: When XOffset is 0 and SampleIncrement is 1, the x-axis values are set to 0, 1, 2, 3,
4, … .
Example: When XOffset is -1 and SampleIncrement is 0.25, the x-axis values are set to -1,
-0.75, -0.5, -0.25, 0, … .

Scope Window Use

Open the Plot tab, click Settings, and set Sample Increment.
Dependency

To use this property, set XDataMode to 'Sample increment and X-offset'.

XOffset — Display offset of x-axis
0 (default) | scalar

Display offset of x-axis, specified as a numeric scalar. x-axis data is set automatically based on both
the SampleIncrement and XOffset values. The x-offset represents the first value on the x-axis.
Example: When XOffset is 0 and SampleIncrement is 1, the x-axis values are set to 0, 1, 2, 3, 4,
… .
Example: When XOffset is -1 and SampleIncrement is 0.25, the x-axis values are set to -1, -0.75,
-0.5, -0.25, 0, … .

Scope Window Use

Open the Plot tab, click Settings, and set X-Offset.
Dependency

To use this property, set XDataMode to 'Sample increment and X-offset'.

XScale — Scale of x-axis
"Linear" (default) | "Log"

Specify whether the scale of the x-axis is "Linear" or "Log". If XOffset is a negative value, you
cannot set this property to "Log".

Scope Window Use

Open the Plot tab, click Settings, and set XScale.
Data Types: char | string

YScale — Scale of y-axis
"Linear" (default) | "Log"

Specify whether the scale of the y-axis is "Linear" or "Log".

Scope Window Use

Open the Plot tab, click Settings, and set YScale.
Data Types: char | string

4 System Objects

4-52

PlotType — Control type of plot
"Stem" (default) | "Line" | "Stairs"

Specify the type of plot to use for all the input signals displayed in the scope window:

• "Stem" – The scope displays the input signal as circles with vertical lines extending down to the
x-axis at each of the sampled values.

• "Line" – The scope displays the input signal as lines connecting each of the sampled values.
• "Stairs" – The scope displays the input signal as a stair-step graph. A stair-step graph is made

up of only horizontal lines and vertical lines. Each horizontal line represents the signal value for a
discrete sample period and is connected to two vertical lines. Each vertical line represents a
change in values occurring at a sample. Stair-step graphs are useful for drawing time history
graphs of digitally sampled data.

Scope Window Use

Open the Settings and set Plot Type.

AxesScaling — Axes scaling mode
"OnceAtStop" (default) | "Auto" | "Manual" | "Updates"

Specify when the scope scales the axes. Valid values are:

• "Auto" — The scope scales the axes as needed to fit the data, both during and after simulation.
• "Manual" — The scope does not scale the axes automatically.
• "OnceAtStop" — The scope scales the axes when the simulation stops.
• "Updates" — The scope scales the axes once and only once after 10 updates.

You can set this property only when creating the object.
Scope Window Use

Hover over the array plot to see the zoom , pan , and autoscale buttons. You can also
zoom and pan using your mouse.
Data Types: char | string

Visualization

Name — Window name
'Array Plot' (default) | character vector | string scalar

Specify the name of the scope. This name appears as the title of the scope's figure window. To specify
a title of a scope plot, use the Title property.
Data Types: char | string

Position — Scope window position and size in pixels
screen center (default) | [left bottom width height]

Specify, in pixels, the size and location of the scope window as a four-element vector of the form
[left bottom width height]. By default, the scope window appears in the center of your screen
with a width of 800 pixels and height of 450 pixels. The default values for this property may change
depending on your screen resolution.

 dsp.ArrayPlot

4-53

MaximizeAxes — Maximize axes control
"Auto" (default) | "On" | "Off"

Specify whether to display the scope in maximized-axes mode. In this mode, the axes are expanded to
fit into the entire display. To conserve space, labels do not appear in each display. Instead, tick-mark
values appear on top of the plotted data. You can select one of the following options:

• "Auto" — The axes appear maximized in all displays only if the Title and YLabel properties are
empty for every display. If you enter any value in any display for either of these properties, the
axes are not maximized.

• "On" — The axes appear maximized in all displays. Any values entered into the Title and
YLabel properties are hidden.

• "Off" — None of the axes appear maximized.

Scope Window Use

Hover over the array plot to see the maximize axes button .
Data Types: char | string

Title — Display title
'' (default) | character vector | string scalar

Specify the display title as a character vector or string.

Scope Window Use

Open the Plot tab, click Settings, and set Title.
Data Types: char | string

ShowLegend — Show legend
false (default) | true

To show a legend with the input names, set this property to true.

From the legend, you can control which signals are visible. This control is equivalent to changing the
visibility in the Style dialog box. In the scope legend, click a signal name to hide the signal in the
scope. To show the signal, click the signal name again. To show only one signal, right-click the signal
name. To show all signals, press Esc.

Note The legend only shows the first 20 signals. Any additional signals cannot be viewed or
controlled from the legend.

Scope Window Use

On the Plot tab, click Legend.
Data Types: logical

ChannelNames — Channel names
empty cell (default) | cell array of character vectors

4 System Objects

4-54

Specify the input channel names as a cell array of character vectors. The names appear in the legend,
Settings, and Measurements panels. If you do not specify names, the channels are labeled as
Channel 1, Channel 2, etc.

Dependency

To see channel names, set ShowLegend to true.
Data Types: char

ShowGrid — Display grid
true (default) | false

Set this property to true to show grid lines on the plot.

Scope Window Use

Open the Plot tab, click Settings, and select Grid.

PlotAsMagnitudePhase — Plot signal as magnitude and phase
false (default) | true

• true – The scope plots the magnitude and phase of the input signal on two separate axes within
the same active display.

• false – The scope plots the real and imaginary parts of the input signal on two separate axes
within the same active display.

This property is useful for complex-valued input signals. Turning on this property affects the phase
for real-valued input signals. When the amplitude of the input signal is nonnegative, the phase is 0
degrees. When the amplitude of the input signal is negative, the phase is 180 degrees.

Scope Window Use

On the Plot tab, select the Magnitude Phase button.

XLabel — x-axis label
"" (default) | character vector | string scalar

Specify the text for the scope to display below the x-axis.

Scope Window Use

Open the Plot tab, click Settings, and set XLabel.
Data Types: char | string

YLabel — y-axis label
"Amplitude" (default) | character vector | string scalar

Specify the text for the scope to display to the left of the y-axis.

Dependencies

This property applies only when PlotAsMagnitudePhase is false. When
PlotAsMagnitudePhase is true, the two y-axis labels are read-only values "Magnitude" and
"Phase", for the magnitude plot and the phase plot, respectively.

 dsp.ArrayPlot

4-55

Scope Window Use

Open the Plot tab, click Settings, and set YLabel.
Data Types: char | string

YLimits — y-axis limits
[-10,10] (default) | [ymin, ymax]

Specify the y-axis limits as a two-element numeric vector, [ymin, ymax].

If PlotAsMagnitudePhase is false, the default is [-10,10]. If PlotAsMagnitudePhase is true,
the default is [0,10].

Dependencies

When PlotAsMagnitudePhase is true, this property specifies the y-axis limits of only the
magnitude plot. The y-axis limits of the phase plot are always [-180,180].

Scope Window Use

Open the Plot tab, click Settings, and set Y-Axis Limits as a two-element numeric vector.

Usage

Syntax
scope(signal)
scope(signal1,signal2,...,signalN)

Description

scope(signal) displays the signal in the Array Plot.

scope(signal1,signal2,...,signalN) displays multiple signals in the Array Plot. The signals
can have a different number of channels and different frame lengths.

Input Arguments

signal — Input signal or signals to visualize
scalar | vector | matrix

Specify one or more input signals to visualize in the dsp.ArrayPlot. Signals can have a different
number of channels and different frame lengths.
Example: scope(signal1,signal2)

UI Customization

To customize the style of signals on the array plot, open the Settings and use the bottom row of
options to select a signal and modify the style, width, color, and marker type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

4 System Objects

4-56

Object Functions
To use an object function, specify the object as the first input argument.
generateScript Generate MATLAB script to create scope with current settings
hide Hide scope window
show Display scope window
isVisible Determine visibility of scope
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

If you want to restart the simulation from the beginning, call reset to clear the scope window
displays. Do not call reset after calling release.

Examples

Plot a Gaussian Distribution

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the object with the equivalent step syntax. For example, myObject(x) becomes
step(myObject,x).

Create a new Array Plot object.

scope = dsp.ArrayPlot;

Configure the properties of the Array Plot object for a Gaussian distribution.

scope.YLimits = [0 1];
scope.XOffset = -2.5;
scope.SampleIncrement = 0.1;
scope.Title = 'Gaussian distribution';
scope.XLabel = 'X';
scope.YLabel = 'f(X)';

Call the Array Plot object to plot a Gaussian distribution.

scope(exp(-(-2.5:.1:2.5).*(-2.5:.1:2.5))')

 dsp.ArrayPlot

4-57

Plot Changing Filter Weights

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the object with the equivalent step syntax. For example, myObject(x) becomes
step(myObject,x).

View least mean squares (LMS) adaptive filter weights on the Array Plot figure. Watch the filter
weights change as they adapt to filter a noisy input signal.

Create an LMS adaptive filter System object.

lmsFilter = dsp.LMSFilter(40,'Method',...
 'Normalized LMS',...
 'StepSize',0.002);

Create and configure a dsp.AudiFileReader System object to read the input signal from the specified
audio file.

signalSource = dsp.AudioFileReader('dspafxf_8000.wav',...
 'SamplesPerFrame',40, ...
 'PlayCount',Inf,...
 'OutputDataType','double');

Create and configure a dsp.FIRFilter System object to filter random white noise, creating colored
noise.

4 System Objects

4-58

firFilter = dsp.FIRFilter('Numerator',fir1(39,0.25));

Create and configure an Array Plot System object to display the adaptive filter weights.

scope = dsp.ArrayPlot('XLabel','Filter Tap', ...
 'YLabel','Filter Weight', ...
 'YLimits',[-0.05 0.2]');

Plot the LMS filter weights as they adapt to a desired signal. Read from the audio file, produce
random data, and filter the random data. Update the filter weights and plot the filter weights.

numplays = 0;
while numplays < 3
 [y, eof] = signalSource();
 noise = rand(40,1);
 noisefilt = firFilter(noise);
 desired = y + noisefilt;
 [~, ~, wts] = lmsFilter(noise,desired);
 scope(wts);
 numplays = numplays + eof;
end

Tips
• To close the Array Plot window and clear its associated data, use the MATLAB clear function.

 dsp.ArrayPlot

4-59

• To hide or show the Array Plot window, use the hide and show functions.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports MEX code generation by treating the calls to the object as extrinsic. Does not support
code generation for standalone applications.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.MatrixViewer | timescope | dsp.SpectrumAnalyzer | dsp.LogicAnalyzer |
dsp.DynamicFilterVisualizer

Blocks
Array Plot

Topics
“Configure Array Plot”
“Visualize Central Limit Theorem in Array Plot”

Introduced in R2013a

4 System Objects

4-60

dsp.ArrayVectorAdder
Package: dsp

(To be removed) Add array to vector along specified dimension

Note dsp.ArrayVectorAdder will be removed in a future release. Use the + operator instead. For
more information, see “Compatibility Considerations”.

Description
The ArrayVectorAdder object adds an N-D array to a vector along a specified dimension. The
length of the vector must equal the size of the N-D array along the specified dimension.

To add an N-D array to a vector along a specified dimension:

1 Define and set up your array-vector addition object. See “Construction” on page 4-61.
2 Call step to add the N-D array according to the properties of dsp.ArrayVectorAdder. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
ava = dsp.ArrayVectorAdder returns an array-vector addition object, ava, that adds a vector to
an N-D array along the first dimension.

ava = dsp.ArrayVectorAdder('PropertyName',PropertyValue, ...) returns an array-
vector addition object, ava, with each property set to the specified value.

Properties
Dimension

Dimension along which to add vector elements to input

Specify the dimension along which to add the input array to the elements of the vector as a positive
integer. The length of the vector must match the size of the N-D array along the specified dimension.
The default is 1.

VectorSource

Source of vector

Specify the source of the vector values as |Input port | Property |. The default is Input port.

 dsp.ArrayVectorAdder

4-61

Vector

Vector values

Specify the vector values. This property applies only when you set the VectorSource property to
Property. The default is [0.5 0.25]. This property is tunable.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects”.

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as | Ceiling | Convergent | Floor | Nearest | Round | Simplest |
Zero |. The default is Floor. This property applies only if the object is not in full precision mode.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as | Wrap | Saturate |. The default is Wrap. This property applies only if
the object is not in full precision mode.

VectorDataType

Vector word and fraction lengths

Specify the vector fixed-point data type as | Same word length as input | Custom |. This
property applies when you set the VectorSource property to Property. The default is Same word
length as input.

CustomVectorDataType

Vector word and fraction lengths

Specify the vector fixed-point type as a numerictype object with a Signedness of Auto. This
property applies when you set the VectorSource property to Property and the VectorDataType
property to Custom. The default is numerictype([],16,15).

AccumulatorDataType

Accumulator word and fraction lengths

4 System Objects

4-62

Specify the accumulator fixed-point data type as | Full precision | Same as first input |
Custom |. The default is Full precision.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto. This property applies only when the AccumulatorDataType property is Custom. The default
is numerictype([],32,30).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as | Same as accumulator | Same as first input |
Custom |.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies only when the “OutputDataType” on page 4-0 property is Custom. The
default is numerictype([],16,15).

Methods

step Add vector to N-D array

Common to All System Objects
release Allow System object property value changes

Examples

Add a Vector To a Matrix

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Add a 2-by-1 vector to a 2-by-2 matrix along the first dimension of the array.

ava = dsp.ArrayVectorAdder;
a = ones(2);

 dsp.ArrayVectorAdder

4-63

x = [1 2]';
y = ava(a, x);

Algorithms
This object implements the algorithm, inputs, and outputs described on the Array-Vector Add block
reference page. The object properties correspond to the block parameters, except:

The array-vector addition object does not have Minimum or Maximum options for data output.

Compatibility Considerations
dsp.ArrayVectorAdder System object will be removed
Warns starting in R2021b

dsp.ArrayVectorAdder System object will be removed in a future release. Use the + operator
instead.

Update Code

This table shows how the System object is typical used and explains how to update existing code to
use the + operator.

Discouraged Usage Recommended Replacement
ava = dsp.ArrayVectorAdder;
a = ones(2);
x = [1 2]';
y = ava(a, x)

y = 2×2

 2 2
 3 3

If you are using a release prior to R2016b,
replace ava(a,x) with step(ava,a,x).

y = a + x

y = 2×2

 2 2
 3 3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Introduced in R2012a

4 System Objects

4-64

step
System object: dsp.ArrayVectorAdder
Package: dsp

Add vector to N-D array

Syntax
Y = step(ava,A)
Y = step(ava,A,V)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(ava,A) returns Y , the result of adding the input array A to the elements of the vector
specified in the Vector property along the specified dimension when the VectorSource property is
Property. The length of the vector specified in the Vector property must equal the length of the
specified dimension of A.

Y = step(ava,A,V) returns Y , the result of adding the input array A to the elements of the input
vector V along the specified dimension when the VectorSource property is Input port. The length
of the input V must equal the length of the specified dimension of A.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

 step

4-65

dsp.ArrayVectorDivider
Package: dsp

(To be removed) Divide array by vector along specified dimension

Note dsp.ArrayVectorDivider will be removed in a future release. Use the ./ operator instead.
For more information, see “Compatibility Considerations”.

Description
The ArrayVectorDivider object divides an array by a vector along a specified dimension.

To divide an array by a vector along a specified dimension:

1 Define and set up your array-vector division object. See “Construction” on page 4-66.
2 Call step to divide the array according to the properties of dsp.ArrayVectorDivider. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
avd = dsp.ArrayVectorDivider returns an array-vector division object, avd, that divides an
input array by the elements of a vector along the first dimension of the array.

avd = dsp.ArrayVectorDivider('PropertyName',PropertyValue,...) returns an array-
vector division object, avd, with each property set to the specified value.

Properties
Dimension

Dimension along which to divide input by vector elements

Specify the dimension along which to divide the input array by the elements of a vector as a positive
integer. The default is 1.

VectorSource

Source of vector

Specify the source of the vector values as | Input port | Property |. The default is Input port.

Vector

Vector values

4 System Objects

4-66

Specify the vector values. This property applies when you set the VectorSource property to
Property. The default is [0.5 0.25]. This property is tunable.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as | Ceiling | Convergent | Floor | Nearest | Round | Simplest |
Zero |. The default is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as | Wrap | Saturate |. The default is Wrap.

VectorDataType

Vector word and fraction lengths

Specify the vector fixed-point mode as | Same word length as input | Custom |. This property
applies when you set the VectorSource property to Property. The default is Same word length
as input.

CustomVectorDataType

Vector word and fraction lengths

Specify the vector fixed-point data type as a scaled numerictype object with a Signedness of
Auto. This property applies when you set the VectorSource property to Property and the
VectorDataType property to Custom. The default is numerictype([],16,15).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as | Same as first input | Custom |. The default is Same
as first input.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies when you set the “OutputDataType” on page 4-0 property to Custom. The
default is numerictype([],16,15).

Methods

step Divide array by vector

 dsp.ArrayVectorDivider

4-67

Common to All System Objects
release Allow System object property value changes

Examples

Divide a Matrix By a Vector

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

avd = dsp.ArrayVectorDivider;
a = ones(2);
x = [2 3]';
y = avd(a, x)

y = 2×2

 0.5000 0.5000
 0.3333 0.3333

Algorithms
This object implements the algorithm, inputs, and outputs described on the Array-Vector Divide block
reference page. The object properties correspond to the block parameters, except:

The array-vector division object does not have Minimum or Maximum options for data output.

Compatibility Considerations
dsp.ArrayVectorDivider System object will be removed
Warns starting in R2021b

dsp.ArrayVectorDivider System object will be removed in a future release. Use the ./ operator
instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the ./ operator.

4 System Objects

4-68

Discouraged Usage Recommended Replacement
Column-wise array division

By default, the object computes column-wise
array division since the Dimension property of
the object is set to 1.

avd = dsp.ArrayVectorDivider;
a = ones(2);
x = [2; 3];
y = avd(a, x)

y = 2×2

 0.5000 0.5000
 0.3333 0.3333

Row-wise array division

To perform row-wise array division, set the
Dimension property to 2 and rerun the object
algorithm.

release(avd);
avd.Dimension = 2;
y = avd(a, x)

y = 2×2

 0.5000 0.3333
 0.5000 0.3333

If you are using a release prior to R2016b,
replace avd(a,x) with step(avd,a,x).

Column-wise array division

y = a ./ x

y = 2×2

 0.5000 0.5000
 0.3333 0.3333

Row-wise array division

y = a ./ x'

y = 2×2

 0.5000 0.3333
 0.5000 0.3333

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Introduced in R2012a

 dsp.ArrayVectorDivider

4-69

step
System object: dsp.ArrayVectorDivider
Package: dsp

Divide array by vector

Syntax
Y = step(avd,A,V)
Y = step(avd,A)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(avd,A,V) returns Y , the result of dividing the input array A by the elements of input
vector V along the specified dimension when the VectorSource property is Input port. The length
of the input V must equal the length of the specified dimension of A.

Y = step(avd,A) returns Y , the result of dividing the input array A by the elements of the vector
specified in the Vector property along the specified dimension when the VectorSource property is
Property. The length of the vector specified in the Vector property must equal the length of the
specified dimension of A.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-70

dsp.ArrayVectorMultiplier
Package: dsp

(To be removed) Multiply array by vector along specified dimension

Note dsp.ArrayVectorMultiplier will be removed in a future release. Use the .* operator
instead. For more information, see “Compatibility Considerations”.

Description
The ArrayVectorMultiplier object multiplies an array by a vector along a specified dimension.

To multiply an array by a vector along a specified:

1 Define and set up your array-vector multiplication object. See “Construction” on page 4-71.
2 Call step to multiply the array according to the properties of dsp.ArrayVectorMultiplier.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
avm = dsp.ArrayVectorMultiplier returns an array-vector multiplication object, avm, that
multiplies an input N-D array by the elements of a vector along the second dimension.

avm = dsp.ArrayVectorMultiplier('PropertyName',PropertyValue,...) returns an
array-vector multiplication object, avm, with each property set to the specified value.

Properties
Dimension

Dimension along which to multiply input by vector elements

Specify the dimension along which to multiply the input array by the elements of vector as a positive
integer. The default is 2.

VectorSource

Source of vector

Specify the source of the vector values as one of Input port or Property. The default is Input
port.

 dsp.ArrayVectorMultiplier

4-71

Vector

Vector to multiply array

Specify the vector by which to multiply the array. This property applies when you set the
VectorSource property to Property. The default is [0.5 0.25]. This property is tunable.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor , Nearest, Round, Simplest', Zero.
The default is floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default is Wrap.

VectorDataType

Vector word and fraction lengths

Specify the vector fixed-point data type as Same word length as input , Custom. This property
applies when you set the VectorSource property to Property. The default is Same word length
as input.

CustomVectorDataType

Vector word and fraction lengths

Specify the vector fixed-point type as a numerictype object with a Signedness of Auto. This
property applies when you set the VectorSource property to Property and the VectorDataType
property to Custom. The default is numerictype([],16,15).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Full precision , Same as first input, or Custom.
The default is Full precision.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies when you set the ProductDataType property to Custom. The default is
numerictype([],32,30).

AccumulatorDataType

Accumulator word and fraction lengths

4 System Objects

4-72

Specify the accumulator fixed-point data type as Full precision , Same as product, Same as
first input, or Custom. The default is Full precision.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto. This property applies when you set the AccumulatorDataType property to Custom. The
default is numerictype([],32,30).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as product, Same as first input, or Custom.
The default is Same as product.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies when you set the OutputDataType property to Custom. The default is
numerictype([],16,15).

Methods

step Multiply array by vector

Common to All System Objects
release Allow System object property value changes

Examples

Multiply a Matrix by a Vector

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

avm = dsp.ArrayVectorMultiplier;
a = ones(2);
x = [2 3]';
y = avm(a, x)

y = 2×2

 2 3

 dsp.ArrayVectorMultiplier

4-73

 2 3

Algorithms
This object implements the algorithm, inputs, and outputs described on the Array-Vector Multiply
block reference page. The object properties correspond to the block parameters, except:

• The array-vector multiplication object does not have Minimum or Maximum options for data
output.

Compatibility Considerations
dsp.ArrayVectorMultiplier System object will be removed
Warns starting in R2021b

dsp.ArrayVectorMultiplier System object will be removed in a future release. Use the .*
operator instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the .* operator.

4 System Objects

4-74

Discouraged Usage Recommended Replacement
Row-wise array multiplication

By default, the object computes row-wise array
multiplication since the Dimension property of
the object is set to 2.

avm = dsp.ArrayVectorMultiplier;
a = ones(2);
x = [2; 3];
y = avm(a, x)

y = 2×2

 2 3
 2 3

Column-wise array multiplication

To perform column-wise array multiplication, set
the Dimension property to 1 and rerun the
object algorithm.

release(avm);
avm.Dimension = 1;
y = avm(a, x)

y = 2×2

 2 2
 3 3

If you are using a release prior to R2016b,
replace avm(a,x) with step(avm,a,x).

Row-wise array multiplication

y = a .* x'

y = 2×2

 2 3
 2 3

Column-wise array multiplication

y = a .* x

y = 2×2

 2 2
 3 3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Introduced in R2012a

 dsp.ArrayVectorMultiplier

4-75

step
System object: dsp.ArrayVectorMultiplier
Package: dsp

Multiply array by vector

Syntax
Y = step(avm,A,V)
Y = step(avm,A)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(avm,A,V) returns Y , the result of multiplying the input array A by the elements of input
vector V along the specified dimension when the VectorSource property is Input port. The length
of the input V must equal the length of the specified dimension of A.

Y = step(avm,A) returns Y , the result of multiplying the input array A by the elements of vector
specified in Vector property along the specified dimension when the VectorSource property is set
to Property. The length of the vector specified in Vector property must equal the length of the
specified dimension of A.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-76

dsp.ArrayVectorSubtractor
Package: dsp

(To be removed) Subtract vector from array along specified dimension

Note dsp.ArrayVectorSubtractor will be removed in a future release. Use the – operator
instead. For more information, see “Compatibility Considerations”.

Description
The ArrayVectorSubtractor object subtracts a vector from an N-D array along a specified
dimension.

To subtract a vector from an N-D array along a specified dimension:

1 Define and set up your array-vector subtraction object. See “Construction” on page 4-77.
2 Call step to subtract the vector according to the properties of dsp.ArrayVectorSubtractor.

The behavior of step is specified to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
avs = dsp.ArrayVectorSubtractor returns an array-vector subtraction object, avs, that
subtracts the elements of a vector from an N-D input array along the first dimension.

avs = dsp.ArrayVectorSubtractor('PropertyName',PropertyValue,...) returns an
array-vector subtraction object, avs, with each property set to the specified value.

Properties
Dimension

Dimension along which to subtract vector elements from input

Specify the dimension along which to subtract the elements of the vector from the input array as an
integer-valued scalar greater than 0. The default is 1.

VectorSource

Source of vector

Specify the source of the vector values as one of Input port or Property. The default is Input
port.

 dsp.ArrayVectorSubtractor

4-77

Vector

Vector values

Specify the vector values. This property applies when you set the VectorSource property to
Property. The default is [0.5 0.25]. This property is tunable.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects”.

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor , Nearest, Round, Simplest, or
Zero. This property applies only if the object is not in full precision mode.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as one of Wrap or Saturate. The default is Wrap. This property applies
only if the object is not in full precision mode.

VectorDataType

Vector word and fraction lengths

Specify the vector fixed-point data type as Same word length as input or Custom. This property
applies when you set the VectorSource property to Property. The default is Same word length
as input.

CustomVectorDataType

Vector word and fraction lengths

Specify the vector fixed-point type as a numerictype object with a Signedness of Auto. This
property applies when you set the VectorSource property to Property and the VectorDataType
property to Custom. The default is numerictype([],16,15).

AccumulatorDataType

Accumulator word and fraction lengths

4 System Objects

4-78

Specify the accumulator fixed-point data type as one of Full precision , Same as first input,
or Custom. The default is Full precision.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto. This property applies when you set the AccumulatorDataType property to Custom. The
default is numerictype([],32,30).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as accumulator, Same as first input, or
Custom. The default is Same as accumulator.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies when you set the “OutputDataType” on page 4-0 property to Custom. The
default is numerictype([],16,15).

Methods

step Subtract vector from array along specified dimension

Common to All System Objects
release Allow System object property value changes

Examples

Subtract Vector From Matrix

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

avs = dsp.ArrayVectorSubtractor;
a = ones(2);
x = [1 2]';
y = avs(a, x)

y = 2×2

 0 0

 dsp.ArrayVectorSubtractor

4-79

 -1 -1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Array-Vector Subtract
block reference page. The object properties correspond to the block parameters, except:

The array-vector subtraction object does not have Minimum or Maximum options for data output.

Compatibility Considerations
dsp.ArrayVectorSubtractor System object will be removed
Warns starting in R2021b

dsp.ArrayVectorSubtractor System object will be removed in a future release. Use the –
operator instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the – operator.

Discouraged Usage Recommended Replacement
avs = dsp.ArrayVectorSubtractor;
a = ones(2);
x = [1 2]';
y = avs(a, x)

y = 2×2

 0 0
 -1 -1

If you are using a release prior to R2016b,
replace avs(a,x) with step(avs,a,x).

y = a - x

y = 2×2

 0 0
 -1 -1

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Introduced in R2012a

4 System Objects

4-80

step
System object: dsp.ArrayVectorSubtractor
Package: dsp

Subtract vector from array along specified dimension

Syntax
Y = step(avs,A,V)
Y = step(avs,A)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(avs,A,V) returns Y. The value of Y results from subtracting the elements of input vector
V from the input array A along the specified dimension when the VectorSource property is Input
port. The length of the input V must equal the length of the specified dimension of A.

Y = step(avs,A) returns Y. The value of Y results from subtracting the elements of the vector
specified in the Vector property from the input array A along the specified dimension when the
VectorSource property is Property. The length of the vector specified in the Vector property
must equal the length of the specified dimension of A.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

 step

4-81

dsp.AsyncBuffer
Package: dsp

FIFO buffer

Description
The dsp.AsyncBuffer System object writes samples to and reads samples from a first-in, first-out
(FIFO) buffer. The write method writes data to the buffer, and the read method reads data from the
buffer. When creating the object, you can set the number of samples (rows) of the buffer using the
Capacity property. The number of channels (columns) is set during the first call to write. Initialize
the buffer by calling write or setup before the first call to read.

The data that you write occupies the next available space in the buffer. If the buffer is full and all the
data within it is unread (asyncBuff.NumUnreadSamples == asyncBuff.Capacity), the object
overwrites the oldest data with any new data that comes in. The buffer removes data only when the
data is overwritten, so you can reread data from the past. The dsp.AsyncBuffer object supports
writing and reading variable frame size signals. For examples, see “Read Variable Frame Sizes from
Buffer” on page 4-84 and “Write Variable Frame Sizes to Buffer” on page 4-86.

To write and read samples from a FIFO buffer:

• Create a dsp.AsyncBuffer object and set the properties of the object.
• Call write to write samples to the buffer.
• Call read to read samples from the buffer.
• Call peek to read samples without changing the number of unread samples in the buffer.

Creation

Syntax
asyncBuff = dsp.AsyncBuffer
asyncBuff = dsp.AsyncBuffer(cap)

Description

asyncBuff = dsp.AsyncBuffer returns an async buffer System object, asyncBuff, using the
default properties.

asyncBuff = dsp.AsyncBuffer(cap) sets the Capacity property to cap.
Example: asyncBuff = dsp.AsyncBuffer(200000);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

4 System Objects

4-82

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Capacity — Number of writable/readable rows in buffer
192000 (default) | positive integer

Number of writable/readable rows in the buffer, specified as a positive integer greater than or equal
to 2. The number of rows during each write to the buffer must not exceed the capacity of the buffer. If
the buffer is full and all the data within is unread, the object overwrites the oldest data with any new
data that comes in. The CumulativeOverrun property returned by info gives the number of
samples overrun per channel since the last call to reset. The number of samples overrun is the
number of unread samples overwritten.

By default, this property has data type int32.
Example: asyncBuff = dsp.AsyncBuffer(200000);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumUnreadSamples — Number of unread samples in each channel
0 (default) | integer

This property is read-only.

Number of unread samples in each channel (column) of the buffer, specified as an integer greater
than or equal to 0. The total number of unread samples in the buffer is NumUnreadSamples ×
numChann. The variable numChann is the number of channels in the buffer. The number of channels
in the buffer is the number of data columns in the first call to write.

The CumulativeUnderrun property returned by the info method gives the number of samples
underrun per channel since the last call to reset. Underrun occurs if you attempt to read more
samples than available.
Example: asyncBuff = dsp.AsyncBuffer; input = randn(512,1); numUnreadSamples =
write(asyncBuff,input)

Data Types: int32

Usage
To write and read samples from the async buffer:

• Create a dsp.AsyncBuffer object and set the properties of the object.
• Call write to write samples to the buffer.
• Call read to read samples from the buffer.
• Call peek to read samples without changing the number of unread samples in the buffer.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 dsp.AsyncBuffer

4-83

Specific to dsp.AsyncBuffer
info Get cumulative overrun and underrun
read Read data from buffer
write Write data to buffer
peek Read data from buffer without changing number of unread samples

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Read Variable Frame Sizes from Buffer

The dsp.AsyncBuffer System object™ supports reading variable frame sizes from the buffer.

Create a dsp.AsyncBuffer System object. The input is white Gaussian noise with a mean of 0, a
standard deviation of 1, and a frame size of 512 samples. Write the input to the buffer using the
write method.

asyncBuff = dsp.AsyncBuffer;
input = randn(512,1);
write(asyncBuff,input);
plot(input)
hold on

4 System Objects

4-84

Store the data that is read from the buffer in outTotal.

Plot the input signal and data that is read from the buffer in the same plot. Read data from the buffer
until all samples are read. In each iteration of the loop, randi determines the number of samples to
read. Therefore, the signal is read in as a variable-size signal. The prevIndex variable keeps track of
the previous index value that contains the data.

outTotal = zeros(size(input));
prevIndex = 0;
while asyncBuff.NumUnreadSamples ~= 0
 numToRead = randi([1,64]);
 out = read(asyncBuff,numToRead);
 outTotal(prevIndex+1:prevIndex+numToRead) = out;
 prevIndex = prevIndex+numToRead;
end
plot(outTotal,'r')
hold off

 dsp.AsyncBuffer

4-85

Verify that the input data and the data read from the buffer (excluding the underrun samples, if any)
are the same. The cumulative number of overrun and underrun samples in the buffer is determined
by the info function.

S = info(asyncBuff)

S = struct with fields:
 CumulativeOverrun: 0
 CumulativeUnderrun: 28

The CumulativeUnderrun field shows the number of samples underrun per channel. Underrun
occurs if you attempt to read more samples than available.

Write Variable Frame Sizes to Buffer

Write a sine wave of variable frame size to the buffer. Compute the FFT of the sine wave and visualize
the result on an array plot.

Initialize the dsp.AsyncBuffer, dsp.ArrayPlot, and dsp.FFT System objects.

asynBuff = dsp.AsyncBuffer;
plotter = dsp.ArrayPlot;
fftObj = dsp.FFT('FFTLengthSource','Property','FFTLength',256);

4 System Objects

4-86

The sine wave is generated using the sin function in MATLAB. The start and finish variables
mark the start and finish indices of each frame. If enough data is cached, read from the buffer and
perform the FFT. View the FFT on an array plot.

start = 1;

for Iter = 1 : 2000
 numToWrite = randi([200,800]);
 finish = start + numToWrite;

 inputData = sin(start:finish)';
 start = finish + 1;

 write(asynBuff,inputData);
 while asynBuff.NumUnreadSamples >= 256
 x = read(asynBuff,256);
 X = abs(fftObj(x));
 plotter(log(X));
 end
end

Peek Data from Async Buffer

Read data from the async buffer without changing the number of unread samples using the peek
function.

 dsp.AsyncBuffer

4-87

Create a dsp.AsyncBuffer System object™. The input is a column vector of 100 samples, 1 to 100.
Write the data to the buffer.

asyncBuff = dsp.AsyncBuffer

asyncBuff =
 AsyncBuffer with properties:

 Capacity: 192000
 NumUnreadSamples: 0

input = (1:100)';
write(asyncBuff,input);

Peek at the first three samples. The output is [1 2 3]'.

out1 = peek(asyncBuff,3)

out1 = 3×1

 1
 2
 3

The NumUnreadSamples is 100, indicating that the peek function has not changed the number of
unread samples in the buffer.

asyncBuff.NumUnreadSamples

ans = int32
 100

After peeking, read 50 samples using the read function. The output is [1:50]'.

out2 = read(asyncBuff,50)

out2 = 50×1

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 ⋮

The NumUnreadSamples is 50, indicating that the read function has changed the number of unread
samples in the buffer.

asyncBuff.NumUnreadSamples

ans = int32
 50

4 System Objects

4-88

Now peek again at the first three samples. The output is [51 52 53]'. Verify that the
NumUnreadSamples is still 50.

out3 = peek(asyncBuff,3)

out3 = 3×1

 51
 52
 53

asyncBuff.NumUnreadSamples

ans = int32
 50

Read 50 samples again. The output now contains the sequence [51:100]'. Verify that
NumUnreadSamples is 0.

out4 = read(asyncBuff)

out4 = 50×1

 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 ⋮

asyncBuff.NumUnreadSamples

ans = int32
 0

Limitations
Before calling the read method, you must initialize the buffer by calling either the write or setup
method. For an example, see “Why Does the dsp.AsyncBuffer Object Error When You Call read Before
write?”

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 dsp.AsyncBuffer

4-89

See Also
Functions
info | read | write | peek

Objects
dsp.Delay

Blocks
Buffer | Queue | Delay Line

Topics
“Why Does the dsp.AsyncBuffer Object Error When You Call read Before write?”
“Why Does Reading Data from the dsp.AsyncBuffer Object Give a Dimension Mismatch Error in the
MATLAB Function Block?”
“High Resolution Spectral Analysis in MATLAB”

Introduced in R2017a

4 System Objects

4-90

audioDeviceWriter

Play to sound card

Description
The audioDeviceWriter System object writes audio samples to an audio output device. Properties
of the audio device writer specify the driver, the device, and device attributes such as sample rate, bit
depth, and buffer size.

Data Flow of Audio Device Writer

• Call the object to input an audio signal frame to the audioDeviceWriter.
• The audioDeviceWriter uses the specified driver to pass the frame (device input) to the buffer

of your specified audio device.
• The audio device performs digital-to-analog conversion at the specified sample rate and bit depth.
• The audio device outputs an analog chunk to your speaker.

To stream data to an audio device:

1 Create the audioDeviceWriter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
deviceWriter = audioDeviceWriter
deviceWriter = audioDeviceWriter(sampleRateValue)
deviceWriter = audioDeviceWriter(___ ,Name,Value)

 audioDeviceWriter

4-91

Description

deviceWriter = audioDeviceWriter returns a System object, deviceWriter, that writes audio
samples to an audio output device in real time.

deviceWriter = audioDeviceWriter(sampleRateValue) sets the SampleRate property to
sampleRateValue.

deviceWriter = audioDeviceWriter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: deviceWriter = audioDeviceWriter(48000,'BitDepth','8-bit integer')
creates a System object, deviceWriter, that operates at a 48 kHz sample rate and an 8-bit integer
bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO' | 'WASAPI'

Driver used to access your audio device, specified as 'DirectSound', 'ASIO', or 'WASAPI'.

• ASIO drivers do not come pre-installed on Windows machines. To use the 'ASIO' driver option,
install an ASIO driver outside of MATLAB.

Note If Driver is specified as 'ASIO', use asiosettings to set the sound card buffer size to
the buffer size of your audioDeviceWriter System object.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI drivers, set
SampleRate to a sample rate supported by your audio device.

This property applies only on Windows machines. Linux machines always use the ALSA driver. Mac
machines always use the CoreAudio driver.

To specify nondefault Driver values, you must have an Audio Toolbox license. If the toolbox is not
installed, specifying nondefault Driver values returns an error.
Data Types: char | string

Device — Device used to play audio samples
default audio device (default) | character vector | string scalar

Device used to play audio samples, specified as a character vector or string scalar. Use
getAudioDevices to list available devices for the selected driver.
Data Types: char | string

4 System Objects

4-92

SampleRate — Sample rate of signal sent to audio device (Hz)
44100 (default) | positive integer

Sample rate of signal sent to audio device, in Hz, specified as a positive integer. The range of
SampleRate depends on your audio hardware.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BitDepth — Data type used by the device
'16-bit integer' (default) | '8-bit integer' | '24-bit integer' | '32-bit float'

Data type used by the device, specified as a character vector or string scalar. Before performing
digital-to-analog conversion, the input data is cast to a data type specified by BitDepth.

To specify a nondefault BitDepth, you must have an Audio Toolbox license. If the toolbox is not
installed, specifying a nondefault BitDepth returns an error.
Data Types: char | string

SupportVariableSizeInput — Support variable frame size
false (default) | true

Option to support variable frame size, specified as true or false.

• false –– If the audioDeviceWriter object is locked, the input must have the same frame size at
each call. The buffer size of your audio device is the same as the input frame size.

• true –– If the audioDeviceWriter object is locked, the input frame size can change at each call.
The buffer size of your audio device is specified through the BufferSize property.

Data Types: char

BufferSize — Buffer size of audio device
4096 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note If Driver is specified as 'ASIO', open the ASIO UI to set the sound card buffer size to the
BufferSize value of your audioDeviceWriter System object.

Dependencies

To enable this property, set SupportVariableSizeInput to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ChannelMappingSource — Source of mapping between input matrix and device channels
'Auto' (default) | 'Property'

Source of mapping between columns of input matrix and channels of audio output device, specified as
'Auto' or 'Property'.

• 'Auto' –– Default settings determine the mapping between columns of input matrix and channels
of audio output device. For example, suppose that your input is a matrix with four columns, and
your audio device has four channels available. Column 1 of your input data writes to channel 1 of
your device, column 2 of your input data writes to channel 2 of your device, and so on.

 audioDeviceWriter

4-93

• 'Property' –– The ChannelMapping property determines the mapping between columns of input
matrix and channels of audio output device.

Data Types: char | string

ChannelMapping — Nondefault mapping between input matrix and device channels
[1:MaximumOutputChannels] (default) | scalar | vector

Nondefault mapping between columns of input matrix and channels of output device, specified as a
scalar or vector of valid channel indices.

To selectively map between columns of the input matrix and your sound card's output channels, you
must have an Audio Toolbox license. If the toolbox is not installed, specifying a nondefault
ChannelMapping returns an error.

Note To ensure mono output on only one channel of a stereo device, use the default
ChannelMapping setting and provide a stereo signal where one channel is all zeros.

Example: outputLeftOnly = [x(:,1) zeros(size(x,1),1)];

Example: outputRightOnly = [zeros(size(x,1),1) x(:,1)];

Dependencies

To enable this property, set ChannelMappingSource to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
numUnderrun = deviceWriter(audioToDevice)

Description

numUnderrun = deviceWriter(audioToDevice) writes one frame of audio samples,
audioToDevice, to the selected audio device and returns the number of audio samples underrun
since the last call to deviceWriter.

Note: When you call the audioDeviceWriter System object, the audio device specified by the
Device property is locked. An audio device can be locked by only one audioDeviceWriter at a
time. To release the audio device, call release on your audioDeviceWriter System object.

Input Arguments

audioToDevice — Audio to device
matrix

Audio signal to write to device, specified as a matrix. The columns of the matrix are treated as
independent audio channels.

4 System Objects

4-94

If audioToDevice is of data type 'double' or 'single', the audio device writer clips values
outside the range [–1, 1]. For other data types, the allowed input range is [min, max] of the specified
data type.
Data Types: single | double | int16 | int32 | uint8

Output Arguments

numUnderrun — Number of samples underrun
scalar

Number of samples by which the audio device writer queue was underrun since the last call to
deviceWriter.
Data Types: uint32

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioDeviceWriter
getAudioDevices List available audio devices
info Characteristic information about audio device writer

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm
setup One-time set up tasks for System objects

Examples

Read from File and Write to Audio Device

Read an MP3 audio file and play it through your default audio output device.

Create a dsp.AudioFileReader object with default settings. Use the audioinfo function to return
a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileInfo = audioinfo('speech_dft.mp3')

fileInfo = struct with fields:
 Filename: 'B:\matlab\toolbox\dsp\dsp\speech_dft.mp3'
 CompressionMethod: 'MP3'
 NumChannels: 1

 audioDeviceWriter

4-95

 SampleRate: 22050
 TotalSamples: 112893
 Duration: 5.1199
 Title: []
 Comment: []
 Artist: []
 BitRate: 64

Create an audioDeviceWriter object and specify the sample rate.

deviceWriter = audioDeviceWriter('SampleRate',fileInfo.SampleRate);

Call setup to reduce the computational load of initialization in an audio stream loop.

setup(deviceWriter,zeros(fileReader.SamplesPerFrame,...
 fileInfo.NumChannels))

Use the info function to obtain the characteristic information about the device writer.

info(deviceWriter)

ans = struct with fields:
 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Driver'
 MaximumOutputChannels: 2

In an audio stream loop, read an audio signal frame from the file, and write the frame to your device.

while ~isDone(fileReader)
 audioData = fileReader();
 deviceWriter(audioData);
end

Close the input file and release the device.

release(fileReader)
release(deviceWriter)

Reduce Latency due to Output Device Buffer

Latency due to the output device buffer is the time delay of writing one frame of data. Modify default
properties of your audioDeviceWriter System object™ to reduce latency due to device buffer size.

Create a dsp.AudioFileReader System object to read an audio file with default settings.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

Create an audioDeviceWriter System object and specify the sample rate to match that of the audio
file reader.

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Calculate the latency due to your device buffer, in seconds.

4 System Objects

4-96

bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate %#ok

bufferLatency = 0.0464

Set the SamplesPerFrame property of your dsp.AudioFileReader System object to 256.
Calculate the buffer latency in seconds.

fileReader.SamplesPerFrame = 256;
bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate

bufferLatency = 0.0116

Determine and Decrease Underrun

Underrun refers to output signal silence, which occurs when the audio stream loop does not keep
pace with the output device. Determine the underrun of an audio stream loop, add artificial
computational load to the audio stream loop, and then modify properties of your
audioDeviceWriter object to decrease underrun. Your results depend on your computer.

Create a dsp.AudioFileReader object, and specify the file to read. Use the audioinfo function to
return a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileInfo = audioinfo('speech_dft.mp3');

Create an audioDeviceWriter object. Use the SampleRate of the file reader as the SampleRate
of the device writer. Call setup to reduce the computational load of initialization in an audio stream
loop.

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setup(deviceWriter,zeros(fileReader.SamplesPerFrame,...
 fileInfo.NumChannels))

Run your audio stream loop with input from file and output to device. Print the total samples
underrun and the underrun in seconds.

totalUnderrun = 0;
while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
end
fprintf('Total samples underrun: %d.\n',totalUnderrun)

Total samples underrun: 0.

fprintf('Total seconds underrun: %d.\n',double(totalUnderrun)/double(deviceWriter.SampleRate))

Total seconds underrun: 0.

Release your dsp.AudioFileReader and audioDeviceWriter objects and set your counter
variable to zero.

release(fileReader)
release(deviceWriter)
totalUnderrun = 0;

 audioDeviceWriter

4-97

Use pause to mimic an algorithm that takes 0.075 seconds to process. The pause causes the audio
stream loop to go slower than the device, which results in periods of silence in the output audio
signal.

while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
 pause(0.075)
end
fprintf('Total samples underrun: %d.\n',totalUnderrun)

Total samples underrun: 68608.

fprintf('Total seconds underrun: %d.\n',double(totalUnderrun)/double(deviceWriter.SampleRate))

Total seconds underrun: 3.111474e+00.

Release your audioDeviceReader and dsp.AudioFileWriter and set the counter variable to
zero.

release(fileReader)
release(deviceWriter)
totalUnderrun = 0;

Set the frame size of your audio stream loop to 2048. Because the SupportVariableSizeInput
property of your audioDeviceWriter System object is set to false, the buffer size of your audio
device is the same size as the input frame size. Increasing your device buffer size decreases
underrun.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileReader.SamplesPerFrame = 2048;
fileInfo = audioinfo('speech_dft.mp3');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setup(deviceWriter,zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels))

Calculate the total underrun.

while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
 pause(0.075)
end
fprintf('Total samples underrun: %d.\n',totalUnderrun)

Total samples underrun: 0.

fprintf('Total seconds underrun: %d.\n',double(totalUnderrun)/double(deviceWriter.SampleRate))

Total seconds underrun: 0.

The increased frame size reduces the total underrun of your audio stream loop. However, increasing
the frame size also increases latency. Other approaches to reduce underrun include:

• Increasing the buffer size independent of input frame size. To increase buffer size independent of
input frame size, you must first set SupportVariableSizeInput to true. This approach also
increases latency.

4 System Objects

4-98

• Decreasing the sample rate. Decreasing the sample rate reduces both latency and underrun at the
cost of signal resolution.

• Choosing an optimal driver and device for your system.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated from this
object and all the relevant files in a compressed zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another development environment where MATLAB is not
installed. For more details, see “How To Run a Generated Executable Outside MATLAB”.

See Also
asiosettings | getAudioDevices | Audio Device Writer | dsp.AudioFileWriter |
dsp.AudioFileReader

Topics
“How To Run a Generated Executable Outside MATLAB”
“Measure Audio Latency” (Audio Toolbox)

Introduced in R2016a

 audioDeviceWriter

4-99

getAudioDevices
List available audio devices

Syntax
devices = getAudioDevices(deviceWriter)

Description
devices = getAudioDevices(deviceWriter) returns a list of audio devices that are available
and compatible with your I/O audio object, deviceWriter.

Input Arguments
deviceWriter — Audio I/O object
audioDeviceWriter object

Audio I/O object, specified as an audioDeviceWriter object.
Data Types: object

Output Arguments
devices — List of available and compatible devices
array

List of available and compatible devices. The list of audio devices depends on the specified Driver
property of your object.
Data Types: cell

See Also
Objects
audioDeviceWriter

Introduced in R2016a

4 System Objects

4-100

dsp.AudioFileReader
Package: dsp

Stream from audio file

Description
The dsp.AudioFileReader System object reads audio samples from an audio file.

To read audio samples from an audio file:

1 Create the dsp.AudioFileReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
afr = dsp.AudioFileReader
afr = dsp.AudioFileReader(File name)
afr = dsp.AudioFileReader(Name,Value)

Description

afr = dsp.AudioFileReader returns an audio file reader System object, afr that reads audio
from an audio file.

afr = dsp.AudioFileReader(File name) returns an audio file reader object, afr, with
Filename property set to File name.

afr = dsp.AudioFileReader(Name,Value) returns an audio file reader System object, afr,
with each specified property set to the specified value. Enclose each property name in single quotes.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filename — Name of audio file from which to read
'speech_dft.mp3' (default) | character vector | string scalar

 dsp.AudioFileReader

4-101

Specify the name of an audio file as a character vector or a string scalar. If
FilenameIsTunableInCodegen is set to false and the file is on MATLAB path, then you do not
need to specify the full name of the file. If FilenameIsTunableInCodegen is set to true, then the
file name must either exist in the current directory, or you must specify the full file path. The file
name can be an http web address like 'http://audio.wgbh.org:8004/'. For an example, see
“Read and Play Back Audio File from http Web Address” on page 4-105.

The Filename property is tunable in generated code. That is, you can pass the name of the audio file
as an input while running the code generated from this object. File attributes such as the audio
format, the number of audio channels, the sample rate, and the bit rate are not tunable and must
match the attributes of the prototype audio file you specify through the CodegenPrototypeFile
property. The specified prototype audio file determines the attributes and the type of audio files that
can be read by the generated code. For an example, see “Tunable Audio File Name in Generated
Code” on page 4-106.

The following table lists the supported audio file formats.

Platforms File Name Extensions
Windows .wav, .wma, .avi, .aif, .aifc, .aiff, .mp3, .au, .snd, .mp4, .m4a,

.flac, .ogg, .mov
Non-Windows .avi, .mp3, .mp4, .m4a, .wav, .flac, .ogg, .aif, .aifc, .ai

ff, .au, .snd, .mov

PlayCount — Number of times to play file
1 (default) | positive integer

Specify a positive integer as the number of times to play the file.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SamplesPerFrame — Number of samples in audio frame
1024 (default) | positive integer

Specify the number of samples in an audio frame as a positive, scalar integer value.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputDataType — Data type of output
'double' (default) | 'single' | 'int16' | 'uint8'

Set the data type of the audio data output from the audio file reader object. Specify the data type as
'double', 'single', 'int16', or 'uint8'.

FilenameIsTunableInCodegen — Enable file name tunability in generated code
false (default) | true

Set this property to true to enable tunability of Filename in generated C/C++ code. The file with the
specified Filename must either exist in the current directory, or you must specify the full file path.

If FilenameIsTunableInCodegen is set to true, file attributes such as the audio format, the
number of audio channels, the sample rate, and the bit rate are not tunable and must match the
attributes of the prototype audio file you specify through the CodegenPrototypeFile property. The
specified prototype audio file determines the attributes and the type of audio files that can be read by
the generated code. For example, if the specified prototype file is a .wav file, then the generated

4 System Objects

4-102

code can only read .wav files. If the specified prototype file sample rate is 44100 Hz, then the
generated code can read files with a sample rate of 44100 Hz.
Data Types: logical

CodegenPrototypeFile — Prototype audio file for code generation
'speech_dft.mp3' (default) | character vector | string scalar

Specify the name of the prototype audio file used in code generation as a character vector or a string
scalar. Specify the full path for the file only if the file is not on the MATLAB path. The file name can be
an http web address, like 'http://audio.wgbh.org:8004/'.

The attributes of the audio file specified in Filename (such as the audio format, the number of audio
channels, the sample rate, and the bite rate) must match the attributes of the audio file specified in
CodegenPrototypeFile. The specified prototype audio file determines the attributes and the type
of audio files that can be read by the generated code. For example, if the specified prototype file is
a .wav file, then the generated code can only read .wav files. If the specified prototype file sample
rate is 44100 Hz, then the generated code can read files with a sample rate of 44100 Hz.

The following table lists the supported audio file formats:

Platforms File Name Extensions
Windows .wav, .wma, .avi, .aif, .aifc, .aiff, .mp3, .au, .snd, .mp4, .m4a,

.flac, .ogg, .mov
Non-Windows .avi, .mp3, .mp4, .m4a, .wav, .flac, .ogg, .aif, .aifc, .ai

ff, .au, .snd, .mov

Dependencies

This property applies only when the FilenameIsTunableInCodegen property is set to true.

SampleRate — Sampling rate of audio file
positive scalar

This property is read-only.

This property displays the sample rate, in Hz, of the audio file.
Data Types: double

ReadRange — Range of samples to be read
[1 inf] (default) | two-element row vector

Specify the sample range from which to read, as a vector in the form of [StartSample EndSample],
where StartSample is the sample at which file reading starts, and EndSample is the sample at which
file reading stops.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
audio = afr()

 dsp.AudioFileReader

4-103

[audio,eof] = afr()

Description

audio = afr() outputs one frame of audio samples, audio. You can specify the number of times to
play the file using the PlayCount property. After playing the file for the number of times you specify,
audio contains silence.

[audio,eof] = afr() returns an end-of-file indicator, eof. eof is true each time the output audio
contains the last audio sample in the file.

Output Arguments

audio — Audio samples
column vector

One frame of audio samples, returned as a column vector of length equal to the value you specify in
the SamplesPerFrame property. The data type of the audio output is specified in the
OutputDataType property.
Data Types: single | double | int16 | uint8

eof — End-of-file indicator
1 | 0

End-of-file indicator, returned as either a 1 or a 0. A value of 1 is output when audio contains the last
audio sample in the file.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.AudioFileReader
info Information about specific audio file
isDone End-of-file status (logical)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Read and Play Back Audio File

Read and play back an audio file using the standard audio output device.

4 System Objects

4-104

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj() becomes step(obj).

You can choose to read the entire data or specify a range of data to read from using the ReadRange
property. By default, ReadRange is set to [1 inf], indicating the file reader to read the entire data
from the source. In this example, set ReadRange to 3Fs, indicating the file reader to read the first 3
seconds of the data.

afr = dsp.AudioFileReader('speech_dft.mp3','ReadRange',[1 3*22050]);
adw = audioDeviceWriter('SampleRate', afr.SampleRate);

while ~isDone(afr)
 audio = afr();
 adw(audio);
end
release(afr);
release(adw);

Read and Play Back Audio File from http Web Address

Read audio data from an http web address using the dsp.AudioFileReader System object™. Play
back the data using the audioDeviceWriter System object.

Initialization

Create an audio file reader which reads data from http://audio.wgbh.org:8004/. Set the sample rate of
the audio device writer to be the same as that of the audio file reader.

afr = dsp.AudioFileReader('http://audio.wgbh.org:8004/')

afr =
 dsp.AudioFileReader with properties:

 Filename: 'http://audio.wgbh.org:8004/'
 PlayCount: 1
 SamplesPerFrame: 1024
 OutputDataType: 'double'
 SampleRate: 44100
 ReadRange: [1 Inf]

adw = audioDeviceWriter(afr.SampleRate)

adw =
 audioDeviceWriter with properties:

 Driver: 'DirectSound'
 Device: 'Default'
 SampleRate: 44100

 Show all properties

 dsp.AudioFileReader

4-105

http://audio.wgbh.org:8004/

Read and Play Back

Read a specific amount of data from the web address directly and play the data back using the audio
device writer.

for i = 1:1000
 audio = afr();
 adw(audio);
end

Close the input file and the audio output device.

release(afr)
release(adw)

Tunable Audio File Name in Generated Code

Generate a MEX file from a function named writeAudio. This function reads an audio signal from
the funky-stereo.wav file, decimates the signal by a factor of 2, and writes the decimated signal to
a specified output file.

The dsp.AudioFileReader object reads the audio signal from funky-stereo.wav file. The
funky-stereo.wav file has two channels, a sample rate of 44100 Hz, and a bit rate of 1411 kbps.
The CodegenPrototypeFile property of the object is set to rock-stereo.wav file. The rock-
stereo.wav file has the same file attributes, such as the number of audio channels, sample rate, and
bit rate, as the funky-stereo.wav file. The dsp.FIRDecimator object decimates the input audio
signal by a factor of 2. The dsp.AudioFileWriter object writes the decimated signal to the output
file myoutput.wav. Due to the decimation process, the output file has a sample rate of 22050 Hz and
a bit rate of 2822 kbps.

type writeAudio.m

function writeAudio(readfile,writefile)

afr = dsp.AudioFileReader('FilenameIsTunableInCodegen',true,...
 'CodegenPrototypeFile','rock-stereo.wav');
afr.Filename = readfile;
% Filename is funky-stereo.wav and CodegenPrototypeFile is
% rock-stereo.wav.

firdec = dsp.FIRDecimator(2,'auto'); % decimate by 2

afw = dsp.AudioFileWriter('SampleRate',22050);
afw.Filename = writefile;
while ~isDone(afr)
 audio = afr();
 audiod = firdec(audio);
 afw(audiod);
end

release(afr);
release(afw);
end

For generating code, specify file names to be variable-length character vectors of maximum length
500.

4 System Objects

4-106

readfilename = coder.typeof('a',[1 500],[0 1]);
writefilename = coder.typeof('b',[1 500],[0 1]);

Generate a MEX file using the codegen function.

codegen writeAudio -args {readfilename,writefilename}

Code generation successful.

writeAudio_mex('funky-stereo.wav','myoutput.wav');

Limitations
For MP3, MPEG-4 AAC, and AVI audio files on Windows 7 or later and Linux platforms,
dsp.AudioFileReader object can read fewer samples than expected. On Windows platforms, this is
due to a limitation in the underlying Media Foundation framework. On Linux platforms, this is due to
a limitation in the underlying GStreamer framework. If you require sample-accurate reading, work
with WAV or FLAC files.

Algorithms
This object implements the algorithm, inputs, and outputs described on the From Multimedia File
block reference page. The object properties correspond to the block parameters, except:

• The object has no corresponding property for the Inherit sample time from file block
parameter. The object always inherits the sample time from the file.

• The object has no corresponding property for the Output end-of-file indicator parameter. The
object always outputs EOF as the last output.

• The object has no corresponding property for the Multimedia Outputs parameter because audio
is the only supported output.

• The object has no corresponding property for the Image signal block parameter.
• The object has no corresponding property for the Output color format parameter.
• The object has no corresponding property for the Video output data type parameter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• The executable generated from this System object relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated from this
object and all the relevant files in a compressed zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another development environment where MATLAB is not
installed. For more details, see “How To Run a Generated Executable Outside MATLAB”.

 dsp.AudioFileReader

4-107

See Also
Functions
info | isDone

Objects
dsp.AudioFileWriter

Topics
“How To Run a Generated Executable Outside MATLAB”

Introduced in R2012a

4 System Objects

4-108

dsp.AudioFileWriter
Package: dsp

Stream to audio file

Description
The dsp.AudioFileWriter System object writes audio samples to an audio file.

To write audio samples to an audio file:

1 Create the dsp.AudioFileWriter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
afw = dsp.AudioFileWriter
afw = dsp.AudioFileWriter(File name)
afw = dsp.AudioFileWriter(Name,Value)

Description

afw = dsp.AudioFileWriter returns an audio file writer System object, afw. This object writes
audio samples to an audio file.

afw = dsp.AudioFileWriter(File name) returns an audio file writer System object, afw. This
object has the Filename property set to File name.

afw = dsp.AudioFileWriter(Name,Value) returns an audio file writer object with each
specified property set to the specified value. Enclose each property name in single quotes.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filename — Name of audio file to which to write
'output.wav' (default) | character vector | string scalar

 dsp.AudioFileWriter

4-109

Specify the name of the audio file as a character vector or a string scalar.

The Filename property is tunable in generated code. That is, you can pass the name of the audio file
as an input while running the code generated from this object. For an example, see “Tunable Audio
File Name in Generated Code” on page 4-106.

FileFormat — Audio file format
'WAV' (default) | 'AVI' | 'FLAC' | 'OGG' | 'MPEG4' | 'WMA'

Specify which audio file format the object writes. On Microsoft platforms, select one of 'AVI',
'WAV', 'FLAC', 'OGG', 'MPEG4', 'WMA'. On Linux platforms, select one of 'AVI', 'WAV', 'FLAC',
or 'OGG'. On macOS platforms, select one of 'AVI', 'WAV', 'FLAC', 'OGG', or 'MPEG4'. These
abbreviations correspond to the following file formats:

• 'AVI': Audio-Video Interleave
• 'WAV': Microsoft WAVE Files
• 'WMA': Windows Media Audio
• 'FLAC': Free Lossless Audio Codec
• 'OGG': Ogg/Vorbis Compressed Audio File
• 'MPEG4': MPEG-4 AAC File — You can use both .m4a and .mp4 extensions

The default is 'WAV'.

SampleRate — Sampling rate of audio data stream
44100 (default) | positive scalar

Specify the sample rate of the input audio data as a positive, numeric scalar value.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Compressor — Algorithm that compresses audio data
'None (uncompressed)' (default) | 'CCITT A-Law' | 'CCITT u-Law' | 'GSM 6.10' | 'IMA
ADPCM' | 'Microsoft ADPCM' | 'PCM'

Specify the type of compression algorithm the audio file writer uses to compress the audio data.
Compression reduces the size of the audio file. Select 'None (uncompressed)' to save
uncompressed audio data to the file. The other options available reflect the audio compression
algorithms installed on your system. You can use tab completion to query valid Compressor options
for your computer by typing H.Compressor = ' and then pressing the tab key.

Dependencies

This property applies when writing WAV or AVI files on Windows platforms.

DataType — Data type of the uncompressed audio
'int16' (default) | 'double' | 'single' | 'inherit' | 'int24' | 'int32' | 'uint8'

Specify the type of uncompressed audio data written to the file as 'int16', 'double', 'single',
'inherit', 'int24', 'int32', or 'uint8'.

Dependencies

This property only applies when writing uncompressed WAV files.

4 System Objects

4-110

Usage

Syntax
afw(audio)

Description

afw(audio) writes one frame of audio samples, audio, to the output file specified by Filename.
audio is either a vector for mono audio input or an M-by-N matrix for N-channel audio input
respectively.

Input Arguments

audio — Audio samples
column vector | matrix

One frame of audio samples, returned as a column vector or a matrix. A column vector input indicates
a mono audio input. An M-by-N matrix indicates an N-channel audio input.

If the input is fixed-point, the input must be a signed fixed-point input with power-of-two slope and
zero bias.
Data Types: single | double | int16 | int32 | uint8 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Write an Audio Signal to WAV File

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj() becomes step(obj).

Decimate an audio signal, and write it to disk as a WAV file.

afr = dsp.AudioFileReader('OutputDataType',...
 'double');
firdec = dsp.FIRDecimator; % decimate by 2
afw = dsp.AudioFileWriter...
 ('speech_dft.wav', ...

 dsp.AudioFileWriter

4-111

 'SampleRate', afr.SampleRate/2);

while ~isDone(afr)
 audio = afr();
 audiod = firdec(audio);
 afw(audiod);
end

release(afr);
release(afw);

Tunable Audio File Name in Generated Code

Generate a MEX file from a function named writeAudio. This function reads an audio signal from
the funky-stereo.wav file, decimates the signal by a factor of 2, and writes the decimated signal to
a specified output file.

The dsp.AudioFileReader object reads the audio signal from funky-stereo.wav file. The
funky-stereo.wav file has two channels, a sample rate of 44100 Hz, and a bit rate of 1411 kbps.
The CodegenPrototypeFile property of the object is set to rock-stereo.wav file. The rock-
stereo.wav file has the same file attributes, such as the number of audio channels, sample rate, and
bit rate, as the funky-stereo.wav file. The dsp.FIRDecimator object decimates the input audio
signal by a factor of 2. The dsp.AudioFileWriter object writes the decimated signal to the output
file myoutput.wav. Due to the decimation process, the output file has a sample rate of 22050 Hz and
a bit rate of 2822 kbps.

type writeAudio.m

function writeAudio(readfile,writefile)

afr = dsp.AudioFileReader('FilenameIsTunableInCodegen',true,...
 'CodegenPrototypeFile','rock-stereo.wav');
afr.Filename = readfile;
% Filename is funky-stereo.wav and CodegenPrototypeFile is
% rock-stereo.wav.

firdec = dsp.FIRDecimator(2,'auto'); % decimate by 2

afw = dsp.AudioFileWriter('SampleRate',22050);
afw.Filename = writefile;
while ~isDone(afr)
 audio = afr();
 audiod = firdec(audio);
 afw(audiod);
end

release(afr);
release(afw);
end

For generating code, specify file names to be variable-length character vectors of maximum length
500.

readfilename = coder.typeof('a',[1 500],[0 1]);
writefilename = coder.typeof('b',[1 500],[0 1]);

4 System Objects

4-112

Generate a MEX file using the codegen function.

codegen writeAudio -args {readfilename,writefilename}

Code generation successful.

writeAudio_mex('funky-stereo.wav','myoutput.wav');

Limitations
The following platform-specific restrictions apply when writing these files:

Windows 7 macOS
• Only sample rates of 44100 Hz and 48000 Hz

are supported for the MPEG-4 AAC file
format. For other file formats, there is no
restriction on the sample rate.

• Only mono or stereo outputs are allowed for
MPEG-4 AAC file format. For all other formats,
more than two audio output channels are
allowed.

• Only mono or stereo outputs are allowed for
the MPEG-4 AAC file format. For all other
formats, more than two audio output channels
are allowed.

• The output data is padded on both the front
and back of the signal, with extra samples of
silence.

Windows AAC encoder places sharp fade-in
and fade-out on audio signals, causing the
signals to be slightly longer in samples when
written to disk.

• Not all sampling rates are supported,
although the Mac Audio Toolbox API does not
explicitly specify a restriction.

• A minimum of 1025 samples per channel must
be written to the MPEG-4 AAC file.

Algorithms
This object implements the algorithm, inputs, and outputs described on the To Multimedia File block
reference page. The object properties correspond to the block parameters, except:

• The object FileFormat property does not support video-only file formats.
• The object has no corresponding property for the Write parameter. The object writes only audio

content to files.
• The object has no corresponding property for the Video compressor parameter.
• The object has no corresponding property for the File color format parameter.
• The object has no corresponding property for the Image signal parameter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 dsp.AudioFileWriter

4-113

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• The executable generated from this System object relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated from this
object and all the relevant files in a compressed zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another development environment where MATLAB is not
installed. For more details, see “How To Run a Generated Executable Outside MATLAB”.

See Also
Objects
dsp.AudioFileReader

Topics
“How To Run a Generated Executable Outside MATLAB”

Introduced in R2012a

4 System Objects

4-114

dsp.AudioPlayer
Package: dsp

(Removed) Play audio data using computer's audio device

Compatibility
The dsp.AudioPlayer object has been removed. Existing instances of the object error out. Replace
with audioDeviceWriter object. For more information, see “Compatibility Considerations” on page
4-118.

Description
The AudioPlayer object plays audio data using the computer's audio device.

To play audio data using the computer’s audio device:

1 Define and set up your audio player object. See “Construction” on page 4-115.
2 Call step to play audio data according to the properties of dsp.AudioPlayer. The behavior of

step is specific to each object in the toolbox.

This System object buffers the data from the audio device using the process illustrated by the
following figure.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = dsp.AudioPlayer returns an audio player object, H, that plays audio samples using an audio
output device in real-time.

H = dsp.AudioPlayer('PropertyName',PropertyValue, ...) returns an audio player
object, H, with each property set to the specified value.

 dsp.AudioPlayer

4-115

H = dsp.AudioPlayer(SAMPLERATE,'PropertyName',PropertyValue, ...) returns an
audio player object, H, with the SampleRate property set to SAMPLERATE and other specified
properties set to the specified values. This System object supports variable-size input. If you use
variable-size signals with this System object, you may experience sound dropouts when the size of the
input frame increases. To avoid this behavior, use a signal of maximum expected size when you first
call step to start running through this System object.

Properties
DeviceName

Device to which to send audio data

Specify the device to which to send the audio data. The default is Default, which is the computer's
standard output device. You can use tab completion to query valid DeviceName assignments for your
computer by typing H.DeviceName = ' and then pressing the tab key.

SampleRate

Number of samples per second sent to audio device

Specify the number of samples per second in the signal as an integer. The default is 44100. This
property is tunable.

DeviceDataType

Data type used by device

Specify the data type used by the audio device to acquire audio data as Determine from input
data type , 8-bit integer, 16-bit integer, 24-bit integer, or 32-bit float. The
default is Determine from input data type.

BufferSizeSource

Source of Buffer Size

Specify how to determine the buffer size as Auto or Property. The default is Auto. When this
property is set to Auto, an appropriate buffer size based on the SampleRate gets computed.

BufferSize

Buffer size

Specify the size of the buffer that the audio player object uses to communicate with the audio device
as an integer. BufferSize is half the size of the sound card buffer. A frame of data cannot be passed
to the queue until the device empties the buffer, which introduces latency. Latency is the time it takes
the device to empty the queue and the buffer. BufferSize has to be smaller than the effective queue
duration. This property is tunable. Tuning this property involves a balance between device latency
and the possibility of dropping data (buffer underrun).

This property applies when you set the BufferSizeSource property to Property. The default is
4096. To set the BufferSize to a value other than the default, first change the BufferSizeSource
to 'Property'. You can select BufferSize in the list of properties.

4 System Objects

4-116

QueueDuration

Size of queue in seconds

Specify the length of the audio queue, in seconds. The default is 1.0. This property is tunable. The
purpose of the queue is to control the trade-off between latency and data dropout. Latency is
calculated by the following equation: latency = QueueDuration × SampleRate + 2 × Buf ferSize

SampleRate .

To minimize latency, lower the QueueDuration or set it to 0. However, be aware that data dropouts
or loss of system robustness may result. The QueueDuration property specifies the duration of the
signal, in seconds, that can be buffered during the simulation. This value is the maximum length of
time that the System object data supply can lag the device’s data demand. If the MATLAB data
throughput rate is lower than the device throughput rate, a buffer underrun occurs. You can use
OutputNumUnderrunSamples to monitor underrun. To correct the underrun, make the queue
duration larger than the buffer. If the MATLAB data throughput rate is higher than the device
throughput rate, a buffer overrun occurs, causing the System object to wait before writing data to the
queue. To minimize the chance of dropouts, the System object checks to verify the queue duration is
at least as large as the maximum of the buffer size and the frame size. If it is not, the queue duration
is automatically set to this maximum value. At the start of the simulation, the queue is filled with
silence. At each time step, the System object sends a buffer of samples from the top of the queue to
the audio device. If the queue does not contain enough data to completely fill the buffer, the System
object fills the remaining portion of the buffer with zeros.

OutputNumUnderrunSamples

Enable output of underrun count

Set to true to output the number of zero samples inserted due to queue underrun since the last call
to the step method. The default is false.

ChannelMappingSource

Source of device channel mapping

Specify whether to determine the channel mapping as 'Auto' or as 'Property'. If you set the
value of ChannelMappingSource to 'Auto', the ChannelMapping field is rendered inactive. If you
set this property to 'Property', the vector specified in the ChannelMapping field is used to route
the output.

ChannelMapping

Data-to-device channel mapping

Vector of valid channel indices to represent the mapping between data and device output channels.
The term Channel Mapping refer to a 1-to-1 mapping that associates channels on the selected audio
device to channels of the data. When you play audio, channel mapping allows you to specify which
channel of the audio data to output a specific channel of audio data. By default, the
ChannelMapping field is [1:MAXOUTPUTCHANNELS], where MAXOUTPUTCHANNELS depends
upon the selected device.

 dsp.AudioPlayer

4-117

Methods

step Write audio to audio output device

Common to All System Objects
release Allow System object property value changes

Troubleshooting
Running an Executable Outside MATLAB

To run your generated standalone executable application in Shell, you need to set your environment
to the following:

Platform Command
Mac setenv DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/bin/
maci64 (csh/tcsh)

export DYLD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
maci64 (Bash)

Linux setenv LD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
glnxa64 (Bash)

Windows set PATH = $MATLABROOT\bin\win64;%PATH
%

Algorithms
This object implements the algorithm, inputs, and outputs described on the To Audio Device block
reference page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.AudioPlayer System object has been removed
Errors starting in R2020a

dsp.AudioPlayer System object has been removed. Use audioDeviceWriter instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

4 System Objects

4-118

Discouraged Usage Recommended Replacement
AFR = dsp.AudioFileReader;
AP = dsp.AudioPlayer('SampleRate',22050);
 while ~isDone(AFR)
 audio = AFR();
 AP(audio);
 end
% Wait until audio is played to the end
pause(AP.QueueDuration);
% close the input file
release(AFR);
% close the audio output device
release(AP);

If you are using a release prior to R2016b,
replace AP(audio) with step(AP,audio).

fileReader = dsp.AudioFileReader;
devWriter = audioDeviceWriter('SampleRate',...
fileReader.SampleRate);
fileInfo = audioinfo(fileReader.Filename);
% Initialize audio device
setup(devWriter, zeros(fileReader.SamplesPerFrame, ...
fileInfo.NumChannels));
 while ~isDone(fileReader)
 audioSamples = fileReader();
 play(devWriter, audioSamples);
 end
% close the input file
release(fileReader);
% close the audio output device
release(devWriter);

See Also
dsp.AudioFileReader | audioDeviceWriter

Topics
Set the Audio Hardware API on page 2-1312

Introduced in R2012a

 dsp.AudioPlayer

4-119

step
System object: dsp.AudioPlayer
Package: dsp

Write audio to audio output device

Compatibility
The dsp.AudioPlayer object has been removed. Existing instances of the object error out. Replace
with audioDeviceWriter object. For more information, see “Compatibility Considerations” on page
4-118.

Syntax
step(H,AUDIO)
Underrun = step(H,AUDIO)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

step(H,AUDIO) writes one frame of AUDIO samples to the audio output device.

Underrun = step(H,AUDIO) writes one frame of AUDIO samples to the audio output device. The
output Underrun indicates the number of zero samples inserted due to queue underrun since the last
call to the step method. This syntax applies when you set the OutputNumUnderrunSamples
property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-120

dsp.AudioRecorder
Package: dsp

(Removed) Record audio data using computer's audio device

Compatibility
The dsp.AudioRecorder object has been removed. Existing instances of the object error out.
Replace with audioDeviceReader object from Audio Toolbox. For more information, see
“Compatibility Considerations” on page 4-124.

Description
The AudioRecorder object records audio data using the computer's audio device.

To record audio data using the computer’s audio device:

1 Define and set up your audio recorder object. See “Construction” on page 4-121.
2 Call step to record audio data according to the properties of dsp.AudioRecorder. The

behavior of step is specific to each object in the toolbox.

This System object buffers the data from a frame of data using the process illustrated by the following
figure.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = dsp.AudioRecorder returns an audio recorder object, H, that records audio samples using an
audio input device in real-time.

H = dsp.AudioRecorder('PropertyName',PropertyValue, ...) returns an audio recorder
object, H, with each property set to the specified value.

 dsp.AudioRecorder

4-121

Properties
DeviceName

Device from which to acquire audio data

Specify the device from which to acquire audio data. The default is Default, which is the computer's
standard input device. You can use tab completion to query valid DeviceName assignments for your
computer by typing H.DeviceName = ' and then pressing the tab key. The tab completion
functionality shows all valid audio device names for your computer.

SampleRate

Number of samples per second read from audio device

Specify the number of samples per second in the signal as an integer. The default is 44100. This
property is tunable.

NumChannels

Number of audio channels

Specify the number of audio channels as an integer. The default is 2.

DeviceDataType

Data type used by device

Specify the data type used by the device to acquire audio data as Determine from output data
type , 8-bit integer, 16-bit integer, 24-bit integer, or 32-bit float. The default is
Determine from output data type.

BufferSizeSource

Source of Buffer Size

Specify how to determine the buffer size as Auto or Property. The default is Auto.

BufferSize

Buffer size

Specify as an integer the size of the buffer that the audio recorder object uses to communicate with
the audio device. This property applies when you set the BufferSizeSource property to Property.
The default is 4096. This property is tunable. Tuning this property involves a balance between device
latency and the possibility of dropping data (buffer underrun). The instant you receive the buffer from
a device, you have samples that are relatively new and samples that are at least as old as the size of
the buffer. Therefore, the buffer size introduces latency, which is the time required for the device to
fill the queue and the buffer. BufferSize is half the size of the sound card buffer. The size of the
buffer processed in each interrupt from the audio device affects the performance of the system. A
frame of data cannot pass through the queue until the buffer is filled by the device, thus introducing
latency. BufferSize has to be smaller than the effective queue duration. To set the BufferSize to a
value other than the default, first change the BufferSizeSource to 'Property'. You can select
BufferSize from the list of properties.

4 System Objects

4-122

QueueDuration

Size of queue in seconds

Specify the length of the audio queue, in seconds. The default is 1.0. This property is tunable. The
purpose of the queue is to control the trade-off between latency and data dropout. Latency is
calculated by the following equation: latency = QueueDuration × SampleRate + 2 × Buf ferSize

SampleRate .

To minimize latency, lower the QueueDuration or set it to 0. However, be aware that data dropouts
or loss of system robustness may result. The QueueDuration property specifies the duration of the
signal, in seconds, that can be buffered during the simulation. This value is the maximum length of
time that the System object data supply can lag the device’s data demand. If the MATLAB data
throughput rate is lower than the device throughput rate, a buffer overrun occurs. You can use
OutputNumOverrunSamples to monitor overrun. To correct the overrun, make the queue duration
larger than the buffer. If the MATLAB data throughput rate is higher than the device throughput rate,
a buffer underrun occurs, causing the System object to wait for new samples to become available. To
minimize the chance of dropouts, the System object checks to verify the queue duration is at least as
large as the maximum of the buffer size and the frame size. If it is not, the queue duration is
automatically set to this maximum value. At the start of the simulation, the queue is filled with
silence. At each time step, the audio device sends a buffer of samples to the top of the queue.

SamplesPerFrame

Number of samples in the output signal

Specify the number of samples in the audio recorder's output as an integer. The default is 1024.

OutputDataType

Data type of the output

Select the output data type as uint8, int16, int32 , single , or double. The default is double.

OutputNumOverrunSamples

Enable output of overrun count

Set to true to output the number of samples dropped due to queue overrun since the last call to the
step method. The default is false.

ChannelMappingSource

Source of device channel mapping

Specify whether to determine the channel mapping as 'Auto' or as 'Property'. If you set the
value of ChannelMappingSource to 'Auto', the ChannelMapping field is rendered inactive. If you
set this property to 'Property', the vector specified in the ChannelMapping field is used to route
the input. Additionally, the NumChannels field is rendered inactive, because the channel map
contains information about the number of data channels that the user is attempting to read.

ChannelMapping

Device-to-data channel mapping

 dsp.AudioRecorder

4-123

Vector of valid channel indices to represent the mapping between device input channels and the data.
The term Channel Mapping refers to a 1-to-1 mapping that associates channels on the selected audio
device to channels of the data. When you record audio, channel mapping allows you to specify which
channel of the audio data directs input to a specific channel of audio. By default, the
ChannelMapping field is [1:MAXNUMINPUTCHANNELS], where MAXNUMINPUTCHANNELS
depends upon the selected device.

Methods

step Record audio from recording device

Common to All System Objects
release Allow System object property value changes

Troubleshooting
Running an Executable Outside MATLAB

To run your generated standalone executable application in Shell, you need to set your environment
to the following:

Platform Command
Mac setenv DYLD_LIBRARY_PATH

$LD_LIBRARY_PATH: $MATLABROOT/bin/
maci64 (csh/tcsh)

export DYLD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
maci64 (Bash)

Linux setenv LD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH
$LD_LIBRARY_PATH: $MATLABROOT/bin/
glnxa64 (Bash)

Windows set PATH = $MATLABROOT\bin\win64;%PATH
%

Algorithms
This object implements the algorithm, inputs, and outputs described on the From Audio Device block
reference page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.AudioRecorder System object has been removed
Errors starting in R2020a

4 System Objects

4-124

dsp.AudioRecorder System object has been removed. Use audioDeviceReader instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
 AR = dsp.AudioRecorder;
 AFW = dsp.AudioFileWriter('myspeech.wav',...
'FileFormat', 'WAV');
 disp('Speak into microphone now');
 tic;
 while toc < 10
 AFW(AR());
 end
 release(AR);
 release(AFW);
 disp('Recording complete');

If you are using a release prior to R2016b,
replace AFW(AR()) with step(AFW,step(AR)).

devReader = audioDeviceReader;
fileWriter = dsp.AudioFileWriter('myspeech.wav',...
'FileFormat','WAV');
% Initialize audio device
setup(devReader);
disp('Speak into microphone now');
tic;
while toc < 10
 fileWriter(record(devReader));
end
% release the audio device
release(devReader);
% close the output file
release(fileWriter);
disp('Recording complete');

See Also
dsp.AudioFileReader | audioDeviceReader

Topics
Set the Audio Hardware API on page 2-627

Introduced in R2012a

 dsp.AudioRecorder

4-125

step
System object: dsp.AudioRecorder
Package: dsp

Record audio from recording device

Compatibility
The dsp.AudioRecorder object has been removed. Existing instances of the object error out.
Replace with audioDeviceReader object from Audio Toolbox. For more information, see
“Compatibility Considerations” on page 4-124.

Syntax
AUDIO = step(H)
[AUDIO,Overrun] = step(H)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

AUDIO = step(H) reads one frame of audio samples from the selected audio input device.

[AUDIO,Overrun] = step(H) reads one frame of audio samples from the selected audio input
device. The output Overrun indicates the number of samples dropped due to queue overrun since
the last call to the step method. This syntax applies when you set the “OutputNumOverrunSamples”
on page 4-0 property to true.

4 System Objects

4-126

dsp.Autocorrelator
Package: dsp

(To be removed) Autocorrelation sequence

Note dsp.Autocorrelator will be removed in a future release. Use xcorr instead. For more
information, see “Compatibility Considerations”.

Description
The Autocorrelator object returns the autocorrelation sequence for a discrete-time, deterministic
input, or the autocorrelation sequence estimate for a discrete-time, wide-sense stationary (WSS)
random process at positive lags.

To obtain the autocorrelation sequence:

1 Create the dsp.Autocorrelator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ac = dsp.Autocorrelator
ac = dsp.Autocorrelator(Name,Value)

Description

ac = dsp.Autocorrelator returns an autocorrelator, ac, that computes the autocorrelation along
the first dimension of an N-D array. By default, the autocorrelator computes the autocorrelation at
lags from zero to N – 1, where N is the length of the input vector or the row dimension of the input
matrix. Inputting a row vector results in a row of zero-lag autocorrelation sequence values, one for
each column of the row vector. The default autocorrelator returns the unscaled autocorrelation and
performs the computation in the time domain.

ac = dsp.Autocorrelator(Name,Value) returns an autocorrelator, ac, with each property set to
the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 dsp.Autocorrelator

4-127

For more information on changing property values, see System Design in MATLAB Using System
Objects.

MaximumLagSource — Source of maximum lag
Auto (default) | Property

Specify how to determine the range of lags for the autocorrelation as Auto or Property. If the value
of MaximumLagSource is Auto, the autocorrelator computes the autocorrelation over all
nonnegative lags in the interval [0, N-1], where N is the length of the first dimension of the input.
Otherwise, the object computes the autocorrelation using lags in the range [0,MaximumLag].

MaximumLag — Maximum positive lag
1 (default) | 0 | positive integer

Specify the maximum lag as an integer greater than or equal to 0. The MaximumLag must be less
than the length of the input data.

Dependencies

This property applies only when the MaximumLagSource property is Property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Scaling — Autocorrelation function scaling
None (default) | Biased | Unbiased | Unity at zero-lag

Specify the scaling to apply to the output as None, Biased, Unbiased, or Unity at zero-lag. Set
this property to None to generate the autocorrelation function without scaling. This option is
appropriate if you are computing the autocorrelation of a nonrandom (deterministic) input.

The Biased option scales the autocorrelation by 1/N, where N is the length of the input data. Scaling
by 1/N yields a biased, finite-sample approximation to the theoretical autocorrelation of a WSS
random process. In spite of the bias, scaling by 1/N has the desirable property that the sample
autocorrelation matrix is nonnegative definite, a property possessed by the theoretical
autocorrelation matrices of all wide-sense stationary random processes. The Fourier transform of the
biased autocorrelation estimate is the periodogram, a widely used estimate of the power spectral
density of a WSS process.

The Unbiased option scales the estimate of the autocorrelation by 1/N – 1. Scaling by N – 1 produces
an unbiased estimate of the theoretical autocorrelation. However, using the unbiased option, you can
obtain an estimate of the autocorrelation function that fails to have the nonnegative definite property.

Use the Unity at zero-lag option to normalize the autocorrelation estimate as identically one at
lag zero. The default is None.

Method — Domain for computing autocorrelations
Time Domain (default) | Frequency Domain

Specify the domain for computing autocorrelations as Time Domain or Frequency Domain. You
must set this property to Time Domain for fixed-point signals.

Fixed-Point Properties

FullPrecisionOverride — Full precision override for fixed-point arithmetic
true (default) | false

4 System Objects

4-128

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects”.

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method as Ceiling, Convergent, Floor, Nearest, Round, Simplest, or
Zero.
Dependencies

This property applies only when you set the Method property to Time Domain and the object is not
in full precision mode.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as Wrap or Saturate.
Dependencies

This property applies only when you set the Method property to Time Domain and the object is not
in full precision mode.

ProductDataType — Product word and fraction lengths
Full precision (default) | Same as input | Custom

Specify the product fixed-point data type as one of Full precision, Same as input, or Custom.
Dependencies

This property applies only when you set the Method property to Time Domain.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.
Dependencies

This property applies only when you set the Method property to Time Domain and the
ProductDataType property to Custom.

AccumulatorDataType — Accumulator word and fraction lengths
Full precision (default) | Same as product | Same as input | Custom

Specify the accumulator fixed-point data type as one of Full precision, Same as product, Same
as input, or Custom.
Dependencies

This property applies only when the Method property is Time Domain.

 dsp.Autocorrelator

4-129

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the Method property to Time Domain and the
AccumulatorDataType property to Custom.

OutputDataType — Output word and fraction lengths
Same as accumulator (default) | Same as product | Same as input | Custom

Specify the output fixed-point data type as Same as accumulator, Same as product, Same as
input, or Custom.

Dependencies

This property applies only when the Method property is Time Domain.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when you set the Method property to Time Domain and the
OutputDataType property to Custom.

Usage

Syntax
y = ac(x)

Description

y = ac(x) computes the autocorrelation sequence y for the columns of the input x.

Input Arguments

x — Data input
vector | matrix | N-D array

Data input, specified as a vector, matrix, or an N-D array. The object accepts real-valued or complex-
valued multichannel and multidimensional inputs. The input can be a fixed-point signal when you set
the Method property to 'Time Domain'. When the input signal is complex, the output signal is
complex.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

4 System Objects

4-130

Output Arguments

y — Autocorrelated output
vector | matrix | N-D array

Autocorrelated output of the two input signals. The size, data type, and complexity of the output
matches that of the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Autocorrelation of Noisy Sine Wave

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Compute the autocorrelation of a sine wave in white Gaussian noise with approximate 95% upper and
lower confidence limits.

S = rng('default');
% Sine wave with period N=4
x = 1.4*cos(pi/2*(1:100))'+randn(100,1);
MaxLag = 20;
ac = dsp.Autocorrelator('MaximumLagSource',...
'Property','MaximumLag',MaxLag,'Scaling','Unity at zero-lag');
SigAutocorr = ac(x);
stem(SigAutocorr,'b','markerfacecolor',[0 0 1]);
line(1:MaxLag+1,1.96/sqrt(100)*ones(MaxLag+1,1),...
 'linestyle','-.','linewidth',2);
line(1:MaxLag+1,-1.96/sqrt(100)*ones(MaxLag+1,1),...
 'linestyle','-.','linewidth',2);
axis([1 20 -1 1]);
title('Sine Wave + Noise Autocorrelation'); xlabel('Lag');

 dsp.Autocorrelator

4-131

As the generated figure shows, the autocorrelation estimate demonstrates the four sample periodic
sine wave with excursions outside the 95% white Gaussian noise confidence limits every two samples.

More About
Autocorrelation

Autocorrelation is the correlation of a signal with itself at different points in time.

For a deterministic discrete-time sequence, x(n), the autocorrelation is computed using the following
relationship:

rx(h) = ∑
n = 0

N − h− 1
x*(n)x(n + h) h = 0, 1, …, N − 1

where h is the lag and * denotes the complex conjugate. If the input is a length N realization of a WSS
stationary random process, rx(h) is an estimate of the theoretical autocorrelation:

ρx(h) = E x*(n)x(n + h)

where E{ } is the expectation operator. The Unity at zero-lag normalization divides each
sequence value by the autocorrelation or autocorrelation estimate at zero lag.

ρx(h)
ρx(0) = E x*(n)x(n + h)

E x(0) 2

The most commonly used estimate of the theoretical autocorrelation of a WSS random process is the
biased estimate:

ρ x(h) = 1
N ∑

k = 0

N − h− 1
x*(n)x(n + h)

Algorithms
Time-Domain Computation

When you set the computation domain to time, the algorithm computes the autocorrelation of the
input signal in the time domain. The input signal can be a fixed-point signal in this domain.

The autocorrelation sequence, y, is computed using this equation:

yi, j = ∑
k = 0

M − l− 1
uk, j* u(k + i), j 0 ≤ i ≤ l

• y0,j is the zero-lag element in the jth column of the input.
• i is the index of the lag.
• j is the index of the input data column.
• * denotes the complex conjugate.
• M is the number of elements in each column.

4 System Objects

4-132

• l is the maximum positive lag for autocorrelation. When you choose to compute the
autocorrelation with all nonnegative lags, l=M–1. Otherwise, l is the maximum nonnegative
integer lag value specified.

• u is an M-by-N input matrix.

Frequency-Domain Computation

When you set the computation domain to frequency, the algorithm computes the autocorrelation in
the frequency domain.

In this domain, the algorithm computes the autocorrelation sequence by taking the Fourier transform
of the input signal, multiplying the Fourier transform with its complex conjugate, and taking the
inverse Fourier transform of the product. In this domain, depending on the input length, the
algorithm can require fewer computations.

Compatibility Considerations
dsp.Autocorrelator System object will be removed
Warns starting in R2021b

dsp.Autocorrelator System object will be removed in a future release. Use the xcorr function
instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the xcorr function.

 dsp.Autocorrelator

4-133

Discouraged Usage Recommended Replacement
The function computes the correlation over
nonnegative lags.

No maximum lag specified

When no maximum lag is specified, the object
computes the autocorrelation using nonnegative
lags [0 (M − 1)], where M is the length of the first
dimension of the input.

acObj = dsp.Autocorrelator;
% x is a column vector
x = (1:100)';
yObj = acObj(x);
figure;
stem(yObj)

Specify maximum lag

When the maximum lag MaxLag is specified, the
object computes the autocorrelation using lags in
the range [0 MaxLag].

MaxLag = 20;
acObjLag = dsp.Autocorrelator('MaximumLagSource',...
'Property','MaximumLag',MaxLag);
% x is a column vector
x = (1:100)';
yObjLag = acObjLag(x);
figure;
stem(yObjLag)

If you are using a release prior to R2016b,
replace acObj(x) with step(acObj,x) and
acObjLag(x) with step(acObjLag,x).

The function computes the correlation over both
positive and negative lags.

No maximum lag specified

When no maximum lag is specified, the function
computes the autocorrelation using lags in the
range [−(M − 1) (M − 1)].

[yfn,lags] = xcorr(x);
figure;
stem(lags,yfn)

Specify maximum lag

When the maximum lag MaxLag is specified, the
function computes the autocorrelation using lags
in the range [−MaxLag MaxLag].

[yfnLag,lags] = xcorr(x,MaxLag);
figure;
stem(lags,yfnLag)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
xcorr

Introduced in R2012a

4 System Objects

4-134

dsp.BinaryFileReader
Package: dsp

Read data from binary file

Description
The dsp.BinaryFileReader System object reads multichannel signal data from a binary file. If the
header is not empty, then the header precedes the signal data. The System object specifies the
prototype of the header, and the type, size, and complexity of the data. The first time you read the
file, the reader reads the header, followed by the data. On subsequent calls, the reader reads the
remaining data. Once the end of file is reached, the reader returns zeros of the specified data type,
size, and complexity. The reader can read signal data from a binary file that is not created by the
dsp.BinaryFileWriter System object.

The object accepts floating-point data or integer data. To read character data and fixed-point data,
see the “Write and Read Character Data” on page 4-146 and “Write and Read Fixed-Point Data” on
page 4-145 examples. The input data can be real or complex. When the data is complex, the object
reads the data as interleaved real and imaginary components. For an example, see “Read Complex
Data” on page 4-144. The reader assumes the default endianness of the host machine. To change the
endianness, you can use the swapbytes function. For an example, see “Change Endianness of Data”
on page 4-147.

To read data from a binary file:

1 Create the dsp.BinaryFileReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
reader = dsp.BinaryFileReader
reader = dsp.BinaryFileReader(fname)
reader = dsp.BinaryFileReader(fname,Name,Value)

Description

reader = dsp.BinaryFileReader creates a binary file reader object, reader, using the default
properties.

reader = dsp.BinaryFileReader(fname) sets the Filename property to fname.

reader = dsp.BinaryFileReader(fname,Name,Value) with Filename set to fname, and each
specified property set to the specified value. Unspecified properties have default values.

 dsp.BinaryFileReader

4-135

Example: reader =
dsp.BinaryFileReader('myFilename.bin','SamplesPerFrame',1000,'NumChannels',2)
;

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filename — Name of file
'Untitled.bin' (default) | character vector | string scalar

Name of the file from which the object reads the data, specified as a character vector. If the file is not
on the MATLAB path, then specify the full path for the file.

HeaderStructure — Size of header
struct('Field1',[]) (default) | structure

The structure specifies the prototype of the file header, that is, the size of the header and the data
type of the field values. The structure can have an arbitrary number of fields. Each field of the
structure must be a real matrix of a built-in type. For example, if HeaderStructure is set to
struct('field1',1:10,'field2',single(1)), the object assumes that the header is formed by
10 real double-precision values followed by 1 single-precision value. If the file contains no header, you
can set this property to an empty structure, struct([]). To retrieve the file header, call the
readHeader method on the reader object.

SamplesPerFrame — Number of samples per output frame
1024 (default) | positive integer

Number of samples per output frame, specified as a positive integer. SamplesPerFrame specifies the
number of rows of the output matrix that the object returns. The size of the data is
SamplesPerFrame-by-NumChannels. Once the end of file is reached, the reader returns zeros of the
specified data type, size, and complexity.

NumChannels — Number of channels
1 (default) | positive integer

Number of channels, specified as a positive integer. NumChannels specifies the number of columns of
the output matrix that the object returns. This property defines the number of consecutive
interleaved data samples stored in the file for each time instant. The size of the data is
SamplesPerFrame-by-NumChannels. Once the end of file is reached, if the output matrix is not full,
the object fills the matrix with zeros to make it a full-sized matrix.

DataType — Type of data in file
'double' (default) | 'single' | 'int8' | 'int16' | 'int32' | 'int64' | 'uint8' | 'uint16' |
'uint32' | 'uint64'

Type of data in file, specified as a character vector. This property defines the data type of the matrix
returned by the object algorithm.

4 System Objects

4-136

IsDataComplex — Specify data complexity
false (default) | true

Option to specify data complexity, specified as false or true. When this property is set to true, the
reader treats the data as complex. The object reads the data as interleaved real and imaginary
components. Consider a reader object configured to read the data as a 2-by-2 matrix. The object
reads [1 5 2 6 3 7 4 8] as [1 2; 3 4]+1j*[5 6; 7 8]. If this property is set to false, the
same object reads the data as [1 5; 2 6].

Usage

Syntax
data = reader()

Description

data = reader() reads data from the binary file in a row-major format. The data type, size, and
complexity of the data are determined by the properties of the reader object. Once the end of file is
reached, the output contains zeros of the specified data type, size, and complexity.

Output Arguments

data — Data output
vector | matrix

Data read by the binary file reader, returned as a vector or a matrix. The size of the data is given by
SamplesPerFrame-by-NumChannels, where SamplesPerFrame and NumChannels are the
properties of the dsp.BinaryFileReader object.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.BinaryFileReader
isDone End-of-data status
readHeader Read file header

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

 dsp.BinaryFileReader

4-137

Write and Read Binary Files

Create a binary file with a custom header using the dsp.BinaryFileWriter System object. Write
data to this file. Read the header and data using the dsp.BinaryFileReader System object.

Write the Data

Specify the file header as a structure with the following fields:

• DataType set to double.
• Complexity set to false.
• FrameSize (number of rows in the data matrix) set to 150.
• NumChannels (number of columns in the data matrix) set to 1.

Create a dsp.BinaryFileWriter object using this header. The object writes the header first,
followed by the data, to ex_file.bin. The data is a noisy sine wave signal. View the data in a time
scope.

L = 150;
header = struct('DataType','double',...
 'Complexity',false,...
 'FrameSize',L,...
 'NumChannels',1);
writer = dsp.BinaryFileWriter('ex_file.bin',...
 'HeaderStructure',header);

sine = dsp.SineWave('SamplesPerFrame',L);
scopewriter = timescope('YLimits',[-1.5 1.5],...
 'SampleRate',sine.SampleRate,...
 'TimeSpanSource','Property',...
 'TimeSpan',1);

for i = 1:1000
 data = sine() + 0.01*randn(L,1);
 writer(data);
 scopewriter(data)
end

4 System Objects

4-138

Release the writer so that the reader can access the data from this file.

release(writer);

Read the Data

Read the data from the binary file, ex_file.bin, using the dsp.BinaryFileReader object. The
file contains the header data followed by the actual data. The object reads the binary data until the
end of file is reached. Specify the header to the reader using the HeaderStructure property of the
reader object.

If the exact header is not known on the reader side, you must at least specify the prototype of the
header. That is, the number of fields, and the data type, size, and complexity of each field in the
prototype must match with the header data written to the binary file. When the readHeader function
reads the data from the binary file, the function extracts the header information based on how the
fields are specified in the header prototype. For example, a header field set to 'double' on the
writer side can be specified as any string of 6 characters on the reader side. The readHeader
function reads this field as a string of 6 characters from the binary file, which matches with
'double'.

headerPrototype = struct('DataType','datype',...
 'Complexity',false,...
 'FrameSize',1,...
 'NumChannels',10);
reader = dsp.BinaryFileReader(...
 'ex_file.bin',...

 dsp.BinaryFileReader

4-139

 'HeaderStructure',headerPrototype);
headerReader = readHeader(reader)

headerReader =

 struct with fields:

 DataType: 'double'
 Complexity: 0
 FrameSize: 150
 NumChannels: 1

The header data extracted by the readHeader function is assigned to the corresponding properties
of the reader object.

reader.IsDataComplex = headerReader.Complexity;
reader.DataType = headerReader.DataType;
reader.NumChannels = headerReader.NumChannels;
reader.SamplesPerFrame = headerReader.FrameSize;

Initialize a scope on the reader side to view the extracted binary file data.

scopereader = timescope('YLimits',[-1.5 1.5],...
 'SampleRate',sine.SampleRate,...
 'TimeSpanSource','Property',...
 'TimeSpan',1);

The data is read into a single channel (column) containing multiple frames, where each frame has 150
samples. View the data in a time scope.

while ~isDone(reader)
 out = reader();
 scopereader(out)
end
release(reader);
release(scopereader);

4 System Objects

4-140

Set the reader to read data in frames of size 300. Verify that the data read matches the data written
to the file.

reader.SamplesPerFrame = 300;
while ~isDone(reader)
 out = reader();
 scopereader(out)
end
release(reader);

 dsp.BinaryFileReader

4-141

Even when the reader reads data with a different frame size, the output in both time scopes matches
exactly.

Write and Read Matrix Data

Use a dsp.BinaryFileReader System object™ to read data from a binary file in a row-major
format.

Write the Data

Write the matrix A to the binary file Matdata.bin using a dsp.BinaryFileWriter object. The
object writes the specified header followed by the data.

The header has the following format:

• DataType set to double.
• Complexity set to false.
• FrameSize (number of rows in the data matrix) set to 3.
• NumChannels (number of columns in the data matrix) set to 4.

A = [1 2 3 8; 4 5 6 10; 7 8 9 11];
header = struct('DataType','double',...
 'Complexity',false,...

4 System Objects

4-142

 'FrameSize',3,...
 'NumChannels',4);
writer = dsp.BinaryFileWriter('Matdata.bin',...
 'HeaderStructure',header);
writer(A);

Release the writer so that the reader can access the data.

release(writer);

Read the Data

Specify the header using the HeaderStructure property of the reader object. If the exact header is
not known, you must at least specify the prototype of the header. That is, the number of fields, and
the data type, size, and complexity of each field in the prototype must match with the header data
written to the binary file. The dsp.BinaryFileReader object reads the binary file Matdata.bin
until the end of file is reached. Configure the System object to read the data into 4 channels, with
each channel containing 5 samples. Each loop of the iteration reads a channel (or frame) of data.

headerPrototype = struct('DataType','double',...
 'Complexity',false,...
 'FrameSize',5,...
 'NumChannels',4);
reader = dsp.BinaryFileReader('Matdata.bin',...
 'HeaderStructure',headerPrototype,...
 'NumChannels',4,...
 'SamplesPerFrame',5);
while ~isDone(reader)
 out = reader();
 display(out)
end

out = 5×4

 1 2 3 8
 4 5 6 10
 7 8 9 11
 0 0 0 0
 0 0 0 0

Each frame of out contains frames of the matrix A, followed by zeros to complete the frame. The
original matrix A contains 4 channels with 3 samples in each channel. The reader is configured to
read data into 4 channels, with each channel containing 5 samples. Because there are not enough
samples to complete the frame, the reader object appends zeros at the end of each frame.

Read Header Data

Read the header data from a binary file using the readHeader function.

Write a header, followed by the data to a binary file named myfile.dat. The header is a 1-by-4
matrix of double precision values, followed by a 5-by-1 vector of single-precision values. The data is a
sequence of 1000 double-precision values.

fid = fopen('myfile.dat','w');
fwrite(fid,[1 2 3 4],'double');

 dsp.BinaryFileReader

4-143

fwrite(fid,single((1:5).'),'single');
fwrite(fid,(1:1000).','double');
fclose(fid);

Read the header using a dsp.BinaryFileReader object. Specify the expected header structure.
This structure specifies only the format of the expected binary file header and does not contain the
exact values.

reader = dsp.BinaryFileReader('myfile.dat');
s = struct('A',zeros(1,4),'B',ones(5,1,'single'));
reader.HeaderStructure = s;

Read the header using the readHeader function.

H = readHeader(reader);
fprintf('H.A: ')

H.A:

fprintf('%d ',H.A);

1 2 3 4

fprintf('\nH.A datatype: %s\n',class(H.A))

H.A datatype: double

fprintf('H.B: ')

H.B:

fprintf('%d ',H.B);

1 2 3 4 5

fprintf('\nH.B datatype: %s\n',class(H.B))

H.B datatype: single

Read Complex Data

Read complex data from a binary file using the dsp.BinaryFileReader object.

Write a sequence of numbers to a binary file named myfile.dat. There is no header. The data is a 2-
by-4 matrix of double-precision values. fwrite writes the data in a column-major format. That is, the
2-by-4 matrix [1 2 3 4; 9 10 11 12] is written as [1 9 2 10 3 11 4 12] in the binary file.

fid = fopen('myfile.dat','w');
fwrite(fid,[1 2 3 4; 9 10 11 12],'double');
fclose(fid);

Specify the data to be complex using the IsDataComplex property. The object reads the data as
interleaved real and imaginary components. The SamplesPerFrame and NumChannel properties
specify the number of rows and columns of the output data. The header structure is specified as
empty.

reader = dsp.BinaryFileReader('myfile.dat','SamplesPerFrame',2,...
 'NumChannels',2,'IsDataComplex',true);

4 System Objects

4-144

s = struct([]);
reader.HeaderStructure = s;
data = reader();
display(data);

data = 2×2 complex

 1.0000 + 9.0000i 2.0000 +10.0000i
 3.0000 +11.0000i 4.0000 +12.0000i

release(reader);

Alternatively, if you do not specify the data as complex, the reader reads the data as a
SamplesPerFrame-by- NumChannel matrix of real values.

reader.IsDataComplex = false;
data = reader();
display(data);

data = 2×2

 1 9
 2 10

release(reader);

Write and Read Fixed-Point Data

The dsp.BinaryFileWriter and dsp.BinaryFileReader System objects do not support writing
and reading fixed-point data. As a workaround, you can write the stored integer portion of the fi
data, read the data, and use this value to reconstruct the fi data.

Write the Fixed-Point Data

Create an fi object to represent 100 signed random numbers with a word length of 14 and a fraction
length of 12. Write the stored integer portion of the fi object to the data file myFile.dat. The built-
in data type is int16, which can be computed using class(storeIntData).

data = randn(100,1);
fiDataWriter = fi(data,1,14,12);
storeIntData = storedInteger(fiDataWriter);

writer = dsp.BinaryFileWriter('myFile.dat');
writer(storeIntData);

Release the writer so that the reader can access the data.

release(writer);

Read the Fixed-Point Data

Specify the reader to read the stored integer data as int16 data with 100 samples per data frame.
The real-world value of the fixed-point number can be represented using

 dsp.BinaryFileReader

4-145

2(− f ractionLength)(storedInteger). If you know the signedness, word length, and fraction length of the
fixed-point data, you can reconstruct the fi data using
f i(realValue, signedness, wordLength, f ractionLength). In this example, the data is signed with a
word length of 14 and a fraction length of 12.

reader = dsp.BinaryFileReader('Filename','myFile.dat',...
 'SamplesPerFrame',100,...
 'DataType','int16');
data = reader();
fractionLength = 12;
wordLength = 14;
realValue = 2^(-fractionLength)*double(data);

fiDataReader = fi(realValue,1,...
 wordLength,fractionLength);

Verify that the writer data is the same as the reader data.

isequal(fiDataWriter,fiDataReader)

ans = logical
 1

Write and Read Character Data

The dsp.BinaryFileWriter and dsp.BinaryFileReader System objects do not support writing
and reading characters. As a workaround, cast character data to one of the built-in data types and
write the integer data. After the reader reads the data, convert the data to a character using the
char function.

Write the Character Data

Cast a character into uint8 using the cast function. Write the cast data to the data file
myFile.dat.

data = 'binary_file';
castData = cast(data,'uint8');
writer = dsp.BinaryFileWriter('myFile.dat');
writer(castData);

Release the writer so that the reader can access the data.

release(writer);

Read the uint8 Data

Configure the reader to read the cast data as uint8 data.

reader = dsp.BinaryFileReader('myFile.dat',...
 'DataType','uint8',...
 'SamplesPerFrame',11);
readerData = reader();
charData = char(readerData);

4 System Objects

4-146

Verify that the writer data is the same as the reader data. By default, the reader returns the data in a
column-major format.

strcmp(data,charData.')

ans = logical
 1

Change Endianness of Data

By default, the dsp.BinaryFileReader System object™ uses the endianness of the host machine.
To change the endianness, such as when the host machine that writes the data does not have the
same endianness as the host machine that reads the data, use the swapbytes function.

Write a numeric array into myfile.dat in big endian format. Read the data using the
dsp.BinaryFileReader object. The reader object reads the data in little endian format.

fid = fopen('myfile.dat','w','b');
fwrite(fid,[1 2 3 4 5 6 7 8],'double');
fclose(fid);
reader = dsp.BinaryFileReader('myfile.dat','SamplesPerFrame',8);
x = reader();
display(x);

x = 8×1
10-318 ×

 0.3039
 0.0003
 0.0104
 0.0206
 0.0256
 0.0307
 0.0357
 0.0408

x does not match the original data. Change the endianness of x using the swapbytes function.

y = swapbytes(x);
display(y);

y = 8×1

 1
 2
 3
 4
 5
 6
 7
 8

y matches the original data.

 dsp.BinaryFileReader

4-147

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.BinaryFileWriter

Blocks
Binary File Reader | Binary File Writer

Topics
“Generate C Code from MATLAB Code”

Introduced in R2016b

4 System Objects

4-148

dsp.BinaryFileWriter
Package: dsp

Write data to binary files

Description
The dsp.BinaryFileWriter System object writes multichannel signal data to a binary file. If the
header is not empty, then the header precedes the signal data. The object specifies the file name and
the structure of the header. The first time you write to the file, the object writes the header, followed
by the data. On subsequent calls, the object writes the remaining data. If the header is empty, then no
header is written.

The object can write floating-point data and integer data. To write character data and fixed-point
data, see “Write and Read Character Data” on page 4-158 and “Write and Read Fixed-Point Data” on
page 4-157. The input data can be real or complex. When the data is complex, the object writes the
data as interleaved real and imaginary components. For an example, see “Write and Read Fixed-Point
Data” on page 4-157. By default, the writer uses the endianness of the host machine. To change the
endianness, you can use the swapbytes function. For an example, see “Change Endianness of Data
Before Writing” on page 4-158 .

To write data to a binary file:

1 Create the dsp.BinaryFileWriter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
writer = dsp.BinaryFileWriter
writer = dsp.BinaryFileWriter(fname)
writer = dsp.BinaryFileWriter(fname,Name,Value)

Description

writer = dsp.BinaryFileWriter creates a binary file writer object, writer, using the default
properties.

writer = dsp.BinaryFileWriter(fname) sets the Filename property to fname.

writer = dsp.BinaryFileWriter(fname,Name,Value) with Filename set to fname and each
property Name set to the specified Value. Unspecified properties have default values.
Example: writer =
dsp.BinaryFileWriter('myFilename.bin','HeaderStructure',struct('field1',1:10,
'field2',single(1)));

 dsp.BinaryFileWriter

4-149

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filename — Name of file
'untitled.bin' (default) | character vector | string scalar

Name of the file to which the object writes the data, specified as a character vector or a string scalar.
You must specify the full path for the file.

HeaderStructure — Header to write at beginning of file
struct([]) (default) | structure

Header to write at the beginning of the file, specified as a structure. The structure can have an
arbitrary number of fields. Each field of the structure must be a real matrix of a built-in type. For
example, if HeaderStructure is set to struct('field1',1:10,'field2',single(1)), the
object writes a header formed by 10 double-precision values, (1:10), followed by one single
precision value, single(1). If you do not specify a header, the object sets this property to an empty
structure, struct([]).

Usage

Syntax
writer(data)

Description

writer(data) writes data to the binary file in a row-major format. Each call to the algorithm writes
the elements of data at the end of the file. At the first call to the algorithm, the object writes the
header first, followed by the data. If the header is empty, then no header is written.

The input data can be real or complex. For complex data, real and imaginary parts are interleaved.
For example, if the data equals [1 2; 3 4]+1j*[5 6; 7 8], then the object writes the elements
as 1 5 2 6 3 7 4 8.

Input Arguments

data — Data to be written to file
vector | matrix

Data to be written to the binary file in a row-major format, specified as a vector or a matrix. The
object writes the data in row-major format. For example, if the input array is [1 2 4 5; 8 7 9 2],
the object writes the data as [1 2 4 5 8 7 9 2].

The input data can be real or complex. For complex data, real and imaginary parts are interleaved.
For example, if the data equals [1 2; 3 4]+1j*[5 6; 7 8], then the object writes the elements
as [1 5 2 6 3 7 4 8].

4 System Objects

4-150

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Write and Read Binary Files

Create a binary file with a custom header using the dsp.BinaryFileWriter System object. Write
data to this file. Read the header and data using the dsp.BinaryFileReader System object.

Write the Data

Specify the file header as a structure with the following fields:

• DataType set to double.
• Complexity set to false.
• FrameSize (number of rows in the data matrix) set to 150.
• NumChannels (number of columns in the data matrix) set to 1.

Create a dsp.BinaryFileWriter object using this header. The object writes the header first,
followed by the data, to ex_file.bin. The data is a noisy sine wave signal. View the data in a time
scope.

L = 150;
header = struct('DataType','double',...
 'Complexity',false,...
 'FrameSize',L,...
 'NumChannels',1);
writer = dsp.BinaryFileWriter('ex_file.bin',...
 'HeaderStructure',header);

sine = dsp.SineWave('SamplesPerFrame',L);
scopewriter = timescope('YLimits',[-1.5 1.5],...
 'SampleRate',sine.SampleRate,...
 'TimeSpanSource','Property',...
 'TimeSpan',1);

for i = 1:1000
 data = sine() + 0.01*randn(L,1);
 writer(data);

 dsp.BinaryFileWriter

4-151

 scopewriter(data)
end

Release the writer so that the reader can access the data from this file.

release(writer);

Read the Data

Read the data from the binary file, ex_file.bin, using the dsp.BinaryFileReader object. The
file contains the header data followed by the actual data. The object reads the binary data until the
end of file is reached. Specify the header to the reader using the HeaderStructure property of the
reader object.

If the exact header is not known on the reader side, you must at least specify the prototype of the
header. That is, the number of fields, and the data type, size, and complexity of each field in the
prototype must match with the header data written to the binary file. When the readHeader function
reads the data from the binary file, the function extracts the header information based on how the
fields are specified in the header prototype. For example, a header field set to 'double' on the
writer side can be specified as any string of 6 characters on the reader side. The readHeader
function reads this field as a string of 6 characters from the binary file, which matches with
'double'.

headerPrototype = struct('DataType','datype',...
 'Complexity',false,...
 'FrameSize',1,...

4 System Objects

4-152

 'NumChannels',10);
reader = dsp.BinaryFileReader(...
 'ex_file.bin',...
 'HeaderStructure',headerPrototype);
headerReader = readHeader(reader)

headerReader =

 struct with fields:

 DataType: 'double'
 Complexity: 0
 FrameSize: 150
 NumChannels: 1

The header data extracted by the readHeader function is assigned to the corresponding properties
of the reader object.

reader.IsDataComplex = headerReader.Complexity;
reader.DataType = headerReader.DataType;
reader.NumChannels = headerReader.NumChannels;
reader.SamplesPerFrame = headerReader.FrameSize;

Initialize a scope on the reader side to view the extracted binary file data.

scopereader = timescope('YLimits',[-1.5 1.5],...
 'SampleRate',sine.SampleRate,...
 'TimeSpanSource','Property',...
 'TimeSpan',1);

The data is read into a single channel (column) containing multiple frames, where each frame has 150
samples. View the data in a time scope.

while ~isDone(reader)
 out = reader();
 scopereader(out)
end
release(reader);
release(scopereader);

 dsp.BinaryFileWriter

4-153

Set the reader to read data in frames of size 300. Verify that the data read matches the data written
to the file.

reader.SamplesPerFrame = 300;
while ~isDone(reader)
 out = reader();
 scopereader(out)
end
release(reader);

4 System Objects

4-154

Even when the reader reads data with a different frame size, the output in both time scopes matches
exactly.

Write and Read Matrix Data

Use a dsp.BinaryFileReader System object™ to read data from a binary file in a row-major
format.

Write the Data

Write the matrix A to the binary file Matdata.bin using a dsp.BinaryFileWriter object. The
object writes the specified header followed by the data.

The header has the following format:

• DataType set to double.
• Complexity set to false.
• FrameSize (number of rows in the data matrix) set to 3.
• NumChannels (number of columns in the data matrix) set to 4.

A = [1 2 3 8; 4 5 6 10; 7 8 9 11];
header = struct('DataType','double',...
 'Complexity',false,...

 dsp.BinaryFileWriter

4-155

 'FrameSize',3,...
 'NumChannels',4);
writer = dsp.BinaryFileWriter('Matdata.bin',...
 'HeaderStructure',header);
writer(A);

Release the writer so that the reader can access the data.

release(writer);

Read the Data

Specify the header using the HeaderStructure property of the reader object. If the exact header is
not known, you must at least specify the prototype of the header. That is, the number of fields, and
the data type, size, and complexity of each field in the prototype must match with the header data
written to the binary file. The dsp.BinaryFileReader object reads the binary file Matdata.bin
until the end of file is reached. Configure the System object to read the data into 4 channels, with
each channel containing 5 samples. Each loop of the iteration reads a channel (or frame) of data.

headerPrototype = struct('DataType','double',...
 'Complexity',false,...
 'FrameSize',5,...
 'NumChannels',4);
reader = dsp.BinaryFileReader('Matdata.bin',...
 'HeaderStructure',headerPrototype,...
 'NumChannels',4,...
 'SamplesPerFrame',5);
while ~isDone(reader)
 out = reader();
 display(out)
end

out = 5×4

 1 2 3 8
 4 5 6 10
 7 8 9 11
 0 0 0 0
 0 0 0 0

Each frame of out contains frames of the matrix A, followed by zeros to complete the frame. The
original matrix A contains 4 channels with 3 samples in each channel. The reader is configured to
read data into 4 channels, with each channel containing 5 samples. Because there are not enough
samples to complete the frame, the reader object appends zeros at the end of each frame.

Write Complex Data

Create a dsp.BinaryFileWriter object which writes to a file named myfile.dat. There is no
header. The data is complex.

writer = dsp.BinaryFileWriter('myfile.dat');
data = [1 2 3 4]+1i*[5 6 7 8];
writer(data);
release(writer);

4 System Objects

4-156

Read the data using the dsp.BinaryFileReader System object™. To view data in the format it is
written to the file, set the IsDataComplex property to false. The reader object reads the data as a
sequence of numbers in a row major format. Set SamplesPerFrame to 1 and NumChannels to 8.

reader = dsp.BinaryFileReader('myfile.dat','SamplesPerFrame',1,...
 'NumChannels',8);
s = struct([]);
reader.HeaderStructure = s;
dataRead = reader();

You can see that the real and imaginary components of the original data are sample interleaved.

display(dataRead);

dataRead = 1×8

 1 5 2 6 3 7 4 8

Write and Read Fixed-Point Data

The dsp.BinaryFileWriter and dsp.BinaryFileReader System objects do not support writing
and reading fixed-point data. As a workaround, you can write the stored integer portion of the fi
data, read the data, and use this value to reconstruct the fi data.

Write the Fixed-Point Data

Create an fi object to represent 100 signed random numbers with a word length of 14 and a fraction
length of 12. Write the stored integer portion of the fi object to the data file myFile.dat. The built-
in data type is int16, which can be computed using class(storeIntData).

data = randn(100,1);
fiDataWriter = fi(data,1,14,12);
storeIntData = storedInteger(fiDataWriter);

writer = dsp.BinaryFileWriter('myFile.dat');
writer(storeIntData);

Release the writer so that the reader can access the data.

release(writer);

Read the Fixed-Point Data

Specify the reader to read the stored integer data as int16 data with 100 samples per data frame.
The real-world value of the fixed-point number can be represented using
2(− f ractionLength)(storedInteger). If you know the signedness, word length, and fraction length of the
fixed-point data, you can reconstruct the fi data using
f i(realValue, signedness, wordLength, f ractionLength). In this example, the data is signed with a
word length of 14 and a fraction length of 12.

reader = dsp.BinaryFileReader('Filename','myFile.dat',...
 'SamplesPerFrame',100,...
 'DataType','int16');

 dsp.BinaryFileWriter

4-157

data = reader();
fractionLength = 12;
wordLength = 14;
realValue = 2^(-fractionLength)*double(data);

fiDataReader = fi(realValue,1,...
 wordLength,fractionLength);

Verify that the writer data is the same as the reader data.

isequal(fiDataWriter,fiDataReader)

ans = logical
 1

Write and Read Character Data

The dsp.BinaryFileWriter and dsp.BinaryFileReader System objects do not support writing
and reading characters. As a workaround, cast character data to one of the built-in data types and
write the integer data. After the reader reads the data, convert the data to a character using the
char function.

Write the Character Data

Cast a character into uint8 using the cast function. Write the cast data to the data file
myFile.dat.

data = 'binary_file';
castData = cast(data,'uint8');
writer = dsp.BinaryFileWriter('myFile.dat');
writer(castData);

Release the writer so that the reader can access the data.

release(writer);

Read the uint8 Data

Configure the reader to read the cast data as uint8 data.

reader = dsp.BinaryFileReader('myFile.dat',...
 'DataType','uint8',...
 'SamplesPerFrame',11);
readerData = reader();
charData = char(readerData);

Verify that the writer data is the same as the reader data. By default, the reader returns the data in a
column-major format.

strcmp(data,charData.')

ans = logical
 1

4 System Objects

4-158

Change Endianness of Data Before Writing

By default, the dsp.BinaryFileWriter System object™ uses the endianness of the host machine.
To change the endianness, use the swapbytes function.

Write a numeric array into myfile.dat using the dsp.BinaryFileWriter object. Before writing
the data, change the endianness of the data using the swapbytes function.

data = [1 2 3 4 2 2];
swapData = swapbytes(data);
writer = dsp.BinaryFileWriter('myfile.dat');
writer(swapData);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.BinaryFileReader

Blocks
Binary File Reader | Binary File Writer

Topics
“Generate C Code from MATLAB Code”

Introduced in R2016b

 dsp.BinaryFileWriter

4-159

dsp.BiquadFilter
Package: dsp

IIR filter using biquadratic structures

Description
The dsp.BiquadFilter object implements a cascade of biquadratic sections, where the coefficients
for each section are supplied by a separate row of an N-by-6 second-order sections (SOS) matrix.
Each row of the SOS matrix contains the numerator and denominator coefficients of the
corresponding section of the filter. The resulting filter can be applied to a vector or matrix input,
where each column represents a channel of data that is processed independently.

To implement an IIR filter structure using biquadratic or SOS:

1 Create the dsp.BiquadFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
biquad = dsp.BiquadFilter
biquad = dsp.BiquadFilter(sosmatrix,scalevalues)
biquad = dsp.BiquadFilter(Name,Value)

Description

biquad = dsp.BiquadFilter returns a biquadratic IIR (SOS) filter System object, biquad, which
independently filters each channel (column) of the input over time using the SOS section [1 0.3
0.4 1 0.1 0.2] with a direct-form II transposed structure.

biquad = dsp.BiquadFilter(sosmatrix,scalevalues) returns a biquadratic filter object,
with the SOSMatrix property set to sosmatrix and the ScaleValues property set to
scalevalues.

biquad = dsp.BiquadFilter(Name,Value) returns a biquadratic filter object, biquad, with
each property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

4 System Objects

4-160

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Structure — Filter structure
'Direct form II transposed' (default) | 'Direct form I' | 'Direct form I
transposed' | 'Direct form II'

Specify the filter structure as 'Direct form I', 'Direct form I transposed', 'Direct form
II', 'Direct form II transposed'.

SOSMatrixSource — SOS matrix source
'Property' (default) | 'Input port'

Specify the source of the SOS matrix as 'Property' or 'Input port'.

SOSMatrix — SOS matrix
[1 0.3 0.4 1 0.1 0.2] (default) | N-by-6 matrix

Specify the second-order section (SOS) matrix as an N-by-6 matrix, where N is the number of sections
in the filter. Each row of the SOS matrix contains the numerator and denominator coefficients of the
corresponding section of the filter. The system function, H(z), of a biquad filter is:

H(z) =
∑

k = 0

2
bkz−k

1− ∑
l = 1

2
alz−l

The coefficients are ordered in the rows of the SOS matrix as (b0, b1,b2,1, –a1, –a2). You can use
coefficients of real or complex values. This property applies only when you set the
SOSMatrixSource property to Property. The leading denominator coefficient of the biquad filter,
a0, equals 1 for each filter section, regardless of the specified value.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

ScaleValues — Scale values for each biquad section
1 (default) | scalar | vector

Specify the scale values to apply before and after each section of a biquad filter. ScaleValues must
be either a scalar or a vector of length N+1, where N is the number of sections. If you set this
property to a scalar, the scalar value is used as the gain value only before the first filter section. The
remaining gain values are set to 1. If you set this property to a vector of N+1values, each value is
used for a separate section of the filter.

Dependencies

This property applies only when you set the SOSMatrixSource property to Property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialConditions — Initial conditions for direct form II structures
0 (default) | scalar | vector | matrix

Specify the initial conditions of the filter states when the Structure property is one of | Direct
form II | Direct form II transposed |. The number of states or delay elements (zeros and

 dsp.BiquadFilter

4-161

poles) in a direct-form II biquad filter equals twice the number of filter sections. You can specify the
initial conditions as a scalar, vector, or matrix.

When you specify a scalar value, the biquad filter initializes all delay elements in the filter to that
value. When you specify a vector of length equal to the number of delay elements in the filter, each
vector element specifies a unique initial condition for the corresponding delay element.

The biquad filter applies the same vector of initial conditions to each channel of the input signal.
When you specify a vector of length equal to the product of the number of input channels and the
number of delay elements in the filter, each element specifies a unique initial condition for the
corresponding delay element in the corresponding channel. When you specify a matrix with the same
number of rows as the number of delay elements in the filter, and one column for each channel of the
input signal, each element specifies a unique initial condition for the corresponding delay element in
the corresponding channel.
Dependencies

This property applies only when you set the Structure property to one of Direct form II or
Direct form II transposed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumeratorInitialConditions — Initial conditions on zeros side
0 (default) | scalar | vector | matrix

Specify the initial conditions of the filter states on the side of the filter structure with the zeros. The
number of states or delay elements in the numerator of a direct-form I biquad filter equals twice the
number of filter sections. You can specify the initial conditions as a scalar, vector, or matrix. When you
specify a scalar, the biquad filter initializes all delay elements on the zeros side in the filter to that
value. When you specify a vector of length equal to the number of delay elements on the zeros side in
the filter, each vector element specifies a unique initial condition for the corresponding delay element
on the zeros side.

The biquad filter applies the same vector of initial conditions to each channel of the input signal.
When you specify a vector of length equal to the product of the number of input channels and the
number of delay elements on the zeros side in the filter, each element specifies a unique initial
condition for the corresponding delay element on the zeros side in the corresponding channel. When
you specify a matrix with the same number of rows as the number of delay elements on the zeros side
in the filter, and one column for each channel of the input signal, each element specifies a unique
initial condition for the corresponding delay element on the zeros side in the corresponding channel.
Dependencies

This property applies only when you set the Structure property to one of Direct form I or
Direct form I transposed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DenominatorInitialConditions — Initial conditions on poles side
0 (default) | scalar | vector | matrix

Specify the initial conditions of the filter states on the side of the filter structure with the poles. The
number of denominator states, or delay elements, in a direct-form I (noncanonic) biquad filter equals
twice the number of filter sections. You can specify the initial conditions as a scalar, vector, or matrix.
When you specify a scalar, the biquad filter initializes all delay elements on the poles side of the filter
to that value. When you specify a vector of length equal to the number of delay elements on the poles

4 System Objects

4-162

side in the filter, each vector element specifies a unique initial condition for the corresponding delay
element on the poles side.

The object applies the same vector of initial conditions to each channel of the input signal. When you
specify a vector of length equal to the product of the number of input channels and the number of
delay elements on the poles side in the filter, each element specifies a unique initial condition for the
corresponding delay element on the poles side in the corresponding channel. When you specify a
matrix with the same number of rows as the number of delay elements on the poles side in the filter,
and one column for each channel of the input signal, each element specifies a unique initial condition
for the corresponding delay element on the poles side in the corresponding channel.
Dependencies

This property only applies when you set the Structure property to one of Direct form I or
Direct form I transposed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OptimizeUnityScaleValues — Optimize unity scale values
true (default) | false

When this Boolean property is set to true, the biquad filter removes all unity scale gain
computations. This reduces the number of computations and increases the fixed-point accuracy.
Dependencies

This property applies only when you set the SOSMatrixSource property to Property.

ScaleValuesInputPort — How to specify scale values
true (default) | false

Select how to specify scale values. By default, this property is true, and the scale values are
specified via the input port. When this property is false, all scale values are 1.
Dependencies

This property applies only when the SOSMatrixSource property is Input port.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as one of Wrap or Saturate.

MultiplicandDataType — Multiplicand word and fraction lengths
Same as output (default) | Custom

Specify the multiplicand fixed-point data type as one of Same as output or Custom.
Dependencies

This property applies only when you set the Structure property to Direct form I transposed.

 dsp.BiquadFilter

4-163

CustomMultiplicandDataType — Custom multiplicand word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the multiplicand fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the MultiplicandDataType property to Custom.

SectionInputDataType — Section input word and fraction lengths
Same as input (default) | Custom

Specify the section input fixed-point data type as either Same as input or Custom.

CustomSectionInputDataType — Custom section input word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the section input fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the SectionInputDataType property to Custom.

SectionOutputDataType — Section output word and fraction lengths
Same as section input (default) | Custom

Specify the section output fixed-point data type as either Same as section input or Custom.

CustomSectionOutputDataType — Custom section output word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the section output fixed-point type as a signed, scaled numerictype object with a
Signedness of Auto.

Dependencies

This property applies only when you set the SectionOutputDataType property to Custom.

NumeratorCoefficientsDataType — Numerator coefficients word and fraction lengths
Same word length as input (default) | Custom

Specify the numerator coefficients fixed-point data type as Same word length as input or
Custom. Setting this property also sets the DenominatorCoefficientsDataType and
ScaleValuesDataType properties to the same value.

Dependencies

This property applies only when you set the SOSMatrixSource property to Property.

CustomNumeratorCoefficientsDataType — Custom numerator coefficients word and
fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the numerator coefficients fixed-point type as a numerictype object with a Signedness of
Auto. The word length of the CustomNumeratorCoefficientsDataType,

4 System Objects

4-164

CustomDenominatorCoefficientsDataType, and CustomScaleValuesDataType properties
must be the same.
Dependencies

This property applies only when you set the SOSMatrixSource property to Property and the
NumeratorCoefficientsDataType property to Custom.

DenominatorCoefficientsDataType — Denominator coefficients word and fraction lengths
Same word length as input (default) | Custom

Specify the denominator coefficients fixed-point data type as Same word length as input or
Custom. Setting this property also sets the NumeratorCoefficientsDataType and
ScaleValuesDataType properties to the same value.
Dependencies

This property applies only when you set the SOSMatrixSource property to Property.

CustomDenominatorCoefficientsDataType — Custom denominator coefficients word and
fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the denominator coefficients fixed-point type as a numerictype object with a Signedness
of Auto. The CustomNumeratorCoefficientsDataType,
CustomDenominatorCoefficientsDataType, and CustomScaleValuesDataType properties
must have the same word lengths.
Dependencies

This property applies only when you set the SOSMatrixSource property to Property and the
DenominatorCoefficientsDataType property to Custom.

ScaleValuesDataType — Scale values word and fraction lengths
Same word length as input (default) | Custom

Specify the scale values fixed-point data type as Same word length as input or Custom. Setting
this property also sets the NumeratorCoefficientsDataType and
DenominatorCoefficientsDataType properties to the same value.
Dependencies

This property applies only when you set the SOSMatrixSource property to Property.

CustomScaleValuesDataType — Custom scale values word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the scale values fixed-point type as a numerictype object with a Signedness of Auto. The
CustomNumeratorCoefficientsDataType, CustomDenominatorCoefficientsDataType, and
CustomScaleValuesDataType properties must have the same word lengths.
Dependencies

This property applies only when you set the SOSMatrixSource property to Property and the
ScaleValuesDataType property to Custom.

NumeratorProductDataType — Numerator product word and fraction lengths
Same as input (default) | Custom | Full precision

 dsp.BiquadFilter

4-165

Specify the mode to determine the numerator product fixed-point data type as:

• Same as input (default) — The numerator product word and fraction lengths are same as that
of the input.

• Custom — Enables the CustomNumeratorProductDataType property, which you can use to
specify the custom numerator product data type. Specify the data type as a numerictype object.

• Full precision — Use full-precision rules to specify the data type. These rules provide the
most accurate fixed-point numerics. The rules prevent quantization from occurring within the
object. Bits are added, as needed, so that no roundoff or overflow occurs. For more information,
see “Full Precision for Fixed-Point System Objects”.

Setting this property also sets the DenominatorProductDataType property to the same value.

CustomNumeratorProductDataType — Custom numerator product word and fraction
lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.
The CustomNumeratorProductDataType and CustomDenominatorProductDataType properties
must have the same word lengths.

Dependencies

This property applies only when you set the NumeratorProductDataType property to Custom.

DenominatorProductDataType — Denominator product word and fraction lengths
Same as input (default) | Custom | Full precision

Specify the mode to determine the denominator product fixed-point data type as:

• Same as input (default) — The denominator product word and fraction lengths are same as that
of the input.

• Custom — Enables the CustomDenominatorProductDataType property, which you can use to
specify the custom denominator product data type. Specify the data type as a numerictype
object.

• Full precision — Use full-precision rules to specify the data type. These rules provide the
most accurate fixed-point numerics. The rules prevent quantization from occurring within the
object. Bits are added, as needed, so that no roundoff or overflow occurs. For more information,
see “Full Precision for Fixed-Point System Objects”.

Setting this property also sets the NumeratorProductDataType property to the same value.

CustomDenominatorProductDataType — Custom denominator product word and fraction
lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.
The CustomNumeratorProductDataType and CustomDenominatorProductDataType properties
must have the same word lengths.

Dependencies

This property applies only when you set the DenominatorProductDataType to Custom.

4 System Objects

4-166

NumeratorAccumulatorDataType — Numerator accumulator word and fraction lengths
Same as product (default) | Same as input | Custom

Specify the numerator accumulator fixed-point data type as Same as input, Same as product, or
Custom. Setting this property also sets the DenominatorAccumulatorDataType property to the
same value.

CustomNumeratorAccumulatorDataType — Custom numerator accumulator word and
fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the numerator accumulator fixed-point type as a scaled numerictype object with a
Signedness of Auto. The CustomNumeratorAccumulatorDataType and
CustomDenominatorAccumulatorDataType properties must have the same word lengths.
Dependencies

This property applies only when you set the NumeratorAccumulatorDataType property to Custom.

DenominatorAccumulatorDataType — Denominator accumulator word and fraction lengths
Same as product (default) | Same as input | Custom

Specify the denominator accumulator fixed-point data type as Same as input, Same as product,
or Custom. Setting this property also sets the NumeratorAccumulatorDataType property to the
same value.

CustomDenominatorAccumulatorDataType — Custom denominator accumulator word and
fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the denominator accumulator fixed-point type as a scaled numerictype object with a
Signedness of Auto. The CustomNumeratorAccumulatorDataType and
CustomDenominatorAccumulatorDataType properties must have the same word lengths.
Dependencies

This property applies only when you set the DenominatorAccumulatorDataType property to
Custom.

StateDataType — State word and fraction lengths
Same as accumulator (default) | Same as input | Custom

Specify the state fixed-point data type as Same as input, Same as accumulator, or Custom.
Dependencies

This property applies when you set the “Structure” on page 4-0 property to Direct form II or
Direct form II transposed.

CustomStateDataType — Custom state word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the state fixed-point type as a scaled numerictype object with a Signedness of Auto.
Dependencies

This property applies only when you set the StateDataType property to Custom.

 dsp.BiquadFilter

4-167

NumeratorStateDataType — Numerator state word and fraction lengths
Same as accumulator (default) | Same as input | Custom

Specify the numerator state fixed-point data type as Same as input, Same as accumulator, or
Custom. Setting this property also sets the DenominatorStateDataType property to the same
value.
Dependencies

This property applies only when you set the “Structure” on page 4-0 property to Direct form I
transposed.

CustomNumeratorStateDataType — Custom numerator state word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the numerator state fixed-point type as a scaled numerictype object with a Signedness of
Auto. The CustomNumeratorProductDataType and CustomDenominatorProductDataType
properties must have the same word lengths.
Dependencies

This property applies only when you set the StateDataType property to Custom.

DenominatorStateDataType — Denominator state word and fraction lengths
Same as accumulator (default) | Same as input | Custom

Specify the denominator state fixed-point data type as Same as input, Same as accumulator, or
Custom. Setting this property also sets the NumeratorStateDataType property to the same value.
Dependencies

This property applies only when you set the “Structure” on page 4-0 property to Direct form I
transposed.

CustomDenominatorStateDataType — Custom denominator state word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the denominator state fixed-point type as a scaled numerictype object with a Signedness
of Auto. The CustomNumeratorStateDataType and CustomDenominatorStateDataType
properties must have the same word lengths.
Dependencies

This property applies only when you set the StateDataType property to Custom.

OutputDataType — Output word and fraction lengths
Same as accumulator (default) | Same as input | Custom

Specify the output fixed-point data type as Same as input, Same as accumulator, or Custom.

CustomOutputDataType — Custom output word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
Dependencies

This property applies only when you set the “OutputDataType” on page 4-0 property to Custom.

4 System Objects

4-168

Usage

Syntax
y = biquad(x)
y = biquad(x,num,den)
y = biquad(x,num,den,g)

Description

y = biquad(x) filters the input signal x , and outputs the filtered values, y. The biquad filter object
filters each channel of the input signal over successive calls to the algorithm.

y = biquad(x,num,den) filters the input using num as the numerator coefficients, and den as the
denominator coefficients of the biquad filter. This configuration applies when the SOSMatrixSource
property is Input port and the ScaleValuesInputPort property is false.

y = biquad(x,num,den,g) specifies the scale values, g, of the biquad filter. This configuration
applies when the SOSMatrixSource property is Input Port and the ScaleValuesInputPort
property is true.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. This object also accepts variable-size inputs. Once the
object is locked, you can change the size of each input channel, but you cannot change the number of
channels.

The data type of all the inputs must be the same. If the input is fixed-point, it must be signed fixed
point with power-of-two slope and zero bias.

The complexity of x, num, and den must be the same.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

num — Numerator coefficients
3-by-N matrix

Numerator coefficients, specified as a 3-by-N numeric matrix, where N is the number of biquad filter
sections. The complexity of x, num, and den must be the same.

The data type of all the inputs must be the same. If num is fixed point, it must be signed fixed point
with power-of-two slope and zero bias.

Dependencies

This input applies only when you set SOSMatrixSource property is Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | fi
Complex Number Support: Yes

den — Denominator coefficients
2-by-N matrix

 dsp.BiquadFilter

4-169

Denominator coefficients, specified as a 2-by-N numeric matrix, where N is the number of biquad
filter sections. The object assumes that the first denominator coefficient of each section is 1.

The data type of all the inputs must be the same. If den is fixed point, it must be signed fixed point
with power-of-two slope and zero bias.

The complexity of x, num, and den must be the same.

Dependencies

This input applies only when you set SOSMatrixSource property is Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | fi
Complex Number Support: Yes

g — Scale values
1-by-(N +1) vector

Scale values of the biquad filter, specified as a 1-by-(N +1) numeric vector, where N is the number of
biquad filter sections.

The data type of all the inputs must be the same. If g is fixed point, it must be signed fixed point with
power-of-two slope and zero bias.

Dependencies

This input applies when the SOSMatrixSource property is Input Port and the
ScaleValuesInputPort property is true.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Output Arguments

y — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix. The size, data type, and complexity of the output
signal matches that of the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.BiquadFilter
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
impz Impulse response of discrete-time filter System object
info Information about filter System object
coeffs Returns the filter System object coefficients in a structure
cost Estimate cost of implementing filter System object

4 System Objects

4-170

scale Scale second-order sections
scaleopts Create an options object for second-order section scaling
scalecheck Check scaling of biquadratic filter
cumsec Cumulative second-order section of the biquadratic filter
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)
tf Convert discrete-time filter System object to transfer function
reorder Reorder second-order sections of biquadratic filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Filter a Signal Using Biquadratic Filter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Use a fourth order, lowpass biquadratic filter object with a normalized cutoff frequency of 0.4 to filter
high frequencies from an input signal. Display the result as a power spectrum using the Spectrum
Analyzer.

t = (0:1000)'/8e3;
xin = sin(2*pi*0.3e3*t)+sin(2*pi*3e3*t); % Input is 0.3 &
 % 3kHz sinusoids
src = dsp.SignalSource(xin, 100);
sink = dsp.SignalSink;

[z,p,k] = ellip(4,1,60,.4); % Set up the filter
[s,g] = zp2sos(z,p,k);
biquad = dsp.BiquadFilter(s,g,'Structure','Direct form I');

sa = dsp.SpectrumAnalyzer('SampleRate',8e3,...
 'PlotAsTwoSidedSpectrum',false,...
 'OverlapPercent', 80,'PowerUnits','dBW',...
 'YLimits', [-160 -10]);

while ~isDone(src)
 input = src();
 filteredOutput = biquad(input);
 sink(filteredOutput);
 sa(filteredOutput)
end

filteredResult = sink.Buffer;
fvtool(biquad,'Fs',8000)

 dsp.BiquadFilter

4-171

4 System Objects

4-172

Design and apply a lowpass biquad filter System object using the design function.

lpSpec = fdesign.lowpass('Fp,Fst,Ap,Ast',500,550,0.5,60,10000);
lpfilter = design(lpSpec,'butter','systemobject',true)
fvtool(lpfilter);

lpfilter =

 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [42x6 double]
 ScaleValues: [43x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Use get to show all properties

 dsp.BiquadFilter

4-173

Linf-norm Scaling of a Biquad Filter

Demonstrate the Linf-norm scaling of a biquad filter using the scale function.

Fs = 8000; Fcutoff = 2000;
[z,p,k] = butter(10,Fcutoff/(Fs/2)); [s,g] = zp2sos(z,p,k);
biquad = dsp.BiquadFilter('Structure', 'Direct form I', ...
 'SOSMatrix', s,'ScaleValues', g);
scale(biquad,'linf','scalevalueconstraint','none','maxscalevalue',2)

Options for scaling SOS filter

Create an options scaling object that contains the scaling options settings you require.

EllipI = design(fdesign.lowpass('N,Fp,Ap,Ast',10,0.5,0.5,20),...
 'ellip',...
 'FilterStructure', 'df1sos',...
 'SystemObject',true)

EllipI =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form I'

4 System Objects

4-174

 SOSMatrixSource: 'Property'
 SOSMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 NumeratorInitialConditions: 0
 DenominatorInitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

opts = scaleopts(EllipI)

opts =

 sosReorder: 'auto'
 MaxNumerator: 2
 NumeratorConstraint: 'none'
 OverflowMode: 'wrap'
 ScaleValueConstraint: 'unit'
 MaxScaleValue: 'Not used'

Algorithms
This object implements the algorithm, inputs, and outputs described on the Biquad Filter block
reference page. The object properties correspond to the block parameters, except:

• Coefficient source
• Action when the a0 values of the SOS matrix are not one – the biquad filter object assumes

the zero-th-order denominator coefficient equals 1 regardless of the specified value. The biquad
filter object does not support the Error or Warn options found in the corresponding block.

Both this object and its corresponding block support variable-size input. When you call the object, it
can handle an input argument which is changing in size.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the HDL Coder or Filter Design HDL Coder™
products. For HDL Coder workflows and limitations, see “HDL Code Generation for System Objects”
(HDL Coder). For Filter Design HDL Coder workflows and limitations, see “Generate HDL Code for
Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 dsp.BiquadFilter

4-175

The following diagrams show the data types used in the dsp.BiquadFilter object when the input is
fixed-point. For each filter structure the object supports, the data types shown in the diagrams can be
set through the respective fixed-point properties of the object.

Direct Form I

The following diagram shows the data types for one section of the filter for fixed-point signals.

The following diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

4 System Objects

4-176

When you specify OptimizeUnityScaleValues to true, and scale values to 1:

Direct Form I Transposed

The following diagram shows the data types for one section of the filter for fixed-point signals.

 dsp.BiquadFilter

4-177

The dashed casts are omitted when you specify OptimizeUnityScaleValues to true, and scale
values to 1.

The following diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you specify OptimizeUnityScaleValues to true, and scale values to 1:

Direct Form II

4 System Objects

4-178

The following diagram shows the data types for one section of the filter for fixed-point signals.

The dashed casts are omitted when you specify OptimizeUnityScaleValues to true, and scale
values to 1.

The following diagrams show the fixed-point data types between filter sections.

 dsp.BiquadFilter

4-179

When the data is not optimized:

When you specify OptimizeUnityScaleValues to true, and scale values to 1:

Direct Form II Transposed

The following diagram shows the data types for one section of the filter for fixed-point signals.

4 System Objects

4-180

The following diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you specify OptimizeUnityScaleValues to true, and scale values to 1:

 dsp.BiquadFilter

4-181

See Also
Functions
freqz | fvtool | impz | info | coeffs | cost | scale | scaleopts | scalecheck | cumsec |
generatehdl | tf

Objects
dsp.FIRFilter | dsp.IIRFilter | dsp.SOSFilter

Blocks
Biquad Filter

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2012a

4 System Objects

4-182

dsp.BlockLMSFilter
Package: dsp

Compute output, error, and weights using block LMS adaptive algorithm

Description
The dsp.BlockLMSFilter System object computes output, error, and weights using the block LMS
adaptive algorithm.

To compute the output, error, and weights:

1 Create the dsp.BlockLMSFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
blms = dsp.BlockLMSFilter
blms = dsp.BlockLMSFilter(length,blocksize)
blms = dsp.BlockLMSFilter(Name,Value)

Description

blms = dsp.BlockLMSFilter returns an adaptive FIR filter, blms, that filters the input signal and
computes filter weights based on the block least mean squares (LMS) algorithm.

blms = dsp.BlockLMSFilter(length,blocksize) returns an adaptive FIR filter, blms, with the
Length property set to length and the BlockSize property set to blocksize.

blms = dsp.BlockLMSFilter(Name,Value) returns an adaptive FIR filter, blms, with each
specified property set to the specified value. Enclose each property name in single quotes.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Length — Length of FIR filter weights vector
32 (default) | positive integer

 dsp.BlockLMSFilter

4-183

Specify the length of the FIR filter weights vector as a positive integer scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BlockSize — Number of samples acquired before weight adaptation
32 (default) | positive integer

Specify the number of samples of the input signal to acquire before the object updates the filter
weights. The input frame length must be an integer multiple of the block size.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StepSizeSource — Source of adaptation step size
Property (default) | Input port

Specify the source of the adaptation step size factor as Property or Input port.

StepSize — Adaptation step size
0.1 (default) | nonnegative scalar

Specify the adaptation step size factor as a scalar, nonnegative numeric value.

Tunable: Yes
Dependencies

This property applies only when you set the “StepSizeSource” on page 4-0 property to
'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LeakageFactor — Leakage factor used in leaky LMS algorithm
1 (default) | scalar

Specify the leakage factor used in leaky LMS algorithm as a scalar numeric value between 0 and 1,
both inclusive. When the value is less than 1, the System object implements a leaky LMS algorithm.
The default is 1, providing no leakage in the adapting algorithm.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialWeights — Initial values of filter weights
0 (default) | scalar | vector

Specify the initial values of the filter weights as a scalar or a vector of length equal to the “Length”
on page 4-0 property value.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

AdaptInputPort — Additional input to enable adaptation of filter weights
false (default) | true

Specify when the object should adapt the filter weights. By default, the value of this property is
false, and the filter continuously updates the filter weights. When this property is set to true, an
adaptation control input is provided to the object. If the value of this input is nonzero, the filter
continuously updates the filter weights. If the input is zero, the filter weights remain at their current
value.

4 System Objects

4-184

WeightsResetInputPort — Additional input to enable weights reset
false (default) | true

Specify whether the FIR filter can reset the filter weights. By default, the value of this property is
false, and the object does not reset the weights. When this property is set to true, you must
provide a reset control input to the object, and the WeightsResetCondition property applies. The
object resets the filter weights based on the values of the WeightsResetCondition property and
the reset input to the object algorithm.

WeightsResetCondition — Condition that triggers the resetting of filter weights
Non-zero (default) | Rising edge | Falling edge | Either edge

Specify the event to reset the filter weights as one of Rising edge, Falling edge, Either edge,
or Non-zero. The object resets the filter weights based on the values of this property and the reset
signal input to the object algorithm.

Dependencies

This property applies only when you set the WeightsResetInputPort property to true.

WeightsOutputPort — Output filter weights
true (default) | false

Set this property to true to output the adapted filter weights. The default is true.

Usage

Syntax
[y,err,wts] = blms(x,d)
[y,err] = blms(x,d)
[___] = blms(x,d,mu)
[___] = blms(x,d,a)
[___] = blms(x,d,r)
[y,err,wts] = blms(x,d,mu,a,r)

Description

[y,err,wts] = blms(x,d) filters the input x, using d as the desired signal, and returns the
filtered output in y. The filter error is err, and the estimated filter weights is wts. The filter weights
update once for every block of data that the object processes.

[y,err] = blms(x,d) returns only the filtered output y and the filter error err when the
WeightsOutputPort property is false.

[___] = blms(x,d,mu) uses mu as the step size when you set the StepSizeSource property to
Input port. These input arguments can be used with any of the previous sets of output arguments.

[___] = blms(x,d,a) uses a as the adaptation control when you set the AdaptInputPort
property to true. When a is nonzero, the filter continuously updates the filter weights. When a is
zero, the filter weights remain constant.

 dsp.BlockLMSFilter

4-185

[___] = blms(x,d,r) uses r as a reset signal when you set the WeightsResetInputPort
property to true. Use the WeightsResetCondition property to set the reset trigger condition. If a
reset event occurs, the filter resets the filter weights to their initial values.

[y,err,wts] = blms(x,d,mu,a,r) filters input x, using d as the desired signal, mu as the step
size, a as the adaptation control, and r as the reset signal. The object returns the filtered output y,
the filter error err, and the adapted filter weights wts. Set the properties appropriately to provide all
possible inputs.

Input Arguments

x — Data input
scalar | column vector

The signal to be filtered by the block LMS filter. The input, x, and the desired signal, d, must have the
same size and data type.

The input length must be an integer multiple of the BlockSize property value.
Data Types: single | double

d — Desired signal
scalar | column vector

The LMS filter adapts its filter weights, wts, to minimize the error, err, and converge the input
signal x to the desired signal d as closely as possible.

The input, x, and the desired signal, d, must have the same size and data type.
Data Types: single | double

mu — Step size
nonnegative scalar

Adaptation step size factor, specified as a scalar, nonnegative numeric value. The data type of the step
size input must match the data type of x and d.

A small step size ensures a small steady state error between the output y and the desired signal d. If
the step size is small, the convergence speed of the filter decreases. To improve the convergence
speed, increase the step size. Note that if the step size is large, the filter can become unstable. To
compute the maximum step size the filter can accept without becoming unstable, use the maxstep
function.

Dependencies

This property applies only when you set the “StepSizeSource” on page 4-0 property to 'Input
port'.
Data Types: single | double

a — Adaptation control
scalar

Adaptation control input that controls how the filter weights are updated. If the value of this input is
nonzero, the object continuously updates the filter weights. If the value of this input is zero, the filter
weights remain at their current value.

4 System Objects

4-186

Dependencies

This input is required when the AdaptInputPort property is set to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

r — Reset signal
scalar

Reset signal that resets the filter weights based on the values of the WeightsResetInputPort
property.

Dependencies

This input is required when the WeightsResetInputPort property is set to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments

y — Filtered output
scalar | column vector

Filtered output, returned as a scalar or a column vector. The object adapts its filter weights to
converge the input signal x to match the desired signal d. The filter outputs the converged signal.
Data Types: single | double

err — Difference between output and desired signal
scalar | column vector

Difference between the output signal y and the desired signal d, returned as a scalar or a column
vector. The data type of err matches the data type of y. The objective of the adaptive filter is to
minimize this error. The object adapts its weights to converge towards optimal filter weights that
produce an output signal that matches closely with the desired signal.
Data Types: single | double

wts — Adaptive filter weights
scalar | column vector

Adaptive filter weights, returned as a scalar or a column vector of length specified by the value in the
Length property.

The data type of wts matches the data type of y.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 dsp.BlockLMSFilter

4-187

Specific to dsp.BlockLMSFilter
msesim Estimated mean squared error for adaptive filters
maxstep Maximum step size for LMS adaptive filter convergence

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Remove Noise Using Block LMS Adaptive Algorithm

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

 blms = dsp.BlockLMSFilter(10,5);
 blms.StepSize = 0.01;
 blms.WeightsOutputPort = false;
 filt = dsp.FIRFilter;
 filt.Numerator = fir1(10,[.5, .75]);
 x = randn(1000,1); % Noise
 d = filt(x) + sin(0:.05:49.95)'; % Noise + Signal
 [y, err] = blms(x, d);
 subplot(2,1,1);
 plot(d);
 title('Noise + Signal');
 subplot(2,1,2);
 plot(err);
 title('Signal');

4 System Objects

4-188

System Identification of FIR Filter Using Block LMS Filter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

fir = fir1(31,0.5);
% FIR system to be identified
firFilter = dsp.FIRFilter('Numerator',fir);
iirFilter = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
x = iirFilter(sign(randn(2000,25)));
% Observation noise signal
n = 0.1*randn(size(x));
% Desired signal
d = firFilter(x)+n;
% Filter length
l = 32;
% Block LMS Step size
mu = 0.008;
% Decimation factor for analysis
% and simulation results
m = 32;
fir = dsp.BlockLMSFilter(l,'StepSize',mu);
[simmse,meanWsim,Wsim,traceKsim] = msesim(fir,x,d,m);
plot(m*(1:length(simmse)),10*log10(simmse));

 dsp.BlockLMSFilter

4-189

xlabel('Iteration'); ylabel('MSE (dB)');
% Plot the learning curve for
% block LMS filter used in system identification
title('Learning curve')

Algorithms
This object implements the algorithm, inputs, and outputs described on the Block LMS Filter block
reference page. The object properties correspond to the block parameters.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.LMSFilter | dsp.FIRFilter

4 System Objects

4-190

Introduced in R2012a

 dsp.BlockLMSFilter

4-191

dsp.Buffer
Package: dsp

(Removed) Buffer input signal

Note The dsp.Buffer System object™ has been removed. Use dsp.AsyncBuffer instead. For
more details, see “Compatibility Considerations”.

Description
The Buffer object buffers an input signal. The number of samples per channel in the input must
equal the difference between the output buffer size and buffer overlap (i.e., Length -
OverlapLength).

To buffer an input signal:

1 Create the dsp.Buffer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
buff = dsp.Buffer
buff = dsp.Buffer(len,ovrlap,ics)

Description

buff = dsp.Buffer returns a buffer System object, buff, used to buffer input signals with overlap.

buff = dsp.Buffer(len,ovrlap,ics) returns a buffer object, buff, with Length property set
to len, OverlapLength property set to ovrlap, and InitialConditions property set to ics.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Length — Number of samples to buffer
64 (default) | positive integer

4 System Objects

4-192

Specify the number of consecutive samples from each input channel to buffer. You can set this
property to any scalar integer greater than 0.
Data Types: double | int32

OverlapLength — Amount of overlap between outputs
0 (default) | positive integer

Specify the number of samples by which consecutive output frames overlap. You can set this property
to any scalar integer in the range 0 ≤ L < Mo, where Mo is the output frame size specified by the
Length property.

The object takes L samples (rows) from the current output and repeats them in the next output. The
object acquires Mo− L new input samples before propagating the buffered data to the output.

Data Types: double | int32

InitialConditions — Initial output
0 (default) | scalar | vector | matrix

Specify the value of the object's initial output for cases of nonzero latency as a scalar, vector, or
matrix.

When there is nonzero latency, the buffer is initialized to the value(s) specified by the
InitialConditions property. The object reads from the buffer to generate the first D output
samples, where

D =
Mo + L (L ≥ 0)

Mo (L < 0)

The dimensions of the InitialConditions property depend on the OverlapLength, L, and
whether the input contains a single channel or multiple channels:

• When L ≠ 0, the InitialConditions property must be a scalar.
• When L = 0, the InitialConditions property can be a scalar, or it can be a vector with the

following constraints:

• For single-channel inputs, the InitialConditions property can be a vector of length Mo if
Mi is 1, or a vector of length Mi if Mo is 1.

• For multichannel inputs, the InitialConditions property can be a vector of length Mo * N if
Mi is 1, or a vector of length Mi * N if Mo is 1.

For general buffering between arbitrary frame sizes, the InitialConditions property must be a
scalar value, which is then repeated across all elements of the initial output(s). However, in the
special case where the input is a 1-by-N row vector, and the output of the block is an Mo-by-N matrix,
InitialConditions can be:

• An Mo-by-N matrix.
• A length-Mo vector to be repeated across all columns of the initial output(s).
• A scalar to be repeated across all elements of the initial output(s).

In the special case where the output is a 1-by-N row vector, which is the result of unbuffering an Mi-
by-N matrix, the InitialConditions can be:

 dsp.Buffer

4-193

• A vector containing Mi samples to output sequentially for each channel during the first Mi sample
times.

• A scalar to be repeated across all elements of the initial output(s).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Usage

Syntax
y = buff(x)

Description

y = buff(x) creates output y based on current input and stored past values of x . Output length
equals the Length property.

Input Arguments

x — Data input
column vector | matrix

Data input, specified as a column vector or a matrix. The number of input rows must be equal to
Length – OverlapLength.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments

y — Buffer output
column vector | matrix

Buffer output, returned as a column vector or a matrix.

The following table shows the output dimensions of the dsp.Buffer System object when the input is
a single-channel signal. Mi is the input frame size and Mo is the output frame size specified by the
Length property.

Input Dimensions Output Dimensions
1-by-1 (scalar) Mo-by-1
Mi-by-1 (column vector) Mo-by-1

The following table shows the output dimensions of the dsp.Buffer System object when the input is
a multichannel signal. The output frame size, Mo can be greater or less than the input frame size, Mi.
The object buffers each of the N input channels independently.

Input Dimensions Output Dimensions
1-by-N (row vector) Mo-by-N
Mi-by-N (matrix) Mo-by-N

4 System Objects

4-194

The data type and complexity of the output matches that of the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create a Buffer

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a buffer of 256 samples with 128 sample overlap.

reader = dsp.SignalSource(randn(1024,1),128);
buff = dsp.Buffer(256,128);

for i = 1:8
 y = buff(reader());
end

y is of length 256 with 128 samples from previous input.

Algorithms
This object implements the algorithm, inputs, and outputs described on the Buffer block reference
page. The object properties correspond to the block properties, except as noted.

Compatibility Considerations
dsp.Buffer System object has been removed
Errors starting in R2021a

The dsp.Buffer System object has been removed. Use the dsp.AsyncBuffer object instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

 dsp.Buffer

4-195

Discouraged Usage Recommended Replacement
Buffer with no overlap

signal = randn(512,1);
buff = dsp.Buffer(512)
y = buff(signal);

Buffer with 25% overlap

overlapLen = 128;
buffCap = 512;
buff = dsp.Buffer(buffCap,overlapLen)
y = buff(signal(1:(512-128)));
% Number of input samples must equal
% Length - OverlapLength.

If you are using a release prior to R2016b,
replace buff(signal) with
step(buff,signal) and buff(signal(1:
(512-128))) with step(buff,signal(1:
(512-128))).

Async buffer with no overlap

abuff = dsp.AsyncBuffer;
write(abuff,signal) % Write the signal
yabuff = read(abuff,512);
% Read the entire signal from the buffer

Buffer with 25% overlap

abuff = dsp.AsyncBuffer;
write(abuff,signal);
yabuff = read(abuff,512,128);

See Also
Objects
dsp.AsyncBuffer

Introduced in R2012a

4 System Objects

4-196

dsp.BurgAREstimator
Package: dsp

(Removed) Estimate of autoregressive (AR) model parameters using Burg method

Note The dsp.BurgAREstimator System object™ has been removed. Use arburg instead. For
more information, see “Compatibility Considerations”.

Description
The BurgAREstimator object computes the estimate of the autoregressive (AR) model parameters
using the Burg method.

To compute the estimate of the AR model parameters:

1 Define and set up your System object. See “Construction” on page 4-197.
2 Call step to compute the estimate according to the properties of dsp.BurgAREstimator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
burgarest = dsp.BurgAREstimator returns a Burg BurgAREstimator System object,
burgarest, that performs parametric AR estimation using the Burg maximum entropy method.

burgarest = dsp.BurgAREstimator('PropertyName',PropertyValue,...) returns a Burg
AR estimator object, burgarest, with each specified property set to the specified value.

Properties
AOutputPort

Enable output of polynomial coefficients

Set this property to true to output the polynomial coefficients, A, of the AR model the object
computes. The default is true. Either the AOutputPort property, the KOutputPort property, or
both must be true.

KOutputPort

Enable output of reflection coefficients

Set this property to true to output the reflection coefficients, K, for the AR model that the object
computes. The default is false. Either the AOutputPort property, the KOutputPort property, or
both must be true.

 dsp.BurgAREstimator

4-197

EstimationOrderSource

Source of estimation order

Specify how to determine estimator order as Auto or Property. When you set this property to Auto,
the object assumes the estimation order is one less than the length of the input vector. When you set
this property to Property, the value in EstimationOrder is used. The default is Auto.

EstimationOrder

Order of AR model

Set the AR model estimation order to a real positive integer. This property applies when you set the
EstimationOrderSource to Property. The default is 4.

Methods

step Normalized estimate of AR model parameter

Common to All System Objects
release Allow System object property value changes

Examples

Estimate the parameters of an AR model

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Use the dsp.BurgAREstimator System object to estimate the parameters of an AR model.

rng default; % Use default random number generator and seed
noise = randn(100,1); % Normalized white Gaussian noise
x = filter(1,[1 1/2 1/3 1/4 1/5],noise);
burgarest = dsp.BurgAREstimator(...
 'EstimationOrderSource', 'Property', ...
 'EstimationOrder', 4);
[a, g] = burgarest(x);
x_est = filter(g, a, x);
plot(1:100,[x x_est]);
title('Original and estimated signals');
legend('Original', 'Estimated');

Algorithms
This object implements the algorithm, inputs, and outputs described on the Burg AR Estimator block
reference page. The object properties correspond to the block parameters, except:
Output(s) block parameter corresponds to the AOutputPort and the KOutputPort object
properties.

4 System Objects

4-198

Compatibility Considerations
dsp.BurgAREstimator System object has been removed
Errors starting in R2021a

The dsp.BurgAREstimator System object has been removed. Use arburg instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
% Use default random number
% generator and seed
rng default;
% Normalized white Gaussian noise
noise = randn(100,1);
x = filter(1,[1 1/2 1/3 1/4 1/5],noise);
burgarest = dsp.BurgAREstimator(...
 'EstimationOrderSource','Property', ...
 'EstimationOrder',4);
[a,g] = burgarest(x);

or

burgarest = dsp.BurgAREstimator(...
 'KOutputPort',true,...
 'EstimationOrderSource','Property', ...
 'EstimationOrder',4);
[a,rc,g] = burgarest(x);

where,

• a –– AR model parameters
• rc –– Reflection coefficients
• g –– Variance of white noise input

If you are using a release prior to R2016b,
replace burgarest(x) with
step(burgarest,x).

% Use default random number
% generator and seed
rng default;
% Normalized white Gaussian noise
noise = randn(100,1);
x = filter(1,[1 1/2 1/3 1/4 1/5],noise);
[arcoeffs,e] = arburg(x,4);

or

[arcoeffs,e,rccoeffs] = arburg(x,4);

The output arcoeffs is a row vector, while the
output a is a column vector. To compare arcoeffs
with a, transpose one of the vectors so that both
have the same dimensions.

where,

• arcoeffs –– AR model parameters
• e –– Variance of white noise input
• rccoeffs –– Reflection coefficients

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 dsp.BurgAREstimator

4-199

See Also
Functions
arburg

Introduced in R2012a

4 System Objects

4-200

step
System object: dsp.BurgAREstimator
Package: dsp

Normalized estimate of AR model parameter

Syntax
[A,G] = step(burgarest,X)
[K,G] = step(burgarest,X)
[A,K,G] = step(burgarest,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[A,G] = step(burgarest,X) computes the normalized estimate of the AR model parameters to fit
the input, X, in the least square sense. The input X must be a column vector. Output A is a column
vector that contains the normalized estimate of the AR model polynomial coefficients in descending
powers of z. The scalar G is the AR model gain.

[K,G] = step(burgarest,X) returns K, a column vector containing the AR model reflection
coefficients when you set the KOutputPort property to true and the AOutputPort property to
false.

[A,K,G] = step(burgarest,X) returns the AR model polynomial coefficients A, reflection
coefficients K, and the scalar gain G when the AOutputPort and KOutputPort properties are both
true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

 step

4-201

dsp.BurgSpectrumEstimator
Package: dsp

(Removed) Parametric spectral estimate using Burg method

Note The dsp.BurgSpectrumEstimator System object™ has been removed. Use pburg instead.
For more information, see “Compatibility Considerations”.

Description
The BurgSpectrumEstimator object computes a parametric spectral estimate of the input using
the Burg method. The object fits an autoregressive (AR) model to the signal by minimizing the
forward and backward prediction errors (via least-squares). The AR parameters are constrained to
satisfy the Levinson-Durbin recursion.

To compute the parametric spectral estimate of the input:

1 Define and set up your System object. See “Construction” on page 4-202.
2 Call step to compute the estimate according to the properties of

dsp.BurgSpectrumEstimator. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
burgspecest = dsp.BurgSpectrumEstimator returns an object, burgspecest, that estimates
the power spectral density (PSD) of the input frame using the Burg method.

burgspecest = dsp.BurgSpectrumEstimator('PropertyName',PropertyValue,...)
returns a spectrum estimator, burgspecest, with each specified property set to the specified value.

Properties
EstimationOrderSource

Source of estimation order

Specify the source of the estimation order as Auto or Property. If you set this property to Auto, the
object assumes the estimation order is one less than the length of the input vector. The default value
is Property.

EstimationOrder

Order of AR model

4 System Objects

4-202

Specify the order of AR model as a real positive integer. This property applies only when you set the
EstimationOrderSource property to Property. The default value is 6.

FFTLengthSource

Source of FFT length

Specify the source of the FFT length as Auto or Property. When you set this property to Auto, the
objects assumes the FFT length is one more than the estimation order. When you set this property to
Property, the “FFTLength” on page 4-0 property value must be an integer power of two.

FFTLength

FFT length as power-of-two integer value

Specify the FFT length as a power-of-two numeric scalar. This property applies when you set the
FFTLengthSource property to Property. The default value is 256.

SampleRate

Sample rate of input time series

Specify the sampling rate of the original input time series as a positive numeric scalar in hertz. The
default value is 1.

Methods

step Estimate of power spectral density

Common to All System Objects
release Allow System object property value changes

Examples

Estimate PSD Using the Burg Method

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

x = randn(100,1);
burgspecest = dsp.BurgSpectrumEstimator('EstimationOrder', 4);
y = filter(1,[1 1/2 1/3 1/4 1/5],x); % Fourth order AR filter
p = burgspecest(y); % Uses default FFT length of 256

plot((0:255)/256, p);

 dsp.BurgSpectrumEstimator

4-203

title('Burg Method Spectral Density Estimate');
xlabel('Normalized frequency'); ylabel('Power/frequency');

Algorithms
This object implements the algorithm, inputs, and outputs described on the Burg Method block
reference page. The object properties correspond to the block properties.

Compatibility Considerations
dsp.BurgSpectrumEstimator System object has been removed
Errors starting in R2021a

The dsp.BurgSpectrumEstimator System object has been removed. Use pburg instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
x = randn(100,1);
burgspecest = dsp.BurgSpectrumEstimator(...
'EstimationOrder', 4);
% Fourth order AR filter
y = filter(1,[1 1/2 1/3 1/4 1/5],x);
% Uses default FFT length of 256
p = burgspecest(y);

If you are using a release prior to R2016b,
replace burgspecest(y) with
step(burgspecest,y).

x = randn(100,1);
% Fourth order AR filter
y = filter(1,[1 1/2 1/3 1/4 1/5],x);
% Uses default FFT length of 256
pFn = pburg(y,4,256,1,'twosided');

The pburg function is in this format Pxx =
pburg(y,order,nfft,fs,'twosided').

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• When the FFT length is not a power of two, the executable generated from this System object

relies on prebuilt dynamic library files (.dll files) included with MATLAB. Use the packNGo
function to package the code generated from this object and all the relevant files in a compressed
zip file. Using this zip file, you can relocate, unpack, and rebuild your project in another
development environment where MATLAB is not installed. For more details, see “How To Run a
Generated Executable Outside MATLAB”.

• When the FFT length is a power of two, you can generate standalone C and C++ code from this
System object.

4 System Objects

4-204

See Also
Functions
pburg

Introduced in R2012a

 dsp.BurgSpectrumEstimator

4-205

step
System object: dsp.BurgSpectrumEstimator
Package: dsp

Estimate of power spectral density

Syntax
Y = step(burgspecest,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(burgspecest,X) outputs Y, a spectral estimate of input X, using the Burg method.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-206

dsp.CepstralToLPC
Package: dsp

(Removed) Convert cepstral coefficients to linear prediction coefficients

Note dsp.CepstralToLPC has been removed. For more information, see “Compatibility
Considerations”.

Description
The CepstralToLPC object converts cepstral coefficients to linear prediction coefficients (LPC).

To convert cepstral coefficients to LPC:

1 Define and set up your System object. See “Construction” on page 4-207.
2 Call step to convert the coefficients according to the properties of dsp.CepstralToLPC. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
cc2lpc = dsp.CepstralToLPC returns a System object, cc2lpc, that converts the cepstral
coefficients(CCs) to linear prediction coefficients (LPCs).

cc2lpc = dsp.CepstralToLPC('PropertyName',PropertyValue,...) returns a Cepstral
to LPC object, cc2lpc, with each specified property set to the specified value.

Properties
PredictionErrorOutputPort

Enable prediction error power output

Set this property to true to output the prediction error power. The prediction error power is the
power of the error output of an FIR analysis filter represented by the LPCs for a given input signal.
The default is false.

Methods

step LPC coefficients from column of cepstral coefficients

 dsp.CepstralToLPC

4-207

Common to All System Objects
release Allow System object property value changes

Examples

Convert Cepstral To LPC Coefficients

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Convert cepstral coefficients to linear prediction coefficients.

cc = [0 0.9920 0.4919 0.3252 0.2418 , ...
 0.1917 0.1583 0.1344 0.1165 0.0956]';
cc2lpc = dsp.CepstralToLPC;
a = cc2lpc(cc)

a = 10×1

 1.0000
 -0.9920
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0070

Algorithms
This object implements the algorithm, inputs, and outputs described on the LPC to/from Cepstral
Coefficients block reference page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.CepstralToLPC System object has been removed
Errors starting in R2021a

dsp.CepstralToLPC System object has been removed.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

4 System Objects

4-208

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Introduced in R2012a

 dsp.CepstralToLPC

4-209

step
System object: dsp.CepstralToLPC
Package: dsp

LPC coefficients from column of cepstral coefficients

Syntax
A = step(cc2lpc,CC)
[A,P]=step(cc2lpc,CC)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

A = step(cc2lpc,CC) computes the linear prediction coefficients (LPC) coefficients, A , from the
columns of cepstral coefficients, CC.

[A,P]=step(cc2lpc,CC) converts the columns of the cepstral coefficients CC to the LPCs and
returns the prediction error power P when the PredictionErrorOutputPort property is true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-210

dsp.Channelizer
Package: dsp

Polyphase FFT analysis filter bank

Description
The dsp.Channelizer System object separates a broadband input signal into multiple narrow
subbands using a fast Fourier transform (FFT)-based analysis filter bank. The filter bank uses a
prototype lowpass filter and is implemented using a polyphase structure. You can specify the filter
coefficients directly or through design parameters.

To separate a broadband signal into multiple narrow subbands:

1 Create the dsp.Channelizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
channelizer = dsp.Channelizer
channelizer = dsp.Channelizer(M)
channelizer = dsp.Channelizer(Name,Value)

Description

channelizer = dsp.Channelizer creates a polyphase FFT analysis filter bank System object that
separates a broadband input signal into multiple narrowband output signals. This object implements
the inverse operation of the dsp.ChannelSynthesizer System object.

channelizer = dsp.Channelizer(M) creates an M-band polyphase FFT analysis filter bank, with
the “NumFrequencyBands” on page 4-0 property set to M.
Example: channelizer = dsp.Channelizer(16);

channelizer = dsp.Channelizer(Name,Value) creates a polyphase FFT analysis filter bank
with each specified property set to the specified value. Enclose each property name in single quotes.
Example: channelizer = dsp.Channelizer('NumTapsPerBand',20,'StopbandAttenuation',140);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 dsp.Channelizer

4-211

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NumFrequencyBands — Number of frequency bands
8 (default) | positive integer greater than 1

Number of frequency bands M into which the object separates the input broadband signal, specified
as a positive integer greater than 1. This property corresponds to the number of polyphase branches
and the FFT length used in the filter bank.
Example: 16
Example: 64
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DecimationFactor — Decimation factor
8 (default) | positive integer

Decimation factor D specified as a positive integer less than or equal to the number of frequency
bands M. The default value of this property equals the number of frequency bands specified.

If the decimation factor D equals the number of frequency bands M, then the M/D ratio equals 1, and
the channelizer is known as the maximally decimated channelizer.

If the M/D ratio is greater than 1, the output sample rate is different from the channel spacing, and
the channelizer is known as the non-maximally decimated channelizer. If the ratio is an integer, the
channelizer is known as the integer-oversampled channelizer. If the ratio is not an integer, say 4/3,
the channelizer is known as the rationally oversampled channelizer. For more details, see “Algorithm”
on page 4-220.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Specification — Filter design parameters or coefficients
'Number of taps per band and stopband attenuation' (default) | 'Coefficients'

Filter design parameters or filter coefficients, specified as one of these options:

• 'Number of taps per band and stopband attenuation' — Specify the filter design
parameters through the NumTapsPerBand and “Stopband attenuation (dB)” on page 2-0
properties.

• 'Coefficients' — Specify the filter coefficients directly using the “LowpassCoefficients” on
page 4-0 property.

NumTapsPerBand — Number of filter coefficients per frequency band
12 (default) | positive integer

Number of filter coefficients each polyphase branch uses, specified as a positive integer. The number
of polyphase branches matches the number of frequency bands. The total number of filter coefficients
for the prototype lowpass filter is given by NumFrequencyBands × NumTapsPerBand. For a given
stopband attenuation, increasing the number of taps per band narrows the transition width of the
filter. As a result, there is more usable bandwidth for each frequency band at the expense of
increased computation.
Example: 8
Example: 16

4 System Objects

4-212

Dependencies

This property applies when you set Specification to 'Number of taps per band and
stopband attenuation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandAttenuation — Stopband attenuation
80 (default) | positive real scalar

Stopband attenuation of the lowpass filter, specified as a positive real scalar in dB. This value controls
the maximum amount of aliasing from one frequency band to the next. When the stopband
attenuation increases, the passband ripple decreases. For a given stopband attenuation, increasing
the number of taps per band narrows the transition width of the filter. As a result, there is more
usable bandwidth for each frequency band at the expense of increased computation.
Example: 80

Dependencies

This property applies when you set Specification to 'Number of taps per band and
stopband attenuation'.
Data Types: single | double

LowpassCoefficients — Coefficients of prototype lowpass filter
[1×49 double] (default) | row vector

Coefficients of the prototype lowpass filter, specified as a row vector. The default vector of coefficients
is obtained using rcosdesign(0.25,6,8,'sqrt'). There must be at least one coefficient per
frequency band. If the length of the lowpass filter is less than the number of frequency bands, the
object zero-pads the coefficients.

If you specify complex coefficients, the object designs a prototype filter that is centered at a nonzero
frequency, also known as a bandpass filter. The modulated versions of the prototype bandpass filter
appear with respect to the prototype filter and are wrapped around the frequency range [−Fs Fs]. For
an example, see “Channelizer with Complex Coefficients” on page 4-216.

Tunable: Yes

Dependencies

This property applies when you set Specification to 'Coefficients'.
Data Types: single | double

Usage

Syntax
channOut = channelizer(input)

Description

channOut = channelizer(input) separates the broadband input signal into a number of narrow
band signals contained in the columns of the channelizer output.

 dsp.Channelizer

4-213

Input Arguments

input — Data input
vector | matrix

Data input, specified as a vector or a matrix. The number of rows in the input signal must be a
multiple of the number of frequency bands of the filter bank. Each column of the input corresponds to
a separate channel. If M is the number of frequency bands, and the input is an L-by-1 matrix, then the
output signal has dimensions L/M-by-M. Each narrowband signal forms a column in the output. If the
input has more than one channel, that is, it has dimensions L-by-N with N > 1, then the output has
dimensions L/M-by-M-by-N.

This object supports variable-size input signals. You can change the input frame size (number of rows)
even after calling the algorithm. However, the number of channels (number of columns) must remain
constant.
Example: randn(64,4)
Data Types: single | double

Output Arguments

channOut — Channelizer output
matrix | 3-D array

Channelizer output, returned as a matrix or a 3-D array. If the input is an L-by-1 matrix, then the
output signal has dimensions L/M-by-M, where M is the number of frequency bands. Each
narrowband signal forms a column in the output. If the input has more than one channel, that is, it
has dimensions L-by-N with N > 1, then the output has dimensions L/M-by-M-by-N.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.Channelizer
coeffs Coefficients of prototype lowpass filter
tf Return transfer function of overall prototype lowpass filter
polyphase Return polyphase matrix
freqz Frequency response of filters in channelizer
fvtool Visualize the filters in the channelizer
bandedgeFrequencies Compute the bandedge frequencies
centerFrequencies Compute center frequencies
getFilters Return matrix of channelizer FIR filters

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

4 System Objects

4-214

reset Reset internal states of System object

Examples

Channelize and Synthesize Sine Wave in MATLAB

Channelize and synthesize a sine wave signal with multiple frequencies using an M -channel filter
bank.

The M -channel filter bank contains an analysis filter bank section and a synthesis filter bank section.
The dsp.Channelizer object implements the analysis filter bank section. The
dsp.ChannelSynthesizer object implements the synthesis filter bank section. These objects use
an efficient polyphase structure to implement the filter bank. For more details, see Polyphase
Implementation under Algorithms on the object reference pages.

Initialization

Initialize the dsp.Channelizer and dsp.ChannelSynthesizer System objects. Each object is set
up with 8 frequency bands, 8 polyphase branches in each filter, 12 coefficients per polyphase branch,
and a stopband attenuation of 140 dB. Use a sine wave with multiple frequencies as the input signal.
View the input spectrum and the output spectrum using a spectrum analyzer.

offsets = [-40,-30,-20,10,15,25,35,-15];
sinewave = dsp.SineWave('ComplexOutput',true,'Frequency',...
 offsets+(-375:125:500),'SamplesPerFrame',800);

channelizer = dsp.Channelizer('StopbandAttenuation',140);
synthesizer = dsp.ChannelSynthesizer('StopbandAttenuation',140);
spectrumAnalyzer = dsp.SpectrumAnalyzer('ShowLegend',true,...
 'SampleRate',sinewave.SampleRate,...
 'NumInputPorts',2,'ChannelNames',{'Input','Output'},...
 'Title','Input and Output Spectra');

Streaming

Use the channelizer to split the broadband input signal into multiple narrow bands. Then pass the
multiple narrowband signals into the synthesizer, which merges these signals to form the broadband
signal. Compare the spectra of the input and output signals. The input and output spectra match very
closely.

for i = 1:5000
 x = sum(sinewave(),2);
 y = channelizer(x);
 v = synthesizer(y);
 spectrumAnalyzer(x,v)
end

 dsp.Channelizer

4-215

Channelizer with Complex Coefficients

Create a dsp.Channelizer object and set the LowpassCoefficients property to a vector of
complex coefficients.

Complex Coefficients

Using firpm, determine the coefficients of a Park-McClellan's optimal equiripple FIR filter of order
30, and frequency and amplitude characteristics described by F = [0 0.2 0.4 1.0] and A = [1 1 0 0]
vectors, respectively.

Create a complex version of these coefficients by multiplying with a complex exponential. The
resultant frequency response is that of a bandpass filter at the specified frequency, in this case 0.4.

blowpass = firpm(30,[0 .2 .4 1],[1 1 0 0]);
N = length(blowpass)-1;
Fc = 0.4;
j = complex(0,1);
bbandpass = blowpass.*exp(j*Fc*pi*(0:N));

4 System Objects

4-216

Channelizer

Create a dsp.Channelizer object with 4 frequency bands and set the Specification property to
'Coefficients'.

chann = dsp.Channelizer('NumFrequencyBands',4,...
 'Specification',"Coefficients");

Pass the complex coefficients to the channelizer. The prototype filter is a bandpass filter with a center
frequency of 0.4. The modulated versions of this filter appear with respect to the prototype filter and
are wrapped around the frequency range [−Fs Fs].

chann.LowpassCoefficients = bbandpass

chann =
 dsp.Channelizer with properties:

 NumFrequencyBands: 4
 DecimationFactor: 4
 Specification: 'Coefficients'
 LowpassCoefficients: [0.0019 + 0.0000i 0.0005 + 0.0016i ...]

Visualize the frequency response of the channelizer.

fvtool(chann)

 dsp.Channelizer

4-217

More About
Analysis Filter Bank

The generic analysis filter bank consists of a series of parallel bandpass filters that split an input
broadband signal, x[n], into a series of narrow subbands. Each bandpass filter retains a different
portion of the input signal. After the bandwidth is reduced by one of the bandpass filters, the signal is
downsampled to a lower sampling rate commensurate with the new bandwidth.

4 System Objects

4-218

Prototype Lowpass Filter

To implement the analysis filter bank efficiently, the channelizer uses a prototype lowpass filter.

The prototype lowpass filter has an impulse response of h[n], a normalized two-sided bandwidth of
2π/M, and a cutoff frequency of π/M. M is the number of frequency bands, that is, the branches of the
analysis filter bank. This value corresponds to the FFT length that the filter bank uses. M can be high
on the order of 2048 or more. The stopband attenuation determines the minimum level of
interference (aliasing) from one frequency band to another. The passband ripple must be small so that
the input signal is not distorted in the passband.

The prototype lowpass filter corresponds to H0(z) in the filter bank. The first branch of the filter bank
contains H0(z) followed by the decimator. The other M – 1 branches contain filters that are modulated
versions of the prototype filter. The modulation factor is given by the following equation:

e− jwkn, wk = 2πk/M, k = 0, 1, ..., M − 1

Using the Prototype Lowpass Filter

The transfer function of the modulated kth bandpass filter is given by:

Hk(z) = H0(ze− jwk), wk = 2πk/M, k = 1, 2, ..., M − 1

This figure shows the frequency response of M filters.

To obtain the frequency response characteristics of the filter Hk(z), where k = 1, … , M−1, uniformly
shift the frequency response of the prototype filter, H0(z), by multiples of 2π/M. Each subband filter,
Hk(z), {k = 1, … , M – 1}, is derived from the prototype filter.

Following is an equivalent representation of the frequency response diagram with ω ranging from
[−π π].

 dsp.Channelizer

4-219

Shift Narrow Subbands to Baseband

The frequency components in the input signal, x[n], are translated in frequency to baseband by
multiplying x[n] with the complex exponentials, e− jwkn, wk = 2πk/M, k = 1, 2, .., M − 1 , where
wk = 2πk/M, and k = 1, 2, ..., M − 1. The resulting product signals are passed through the lowpass
filters, H0(z). The output of the lowpass filter is relatively narrow in bandwidth. Downsample the
signal commensurate with the new bandwidth. Choose a decimation factor, D ≤ M, where M is the
number of branches of the analysis filter bank. When D < M, the channelizer is known as
oversampled or non-maximally decimated channelizer.

The figure shows an analysis filter bank that uses the prototype lowpass filter.

y1[m], y2[m], … , yM−1[m] are narrow subband signals translated into baseband.

Algorithms
Polyphase Implementation

The analysis filter bank can be implemented efficiently using the polyphase structure. For more
details on the analysis filter bank, see Analysis Filter Bank on page 4-218.

To derive the polyphase structure, start with the transfer function of the prototype lowpass filter:

H0(z) = b0 + b1z−1 + ... + bNz−N

N + 1 is the length of the prototype filter.

You can rearrange this equation as follows:

4 System Objects

4-220

H0(z) =

b0 + bMz−M + b2Mz−2M + .. + bN −M + 1z−(N −M + 1) +

z−1 b1 + bM + 1z−M + b2M + 1z−2M + .. + bN −M + 2z−(N −M + 1) +
⋮

z−(M − 1) bM − 1 + b2M − 1z−M + b3M − 1z−2M + .. + bNz−(N −M + 1)

M is the number of polyphase components.

You can write this equation as:

H0(z) = E0(zM) + z−1E1(zM) + ... + z−(M − 1)EM − 1(zM)

E0(zM), E1(zM), … , EM−1(zM) are polyphase components of the prototype lowpass filter H0(z).

The other filters in the filter bank, Hk(z), where k = 1, … , M−1, are modulated versions of this
prototype filter.

You can write the transfer function of the kth modulated bandpass filter as Hk(z) = H0(ze− jwk).

Replacing z with ze-jwk,

Hk(z) = h0 + h1e− jwkz−1 + h2e− j2wkz−2... + hNe− jNwkz−N

N + 1 is the length of the kth filter.

In polyphase form, the equation is as follows:

Hk(z) = 1 e− jwk e− j2wk ⋯ e− j(M − 1)wk

E0(zM)

z−1E1(zM)
⋮

z−(M − 1)EM − 1(zM)

For all M channels in the filter bank, the transfer function H(z) is given by:

H(z) =

1 1 1 ⋯ 1

1 e− jw1 e− j2w1 ⋯ e− j(M − 1)w1

⋮ ⋮ ⋮ ⋱ ⋮
1 e− jwM − 1 e− j2wM − 1 ⋯ e− j(M − 1)wM − 1

E0(zM)

z−1E1(zM)
⋮

z−(M − 1)EM − 1(zM)

Maximally decimated channelizer

When D = M, the channelizer is known as the maximally decimated channelizer or critically sampled
channelizer.

Here is the multirate noble identity for decimation, assuming that D = M.

For example, consider the first branch of the filter bank that contains the lowpass filter.

 dsp.Channelizer

4-221

Replace H0(z) with its polyphase representation on page 4-220.

After applying the noble identity for decimation, you can replace the delays and the decimation factor
with a commutator switch. The switch starts on the first branch 0 and moves in the counterclockwise
direction as shown in the following diagram. The accumulator at the output receives the processed
input samples from each branch of the polyphase structure and accumulates these processed samples
until the switch goes to branch 0. When the switch goes to branch 0, the accumulator outputs the
accumulated value.

For all M channels in the filter bank, the transfer function H(z) is given by:

H(z) =

1 1 1 ⋯ 1

1 e− jw1 e− j2w1 ⋯ e− j(M − 1)w1

⋮ ⋮ ⋮ ⋱ ⋮
1 e− jwM − 1 e− j2wM − 1 ⋯ e− j(M − 1)wM − 1

E0(z)
E1(z)
⋮

EM − 1(z)

The matrix on the left is a discrete Fourier transform (DFT) matrix. With the DFT matrix, the efficient
implementation of the lowpass prototype-based filter bank looks like this.

4 System Objects

4-222

When the first input sample is delivered, the switch feeds this input to the branch 0 and the
channelizer computes the first set of output values. As more input samples come in, the switch moves
in the counterclockwise direction through branches M−1, M−2, all the way up to branch 0, delivering
one sample at a time to each branch. When the switch comes to branch 0, the channelizer outputs the
next set of output values. This process continues as the data keeps coming in. Every time the switch
comes to the first branch 0, the channelizer outputs y0[m], y1[m], … , yM-1[m]. Each branch in the
channelizer effectively outputs one sample for every M samples it receives. Hence, the sample rate at
the output of the channelizer is fs/M.

Non-maximally decimated or oversampled channelizer

When D < M, the channelizer is known as the non-maximally decimated channelizer or oversampled
channelizer. In this configuration, the output sample rate is different from the channel spacing. The
non-maximally decimated channelizers offer increased design freedom, but at the expense of
increasing computational cost.

If the ratio M/D equals an integer that is greater than 1 and is less than or equal to M−1, the
channelizer is known as integer-oversampled channelizer. If the ratio M/D is not an integer, then the
channelizer is known as rationally-oversampled channelizer.

In this configuration, when the first input sample is delivered, the switch feeds this input to branch 0
and the channelizer computes the first set of output values. As more input samples come in, the
switch moves in the counterclockwise direction through branches D−1, D−2, all the way up to branch
0, delivering one sample at a time to each branch. When the switch comes to branch 0, the
channelizer outputs the next set of output values. This process continues as the data keeps coming in.
Every time the switch comes to the first branch 0, the channelizer outputs y0[m], y1[m], … , yM-1[m].

As more data keeps coming in and the switch feeds these samples to the first D addresses, the formal
contents of these addresses are shifted to the next set of D addresses, and this process of data shift
continues every time there is a new set of D input samples.

For every D input samples that are fed to the polyphase structure, the channelizer outputs M
samples, y0[m], y1[m], … , yM-1[m]. This process increases the output sample rate from fs/M in the case
of a maximally decimated channelizer, to fs/D in the case of a non-maximally decimated channelizer.

For more details, see [2].

After each D-point data sequence is delivered to the partitioned M-stage polyphase filter, the outputs
of the M stages are computed and conditioned for delivery to the M-point FFT. The data shifting

 dsp.Channelizer

4-223

through the filter introduces frequency-dependent phase shift. To correct for this phase shift and alias
all bands to DC, a circular shift buffer is inserted after the polyphase filters and before the M-point
FFT.

With the commutator switch followed by M-stage polyphase filter, circular shift buffer, and a DFT
matrix, the efficient implementation of the lowpass prototype-based filter bank looks like this.

References
[1] Harris, Fredric J, Multirate Signal Processing for Communication Systems, Prentice Hall PTR,

2004.

[2] Harris, F.J., Chris Dick, and Michael Rice. "Digital Receivers and Transmitters Using Polyphase
Filter Banks for Wireless Communications." IEEE Transactions on Microwave Theory and
Techniques. 51, no. 4 (2003).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
coeffs | tf | polyphase | freqz | fvtool | bandedgeFrequencies | centerFrequencies |
getFilters

4 System Objects

4-224

Objects
dsp.ChannelSynthesizer | dsp.FIRHalfbandDecimator | dsp.FIRHalfbandInterpolator |
dsp.IIRHalfbandDecimator | dsp.DyadicAnalysisFilterBank

Blocks
Channelizer | Channel Synthesizer | Dyadic Analysis Filter Bank | Two-Channel Analysis Subband
Filter

Functions
firpr2chfb

Introduced in R2016b

 dsp.Channelizer

4-225

dsp.ChannelSynthesizer
Package: dsp

Polyphase FFT synthesis filter bank

Description
The dsp.ChannelSynthesizer System object merges multiple narrowband signals into a
broadband signal by using an FFT based synthesis filter bank. The filter bank uses a prototype
lowpass filter and is implemented using a polyphase structure. You can specify the filter coefficients
directly or through design parameters.

To merge multiple narrowband signals into a broadband signal:

1 Create the dsp.ChannelSynthesizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
synthesizer = dsp.ChannelSynthesizer
synthesizer = dsp.ChannelSynthesizer(Name,Value)

Description

synthesizer = dsp.ChannelSynthesizer creates a synthesizer object, using the default
properties.

synthesizer = dsp.ChannelSynthesizer(Name,Value) specifies additional properties using
Name,Value pairs. Unspecified properties have default values.
Example: synthesizer =
dsp.ChannelSynthesizer('NumTapsPerBand',20,'StopbandAttenuation',140)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Specification — Filter design parameters or coefficients
'Number of taps per band and stopband attenuation' (default) | 'Coefficients'

4 System Objects

4-226

Filter design parameters or filter coefficients, specified as one of these options:

• 'Number of taps per band and stopband attenuation' — Specify the filter design
parameters through the NumTapsPerBand and StopbandAttenuation properties.

• 'Coefficients' — Specify the filter coefficients directly using LowpassCoefficients.

NumTapsPerBand — Number of filter coefficients per frequency band
12 (default) | positive integer

Number of filter coefficients each polyphase branch uses, specified as a positive integer. The number
of polyphase branches matches the number of frequency bands. The total number of filter coefficients
for the prototype lowpass filter is given by product of the number of frequency bands and
NumTapsPerBand. For a given stopband attenuation, increasing the number of taps per band
narrows the transition width of the filter. As a result, there is more usable bandwidth for each
frequency band at the expense of increased computation.

Dependencies

This property applies when you set Specification to 'Number of taps per band and
stopband attenuation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandAttenuation — Stopband attenuation
80 (default) | positive real scalar

Stopband attenuation of the lowpass filter, specified as a positive real scalar in dB. This value controls
the maximum amount of aliasing from one frequency band to the next. Larger is the stopband
attenuation, smaller is the passband ripple.

Dependencies

This property applies when you set Specification to 'Number of taps per band and
stopband attenuation'.
Data Types: single | double

LowpassCoefficients — Coefficients of the prototype lowpass filter
[1×49 double] (default) | row vector

Coefficients of the prototype lowpass filter, specified as a row vector. The default vector of coefficients
is obtained using rcosdesign(0.25,6,8,'sqrt'). There must be at least one coefficient per
frequency band. If the length of the lowpass filter is less than the number of frequency bands, the
object zero-pads the coefficients.

If you specify complex coefficients, the object designs a prototype filter that is centered at a nonzero
frequency, also known as a bandpass filter. The modulated versions of the prototype bandpass filter
appear with respect to the prototype filter and are wrapped around the frequency range [−Fs Fs].

Tunable: Yes

Dependencies

This property applies when you set Specification to 'Coefficients'.
Data Types: single | double

 dsp.ChannelSynthesizer

4-227

Usage

Syntax
synthOut = synthesizer(input)

Description

synthOut = synthesizer(input) merges the narrowband input signals contained as columns in
input into broadband signal, synthOut.

Input Arguments

input — Narrowband signals
matrix | 3-D array

Narrowband signals, specified as a matrix or a 3-D array. Each narrowband signal is stored as a
column in the input signal. The number of columns in input corresponds to the number of frequency
bands of the filter bank. If input is three-dimensional, each matrix corresponds to a separate
channel. If M is the number of frequency bands, and input is an L-by-M matrix, then the output
signal, synthOut, has dimensions L×M-by-1. If input has more than one channel, that is, it has
dimensions L-by-M-by-N, then synthOut has dimensions L×M-by-N.

This object also accepts variable-size inputs. That is, once the object is locked, you can change the
size of each input channel. The number of channels cannot change.
Data Types: single | double

Output Arguments

synthOut — Merged broadband signal
matrix | 3-D array

Merged broadband signal, returned as a matrix or a 3-D array. If M is the number of frequency bands,
and input is an L-by-M matrix, then the output signal, synthOut, has dimensions L×M-by-1. If
input has more than one channel, that is, it has dimensions L-by-M-by-N, then synthOut has
dimensions L×M-by-N.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.ChannelSynthesizer
coeffs Coefficients of prototype lowpass filter
tf Return transfer function of overall prototype lowpass filter
polyphase Return polyphase matrix

4 System Objects

4-228

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Channelize and Synthesize Sine Wave in MATLAB

Channelize and synthesize a sine wave signal with multiple frequencies using an M -channel filter
bank.

The M -channel filter bank contains an analysis filter bank section and a synthesis filter bank section.
The dsp.Channelizer object implements the analysis filter bank section. The
dsp.ChannelSynthesizer object implements the synthesis filter bank section. These objects use
an efficient polyphase structure to implement the filter bank. For more details, see Polyphase
Implementation under Algorithms on the object reference pages.

Initialization

Initialize the dsp.Channelizer and dsp.ChannelSynthesizer System objects. Each object is set
up with 8 frequency bands, 8 polyphase branches in each filter, 12 coefficients per polyphase branch,
and a stopband attenuation of 140 dB. Use a sine wave with multiple frequencies as the input signal.
View the input spectrum and the output spectrum using a spectrum analyzer.

offsets = [-40,-30,-20,10,15,25,35,-15];
sinewave = dsp.SineWave('ComplexOutput',true,'Frequency',...
 offsets+(-375:125:500),'SamplesPerFrame',800);

channelizer = dsp.Channelizer('StopbandAttenuation',140);
synthesizer = dsp.ChannelSynthesizer('StopbandAttenuation',140);
spectrumAnalyzer = dsp.SpectrumAnalyzer('ShowLegend',true,...
 'SampleRate',sinewave.SampleRate,...
 'NumInputPorts',2,'ChannelNames',{'Input','Output'},...
 'Title','Input and Output Spectra');

Streaming

Use the channelizer to split the broadband input signal into multiple narrow bands. Then pass the
multiple narrowband signals into the synthesizer, which merges these signals to form the broadband
signal. Compare the spectra of the input and output signals. The input and output spectra match very
closely.

for i = 1:5000
 x = sum(sinewave(),2);
 y = channelizer(x);
 v = synthesizer(y);
 spectrumAnalyzer(x,v)
end

 dsp.ChannelSynthesizer

4-229

More About
Synthesis Filter Bank

The synthesis filter bank consists of a set of parallel bandpass filters that merge multiple input
narrowband signals, y0[m], y1[m], … , yM-1[m] into a single broadband signal, v[n]. The input
narrowband signals are in the baseband. Each narrowband signal is interpolated to a higher sampling
rate by using the upsampler, and then filtered by the lowpass filter. A complex exponential that
follows the lowpass filter centers the baseband signal around wk.

4 System Objects

4-230

Prototype Lowpass Filter

To implement the synthesis filter bank efficiently, the synthesizer uses a prototype lowpass filter. This
filter has an impulse response of h[n], a normalized two-sided bandwidth of 2π/M, and a cutoff
frequency of π/M. M is the number of frequency bands, that is, the branches of the synthesis filter
bank. This value corresponds to the FFT length that the filter bank uses. M can be high, in the order
of 2048 or more. The stopband attenuation determines the minimum level of interference (aliasing)
from one frequency band to another. The passband ripple must be small so that the input signal is not
distorted in the passband.

The prototype lowpass filter models the first branch of the filter bank. The other M – 1 branches are
modeled by filters that are modulated versions of the prototype filter. The modulation factor is given
by e jwkn, wk = 2πk/M, k = 0, 1, ..., M − 1.

The output of each bandpass filter forms a specific portion of the broadband signal. The output of all
the branches are added to form the broadband signal, v[n].

Algorithms
Polyphase Implementation

The synthesis filter bank can be implemented efficiently using the polyphase structure.

To derive the polyphase structure, start with the transfer function of the prototype lowpass filter.

H0(z) = b0 + b1z−1 + ... + bNz−N

N + 1 is the length of the prototype filter.

You can rearrange this equation as follows:

 dsp.ChannelSynthesizer

4-231

H0(z) =

b0 + bMz−M + b2Mz−2M + .. + bN −M + 1z−(N −M + 1) +

z−1 b1 + bM + 1z−M + b2M + 1z−2M + .. + bN −M + 2z−(N −M + 1) +
⋮

z−(M − 1) bM − 1 + b2M − 1z−M + b3M − 1z−2M + .. + bNz−(N −M + 1)

M is the number of polyphase components.

You can write this equation as:

H0(z) = E0(zM) + z−1E1(zM) + ... + z−(M − 1)EM − 1(zM)

E0(zM), E1(zM), … , EM-1(zM) are polyphase components of the prototype lowpass filter, H0(z).

The other filters in the filter bank, Hk(z), where k = 1, … , M − 1, are modulated versions of this
prototype filter.

You can write the transfer function of the kth modulated bandpass filter as Hk(z) = H0(ze jwk).
Replacing z with zejwk,

Hk(z) = h0 + h1e jwkz−1 + h2e j2wkz−2... + hNe jNwkz−N

N + 1 is the length of the kth filter.

In polyphase form, the equation is as follows:

Hk(z) = 1 e jwk e j2wk ... e j(M − 1)wk

E0(zM)

z−1E1(zM)
⋮

z−(M − 1)EM − 1(zM)

For all M channels in the filter bank, the MIMO transfer function, H(z), is given by:

H(z) =

1 1 1 ... 1

1 e jw1 e j2w1 ... e j(M − 1)w1

⋮
1 e jwM − 1 e j2wM − 1 ... e j(M − 1)wM − 1

E0(zM)

z−1E1(zM)
⋮

z−(M − 1)EM − 1(zM)

Here is the multirate noble identity for interpolation, assuming that D = M:

For illustration, consider the first branch of the filter bank that contains the lowpass filter.

Replace H0(z) with its polyphase representation.

4 System Objects

4-232

After applying the noble identity for interpolation, you can replace the delays, interpolation factor,
and the adder with a commutator switch.

For all the M channels in the filter bank, the MIMO transfer function, H(z), is given by:

H(z) =

1 1 1 ... 1

1 e jw1 e j2w1 ... e j(M − 1)w1

⋮
1 e jwM − 1 e j2wM − 1 ... e j(M − 1)wM − 1

E0(z)
E1(z)
⋮

EM − 1(z)

The matrix on the left is an IDFT matrix. With the IDFT matrix, the efficient implementation of the
lowpass prototype based filter bank looks like the following.

 dsp.ChannelSynthesizer

4-233

References
[1] Harris, Fredric J, Multirate Signal Processing for Communication Systems, Prentice Hall PTR,

2004.

[2] Harris, F.J., Chris Dick, Michael Rice. "Digital Receivers and Transmitters Using Polyphase Filter
Banks for Wireless Communications." IEEE Transactions on microwave theory and
techniques. Vol. 51, Number 4, April 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
coeffs | tf | polyphase

Objects
dsp.Channelizer | dsp.FIRHalfbandDecimator | dsp.FIRHalfbandInterpolator |
dsp.IIRHalfbandInterpolator | dsp.DyadicSynthesisFilterBank

Blocks
Channel Synthesizer | Channelizer | Dyadic Analysis Filter Bank | Two-Channel Analysis Subband
Filter

Functions
firpr2chfb

Introduced in R2016b

4 System Objects

4-234

dsp.Chirp
Package: dsp

Generate swept-frequency cosine (chirp) signal

Description
The Chirp object generates a swept-frequency cosine (chirp) signal.

To generate the chirp signal:

1 Create the dsp.Chirp object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
chirp = dsp.Chirp
chirp = dsp.Chirp(Name,Value)

Description

chirp = dsp.Chirp returns a chirp signal, chirp, with unity amplitude.

chirp = dsp.Chirp(Name,Value) returns a chirp signal, chirp, with each specified property set
to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Type — Frequency sweep type
Linear (default) | Swept cosine | Logarithmic | Quadratic

Specify the frequency sweep type as Swept cosine, Linear, Logarithmic, or Quadratic. This
property specifies how the output instantaneous frequency sweep varies over time.

SweepDirection — Sweep direction
Unidirectional (default) | Bidirectional

 dsp.Chirp

4-235

Specify the sweep direction as either Unidirectional or Bidirectional.

InitialFrequency — Initial frequency (hertz)
1000 (default) | scalar greater than or equal to 0

When you set the Type property to Linear, Quadratic, or Logarithmic, this property specifies
the initial instantaneous frequency in hertz of the output chirp signal. When you set the Type
property to Logarithmic, the value of this property is one less than the actual initial frequency of
the sweep. Also, when the sweep is logarithmic, the initial frequency must be less than the target
frequency, specified by the TargetFrequency property.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TargetFrequency — Target frequency (hertz)
4000 (default) | scalar greater than or equal to 0

When you set the Type property to Linear, Quadratic, or Logarithmic, this property specifies
the instantaneous frequency of the output signal in hertz at the target time. When you set the Type
property to Swept Cosine, the target frequency is the instantaneous frequency of the output at half
the target time. Also, when the sweep is logarithmic, the target frequency must be greater than the
initial frequency, specified by the InitialFrequency property.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TargetTime — Target time
1 (default) | scalar greater than or equal to 0

When you set the Type property to Linear, Quadratic, or Logarithmic, this property specifies
the target time in seconds at which the target frequency is reached. When you set the Type property
to Swept cosine, this property specifies the time at which the sweep reaches 2ftgt – finit Hz, where
ftgt is the TargetFrequency and finit is the InitialFrequency. The target time should not be
greater than the sweep time, specified by the SweepTime property.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SweepTime — Sweep time
1 (default) | scalar greater than or equal to 0

When you set the SweepDirection property to Unidirectional, the sweep time in seconds is the
period of the output frequency sweep. When you set the SweepDirection property to
Bidirectional, the sweep time is half the period of the output frequency sweep. The sweep time
should be no less than the target time, specified by the TargetTime. This property must be a positive
numeric scalar.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialPhase — Initial phase
0 (default) | scalar greater than or equal to 0

4 System Objects

4-236

Specify initial phase of the output in radians at time t = 0.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Sample rate
8000 (default) | positive scalar

Specify the sampling rate of the output in hertz as a positive numeric scalar.
Data Types: single | double | logical

SamplesPerFrame — Samples per output frame
1 (default) | positive integer

Specify the number of samples to buffer into each output as a positive integer. The default value is 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputDataType — Output data type
double (default) | single

Specify the output data type as double or single. The default value is double.

Usage

Syntax
y = chirp()

Description

y = chirp() returns a swept-frequency cosine output, y.

Output Arguments

y — Swept-frequency cosine output
scalar | column vector

Swept-frequency cosine output, returned as a scalar or a column vector. The length of the output
vector equals the value you specify in the SamplesPerFrame property.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm

 dsp.Chirp

4-237

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Generate a Bidirectional Swept Chirp Signal

Note: If you are using R2016a or earlier, replace each call to the object with the equivalent step
syntax. For example, obj(x) becomes step(obj,x).

chirp = dsp.Chirp(...
 'SweepDirection', 'Bidirectional', ...
 'TargetFrequency', 25, ...
 'InitialFrequency', 0,...
 'TargetTime', 1, ...
 'SweepTime', 1, ...
 'SamplesPerFrame', 400, ...
 'SampleRate', 400);

plot(chirp());

4 System Objects

4-238

Algorithms
This object implements the algorithm, inputs, and outputs described on the Chirp block reference
page. The object properties correspond to the block parameters.

See Also
Objects
dsp.SineWave

Introduced in R2012a

 dsp.Chirp

4-239

dsp.CICCompensationDecimator
Package: dsp

Compensate for CIC decimation filter using FIR decimator

Description
You can compensate for the shortcomings of a CIC decimator, namely its passband droop and wide
transition region, by following it with a compensation decimator. This System object lets you design
and use such a filter.

To compensate for the shortcomings of a CIC filter using an FIR decimator:

1 Create the dsp.CICCompensationDecimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ciccompdec = dsp.CICCompensationDecimator
ciccompdec = dsp.CICCompensationDecimator(decim)
ciccompdec = dsp.CICCompensationDecimator(cic)
ciccompdec = dsp.CICCompensationDecimator(cic,decim)
ciccompdec = dsp.CICCompensationDecimator(___ ,Name,Value)

Description

ciccompdec = dsp.CICCompensationDecimator returns a System object, ciccompdec, that
applies an FIR decimator to each channel of an input signal. Using the properties of the object, the
decimation filter can be designed to compensate for a preceding CIC filter.

ciccompdec = dsp.CICCompensationDecimator(decim) returns a CIC compensation
decimator System object, with the DecimationFactor property set to decim.

ciccompdec = dsp.CICCompensationDecimator(cic) returns a CIC compensation decimator
System object, with the CICRateChangeFactor, CICNumSections, and CICDifferentialDelay
properties specified in the dsp.CICDecimator System object, cic.

ciccompdec = dsp.CICCompensationDecimator(cic,decim) returns a CIC compensation
decimator System object, ciccompdec, with the CICRateChangeFactor, CICNumSections, and
CICDifferentialDelay properties specified in the dsp.CICDecimator System object cic, and
the DecimationFactor property set to decim.

ciccompdec = dsp.CICCompensationDecimator(___ ,Name,Value) returns a CIC
compensation decimator object with each specified property set to the specified value. Enclose each
property name in quotes. You can use this syntax with any previous input argument combinations.

4 System Objects

4-240

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

CICDifferentialDelay — Differential delay of the CIC filter being compensated
1 (default) | positive integer scalar

Specify the differential delay of the CIC filter being compensated as a positive integer scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CICNumSections — Number of sections of the CIC filter being compensated
2 (default) | positive integer scalar

Specify the number of sections of the CIC filter being compensated as a positive integer scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CICRateChangeFactor — Rate-change factor of the CIC filter being compensated
2 (default) | positive integer scalar

Specify the rate-change factor of the CIC filter being compensated as a positive integer scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DecimationFactor — Decimation factor of compensator
2 (default) | positive integer scalar

Specify the decimation factor of the compensator System object as a positive integer scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DesignForMinimumOrder — Design filter of minimum order or of specified order
true (default) | false

Specify whether to design a filter of minimum order or a filter of specified order as a logical scalar.
The default is true, which corresponds to a filter of minimum order.

FilterOrder — Order of decimation compensator filter
12 (default) | positive integer scalar

Specify the order of the decimation compensator filter as a positive integer scalar.

Dependencies

This property applies only when you set the DesignForMinimumOrder property to false.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PassbandFrequency — Passband edge frequency in hertz
100000 (default) | positive real scalar

 dsp.CICCompensationDecimator

4-241

Specify the passband edge frequency as a positive real scalar expressed in hertz.
PassbandFrequency must be less than Fs/2, where Fs is the input sample rate.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PassbandRipple — Filter passband ripple in decibels
0.1 (default) | positive real scalar

Specify the filter passband ripple as a positive real scalar expressed in decibels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Input sample rate in hertz
1200000 (default) | positive real scalar

Specify the input sample rate as a positive real scalar expressed in hertz.
Data Types: single | double

StopbandAttenuation — Filter stopband attenuation in decibels
60 (default) | positive real scalar

Specify the filter stopband attenuation as a positive real scalar expressed in decibels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandFrequency — Stopband edge frequency in hertz
400000 (default) | positive real scalar

Specify the stopband edge frequency as a positive real scalar expressed in hertz.
StopbandFrequency must be less than Fs/2, where Fs is the input sample rate.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

CoefficientsDataType — Word and fraction lengths of coefficients
numerictype(1,16) (default) | numerictype object

Word and fraction lengths of coefficients, specified as a signed or unsigned numerictype object. The
default, numerictype(1,16) corresponds to a signed numeric type object with 16-bit coefficients
and a fraction length determined based on the coefficient values, to give the best possible precision.

This property is not tunable.

Word length of the output is same as the word length of the input. Fraction length of the output is
computed such that the entire dynamic range of the output can be represented without overflow. For
details on how the fraction length of the output is computed, see “Fixed-Point Precision Rules for
Avoiding Overflow in FIR Filters”.

RoundingMethod — Rounding method for output fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Rounding method for output fixed-point operations, specified as a character vector. For more
information on the rounding modes, see “Precision and Range”.

4 System Objects

4-242

Usage

Syntax
y = ciccompdecim(x)

Description

y = ciccompdecim(x) returns the filtered and downsampled values, y, of the input signal, x.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. The System object treats a Ki × N input matrix as N
independent channels, decimating each channel over the first dimension. The number of input rows,
Ki, must be a multiple of the decimation factor.

This object does not support complex unsigned fixed-point data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — Filtered and downsampled signal
vector | matrix

Filtered and downsampled signal, returned as a vector or matrix. For a Ki × N input matrix, the result
is a Ko × N output matrix, where Ko = Ki / M and M is the decimation factor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.CICCompensationDecimator
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
info Information about filter System object
cost Estimate cost of implementing filter System object
coeffs Returns the filter System object coefficients in a structure
polyphase Polyphase decomposition of multirate filter
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)

 dsp.CICCompensationDecimator

4-243

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Impulse and Frequency Response of CIC Compensation Decimator

Design an CIC compensation decimator. Specify the decimation factor to be 2, passband frequency to
be 4 kHz, stopband frequency to be 4.5 kHz, and the input sample rate to be 16 kHz.

fs = 16e3;
fPass = 4e3;
fStop = 4.5e3;

CICCompDecim = dsp.CICCompensationDecimator('DecimationFactor',2,...
 'PassbandFrequency',fPass, ...
 'StopbandFrequency',fStop,...
 'SampleRate',fs);

Plot the impulse response. The group delay of the filter is 45.5.

fvtool(CICCompDecim,'Analysis','impulse')

4 System Objects

4-244

Plot the magnitude and Phase response.

fvtool(CICCompDecim,'Analysis','freq')

Compensation Decimator Design

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Design a compensation decimator for an existing CIC decimator having six sections and a decimation
factor of 6.

CICDecim = dsp.CICDecimator('DecimationFactor',6, ...
 'NumSections',6);

Construct the compensation decimator. Specify a decimation factor of 2, an input sample rate of 16
kHz, a passband frequency of 4 kHz, and a stopband frequency of 4.5 kHz.

fs = 16e3;
fPass = 4e3;
fStop = 4.5e3;

CICCompDecim = dsp.CICCompensationDecimator(CICDecim, ...
 'DecimationFactor',2,'PassbandFrequency',fPass, ...
 'StopbandFrequency',fStop,'SampleRate',fs);

 dsp.CICCompensationDecimator

4-245

Visualize the frequency response of the cascade. Normalize all magnitude responses to 0 dB.

filtCasc = dsp.FilterCascade(CICDecim,CICCompDecim);

f = fvtool(CICDecim, CICCompDecim, filtCasc, ...
 'Fs', [fs*6 fs fs*6]);

f.NormalizeMagnitudeto1 = 'on';
legend(f,'CIC Decimator','CIC Compensation Decimator', ...
 'Overall Response');

Apply the design to a 1200-sample random input signal. Store the decimated output along the first
dimension of the y array.

x = dsp.SignalSource(fi(rand(1200,1),1,16,15),'SamplesPerFrame',120);

y = fi(zeros(100,1),1,32,20);

for ind = 1:10
 x2 = CICDecim(x());
 y(((ind-1)*10)+1:ind*10,1) = CICCompDecim(x2);
end

Algorithms
The response of a CIC filter is given by:

4 System Objects

4-246

Hcic ω =
sin RDω

2

sin ω
2

N

R, D, and N are the rate change factor, the differential delay, and the number of sections of the CIC
filter, respectively.

After decimation, the cic response has the form:okay

Hcic ω =
sin Dω

2

sin ω
2R

N

The normalized version of this last response is the one that the CIC compensator needs to
compensate. Hence, the passband response of the CIC compensator should take the following form:

Hciccomp ω = RD
sin ω

2R

sin Dω
2

N

for ω ≤ ωp < π

where ωp is the passband frequency of the CIC compensation filter.

Notice that when ω/2R ≪ π, the previous equation for Hciccomp(ω) can be simplified using the fact
that sin(x) ≅ x:

Hciccomp ω ≈
Dω
2

sin Dω
2

N

 = sinc Dω
2

−N
for ω ≤ ωp < π

This previous equation is the inverse sinc approximation to the true inverse passband response of the
CIC filter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object supports code generation for ARM Cortex-M and ARM Cortex-A processors.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This object does not support complex unsigned fixed-point data.

 dsp.CICCompensationDecimator

4-247

See Also
Functions
freqz | fvtool | info | cost | coeffs | polyphase | generatehdl

Objects
dsp.CICCompensationInterpolator | dsp.CICDecimator | dsp.CICInterpolator

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2014b

4 System Objects

4-248

dsp.CICCompensationInterpolator
Package: dsp

Compensate for CIC interpolation filter using FIR interpolator

Description
You can compensate for the shortcomings of a CIC interpolator, namely its passband droop and wide
transition region, by preceding it with a compensation interpolator. This System object lets you
design and use such a filter.

To compensate for the shortcomings of a CIC filter using an FIR interpolator:

1 Create the dsp.CICCompensationInterpolator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ciccompint = dsp.CICCompensationInterpolator
ciccompint = dsp.CICCompensationInterpolator(interp)
ciccompint = dsp.CICCompensationInterpolator(cic)
ciccompint = dsp.CICCompensationInterpolator(cic,interp)
ciccompint = dsp.CICCompensationInterpolator(___ ,Name,Value)

Description

ciccompint = dsp.CICCompensationInterpolator returns a System object, ciccompint, that
applies an FIR interpolator to each channel of an input signal. Using the properties of the object, the
interpolation filter can be designed to compensate for a subsequent CIC filter.

ciccompint = dsp.CICCompensationInterpolator(interp) returns a CIC compensation
interpolator System object, ciccompint, with the InterpolationFactor property set to interp.

ciccompint = dsp.CICCompensationInterpolator(cic) returns a CIC compensation
interpolator System object, ciccompint, with the CICRateChangeFactor, CICNumSections, and
CICDifferentialDelay properties specified in the dsp.CICInterpolator System object cic.

ciccompint = dsp.CICCompensationInterpolator(cic,interp) returns a CIC
compensation interpolator System object, ciccompint, with the CICRateChangeFactor,
CICNumSections, and CICDifferentialDelay properties specified in the
dsp.CICInterpolator System object cic, and the InterpolationFactor property set to
interp.

 dsp.CICCompensationInterpolator

4-249

ciccompint = dsp.CICCompensationInterpolator(___ ,Name,Value) returns a CIC
compensation interpolator object with each specified property set to the specified value. Enclose each
property name in quotes. You can use this syntax with any previous input argument combinations.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

CICDifferentialDelay — Differential delay of the CIC filter being compensated
1 (default) | positive integer scalar

Specify the differential delay of the CIC filter being compensated as a positive integer scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CICNumSections — Number of sections of the CIC filter being compensated
2 (default) | positive integer scalar

Specify the number of sections of the CIC filter being compensated as a positive integer scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CICRateChangeFactor — Rate-change factor of the CIC filter being compensated
2 (default) | positive integer scalar

Specify the rate-change factor of the CIC filter being compensated as a positive integer scalar. The
default is 2.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DesignForMinimumOrder — Design filter of minimum order or of specified order
true (default) | false

Specify whether to design a filter of minimum order or a filter of specified order as a logical scalar.
The default is true, which corresponds to a filter of minimum order.

FilterOrder — Order of interpolation compensator filter
12 (default) | positive integer scalar

Specify the order of the interpolation compensator filter as a positive integer scalar.
Dependencies

This property applies only when you set the DesignForMinimumOrder property to false.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InterpolationFactor — Interpolation factor of compensator
2 (default) | positive integer scalar

Specify the interpolation factor of the compensator System object as a positive integer scalar.

4 System Objects

4-250

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PassbandFrequency — Passband edge frequency in hertz
100000 (default) | positive real scalar

Specify the passband edge frequency as a positive real scalar expressed in hertz.
PassbandFrequency must be less than Fs/2, where Fs is the output sample rate.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PassbandRipple — Filter passband ripple in decibels
0.1 (default) | positive real scalar

Specify the filter passband ripple as a positive real scalar expressed in decibels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Input sample rate in hertz
600000 (default) | positive real scalar

Specify the input sample rate as a positive real scalar expressed in hertz.
Data Types: single | double

StopbandAttenuation — Filter stopband attenuation in decibels
60 (default) | positive real scalar

Specify the filter stopband attenuation as a positive real scalar expressed in decibels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandFrequency — Stopband edge frequency in hertz
400000 (default) | positive real scalar

Specify the stopband edge frequency as a positive real scalar expressed in hertz.
StopbandFrequency must be less than Fs/2, where Fs is the output sample rate.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

CoefficientsDataType — Word and fraction lengths of coefficients
numerictype(1,16) (default) | numerictype object

Word and fraction lengths of coefficients, specified as a signed or unsigned numerictype object. The
default, numerictype(1,16) corresponds to a signed numeric type object with 16-bit coefficients
and a fraction length determined based on the coefficient values, to give the best possible precision.

This property is not tunable.

Word length of the output is same as the word length of the input. Fraction length of the output is
computed such that the entire dynamic range of the output can be represented without overflow. For
details on how the fraction length of the output is computed, see “Fixed-Point Precision Rules for
Avoiding Overflow in FIR Filters”.

RoundingMethod — Rounding method for output fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

 dsp.CICCompensationInterpolator

4-251

Rounding method for output fixed-point operations, specified as a character vector. For more
information on the rounding modes, see “Precision and Range”.

Usage

Syntax
y = ciccompint(x)

Description

y = ciccompint(x) outputs the upsampled and filtered values, y, of the input signal, x.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. The System object treats a Ki × N input matrix as N
independent channels, interpolating each channel over the first dimension.

This object does not support complex unsigned fixed-point data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — Upsampled and filtered signal
vector | matrix

Upsampled and filtered signal, returned as a vector or matrix. For a Ki × N input matrix, the result is
a Ko × N output matrix, where Ko = Ki × L and L is the interpolation factor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.CICCompensationInterpolator
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
info Information about filter System object
cost Estimate cost of implementing filter System object
coeffs Returns the filter System object coefficients in a structure
polyphase Polyphase decomposition of multirate filter
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)

4 System Objects

4-252

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Impulse and Frequency Response of CIC Compensation Interpolator

Design an CIC compensation interpolator. Specify the interpolation factor to be 2, passband
frequency to be 200 Hz, stopband frequency to be 500 Hz, and the input sample rate to be 600 Hz.

fs = 600;
fPass = 200;
fStop = 500;

CICCompInterp = dsp.CICCompensationInterpolator(...
 'InterpolationFactor',2,...
 'PassbandFrequency',fPass, ...
 'StopbandFrequency',fStop,...
 'SampleRate',fs);

Plot the impulse response. The zeroth order coefficient is delayed 6 samples, which is equal to the
group delay of the filter.

fvtool(CICCompInterp,'Analysis','impulse')

 dsp.CICCompensationInterpolator

4-253

Plot the magnitude and Phase response.

fvtool(CICCompInterp,'Analysis','freq')

4 System Objects

4-254

Compensation Interpolator Design

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Design a compensation interpolator for an existing CIC interpolator having six sections and an
interpolation factor of 16.

CICInterp = dsp.CICInterpolator('InterpolationFactor',16, ...
 'NumSections',6);

Construct the compensation interpolator. Specify an interpolation factor of 2, an input sample rate of
600 Hz, a passband frequency of 100 Hz, and a stopband frequency of 250 Hz. Set the minimum
attenuation of alias components in the stopband to be at least 80 dB.

fs = 600;
fPass = 100;
fStop = 250;
ast = 80;

CICCompInterp = dsp.CICCompensationInterpolator(CICInterp, ...
 'InterpolationFactor',2,'PassbandFrequency',fPass, ...
 'StopbandFrequency',fStop,'StopbandAttenuation',ast, ...
 'SampleRate',fs);

 dsp.CICCompensationInterpolator

4-255

Visualize the frequency response of the cascade. Normalize all magnitude responses to 0 dB.

FC = dsp.FilterCascade(CICCompInterp, CICInterp);

f = fvtool(CICCompInterp,CICInterp,FC, ...
 'Fs', [fs*2 fs*16*2 fs*16*2]);

f.NormalizeMagnitudeto1 = 'on';
legend(f,'CIC Compensation Interpolator','CIC Interpolator', ...
 'Overall Response');

Apply the design to a 1000-sample random input signal.

x = dsp.SignalSource(fi(rand(1000,1),1,16,15),'SamplesPerFrame',100);

y = fi(zeros(32000,1),1,32,20);
for ind = 1:10
 x2 = CICCompInterp(x());
 y(((ind-1)*3200)+1:ind*3200) = CICInterp(x2);
end

Algorithms
The response of a CIC filter is given by:

4 System Objects

4-256

Hcic ω =
sin RDω

2

sin ω
2

N

R, D, and N are the rate change factor, the differential delay, and the number of sections of the CIC
filter, respectively.

After decimation, the cic response has the form:okay

Hcic ω =
sin Dω

2

sin ω
2R

N

The normalized version of this last response is the one that the CIC compensator needs to
compensate. Hence, the passband response of the CIC compensator should take the following form:

Hciccomp ω = RD
sin ω

2R

sin Dω
2

N

for ω ≤ ωp < π

where ωp is the passband frequency of the CIC compensation filter.

Notice that when ω/2R ≪ π, the previous equation for Hciccomp(ω) can be simplified using the fact
that sin(x) ≅ x:

Hciccomp ω ≈
Dω
2

sin Dω
2

N

 = sinc Dω
2

−N
for ω ≤ ωp < π

This previous equation is the inverse sinc approximation to the true inverse passband response of the
CIC filter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object supports code generation for ARM Cortex-M and ARM Cortex-A processors.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

This object does not support complex unsigned fixed-point data.

 dsp.CICCompensationInterpolator

4-257

See Also
Functions
freqz | fvtool | info | cost | coeffs | polyphase | generatehdl

Objects
dsp.CICCompensationDecimator | dsp.CICDecimator | dsp.CICInterpolator

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2014b

4 System Objects

4-258

dsp.CICDecimator
Package: dsp

Decimate signal using cascaded integrator-comb (CIC) filter

Description
The dsp.CICDecimator System object decimates an input signal using a cascaded integrator-comb
(CIC) decimation filter. The CIC decimation filter structure consists of N sections of cascaded
integrators, followed by a rate change by a factor of R, followed by N sections of cascaded comb
filters. For details, see “Algorithms” on page 4-271. The NumSections property specifies N, the
number of sections in the CIC filter. The DecimationFactor property specifies R, the decimation factor.
The getFixedPointInfo function returns the word lengths and fraction lengths of the fixed-point
sections and the output for the dsp.CICDecimator System object. You can also generate HDL code
for this System object using the generatehdl function.

Note This object requires a Fixed-Point Designer license.

To decimate a signal using a CIC filter:

1 Create the dsp.CICDecimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
cicDecim = dsp.CICDecimator
cicDecim = dsp.CICDecimator(R,M,N)
cicDecim = dsp.CICDecimator(Name,Value)

Description

cicDecim = dsp.CICDecimator creates a CIC decimation System object that applies a CIC
decimation filter to the input signal.

cicDecim = dsp.CICDecimator(R,M,N) creates a CIC decimation object with the
DecimationFactor property set to R, the DifferentialDelay property set to M, and the
NumSections property set to N.

cicDecim = dsp.CICDecimator(Name,Value) creates a CIC decimation object with each
specified property set to the specified value. Enclose each property name in single quotes. You can
use this syntax with any previous input argument combination.

 dsp.CICDecimator

4-259

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

DecimationFactor — Decimation factor
2 (default) | positive integer

Factor by which the input signal is decimated, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DifferentialDelay — Differential delay of filter comb sections
1 (default) | positive integer

Differential delay value used in each of the comb sections of the filter, specified as a positive integer.
For details, see “Algorithms” on page 4-271. If the differential delay is a built-in integer data type, the
decimation factor must be the same integer data type or double. For example, if the differential
delay is an int8, then the decimation factor must be an int8 or double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumSections — Number of integrator and comb sections
2 (default) | positive integer

Number of integrator and comb sections of the CIC filter, specified as a positive integer. This number
indicates the number of sections in either the comb part or the integrator part of the filter. The total
number of sections in the CIC filter is twice the number of sections given by this property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FixedPointDataType — Fixed-point property designations
Full precision (default) | Minimum section word lengths | Specify word lengths |
Specify word and fraction lengths

Fixed-point property designations, specified as one of the following:

• Full precision – The word length and fraction length of the CIC filter sections and the object
output operate in full precision.

• Minimum section word lengths – Specify the output word length through the
OutputWordLength property. The object determines the filter section data type and the output
fraction length that give the best possible precision. For details, see getFixedPointInfo and
cicDecimOut argument.

• Specify word lengths – Specify the word lengths of the CIC filter sections and the object
output through the SectionWordLengths and OutputWordLength properties. The object
determines the corresponding fraction lengths to give the best possible precision. For details, see
getFixedPointInfo and the cicDecimOut argument.

• Specify word and fraction lengths – Specify the word length and fraction length of the
CIC filter sections and the object output through the SectionWordLengths,
SectionFractionLengths, OutputWordLength, and OutputFractionLength properties.

4 System Objects

4-260

SectionWordLengths — Fixed-point word lengths for each filter section
[16 16 16 16] (default) | scalar | vector

Fixed-point word lengths to use for each filter section, specified as a scalar or a row vector of
integers. The word length must be greater than or equal to 2. If you specify a scalar, the value applies
to all the sections of the filter. If you specify a vector, the vector must be of length 2 × NumSections.
Example: 32
Example: [32 32 32 32]

Dependencies

This property applies when you set the FixedPointDataType property to 'Specify word
lengths' or 'Specify word and fraction lengths'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SectionFractionLengths — Fixed-point fraction lengths for each filter section
0 (default) | scalar | vector

Fixed-point fraction lengths to use for each filter section, specified as a scalar or a row vector of
integers. The fraction length can be negative, 0, or positive. If you specify a scalar, the value applies
to all the sections of the filter. If you specify a vector, the vector must be of length 2 × NumSections.
Example: -2
Example: [-2 0 5 8]

Dependencies

This property applies when you set the FixedPointDataType property to 'Specify word and
fraction lengths'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputWordLength — Fixed-point word length for filter output
32 (default) | scalar integer

Fixed-point word length to use for the filter output, specified as a scalar integer greater than or equal
to 2.

Dependencies

This property applies when you set the FixedPointDataType property to 'Minimum section
word lengths', 'Specify word lengths', or 'Specify word and fraction lengths'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputFractionLength — Fixed-point fraction length for filter output
0 (default) | scalar integer

Fixed-point fraction length to use for the filter output, specified as a scalar integer.

Dependencies

This property applies when you set FixedPointDataType property to 'Specify word and
fraction lengths'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 dsp.CICDecimator

4-261

Usage

Syntax
cicDecimOut = cicDecim(input)

Description

cicDecimOut = cicDecim(input) decimates the input using a CIC decimator.

Input Arguments

input — Data input
vector | matrix

Data input, specified as a vector or matrix. The number of rows in the input must be a multiple of the
“DecimationFactor” on page 4-0 . If the input is of single or double data type, property settings
related to the fixed-point data types are ignored.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

cicDecimOut — CIC decimator output
vector | matrix

Decimated output, returned as a vector or a matrix. The output frame size equals (1 ∕
DecimationFactor) × input frame size. The complexity of the output data matches that of the input
data. If the input is single or double, the output data type matches the input data type.

If the input is of built-in integer data type or of fixed-point data type, the output word length and
fraction length depend on the fixed-point data type setting you choose through the
“FixedPointDataType” on page 4-0 property.

Full precision

When the FixedPointDataType is set to 'Full precision', the following relationship applies:

WLoutput = WLinput + NumSect
FLoutput = FLinput

where,

• WLoutput –– Word length of the output data.
• FLoutput –– Fraction length of the output data.
• WLinput –– Word length of the input data.
• FLinput –– Fraction length of the input data.
• NumSect –– Number of sections in the CIC filter specified through the “NumSections” on page 4-

0 property.

The WLinput and FLinput are inherited from the data input you pass to the object algorithm. For built-in
integer inputs, the fraction length is 0.

4 System Objects

4-262

Minimum section word lengths

When the FixedPointDataType property is set to 'Minimum section word lengths', the
output word length is the value you specify in the “OutputWordLength” on page 4-0 property. The
output fraction length, FLoutput, is given by:

FLoutput = WLoutput− (WLinput− FLinput + NumSect)

Specify word and fraction lengths

When the FixedPointDataType property is set to 'Specify word and fraction lengths',
the output word length and fraction length are the values you specify in the “OutputWordLength” on
page 4-0 and “OutputFractionLength” on page 4-0 properties.

Specify word lengths

When the FixedPointDataType property is set to 'Specify word lengths', the output word
length is the value you specify in the OutputWordLength property. The output fraction length,
FLoutput, is given by:

FLoutput = WLoutput− (WLinput− FLinput + NumSect)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.CICDecimator
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)
impz Impulse response of discrete-time filter System object
freqz Frequency response of discrete-time filter System object
phasez Phase response of discrete-time filter System object (unwrapped)
fvtool Visualize frequency response of DSP filters
gain Gain of CIC filter System object
getFixedPointInfo Get fixed-point word and fraction lengths
info Information about filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

For a list of filter analysis methods this object supports, type
dsp.CICDecimator.helpFilterAnalysis in the MATLAB command prompt. For the
corresponding function reference pages, see “Analysis Methods for Filter System Objects” on page 3-
2.

 dsp.CICDecimator

4-263

Examples

Decimate a Signal Using a CICDecimator Object

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a dsp.CICDecimator System object™ with DecimationFactor set to 4. Decimate a signal
from 44.1 kHz to 11.025 kHz.

cicdec = dsp.CICDecimator(4);
cicdec.FixedPointDataType = 'Minimum section word lengths';
cicdec.OutputWordLength = 16;

Create a fixed-point sinusoidal input signal of 1024 samples, with a sampling frequency of 44.1e3 Hz.

Fs = 44.1e3;
% 0.0232 sec signal
n = (0:1023)';
x = fi(sin(2*pi*1e3/Fs*n),true,16,15);

Create a dsp.SignalSource object.

src = dsp.SignalSource(x,64);

Decimate the output with 16 samples per frame.

y = zeros(16,16);
for ii = 1:16
 y(ii,:) = cicdec(src());
end

Plot the first frame of the original and decimated signals. Output latency is 2 samples.

D = cicdec.DecimationFactor;
diffDelay = cicdec.DifferentialDelay;
NumSect = cicdec.NumSections;
gainCIC = ...
 (D*diffDelay)^NumSect;
stem(n(1:56)/Fs,double(x(4:59)))
hold on;
stem(n(1:14)/(Fs/D),double(y(1,3:end))/gainCIC,...
 'r','filled')
xlabel('Time (sec)')
ylabel('Signal Amplitude')
legend('Original signal',...
 'Decimated signal',...
 'Location','north')
hold off;

4 System Objects

4-264

Using the info method in 'long' format, obtain the word lengths and fraction lengths of the fixed-
point filter sections and the filter output.

info(cicdec,'long')

ans =
 'Discrete-Time FIR Multirate Filter (real)

 Filter Structure : Cascaded Integrator-Comb Decimator
 Decimation Factor : 4
 Differential Delay : 1
 Number of Sections : 2
 Stable : Yes
 Linear Phase : Yes (Type 1)

 Implementation Cost
 Number of Multipliers : 0
 Number of Adders : 4
 Number of States : 4
 Multiplications per Input Sample : 0
 Additions per Input Sample : 2.5

 Fixed-Point Info
 Section word lengths : 20 19 19 18
 Section fraction lengths : 15 14 14 13
 Output word length : 16

 dsp.CICDecimator

4-265

 Output fraction length : 11
 '

Determine the Section and Output Word Lengths and Fraction Lengths

Using the getFixedPointInfo function, you can determine the word lengths and fraction lengths of
the fixed-point sections and the output of the dsp.CICDecimator and dsp.CICInterpolator
System objects. The data types of the filter sections and the output depend on the
FixedPointDataType property of the filter System object™.

Full precision

Create a dsp.CICDecimator object. The default value of the NumSections property is 2. This value
indicates that there are two integrator and comb sections. The WLs and FLs vectors returned by the
getFixedPointInfo function contain five elements each. The first two elements represent the two
integrator sections. The third and fourth elements represent the two comb sections. The last element
represents the filter output.

cicD = dsp.CICDecimator

cicD =
 dsp.CICDecimator with properties:

 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Full precision'

By default, the FixedPointDataType property of the object is set to 'Full precision'. Calling
the getFixedPointInfo function on this object with the input numeric type, nt, yields the following
word length and fraction length vectors.

nt = numerictype(1,16,15)

nt =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

[WLs,FLs] = getFixedPointInfo(cicD,nt) %#ok

WLs = 1×5

 18 18 18 18 18

FLs = 1×5

 15 15 15 15 15

4 System Objects

4-266

For details on how the word lengths and fraction lengths are computed, see the description for
Output Arguments.

If you lock the cicD object by passing an input to its algorithm, you do not need to pass the nt
argument to the getFixedPointInfo function.

input = int64(randn(8,1))

input = 8x1 int64 column vector

 1
 2
 -2
 1
 0
 -1
 0
 0

output = cicD(input)

output =
 0
 1
 3
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 66
 FractionLength: 0

[WLs,FLs] = getFixedPointInfo(cicD) %#ok

WLs = 1×5

 66 66 66 66 66

FLs = 1×5

 0 0 0 0 0

The output and section word lengths are the sum of input word length, 64 in this case, and the
number of sections, 2. The output and section fraction lengths are 0 since the input is a built-in
integer.

Minimum section word lengths

Release the object and change the FixedPointDataType property to 'Minimum section word
lengths'. Determine the section and output fixed-point information when the input is fixed-point
data, fi(randn(8,2),1,24,15).

release(cicD);
cicD.FixedPointDataType = 'Minimum section word lengths'

cicD =
 dsp.CICDecimator with properties:

 dsp.CICDecimator

4-267

 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Minimum section word lengths'
 OutputWordLength: 32

inputF = fi(randn(8,2),1,24,15)

inputF =
 3.5784 -0.1241
 2.7694 1.4897
 -1.3499 1.4090
 3.0349 1.4172
 0.7254 0.6715
 -0.0630 -1.2075
 0.7148 0.7172
 -0.2050 1.6302

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 15

[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF)) %#ok

WLs = 1×5

 26 26 26 26 32

FLs = 1×5

 15 15 15 15 21

Specify word and fraction lengths

Change the FixedPointDataType property to 'Specify word and fraction lengths'.
Determine the fixed-point information using the getFixedPointInfo function.

cicD.FixedPointDataType = 'Specify word and fraction lengths'

cicD =
 dsp.CICDecimator with properties:

 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Specify word and fraction lengths'
 SectionWordLengths: [16 16 16 16]
 SectionFractionLengths: 0
 OutputWordLength: 32
 OutputFractionLength: 0

[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF)) %#ok

4 System Objects

4-268

WLs = 1×5

 16 16 16 16 32

FLs = 1×5

 0 0 0 0 0

The section and output word lengths and fraction lengths are assigned as per the respective fixed-
point properties of the cicD object. These values are not determined by the input numeric type. To
confirm, call the getFixedPointInfo function without passing the numerictype input argument.

[WLs, FLs] = getFixedPointInfo(cicD) %#ok

WLs = 1×5

 16 16 16 16 32

FLs = 1×5

 0 0 0 0 0

Specify word lengths

To specify the word lengths of the filter section and output, set the FixedPointDataType property
to 'Specify word lengths'.

cicD.FixedPointDataType = 'Specify word lengths'

cicD =
 dsp.CICDecimator with properties:

 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Specify word lengths'
 SectionWordLengths: [16 16 16 16]
 OutputWordLength: 32

The getFixedPointInfo function requires the input numeric type because that information is used
to compute the section and word fraction lengths.

[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF))

WLs = 1×5

 16 16 16 16 32

FLs = 1×5

 5 5 5 5 21

 dsp.CICDecimator

4-269

For more details on how the function computes the word and fraction lengths, see the description for
Output Arguments.

More About
CIC Filter

CIC filters are an optimized class of linear phase FIR filters composed of a comb part and an
integrator part.

The CIC decimation filter is conceptually given by a single rate CIC filter, H(z) which is a lowpass
anti-imaging filter, followed by a downsampler. The CIC decimation filter decreases the sample rate of
an input signal by an integer factor using a cascaded integrator-comb (CIC) filter.

In a more efficient implementation, the single rate CIC filter H(z) is factorized this way:

H(z) = ∑
k = 0

RM − 1
z−k

N
=

1− z−RM N

1− z−1 N = 1
1− z−1 N ·

1− z−RM N

1 = HIN(z) · HcN(z)

where,

• HI is the transfer function of the integrator part of the filter containing N stages of integrators.
• HC is the transfer function of the N sections of the cascaded comb filters, each with a width of RM.
• N is the number of sections. The number of sections in a CIC filter is defined as the number of

sections in either the comb part or the integrator part of the filter. This value does not represent
the total number of sections throughout the entire filter.

• R is the decimation factor.
• M is the differential delay.

In the overall multirate realization, the algorithm applies the noble identity for decimation and moves
the rate change factor, R, to follow after the N sections of the cascaded integrators. The transfer
function of the resulting filter is given by the following equation:

H(z) =
1− z−M N

1− z−1 N .

For a block diagram that shows the multirate implementation, see “Algorithms” on page 4-271.

4 System Objects

4-270

Algorithms
CIC Decimation Filter

The CIC decimation filter in “More About” on page 4-270 is realized as a cascade of N sections of the
integrators followed by a rate change factor of R, followed by N sections of comb filters.

This diagram shows two sections of cascaded integrators and two sections of cascaded comb filters.
The unit delay in the integrator portion of the CIC filter can be located in either the feedforward or
the feedback path. These two configurations yield identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency. This block puts the
unit delay in the feedforward path of the integrator because it is a preferred configuration for HDL
implementation.

References
[1] Hogenauer, E.B. "An Economical Class of Digital Filters for Decimation and Interpolation." IEEE

Transactions on Acoustics, Speech and Signal Processing. Volume 29, Number 2, 1981, 155–
162.

[2] Meyer-Baese, U. Digital Signal Processing with Field Programmable Gate Arrays. New York:
Springer, 2001.

[3] Harris, Fredric J. Multirate Signal Processing for Communication Systems. Indianapolis, IN:
Prentice Hall PTR, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The fixed-point signal diagram shows the data types that the dsp.CICDecimator object uses for
fixed-point signals.

 dsp.CICDecimator

4-271

where,

• secNT = numerictype(1,secWL,secFL)
• outNT = numertictype(1,outWL,outFL)
• secWL is the section word length you specify through the “SectionWordLengths” on page 4-0

property.
• secFL is the section fraction length you specify through the “SectionFractionLengths” on page 4-

0 property.
• outWL is the output word length you specify through the “OutputWordLength” on page 4-0

property.
• outFL is the output fraction length you specify through the “OutputFractionLength” on page 4-0

property.

The value of NumSections in this diagram is 2.

See Also
Functions
generatehdl | impz | freqz | phasez | fvtool | gain | getFixedPointInfo | info

Objects
dsp.CICInterpolator | dsp.CICCompensationDecimator |
dsp.CICCompensationInterpolator

Blocks
CIC Decimation | CIC Interpolation | CIC Compensation Interpolator | CIC Compensation Decimator

Topics
“GSM Digital Down Converter in MATLAB”
“Implementing the Filter Chain of a Digital Down-Converter in HDL”
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2012a

4 System Objects

4-272

dsp.CICInterpolator
Package: dsp

Interpolate signal using cascaded integrator-comb filter

Description
The dsp.CICInterpolator System object interpolates an input signal using a cascaded integrator-
comb (CIC) interpolation filter. The CIC interpolation filter structure consists of N sections of
cascaded comb filters, followed by a rate change by a factor of R, followed by N sections of cascaded
integrators. For details, see “Algorithms” on page 4-286. The NumSections property specifies N, the
number of sections in the CIC filter. The InterpolationFactor property specifies R, the interpolation
factor. The getFixedPointInfo function returns the word lengths and fraction lengths of the fixed-
point sections and the output for the dsp.CICInterpolator System object. You can also generate
HDL code for this System object using the generatehdl function.

Note This object requires a Fixed-Point Designer license.

To interpolate a signal using a CIC filter:

1 Create the dsp.CICInterpolator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
cicInterp = dsp.CICInterpolator
cicInterp = dsp.CICInterpolator(R,M,N)
cicInterp = dsp.CICInterpolator(Name,Value)

Description

cicInterp = dsp.CICInterpolator creates a CIC interpolation System object that applies a CIC
interpolation filter to the input signal.

cicInterp = dsp.CICInterpolator(R,M,N) creates a CIC interpolation object with the
InterpolationFactor property set to R, the DifferentialDelay property set to M, and the
NumSections property set to N.

cicInterp = dsp.CICInterpolator(Name,Value) creates a CIC interpolation object with each
specified property set to the specified value. Enclose each property name in single quotes. You can
use this syntax with any previous input argument combinations.

 dsp.CICInterpolator

4-273

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InterpolationFactor — Interpolation factor
2 (default) | positive integer

Factor by which the input signal is interpolated, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DifferentialDelay — Differential delay of filter comb sections
1 (default) | positive integer

Differential delay value used in each of the comb sections of the filter, specified as a positive integer.
For details, see “Algorithms” on page 4-286. If the differential delay is of built-in integer class data
type, the interpolation factor must be the same integer data type or double. For example, if the
differential delay is an int8, then the interpolation factor must be an int8 or double.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumSections — Number of integrator and comb sections
2 (default) | positive integer

Number of integrator and comb sections of the CIC filter, specified as a positive integer. This number
indicates the number of sections in either the comb part or the integrator part of the filter. The total
number of sections in the CIC filter is twice the number of sections given by this property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FixedPointDataType — Fixed-point property designations
Full precision (default) | Minimum section word lengths | Specify word lengths |
Specify word and fraction lengths

Fixed-point property designations, specified as one of the following:

• Full precision – The word length and fraction length of the CIC filter sections and the object
output operate in full precision.

• Minimum section word lengths – Specify the output word length through the
OutputWordLength property. The object determines the filter section data type and the output
fraction length that give the best possible precision. For details, see getFixedPointInfo and
cicInterpOut argument.

• Specify word lengths – Specify the word lengths of the CIC filter sections and the object
output through the SectionWordLengths and OutputWordLength properties. The object
determines the corresponding fraction lengths to give the best possible precision. For details, see
getFixedPointInfo and the cicInterpOut argument.

• Specify word and fraction lengths – Specify the word length and fraction length of the
CIC filter sections and the object output through the SectionWordLengths,
SectionFractionLengths, OutputWordLength, and OutputFractionLength properties.

4 System Objects

4-274

SectionWordLengths — Fixed-point word lengths for each filter section
[16 16 16 16] (default) | scalar | vector

Fixed-point word lengths to use for each filter section, specified as a scalar or a row vector of
integers. The word length must be greater than or equal to 2. If you specify a scalar, the value applies
to all the sections of the filter. If you specify a vector, the vector must be of length 2 × NumSections.
Example: 32
Example: [32 32 32 32]

Dependencies

This property applies when you set the FixedPointDataType property to 'Specify word
lengths' or 'Specify word and fraction lengths'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SectionFractionLengths — Fixed-point fraction lengths for each filter section
0 (default) | scalar | vector

Fixed-point fraction lengths to use for each filter section, specified as a scalar or a row vector of
integers. The fraction length can be negative, 0, or positive. If you specify a scalar, the value applies
to all the sections of the filter. If you specify a vector, the vector must be of length 2 × NumSections.
Example: -2
Example: [-2 0 5 8]

Dependencies

This property applies when you set the FixedPointDataType property to 'Specify word and
fraction lengths'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputWordLength — Fixed-point word length for filter output
32 (default) | scalar integer

Fixed-point word length to use for the filter output, specified as a scalar integer greater than or equal
to 2.

Dependencies

This property applies when you set the FixedPointDataType property to one of 'Minimum
section word lengths', 'Specify word lengths', or 'Specify word and fraction
lengths'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputFractionLength — Fixed-point fraction length for filter output
0 (default) | scalar integer

Fixed-point fraction length to use for the filter output, specified as a scalar integer.

Dependencies

This property applies when you set the FixedPointDataType property to 'Specify word and
fraction lengths'.

 dsp.CICInterpolator

4-275

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
cicInterpOut = cicInterp(input)

Description

cicInterpOut = cicInterp(input) interpolates the input using a CIC interpolator.

Input Arguments

input — Data input
vector | matrix

Data input, specified as a vector or matrix. If the input is of single or double data type, property
settings related to the fixed-point data types are ignored.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

cicInterpOut — CIC interpolator output
vector | matrix

Interpolated output, returned as a vector or a matrix. The output frame size equals
(“InterpolationFactor” on page 4-0) × input frame size. The complexity of the output data matches
that of the input data. If the input is single or double, the output data type matches the input data
type.

If the input is of built-in integer data type or of fixed-point data type, the output word length and
fraction length depend on the fixed-point data type setting you choose through the
“FixedPointDataType” on page 4-0 property.

Full precision

When the FixedPointDataType property is set to 'Full precision', the following relationship
applies:

WLoutput = WLinput + NumSect
FLoutput = FLinput

where,

• WLoutput –– Word length of the output data.
• FLoutput –– Fraction length of the output data.
• WLinput –– Word length of the input data.
• FLinput –– Fraction length of the input data.
• NumSect –– Number of sections in the CIC filter specified through the “NumSections” on page 4-

0 property.

4 System Objects

4-276

WLinput and FLinput are inherited from the data input you pass to the object algorithm. For built-in
integer inputs, the fraction length is 0.

Minimum section word lengths

When the FixedPointDataType property is set to 'Minimum section word lengths', the
output word length is the value you specify in “OutputWordLength” on page 4-0 property. The
output fraction length, FLoutput is given by the following equation:

FLoutput = WLoutput− (WLinput− FLinput + NumSect)

Specify word and fraction lengths

When the FixedPointDataType is set to 'Specify word and fraction lengths', the output
word length and fraction length are the values you specify in the “OutputWordLength” on page 4-0
and “OutputFractionLength” on page 4-0 properties.

Specify word lengths

When the FixedPointDataType is set to 'Specify word lengths', the output word length is
the value you specify in the OutputWordLength property. The output fraction length, FLoutput is given
by the following equation:

FLoutput = WLoutput− (WLinput− FLinput + NumSect)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.CICInterpolator
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)
impz Impulse response of discrete-time filter System object
freqz Frequency response of discrete-time filter System object
phasez Phase response of discrete-time filter System object (unwrapped)
fvtool Visualize frequency response of DSP filters
gain Gain of CIC filter System object
getFixedPointInfo Get fixed-point word and fraction lengths
info Information about filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

For a list of filter analysis methods this object supports, type
dsp.CICInterpolator.helpFilterAnalysis in the MATLAB command prompt. For the

 dsp.CICInterpolator

4-277

corresponding function reference pages, see “Analysis Methods for Filter System Objects” on page 3-
2.

Examples

Interpolate Signal Using CICInterpolator System object

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a dsp.CICInterpolator System object™ with InterpolationFactor set to 2. Interpolate
a fixed-point signal by a factor of 2 from 22.05 kHz to 44.1 kHz.

cicint = dsp.CICInterpolator(2)

cicint =
 dsp.CICInterpolator with properties:

 InterpolationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Full precision'

Create a dsp.SineWave object with SampleRate set to 22.05 kHz, SamplesPerFrame set to 32,
and OutputDataType set to 'Custom'. To generate a fixed-point signal, set the
CustomOutputDataType property to a numerictype object. For the purpose of this example, set
the value to numerictype([],16). The fraction length is computed based on the values of the
generated sinusoidal signal to give the best possible precision.

To generate a fixed-point signal, set the Method property of the dsp.SineWave object to 'Table
lookup'. This method of generating the sinusoidal signal requires that the period of every sinusoid
in the output be evenly divisible by the sample period. That is, 1/ f iTs = ki must be an integer value for
every channel i = 1, 2, ..., N. The value of Ts equals 1/Fs, the variable f i is the frequency of the
sinusoidal signal, and Fs is the sample rate of the signal. In other words, the ratio Fs/ f i must be an
integer. For more details, see the “Algorithms” on page 4-1239 section on the dsp.SineWave object
page.

In this example, Fs is set to 22050 Hz and f i is set to 1050 Hz.

Fs = 22.05e3;
sine = dsp.SineWave('Frequency',1050,...
 'SampleRate',Fs,...
 'SamplesPerFrame',32,...
 'Method','Table lookup',...
 'OutputDataType','Custom')

sine =
 dsp.SineWave with properties:

 Amplitude: 1
 Frequency: 1050
 PhaseOffset: 0
 ComplexOutput: false

4 System Objects

4-278

 Method: 'Table lookup'
 TableOptimization: 'Speed'
 SampleRate: 22050
 SamplesPerFrame: 32
 OutputDataType: 'Custom'

 Show all properties

In each loop of the iteration, stream in a frame of the fixed-point sinusoidal signal sampled at 22.05
kHz. Interpolate the streamed signal by a factor of 2. The interpolated output has 64 samples per
frame.

for i = 1:16
 x = sine();
 y = cicint(x);
end

The output of the CIC interpolation filter is amplified by a specific gain value. You can determine this
value using the gain function. This gain equals the gain of the 2Nth stage of the CIC interpolation
filter and equals I × D N/I, where I is the interpolation factor, D is the differential delay, and N is the
number of sections of the CIC interpolator.

gainCIC = gain(cicint)

gainCIC = 2

To adjust this amplified output and to match it to the amplitude of the original signal, divide the CIC
interpolated signal with the computed gain value.

Compare the last frames of the original and the interpolated signals. While plotting, account for the
output latency of 2 samples.

n = (0:63)';
stem(n(1:31)/Fs,double(x(1:31)),'r','filled')
hold on;
I = cicint.InterpolationFactor;
stem(n(1:61)/(Fs*I), ...
 double(y(4:end))/gainCIC,'b')
xlabel('Time (sec)')
ylabel('Signal Amplitude')
legend('Original Signal',...
 'Interpolated Signal',...
 'location','north')
hold off;

 dsp.CICInterpolator

4-279

Using the info function in the 'long' format, obtain the word lengths and fraction lengths of the
fixed-point filter sections and the filter output.

info(cicint,'long')

ans =
 'Discrete-Time FIR Multirate Filter (real)

 Filter Structure : Cascaded Integrator-Comb Interpolator
 Interpolation Factor : 2
 Differential Delay : 1
 Number of Sections : 2
 Stable : Yes
 Linear Phase : Yes (Type 1)

 Implementation Cost
 Number of Multipliers : 0
 Number of Adders : 4
 Number of States : 4
 Multiplications per Input Sample : 0
 Additions per Input Sample : 6

 Fixed-Point Info
 Section word lengths : 17 17 17 17
 Section fraction lengths : 14 14 14 14
 Output word length : 17

4 System Objects

4-280

 Output fraction length : 14
 '

Determine the Section and Output Word Lengths and Fraction Lengths

Using the getFixedPointInfo function, you can determine the word lengths and fraction lengths of
the fixed-point sections and the output of the dsp.CICDecimator and dsp.CICInterpolator
System objects. The data types of the filter sections and the output depend on the
FixedPointDataType property of the filter System object™.

Full precision

Create a dsp.CICDecimator object. The default value of the NumSections property is 2. This value
indicates that there are two integrator and comb sections. The WLs and FLs vectors returned by the
getFixedPointInfo function contain five elements each. The first two elements represent the two
integrator sections. The third and fourth elements represent the two comb sections. The last element
represents the filter output.

cicD = dsp.CICDecimator

cicD =
 dsp.CICDecimator with properties:

 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Full precision'

By default, the FixedPointDataType property of the object is set to 'Full precision'. Calling
the getFixedPointInfo function on this object with the input numeric type, nt, yields the following
word length and fraction length vectors.

nt = numerictype(1,16,15)

nt =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

[WLs,FLs] = getFixedPointInfo(cicD,nt) %#ok

WLs = 1×5

 18 18 18 18 18

FLs = 1×5

 15 15 15 15 15

 dsp.CICInterpolator

4-281

For details on how the word lengths and fraction lengths are computed, see the description for
Output Arguments.

If you lock the cicD object by passing an input to its algorithm, you do not need to pass the nt
argument to the getFixedPointInfo function.

input = int64(randn(8,1))

input = 8x1 int64 column vector

 1
 2
 -2
 1
 0
 -1
 0
 0

output = cicD(input)

output =
 0
 1
 3
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 66
 FractionLength: 0

[WLs,FLs] = getFixedPointInfo(cicD) %#ok

WLs = 1×5

 66 66 66 66 66

FLs = 1×5

 0 0 0 0 0

The output and section word lengths are the sum of input word length, 64 in this case, and the
number of sections, 2. The output and section fraction lengths are 0 since the input is a built-in
integer.

Minimum section word lengths

Release the object and change the FixedPointDataType property to 'Minimum section word
lengths'. Determine the section and output fixed-point information when the input is fixed-point
data, fi(randn(8,2),1,24,15).

release(cicD);
cicD.FixedPointDataType = 'Minimum section word lengths'

cicD =
 dsp.CICDecimator with properties:

4 System Objects

4-282

 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Minimum section word lengths'
 OutputWordLength: 32

inputF = fi(randn(8,2),1,24,15)

inputF =
 3.5784 -0.1241
 2.7694 1.4897
 -1.3499 1.4090
 3.0349 1.4172
 0.7254 0.6715
 -0.0630 -1.2075
 0.7148 0.7172
 -0.2050 1.6302

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 15

[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF)) %#ok

WLs = 1×5

 26 26 26 26 32

FLs = 1×5

 15 15 15 15 21

Specify word and fraction lengths

Change the FixedPointDataType property to 'Specify word and fraction lengths'.
Determine the fixed-point information using the getFixedPointInfo function.

cicD.FixedPointDataType = 'Specify word and fraction lengths'

cicD =
 dsp.CICDecimator with properties:

 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Specify word and fraction lengths'
 SectionWordLengths: [16 16 16 16]
 SectionFractionLengths: 0
 OutputWordLength: 32
 OutputFractionLength: 0

[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF)) %#ok

 dsp.CICInterpolator

4-283

WLs = 1×5

 16 16 16 16 32

FLs = 1×5

 0 0 0 0 0

The section and output word lengths and fraction lengths are assigned as per the respective fixed-
point properties of the cicD object. These values are not determined by the input numeric type. To
confirm, call the getFixedPointInfo function without passing the numerictype input argument.

[WLs, FLs] = getFixedPointInfo(cicD) %#ok

WLs = 1×5

 16 16 16 16 32

FLs = 1×5

 0 0 0 0 0

Specify word lengths

To specify the word lengths of the filter section and output, set the FixedPointDataType property
to 'Specify word lengths'.

cicD.FixedPointDataType = 'Specify word lengths'

cicD =
 dsp.CICDecimator with properties:

 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Specify word lengths'
 SectionWordLengths: [16 16 16 16]
 OutputWordLength: 32

The getFixedPointInfo function requires the input numeric type because that information is used
to compute the section and word fraction lengths.

[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF))

WLs = 1×5

 16 16 16 16 32

FLs = 1×5

 5 5 5 5 21

4 System Objects

4-284

For more details on how the function computes the word and fraction lengths, see the description for
Output Arguments.

More About
CIC Filter

CIC filters are an optimized class of linear phase FIR filters composed of a comb part and an
integrator part.

The CIC interpolation filter is conceptually given by an upsampler followed by a single rate CIC filter,
H(z), which is a lowpass anti-imaging filter. The CIC interpolation filter increases the sample rate of
an input signal by an integer factor using a cascaded integrator-comb (CIC) filter.

In a more efficient implementation, the single rate CIC filter H(z) is factorized this way:

H(z) = ∑
k = 0

RM − 1
z−k

N
= (1− z−RM)N

(1− z−1)N = (1− z−RM)N

1 · 1
(1− z−1)N = HCN(z) · HIN(z)

where,

• HC is the transfer function of the N sections of the cascaded comb filters, each with a width of RM.
• HI is the transfer function of the integrator part of the filter containing N stages of integrators.
• N is the number of sections. The number of sections in a CIC filter is defined as the number of

sections in either the comb part or the integrator part of the filter. This value does not represent
the total number of sections throughout the entire filter.

• R is the interpolation factor.
• M is the differential delay.

In the overall multirate realization, the algorithm applies the noble identity for interpolation and
moves the rate change factor, R, to follow after the N sections of the cascaded comb filters.

The transfer function of the resulting filter is given by the following equation:

H(z) =
1− z−M N

1− z−1 N .

For a block diagram that shows the multirate implementation, see “Algorithms” on page 4-286.

 dsp.CICInterpolator

4-285

Algorithms
CIC Interpolation Filter

The CIC interpolation filter in “More About” on page 4-285 is realized as a cascade of N sections of
comb filters followed by a rate change by a factor R, followed by N sections of cascaded integrators.

This diagram shows two sections of cascaded comb filters and two sections of cascaded integrators.
The unit delay in the integrator portion of the CIC filter can be located in either the feedforward or
the feedback path. These two configurations yield identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency. This algorithm puts
the unit delay in the feedforward path of the integrator since it is a preferred configuration for HDL
implementation.

References
[1] Hogenauer, E.B. "An Economical Class of Digital Filters for Decimation and Interpolation." IEEE

Transactions on Acoustics, Speech and Signal Processing. Volume 29, Number 2, 1981, 155–
162.

[2] Meyer-Baese, U. Digital Signal Processing with Field Programmable Gate Arrays. New York:
Springer, 2001.

[3] Harris, Fredric J. Multirate Signal Processing for Communication Systems. Indianapolis, IN:
Prentice Hall PTR, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The fixed-point signal diagram shows the data types that the dsp.CICInterpolator object uses for
fixed-point signals.

4 System Objects

4-286

where,

• secNT = numerictype(1,secWL,secFL)
• outNT = numertictype(1,outWL,outFL)
• secWL is the section word length you specify through the “SectionWordLengths” on page 4-0

property.
• secFL is the section fraction length you specify through the “SectionFractionLengths” on page 4-

0 property.
• outWL is the output word length you specify through the “OutputWordLength” on page 4-0

property.
• outFL is the output fraction length you specify through the “OutputFractionLength” on page 4-0

property.

The value of NumSections in this diagram is 2.

See Also
Functions
generatehdl | impz | freqz | phasez | fvtool | gain | getFixedPointInfo | info

Objects
dsp.CICDecimator | dsp.CICCompensationDecimator |
dsp.CICCompensationInterpolator

Blocks
CIC Decimation | CIC Interpolation | CIC Compensation Interpolator | CIC Compensation Decimator

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2012a

 dsp.CICInterpolator

4-287

dsp.HDLCICDecimation
Package: dsp

Decimate signal using cascaded integrator-comb filter — optimized for HDL code generation

Description
The dsp.HDLCICDecimation System object decimates an input signal by using a cascaded
integrator-comb (CIC) decimation filter. CIC filters are a class of linear phase FIR filters consisting of
a comb part and an integrator part. The CIC decimation filter structure consists of N sections of
cascaded integrators, a rate change factor of R, and then N sections of cascaded comb filters. For
more information about CIC decimation filters, see “Algorithms” on page 4-296.

The System object supports fixed and variable decimation rates for scalar inputs and only fixed
decimation for vector inputs. For both types of inputs, the System object provides a scalar output. The
System object provides an architecture suitable for HDL code generation and hardware deployment.

The System object supports real and complex fixed-point inputs.

To filter input data with an HDL-optimized CIC decimation filter:

1 Create the dsp.HDLCICDecimation object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
cicDecFilt = dsp.HDLCICDecimation
cicDecFilt = dsp.HDLCICDecimation(Name,Value)

Description

cicDecFilt = dsp.HDLCICDecimation creates an HDL-optimized CIC decimation filter System
object, cicDecFilt, with default properties.

cicDecFilt = dsp.HDLCICDecimation(Name,Value) creates the filter with properties set using
one or more name-value pairs. Enclose each property name in single quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

4 System Objects

4-288

For more information on changing property values, see System Design in MATLAB Using System
Objects.

VariableDownsample — Variable decimation rate
(0) false (default) | (1) true

Set this property to true (1) to operate the System object with a variable decimation rate specified
by the decimFactor input argument. Set this property to false (0) to operate the object with a
fixed decimation rate, specified by the DecimationFactor property.

For vector inputs, the object does not support variable decimation rate.

DecimationFactor — Decimation factor
2 (default) | integer from 2 to 2048

Specify the decimation factor as an integer from 2 to 2048. This value represents the rate with which
you want to decimate the input.

When you set the VariableDownsample property to true, this property sets the upper bound of the
range of valid values for the decimFactor argument.

DifferentialDelay — Differential delay
1 (default) | 2

Specify the differential delay of the comb part of the filter as either 1 or 2 cycles.

NumSections — Number of integrator or comb sections
2 (default) | integer from 1 to 6

Specify the number of sections in either the integrator or the comb part of the filter as an integer
from 1 to 6.

OutputDataType — Data type of output
'Full precision' (default) | 'Same word length as input' | 'Minimum section word
lengths'

Choose the data type of the filtered output data.

• 'Full precision' — The output data type has a word length equal to the input word length
plus gain bits.

• 'Same word length as input' — The output data type has a word length equal to the input
word length.

• 'Minimum section word lengths' — The output data type uses the word length you specify
in the OutputWordLength property. When you choose this option, the System object applies a
Pruning algorithm internally. For more information about Pruning, see “Output Data Type” on
page 4-298. This option is not supported when VariableDownsample is true.

OutputWordLength — Word length of output
16 (default) | integer from 2 to 104

Word length of the output, specified as an integer from 2 to 104.

Note When this value is less than 7 the output data values might overflow.

 dsp.HDLCICDecimation

4-289

Dependencies

To enable this property, set the OutputDataType property to 'Minimum section word
lengths'.

GainCorrection — Compensate output gain
false (default) | true

Set this property to true to compensate for the output gain of the filter.

Depending on the type of decimation you specify and the value of this property, the latency of the
object changes. Here, N means the number of sections and vecLen means the length of the vector.

For a scalar input with fixed decimation (VariableDownsample is false):

• With gain correction off, the latency of the object is 3 + N clock cycles.
• With gain correction on, the latency of the object is 3 + N + 9 clock cycles.

For a scalar input with variable decimation (VariableDownsample is true):

• With gain correction off, the latency of the object is 4 + N clock cycles.
• With gain correction on, the latency of the object is 4 + N + 9 clock cycles.

For a vector input with fixed decimation (VariableDownsample is false):

• With gain correction off, the latency of the object is floor((vecLen – 1) * (N/vecLen)) + 1 + N +
(2 + (vecLen + 1) * N clock cycles.

• With gain correction on, the latency of the object is floor((vecLen – 1) * (N/vecLen)) + 1 + N +
(2 + (vecLen + 1) * N) + 9 clock cycles.

Note For vector inputs, the object does not support variable decimation.

ResetIn — Enable reset argument
false (default) | true

When you set this property to true, the System object expects a reset input argument.

Usage

Syntax
[dataOut,validOut] = cicDecFilt(dataIn,validIn)
[dataOut,validOut] = cicDecFilt(dataIn,validIn,decimFactor)
[dataOut,validOut] = cicDecFilt(dataIn,validIn,reset)
[dataOut,validOut] = cicDecFilt(dataIn,validIn,decimFactor,reset)

Description

[dataOut,validOut] = cicDecFilt(dataIn,validIn) filters and decimates the input data
using a fixed decimation factor only when validIn is true.

4 System Objects

4-290

[dataOut,validOut] = cicDecFilt(dataIn,validIn,decimFactor) filters the input data
using the specified variable decimation factor, decimFactor. The VariableDownsample property
must be set to true.

[dataOut,validOut] = cicDecFilt(dataIn,validIn,reset) filters the input data when
reset is false and clears filter internal states when reset is true. The System object expects the
reset argument only when you set the ResetIn property to true.

[dataOut,validOut] = cicDecFilt(dataIn,validIn,decimFactor,reset) filters the input
data when reset is false and clears filter internal states when reset is true. The System object
expects the reset argument only when you set the ResetIn property to true. The
VariableDownsample property is set to true.

Input Arguments

dataIn — Input data
scalar | column vector

Specify input data as a scalar or a column vector of length 1 to 64. The input data must be a signed
integer or signed fixed point with a word length less than or equal to 32. DecimationFactor
property must be an integer multiple of the input frame size.
Data Types: int8 | int16 | int32 | fi

validIn — Indication of valid input data
logical scalar

Control signal that indicates if the input data is valid.

When validIn is 1 (true), the System object captures the value from the dataIn input argument.
When validIn is 0 (false), the System object ignores the dataIn input value.
Data Types: logical

decimFactor — Variable decimation rate
scalar

Specifies the decimation rate.

The decimFactor value must be of data type ufix12 data type and an integer in the range from 2 to
the DecimationFactor property value.

Dependencies

To enable this argument, set the VariableDownsample property to true.
Data Types: fi(0,12,0)

reset — Clear internal states
logical scalar

Clear internal states, specified as a logical scalar.

When this value is 1 (true), the System object stops the current calculation and clears all internal
states. When this value is 0 (false) and validIn is 1 (true), the System object starts a new
filtering operation.

 dsp.HDLCICDecimation

4-291

Dependencies

To enable this argument, set the ResetIn property to true.
Data Types: logical

Output Arguments

dataOut — CIC-decimated output data
scalar

CIC decimated output data, returned as a scalar.

The OutputDataType property sets the output data type of this argument. See “OutputDataType” on
page 4-0 .
Data Types: int8 | int16 | int32 | fi
Complex Number Support: Yes

validOut — Indication of valid output data
logical scalar

Control signal that indicates if the data from the dataOut output argument is valid. When this value
is 1 (true), the System object returns valid data from the dataOut output argument. When this
value is 0 (false), the values of the dataOut output argument are not valid.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.HDLCICDecimation
getLatency Latency of CIC decimation filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create CIC Decimation Filter for HDL Code Generation

This example shows how to use a dsp.HDLCICDecimation System object™ to filter and downsample
the data. This object supports scalar and vector inputs. In this example, two functions are provided to
work with scalar and vector input data separately. You can generate the HDL code from these
functions.

4 System Objects

4-292

Generate Frames of Random Input Samples

Set up these workspace variables for the object to use. The object supports fixed and variable
decimation rates for scalar inputs and only a fixed decimation rate for vector inputs. The example
runs the HDLCIC_maxR8 function when you set the scalar variable to true and runs the HDLCIC_vec
function when you set the scalar variable to false. For scalar inputs, choose a range of the input
varRValue values and set the decimation factor value, R, to the maximum expected decimation factor.
For vector inputs, the input data must be a column vector of size 1 to 64 and R must be an integer
multiple of the input frame size.

R = 8; % decimation factor
M = 1; % differential delay
N = 3; % number of sections
scalar = false; % true for scalar; false for vector
if scalar
 varRValue = [2, 4, 5, 6, 7, 8];
 vecSize = 1;
else
 varRValue = R;
 fac = (factor(R));
 vecSize = fac(randi(length(fac),1,1));
end

numFrames = length(varRValue);
dataSamples = cell(1,numFrames);
varRtemp = cell(1,numFrames);
framesize = zeros(1,numFrames);
refOutput = [];
WL = 0; % Word length
FL = 0; % Fraction length

Generate Reference Output from dsp.CICDecimation System Object™

Generate frames of random input samples and apply the samples to the dsp.CICDecimation
System object. The output generated from this System object is used as a reference data for
comparison. The System object does not support a variable decimation rate, so you must create and
release the object for each change in decimation factor value.

totalsamples = 0;
for i = 1:numFrames
 framesize(i) = varRValue(i)*randi([5 20],1,1);
 dataSamples{i} = fi(randn(vecSize,framesize(i)),1,16,8);
 ref_cic = dsp.CICDecimator('DifferentialDelay',M,...
 'NumSections',N,...
 'DecimationFactor',varRValue(i));
 refOutput = [refOutput,ref_cic(dataSamples{i}(:)).'];
 release(ref_cic);
end

Run a Function that contains dsp.HDLCICDecimation System Object

Set the properties of the System object to match the input data parameters and run the respective
function based on the input type. These functions operate on a stream of data samples rather than a
frame. You can generate HDL code from these functions.

The example uses the HDLCIC_maxR8 function for a scalar input.

 dsp.HDLCICDecimation

4-293

function [dataOut,validOut] = HDLCIC_maxR8(dataIn,validIn,R)
%HDLCIC_maxR8
% Performs CIC decimation with an input decimation factor up to 8.
% sampleIn is a scalar fixed-point value.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent cic8;
 if isempty(cic8)
 cic8 = dsp.HDLCICDecimation('DecimationFactor',8,...
 'VariableDownsample',true,...
 'DifferentialDelay',1,...
 'NumSections',3);
 end
 [dataOut,validOut] = cic8(dataIn,validIn,R);
end

The example uses the HDLCIC_vec function for a vector input.

function [dataOut,validOut] = HDLCIC_vec(dataIn,validIn)
%HDLCIC_vec
% Performs CIC decimation with an input vector.
% sampleIn is a fixed-point vector.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent cicVec;
 if isempty(cicVec)
 cicVec = dsp.HDLCICDecimation('DecimationFactor',8,...
 'VariableDownsample',false,...
 'DifferentialDelay',1,...
 'NumSections',3);
 end
 [dataOut,validOut] = cicVec(dataIn,validIn);
end

To flush remaining data, run the object by inserting the required number of idle cycles after each
frame through latency variable. For more information, see “GainCorrection” on page 4-0
property.

Initialize the output to a size large enough to accommodate the output data. The final size is expected
to be smaller than totalsamples due to decimation.

latency = floor((vecSize - 1)*(N/vecSize))+ 1+ N +(2+(vecSize + 1)*N)+ 9;
dataOut = zeros(1,totalsamples+numFrames*latency);
validOut = zeros(1,totalsamples+numFrames*latency);
idx=0;
for ij = 1:numFrames
 if scalar
 % scalar input with variable decimation
 for ii = 1:length(dataSamples{ij})
 idx = idx+1;
 [dataOut(idx),validOut(idx)] = HDLCIC_maxR8(...
 dataSamples{ij}(ii),...

4 System Objects

4-294

 true,...
 fi(varRValue(ij),0,12,0));
 end
 for ii = 1:latency
 idx = idx+1;
 [dataOut(idx),validOut(idx)] = HDLCIC_maxR8(...
 fi(0,1,16,8),...
 false,...
 fi(varRValue(ij),0,12,0));
 end

 else
 % vector input with fixed decimation
 for ii = 1:size(dataSamples{ij},2)
 idx = idx+1;
 [dataOut(idx),validOut(idx)] = HDLCIC_vec(...
 dataSamples{ij}(:,ii),...
 true);
 end
 for ii = 1:latency
 idx = idx+1;
 [dataOut(idx),validOut(idx)] = HDLCIC_vec(...
 fi(zeros(vecSize,1),1,16,8),...
 false);
 end
 end
end

Compare the Function Output with the Reference Data

Compare the function results against the output from the dsp.CICDecimation object.

cicOutput = dataOut(validOut==1);

fprintf('\nHDL CIC Decimation\n');
difference = (abs(cicOutput-refOutput(1:length(cicOutput)))>0);
fprintf('\nTotal number of samples differed between Behavioral and HDL simulation: %d \n',sum(difference));

HDL CIC Decimation

Total number of samples differed between Behavioral and HDL simulation: 0

Explore Latency of HDL CIC Decimation Object

The latency of the dsp.HDLCICDecimation System object™ varies depending on how many
integrator and comb sections your filter has, input vector size, and whether you enable gain
correction. Use the getLatency function to find the latency of a particular filter configuration. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is continuously valid.

Create a dsp.HDLCICDecimation System object™ and request the latency. The default filter has
two sections, and gain correction is disabled.

hdlcic = dsp.HDLCICDecimation

 dsp.HDLCICDecimation

4-295

hdlcic =
 dsp.HDLCICDecimation with properties:

 VariableDownsample: false
 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 OutputDataType: 'Full precision'
 GainCorrection: false
 ResetIn: false

L_def = getLatency(hdlcic)

L_def = 5

Modify the filter object to have three integrator and comb sections. Check the resulting change in
latency.

hdlcic.NumSections = 3;
L_3sec = getLatency(hdlcic)

L_3sec = 6

Enable the gain correction on the filter object with vector input size 2. Check the resulting change in
latency.

hdlcic.GainCorrection = true;
vecSize = 2;
L_wgain = getLatency(hdlcic,vecSize)

L_wgain = 25

Algorithms
CIC Decimation Filter

The transfer function of a CIC decimation filter is

H(z) = ∑
k = 0

RM − 1
z−k

N
=

1− z−RM N

1− z−1 N = 1
1− z−1 N ·

1− z−RM N

1 = HIN(z) · HcN(z),

where

• HI is the transfer function of the integrator part of the CIC filter.
• HC is the transfer function of the comb part of the CIC filter.
• N is the number of sections. The number of sections in a CIC filter is defined as the number of

sections in either the comb part or the integrator part of the filter. This value does not represent
the total number of sections throughout the entire filter.

• R is the decimation factor.
• M is the differential delay.

4 System Objects

4-296

CIC Filter Structure

The dsp.HDLCICDecimation System object has the CIC filter structure shown in this figure. The
structure consists of N sections of cascaded integrators, a rate change factor of R, and N sections of
cascaded comb filters [1].

Designs can put the unit delay in the integrator part of the CIC filter in either the feed-forward or
feedback path. These two configurations yield an identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency of the paths. This
System object puts the unit delay in the feed-forward path of the integrator.

Fixed and Variable Decimation

The System object downsamples the integrator stage output using R, either the fixed decimation rate
provided using the DecimationFactor property or the variable decimation rate provided using the
decimFactor input argument. At the downsampler stage, the System object uses a counter to count
the valid input samples, which depend on the decimation rate. Whenever the decimation rate
changes, the object resets and starts a new calculation from the next sample. This mechanism
prevents the System object from accumulating invalid values. Then, the System object provides the
decimated output to the comb part.

Gain Correction

The gain of the System object is given by Gain = (R x M)N.

where:

• R is the DecimationFactor property value.
• M is the DifferentialDelay property value.
• N is the NumSections property value.

The System object implements gain correction in two parts: coarse gain and fine gain. In coarse gain
correction, the System object calculates the shift value, adds the shift value to the fractional bits to
create a numeric type, and then performs bit-shift left. In fine gain correction, the System object
divides the remaining gain with the coarse gain if the gain is not a power of 2 and then multiplies the
coarse gain corrected value with the inverse value of fine gain. All possible shift and fine gain values
are precalculated initially and stored in an array before the System object starts processing.

You can modify this equation as Gain = 2cGain x fGain, where cGain means coarse gain and fGain
means fine gain.

• cGain = f loor(log2Gain)
• fGain = Gain/2cGain = Gain x 2−cGain

To perform GainCorrection when the VariableDownsample property is enabled, the System
object sets the output data type configured with the maximum decimation rate and bit-shifts left for
all the values under the maximum decimation rate. The bit-shift value is equal to
Maximum gain ‐ log2(current gain).

 dsp.HDLCICDecimation

4-297

Output Data Type

This section explains how the System object determines the output data type. For example, consider a
filter with DecimationFactor, DifferentialDelay, and NumSections values 8, 1, and 3,
respectively, with an input width of 16 bits.

The output word length is calculated as: BOUT = BIN + [log2(Gain)],

where:

• Gain = (R x M)N

• BIN is the input word length.
• BOUT is the output word length.

When you set the OutputDataType property to 'Full precision', the System object returns data
with a word length of 25 bits, by adding nine gain bits to the input word length.

When you set the OutputDataType property to 'Same word length as input', the object
outputs data with a word length of 16, which is the same length as the input word length. The
internal integrator and comb stages use the full-precision data type with 25 bits.

When you set the OutputDataType property to 'Minimum section word lengths' and the
OutputWordLength property to 16, the System object returns data with a word length of 16 bits. In
this case, the object changes the bit width at each stage, based on the Pruning algorithm.

If the OutputWordLength property value is less than the number of bits requested at the output, the
least significant bits (LSBs) at the earlier stages are pruned. The Hogenauer algorithm provides the
number of LSBs to discard at each stage. This algorithm minimizes the loss of information in the
output data [1].

4 System Objects

4-298

Latency

This section shows the latencies of the System object for a scalar input when the System object is
operated with fixed and variable decimation rates and for a vector input when the System object is
operated with a fixed decimation rate.
Scalar Input

This figure shows the output of the System object for the default configuration, that is, with a fixed
decimation rate and DecimationFactor, DifferentialDelay, and NumSections values of 2, 1,
and 2, respectively. The System object returns valid output data at every second cycle based on the
fixed DecimationFactor value of 2. The latency of the System object is 5 clock cycles, calculated as 3
+ N.

This figure shows the output of the System object with a fixed decimation rate, DecimationFactor,
DifferentialDelay, and NumSections values of 8, 1, and 3, respectively and GainCorrection
set to true. The System object returns valid output data at every eighth cycle based on the fixed
DecimationFactor value of 8. The latency of the object is 15 clock cycles and is calculated as 3 + N +
9.

This figure shows the output of the System object for variable decimFactor values 2, 4, and 8 along
with M and N values 1 and 3. The GainCorrection property is set to false. The System object
returns valid output data at the second, fourth, and eighth cycles corresponding to the decimFactor
values 2, 4, and 8, respectively. The System object accepts decimFactor argument value changes
only when input validIn is 1 (true). The latency of the System object is 7 clock cycles, calculated
as 4 + N.

 dsp.HDLCICDecimation

4-299

Vector Input

The latency of the System object for a vector input is calculated using this formula: floor((vecLen –
1) * (N/vecLen)) + 1 + N + 9 * GainCorrection + (2 + (vecLen + 1) * N), where vecLen is the
length of the vector and N is the number of sections.

This figure shows the output of the System object for a two-element column vector input with default
configuration, that is, with a fixed decimation rate and DecimationFactor, DifferentialDelay,
and NumSections values of 2, 1, and 2, respectively. The latency of the block is 12 clock cycles.

This figure shows the output of the System object for an eight-element column vector input with a
fixed decimation rate and R, M, and N values of 8, 1, and 3, respectively and GainCorrection set to
true. The latency of the block is 44 clock cycles.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. This
table shows the resource and performance data synthesis results of the block for a scalar input with
fixed and variable decimation rates and for a two-element column vector input with fixed decimation
rate DecimationFactor, DifferentialDelay, and NumSections values are 2, 1, and 2,
respectively. The generated HDL is targeted to the Xilinx Zynq-7000 ZC706 evaluation board.

4 System Objects

4-300

Input Data Decimation Type Slice LUTs Slice Registers Maximum Frequency in
MHz

Scalar Fixed rate 101 166 711.74
Variable rate 206 186 441.70

Vector Fixed rate 218 627 624.61

The resources and frequencies vary based on the type of input data and R, M, and N values and other
selected property values. Using a vector input can increase the throughput, however this option also
increases the number of hardware resources that the System object uses.

References
[1] Hogenauer, E. “An Economical Class of Digital Filters for Decimation and Interpolation.” IEEE

Transactions on Acoustics, Speech, and Signal Processing 29, no. 2 (April 1981): 155–62.
https://doi.org/10.1109/TASSP.1981.1163535.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsp.CICDecimator | dsp.CICInterpolator | dsp.CICCompensationDecimator |
dsp.CICCompensationInterpolator

Blocks
CIC Decimation HDL Optimized | CIC Decimation | CIC Interpolation

Introduced in R2019b

 dsp.HDLCICDecimation

4-301

dsp.ColoredNoise
Package: dsp

Generate colored noise signal

Description
The dsp.ColoredNoise System object generates a colored noise signal with a power spectral
density (PSD) of 1/|f|α over its entire frequency range. The inverse frequency power, α, can be any
value in the interval [-2 2]. The type of colored noise the object generates depends on the “Color”
on page 4-0 you choose. When you set Color to 'custom', you can specify the power density of
the noise through the “InverseFrequencyPower” on page 4-0 property.

The size and data type properties of the generated signal depend on “SamplesPerFrame” on page 4-
0 , “NumChannels” on page 4-0 , and the “OutputDataType” on page 4-0 properties.

This object uses the default MATLAB random stream, RandStream. Reset the default stream for
repeatable simulations.

To generate colored noise signal:

1 Create the dsp.ColoredNoise object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
cn = dsp.ColoredNoise
cn = dsp.ColoredNoise(Name,Value)
cn = dsp.ColoredNoise(pow,samp,numChan,Name,Value)
cn = dsp.ColoredNoise(color,samp,numChan,Name,Value)

Description

cn = dsp.ColoredNoise creates a colored noise object, cn, that outputs a noise signal one sample
or frame at a time, with a 1/|f|α spectral characteristic over its entire frequency range. Typical values
for α are α = 1 (pink noise) and α = 2 (brownian noise).

cn = dsp.ColoredNoise(Name,Value) creates a colored noise object with each specified
property set to the specified value. Enclose each property name in single quotes.
Example: dsp.ColoredNoise('Color','pink');

cn = dsp.ColoredNoise(pow,samp,numChan,Name,Value) creates a colored noise object with
the InverseFrequencyPower property set to pow, the SamplesPerFrame property set to samp,
and the NumChannels property set to numChan.

4 System Objects

4-302

Example: dsp.ColoredNoise(1,44.1e3,1,'OutputDataType','single');

cn = dsp.ColoredNoise(color,samp,numChan,Name,Value) creates a colored noise object
with the Color property set to color, the SamplesPerFrame property set to samp, and the
NumChannels property set to numChan.
Example: dsp.ColoredNoise('pink',1024,2,'OutputDataType','single');

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Color — Noise color
'custom' (default) | 'pink' | 'white' | 'brown' | 'blue' | 'purple'

Noise color, specified as one of the following. Each color is associated with a specific inverse
frequency power of the generated noise sequence.

• 'pink' –– The inverse frequency power, α equals 1.
• 'white' –– α = 0.
• 'brown' –– α = 2. Also known as red or Brownian noise.
• 'blue' –– α = -1. Also known as azure noise.
• 'purple' –– α = -2. Also known as violet noise.
• 'custom' –– For noise with a custom inverse frequency power, α equals the value of the

“InverseFrequencyPower” on page 4-0 property.

InverseFrequencyPower, α can be any value in the interval [-2,2].

InverseFrequencyPower — Inverse frequency power
1 (default) | real scalar in [-2 2]

Inverse frequency power, α, specified as a real scalar in the interval [-2 2]. The inverse exponent
defines the PSD of the random process as 1/|f|α. Values of “InverseFrequencyPower” on page 4-0
greater than 0 generate lowpass noise with a singularity (pole) at f = 0. These processes exhibit long
memory. Values of InverseFrequencyPower less than 0 generate highpass noise with increments
that are negatively correlated. These processes are referred to as anti-persistent. Special cases
include:

• 1 –– Pink noise
• 2 –– Brown, red, or Brownian noise
• 0 –– White noise process with a flat PSD
• -1 –– Blue or azure noise
• -2 –– Purple of violet noise

In a log-log plot of power as a function of frequency, processes generated by this object exhibit an
approximate linear relationship with slope equal to –α.

 dsp.ColoredNoise

4-303

Example: 1.2
Example: -1.4

Dependencies

This property applies only when you set “Color” on page 4-0 to 'custom'.

SamplesPerFrame — Number of samples per output channel
1024 (default) | positive integer

Number of samples per output channel, specified as a positive integer. This property determines the
number of rows of the signal.
Example: 512

NumChannels — Number of output channels
1 (default) | positive integer

Number of output channels, specified as an integer. This property determines the number of columns
of the signal.
Example: 5
Example: 25

RandomStream — Source of random number stream
'Global stream' (default) | 'mt19937ar with seed'

Source of the random number stream, specified as one of the following:

• 'Global stream' –– The current global random number stream is used for normally distributed
random number generation.

• 'mt19937ar with seed' –– The mt19937ar algorithm is used for normally distributed random
number generation. The reset function reinitializes the random number stream to the value of
the Seed property.

Seed — Initial seed
67 (default) | nonnegative integer

Initial seed of mt19937ar random number stream generator algorithm, specified as a nonnegative
integer. The reset function reinitializes the random number stream to the value of the Seed
property.
Example: 3
Example: 34

Dependencies

This property applies only when you set the RandomStream property to 'mt19937ar with seed'.
Data Types: double

BoundedOutput — Set output bounds to +1 and −1
false (default) | true

Specify the output to be bounded between +1 and −1, specified as:

4 System Objects

4-304

• true –– The internal random source that generates the noise is uniform. If Color is set to
'white', there is no color filter applied to the output of the random source. The output is uniform
noise of amplitude between +1 and −1. If Color is set to any other option, then a coloring filter is
applied to the output of the random source, followed by a gain ensures that the absolute maximum
output never exceeds 1.

• false –– The internal random source is Gaussian. The output is not bounded.

Data Types: logical

OutputDataType — Output data type
'double' (default) | 'single'

Output data type, specified as either 'double' or 'single'.

Usage

Syntax
noiseOut = cn()

Description

noiseOut = cn() outputs one sample or one frame of colored noise data.

Output Arguments

noiseOut — Colored noise output
vector | matrix

Colored noise output, returned as a vector or matrix. The “SamplesPerFrame” on page 4-0 ,
“NumChannels” on page 4-0 , and the “OutputDataType” on page 4-0 properties specify the size
and data type of the output.
Example:
[0.5377;2.1027;-1.1403;0.5885;0.6229;-0.8971;-0.7435;-0.0588;3.458;4.4537]

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

 dsp.ColoredNoise

4-305

Measure Pink Noise Power in Octave Bands

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

The output from this example shows that pink noise has approximately equal power in octave bands.

Generate a single-channel signal of pink noise that is 44,100 samples in length. Set the random
number generator to the default settings for reproducible results.

pinkNoise = dsp.ColoredNoise(1,44.1e3,1);
rng default;
x = pinkNoise();

Set the sampling frequency to 44.1 kHz. Measure the power in octave bands beginning with 100-200
Hz and ending with 6.400-12.8 kHz. Display the results in a table.

beginfreq = 100;
endfreq = 200;
count = 1;
freqinterval = zeros(7,2);
Pwr = zeros(7,1);
while(endfreq<=44.1e3/2)
 freqinterval(count,:) = [beginfreq endfreq];
 Pwr(count) = bandpower(x,44.1e3,[beginfreq endfreq]);
 beginfreq = endfreq;
 endfreq = 2*endfreq;
 count = count+1;
end
Pwr = Pwr(:);
table(freqinterval,Pwr)

ans=7×2 table
 freqinterval Pwr
 _____________ _______

 100 200 0.17549
 200 400 0.20313
 400 800 0.2438
 800 1600 0.2503
 1600 3200 0.25233
 3200 6400 0.26828
 6400 12800 0.25211

The pink noise has roughly equal power in octave bands.

Rerun the preceding code with 'InverseFrequencyPower' equal to 0, which generates a white
noise signal. A white noise signal has a flat power spectral density, or equal power per unit frequency.
Set the random number generator to the default settings for reproducible results.

whiteNoise = dsp.ColoredNoise(0,44.1e3,1);
rng default;
x = whiteNoise();

Set the sampling frequency is 44.1 kHz. Measure the power in octave bands beginning with 100-200
Hz and ending with 6.400-12.8 kHz. Display the results in a table.

4 System Objects

4-306

beginfreq = 100;
endfreq = 200;
count = 1;
while(endfreq<=44.1e3/2)
 freqinterval(count,:) = [beginfreq endfreq];
 Pwr(count) = bandpower(x,44.1e3,[beginfreq endfreq]);
 beginfreq = endfreq;
 endfreq = 2*endfreq;
 count = count+1;
end
Pwr = Pwr(:);
table(freqinterval,Pwr)

ans=7×2 table
 freqinterval Pwr
 _____________ _________

 100 200 0.0031417
 200 400 0.0073833
 400 800 0.017421
 800 1600 0.035926
 1600 3200 0.071139
 3200 6400 0.15183
 6400 12800 0.28611

White noise has approximately equal power per unit frequency, so octave bands have an unequal
distribution of power. Because the width of an octave band increases with increasing frequency, the
power per octave band increases for white noise.

PSD of Pink Noise Realization

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Generate a pink noise signal 2048 samples in length. The sampling frequency is 1 Hz. Obtain an
estimate of the power spectral density using Welch's overlapped segment averaging.

cn = dsp.ColoredNoise('pink','SamplesPerFrame',2048);
x = cn();
Fs = 1;
[Pxx,F] = pwelch(x,hamming(128),[],[],Fs,'psd');

Construct the theoretical PSD of the pink noise process.

PSDPink = 1./F(2:end);

Display the Welch PSD estimate of the noise along with the theoretical PSD on a log-log plot. Plot the
frequency axis with a base-2 logarithmic scale to clearly show the octaves. Plot the PSD estimate in
dB, 10log10.

plot(log2(F(2:end)),10*log10(Pxx(2:end)))
hold on
plot(log2(F(2:end)),10*log10(PSDPink),'r','linewidth',2)
xlabel('log_2(Hz)')

 dsp.ColoredNoise

4-307

ylabel('dB')
title('Pink Noise')
grid on
legend('PSD estimate','Theoretical pink noise PSD')
hold off

Two-Channel Brownian Noise

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Generate two channels of Brownian noise by setting Color to 'brown' and NumChannels to 2.

cn = dsp.ColoredNoise('brown','SamplesPerFrame',2048,...
 'NumChannels',2);
x = cn();
subplot(2,1,1)
plot(x(:,1)); title('Channel 1'); axis tight;
subplot(2,1,2)
plot(x(:,2)); title('Channel 2'); axis tight;

4 System Objects

4-308

The sampling frequency is 1 Hz. Obtain Welch PSD estimates for both channels. The fourth argument
of pwelch, NFFT, which is the number of FFT points, is empty. Hence, NFFT is set to 256. For even
NFFT, The number of FFT points used to calculate the PSD estimate is (NFFT/2+1), which equals
129.

Fs = 1;
Pxx = zeros(129,size(x,2));
for nn = 1:size(x,2)
[Pxx(:,nn),F] = pwelch(x(:,nn),hamming(128),[],[],Fs,'psd');
end

Construct the theoretical PSD of a Brownian process. Plot the theoretical PSD along with both
realizations on a log-log plot. Use a base-2 logarithmic scale for the frequency axis and plot the power
spectral densities in dB.

PSDBrownian = 1./F(2:end).^2;
figure;
plot(log2(F(2:end)),10*log10(PSDBrownian),'k-.','linewidth',2);
hold on;
plot(log2(F(2:end)),10*log10(Pxx(2:end,:)));
xlabel('log_2(Hz)'); ylabel('dB');
grid on;
legend('Theoretical PSD','Channel 1', 'Channel 2');

 dsp.ColoredNoise

4-309

Add Pink Noise at 0 dB SNR

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

This example shows how to stream in an audio file and add pink noise at a 0 dB signal-to-noise ratio
(SNR). The example reads in frames of an audio file 1024 samples in length, measures the root mean
square (RMS) value of the audio frame, and adds pink noise with the same RMS value as the audio
frame.

Set up the System objects. Set 'SamplesPerFrame' for both the file reader and the colored noise
generator to 1024 samples. Set Color to 'pink' to generate pink noise with a 1/ | f | power spectral
density.

N = 1024;
afr = dsp.AudioFileReader('Filename','speech_dft.mp3',...
 'SamplesPerFrame',N);
adw = audioDeviceWriter('SampleRate',afr.SampleRate);
cn = dsp.ColoredNoise('pink','SamplesPerFrame',N);

4 System Objects

4-310

https://www.mathworks.com/products/matlab-online.html

Stream the audio file in 1024 samples at a time. Measure the signal RMS value for each frame,
generate a frame of pink noise equal in length, and scale the RMS value of the pink noise to match
the signal. Add the scaled noise to the signal and play the output.

while ~isDone(afr)
 audio = afr();
 speechRMS = rms(audio);
 noise = cn();
 noiseRMS = rms(noise);
 noise = noise*(speechRMS/noiseRMS);
 sigPlusNoise = audio+noise;
 adw(sigPlusNoise);
end
release(afr);
release(adw);

Averaged Power Spectrum of Pink Noise

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Generate two-channels of pink noise and compute the power spectrum based on a running average of
50 PSD estimates.

Set up the colored noise generator to generate two channels of pink noise with 1024 samples. Set up
the spectrum analyzer to compute modified periodograms using a Hamming window and 50%
overlap. Obtain a running average of the PSD using 50 spectral averages.

pinkNoise = dsp.ColoredNoise('pink',1024,2);
sa = dsp.SpectrumAnalyzer('SpectrumType','Power density', ...
 'OverlapPercent',50,'Window','Hamming', ...
 'SpectralAverages',50,'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','log','YLimits',[-50 30]);

Run the simulation for 30 seconds.

tic
while toc < 30
 pink = pinkNoise();
 sa(pink);
end

 dsp.ColoredNoise

4-311

More About
Colored Noise Processes

Many phenomena in diverse fields, such as hydrology and finance, produce time series with PSD
functions that follow a power law of the form

S(f) = L(f)
f α

where α is a real number in the interval [-2,2] and L(f) is a positive, slowly-varying or constant
function. Plotting the PSD of such processes on a log-log plot displays an approximate linear
relationship between the log frequency and log PSD with slope equal to -α

lnS(f) = − αln f + lnL(f) .

It is often convenient to plot the PSD in dB as a function of the frequency on a base-2 logarithmic
scale. The slope of the plot is then dB/octave. Rewriting the preceding equation, you obtain

10logS(f) = − 10α
ln(2)log2(f)

ln(10) + 10ln(L(f))
ln(10)

with the slope in dB/octave given by

4 System Objects

4-312

−10α
ln(2)log2(f)

ln(10)

If α > 0, S(f) goes to infinity as the frequency, f, approaches 0. Stochastic processes with PSDs of this
form exhibit long memory. Long-memory processes have autocorrelations that persist for a long time
as opposed to decaying exponentially like many common time-series models. If α<0, the process is
antipersistent and exhibits negative correlation between increments [1].

Special examples of 1
f α processes include:

• α = 0 — White noise, where L(f) is a constant proportional to the process variance.
• α = 1 — Pink, or flicker noise. Pink noise has equal energy per octave. See “Measure Pink Noise

Power in Octave Bands” on page 4-305 for a demonstration. The power spectral density of pink
noise decreases 3 dB per octave.

• α = 2 — brown noise, or Brownian motion. Brownian motion is a nonstationary process with
stationary increments. You can think of Brownian motion as the integral of a white noise process.
Even though Brownian motion is nonstationary, you can still define a generalized power spectrum,
which behaves like 1

f 2 . Accordingly, power in a brown noise decreases 6 dB per octave.

• α = −1 — blue noise. The power spectral density of blue noise increases 3 dB per octave.
• α = −2 — violet, or purple noise. The power spectral density of violet noise increases 6 dB per

octave. You can think of violet noise as the derivative of white noise process.

Algorithms
The figure shows the overall process of generating the colored noise.

The random stream generator produces a stream of white noise that is either Gaussian or uniform in
distribution. A coloring filter applied to the white noise generates colored noise with a power spectral
density (PSD) function given by:

S(f) = L(f)
f α

When α, the inverse frequency power, equals 0, no coloring filter is applied to the output of the
random stream generator. If the bounded option is enabled, the output is uniform white noise with
amplitude between +1 and −1. If the bounded output is not enabled, the output is a Gaussian white
noise and the values are not bounded between +1 and −1. If α is set to any other value, then a
coloring filter is applied to the output of the random stream generator. If the bounded output option is
enabled, a gain g is applied to the output of the coloring filter to ensure that the absolute maximum
output never exceeds 1.

For details on colored noise processes and how the value of α affects the PSD of the colored noise,
see “Colored Noise Processes” on page 4-312.

 dsp.ColoredNoise

4-313

When the inverse frequency power α is positive, the colored noise is generated using an auto
regressive (AR) model of order 63. The AR coefficients are:

a0 = 1,

ak = (k− 1− α
2)

ak− 1
k , k = 1, 2, …, 63

Pink and brown noises are special cases, which are generated from specially tuned SOS filters of
orders 12 and 10, respectively. These filters are optimized for better performance.

When the inverse frequency power α is negative, the colored noise is generated using a moving
average (MA) model of order 255. The MA coefficients are:

b0 = 1,

bk = k− 1 + α
2

bk− 1
k , k = 1, 2,⋯, 255

Purple noise is generated from a first order filter, B = [1 −1].

The coloring filters applied (except pink, brown, and purple) are detailed on pp. 820–822 in [2].

References
[1] Beran, J., Y. Feng, S. Ghosh, and R. Kulik, Long-Memory Processes: Probabilistic Properties and

Statistical Methods. NewYork: Springer, 2013.

[2] Kasdin, N.J. "Discrete Simulation of Colored Noise and Stochastic Processes and 1/fα Power Law
Noise Generation." Proceedings of the IEEE, Vol. 83, No. 5, 1995, pp. 802–827.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
randn

Blocks
Colored Noise

Introduced in R2014a

4 System Objects

4-314

dsp.ComplexBandpassDecimator
Package: dsp

Extract a frequency subband using a one-sided (complex) bandpass decimator

Description
The dsp.ComplexBandpassDecimator System object extracts a specific sub-band of frequencies
using a one-sided, multistage, complex bandpass decimator. The object determines the bandwidth of
interest using the specified CenterFrequency, DecimationFactor and Bandwidth values.

To extract a frequency subband using a complex bandpass decimator:

1 Create the dsp.ComplexBandpassDecimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
bpdecim = dsp.ComplexBandpassDecimator
bpdecim = dsp.ComplexBandpassDecimator(d)
bpdecim = dsp.ComplexBandpassDecimator(d,Fc)
bpdecim = dsp.ComplexBandpassDecimator(d,Fc,Fs)
bpdecim = dsp.ComplexBandpassDecimator(Name,Value)

Description

bpdecim = dsp.ComplexBandpassDecimator creates a System object that filters each channel of
the input over time using a one-sided, multistage, complex bandpass decimation filter. The object
determines the bandwidth of interest using the default center frequency, decimation factor, and
bandwidth values.

bpdecim = dsp.ComplexBandpassDecimator(d) creates a complex bandpass decimator object
with the DecimationFactor property set to d.

bpdecim = dsp.ComplexBandpassDecimator(d,Fc) creates a complex bandpass decimator
object with the DecimationFactor property set to d, and the CenterFrequency property set to
Fc.

bpdecim = dsp.ComplexBandpassDecimator(d,Fc,Fs) creates a complex bandpass decimator
object with the DecimationFactor property set to d, the CenterFrequency property set to Fc,
and the SampleRate property set to Fs.
Example: dsp.ComplexBandpassDecimator(48e3/1e3,2e3,48e3);

 dsp.ComplexBandpassDecimator

4-315

bpdecim = dsp.ComplexBandpassDecimator(Name,Value) creates a complex bandpass
decimator object with each specified property set to the specified value. Enclose each property name
in quotes. You can use this syntax with any previous input argument combinations.
Example: dsp.ComplexBandpassDecimator(48e3/1e3,2e3,48e3,'CenterFrequency',1e3);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

CenterFrequency — Center frequency in Hz
0 (default) | real scalar

Center frequency of the desired band in Hz, specified as a real, finite numeric scalar in the range [-
SampleRate/2, SampleRate/2].

Tunable: Yes
Data Types: single | double

Specification — Filter design parameters
'Decimation factor' (default) | 'Bandwidth' | 'Decimation factor and bandwidth'

Filter design parameters, specified as:

• 'Decimation factor' –– The object specifies the decimation factor through the Decimation
Factor property. The bandwidth of interest (BW) is computed using the following equation:

BW = Fs/D

where

• Fs –– Sample rate specified through SampleRate property.
• D –– Decimation factor.

• 'Bandwidth' –– The object specifies the bandwidth through the Bandwidth property. The
decimation factor (D) is computed using the following equation:

D = floor Fs
BW + TW

where

• Fs –– Sample rate specified through SampleRate property.
• BW –– Bandwidth of interest.
• TW –– Transition width specified through the TransitionWidth property.

• 'Decimation factor and bandwidth' –– The decimation factor and the bandwidth of interest
are specified through the DecimationFactor and Bandwidth properties.

4 System Objects

4-316

DecimationFactor — Decimation factor
2 (default) | positive integer

Factor by which to reduce the bandwidth of the input signal, specified as a positive integer. The frame
size (number of rows) of the input signal must be a multiple of the decimation factor.
Dependencies

This property applies when you set Specification to either 'Decimation factor' or
'Decimation factor and bandwidth'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandAttenuation — Stopband attenuation in dB
80 (default) | positive scalar

Stopband attenuation of the filter in dB, specified as finite positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TransitionWidth — Transition width in Hz
100 (default) | positive scalar

Transition width of the filter in Hz, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Bandwidth — Bandwidth (Hz)
5000 (default) | real positive scalar

Width of the frequency band of interest, specified as a real positive scalar in Hz.
Dependencies

This property applies when you set Specification to either 'Bandwidth' or 'Decimation
factor and bandwidth'.
Data Types: single | double

PassbandRipple — Passband ripple (dB)
1 (default) | positive scalar

Passband ripple of the filter, specified as a positive scalar in dB.
Dependencies

This property applies when you set Specification to either 'Bandwidth' or 'Decimation
factor and bandwidth'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MinimizeComplexCoefficients — Flag to minimize number of complex coefficients
true (default) | false

Flag to minimize the number of complex filter coefficients, specified as:

• true –– The first stage of the multistage filter is bandpass (complex coefficients) centered at the
specified center frequency. The first stage is followed by a mixing stage that heterodynes the
signal to DC. The remaining filter stages, all with real coefficients, follow.

 dsp.ComplexBandpassDecimator

4-317

• false –– The input signal is first passed through the different stages of the multistage filter. All
stages are bandpass (complex coefficients). The signal is then heterodyned to DC if
MixToBaseband is true, and the frequency offset resulting from the decimation is nonzero.

MixToBaseband — Flag to mix signal to baseband
true (default) | false

Flag to mix the signal to baseband, specified as:

• true –– The object heterodynes the filtered, decimated signal to DC. This mixing stage runs at the
output sample rate of the filter.

• false –– The object skips the mixing stage.

Dependencies

This property applies when you set MinimizeComplexCoefficients to false.

SampleRate — Input sample rate in Hz
44100 (default) | real positive scalar

Sampling rate of the input signal in Hz, specified as a real positive scalar.
Data Types: single | double

Usage

Syntax
y = bpdecim(x)

Description

y = bpdecim(x) filters the real or complex input signal, x, to produce the output, y. The output
contains the subband of frequencies specified by the System object properties. The System object
filters each channel of the input signal independently over time. The frame size (first dimension) of x
must be a multiple of the decimation factor.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. The number of rows in the input must be a multiple of
the decimation factor.
Data Types: single | double

Output Arguments

y — Filtered output
vector | matrix

Output of the complex bandpass decimator, returned as a vector or a matrix. The output contains the
subband of frequencies specified by the System object properties. The number of rows (frame size) in

4 System Objects

4-318

the output signal is 1/D times the number of rows in the input signal, where D is the decimation
factor. The number of channels (columns) does not change.

The data type of the output is same as the data type of the input. The output signal is always complex.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.ComplexBandpassDecimator
cost Implementation cost of the complex bandpass decimator
freqz Frequency response of the multirate multistage filter
info Information about filter System object
visualizeFilterStages Visualize filter stages

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Cost of Complex Bandpass Decimator

Compute the implementation cost of a complex bandpass decimator using the cost function.

Create a dsp.ComplexBandpassDecimator object. Set the DecimationFactor to 12, the
CenterFrequency to 5000 Hz, and the SampleRate to 44,100 Hz.

cbp = dsp.ComplexBandpassDecimator(12,5000,44100)

cbp =
 dsp.ComplexBandpassDecimator with properties:

 CenterFrequency: 5000
 Specification: 'Decimation factor'
 DecimationFactor: 12
 StopbandAttenuation: 80
 TransitionWidth: 100
 MinimizeComplexCoefficients: true
 SampleRate: 44100

Compute the implementation cost of cbp using the cost function.

c = cost(cbp)

 dsp.ComplexBandpassDecimator

4-319

c = struct with fields:
 NumCoefficients: 201
 NumStates: 379
 RealMultiplicationsPerInputSample: 44.3333
 RealAdditionsPerInputSample: 43.8333

Compute Frequency Response of Complex Bandpass Decimator

Compute the complex frequency response of a complex bandpass decimator using the freqz
function.

Create a dsp.ComplexBandpassDecimator object. Set the DecimationFactor to 12, the
CenterFrequency to 5000 Hz, and the SampleRate to 44100 Hz. Compute and display the
frequency response.

cbp = dsp.ComplexBandpassDecimator(12,5000,44100);
[h,f] = freqz(cbp);
plot(f,20*log10(abs(h)))
grid on
xlabel('Frequency (Hz)')
ylabel('h (dB)')

4 System Objects

4-320

Filter Signal Through Complex Bandpass Decimator

Filter an input signal through a complex bandpass decimator and visualize the filtered spectrum in a
spectrum analyzer.

Initialization

Create a dsp.ComplexBandpassDecimator System object™ with center frequency set to 2000 Hz,
bandwidth of interest set to 1000 Hz, and sample rate set to 48 kHz. The decimation factor is
computed as the ratio of the sample rate to the bandwidth of interest. The input to the decimator is a
sine wave with a frame length of 1200 samples with tones at 1625 Hz, 2000 Hz, and 2125 Hz. Create
a dsp.SpectrumAnalyzer scope to visualize the signal spectrum.

Fs = 48e3;
CF = 2000;
BW = 1000;
D = Fs/BW;
FrameLength = 1200;
bpdecim = dsp.ComplexBandpassDecimator(D,CF,Fs);

sa = dsp.SpectrumAnalyzer('SampleRate',Fs/D,...
 'YLimits',[-120 40],...
 'FrequencyOffset',CF);

tones = [1625 2000 2125];
sin = dsp.SineWave('SampleRate',Fs,'Frequency',tones,...
 'SamplesPerFrame',FrameLength);

Visualize Filter Stages

Using the visualizeFilterStages function, you can visualize the response of each individual filter
stage using FVTool.

visualizeFilterStages(bpdecim)

 dsp.ComplexBandpassDecimator

4-321

Display Filter info

The info function displays information about the bandpass decimator.

fprintf('%s',info(bpdecim))

Overall Decimation Factor : 48
Bandwidth : 1000 Hz
Number of Filters : 5
Real multiplications per Input Sample: 14.708333
Real additions per Input Sample : 13.833333
Number of Coefficients : 89
Filters:
 Filter 1:
 dsp.FIRDecimator - Decimation Factor : 2
 Filter 2:
 dsp.FIRDecimator - Decimation Factor : 2
 Filter 3:
 dsp.FIRDecimator - Decimation Factor : 2
 Filter 4:
 dsp.FIRDecimator - Decimation Factor : 3
 Filter 5:
 dsp.FIRDecimator - Decimation Factor : 2

4 System Objects

4-322

Stream In and Filter Signal

Construct a for-loop to run for 1000 iterations. In each iteration, stream in 1200 samples (one frame)
of the noisy sine wave and apply the complex bandpass decimator on each frame of the input signal.
Visualize the input and output spectrum in the spectrum analyzer, sa.

for index = 1:1000
 x = sum(sin(),2) + 1e-4*randn(FrameLength,1);
 z = bpdecim(x);
 sa(z);
end

The bandpass decimator with center frequency at 2000 Hz and a bandwidth of 1000 Hz passes the
three sine wave tones at 1625 Hz, 2000 Hz, and 2125 Hz.

Change the center frequency of the decimator to 2400 Hz and filter the signal.

release(bpdecim);
bpdecim.CenterFrequency = 2400

bpdecim =

 dsp.ComplexBandpassDecimator with properties:

 dsp.ComplexBandpassDecimator

4-323

 CenterFrequency: 2400
 Specification: 'Decimation factor'
 DecimationFactor: 48
 StopbandAttenuation: 80
 TransitionWidth: 100
 MinimizeComplexCoefficients: true
 SampleRate: 48000

Configure the spectrum analyzer to show the bandwidth of interest, [-1900, 2900] Hz.

release(sa)
sa.FrequencyOffset = 2400;

Stream in the data and filter the signal.

for index = 1:1000
 x = sum(sin(),2) + 1e-4 * randn(FrameLength,1);
 z = bpdecim(x);
 sa(z);
end

4 System Objects

4-324

The tones at 2000 Hz and 2125 Hz are passed through the decimator, while the tone at 1625 Hz is
filtered out.

Algorithms
The complex bandpass decimator is designed by applying a complex frequency shift transformation
on a lowpass prototype filter. The lowpass prototype in this case is a multirate, multistage finite
impulse response (FIR) filter. The desired frequency shift applies only to the first stage. Subsequent
stages scale the desired frequency shift by their respective cumulative decimation factors. For
details, see “Complex Bandpass Filter Design” and “Zoom FFT”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object also supports SIMD code generation using Intel AVX2 technology under these conditions:

 dsp.ComplexBandpassDecimator

4-325

• Input signal is complex-valued.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

See Also
Functions
cost | freqz | info | visualizeFilterStages

Blocks
Complex Bandpass Decimator

Topics
“IF Subsampling with Complex Multirate Filters”
“Complex Bandpass Filter Design”
“Zoom FFT”

Introduced in R2018a

4 System Objects

4-326

dsp.Convolver
Package: dsp

(To be removed) Convolution of two signals

Note dsp.Convolver will be removed in a future release. Use conv instead. For more information,
see “Compatibility Considerations”.

Description
The dsp.Convolver System object convolves the first dimension of an N-D input array, u, with the
first dimension of an N-D input array, v. You can convolve the inputs in the time domain or frequency
domain. In the time domain, the object convolves the first input with the second input. In the
frequency domain, the object multiplies the Fourier transforms of both the inputs, and computes the
inverse Fourier transform of the product. In this domain, depending on the input length, the object
can require fewer computations. For more information on the two computation methods, see
“Algorithms” on page 4-332.

To convolve two inputs:

1 Create the dsp.Convolver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
cnv = dsp.Convolver
cnv = dsp.Convolver(Name,Value)

Description

cnv = dsp.Convolver creates a convolution System object, cnv, to convolve two inputs in the time
domain or frequency domain.

cnv = dsp.Convolver(Name,Value) creates a convolution System object, cnv, with each
specified property set to the specified value. Enclose each property name in single quotes.
Example: cnv = dsp.Convolver('Method','Frequency Domain')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 dsp.Convolver

4-327

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Domain for computing convolutions
'Time Domain' (default) | 'Frequency Domain' | 'Fastest'

Domain in which the System object computes convolutions, specified as one of the following:

• 'Time Domain' –– Computes the convolutions in the time domain, which minimizes memory
usage. For more information, see “Time-Domain Computation” on page 4-332.

• 'Frequency Domain' –– Computes the convolutions in the frequency domain, which can require
fewer computations depending on the input length. For more information, see “Frequency-Domain
Computation” on page 4-333.

• 'Fastest' –– Computes the convolutions in the domain that minimizes the number of
computations.

Note Fixed-point signals are supported for the time domain only. To use the following fixed-point
properties, set Method to 'Time Domain'.

Fixed-Point Properties

FullPrecisionOverride — Full-precision override for fixed-point arithmetic
true (default) | false

Flag to use full-precision rules for fixed-point arithmetic, specified as one of the following:

• true –– The object computes all internal arithmetic and output data types using the full-precision
rules. These rules provide the most accurate fixed-point numerics. In this mode, other fixed-point
properties do not apply. No quantization occurs within the object. Bits are added, as needed, to
ensure that no roundoff or overflow occurs.

• false –– Fixed-point data types are controlled through individual fixed-point property settings.

For more information, see “Full Precision for Fixed-Point System Objects” and “Set System Object
Fixed-Point Properties”.

RoundingMethod — Rounding method
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Select the rounding mode for fixed-point operations.

Dependencies

This property applies when you set the FullprecisionOverride property to false and at least
one of the ProductDataType, AccumulatorDataType, and OutputDataType properties to any
option other than 'Full precision'.

OverflowAction — Overflow action
'Wrap' (default) | 'Saturate'

The overflow action for fixed-point operations, specified as one of the following:

• 'Wrap' –– The object wraps the result of its fixed-point operations.

4 System Objects

4-328

• 'Saturate' –– The object saturates the result of its fixed-point operations.

For more details on overflow actions, see overflow mode for fixed-point operations.

Dependencies

This property applies when you set the FullprecisionOverride property to false and at least
one of the ProductDataType, AccumulatorDataType, and OutputDataType properties to any
option other than 'Full precision'.

ProductDataType — Product output data type
'Full precision' (default) | 'Custom' | 'Same as first input'

Data type of the output of a product operation in the dsp.Convolver object, specified as one of the
following:

• 'Full precision' –– The object computes the product output data type using the full-precision
rules. These rules provide the most accurate fixed-point numerics. No quantization occurs. Bits
are added, as needed, to ensure that no roundoff or overflow occurs.

• 'Custom' –– The product output data type is specified as a custom numeric type through the
CustomProductDataType property. The rounding method and the overflow action are specified
through the RoundingMethod and OverflowAction properties.

• 'Same as first input' –– The object specifies the product output data type to be the same as
the first input data type.

For more information on the product output data type, see the “Fixed Point” on page 4-334 section.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default)

The product output data type, specified as an autosigned numeric type with a word length of 32 and a
fraction length of 30.

Dependencies

This property applies only when you set ProductDataType to 'Custom'.

AccumulatorDataType — Accumulator data type
'Full precision' (default) | 'Custom' | 'Same as first input' | 'Same as product'

Data type of the output of an accumulation operation in the dsp.Convolver object, specified as one
of the following:

• 'Full precision' –– The object computes the accumulator data type using the full precision
rules. These rules provide the most accurate fixed-point numerics. No quantization occurs. Bits
are added, as needed, to ensure that no roundoff or overflow occurs.

• 'Custom' –– The accumulator data type is specified as a custom numeric type through the
CustomAccumulatorDataType property. The rounding method and the overflow action are
specified through the RoundingMethod and the OverflowAction properties.

• 'Same as first input' –– The object specifies the accumulator data type to be the same as
the first input data type.

• 'Same as product' –– The object specifies the accumulator data type to be the same as the
product data type.

 dsp.Convolver

4-329

For more information on the accumulator data type, see the “Fixed Point” on page 4-334 section.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default)

The accumulator data type, specified as an auto signed numeric type with a word length of 32 and a
fraction length of 30.

Dependencies

This property applies only when you set AccumulatorDataType to 'Custom'.

OutputDataType — Output data type
'Same as accumulator' (default) | 'Custom' | 'Same as first input' | 'Same as
product'

Data type of the output of the dsp.Convolver object, specified as one of the following:

• 'Same as accumulator' –– The object specifies the output data type to be the same as the
accumulator data type. For more details on the accumulator data type, see the
“AccumulatorDataType” on page 4-0 property.

• 'Custom' –– The output data type is specified as a custom numeric type through the
CustomOutputDataType property. The rounding method and the overflow action are specified
through the RoundingMethod and the OverflowAction properties.

• 'Same as first input' –– The object specifies the output data type to be the same as the first
input data type.

• 'Same as product' –– The object specifies the output data type to be the same as the product
data type.

For more information on the output data type, see the “Fixed Point” on page 4-334 section.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,15) (default)

The output data type, specified as an autosigned numeric type with a word length of 16 and a fraction
length of 15.

Dependencies

This property applies only when you set OutputDataType to 'Custom'.

Usage

Syntax
cnvOut = cnv(input1, input2)

Description

cnvOut = cnv(input1, input2) convolves the two inputs, input1 and input2, along their first
dimensions, and returns the convolved output, cnvOut.

4 System Objects

4-330

Input Arguments

input1 — First data input
vector | matrix | N-D array

First data input, specified as a vector, matrix, or N-D array. If the input is a matrix or an array, all the
dimensions of both the inputs, except for the first dimension, must be the same.
Example: ones(10,3,2)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

input2 — Second data input
vector | matrix | N-D array

Second data input, specified as a vector, matrix, or N-D array. If the input is a matrix or an array, all
the dimensions of both the inputs, except for the first dimension, must be the same.
Example: randn(4,3,2)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Output Arguments

cnvOut — Convolved output
vector | matrix | N-D array

The convolved output of the two inputs, returned as a vector, matrix, or N-D array.

• When both inputs are N-D arrays, the size of their first dimension can differ, but the size of all
other dimensions must be equal. For example, when u is an Mu-by-N-by-P array, and v is an Mv-by-
N-by-P array, the output is an (Mu+Mv–1)-by-N-by-P array.

• When one input is a column vector and the other is an N-D array, the object independently
convolves the vector with the first dimension of the N-D input array. For example, when u is an Mu-
by-1 column vector and v is an Mv-by-N matrix, the output is an (Mu+Mv–1)-by-N matrix.

• When u and v are column vectors with lengths Mu and Mv, the object performs the vector
convolution. The output is an (Mu+Mv–1)-by-1 column vector.

When both the inputs are real, the output is real. When one or both inputs are complex, the output is
complex.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

 dsp.Convolver

4-331

reset Reset internal states of System object

Examples

Convolve Two Rectangular Sequences

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a dsp.Convolver object.

conv = dsp.Convolver

conv =
 dsp.Convolver with properties:

 Method: 'Time Domain'

 Show all properties

Convolve two rectangular sequences.

x = ones(10,1);
y = conv(x,x);

Plot the resulting convolved sequence, which is a triangular sequence.

plot(y)

More About
Convolution

The convolution of two signals is the integral that measures the amount of overlap of one signal as it
is shifted over another signal.

The convolution of two discrete time sequences, u[n] and v[n], is given by the following equation:

y(k) = ∑
n

u(n− k)v(k)

Algorithms
Time-Domain Computation

When you set the computation domain to time, the algorithm computes the convolution of the two
inputs in the time domain.

When the two inputs, u and v, are of size Mu-by-N and Mv-by-N respectively, the jth column of the
convolution output is given by the following equation:

4 System Objects

4-332

yi, j = ∑
k = 0

max(Mu, Mv)− 1
uk, jv i− k , j 0 ≤ i ≤ Mu + Mv− 2

Inputs u and v are zero when they are indexed outside their valid ranges.

When u is an Mu-by-1 column and v an Mv-by-N matrix, the output is an (Mu+Mv–1)-by-N matrix
whose jth column is computed using the following equation:

yi, j = ∑
k = 0

max(Mu, Mv)− 1
ukv i− k , j 0 ≤ i ≤ Mu + Mv− 2

When both the inputs are column vectors with lengths Mu and Mv, the object performs the vector
convolution given by the following equation:

yi = ∑
k = 0

max(Mu, Mv)− 1
ukv i− k 0 ≤ i ≤ Mu + Mv− 2

The output is an (Mu+Mv–1)-by-1 column vector.

Frequency-Domain Computation

When you set the computation domain to frequency, the algorithm computes the convolution in the
frequency domain.

In this domain, the algorithm computes the convolution sequence by taking the Fourier transform of
both the input signals, multiplying the Fourier transforms, and taking the inverse Fourier transform
of the product. In this domain, depending on the input length, the algorithm can require fewer
computations.

Compatibility Considerations
dsp.Convolver System object will be removed
Warns starting in R2021b

dsp.Convolver System object will be removed in a future release. Use the conv function instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the conv function.

 dsp.Convolver

4-333

Discouraged Usage Recommended Replacement
cv = dsp.Convolver;
x = ones(10,1);

yobj = cv(x,x);

If you are using a release prior to R2016b,
replace cv(x) with step(cv,x).

yfn = conv(x,x);

isequal(yobj,yfn)

ans =

 logical

 1

Run the code and plot the vectors yobj and yfn
using the plot function. Verify that the plots
match.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The following diagram shows the data types used within the dsp.Convolver System object for fixed-
point signals.

Fixed-point signals are supported for the time domain only.

The output of the multiplier is in the product output data type when the input is real. When the input
is complex, the result of the multiplication is in the accumulator data type. For details on the complex
multiplication performed, see “Multiplication Data Types”.

When one or both of the inputs are signed fixed-point signals, all internal object data types are signed
fixed point. The internal data types are unsigned fixed point only when both inputs are unsigned
fixed-point signals.

4 System Objects

4-334

See Also
Functions
conv

Blocks
Convolution

Introduced in R2012a

 dsp.Convolver

4-335

dsp.Counter
Package: dsp

(To be removed) Count up or down through specified range of numbers

Note dsp.Counter will be removed in a future release. Alternatively, you can create a variable in
MATLAB® and increment the variable by 1.

Description
The Counter object counts up or down through a specified range of numbers.

To count up or down through a specified range of numbers:

1 Create the dsp.Counter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
count = dsp.Counter
count = dsp.Counter(Name,Value)

Description

count = dsp.Counter returns a counter System object, count, that counts up when the input is
nonzero.

count = dsp.Counter(Name,Value) returns a counter System object, count, with each specified
property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Direction — Count up or down
Up (default) | Down

Specify the counter direction as Up or Down.

4 System Objects

4-336

Tunable: Yes

CountEventInputPort — Add input to specify a count event
true (default) | false

Set this property to true to enable a count event input for the internal counter. The internal counter
increments or decrements whenever the count event input satisfies the condition you specify in the
CountEventCondition property. When you set this property to false, the internal counter is free
running, that is, the counter increments or decrements on every call to the object algorithm.

CountEventCondition — Condition that increments, decrements, or resets internal counter
Non-zero (default) | Rising edge | Falling edge | Either edge

Specify the event at the count event input that increments or decrements the counter as Rising
edge, Falling edge, Either edge or Non-zero.

If you set the ResetInputPort and CountEventInputPort properties to true, the counter is
reset when the event you specify for the CountEventCondition occurs.

Dependencies

This property applies only when you set the CountEventInputPort property to true.

CounterSizeSource — Source of counter size data type
Property (default) | Input port

Specify the source of the counter size data type as Property or Input port.

CounterSize — Range of integer values to count through
Maximum (default) | 8 bits | 16 bits | 32 bits

Specify the range of integer values to count through before recycling to zero as 8 bits, 16 bits,
32 bits or Maximum.

MaximumCount — Counter's maximum value
255 (default) | 0 | positive integer

Specify the counter's maximum value as a numeric scalar value.

Tunable: Yes

Dependencies

This property applies only when you set the CounterSizeSource property to Property and the
CounterSize property to Maximum.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialCount — Counter initial value
0 (default) | 0 | positive integer

Specify the initial value for the counter.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 dsp.Counter

4-337

CountOutputPort — Output count
true (default) | false

Set this property to true to enable output of the internal count. The default is true. You cannot set
both CountOutputPort and HitOutputPort to false at the same time.

HitOutputPort — Output hit events
true (default) | false

Set this property to true to enable output of the hit events. You cannot set both CountOutputPort
and HitOutputPort to false at the same time.

HitValues — Values whose occurrence in count produce a true hit output
32 (default) | scalar integer | vector of integers

Specify an integer scalar or a vector of integers, whose occurrences in the count you want flagged as
a hit.

Dependencies

This property applies only when you set the HitOutputPort property to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ResetInputPort — Add input to enable internal counter reset
true (default) | false

When you set this property to true, specify a reset input to the object algorithm. When the reset
input receives the event you specify for the CountEventCondition property, the counter resets. If
you set the CountEventInputPort property to false, the counter resets whenever the reset input
is not zero.

SamplesPerFrame — Number of samples in each output frame
1 (default) | positive integer

Specify the number of samples in each output frame.

Dependencies

This property applies only when you set the CountEventInputPort property to false, indicating a
free-running counter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CountOutputDataType — Data type of count output
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32

Specify the data type of the count output, cnt, as double, single, int8, uint8, int16, uint16,
int32 or uint32.

Dependencies

This property applies when you set the CountOutputPort property to true.

4 System Objects

4-338

Usage

Syntax
[cnt,hit] = count(event,reset)
cnt = count(event,reset)
hit = count(event,reset)
[___] = count()
[___] = count(event)

Description

[cnt,hit] = count(event,reset) increments, decrements, or resets the internal counter as
specified by the values of the event and reset inputs. The output argument cnt denotes the present
value of the counter. A trigger event at the event input causes the counter to increment or
decrement. A trigger event at the reset input resets the counter to its initial state.

cnt = count(event,reset) returns the current value of the count when you set the
CountOutputPort property to true and the HitOutputPort property to false.

hit = count(event,reset) returns a Boolean value indicating whether the count has reached
any of the values specified by the HitValues property. This condition applies when you set the
HitOutputPort property to true and the CountOutputPort property to false.

[___] = count() increments or decrements the free-running internal counter when you set the
CountEventInputPort property to false and the ResetInputPort property to false.

[___] = count(event) increments or decrements the internal counter when the event input
matches the event you specify for the CountEventCondition property and you set the
ResetInputPort property to false.

Input Arguments

event — Event that causes counter to increment or decrement
scalar

Event that causes the counter to increment or decrement, specified as a scalar. The
CountEventCondition property specifies the event under which the counter value changes.

Dependencies

This input is valid only when CountEventInputPort is set to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

reset — Reset of internal counter
scalar

A trigger event at the reset input resets the counter to the initial state.

Dependencies

This input is valid only when ResetInputPort is set to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

 dsp.Counter

4-339

Output Arguments

cnt — Present value of counter
scalar | column vector

Current value of the count, returned as a scalar. The data type of this output is set by the
CountOutputDataType property. If CountEventInputPort is false, the number of elements in
this output vector is determined by the value you specify in the SamplesPerFrame property.

Dependencies

This output is enabled only when you set the CountOutputPort property to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

hit — Indicates if counter matches hit values
scalar | column vector

Boolean value indicating whether the count has reached any of the values specified by the
HitValues property. If CountEventInputPort is false, the number of elements in this output
vector is determined by the value you specify in the SamplesPerFrame property.

Dependencies

This output is enabled when you set the HitOutputPort property to true.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Count the Rising Edges

Note: If you are using R2016a or earlier, replace each call to the object with the equivalent step
syntax. For example, obj(x) becomes step(obj,x).

Use dsp.Counter System object to count at every rising edge of the input signal.

count = dsp.Counter('MaximumCount', 5, ...
 'CountOutputPort', true, ...
 'HitOutputPort', false, ...
 'ResetInputPort', false);

4 System Objects

4-340

sgnl = [0 1 0 1 0 1 0 1 0 1 0 1];
cnt = zeros(1,12);
for ii = 1:length(sgnl)
 cnt(ii) = count(sgnl(ii));
end
disp(cnt);

 0 1 1 2 2 3 3 4 4 5 5 0

Algorithms
This object implements the algorithm, inputs, and outputs described on the Counter block reference
page. The object properties correspond to the block parameters.

• The CountEventCondition object property does not have a free-running option. Set the
CountEventInputPort property to false to obtain the free-running option.

• The CounterSizeSource and CounterSize object properties correspond to the Counter size
block parameter.

• The CountOutputPort and HitOutputPort correspond to the Output block parameter.
• There is no object property that corresponds to the Hit data type block parameter. The output

type is logical in MATLAB. (This logical is different from the popup logical in the block. For the
object, logical corresponds to Boolean in the block.)

Compatibility Considerations
dsp.Counter System object will be removed
Warns starting in R2021b

dsp.Counter System object will be removed in a future release. Alternatively, you can create a
variable in MATLAB and increment the variable by 1.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Introduced in R2012a

 dsp.Counter

4-341

dsp.CoupledAllpassFilter
Package: dsp

Coupled allpass IIR filter

Description
The dsp.CoupledAllpassFilter object implements a coupled allpass filter structure composed of
two allpass filters connected in parallel. Each allpass branch can contain multiple sections. The
overall filter output is computed by adding the output of the two respective branches. An optional
second output can also be returned, which is power complementary to the first. For example, from
the frequency domain perspective, if the first output implements a lowpass filter, the second output
implements the power complementary highpass filter. For real signals, the power complementary
output is computed by subtracting the output of the second branch from the first.
dsp.CoupledAllpassFilter supports double- and single-precision floating point and allows you to
choose between different realization structures. This System object also supports complex
coefficients, multichannel variable length input, and tunable filter coefficient values.

To filter each channel of the input:

1 Create the dsp.CoupledAllpassFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
caf = dsp.CoupledAllpassFilter
caf = dsp.CoupledAllpassFilter(AllpassCoeffs1,AllpassCoeffs2)
caf = dsp.CoupledAllpassFilter(struc,AllpassCoeffs1,AllpassCoeffs2)
caf = dsp.CoupledAllpassFilter(Name,Value)

Description

caf = dsp.CoupledAllpassFilter returns a coupled allpass filter System object, caf, that filters
each channel of the input signal independently. The coupled allpass filter uses the default inner
structures and coefficients.

caf = dsp.CoupledAllpassFilter(AllpassCoeffs1,AllpassCoeffs2) returns a coupled
allpass filter System object, caf, with Structure set to 'Minimum multiplier',
AllpassCoefficients1 set to AllpassCoeffs1, and AllpassCoefficients2 set to
AllpassCoeffs2.

caf = dsp.CoupledAllpassFilter(struc,AllpassCoeffs1,AllpassCoeffs2) returns a
coupled allpass filter System object, caf, with Structure set to struc and the relevant coefficients
set to AllpassCoeffs1 and AllpassCoeffs2. struc can be 'Minimum multiplier' | 'Wave
Digital Filter' | 'Lattice'.

4 System Objects

4-342

caf = dsp.CoupledAllpassFilter(Name,Value) returns a Coupled allpass filter System object,
caf, with each property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Structure — Internal structure of allpass branches
'Minimum multiplier' (default) | 'Wave Digital Filter' | 'Lattice'

Specify the internal structure of allpass branches as one of 'Minimum multiplier', 'Wave
Digital Filter', or 'Lattice'. Each structure uses a different pair of coefficient values,
independently stored in the relevant object property.

AllpassCoefficients1 — Allpass polynomial coefficients of branch 1
[0 0.5] (default) | row vector | cell array

Specify the polynomial filter coefficients for the first allpass branch. This property can accept values
either in the form of a row vector (single-section configuration) or a cell array with as many cells as
filter sections.

Tunable: Yes

Dependencies

This property is applicable only if you set the Structure property to 'Minimum multiplier'.
Data Types: single | double

WDFCoefficients1 — Wave Digital Filter coefficients of branch 1
[0.5 0] (default) | row vector | cell array

Specify the Wave Digital Filter coefficients for the first allpass branch. This property can accept
values either in the form of a row vector (single-section configuration) or a cell array with as many
cells as filter sections.

Tunable: Yes

Dependencies

This property is applicable only if you set the Structure property to 'Wave Digital Filter'.
Data Types: single | double

LatticeCoefficients1 — Lattice coefficients of branch 1
[0.5 0] (default) | row vector | cell array

Specify the allpass lattice coefficients for the first allpass branch. This property can accept values
either in the form of a row vector (single-section configuration) or a cell array with as many cells as
filter sections.

 dsp.CoupledAllpassFilter

4-343

Tunable: Yes

Dependencies

This property is applicable only if you set the Structure property to 'Lattice'.
Data Types: single | double

Delay — Length in samples for branch 1
0 (default) | positive integer scalar

Integer number of the delay taps in the top branch, specified as a positive integer scalar.

Tunable: Yes

Dependencies

This property is applicable only if you set the PureDelayBranch property to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Gain1 — Independent Branch 1 Phase Gain
1 (default) | '–1' | '0+i' | '0–i'

Gain1 is the individual branch phase gain. This property can accept only values equal to '1', '–1',
'0+i', or '0–i'. This property is nontunable.
Data Types: char

AllpassCoefficients2 — Allpass polynomial coefficients of branch 2
{[]} (default) | row vector | cell array

Specify the polynomial filter coefficients for the second allpass branch. This property can accept
values either in the form of a row vector (single-section configuration) or a cell array with as many
cells as filter sections.

Tunable: Yes

Dependencies

This property is applicable only if you set the Structure property to 'Minimum multiplier'.
Data Types: single | double

WDFCoefficients2 — Wave Digital Filter coefficients of branch 2
{[]} (default) | row vector | cell array

Specify the Wave Digital Filter coefficients for the second allpass branch. This property can accept
values either in the form of a row vector (single-section configuration) or a cell array with as many
cells as filter sections.

Tunable: Yes

Dependencies

This property is applicable only if you set the Structure property to 'Wave Digital Filter'.
Data Types: single | double

4 System Objects

4-344

LatticeCoefficients2 — Lattice coefficients of branch 2
{[]} (default) | row vector | cell array

Specify the allpass lattice coefficients for the second allpass branch. This property can accept values
either in the form of a row vector (single-section configuration) or a cell array with as many cells as
filter sections.

Tunable: Yes

Dependencies

This property is applicable only if you set the Structure property to 'Lattice'.
Data Types: single | double

Gain2 — Independent Branch 2 Phase Gain
'1' (default) | '–1' | '0+1i' | '0–1i'

Specify the value of the independent phase gain applied to branch 2. This property can accept only
values equal to '1', '–1', '0+i', or '0–i'. This property is nontunable.
Data Types: char

Beta — Coupled phase gain
1 (default) | complex value with magnitude equal to 1

Specify the value of the phasor gain in complex conjugate form, in each of the two branches, and in
complex coefficient configuration. The absolute value of this property should be 1 and its default
value is 1.

Tunable: Yes

Dependencies

This property is applicable only when the selected Structure property supports complex
coefficients.
Data Types: single | double

PureDelayBranch — Replace allpass filter in first branch with pure delay
false (default) | true

If you set PureDelayBranch to true, the property holding the coefficients for the first allpass
branch is disabled and Delay becomes enabled. You can use this property to improve performance,
when one of the two allpass branches is known to be a pure delay (e.g. for halfband filter designs)
Data Types: logical

ComplexConjugateCoefficients — Allow inferring coefficients of second allpass branch as
complex conjugate of first
false (default) | true

When the input signal is real, this property triggers the use of an optimized structural realization.
This property enables providing complex coefficients for only the first branch. The coefficients for the
second branch are automatically inferred as complex conjugate values of the first branch coefficients

 dsp.CoupledAllpassFilter

4-345

Dependencies

This property is only enabled if the currently selected structure supports complex coefficients. Use it
only if the filter coefficients are actually complex.
Data Types: logical

Usage

Syntax
y = caf(x)
[y,ypc] = caf(x)

Description

y = caf(x) filters the input signal x to produce the output y. When x is a matrix, each column is
filtered independently as a separate channel over time.

[y,ypc] = caf(x) also returns ypc, the power complementary signal to the primary output y.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. This object also accepts variable-size inputs. Once the
object is locked, you can change the size of each input channel, but you cannot change the number of
channels.
Data Types: single | double

Output Arguments

y — Lowpass filtered output
vector | matrix

Lowpass filtered output, returned as a vector or a matrix. The size and data type of the output signal
matches that of the input signal.
Data Types: double | single

ypc — Highpass filtered output
vector | matrix

Power complimentary highpass filtered output, returned as a vector or a matrix. The size and data
type of the output signal matches that of the input signal.
Data Types: double | single

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

4 System Objects

4-346

Specific to dsp.CoupledAllpassFilter
fvtool Visualize frequency response of coupled allpass filter
getBranches Return internal allpass branches
freqz Frequency response of discrete-time filter System object
impz Impulse response of discrete-time filter System object
info Information about filter System object
coeffs Returns the filter System object coefficients in a structure
cost Estimate cost of implementing filter System object
grpdelay Group delay response of discrete-time filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Allpass Realization of a Butterworth Lowpass Filter

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Realize a Butterworth lowpass filter of order 3. Use a coupled allpass structure with inner minimum
multiplier structure.

Fs = 48000; % in Hz
Fc = 12000; % in Hz
frameLength = 1024;
[b, a] = butter(3,2*Fc/Fs);
AExp = [freqz(b,a,frameLength/2); NaN];
[c1, c2] = tf2ca(b,a);
caf = dsp.CoupledAllpassFilter(c1(2:end),c2(2:end));
tfe = dsp.TransferFunctionEstimator('FrequencyRange', 'onesided',...
 'SpectralAverages', 2);
aplot = dsp.ArrayPlot('PlotType', 'Line',...
 'YLimits', [-40 5],...
 'YLabel', 'Magnitude (dB)',...
 'SampleIncrement', Fs/frameLength,...
 'XLabel', 'Frequency (Hz)',...
 'Title', 'Magnitude Response',...
 'ShowLegend', true,'ChannelNames',{'Actual','Expected'});
Niter = 200;
for k = 1:Niter
 in = randn(frameLength,1);
 out = caf(in);
 A = tfe(in,out);
 aplot(db([A,AExp]));
end

 dsp.CoupledAllpassFilter

4-347

Allpass Realization of an Elliptic Highpass Filter

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Remove a low-frequency sinusoid using an elliptic highpass filter design implemented through a
coupled allpass structure.

Initialize

Fs = 1000;
f1 = 50; f2 = 100;
Fpass = 70; Apass = 1;
Fstop = 60; Astop = 80;
filtSpecs = fdesign.highpass(Fstop,Fpass,Astop,Apass,Fs);
hpSpec = design(filtSpecs,'ellip','FilterStructure','cascadeallpass',...
 'SystemObject',true);
frameLength = 1000;
nFrames = 100;
sine = dsp.SineWave('Frequency',[f1,f2],'SampleRate',Fs,...
 'SamplesPerFrame',frameLength); % Input composed of two sinusoids.
sa = dsp.SpectrumAnalyzer('SampleRate',Fs,'YLimits',[-150 30],...
 'PlotAsTwoSidedSpectrum',false,'ShowLegend',true,...
 'FrequencyResolutionMethod', 'WindowLength','WindowLength',1000,...
 'FFTLengthSource', 'Property','FFTLength', 1000,...

4 System Objects

4-348

 'Title','Original (Channel 1) Filtered (Channel 2)',...
 'ChannelNames',{'Original','Filtered'});

Simulate

for k = 1:nFrames
 original = sum(sine(),2); % Add the two sinusoids together
 filtered = hpSpec(original);
 sa([original,filtered]);
end

View Power Complementary Output of Coupled Allpass Filter

Design a Butterworth lowpass filter of order 3. Use a coupled allpass structure with inner minimum
multiplier structure.

Fs = 48000; % in Hz
Fc = 12000; % in Hz
frameLength = 1024;
[b,a] = butter(3,2*Fc/Fs);
AExp = [freqz(b,a,frameLength/2); NaN];
[c1,c2] = tf2ca(b,a);
caf = dsp.CoupledAllpassFilter(c1(2:end),c2(2:end));

 dsp.CoupledAllpassFilter

4-349

Using the 'SubbandView' option of the dsp.CoupledAllpassFilter, you can visualize the
lowpass filter output, the power complementary highpass filter output, or both using the fvtool.

To view the lowpass filter output, set 'SubbandView' to 1.

fvtool(caf,'SubbandView',1,'Fs',Fs)

To view the highpass filter output, set 'SubbandView' to 2.

fvtool(caf,'SubbandView',2,'Fs',Fs)

4 System Objects

4-350

To view both the outputs, set 'SubbandView' to 'all', [1 2] or [1;2].

fvtool(caf,'SubbandView','all','Fs',Fs);

 dsp.CoupledAllpassFilter

4-351

Algorithms
The following three figures summarize the main structures supported by
dsp.CoupledAllpassFilter.

• Minimum Multiplier and WDF

• Lattice

4 System Objects

4-352

• Lattice with Complex Conjugate Coefficients

References
[1] Regalia, Philip A., Mitra, Sanjit K., and P.P Vaidyanathan “ The Digital All-Pass Filter: A Versatile

Signal Processing Building Block.” Proceedings of the IEEE 1988, Vol. 76, No. 1, pp. 19–37.

[2] Mitra, Sanjit K., and James F. Kaiser, "Handbook for Digital Signal Processing" New York: John
Wiley & Sons, 1993.

See Also
Functions
fvtool | getBranches | freqz | impz | info | coeffs | cost | grpdelay | allpass2wdf

Objects
dsp.AllpassFilter | dsp.BiquadFilter | dsp.IIRFilter

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2013b

 dsp.CoupledAllpassFilter

4-353

dsp.CrossSpectrumEstimator
Package: dsp

Estimate cross-spectral density

Description
The dsp.CrossSpectrumEstimator System object computes the cross-spectrum density of a
signal, using the Welch's averaged periodogram method.

To implement the cross-spectrum estimation object:

1 Create the dsp.CrossSpectrumEstimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
cse = dsp.CrossSpectrumEstimator
cse = dsp.CrossSpectrumEstimator(Name,Value)

Description

cse = dsp.CrossSpectrumEstimator returns a System object, cse, that computes the cross-
power spectrum of real or complex signals using the periodogram method and Welch’s averaged,
modified periodogram method.

cse = dsp.CrossSpectrumEstimator(Name,Value) returns a
dsp.CrossSpectrumEstimator System object, cse, with each specified property name set to the
specified value. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

FFTLengthSource — Source of FFT length value
'Auto' (default) | 'Property'

4 System Objects

4-354

Specify the source of the FFT length value as either 'Auto' or 'Property'. If you set this property
to 'Auto', the cross-spectrum estimator sets the FFT length to the input frame size. If you set this
property to 'Property', then specify the number of FFT points using the FFTLength property.

FFTLength — FFT Length
128 (default) | positive integer

Specify the length of the FFT that the cross-spectrum estimator uses to compute cross-spectral
estimates as a positive, integer scalar.

Dependencies

This property applies when you set the FFTLengthSource property to 'Property'.
Data Types: double

Window — Window function
'Hann' (default) | 'Rectangular' | 'Chebyshev' | 'Flat Top' | 'Hamming' | 'Kaiser'

Specify a window function for the cross-spectrum estimator as one of 'Rectangular',
'Chebyshev', 'Flat Top', 'Hamming', 'Hann', or 'Kaiser'.

SidelobeAttenuation — Side lobe attenuation of window
60 (default) | positive scalar

Specify the side lobe attenuation of the window as a real, positive scalar, in decibels (dB).

Dependencies

This property applies when you set the Window property to 'Chebyshev' or 'Kaiser'.
Data Types: double

FrequencyRange — Frequency range of the cross-spectrum estimate
'Twosided' (default) | 'onesided' | 'centered'

Specify the frequency range of the cross-spectrum estimator as one of 'twosided', 'onesided', or
'centered'.

If you set the FrequencyRange to 'onesided', the cross-spectrum estimator computes the one-
sided spectrum of real input signals, x and y. If the FFT length, NFFT, is even, the length of the cross-
spectral estimate is NFFT/2+1 and is computed over the interval [0, SampleRate/2]. If NFFT is
odd, the length of the cross-spectrum estimate is equal to (NFFT+1)/2, and the interval is [0,
SampleRate/2].

If you set the FrequencyRange to 'twosided', the cross-spectrum estimator computes the two-
sided spectrum of complex or real input signals, x and y. The length of the cross-spectrum estimate is
equal to NFFT. This value is computed over [0, SampleRate].

If you set the FrequencyRange to 'centered', the cross-spectrum estimator computes the
centered two-sided spectrum of complex or real input signals, x and y. The length of the cross-
spectrum estimate is equal to NFFT, and the estimate is computed between [-SampleRate/2,
SampleRate/2] and (-SampleRate/2, SampleRate/2) for even and odd lengths, respectively.

AveragingMethod — Averaging method
'Running' (default) | 'Exponential'

 dsp.CrossSpectrumEstimator

4-355

Specify the averaging method as 'Running' or 'Exponential'. In the running averaging method,
the object computes an equally weighted average of a specified number of spectrum estimates
defined by the SpectralAverages property. In the exponential method, the object computes the
average over samples weighted by an exponentially decaying forgetting factor.

SpectralAverages — Number of spectral averages
8 (default) | positive integer

Specify the number of spectral averages as a positive, integer scalar. The object computes the current
cross-spectral estimate by averaging the last N estimates. N is the number of spectral averages
defined in the SpectralAverages property.
Dependencies

This property applies when you set AveragingMethod to 'Running'.
Data Types: double

ForgettingFactor — Forgetting factor
0.9 (default) | scalar in the range (0,1]

Specify the exponential weighting forgetting factor as a scalar value greater than zero and smaller
than or equal to one.

Tunable: Yes
Dependencies

This property applies when you set AveragingMethod to 'Exponential'.
Data Types: single | double

SampleRate — Sample rate of input
1 (default) | positive scalar

Specify the sample rate of the input, in hertz, as a finite numeric scalar. The sample rate is the rate at
which the signal is sampled in time.
Data Types: single | double

Usage

Syntax
pxy = cse(x,y)

Description

pxy = cse(x,y) computes the cross power spectrum density, pxy, of the input signals, x and y.

Input Arguments

x — First data input
vector | matrix

First data input, specified as a vector or a matrix. The inputs, x and y must have the same size and
data type.

4 System Objects

4-356

Data Types: single | double

y — Second data input
vector | matrix

Second data input, specified as a vector or a matrix. The inputs, x and y must have the same size and
data type.
Data Types: single | double

Output Arguments

pxy — Cross-power spectrum density output
vector | matrix

Cross-power spectrum density output, returned as a vector or a matrix. The output has the same size
and data type as the input signals.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.CrossSpectrumEstimator
getFrequencyVector Vector of frequencies at which estimation is done
getRBW Resolution bandwidth of spectrum

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Cross-Power Spectrum of Two Noisy Sine Waves

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Generate two sine waves.

sin1 = dsp.SineWave('Frequency',200, 'SampleRate', 1000);
sin1.SamplesPerFrame = 1000;
sin2 = dsp.SineWave('Frequency',100, 'SampleRate', 1000);
sin2.SamplesPerFrame = 1000;

Use the dsp.CrossSpectrumEstimator System object™ to compute the cross-spectrum of the
signals. Also, use the dsp.ArrayPlot object to display the spectra.

 dsp.CrossSpectrumEstimator

4-357

cse = dsp.CrossSpectrumEstimator('SampleRate', sin1.SampleRate,...
 'FrequencyRange','centered');
aplot = dsp.ArrayPlot('PlotType','Line','XOffset',-500,'YLimits',...
 [-150 -60],'YLabel','Power Spectrum Density (Watts/Hz)',...
 'XLabel','Frequency (Hz)',...
 'Title','Cross Power Spectrum of Two Signals');

Add random noise to the sine waves. Stream in the data, and plot the cross-power spectrum of the
two signals.

for ii = 1:10
x = sin1() + 0.05*randn(1000,1);
y = sin2() + 0.05*randn(1000,1);
Pxy = cse(x, y);
aplot(20*log10(abs(Pxy)));
end

Algorithms
Welch's Method of Averaged Modified Periodograms

Give two signal inputs, x and y:

1 Multiply the inputs by the window and scale the result by the window power.
2 Compute FFT of the signals, X and Y, and multiply X with conj(Y) using Z = X.*conj(Y).

4 System Objects

4-358

3 Compute the current cross power spectrum estimate by taking the moving average of the last N
number of Z's and scaling the answer by the sample rate. For details on the moving average
methods, see “Averaging Method” on page 4-1321.

For further information on the algorithms, refer to the “Algorithms” on page 2-1245 section in
Spectrum Analyzer.

References
[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling. Hoboken, NJ: John Wiley &

Sons, 1996.

[2] Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ:
Prentice Hall, 1999.

[3] Stoica, Petre, and Randolph L. Moses. Spectral Analysis of Signals. Englewood Cliffs, NJ: Prentice
Hall, 2005.

[4] Welch, P. D. ''The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method
Based on Time Averaging Over Short Modified Periodograms.'' IEEE Transactions on Audio
and Electroacoustics. Vol. 15, No. 2, June 1967, pp. 70–73.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Functions
getFrequencyVector | getRBW

Objects
dsp.SpectrumAnalyzer | dsp.TransferFunctionEstimator | dsp.SpectrumEstimator

Blocks
Cross Spectrum Estimator

Introduced in R2013b

 dsp.CrossSpectrumEstimator

4-359

dsp.Crosscorrelator
Package: dsp

(To be removed) Cross-correlation of two inputs

Note dsp.Crosscorrelator will be removed in a future release. Use xcorr instead. For more
information, see “Compatibility Considerations”.

Description
The dsp.Crosscorrelator System object computes the cross-correlation of two N-D input arrays
along the first dimension. The computation can be done in the time domain or frequency domain. You
can specify the domain through the “Method” on page 4-0 property. In the time domain, the object
convolves the first input signal, u, with the time-reversed complex conjugate of the second input
signal, v. To compute the cross-correlation in the frequency domain, the object:

1 Takes the Fourier transform of both input signals, resulting in U and V.
2 Multiplies U and V*, where * denotes the complex conjugate.
3 Computes the inverse Fourier transform of the product.

If you set Method to 'Fastest', the object chooses the domain that minimizes the number of
computations. For information on these computation methods, see “Algorithms” on page 4-366.

To obtain the cross-correlation for two discrete-time deterministic inputs:

1 Create the dsp.Crosscorrelator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
xcorr = dsp.Crosscorrelator
xcorr = dsp.Crosscorrelator(Name,Value)

Description

xcorr = dsp.Crosscorrelator returns a cross-correlator object, xcorr, that computes the
cross-correlation of two inputs in the time domain or frequency domain.

xcorr = dsp.Crosscorrelator(Name,Value) returns a cross-correlator object with each
specified property set to the specified value. Enclose each property name in single quotes.

4 System Objects

4-360

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Domain for computing correlations
'Time Domain' (default) | 'Frequency Domain' | 'Fastest'

Domain in which the System object computes the correlation, specified as one of the following:

• 'Time Domain' –– Computes the cross-correlation in the time domain, which minimizes the
memory usage.

• 'Frequency Domain' –– Computes the cross-correlation in the frequency domain. For more
information, see “Algorithms” on page 4-366.

• 'Fastest' –– Computes the cross-correlation in the domain that minimizes the number of
computations.

To cross-correlate fixed-point signals, set this property to 'Time Domain'.

Fixed-Point Properties

Note Fixed-point signals are supported for the time domain only. To use these properties, set Method
to 'Time Domain'.

FullPrecisionOverride — Full-precision override for fixed-point arithmetic
true (default) | false

Flag to use full-precision rules for fixed-point arithmetic, specified as one of the following:

• true –– The object computes all internal arithmetic and output data types using the full-precision
rules. These rules provide the most accurate fixed-point numerics. In this mode, other fixed-point
properties do not apply. No quantization occurs within the object. Bits are added, as needed, to
ensure that no roundoff or overflow occurs.

• false –– Fixed-point data types are controlled through individual fixed-point property settings.

For more information, see “Full Precision for Fixed-Point System Objects” and “Set System Object
Fixed-Point Properties”.

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Rounding method for fixed-point operations. For more details, see rounding mode.

Dependencies

This property is not visible and has no effect on the numerical results when the following conditions
are met:

 dsp.Crosscorrelator

4-361

• FullPrecisionOverride set to true.
• FullPrecisionOverride set to false, OutputDataType set to 'Same as accumulator',

ProductDataType set to 'Full precision', and AccumulatorDataType set to 'Full
precision'

Under these conditions, the object operates in full precision mode.

In addition, if Method is set to either 'Frequency Domain' or 'Fastest', the RoundingMethod
property does not apply.

OverflowAction — Overflow action for fixed-point operations
'Wrap' (default) | 'Saturate'

Overflow action for fixed-point operations, specified as one of the following:

• 'Wrap' –– The object wraps the result of its fixed-point operations.
• 'Saturate' –– The object saturates the result of its fixed-point operations.

For more details on overflow actions, see overflow mode for fixed-point operations.
Dependencies

This property is not visible and has no effect on the numerical results when the following conditions
are met:

• FullPrecisionOverride set to true.
• FullPrecisionOverride set to false, OutputDataType set to 'Same as accumulator',

ProductDataType set to 'Full precision', and AccumulatorDataType set to 'Full
precision'

Under these conditions, the object operates in full precision mode.

In addition, if Method is set to either 'Frequency Domain' or 'Fastest', the OverflowAction
property does not apply.

ProductDataType — Data type of product output
'Full precision' (default) | 'Custom' | 'Same as first input'

Data type of the product output in this object, specified as one of the following:

• 'Full precision' –– The product output data type has full precision.
• 'Same as first input' –– The object specifies the product output data type to be the same as

that of the first input data type.
• 'Custom' –– The product output data type is specified as a custom numeric type through the

“CustomProductDataType” on page 4-0 property.

For more information on the product output data type, see “Multiplication Data Types” and the “Fixed
Point” on page 4-368 section.
Dependencies

This property applies when you set FullPrecisionOverride to false.

CustomProductDataType — Word and fraction lengths of product data type
numerictype([],32,30) (default)

4 System Objects

4-362

Word and fraction lengths of the product data type, specified as an autosigned numeric type with a
word length of 32 and a fraction length of 30.

Dependencies

This property applies only when you set FullPrecisionOverride to false and “ProductDataType”
on page 4-0 to 'Custom'.

AccumulatorDataType — Data type of accumulation operation
'Full precision' (default) | 'Same as first input' | 'Same as product' | 'Custom'

Data type of an accumulation operation in this object, specified as one of the following:

• 'Full precision' –– The accumulation operation has full precision.
• 'Same as product' –– The object specifies the accumulator data type to be the same as that of

the product output data type.
• 'Same as first input' –– The object specifies the accumulator data type to be the same as

that of the first input data type.
• 'Custom' –– The accumulator data type is specified as a custom numeric type through the

“CustomAccumulatorDataType” on page 4-0 property.

For more information on the accumulator data type this object uses, see the “Fixed Point” on page 4-
368 section.

Dependencies

This property applies when you set FullPrecisionOverride to false.

CustomAccumulatorDataType — Word and fraction lengths of accumulator data type
numerictype([],32,30) (default)

Word and fraction lengths of the accumulator data type, specified as an autosigned numeric type with
a word length of 32 and a fraction length of 30.

Dependencies

This property applies only when you set FullPrecisionOverride to false and
“AccumulatorDataType” on page 4-0 to 'Custom'.

OutputDataType — Data type of object output
'Same as accumulator' (default) | 'Same as first input' | 'Same as product' |
'Custom'

Data type of the object output, specified as one of the following:

• 'Same as accumulator' –– The output data type is the same as that of the accumulator output
data type.

• 'Same as first input' –– The output data type is the same as that of the first input data type.
• 'Same as product' –– The output data type is the same as that of the product output data type.
• 'Custom' –– The output data type is specified as a custom numeric type through the

“CustomOutputDataType” on page 4-0 property.

For more information on the output data type this object uses, see the “Fixed Point” on page 4-368
section.

 dsp.Crosscorrelator

4-363

Dependencies

This property applies when you set FullPrecisionOverride to false.

CustomOutputDataType — Word and fraction lengths of output data type
numerictype([],16,15) (default)

Word and fraction lengths of the output data type, specified as an autosigned numeric type with a
word length of 16 and a fraction length of 15.

Dependencies

This property applies only when you set FullPrecisionOverride to false and “OutputDataType”
on page 4-0 to 'Custom'.

Usage

Syntax
y = xcorr(u,v)

Description

y = xcorr(u,v) computes the cross-correlation of the two input signals, u and v.

Input Arguments

u — First data input signal
vector | matrix | N-D array

First data input signal, specified as a vector, matrix, or an N-D array. The object accepts real-valued
or complex-valued multichannel and multidimensional inputs. The input can be a fixed-point signal
when you set the Method property to 'Time Domain'. When one or both of the input signals are
complex, the output signal is also complex. Both data inputs must have the same data type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

v — Second data input signal
scalar | column vector | matrix

Second data input signal, specified as a vector, matrix, or an N-D array. The object accepts real-
valued or complex-valued multichannel and multidimensional inputs. The input can be a fixed-point
signal when you set the Method property to 'Time Domain'. When one or both of the input signals
are complex, the output signal is also complex. Both data inputs must have the same data type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — Cross-correlated output
vector | matrix | N-D array

Cross-correlated output of the two input signals.

4 System Objects

4-364

When the inputs are N-D arrays, the object outputs an N-D array. All the dimensions of the output
array, except for the first dimension, match the input array. For example:

• When the inputs u and v have dimensions Mu-by-N-by-P and Mv-by-N-by-P, respectively, the object
outputs an (Mu + Mv – 1)-by-N-by-P array.

• When the inputs u and v have the dimensions Mu-by-N and Mv-by-N, the object outputs an (Mu +
Mv – 1)-by-N matrix.

If one input is a column vector and the other input is an N-D array, the object computes the cross-
correlation of the vector with each column in the N-D array. For example:

• When the input u is an Mu-by-1 column vector and v is an Mv-by-N matrix, the object outputs an
(Mu + Mv – 1)-by-N matrix.

• Similarly, when u and v are column vectors with lengths Mu and Mv, respectively, the object
performs the vector cross-correlation.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Cross-Correlation of Input Noise and Delayed Version

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Compute the cross-correlation of a noisy input signal with its delayed version. The peak of the
correlation output occurs at the lag, which corresponds to the delay between the signals.

Use randn to create the white Gaussian noisy input, x. Create a delayed version of this input, x1,
using the dsp.Delay object.

S = rng('default');
x = randn(100,1);
delay = dsp.Delay(10);
x1 = delay(x);

 dsp.Crosscorrelator

4-365

Compute the cross-correlation between the two inputs. Plot the correlation output with respect to the
lag between the inputs.

xcorr = dsp.Crosscorrelator;
y = xcorr(x1,x);
lags = 0:99;
stem(lags,y(100:end),'markerfacecolor',[0 0 1])
axis([0 99 -125 125])
xlabel('Lags')
title('Cross-Correlation of Input Noise and Delayed Version')

The correlation sequence peaks when the lag is 10, indicating that the correct delay between the two
signals is 10 samples.

More About
Cross-Correlation

Cross-correlation is the measure of similarity of two discrete-time sequences as a function of the lag
of one relative to the other.

For two length-N deterministic inputs or realizations of jointly wide-sense stationary (WSS) random
processes, x and y, the cross-correlation is computed using the following relationship:

rxy(h) =
∑

n = 0

N − h− 1
x(n + h)y*(n) 0 ≤ h ≤ N − 1

ryx* (h) −(N − 1) ≤ h ≤ 0

where h is the lag and * denotes the complex conjugate. If the inputs are realizations of jointly WSS
stationary random processes, rxy(h) is an unnormalized estimate of the theoretical cross-correlation:

ρxy(h) = E x(n + h)y*(n)

where E{ } is the expectation operator.

Algorithms
Time-Domain Computation

When you set the computation domain to time, the algorithm computes the cross-correlation of two
signals in the time domain. The input signals can be fixed-point signals in this domain.

Correlate Two 2-D Arrays

When the inputs are two 2-D arrays, the jth column of the output, yuv, has these elements:

yuv(i, j) = ∑
k = 0

max(Mu, Mv)− 1
uk, j* v(k + i), j 0 ≤ i < Mv

yuv(i, j) = yvu(− i, j)* −Mu < i < 0

where:

4 System Objects

4-366

• * denotes the complex conjugate.
• u is an Mu-by-N input matrix.
• v is an Mv-by-N input matrix.
• yu,v is an (Mu + Mv – 1)-by-N matrix.

Inputs u and v are zero when indexed outside their valid ranges.

Correlate a Column Vector with a 2-D Array

When one input is a column vector and the other input is a 2-D array, the algorithm independently
cross-correlates the input vector with each column of the 2-D array. The jth column of the output, yu,v,
has these elements:

yuv(i, j) = ∑
k = 0

max(Mu, Mv)− 1
uk*v(k + i), j 0 ≤ i < Mv

yuv(i, j) = yvu(− i, j)* −Mu < i < 0

where:

• * denotes the complex conjugate.
• u is an Mu-by-1 column vector.
• v is an Mv-by-N matrix.
• yuv is an (Mu + Mv – 1)-by-N matrix.

Inputs u and v are zero when indexed outside their valid ranges.

Correlate Two Column Vectors

When the inputs are two column vectors, the jth column of the output, yuv, has these elements:

yuv(i) = ∑
k = 0

max(Mu, Mv)− 1
uk*v(k + i) 0 ≤ i < Mv

yuv(i) = yvu(− i)* −Mu < i < 0

where:

• * denotes the complex conjugate.
• u is an Mu-by-1 column vector.
• v is an Mv-by-1 column vector.
• yuv is an (Mu + Mv – 1)-by-1 column vector.

Inputs u and v are zero when indexed outside their valid ranges.

Frequency-Domain Computation

When you set the computation domain to frequency, the algorithm computes the cross-correlation in
the frequency domain.

To compute the cross-correlation, the algorithm:

 dsp.Crosscorrelator

4-367

1 Takes the Fourier transform of both input signals, U and V.
2 Multiplies U and V*, where * denotes the complex conjugate.
3 Computes the inverse Fourier transform of the product.

In this domain, depending on the input length, the algorithm can require fewer computations.

Compatibility Considerations
dsp.Crosscorrelator System object will be removed
Warns starting in R2021b

dsp.Crosscorrelator System object will be removed in a future release. Use the xcorr function
instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the xcorr function.

Discouraged Usage Recommended Replacement
xcObj = dsp.Crosscorrelator;
t = 0:0.001:1;
x1 = sin(2*pi*2*t) + 0.05*sin(2*pi*50*t);
x2 = sin(2*pi*2*t);
% computes cross-correlation of x1 and x2
y = xcObj(x1',x2');
figure;
plot(t,x1,'b',t,x2,'g');
legend('Input signal 1', 'Input signal 2')
figure;
plot(y);
title('Correlated output')

If you are using a release prior to R2016b,
replace xcObj(x) with step(xcObj,x).

[yfn,lags] = xcorr(x1',x2');
figure;
plot(yfn)

Plot with respect to the lags.

figure;
plot(lags,yfn)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The diagram shows the data types the dsp.Crosscorrelator object uses for fixed-point signals
(time domain only).

4 System Objects

4-368

You can set the product output, accumulator, and output data types using the corresponding fixed-
point properties of the object.

When the input is real, the output of the multiplier is in the product output data type. When the input
is complex, the output of the multiplier is in the accumulator data type. For details on the complex
multiplication performed, see “Multiplication Data Types”.

Note When one or both of the inputs are signed fixed-point signals, all internal object data types are
signed fixed point. The internal object data types are unsigned fixed point only when both inputs are
unsigned fixed-point signals.

See Also
Functions
xcorr

Blocks
Correlation

Introduced in R2012a

 dsp.Crosscorrelator

4-369

dsp.CumulativeProduct
Package: dsp

(To be removed) Cumulative product of channel, column, or row elements

Note dsp.CumulativeProduct will be removed in a future release. Use the cumprod function
instead. For more information, see “Compatibility Considerations”.

Description
The dsp.CumulativeProduct System object computes the cumulative product of channel, column,
or row elements.

To compute the cumulative product of channel, column, or row elements:

1 Create the dsp.CumulativeProduct object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
cprod = dsp.CumulativeProduct
cprod = dsp.CumulativeProduct(Name,Value)

Description

cprod = dsp.CumulativeProduct returns a cumulative product object, cprod, that computes the
cumulative product of input matrix or input vector elements along the default dimension.

cprod = dsp.CumulativeProduct(Name,Value) returns a cumulative product object with each
specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Dimension — Computation dimension for cumulative product
Channels (running product) (default) | Rows | Columns

4 System Objects

4-370

Specify the computation dimension as Channels (running product), Rows, or Columns.

ResetInputPort — Enable resetting cumulative product through input port
false (default) | true

Set this property to true to enable resetting the cumulative product. When you set this property to
true, specify a reset signal to the object algorithm to reset the cumulative product.

Dependencies

You can access this property when the “Dimension” on page 4-0 property is set to Channels
(running product).

ResetCondition — Reset condition for cumulative product
Rising edge (default) | Falling edge | Either edge | Non-zero

Specify the event on the reset input port that causes resetting the cumulative product to Rising
edge, Falling edge, Either edge, or Non-zero.

Dependencies

This property applies when you set the “ResetInputPort” on page 4-0 property to true and the
“Dimension” on page 4-0 property to Channels (running product).

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method as one of Ceiling, Convergent, Floor , Nearest, Round, Simplest,
or Zero.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as one of Wrap or Saturate.

IntermediateProductDataType — Intermediate product word and fraction lengths
Same as input (default) | Custom

Specify the intermediate product fixed-point data type as Same as input or Custom.

CustomIntermediateProductDataType — Intermediate product word and fraction lengths
numerictype([], 16, 15) (default) | numerictype

Specify the intermediate product fixed-point type as a scaled numerictype object with a
Signedness of Auto.

Dependencies

This property applies when you set the IntermediateProductDataType property to Custom.

ProductDataType — Product output word and fraction lengths
Same as input (default) | Custom

Specify the product output fixed-point data type as one of | Same as input | Custom |.

 dsp.CumulativeProduct

4-371

CustomProductDataType — Custom product output word and fraction lengths
numerictype([], 32, 30) (default) | numerictype

Specify the product output fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies when you set the ProductDataType property to Custom.

AccumulatorDataType — Accumulator word and fraction lengths
Same as input (default) | Same as product output | Custom

Specify the accumulator fixed-point data type as Same as product output, Same as input, or
Custom.

CustomAccumulatorDataType — Custom accumulator word and fraction lengths
numerictype([], 32, 30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies when you set the AccumulatorDataType property to Custom.

OutputDataType — Output word and fraction lengths
Same as input (default) | Same as product output | Custom

Specify the output fixed-point data type as one of | Same as product output | Same as input |
Custom |.

CustomOutputDataType — Custom output word and fraction lengths
numerictype([], 16, 15) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies when you set the “OutputDataType” on page 4-0 property to Custom.

Usage

Syntax
y = cprod(x)
y = cprod(x,r)

Description

y = cprod(x) computes the cumulative product along the specified dimension for the input x.

y = cprod(x,r) resets the cumulative product object's state based on the ResetCondition
property value and the value of the reset signal, r, when the ResetInputPort property is true.

4 System Objects

4-372

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

r — Reset signal
scalar

Reset signal used to reset the running cumulative product, specified as a scalar. The object resets the
running cumulative product if the reset signal satisfies the ResetCondition.

Dependencies

This input is applicable only when Dimension is set to 'Channels (running product)' and
ResetInputPort is set to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical | fi

Output Arguments

y — Cumulative product
vector | matrix

Cumulative product of the input signal, returned as a vector or a matrix.

The size, data type, and complexity characteristics of the output signal match that of the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

 dsp.CumulativeProduct

4-373

Cumulative Product of Matrix

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Use the dsp.CumulativeProduct object to compute the cumulative product of a matrix.

 cprod = dsp.CumulativeProduct;
 x = magic(2)

x = 2×2

 1 3
 4 2

 y = cprod(x)

y = 2×2

 1 3
 4 6

The cumulative product is computed column-wise along each channel.

Algorithms
This object implements the algorithm, inputs, and outputs described on the Cumulative Product block
reference page. The object properties correspond to the block parameters, except the Reset port
block parameter corresponds to both the ResetCondition and ResetInputPort object properties.

Compatibility Considerations
dsp.CumulativeProduct System object will be removed
Warns starting in R2021b

dsp.CumulativeProduct System object will be removed in a future release. Use the cumprod
function instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the cumprod function.

4 System Objects

4-374

Discouraged Usage Recommended Replacement
Column-wise cumulative product

By default, the object computes the running
product along the columns (channels) since the
Dimension property of the object is set to
'Channels (running product)'.

cprod = dsp.CumulativeProduct;
x = magic(2)

x = 2×2

 1 3
 4 2

y = cprod(x)

y = 2×2

 1 3
 4 6

Row-wise cumulative product

To compute row-wise cumulative product, set the
Dimension property to 'Rows' and rerun the
object algorithm.

release(cprod);
cprod.Dimension = 'Rows';
y = cprod(x)

y = 2×2

 1 3
 4 8

If you are using a release prior to R2016b,
replace cprod(x) with step(cprod,x).

Column-wise cumulative product

y = cumprod(x,1)

y = 2×2

 1 3
 4 6

Row-wise cumulative product

y = cumprod(x,2)

y = 2×2

 1 3
 4 8

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
cumprod

 dsp.CumulativeProduct

4-375

Introduced in R2012a

4 System Objects

4-376

dsp.CumulativeSum
Package: dsp

(To be removed) Cumulative sum of channel, column, or row elements

Note dsp.CumulativeSum will be removed in a future release. Use the cumsum function instead.
For more information, see “Compatibility Considerations”.

Description
The dsp.CumulativeSum System object computes the cumulative sum of channel, column, or row
elements.

To compute the cumulative sum of channel, column, or row elements:

1 Create the dsp.CumulativeSum object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
csum = dsp.CumulativeSum
csum = dsp.CumulativeSum(Name,Value)

Description

csum = dsp.CumulativeSum returns a cumulative sum System object, csum, which computes the
running cumulative sum for each channel in the input.

csum = dsp.CumulativeSum(Name,Value) returns a cumulative sum object, csum, with each
specified property set to the specified value. Enclose each property name in single quotes.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Dimension — Computation dimension for cumulative sum
Channels (running sum) (default) | Rows | Columns

 dsp.CumulativeSum

4-377

Specify the computation dimension as Channels (running sum), Rows, or Columns.

ResetInputPort — Enable resetting cumulative sum through input port
false (default) | true

Set this property to true to enable resetting the cumulative sum. When you set this property to
true, you also specify a reset input to the object algorithm to reset the cumulative sum.

ResetCondition — Reset condition for cumulative sum
Rising edge (default) | Falling edge | Either edge | Non-zero

Specify the event on the reset input port that resets the cumulative sum as Rising edge, Falling
edge, Either edge, or Non-zero.

Dependencies

This property applies when you set the “ResetInputPort” on page 4-0 property to true.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method as one of Ceiling, Convergent, Floor , Nearest, Round, Simplest,
or Zero.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as one of Wrap or Saturate.

AccumulatorDataType — Accumulator word and fraction lengths
Same as input (default) | Custom

Specify the accumulator fixed-point data type as Same as input or Custom.

CustomAccumulatorDataType — Custom accumulator word and fraction lengths
numerictype([], 32, 30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies when you set the AccumulatorDataType property to Custom.

OutputDataType — Output word and fraction lengths
Same as accumulator (default) | Same as input | Custom

Specify the output fixed-point data type as Same as accumulator, Same as input, or Custom.

CustomOutputDataType — Custom output word and fraction lengths
numerictype([], 16, 15) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.

4 System Objects

4-378

Dependencies

This property applies when you set the “OutputDataType” on page 4-0 property to Custom.

Usage

Syntax
y = csum(x)
y = csum(x,r)

Description

y = csum(x) computes the cumulative sum along the specified dimension for the input x.

y = csum(x,r) resets the System object state based on the ResetCondition property value and
the value of the reset signal, r. You can only reset the state if the ResetInputPort property is true.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

r — Reset signal
scalar

Reset signal used to reset the running cumulative sum, specified as a scalar. The object resets the
running cumulative sum if the reset signal satisfies the ResetCondition.

Dependencies

This input is applicable only when Dimension is set to 'Channels (running sum)' and
ResetInputPort is set to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical | fi

Output Arguments

y — Cumulative sum
vector | matrix

Cumulative sum of the input signal, returned as a vector or a matrix.

The size, data type, and complexity characteristics of the output signal match that of the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 dsp.CumulativeSum

4-379

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Cumulative Sum of Matrix

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Use the dsp.CumulativeSum object to compute the cumulative sum of a matrix.

 csum = dsp.CumulativeSum;
 x = magic(2)

x = 2×2

 1 3
 4 2

 y = csum(x)

y = 2×2

 1 3
 5 5

The cumulative sum is computed column-wise along each channel.

Algorithms
This object implements the algorithm, inputs, and outputs described on the Cumulative Sum block
reference page. The object properties correspond to the block properties, except the Reset port
block parameter corresponds to both the ResetCondition and the ResetInputPort object
properties.

4 System Objects

4-380

Compatibility Considerations
dsp.CumulativeSum System object will be removed
Warns starting in R2021b

dsp.CumulativeSum System object will be removed in a future release. Use the cumsum function
instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the cumsum function.

Discouraged Usage Recommended Replacement
Column-wise cumulative sum

By default, the object computes the running sum
along the columns (channels) since the
Dimension property of the object is set to
'Channels (running sum)'.

csum = dsp.CumulativeSum;
x = magic(2)

x = 2×2

 1 3
 4 2

y = csum(x)

y = 2×2

 1 3
 5 5

Row-wise cumulative sum

To compute row-wise cumulative sum, set the
Dimension property to 'Rows' and rerun the
object algorithm.

release(csum);
csum.Dimension = 'Rows';
y = csum(x)

y = 2×2

 1 4
 4 6

If you are using a release prior to R2016b,
replace csum(x) with step(csum,x).

Column-wise cumulative sum

y = cumsum(x,1)

y = 2×2

 1 3
 5 5

Row-wise cumulative sum

y = cumsum(x,2)

y = 2×2

 1 4
 4 6

 dsp.CumulativeSum

4-381

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
cumsum

Introduced in R2012a

4 System Objects

4-382

dsp.DCBlocker
Package: dsp

Block DC component (offset) from input signal

Description
The dsp.DCBlocker System object removes the DC offset from each channel (column) of the input
signal. The operation runs over time to continually estimate and remove the DC offset.

To block the DC component of the input signal:

1 Create the dsp.DCBlocker object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
dcblker = dsp.DCBlocker
dcblker = dsp.DCBlocker(Name,Value)

Description

dcblker = dsp.DCBlocker creates a DC blocker System object, dcblker, to block the DC
component from each channel (column) of the input signal.

dcblker = dsp.DCBlocker(Name,Value) creates a DC blocker System object, dcblker, with
each specified property set to the specified value. Enclose each property name in single quotes.
Example: dcblker = dsp.DCBlocker('Algorithm','FIR')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Algorithm — Algorithm for estimating DC offset
'IIR' (default) | 'FIR' | 'CIC' | 'Subtract mean'

Algorithm for estimating DC offset, specified as one of the following:

 dsp.DCBlocker

4-383

• 'IIR' –– The object uses a recursive estimate based on a narrow, lowpass elliptic filter. The
“Order” on page 4-0 property sets the order of the filter, and the “NormalizedBandwidth” on
page 4-0 property sets its bandwidth. This algorithm typically uses less memory than the FIR
algorithm and is more efficient.

• 'FIR' –– The object uses a nonrecursive, moving average estimate based on a finite number of
past input samples. The “Length” on page 4-0 property sets the number of samples. The FIR
filter has a linear phase response and does not cause any phase distortion to the signal. The IIR
filter requires less memory and is more efficient to implement.

• 'CIC' –– The object uses a CIC decimator, with a decimation factor of 1, whose differential delay
is calculated using the NormalizedBandwidth property. It uses two sections to ensure that the first
sidelobe attenuation is at least 25 dB below the main lobe of the filter. This algorithm requires
fixed-point inputs and can be used for HDL code generation.

• 'Subtract mean' –– The object computes the means of the columns of the input matrix, and
subtracts the means from the input. This method does not retain state between inputs.

You can visualize the IIR, FIR, and CIC responses by using the fvtool function.

NormalizedBandwidth — Normalized bandwidth of lowpass IIR or CIC filter
0.001 (default) | real scalar greater than 0 and less than 1

Normalized bandwidth of the IIR or CIC filter, specified as a real scalar greater than 0 or less than 1.
The normalized bandwidth is used to estimate the DC component of the input signal.

Dependencies

This property applies only when you set the “Algorithm” on page 4-0 property to 'IIR' or 'CIC'.

Order — Order of lowpass IIR elliptic filter
6 (default) | integer greater than 3

Order of the lowpass IIR elliptic filter that is used to estimate the DC level, specified as an integer
greater than 3.

Dependencies

This property applies only when you set the “Algorithm” on page 4-0 property to 'IIR'.

Length — Number of past input samples used in FIR algorithm
50 (default) | positive integer

Number of past input samples used in the FIR algorithm to estimate the running mean, specified as a
positive integer.

Dependencies

This property applies only when you set the “Algorithm” on page 4-0 property to 'FIR'.

Usage

Syntax
dcblkerOut = dcblker(input)

4 System Objects

4-384

Description

dcblkerOut = dcblker(input) removes the DC component from each channel (column) of the
input and returns the output.

Input Arguments

input — Input signal
vector | matrix | N-D array

Data input to the DC blocker object, specified as a vector, matrix, or N-D array.
Example: t = (0:0.001:100)'; x = sin(30*pi*t) + 1;
Data Types: single | double | int8 | int16 | int32 | fi

Output Arguments

dcblkerOut — Signal with DC component removed
vector | matrix | N-D array

Signal with DC component removed, returned as a vector, matrix, or N-D array.The output dimensions
match the input dimensions.
Data Types: single | double | int8 | int16 | int32 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Visualization Specific to DSP System Toolbox
fvtool Visualize frequency response of DSP filters

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Remove DC Component and Display Results

Note: If you are using R2016a or earlier, replace each call to the object with the equivalent step
syntax. For example, obj(x) becomes step(obj,x).

Remove the DC component of an input signal using the IIR, FIR, and subtract mean estimation
algorithms.

Create a signal composed of a 15 Hz tone, a 25 Hz tone, and a DC offset.

 dsp.DCBlocker

4-385

t = (0:0.001:100)';
x = sin(30*pi*t) + 0.33*cos(50*pi*t) + 1;

Create three DC blocker objects for the three estimation algorithms.

dc1 = dsp.DCBlocker('Algorithm','IIR','Order', 6);
dc2 = dsp.DCBlocker('Algorithm','FIR','Length', 100);
dc3 = dsp.DCBlocker('Algorithm','Subtract mean');

For each second of time, pass the input signal through the DC blockers. By implementing the DC
blockers in 1-second increments, you can observe differences in the convergence times.

for idx = 1 : 100
 range = (1:1000) + 1000*(idx-1);
 y1 = dc1(x(range)); % IIR estimate
 y2 = dc2(x(range)); % FIR estimate
 y3 = dc3(x(range)); % Subtract mean
end

Plot the input and output data for the three DC blockers for the first second of time, and show the
mean value for each signal. The mean values for the three algorithm types show that the FIR and
Subtract mean algorithms converge more quickly.

plot(t(1:1000),x(1:1000), ...
 t(1:1000),y1, ...
 t(1:1000),y2, ...
 t(1:1000),y3);
xlabel('Time (sec)')
ylabel('Amplitude')
legend(sprintf('Input DC:%.3f',mean(x)), ...
 sprintf('IIR DC:%.3f',mean(y1)), ...
 sprintf('FIR DC:%.3f',mean(y2)), ...
 sprintf('Subtract mean DC:%.3f',mean(y3)));

4 System Objects

4-386

Frequency Response Before and After DC Blocker

Note: If you are using R2016a or earlier, replace each call to the object with the equivalent step
syntax. For example, obj(x) becomes step(obj,x).

Compare the spectrum of an input signal with a DC offset to the spectrum of the same signal after
applying a DC blocker. Enable the DC blocker to use the FIR estimation algorithm.

Create an input signal composed of three tones and that has a DC offset of 1. Set the sampling
frequency to 1 kHz and set the signal duration to 100 seconds.

fs = 1000;
t = (0:1/fs:100)';
x = sin(30*pi*t) + 0.67*sin(40*pi*t) + 0.33*sin(50*pi*t) + 1;

Create a DC blocker object that uses the FIR algorithm to estimate the DC offset.

dcblker = dsp.DCBlocker('Algorithm','FIR','Length',100);

Create a spectrum analyzer with power units set to dBW and a frequency range of [-30 30] to
display the frequency response of the input signal. Using the clone function, create a second
spectrum analyzer to display the response of the output. Then, use the Title property of the
spectrum analyzers to label them.

 dsp.DCBlocker

4-387

hsa = dsp.SpectrumAnalyzer('SampleRate',fs, ...
 'PowerUnits','dBW','FrequencySpan','Start and stop frequencies',...
 'StartFrequency',-30,'StopFrequency',30,'YLimits',[-200 20],...
 'Title','Signal Spectrum');

hsb = clone(hsa);
hsb.Title = 'Signal Spectrum After DC Blocker';

Pass the input signal, x, through the DC blocker to generate the output signal, y.

y = dcblker(x);

Use the first spectrum analyzer to display the frequency characteristics of the input signal. The tones
at 15, 20, and 25 Hz, and the DC component, are clearly visible.

hsa(x)

Use the second spectrum analyzer to display the frequency characteristics of the output signal. The
DC component has been removed.

hsb(y)

4 System Objects

4-388

Algorithms
The DC blocker subtracts the DC component from the input signal. You can estimate the DC
component by using the IIR, FIR, CIC, or subtract mean algorithm.

IIR

Pass the input signal through an IIR lowpass elliptical filter.

The elliptical IIR filter has a passband ripple of 0.1 dB and a stopband attenuation of 60 dB. You
specify the normalized bandwidth and the filter order.

FIR

Pass the input signal through an FIR filter that uses a nonrecursive moving average from a finite
number of past input samples.

The FIR filter coefficients are given as ones(1,Length)/Length, where you specify the Length.
The FIR filter structure is a direct form I transposed structure.

CIC

Pass the input signal through a CIC filter. Because the CIC filter amplifies the signal, the filter gain is
estimated and subtracted from the DC estimate.

 dsp.DCBlocker

4-389

The Cascaded Integrator-Comb (CIC) filter consists of two integrator-comb pairs. These pairs help to
ensure that the peak of the first sidelobe of the filter response is attenuated by at least 25 dB relative
to the peak of the main lobe. The normalized 3-dB bandwidth is used to calculate the differential
delay. The delay is used to determine the gain of the CIC filter. The inverse of the filter gain is used as
a multiplier, which is applied to the output of the CIC filter. This ensures that the aggregate gain of
the DC estimate is 0 dB.

The following equation characterizes the aggregate magnitude response of the filter and the
multiplier:

H(e jω) =
sin(Mπ

2Bnorm)

Msin(π
2Bnorm)

N

• Bnorm is the normalized bandwidth such that 0 < Bnorm < 1.
• M is the differential delay in samples.
• N is the number of sections, equal to 2.

Set the differential delay, M, to the smallest integer such that |H(ejω)| < 1/√2. Once M is known, the
gain of the CIC filter is calculated as MN. Therefore, to precisely compensate for the filter gain, the
multiplier is set to (1/M)N.

Subtract Mean

Compute the mean value of each column of the input signal and subtract the mean from the input.
For example, if the input is [1 2 3 4; 3 4 5 6], then a DC Blocker set to this mode outputs [-1 -1 -1 -1; 1
1 1 1].

References
[1] Nezami, M. “Performance Assessment of Baseband Algorithms for Direct Conversion Tactical

Software Defined Receivers: I/Q Imbalance Correction, Image Rejection, DC Removal, and
Channelization.” MILCOM, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object also supports SIMD code generation using Intel AVX2 technology when the input signal
has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

4 System Objects

4-390

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Functions
fvtool

Objects
dsp.BiquadFilter | dsp.FIRFilter | dsp.CICDecimator

Blocks
DC Blocker

Introduced in R2014a

 dsp.DCBlocker

4-391

dsp.DCT
Package: dsp

(Removed) Discrete cosine transform (DCT)

Note The dsp.DCT System object™ has been removed. Use dct instead. For more information, see
“Compatibility Considerations”.

Description
The DCT object computes the discrete cosine transform (DCT) of input.

To compute the DCT of input:

1 Define and set up your DCT object. See “Construction” on page 4-392.
2 Call step to compute the DCT according to the properties of dsp.DCT. The behavior of step is

specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
dct = dsp.DCT returns a discrete cosine transform (DCT) object, dct, used to compute the DCT of
a real or complex input signal.

dct = dsp.DCT('PropertyName',PropertyValue, ...) returns a DCT object, dct, with each
property set to the specified value.

Properties
SineComputation

Method to compute sines and cosines

Specify how the DCT object computes the trigonometric values as Trigonometric function or
Table lookup. This property must be set to Table lookup for fixed-point inputs. The default is
Table lookup.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as one of Ceiling, Convergent, Floor , Nearest, Round, Simplest,
or Zero. This property applies when you set the SineComputation property to Table lookup.

4 System Objects

4-392

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as one of Wrap or Saturate. This property applies when you set the
SineComputation property to Table lookup.

SineTableDataType

Sine table word-length designation

Specify the sine table fixed-point data type as one of Same word length as input or Custom.
This property applies when you set the SineComputation property to Table lookup.

CustomSineTableDataType

Sine table word length

Specify the sine table fixed-point type as an unscaled numerictype object with a Signedness of
Auto. This property applies when you set the SineComputation property to Table lookup and the
SineTableDataType property to Custom. The default is numerictype([],16).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as one of Full precision , Same as input, Custom.
This property applies when you set the SineComputation property to Table lookup.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies when you set the SineComputation property to Table lookup and the
ProductDataType property to Custom. The default is numerictype([],32,30).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as one of Full precision, Same as input, Same
as product, or Custom. This property applies when you set the SineComputation property to
Table lookup.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto. This property applies when you set the SineComputation property to Table lookup and the
AccumulatorDataType property to Custom. The default is numerictype([],32,30).

OutputDataType

Output word and fraction lengths

 dsp.DCT

4-393

Specify the output fixed-point data type as one of Full precision , Same as input, Custom. This
property applies when you set the SineComputation property to Table lookup. The default is
Full precision.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies when you set the SineComputation property to Table lookup and the
“OutputDataType” on page 4-0 property to Custom. The default is numerictype([],16,15).

Methods

step Discrete cosine transform (DCT) of input

Common to All System Objects
release Allow System object property value changes

Examples

Analyze the Energy Content in a Sequence

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Use DCT to analyze the energy content in a sequence:

x = (1:128).' + 50*cos((1:128).'*2*pi/40);
dct = dsp.DCT;
X = dct(x);

Set the DCT coefficients which represent less than 0.1% of the total energy to 0 and reconstruct the
sequence using IDCT.

[XX, ind] = sort(abs(X),1,'descend');
ii = 1;
while (norm([XX(1:ii);zeros(128-ii,1)]) <= 0.999*norm(XX))
 ii = ii+1;
end
disp(['Number of DCT coefficients that represent 99.9%',...
 'of the total energy in the sequence: ',num2str(ii)]);

Number of DCT coefficients that represent 99.9%of the total energy in the sequence: 10

XXt = zeros(128,1);
XXt(ind(1:ii)) = X(ind(1:ii));
idct = dsp.IDCT;
xt = idct(XXt);
plot(1:128,[x xt]);

4 System Objects

4-394

legend('Original signal','Reconstructed signal',...
 'location','best');

Algorithms
This object implements the algorithm, inputs, and outputs described on the DCT block reference
page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.DCT System object has been removed
Errors starting in R2021a

The dsp.DCT System object has been removed. Use dct instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
x = (1:128).' + 50*cos((1:128).'*2*pi/40);
dctObj = dsp.DCT;
X = dctObj(x);

If you are using a release prior to R2016b,
replace dctObj(x) with step(dctObj,x).

x = (1:128).' + 50*cos((1:128).'*2*pi/40);
X = dct(x);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
dct

Objects
dsp.FFT | dsp.IFFT

Introduced in R2012a

 dsp.DCT

4-395

step
System object: dsp.DCT
Package: dsp

Discrete cosine transform (DCT) of input

Syntax
Y = step(dct,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(dct,X) computes the DCT of the input X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-396

dsp.Delay
Package: dsp

Delay input signal by fixed samples

Description

Note The Units property no longer supports the 'Frames' option. Use 'Samples' instead. The
InitialConditions property no longer supports a cell array format. Use a Length-by-numChans
matrix instead, where numChans is the number of input channels. For more details, see
“Compatibility Considerations” on page 4-403.

The dsp.Delay System object delays the input by a specified number of samples along each channel
(column) of the input. You can specify the initial output of the object through the “InitialConditions”
on page 4-0 property. To reset the delay, enable the “ResetCondition” on page 4-0 through the
“ResetInputPort” on page 4-0 .

To delay the input:

1 Create the dsp.Delay object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
delay = dsp.Delay
delay = dsp.Delay(Name,Value)
delay = dsp.Delay(len,Name,Value)

Description

delay = dsp.Delay creates a System object that delays the input by 1 sample.

delay = dsp.Delay(Name,Value) creates a delay System object with each specified property set
to the specified value. Enclose each property name in single quotes.
Example: delay = dsp.Delay('InitialConditionsPerChannel',true);

delay = dsp.Delay(len,Name,Value) creates a delay System object, delay, with the Length
property set to len, and other specified properties set to the specified values. Enclose each property
name in single quotes.
Example: delay = dsp.Delay(10,'ResetInputPort',true,'ResetCondition','Rising
edge');

 dsp.Delay

4-397

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Units — Units of delay
'Samples'

Units of delay, specified as 'Samples'.

Length — Amount of delay to apply to input signal
1 (default) | scalar positive integer | vector of positive integers

Amount of delay in samples to apply to the input signal, specified as one of the following:

• Scalar positive integer –– The object applies equal delay to all the channels.
• Vector of positive integers –– The length of the vector must equal the number of input channels

(columns). The object delays each channel by the amount specified by the respective element in
the delay vector.

InitialConditionsPerChannel — Enable different initial conditions per channel
false (default) | true

Enable different initial conditions per channel, specified as either:

• false –– The object applies the same initial conditions for all channels.
• true –– The object applies different initial conditions for each channel.

The value of this property must be the same as the value you choose for the
InitialConditionsPerSample property. This value determines the size of the initial conditions
array. For more details, see the “InitialConditions” on page 4-0 property.

InitialConditionsPerSample — Enables different initial conditions per sample
false (default) | true

Different initial conditions per sample, specified as either:

• false –– The object applies the same initial conditions for all samples.
• true –– The object applies different initial conditions for each sample.

The value of this property must be the same as the value you choose for the
InitialConditionsPerChannel property. This value determines the size of the initial conditions
array. For more details, see the “InitialConditions” on page 4-0 property.

InitialConditions — Initial output of the object
0 (default) | scalar | vector | matrix

Initial output of System object, specified as a scalar, vector, or a matrix. The dimensions of the initial
condition matrix must be (Length property value)-by-(number of input channels).

4 System Objects

4-398

If the input is an M-by-N matrix, the dimensions of the InitialConditions property value must be
as follows:

InputConditionsPerChanne
l

InputConditionsPerSample InitialConditions

false false scalar
true true Length-by-N matrix

ResetInputPort — Enable reset condition
false (default) | true

Enable the reset condition so that you can pass the reset control input to the object, specified as
either:

• false –– The object does not reset the delay states.
• true –– You must pass a reset control input to the object by using the “ResetCondition” on page 4-

0 property. The object resets the delay states based on the values of the ResetCondition
property and the reset control that is input to the object.

ResetCondition — Event that triggers reset of delay
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Event that triggers the reset of the delay, specified as one of the following. The object resets the delay
whenever a reset event is detected in its reset input.

• 'Non-zero' –– Triggers a reset operation at each sample, when the reset input is not zero.
• 'Rising edge' –– Triggers a reset operation when the reset input does one of the following:

• Rises from a negative value to either a positive value or zero.
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero.

• 'Falling edge' –– Triggers a reset operation when the reset input does one of the following:

• Falls from a positive value to a negative value or zero.
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero.

 dsp.Delay

4-399

• 'Either edge' –– Triggers a reset operation when the reset input is a rising edge or a falling
edge.

Dependencies

This property applies only when you set the ResetInputPort property to true.

Usage

Syntax
delayOut = delay(dataInput)
delayOut = delay(dataInput,resetInput)

Description

delayOut = delay(dataInput) adds delay to the data input and returns the delayed output. Each
column of the input is treated as an independent channel.

delayOut = delay(dataInput,resetInput) adds delay to the data input and selectively resets
the state of the System object based on the value of the reset input and the value of the
“ResetCondition” on page 4-0 property.

To pass the reset input, set “ResetInputPort” on page 4-0 property to true.

delay = dsp.Delay('ResetInputPort',true);
...
delayOut = delay(dataInput,resetInput);

Input Arguments

dataInput — Data input
vector | matrix

Data input that is delayed by the object, specified as a vector or a matrix.
Example: [1;2;3;4;5]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

resetInput — Reset input
scalar

4 System Objects

4-400

Reset input, specified as a scalar.
Example: 2
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments

delayOut — Delayed output
vector | matrix

Delayed output, returned as a vector or matrix. The size and data type of the output match the size
and data type of the data input.
Example: [0;0;1;2;3]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Delay Input

Delay input by five samples by using the dsp.Delay System object™. By default, the initial
conditions are 0.

Note: If you are using R2016a or earlier, replace each call to the object with the equivalent step
syntax. For example, obj(x) becomes step(obj,x).

Delay input by 4 samples.

delay = dsp.Delay(4);
input = [(1:10)' (11:20)'];
delayOut = delay(input) %#ok

delayOut = 10×2

 0 0
 0 0
 0 0
 0 0
 1 11

 dsp.Delay

4-401

 2 12
 3 13
 4 14
 5 15
 6 16

release(delay);

Specify initial conditions for each channel and for each sample. The InitialConditions property
must be a (Length)-by-(NumChannels) matrix.

delay.InitialConditionsPerChannel = true;
delay.InitialConditionsPerSample = true;
delay.InitialConditions = [(0.1:0.1:0.4)' (0.5:0.1:0.8)'];
delayOut = delay(input) %#ok

delayOut = 10×2

 0.1000 0.5000
 0.2000 0.6000
 0.3000 0.7000
 0.4000 0.8000
 1.0000 11.0000
 2.0000 12.0000
 3.0000 13.0000
 4.0000 14.0000
 5.0000 15.0000
 6.0000 16.0000

release(delay);

Reset the delay by setting the reset event to 'Rising edge'. In this mode, a reset event occurs
when the reset input:

• Rises from a negative value to 0.
• Rises from a negative value to a positive value.
• Rises form 0 to a positive value, where the rise is not a continuation from a negative value to 0.

Pass an initial reset input of 0.

delay.ResetInputPort = true;
delay.ResetCondition = 'Rising edge';
delayOut = delay(input,0) %#ok

delayOut = 10×2

 0.1000 0.5000
 0.2000 0.6000
 0.3000 0.7000
 0.4000 0.8000
 1.0000 11.0000
 2.0000 12.0000
 3.0000 13.0000
 4.0000 14.0000
 5.0000 15.0000

4 System Objects

4-402

 6.0000 16.0000

Continue to run the delay. The delay samples now contain the rest of the input vector.

delayOut = delay(input,0) %#ok

delayOut = 10×2

 7 17
 8 18
 9 19
 10 20
 1 11
 2 12
 3 13
 4 14
 5 15
 6 16

Change the reset input to 2, indicating a rising edge.

delayOut = delay(input,2)

delayOut = 10×2

 0.1000 0.5000
 0.2000 0.6000
 0.3000 0.7000
 0.4000 0.8000
 1.0000 11.0000
 2.0000 12.0000
 3.0000 13.0000
 4.0000 14.0000
 5.0000 15.0000
 6.0000 16.0000

The delay values are reset to the initial conditions.

Compatibility Considerations
Setting delay Units to 'Frames' is no longer supported
Errors starting in R2018a

Starting in R2018a, setting the delay Units to 'Frames' errors. To resolve the error, set Units to
'Samples' and specify Length in samples instead of frames. Calculate the number of samples by
multiplying the frame delay value by the frame size.

Initial conditions are not supported in a cell array format
Errors starting in R2018a

The InitialConditions vector no longer supports cell array format. Specify the initial conditions
as a Length-by-numChans matrix instead, where numChans is the number of input channels.

 dsp.Delay

4-403

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Functions
designFracDelayFIR

Objects
dsp.VariableIntegerDelay | dsp.VariableFractionalDelay.

Blocks
Delay

Topics
“Three-Channel Wavelet Transmultiplexer”
“Envelope Detection”

Introduced in R2012a

4 System Objects

4-404

dsp.DelayLine
Package: dsp

(To be removed) Rebuffer sequence of inputs with one-sample shift

Note dsp.DelayLine will be removed in a future release. There is no direct replacement. You can
use the dsp.AsyncBuffer object to achieve a delay line.

Description
The dsp.DelayLine System object rebuffers a sequence of inputs with one-sample shift.

To rebuffer a sequence of inputs with one-sample shift:

1 Create the dsp.DelayLine object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
dline = dsp.DelayLine
dline = dsp.DelayLine(delaysize,initial)
dline = dsp.DelayLine(Name,Value)

Description

dline = dsp.DelayLine returns a delay line System object, dline, that buffers the input samples
into a sequence of overlapping or underlapping matrix outputs.

dline = dsp.DelayLine(delaysize,initial) returns a delay line System object, dline, with
the Length property set to delaysize and the InitialConditions property set to initial.

dline = dsp.DelayLine(Name,Value) returns a delay line object with each specified property
set to the specified value. Enclose each property name in single quotes. Unspecified properties have
default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 dsp.DelayLine

4-405

Length — Number of rows in output matrix
64 (default) | positive integer

Specify the number of rows in the output matrix as a scalar positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialConditions — Initial delay line output
0 (default) | scalar | vector | matrix

Set the value of the object's initial output as one of scalar, vector, or matrix.

For vector outputs, you can use these options for the InitialConditions property:

• A vector of the same size
• A scalar value that you want repeated across all elements of the initial output

For matrix outputs, you can use these options for the InitialConditions property:

• A matrix of the same size
• A vector (equal to the length of the number of matrix rows) that repeats across all columns of the

initial output
• A scalar that repeats across all elements of the initial output

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DirectFeedthrough — Enable passing input data to output without extra frame delay
false (default) | true

When you set this property to true, the input data is available immediately at the output. When you
set this property to false, the output has a delay of one frame.

EnableOutputInputPort — Enable selective output linearization
false (default) | true

The object uses a circular buffer, even though the output is linear. To obtain a valid output, the object
must linearize the circular buffer. When this property is true, the object uses an additional Boolean
input to determine if a valid output calculation is needed. If the input value is true, the object's
output is linearized and thus valid. If the input value is false, the output is not linearized and is
invalid. This allows the object to be more efficient when each step does not require the tapped delay
line output. When you set this property to false, the output is always linearized and valid.

HoldPreviousValue — Hold previous valid value for invalid output
false (default) | true

If you set this property to true, the most recent, valid value is held on the output. If you set this
property to false, the signal on the output is invalid data.

Dependencies

This property applies only when you set the EnableOutputInputPort property to true.

4 System Objects

4-406

Usage

Syntax
y = dline(x)
y = dline(x,en)

Description

y = dline(x) returns the delayed version of input x. y is an output matrix with the same number of
rows as the delay line size. Each column of x is treated as a separate channel.

y = dline(x,en) selectively outputs the delayed version of input x depending on the Boolean input
en. This occurs only when you set the EnableOutputInputPort property to true. If en is false,
use the HoldPreviousValue property to specify if the object should hold the previous output
value(s).

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

en — Enable output input port
true | false

Enable output input port signal, specified as a logical value.

If en is false, use the HoldPreviousValue property to specify if the object should hold the
previous output value(s).

Dependencies

This input is valid only when you set the EnableOutputInputPort property to true.
Data Types: logical

Output Arguments

y — Delay line output
vector | matrix

Delay line output, returned as a vector or a matrix.

When the input is an Mi-by-N matrix, the System object rebuffers the input into a sequence of Mo-by-
N matrix outputs, where Mo is the output frame size specified by the Length property. Depending on
whether Mo is greater than, less than, or equal to the input frame size, Mi, the output frames can be
underlapped or overlapped. Each of the N input channels is rebuffered independently:

• When Mo > Mi, the output frame overlap is the difference between the output and input frame
size, Mo–Mi.

 dsp.DelayLine

4-407

• When Mo < Mi, the output is underlapped; the object discards the first Mi–Mo samples of each
input frame so that only the last Mo samples are buffered into the corresponding output frame.

• When Mo = Mi, the output data is identical to the input data, but is delayed by the latency of the
object.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Delay Line

Note: If you are using R2016a or earlier, replace each call to the object with the equivalent step
syntax. For example, obj(x) becomes step(obj,x).

Use a delay line object with a delay line size of 4 samples.

delayline = dsp.DelayLine(...
 'Length', 4, ...
 'DirectFeedthrough', true, ...
 'InitialConditions', -2, ...
 'EnableOutputInputPort', true, ...
 'HoldPreviousValue', true);
en = logical([1 1 0 1 0]);
y = zeros(4,5);
for ii = 1:5
 y(:,ii) = delayline(ii, en(ii));
end
disp(y)

 -2 -2 -2 1 1
 -2 -2 -2 2 2
 -2 1 1 3 3
 1 2 2 4 4

Algorithms
This object implements the algorithm, inputs, and outputs described on the Delay Line block
reference page. The object properties correspond to the block properties.

4 System Objects

4-408

Compatibility Considerations
dsp.DelayLine System object will be removed
Warns starting in R2021b

dsp.DelayLine System object will be removed in a future release. There is no direct replacement
for this object. You can use the dsp.AsyncBuffer object to achieve a delay line.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.AsyncBuffer

Introduced in R2012a

 dsp.DelayLine

4-409

dsp.Differentiator
Package: dsp

Direct form FIR fullband differentiator filter

Description
The dsp.Differentiator System object applies a fullband differentiator filter on the input signal
to differentiate all its frequency components. This object uses an FIR equiripple filter design to design
the differentiator filter. The ideal frequency response of the differentiator is D(ω) = jω for
−π ≤ ω ≤ π. You can design the filter with minimum order with a specified order. This object supports
fixed-point operations.

To filter each channel of your input:

1 Create the dsp.Differentiator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
DF = dsp.Differentiator
DF = dsp.Differentiator(Name,Value)

Description

DF = dsp.Differentiator returns a differentiator, DF, which independently filters each channel
of the input over time using the given design specifications.

DF = dsp.Differentiator(Name,Value) sets each property name to the specified value.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

DesignForMinimumOrder — Design minimum order filter
true (default) | false

4 System Objects

4-410

Option to design a minimum-order filter, specified as a logical scalar. The filter has 2 degrees of
freedom. When you set this property to

• true — The object designs the filter with the minimum order that meets the PassbandRipple
value.

• false — The object designs the filter with order that you specify in the FilterOrder property.

This property is not tunable.

FilterOrder — Order of the filter
31 (default) | odd positive integer

Order of the filter, specified as an odd positive integer.

This property is not tunable.

Dependencies

You can specify the filter order only when 'DesignForMinimumOrder' is set to false.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PassbandRipple — Maximum passband ripple
0.1 (default) | positive real scalar

Maximum passband ripple in dB, specified as a positive real scalar.

This property is not tunable.

Dependencies

You can specify the passband ripple only when 'DesignForMinimumOrder' is set to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ScaleCoefficients — Scale filter coefficients
false (default) | true

Option to scale the filter coefficients, specified as a logical scalar. When you set this property to true,
the object scales the filter coefficients to preserve the input dynamic range.

This property is not tunable.

Fixed-Point Properties

CoefficientsDataType — Word and fraction lengths of coefficients
numerictype(1,16) (default) | numerictype object

Word and fraction lengths of coefficients, specified as a signed or unsigned numerictype object. The
default, numerictype(1,16), corresponds to a signed numeric type object with 16-bit coefficients.
To give the best possible precision, the fraction length is computed based on the coefficient values.

This property is not tunable.

The word length of the output is the same as the word length of the input. The object computes the
fraction length of the output such that the entire dynamic range of the output can be represented

 dsp.Differentiator

4-411

without overflow. For details on how the object computes the fraction length of the output, see
“Fixed-Point Precision Rules for Avoiding Overflow in FIR Filters”.

RoundingMethod — Rounding method for output fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Rounding method for output fixed-point operations, specified as a character vector. For more
information on the rounding modes, see “Precision and Range”.

This property is not tunable.

Usage

Syntax
y = DF(x)

Description

y = DF(x) applies a fullband differentiator filter to the input signal, x. y is a differentiated version
of x.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If the input signal is a matrix, each column of the matrix
is treated as an independent channel. The number of rows in the input signal denotes the channel
length. The data type characteristics (double, single, or fixed-point) and the real-complex
characteristics (real or complex valued) must be the same for the input data and output data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — Differentiated signal
vector | matrix

Differentiated signal, returned as a vector or matrix of the same size, data type, and complexity as the
input signal, x.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

4 System Objects

4-412

Specific to dsp.Differentiator
getFilter Get underlying FIR filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Group Delay Estimation

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Estimate the group delay of a linear phase FIR filter using a dsp.TransferFunctionEstimator
object followed by dsp.PhaseExtractor and dsp.Differentiator objects. The group delay of a

linear phase FIR filter is given by , where is the phase information of
the filter, is the frequency vector, and N is the order of the filter.

Set Up the Objects

Create a linear phase FIR lowpass filter. Set the order to 200, the passband frequency to 255 Hz, the
passband ripple to 0.1 dB, and the stopband attenuation to 80 dB. Specify a sample rate of 512 Hz.

Fs = 512;
LPF = dsp.LowpassFilter('SampleRate',Fs,'PassbandFrequency',255,...
 'DesignForMinimumOrder',false,'FilterOrder',200);

To estimate the transfer function of the lowpass filter, create a transfer function estimator. Specify the
window to be Hann. Set the FFT length to 1024 and the number of spectral averages to 200.

TFE = dsp.TransferFunctionEstimator('FrequencyRange','twosided',...
 'SpectralAverages',200,'FFTLengthSource','Property',...
 'FFTLength',1024);

To extract the unwrapped phase from the frequency response of the filter, create a phase extractor.

PE = dsp.PhaseExtractor;

To differentiate the phase , create a differentiator filter. This value is used in computing the group
delay.

DF = dsp.Differentiator;

To smoothen the input, create a variable bandwidth FIR filter.

Gain1 = 512/pi;
Gain2 = -1;
VBFilter = dsp.VariableBandwidthFIRFilter('CutoffFrequency',10,...
 'SampleRate',Fs);

To view the group delay of the filter, create an array plot object.

 dsp.Differentiator

4-413

AP = dsp.ArrayPlot('PlotType','Line','YLimits',[-500 400],...
 'YLabel','Amplitude','XLabel','Number of samples');

Run the Algorithm

The for-loop is the streaming loop that estimates the group delay of the filter. In the loop, the
algorithm filters the input signal, estimates the transfer function of the filter, and differentiates the
phase of the filter to compute the group delay.

Niter = 1000; % Number of iterations
for k = 1:Niter
 x = randn(512,1); % Input signal = white Gaussian noise
 y = LPF(x); % Filter noise with Lowpass FIR filter
 H = TFE(x,y); % Compute transfer function estimate
 Phase = PE(H); % Extract the Unwrapped phase
 phaseaftergain1 = Gain1*Phase;
 DiffOut = DF(phaseaftergain1); % Differentiate the phase
 phaseaftergain2 = Gain2 * DiffOut;
 VBFOut = VBFilter(phaseaftergain2); % Smooth the group delay
 AP(VBFOut); % Display the group delay
end

As you can see, the group delay of the lowpass filter is 100.

4 System Objects

4-414

Convert FM Signal to AM Signal

Create an FM wave on a 100 Hz carrier signal sampled at 1.5 kHz.

Fc = 1e2; % Carrier
Fs = 1.5e3; % Sample rate
sinewave = dsp.SineWave('Frequency',10,...
 'SamplesPerFrame',1e3,...
 'SampleRate',Fs);

Convert the FM signal to an AM signal.

ts = timescope('TimeSpanSource','Property',...
 'TimeSpan',0.3,...
 'BufferLength',10*Fs,...
 'SampleRate',Fs,...
 'ShowGrid',true,...
 'YLimits',[-1.5 1.5],...
 'LayoutDimensions',[2 1]);

df = dsp.Differentiator;

tic
while toc<2.2
 x = step(sinewave);
 fm_y = modulate(x,Fc,Fs,'fm');
 am_y = step(df,fm_y);
 step(ts,fm_y,am_y);
end

release(df);
release(ts);

 dsp.Differentiator

4-415

Algorithms
Differentiator Filter

Differentiator computes the derivative of a signal. The frequency response of an ideal differentiator
filter is given by D(ω) = jω, defined over the Nyquist interval −π ≤ ω ≤ π.

The frequency response is antisymmetric and is linearly proportional to the frequency.

4 System Objects

4-416

dsp.Differentiator object acts as a differentiator filter. This object condenses the two-step
process into one. For the minimum order design, the object uses generalized Remez FIR filter design
algorithm. For the specified order design, the object uses the Parks-McClellan optimal equiripple FIR
filter design algorithm. The filter is designed as a linear phase Type-IV FIR filter with a Direct form
structure.

The ideal differentiator has an antisymmetric impulse response given by d(n) = − d(− n). Hence
d(0) = 0. The differentiator must have zero response at zero frequency.

Linear-Phase FIR Differentiator Filter

The impulse response of an antisymmetric linear-phase FIR filter is given by h(n) = − h(M − 1− n),
where M is the length of the filter. Because the filter is antisymmetric, you can use this type of FIR
filter to design the linear-phase FIR differentiators.

Consider the design of linear-phase FIR differentiators based on the Chebyshev approximation
criterion.

If M is odd, the real-valued frequency response of the FIR filter, Hr(ω), has the characteristics that
Hr(0) = 0 and Hr(π) = 0. This filter satisfies the condition of zero response at zero frequency.
However, it is not fullband because Hr(π) = 0. This differentiator has a linear response over the
limited frequency range [0 2πfp], where fp is the bandwidth of the differentiator. The absolute error
between the desired response and the Chebyshev approximation increases as ω increases from 0 to
2πfp.

If M is even, the real-valued frequency response of the FIR filter, Hr(ω), has the characteristics that
Hr(0) = 0 and Hr(π) ≠ 0. This filter satisfies the condition of zero response at zero frequency. It is
fullband and this design results in a significantly smaller approximation error than comparable odd-
length differentiators. Hence, even-length (odd order) differentiators are preferred in practical
systems.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Upper Saddle River, NJ: Prentice-Hall,

1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object also supports SIMD code generation using Intel AVX2 technology when the input signal
has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 dsp.Differentiator

4-417

See Also
Functions
getFilter

Objects
dsp.HighpassFilter | dsp.VariableBandwidthFIRFilter |
dsp.VariableBandwidthIIRFilter | dsp.FIRFilter | dsp.BiquadFilter

Blocks
Differentiator Filter

Introduced in R2016a

4 System Objects

4-418

dsp.DigitalDownConverter
Package: dsp

Translate digital signal from intermediate frequency (IF) band to baseband and decimate it

Description
The dsp.DigitalDownConverter object translates digital signal from intermediate frequency (IF)
band to baseband and decimates it.

To digitally downconvert the input signal:

1 Create the dsp.DigitalDownConverter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
dwnConv = dsp.DigitalDownConverter
dwnConv = dsp.DigitalDownConverter(Name,Value)

Description

dwnConv = dsp.DigitalDownConverter returns a digital downconverter (DDC) System object,
dwnConv.

dwnConv = dsp.DigitalDownConverter(Name,Value) returns a DDC object, dwnConv, with the
specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of input signal
30000000 (default) | positive scalar

Set this property to a positive scalar value, greater than or equal to twice the value of the
CenterFrequency property.

 dsp.DigitalDownConverter

4-419

Data Types: single | double

DecimationFactor — Decimation factor
100 (default) | positive integer scalar | vector of positive integers

Set this property to a positive integer scalar, or to a 1-by-2 or 1-by-3 vector of positive integers.

When you set this property to a scalar, the object automatically chooses the decimation factors for
each of the three filtering stages.

When you set this property to a 1-by-2 vector, the object bypasses the third filter stage and sets the
decimation factor of the first and second filtering stages to the values in the first and second vector
elements respectively. Both elements of the DecimationFactor vector must be greater than one.

When you set this property to a 1-by-3 vector, the i th element of the vector specifies the decimation
factor for the ith filtering stage. The first and second elements of the DecimationFactor vector
must be greater than one, and the third element must be 1 or 2.
Data Types: double

MinimumOrderDesign — Minimum order filter design
true (default) | false

When you set this property to true, the object designs filters with the minimum order that meets the
passband ripple, stopband attenuation, passband frequency, and stopband frequency specifications
that you set using the PassbandRipple, StopbandAttenuation, Bandwidth,
StopbandFrequencySource, and StopbandFrequency properties.

When you set this property to false, the object designs filters with orders that you specify in the
NumCICSections, SecondFilterOrder, and ThirdFilterOrder properties. The filter designs
meet the passband and stopband frequency specifications that you set using the Bandwidth,
StopbandFrequencySource, and StopbandFrequency properties.
Data Types: logical

NumCICSections — Number of sections of CIC decimator
3 (default) | positive integer scalar

Number of sections of CIC decimator, specified as a positive integer scalar.

Dependencies

This property applies when you set the MinimumOrderDesign property to false.
Data Types: double

SecondFilterOrder — Order of CIC compensation filter stage
12 (default) | positive integer scalar

Order of CIC compensation filter stage, specified as a positive integer scalar.

Dependencies

This property applies when you set the MinimumOrderDesign property to false.
Data Types: double

4 System Objects

4-420

ThirdFilterOrder — Order of third filter stage
10 (default) | even positive integer

Order of third filter stage, specified as an even positive integer scalar. When you set the
DecimationFactor property to a 1-by-2 vector, the object ignores the ThirdFilterOrder property
because the third filter stage is bypassed.

Dependencies

This property applies when you set the MinimumOrderDesign property to false.
Data Types: double

Bandwidth — Two-sided bandwidth of input signal in Hz
200000 (default) | positive integer scalar

Two-sided bandwidth of input signal in Hz, specified as a positive integer scalar. The object sets the
passband frequency of the cascade of filters to one-half of the value that you specify in the
Bandwidth property. Set the value of this property to less than SampleRate/DecimationFactor.
Data Types: double

StopbandFrequencySource — Source of stopband frequency
Auto (default) | Property

Specify the source of the stopband frequency as one of Auto | Property. When you set this property
to Auto, the object places the cutoff frequency of the cascade filter response at approximately Fc =
SampleRate/M/2 Hz, where M is the total decimation factor that you specify in the
DecimationFactor property. The object computes the stopband frequency as Fstop = Fc + TW/2.
TW is the transition bandwidth of the cascade response computed as 2×(Fc–Fp), and the passband
frequency, Fp, equals Bandwidth/2.

StopbandFrequency — Stopband frequency in Hz
150000 (default) | positive scalar

Stopband frequency in Hz, specified as a positive scalar.

Dependencies

This property applies when you set the StopbandFrequencySource property to Property.
Data Types: double

PassbandRipple — Passband ripple of cascade response in dB
0.1 (default) | positive scalar

Passband ripple of cascade response in dB, specified as a positive scalar. When you set the
MinimumOrderDesign property to true, the object designs the filters so that the cascade response
meets the passband ripple that you specify in the PassbandRipple property.

Dependencies

This property applies when you set the MinimumOrderDesign property to true.
Data Types: double

StopbandAttenuation — Stopband attenuation of cascade response in dB
60 (default) | positive scalar

 dsp.DigitalDownConverter

4-421

Stopband attenuation of cascade response in dB, specified as a positive scalar. When you set the
MinimumOrderDesign property to true, the object designs the filters so that the cascade response
meets the stopband attenuation that you specify in the StopbandAttenuation property.

Dependencies

This property applies when you set the MinimumOrderDesign property to true.
Data Types: double

Oscillator — Type of oscillator
Sine wave (default) | NCO | Input port | None

Specify the oscillator as one of Sine wave | NCO | Input port | None. When you set this property to
Sine wave, the object frequency down converts the input signal using a complex exponential
obtained from samples of a sinusoidal trigonometric function. When you set this property to NCO, the
object performs frequency down conversion with a complex exponential obtained using a numerically
controlled oscillator (NCO). When you set this property to Input port, the object performs
frequency down conversion using the complex oscillator signal, z, that you pass as an input to the
object. When you set this property to None, the mixer stage in the object is not present and the object
acts as three stage cascaded decimator.

CenterFrequency — Center frequency of input signal in Hz
14000000 (default) | positive scalar

Center frequency of input signal in Hz, specified as a positive scalar that is less than or equal to half
the value of the SampleRate property. The object down converts the input signal from the passband
center frequency you specify in the CenterFrequency property, to 0 Hz.

Dependencies

This property applies when you set the Oscillator property to Sine wave or NCO.
Data Types: double

NumAccumulatorBits — Number of NCO accumulator bits
16 (default) | positive integer

Number of NCO accumulator bits, specified as a positive integer in the range [1 128].

Dependencies

This property applies when you set the Oscillator property to NCO.
Data Types: double

NumQuantizedAccumulatorBits — Number of NCO quantized accumulator bits
12 (default) | positive integer

Number of NCO quantized accumulator bits, specified as an integer scalar in the range [1 128]. The
value you specify in this property must be less than the value you specify in the
NumAccumulatorBits property.

Dependencies

This property applies when you set the Oscillator property to NCO.
Data Types: double

4 System Objects

4-422

Dither — Dither control for NCO
true (default) | false

When you set this property to true, a number of dither bits specified in the NumDitherBits
property will be used to apply dither to the NCO signal.

Dependencies

This property applies when you set the Oscillator property to NCO.

NumDitherBits — Number of NCO dither bits
4 (default) | positive integer

Specify this property as an integer scalar smaller than the number of accumulator bits that you
specify in the NumAccumulatorBits property.

Dependencies

This property applies when you set the Oscillator property to NCO and the Dither property to
true.
Data Types: double

Fixed-Point Properties

FiltersInputDataType — Data type of input of each filter stage
Same as input (default) | Custom

Specify the data type at the input of the first, second, and third (if it has not been bypassed) filter
stages as one of Same as input | Custom. The object casts the data at the input of each filter stage
according to the value you set in this property.

CustomFiltersInputDataType — Fixed-point data type of input of each filter stage
numerictype([],16,15) (default) | numeric type

Specify the filters input fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies when you set the FiltersInputDataType property to Custom.

OutputDataType — Data type of output
Same as input (default) | Custom

Specify the data type of output as Same as input | Custom.

CustomOutputDataType — Fixed-point data type of output
numerictype([],16,15) (default) | numeric type

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies when you set the OutputDataType property to Custom.

 dsp.DigitalDownConverter

4-423

Usage

Syntax
y = dwnConv(x)
y = dwnConv(x,z)

Description

y = dwnConv(x) takes an input x and outputs a signal, y that is frequency downconverted and
downsampled.

y = dwnConv(x,z) uses the complex input, z, as the oscillator signal used to frequency down
convert input x when you set the Oscillator property to Input port.

Input Arguments

x — Data input
column vector | matrix

Data input, specified as a column vector or a matrix. The length of input x must be a multiple of the
decimation factor. When the data type of x is double or single precision, the data type of y is the
same as that of x. When the data type of x is of a fixed-point type, the data type of y is defined by the
OutputDataType property.

The input can have multiple channels only if its data type is double or single. The input can be of
data type double, single, signed integer, or signed fixed-point (fi objects).
Data Types: single | double | int8 | int16 | int32 | int64 | fi

z — Oscillator signal
column vector | matrix

Oscillator signal used to frequency down convert the input signal, specified as a column vector or a
matrix. This input must be complex. The length of z must be equal to the length of x. z can be
double, single, signed integer, or signed fixed-point (fi objects).

Dependencies

This input applies when you set the Oscillator property to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Output Arguments

y — Down converted and down sampled signal
column vector | matrix

Down converted and down sampled signal, returned as a column vector or a matrix. The length of y is
equal to the length of x divided by the DecimationFactor. When the data type of x is double or
single precision, the data type of y is the same as that of x. When the data type of x is of a fixed
point type, the data type of y is defined by the OutputDataType property.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

4 System Objects

4-424

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.DigitalDownConverter
getDecimationFactors Get decimation factors of each filter stage of a digital down converter
getFilterOrders Get orders of digital down converter or digital up converter filter cascade
getFilters Get handles to digital down converter or digital up converter filter cascade

objects
fvtool Visualize frequency response of digital down converter or digital up

converter filter cascade
groupDelay Group delay of digital down converter or digital up converter filter cascade
visualizeFilterStages Display response of digital down converter or digital up converter filter

cascade
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL

Coder)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Upconvert and Downconvert a Sine Wave Signal

Create a digital up converter object that up samples a 1 KHz sinusoidal signal by a factor of 20 and
up converts it to 50 KHz. Create a digital down converter object that down converts the signal to 0 Hz
and down samples it by a factor of 20.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a sine wave generator to obtain the 1 KHz sinusoidal signal with a sample rate of 6 KHz.

Fs = 6e3; % Sample rate
sine = dsp.SineWave('Frequency',1000,'SampleRate',...
Fs,'SamplesPerFrame',1024);
x = sine(); % generate signal

Create a DigitalUpConverter object. Use minimum order filter designs and set passband ripple to
0.2 dB and the stopband attenuation to 55 dB. Set the double sided signal bandwidth to 2 KHz.

upConv = dsp.DigitalUpConverter(...
 'InterpolationFactor', 20,...
 'SampleRate', Fs,...
 'Bandwidth', 2e3,...
 'StopbandAttenuation', 55,...

 dsp.DigitalDownConverter

4-425

 'PassbandRipple',0.2,...
 'CenterFrequency',50e3);

Create a DigitalDownConverter object. Use minimum order filter designs and set the passband
ripple to 0.2 dB and the stopband attenuation to 55 dB.

dwnConv = dsp.DigitalDownConverter(...
 'DecimationFactor',20,...
 'SampleRate', Fs*20,...
 'Bandwidth', 3e3,...
 'StopbandAttenuation', 55,...
 'PassbandRipple',0.2,...
 'CenterFrequency',50e3);

Create a spectrum estimator to visualize the signal spectrum before up converting, after up
converting, and after down converting.

window = hamming(floor(length(x)/10));
figure; pwelch(x,window,[],[],Fs,'centered')
title('Spectrum of baseband signal x')

Up convert the signal and visualize the spectrum

xUp = upConv(x); % up convert
window = hamming(floor(length(xUp)/10));
figure; pwelch(xUp,window,[],[],20*Fs,'centered');
title('Spectrum of up converted signal xUp')

4 System Objects

4-426

Down convert the signal and visualize the spectrum

xDown = dwnConv(xUp); % down convert
window = hamming(floor(length(xDown)/10));
figure; pwelch(xDown,window,[],[],Fs,'centered')
title('Spectrum of down converted signal xDown')

 dsp.DigitalDownConverter

4-427

Visualize the response of the decimation filters

visualizeFilterStages(dwnConv)

4 System Objects

4-428

Get Decimation Factors

Get decimation factors of each filter stage of the dsp.DigitalDownConverter System object™.

Create a dsp.DigitalDownConverter System object with the default settings. Using the
getDecimationFactors function, obtain the decimation factors of each stage of the object.

dwnConv = dsp.DigitalDownConverter

dwnConv =
 dsp.DigitalDownConverter with properties:

 DecimationFactor: 100
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 30000000

 Show all properties

 dsp.DigitalDownConverter

4-429

M = getDecimationFactors(dwnConv) %#ok

M = 1×3

 25 2 2

The DecimationFactor property of the object is set to 100. The output M is by default a 1-by-3
vector, where each element in the vector is a factor of the overall decimation factor.

When you set the DecimationFactor to a 1-by-2 vector, the object bypasses the third filter stage
and sets the decimation factor of the first and second filtering stages to the values in the first and
second vector elements respectively.

dwnConv.DecimationFactor = [10 10]

dwnConv =
 dsp.DigitalDownConverter with properties:

 DecimationFactor: [10 10]
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 30000000

 Show all properties

M = getDecimationFactors(dwnConv)

M = 1×2

 10 10

The output of the getDecimationFactors function is now a 1-by-2 vector.

Algorithms
The object downconverts the input signal by multiplying it with a complex exponential with center
frequency equal to the value in the CenterFrequency property. The object downsamples the
frequency downconverted signal using a cascade of three decimation filters. In this case, the filter
cascade consists of a CIC decimator, a CIC compensator, and a third FIR decimation stage. The
following block diagram shows the architecture of the digital down converter.

4 System Objects

4-430

The scaling section normalizes the CIC gain and the oscillator power. It may also contain a correction
factor to achieve the desired ripple specification. When you set the Oscillator property to
InputPort, the normalization factor does not include the oscillator power factor. Depending on the
setting of the DecimationFactor property, you may be able to bypass the third filter stage. When the
input data type is double or single, the object implements an N-section CIC decimation filter as an
FIR filter with a response that corresponds to a cascade of N boxcar filters. A true CIC filter with
actual comb and integrator sections is implemented when the input data is of a fixed-point type. The
CIC filter is emulated with an FIR filter so that you can run simulations with floating-point data.

The following block diagram represents the DDC arithmetic with single or double-precision, floating-
point inputs.

For details of fixed-point operation, see “Fixed Point” on page 4-432.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object also supports SIMD code generation using Intel AVX2 technology when the input signal
has a data type of single or double.

 dsp.DigitalDownConverter

4-431

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The following block diagram represents the DDC arithmetic with signed fixed-point inputs.

• WL is the word length of the input, and FL is the fraction length of the input.
• The input of each filter is cast to the data type specified in the FiltersInputDataType and

CustomFiltersInputDataType properties.
• The oscillator output is cast to a word length equal to the input word length plus one. The fraction

length is equal to the input word length minus one.
• The scaling at the output of the CIC decimator consists of coarse- and fine-gain adjustments. The

coarse gain is achieved using the reinterpretcast function on the CIC decimator output. The
fine gain is achieved using full-precision multiplication.

The following figure depicts the coarse- and fine-gain operations.

4 System Objects

4-432

If the normalization gain is G (where 0<G≦1), then:

• WLcic is the word length of the CIC decimator output and FLcic is the fraction length of the CIC
decimator output

• F1 = abs(nextpow2(G)), indicating the part of G achieved using bit shifts (coarse gain)
• F2 = fraction length specified by the FiltersInputDataType and CustomFiltersInputDataType

properties
• fg = fi((2^F1)*G, true, 16), indicating that the remaining gain cannot be achieved with a

bit shift (fine gain)

See Also
Functions
getDecimationFactors | getFilterOrders | getFilters | fvtool | groupDelay |
visualizeFilterStages | generatehdl

Objects
dsp.DigitalUpConverter

Blocks
Digital Down-Converter | Digital Up-Converter

Topics
“Digital Up and Down Conversion for Family Radio Service”
“Design and Analysis of a Digital Down Converter”

Introduced in R2012a

 dsp.DigitalDownConverter

4-433

dsp.DigitalUpConverter
Package: dsp

Interpolate digital signal and translate it from baseband to IF band

Description
The dsp.DigitalUpConverter System object interpolates a digital signal, and translates it from
baseband to intermediate frequency (IF) band.

To digitally upconvert the input signal:

1 Create the dsp.DigitalUpConverter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
upConv = dsp.DigitalUpConverter
upConv = dsp.DigitalUpConverter(Name,Value)

Description

upConv = dsp.DigitalUpConverter returns a digital up-converter (DUC) System object,
upConv.

upConv = dsp.DigitalUpConverter(Name,Value) returns a DUC System object with the
specified property Name set to the specified value Value. You can specify one or more name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in
single quotes. For example, create an object that upsamples the input signal by a factor of 20, using a
filter with the specified qualities.

upConv = dsp.DigitalUpConverter('InterpolationFactor',20,...
'SampleRate',Fs,...
'Bandwidth',2e3,...
'StopbandAttenuation',55,...
'PassbandRipple',0.2,...
'CenterFrequency',50e3);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

4 System Objects

4-434

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of input signal
30000000 (default) | positive scalar

Set this property to a positive scalar value. The value of this property multiplied by the total
interpolation factor must be greater than or equal to twice the value of the CenterFrequency
property.
Data Types: single | double

InterpolationFactor — Interpolation factor
100 (default) | positive integer | vector of positive integers

Interpolation factor, specified as a positive integer, or a 1-by-2 or 1-by-3 vector of positive integers.

When you set this property to a scalar the object automatically chooses the interpolation factors for
each of the three filtering stages.

When you set this property to a 1-by-2 vector, the object bypasses the first filter stage and sets the
interpolation factor of the second and third filtering stages to the values in the first and second vector
elements, respectively. Both elements of this InterpolationFactor vector must be greater than 1.

When you set this property to a 1-by-3 vector, the ith element of the vector specifies the interpolation
factor for the ith filtering stage. The second and third elements of this InterpolationFactor
vector must be greater than 1 and the first element must equal 1 or 2.
Data Types: double

MinimumOrderDesign — Minimum order filter design
true (default) | false

Minimum order filter design, specified as true or false.

When you set this property to true, the object designs filters with the minimum order that meets the
passband ripple, stopband attenuation, passband frequency, and stopband frequency specifications
that you set using the PassbandRipple, StopbandAttenuation, Bandwidth,
StopbandFrequencySource, and StopbandFrequency properties.

When you set this property to false, the object designs filters with orders that you specify in the
FirstFilterOrder, SecondFilterOrder, and NumCICSections properties. The filter designs
meet the passband and stopband frequency specifications that you set using the Bandwidth,
StopbandFrequencySource, and StopbandFrequency properties.
Data Types: logical

SecondFilterOrder — Order of CIC compensation filter stage
12 (default) | positive integer

Order of CIC compensation filter stage, specified as a positive integer.

Dependencies

To enable this property, set the MinimumOrderDesign property to false.
Data Types: double

 dsp.DigitalUpConverter

4-435

FirstFilterOrder — Order of first filter stage
10 (default) | positive even integer

Order of first filter stage, specified as a positive even integer.
Dependencies

To enable this property, set the MinimumOrderDesign property to false. When you set the
InterpolationFactor property to a 1-by-2 vector, the object ignores the FirstFilterOrder
property, because the first filter stage is bypassed.
Data Types: double

NumCICSections — Number of sections of CIC interpolator
3 (default) | positive integer

Number of sections of CIC interpolator, specified as a positive integer.
Dependencies

To enable this property, set the MinimumOrderDesign property to false.
Data Types: double

Bandwidth — Two-sided bandwidth of input signal in Hz
200000 (default) | positive integer

Two-sided bandwidth of input signal in Hz, specified as a positive integer. The object sets the
passband frequency of the cascade of filters to half of the value that you specify in this Bandwidth
property.
Data Types: double

StopbandFrequencySource — Source of stopband frequency
Auto (default) | Property

Source of stopband frequency, specified as Auto or Property. When you set this property to Auto,
the object places the cutoff frequency of the cascade filter response at approximately Fc =
SampleRate/2 Hz and computes the stopband frequency as Fstop = Fc + TW/2. TW is the transition
bandwidth of the cascade response, computed as 2×(Fc–Fp). Fp is the passband frequency computed
by Bandwidth/2.

StopbandFrequency — Stopband frequency in Hz
150000 (default) | positive scalar

Stopband frequency in Hz, specified as a positive scalar.
Dependencies

To enable this property, set the StopbandFrequencySource property to Property.
Data Types: double

PassbandRipple — Passband ripple of cascade response in dB
0.1 (default) | positive scalar

Passband ripple of cascade response in dB, specified as a positive scalar. When you set the
MinimumOrderDesign property to true, the object designs the filters so that the cascade response
meets the passband ripple that you specify in this PassbandRipple property.

4 System Objects

4-436

Dependencies

To enable this property, set the MinimumOrderDesign property to true.
Data Types: double

StopbandAttenuation — Stopband attenuation of cascade response in dB
60 (default) | positive scalar

Stopband attenuation of cascade response in dB, specified as a positive scalar. When you set the
MinimumOrderDesign property to true, the object designs the filters so that the cascade response
meets the stopband attenuation that you specify in this StopbandAttenuation property.
Dependencies

To enable this property, set the MinimumOrderDesign property to true.
Data Types: double

Oscillator — Type of oscillator
Sine wave (default) | NCO

Type of oscillator, specified as Sine wave or NCO. When you set this property to Sine wave, the
object frequency-upconverts the output of the interpolation filter cascade by using a complex
exponential signal obtained from samples of a sinusoidal trigonometric function. When you set this
property to NCO, the object frequency-upconverts the output by using a complex exponential obtained
from a numerically controlled oscillator (NCO).

CenterFrequency — Center frequency of output signal in Hz
14000000 (default) | positive scalar

Center frequency of output signal in Hz, specified as a positive scalar. The value of this property must
be less than or equal to half the product of the SampleRate property and the total interpolation
factor. The object up converts the input signal so that the output spectrum centers at this frequency
you specify in the CenterFrequency property.
Data Types: double

NCO Properties

NumAccumulatorBits — Number of NCO accumulator bits
16 (default) | integer in the range [1, 128]

Number of NCO accumulator bits, specified as an integer in the range [1, 128]. For more details, see
the dsp.NCO System object.
Dependencies

To enable this property, set the Oscillator property to NCO.
Data Types: double

NumQuantizedAccumulatorBits — Number of NCO accumulator bits
12 (default) | integer in the range [1, 128]

Number of NCO accumulator bits, specified as an integer in the range [1, 128]. The value you specify
for this property must be less than the value you specify in the NumAccumulatorBits property. For
more details, see the dsp.NCO System object.

 dsp.DigitalUpConverter

4-437

Dependencies

To enable this property, set the Oscillator property to NCO.
Data Types: double

Dither — Dither control for NCO
true (default) | false

Dither control for NCO, specified as true or false. When you set this property to true, the object
uses the number of dither bits specified in the NumDitherBits property when applying dither to the
NCO signal. When this property is false, the NCO does not apply dither to the signal. For more
details, see the dsp.NCO System object.

Dependencies

To enable this property, set the Oscillator property to NCO.
Data Types: logical

NumDitherBits — Number of NCO dither bits
4 (default) | positive integer

Number of NCO dither bits, specified as a positive integer scalar smaller than the number of
accumulator bits that you specify in the NumAccumulatorBits property. For more details, see the
dsp.NCO System object.

Dependencies

To enable this property, set the Oscillator property to NCO and the Dither property to true.
Data Types: double

Fixed-Point Properties

FiltersOutputDataType — Data type at output of each filter stage
Same as input (default) | Custom

Data type at the output of the first (if it has not been bypassed), second, and third filter stages,
specified as Same as input or Custom. The object casts the data at the output of each filter stage
according to the value you set in this property. For the CIC stage, the casting is done after the signal
is scaled by the normalization factor.

CustomFiltersOutputDataType — Fixed-point data type at output of each filter stage
numerictype([],16,15) (default) | numerictype object

Fixed-point data type at output of each filter stage, specified as a scaled numerictype object with
the Signedness property set to Auto.

Dependencies

To enable this property, set the FiltersOutputDataType property to Custom.

OutputDataType — Data type of output
Same as input (default) | Custom

Data type of output, specified as Same as input or Custom.

4 System Objects

4-438

CustomOutputDataType — Fixed-point data type of output
numerictype([],16,15) (default) | numerictype object

Fixed-point data type of output, specified as a scaled numerictype object the Signedness property
set to Auto.

Dependencies

To enable this property, set the OutputDataType property to Custom.

Usage

Syntax
y = upConv(x)

Description

y = upConv(x)returns an upsampled and frequency-upconverted signal y, for a real or complex
input column vector x.

Input Arguments

x — Input signal
real or complex column vector

Input signal, specified as a column vector of real or complex values. The length of input x must be a
multiple of the decimation factor. When the data type of x is double or single, the data type of y is
the same as that of x. When the data type of x is of a fixed-point type, the data type of y is defined by
the OutputDataType property.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Output Arguments

y — Upconverted and upsampled signal
column vector

Upconverted and upsampled signal, returned as a column vector. The length of y is equal to the
length of x divided by the InterpolationFactor. When the data type of x is double or single,
the data type of y is the same as that of x. When the data type of x is of a fixed-point type, the data
type of y is defined by the OutputDataType property.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 dsp.DigitalUpConverter

4-439

Specific to dsp.DigitalUpConverter
getInterpolationFactors Get interpolation factors of each filter stage of digital upconverter
getFilterOrders Get orders of digital down converter or digital up converter filter cascade
getFilters Get handles to digital down converter or digital up converter filter cascade

objects
fvtool Visualize frequency response of digital down converter or digital up

converter filter cascade
groupDelay Group delay of digital down converter or digital up converter filter cascade
visualizeFilterStages Display response of digital down converter or digital up converter filter

cascade
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL

Coder)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Upconvert Sine Wave Signal

Create a DUC System object™ that upsamples a 1-kHz sinusoidal signal by a factor of 20 and
upconverts it to 50 kHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes
step(myObject,x).

Create a sine wave generator to obtain the 1-kHz sinusoidal signal with a sample rate of 6 kHz.

 Fs = 6e3; % Sample rate
 sine = dsp.SineWave('Frequency',1000,...
 'SampleRate',Fs,...
 'SamplesPerFrame',1024);
 x = sine(); % generate signal

Create a DUC System object. Use minimum order filter designs and set the passband ripple to 0.2 dB
and stopband attenuation to 55 dB. Set the double-sided signal bandwidth to 2 kHz.

upConv = dsp.DigitalUpConverter(...
 'InterpolationFactor',20,...
 'SampleRate',Fs,...
 'Bandwidth',2e3,...
 'StopbandAttenuation',55,...
 'PassbandRipple',0.2,...
 'CenterFrequency',50e3);

Create a spectrum estimator to visualize the signal spectrum before and after upconverting.

4 System Objects

4-440

window = hamming(floor(length(x)/10));
figure; pwelch(x,window,[],[],Fs,'centered')
title('Spectrum of baseband signal x')

Upconvert the signal and visualize the spectrum.

 xUp = upConv(x);
 window = hamming(floor(length(xUp)/10));
 figure;
 pwelch(xUp,window,[],[],20*Fs,'centered')
 title('Spectrum of upconverted signal xUp')

 dsp.DigitalUpConverter

4-441

Visualize the response of the interpolation filters.

 visualizeFilterStages(upConv)

4 System Objects

4-442

Algorithms
The object up samples the input signal using a cascade of three interpolation filters. This object
frequency-upconverts the upsampled signal by multiplying it by a complex exponential with center
frequency equal to the value in the CenterFrequency property. In this case, the filter cascade
consists of a FIR interpolation stage, a second stage for CIC compensation, and a CIC interpolator.
The block diagram shows the architecture of the digital up converter.

The scaling section normalizes the CIC gain and the oscillator power. It can also contain a correction
factor to achieve the desired ripple specification. Depending on the setting of the
InterpolationFactor property, you might be able to bypass the first filter stage. When the input

 dsp.DigitalUpConverter

4-443

data type is floating point, the object implements an N-section CIC interpolation filter as a FIR filter
with a response that corresponds to a cascade of N boxcar filters. The CIC filter is emulated with a
FIR filter so that you can run simulations with floating-point data. When the input data is fixed-point
type, the object implements a true CIC filter with actual comb and integrator sections.

The diagram represents the DUC arithmetic with floating-point inputs.

For details of fixed-point operation, see “Fixed Point” on page 4-444.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object also supports SIMD code generation using Intel AVX2 technology when the input signal
has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The block diagram represents the DUC arithmetic with signed fixed-point inputs.

4 System Objects

4-444

• WL is the word length of the input, and FL is the fraction length of the input.
• The output of each filter is cast to the data type specified in the FiltersOutputDataType and

CustomFiltersOutputDataType properties. The casting of the CIC output occurs after the
scaling factor is applied.

• The oscillator output is cast to a word length equal to the FiltersOutputDataType word length
plus one. The fraction length is equal to the FiltersOutputDataType word length minus one.

• The scaling at the output of the CIC interpolator consists of coarse-gain and fine-gain adjustments.
The coarse gain is achieved using the reinterpretcast function on the CIC interpolator output.
The fine gain is achieved using full-precision multiplication.

The figure shows the coarse-gain and fine-gain operations.

If the normalization gain is G (where 0<G≦1), then:

• WLcic is the word length of the CIC interpolator output, and FLcic is the fraction length of the CIC
interpolator output.

• F1 = abs(nextpow2(G)), indicating the part of G achieved by using bit shifts (coarse gain).
• F2 is the fraction length specified by the FiltersOutputDataType and

CustomFiltersOutputDataType properties.

 dsp.DigitalUpConverter

4-445

• fg = fi((2^F1)*G,true,16), indicating that the remaining gain cannot be achieved with a bit
shift (fine gain).

See Also
Functions
getDecimationFactors | getFilterOrders | getFilters | fvtool | groupDelay |
visualizeFilterStages | generatehdl

Objects
dsp.DigitalDownConverter

Blocks
Digital Up-Converter | Digital Down-Converter

Topics
“Digital Up and Down Conversion for Family Radio Service”
“Design and Analysis of a Digital Down Converter”

Introduced in R2012a

4 System Objects

4-446

getInterpolationFactors
Package: dsp

Get interpolation factors of each filter stage of digital upconverter

Syntax
M = getInterpolationFactors(upConv)

Description
M = getInterpolationFactors(upConv) returns a vector, M, with the interpolation factors of
each filter stage of digital up converter upConv. If the first filter stage is bypassed, then M is a 1-by-2
vector that contains the interpolation factors of the second and third stages. If the first filter stage is
not bypassed, then M is a 1-by-3 vector containing the interpolation factors of the first, second, and
third filter stages.

Examples

Get Interpolation Factors

Get interpolation factors of each filter stage of a dsp.DigitalUpConverter System object™.

Create a dsp.DigitalUpConverter System object with the default settings. Using the
getInterpolationFactors function, obtain the interpolation factors of each stage of the object.

upConv = dsp.DigitalUpConverter

upConv =
 dsp.DigitalUpConverter with properties:

 InterpolationFactor: 100
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 300000

 Show all properties

M = getInterpolationFactors(upConv) %#ok

M = 1×3

 2 2 25

 getInterpolationFactors

4-447

The InterpolationFactor property of the object is set to 100. By default, the output M is a 1-by-3
vector, where each element in the vector is a factor of the overall interpolation factor.

When you set the InterpolationFactor property to a 1-by-2 vector, the object bypasses the first
filter stage and sets the interpolation factor of the second and third filtering stages to the values in
the first and second vector elements, respectively. The output of the getInterpolationFactors
function is now a 1-by-2 vector.

upConv.InterpolationFactor = [10 10]

upConv =
 dsp.DigitalUpConverter with properties:

 InterpolationFactor: [10 10]
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 300000

 Show all properties

M = getInterpolationFactors(upConv)

M = 1×2

 10 10

Input Arguments
upConv — Digital up converter
dsp.DigitalUpConverter System object

Digital up converter, specified as a dsp.DigitalUpConverter System object.

Output Arguments
M — Interpolation factors
vector

Interpolation factors of each filter stage, returned as a 1-by-2 or 1-by-3 vector. If the first filter stage
is bypassed, then M is a 1-by-2 vector containing the interpolation factors of the second and third
stages. If the first filter stage is not bypassed, then M is a 1-by-3 vector containing the interpolation
factors of the first, second, and third filter stages.
Data Types: double

4 System Objects

4-448

See Also
Objects
dsp.FilterCascade

Functions
addStage | generateFilteringCode | getNumStages | releaseStages | removeStage

Introduced in R2012a

 getInterpolationFactors

4-449

dsp.DyadicAnalysisFilterBank
Package: dsp

Dyadic analysis filter bank

Description
The dsp.DyadicAnalysisFilterBank System object decomposes a broadband signal into a
collection of subbands with smaller bandwidths and slower sample rates. The System object uses a
series of highpass and lowpass FIR filters to provide approximate octave band frequency
decompositions of the input. Each filter output is downsampled by a factor of two. With the
appropriate analysis filters and tree structure, the dyadic analysis filter bank is a discrete wavelet
transform (DWT) or discrete wavelet packet transform (DWPT).

To obtain approximate octave band frequency decompositions of the input:

1 Create the dsp.DyadicAnalysisFilterBank object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
dydan = dsp.DyadicAnalysisFilterBank
dydan = dsp.DyadicAnalysisFilterBank(Name,Value)

Description

dydan = dsp.DyadicAnalysisFilterBank constructs a dyadic analysis filter bank object, dydan,
that computes the level-two discrete wavelet transform (DWT) of a column vector input. For a 2-D
matrix input, the object transforms the columns using the Daubechies third-order extremal phase
wavelet. The length of the input along the first dimension must be a multiple of 4.

dydan = dsp.DyadicAnalysisFilterBank(Name,Value) returns a dyadic analysis filter bank
object, with each property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-450

Filter — Type of filter used in subband decomposition
Custom (default) | Biorthogonal | Coiflets | Daubechies | Discrete Meyer | Haar | Reverse
Biorthogonal | Symlets

Specify the type of filter used to determine the high and lowpass FIR filters in the dyadic analysis
filter bank as Custom , Haar, Daubechies, Symlets, Coiflets, Biorthogonal, Reverse
Biorthogonal, or Discrete Meyer. All property values except Custom require Wavelet Toolbox
software. If the value of this property is Custom, the filter coefficients are specified by the values of
the CustomLowpassFilter and CustomHighpassFilter properties. Otherwise, the dyadic
analysis filter bank object uses the Wavelet Toolbox function wfilters to construct the filters. The
following table lists supported wavelet filters and example syntax to construct the filters:

Filter Example Setting Syntax for Analysis Filters
Haar N/A [Lo_D,Hi_D]=wfilters('haar');
Daubechies extremal
phase

WaveletOrder=3; [Lo_D,Hi_D]=wfilters('db3');

Symlets (Daubechies
least-asymmetric)

WaveletOrder=4; [Lo_D,Hi_D]=wfilters('sym4');

Coiflets WaveletOrder=1; [Lo_D,Hi_D]=wfilters('coif1');
Biorthogonal FilterOrder='[3/1]'; [Lo_D,Hi_D,Lo_R,Hi_R]=...

wfilters('bior3.1');
Reverse biorthogonal FilterOrder='[3/1]'; [Lo_D,Hi_D,Lo_R,Hi_R]=...

wfilters('rbior3.1');
Discrete Meyer N/A [Lo_D,Hi_D]=wfilters('dmey');

CustomLowpassFilter — Lowpass FIR filter coefficients
[0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327] (default) | row vector

Specify a vector of lowpass FIR filter coefficients, in powers of z-1. Use a half-band filter that passes
the frequency band stopped by the filter specified in the CustomHighpassFilter property. The
default specifies a Daubechies third-order extremal phase scaling (lowpass) filter.
Dependencies

This property applies when you set the Filter property to Custom.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CustomHighpassFilter — Highpass FIR filter coefficients
[-0.3327 0.8069 -0.4599 -0.1350 0.0854 0.0352] (default) | row vector

Specify a vector of highpass FIR filter coefficients, in powers of z-1. Use a half-band filter that passes
the frequency band stopped by the filter specified in the CustomLowpassFilter property. The
default specifies a Daubechies 3rd-order extremal phase wavelet (highpass) filter.
Dependencies

This property applies when you set the Filter property to Custom.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WaveletOrder — Order for orthogonal wavelets
2 (default) | positive integer

 dsp.DyadicAnalysisFilterBank

4-451

Specify the order of the wavelet selected in the Filter property.
Dependencies

This property applies when you set the Filter property to an orthogonal wavelet: Daubechies
(Daubechies extremal phase), Symlets (Daubechies least-asymmetric), or Coiflets.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

FilterOrder — Analysis and synthesis filter orders for biorthogonal filters
1 / 1 (default) | 1 / 3 | 1 / 5 | 2 / 2 | 2 / 4 | 2 / 6 | 2 / 8 | 3 / 1 | 3 / 3 | 3 / 5 | 3 / 7 |
3 / 9 | 4 / 4 | 5 / 5 | 6 / 8

Specify the order of the analysis and synthesis filter orders for biorthogonal filter banks as 1 / 1,
1 / 3, 1 / 5, 2 / 2, 2 / 4, 2 / 6, 2 / 8, 3 / 1, 3 / 3, 3 / 5, 3 / 7, 3 / 9, 4 / 4, 5 / 5,
or 6 / 8. Unlike orthogonal wavelets, biorthogonal wavelets require different filters for the analysis
(decomposition) and synthesis (reconstruction) of an input. The first number indicates the order of
the synthesis (reconstruction) filter. The second number indicates the order of the analysis
(decomposition) filter.
Dependencies

This property applies when you set the Filter property to Biorthogonal or Reverse
Biorthogonal.
Data Types: char

NumLevels — Number of filter bank levels used in analysis (decomposition)
2 (default) | integer greater than or equal to 1

Specify the number of filter bank analysis levels a positive integer greater than or equal to 1. A level-
N asymmetric structure produces N+1 output subbands. A level-N symmetric structure produces 2N

output subbands. The size of the input along the first dimension must be a multiple of 2N, where N is
the number of levels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TreeStructure — Structure of filter bank
Asymmetric (default) | Symmetric

Specify the structure of the filter bank as Asymmetric or Symmetric. The asymmetric structure
decomposes only the lowpass filter output from each level. The symmetric structure decomposes the
highpass and lowpass filter outputs from each level. If the analysis filters are scaling (lowpass) and
wavelet (highpass) filters, the asymmetric structure is the discrete wavelet transform, while the
symmetric structure is the discrete wavelet packet transform.

When this property is Symmetric, the output has 2N subbands each of size M/2N. In this case, M is
the length of the input along the first dimension and N is the value of the NumLevels property. When
this property is Asymmetric, the output has N+1 subbands. The following equation gives the length
of the output in the kth subband in the asymmetric case:

Mk =

M
2k 1 ≤ k ≤ N

M
2N k = N + 1

4 System Objects

4-452

Usage

Syntax
y = dydan(x)

Description

y = dydan(x) computes the subband decomposition of the input x and outputs the dyadic subband
decomposition in y as a single concatenated column vector or matrix of coefficients.

Input Arguments

x — Data input
column vector | matrix

Data input, specified as a column vector or a matrix. Each column of x is treated as an independent
input, and the number of rows of x must be a multiple of 2N, where N is the number of levels
specified by the NumLevels property.
Data Types: single | double

Output Arguments

y — Dyadic subband decomposition output
column vector | matrix

Dyadic subband decomposition output, returned as a column vector or a matrix. The elements of y
are ordered with the highest-frequency subband first followed by subbands in decreasing frequency.

When TreeStructure is set to Symmetric, the output has 2N subbands each of size M/2N. In this
case, M is the length of the input along the first dimension, and N is the value of the NumLevels
property. When TreeStructure is set to Asymmetric, the output has N+1 subbands. The following
equation gives the length of the output in the kth subband in the asymmetric case:

Mk =

M
2k 1 ≤ k ≤ N

M
2N k = N + 1

Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm

 dsp.DyadicAnalysisFilterBank

4-453

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Filter Square Wave Using Dyadic Filter Banks

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Denoise square wave input using dyadic analysis and synthesis filter banks.

t = 0:.0001:.0511;
x= square(2*pi*30*t);
xn = x' + 0.08*randn(length(x),1);
dydanl = dsp.DyadicAnalysisFilterBank;

The filter coefficients correspond to a haar wavelet.

dydanl.CustomLowpassFilter = [1/sqrt(2) 1/sqrt(2)];
dydanl.CustomHighpassFilter = [-1/sqrt(2) 1/sqrt(2)];
dydsyn = dsp.DyadicSynthesisFilterBank;
dydsyn.CustomLowpassFilter = [1/sqrt(2) 1/sqrt(2)];
dydsyn.CustomHighpassFilter = [1/sqrt(2) -1/sqrt(2)];
C = dydanl(xn);

Subband outputs.

C1 = C(1:256); C2 = C(257:384); C3 = C(385:512);

Set higher frequency coefficients to zero to remove the noise.

x_den = dydsyn([zeros(length(C1),1);...
 zeros(length(C2),1);C3]);

Plot the original and denoised signals.

subplot(2,1,1), plot(xn); title('Original noisy Signal');
subplot(2,1,2), plot(x_den); title('Denoised Signal');

4 System Objects

4-454

Subband Ordering For Asymmetric Tree Structure Using Dyadic Analysis Filter Bank

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Sampling frequency 1 kHz input length 1024

t = 0:.001:1.023;
x = square(2*pi*30*t);
xn = x' + 0.08*randn(length(x),1);

Default asymmetric structure with order 3 extremal phase wavelet

dydan = dsp.DyadicAnalysisFilterBank;
Y = dydan(xn);

Level 2 yields 3 subbands (two detail-one approximation) Nyquist frequency is 500 Hz

D1 = Y(1:512); % subband approx. [250, 500] Hz
D2 = Y(513:768); % subband approx. [125, 250] Hz
Approx = Y(769:1024); % subband approx. [0,125] Hz

 dsp.DyadicAnalysisFilterBank

4-455

Subband Ordering For Symmetric Tree Structure Using Dyadic Analysis Filter Bank

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Sampling frequency 1 kHz input length 1024.

t = 0:.001:1.023;
x = square(2*pi*30*t);
xn = x' + 0.08*randn(length(x),1);

dydan = dsp.DyadicAnalysisFilterBank('TreeStructure',...
'Symmetric');
Y = dydan(xn);
D1 = Y(1:256); % subband approx. [375,500] Hz
D2 = Y(257:512); % subband approx. [250,375] Hz
D3 = Y(513:768); % subband approx. [125,250] Hz
Approx = Y(769:1024); % subband approx. [0, 125] Hz

Algorithms
This object implements the algorithm, inputs, and outputs described on the Dyadic Analysis Filter
Bank block reference page. The object properties correspond to the block parameters, except:
The dyadic analysis filter bank object always concatenates the subbands into a single column vector
for a column vector input, or into the columns of a matrix for a matrix input. This behavior
corresponds to the block's behavior when you set the Output parameter to Single port.

See Also
Objects
dsp.DyadicSynthesisFilterBank | dsp.SubbandAnalysisFilter

Introduced in R2012a

4 System Objects

4-456

dsp.DyadicSynthesisFilterBank
Package: dsp

Reconstruct signals from subbands

Description
The dsp.DyadicSynthesisFilterBank System object reconstructs signals from subbands with
smaller bandwidths and lower sample rates. The filter bank uses a series of highpass and lowpass FIR
filters to repeatedly reconstruct the signal.

To reconstruct signals from subbands with smaller bandwidths and lower sample rates:

1 Create the dsp.DyadicSynthesisFilterBank object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
dydsyn = dsp.DyadicSynthesisFilterBank
dydsyn = dsp.DyadicSynthesisFilterBank(Name,Value)

Description

dydsyn = dsp.DyadicSynthesisFilterBank returns a synthesis filter bank, dydsyn, that
reconstructs a signal from its subbands with smaller bandwidths and smaller sample rates.

dydsyn = dsp.DyadicSynthesisFilterBank(Name,Value) returns a dyadic synthesis filter
bank object, with each property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filter — Type of filter used in filter bank
Custom (default) | Biorthogonal | Coiflets | Daubechies | Discrete Meyer | Haar | Reverse
Biorthogonal | Symlets

Specify the type of filter used to determine the highpass and lowpass FIR filters in the filter bank as
one of Custom, Haar, Daubechies, Symlets, Coiflets, Biorthogonal, Reverse

 dsp.DyadicSynthesisFilterBank

4-457

Biorthogonal, or Discrete Meyer. If you set this property to Custom, the
CustomLowpassFilter and CustomHighpassFilter properties specify the filter coefficients.
Otherwise, the object uses the wfilters function to construct the filters. Depending on the filter, the
WaveletOrder or “FilterOrder” on page 4-0 property might apply. For a list of the supported
wavelets, see the following table.

Filter Sample Setting for Related
Filter Specification
Properties

Corresponding Wavelet
Toolbox Function Syntax

Haar None wfilters('haar')
Daubechies H.WaveletOrder = 4 wfilters('db4')
Symlets H.WaveletOrder = 3 wfilters('sym3')
Coiflets H.WaveletOrder = 1 wfilters('coif1')
Biorthogonal H.FilterOrder = '[3/1]' wfilters('bior3.1')
Reverse Biorthogonal H.FilterOrder = '[3/1]' wfilters('rbior3.1')
Discrete Meyer None wfilters('dmey')

In order to automatically design wavelet-based filters, install the Wavelet Toolbox product. Otherwise,
use the CustomLowpassFilter and CustomHighpassFilter properties to specify lowpass and
highpass FIR filters.

CustomLowpassFilter — Lowpass FIR filter coefficients
[0.3327 0.8069 0.4599 -0.1350 -0.0854 0.0352] (default) | row vector

Specify a vector of lowpass FIR filter coefficients, in descending powers of z. Use a half-band filter
that passes the frequency band stopped by the filter specified in the CustomHighpassFilter
property. To perfectly reconstruct a signal decomposed by the dsp.DyadicAnalysisFilterBank
object, design the filters in the synthesis filter bank to perfectly reconstruct the outputs of the
analysis filter bank. Otherwise, the reconstruction is imperfect. The default values of this property
specify a perfect reconstruction filter for the default settings of the analysis filter bank (based on a
third-order Daubechies wavelet).

Dependencies

This property applies when you set the Filter property to Custom.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CustomHighpassFilter — Highpass FIR filter coefficients
[0.0352 0.0854 -0.1350 -0.4599 0.8069 -0.3327] (default) | row vector

Specify a vector of highpass FIR filter coefficients, in descending powers of z. Use a half-band filter
that passes the frequency band stopped by the filter specified in the CustomLowpassFilter
property. To perfectly reconstruct a signal decomposed by the dsp.DyadicAnalysisFilterBank
object, design the filters in the synthesis filter bank to perfectly reconstruct the outputs of the
analysis filter bank. Otherwise, the reconstruction is imperfect. The default values of this property
specify a perfect reconstruction filter for the default settings of the analysis filter bank (based on a
third-order Daubechies wavelet).

Dependencies

This property applies when you set the Filter property to Custom.

4 System Objects

4-458

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WaveletOrder — Wavelet order
2 (default) | positive integer

Specify the order of the wavelet selected in the Filter property.

Dependencies

This property applies when you set the Filter property to an orthogonal wavelet: Daubechies
(Daubechies extremal phase), Symlets (Daubechies least-asymmetric), or Coiflets.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

FilterOrder — Wavelet order for synthesis filter stage
1 / 1 (default) | 1 / 3 | 1 / 5 | 2 / 2 | 2 / 4 | 2 / 6 | 2 / 8 | 3 / 1 | 3 / 3 | 3 / 5 | 3 / 7 |
3 / 9 | 4 / 4 | 5 / 5 | 6 / 8

Specify the order of the wavelet for the synthesis filter stage as:

• First order: '[1/1]', '[1/3]', or '[1/5]'.
• Second order: '[2/2]', '[2/4]', '[2/6]', or '[2/8]'.
• Third order: '[3/1]', '[3/3]', '[3/5]', '[3/7]', or '[3/9]'.
• Fourth order: '[4/4]'.
• Fifth order: '[5/5]'.
• Sixth order: '[6/8]'.

Dependencies

This property applies when you set the Filter property to Biorthogonal or Reverse
Biorthogonal.
Data Types: char

NumLevels — Number of filter bank levels
2 (default) | integer greater than or equal to 1

Specify the number of filter bank levels as a scalar integer. An N-level asymmetric structure has
N + 1 input subbands, and an N-level symmetric structure has 2N input subbands.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TreeStructure — Structure of filter bank
Asymmetric (default) | Symmetric

Specify the structure of the filter bank as Asymmetric or Symmetric. In the asymmetric structure,
the low-frequency subband input to each level is the output of the previous level, while the high-
frequency subband input to each level is an input to the filter bank. In the symmetric structure, both
the low- and high-frequency subband inputs to each level are outputs from the previous level.

 dsp.DyadicSynthesisFilterBank

4-459

Usage

Syntax
y = dydsyn(x)

Description

y = dydsyn(x) reconstructs the concatenated subband input x to output y. Each column of input x
contains the subbands for an independent signal. Upper rows contain the high-frequency subbands,
and lower rows contain the low-frequency subbands.

Input Arguments

x — Data input
column vector | matrix

Data input, specified as a column vector or a matrix. Each column of input x contains the subbands
for an independent signal. Upper rows contain the high-frequency subbands, and lower rows contain
the low-frequency subbands. The number of rows of x must be a multiple of 2N, where N is the value
of the NumLevels property.
Data Types: single | double

Output Arguments

y — Reconstructed signal
column vector | matrix

Reconstructed signal, returned as a column vector or a matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Filter Square Wave Using Dyadic Filter Banks

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

4 System Objects

4-460

Denoise square wave input using dyadic analysis and synthesis filter banks.

t = 0:.0001:.0511;
x= square(2*pi*30*t);
xn = x' + 0.08*randn(length(x),1);
dydanl = dsp.DyadicAnalysisFilterBank;

The filter coefficients correspond to a haar wavelet.

dydanl.CustomLowpassFilter = [1/sqrt(2) 1/sqrt(2)];
dydanl.CustomHighpassFilter = [-1/sqrt(2) 1/sqrt(2)];
dydsyn = dsp.DyadicSynthesisFilterBank;
dydsyn.CustomLowpassFilter = [1/sqrt(2) 1/sqrt(2)];
dydsyn.CustomHighpassFilter = [1/sqrt(2) -1/sqrt(2)];
C = dydanl(xn);

Subband outputs.

C1 = C(1:256); C2 = C(257:384); C3 = C(385:512);

Set higher frequency coefficients to zero to remove the noise.

x_den = dydsyn([zeros(length(C1),1);...
 zeros(length(C2),1);C3]);

Plot the original and denoised signals.

subplot(2,1,1), plot(xn); title('Original noisy Signal');
subplot(2,1,2), plot(x_den); title('Denoised Signal');

 dsp.DyadicSynthesisFilterBank

4-461

Algorithms
This object implements the algorithm, inputs, and outputs described on the Dyadic Synthesis Filter
Bank block reference page. The object properties correspond to the block parameters, except:
The object only receives data as a vector or matrix of concatenated subbands.

See Also
Objects
dsp.DyadicAnalysisFilterBank | dsp.SubbandSynthesisFilter

Introduced in R2012a

4 System Objects

4-462

dsp.FarrowRateConverter
Package: dsp

Polynomial sample rate converter with arbitrary conversion factor

Description
The dsp.FarrowRateConverter System object implements a polynomial-fit sample rate conversion
filter using a Farrow structure. You can use this object to convert the sample rate of a signal up or
down by an arbitrary factor. This object supports fixed-point operations.

To convert the sample rate of a signal:

1 Create the dsp.FarrowRateConverter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
frc = dsp.FarrowRateConverter
frc = dsp.FarrowRateConverter(Name,Value)
frc = dsp.FarrowRateConverter(fsIn,fsOut,tol,np)

Description

frc = dsp.FarrowRateConverter creates a polynomial filter-based sample rate converter System
object, frc. For each channel of an input signal, frc converts the input sample rate to the output
sample rate.

frc = dsp.FarrowRateConverter(Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in single quotes.
Example: frc =
dsp.FarrowRateConverter('Specification','Coefficients','Coefficients',[1 2; 3
4]) returns a filter that converts from 44.1 kHz to 48 kHz using custom coefficients that implement a
2nd-order polynomial filter.

frc = dsp.FarrowRateConverter(fsIn,fsOut,tol,np) returns a sample rate converter
System object, frc, with InputSampleRate property set to fsIn, OutputSampleRate property set to
fsOut, OutputRateTolerance property set to tol, and PolynomialOrder property set to np.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

 dsp.FarrowRateConverter

4-463

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filter Properties

InputSampleRate — Sample rate of input signal
44100 (default) | positive scalar in Hz

Sample rate of the input signal, specified as a positive scalar in Hz. The input sample rate must be
greater than the bandwidth of interest.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputSampleRate — Sample rate of output signal
48000 (default) | positive scalar in Hz

Sample rate of the output signal, specified as a positive scalar in Hz. The output sample rate can
represent an upsample or downsample of the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputRateTolerance — Maximum tolerance for output sample rate
0 (default) | positive scalar

Maximum tolerance for the output sample rate, specified as a positive scalar from 0 through 0.5,
inclusive.

The actual output sample rate varies but is within the specified range. For example, if
OutputRateTolerance is specified as 0.01, then the actual output sample rate is in the range
OutputSampleRate ± 1%. This flexibility often enables a simpler filter design.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Specification — Method for specifying filter coefficients
'Polynomial order' (default) | 'Coefficients'

Method for specifying filter coefficients for the interpolator filter, specified as one of the following:

• 'Polynomial order' — Use the PolynomialOrder property to specify the order of the
Lagrange-interpolation-filter polynomial. The object calculates coefficients that meet the rate and
tolerance properties.

• 'Coefficients' — Use the Coefficients property to specify the polynomial coefficients
directly.

PolynomialOrder — Order of Lagrange-interpolation-filter polynomial
3 (default) | positive integer less than or equal to 4

Order of the Lagrange-interpolation-filter polynomial, specified as a positive integer less than or
equal to 4. The object calculates coefficients that meet the rate and tolerance properties.

Dependencies

This property applies only when you set Specification to 'Polynomial order'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

4 System Objects

4-464

Coefficients — Filter polynomial coefficients
[-1 1; 1 0] (default) | real-valued square matrix

Filter polynomial coefficients, specified as a real-valued M-by-M matrix, where M is the polynomial
order.

The diagram shows the signal flow graph for a dsp.FarrowRateConverter object with coefficients
set to [1 2; 3 4].

Each branch of the FIR filter corresponds to a row of the coefficient matrix.

Dependencies

This property applies only when you set Specification to 'Coefficients'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for fixed-point operations, specified as a character vector. For more information on
the rounding methods see “Rounding Modes”.

OverflowAction — Overflow action for fixed-point operations
'Wrap' (default) | 'Saturate'

 dsp.FarrowRateConverter

4-465

Overflow action for fixed-point operations, specified as either 'Wrap' or 'Saturate'. For more
details on the overflow actions, see “Overflow Handling”.

CoefficientsDataType — Data type of filter coefficients
numerictype(1,16) (default) | numerictype object

Data type of the filter coefficients, specified as a signed numerictype object. The default data type is
a signed, 16-bit numerictype object. You must specify a numerictype object without specific
binary-point scaling. To maximize precision, the object determines the fraction length of this data
type based on the coefficient values.

FractionalDelayDataType — Data type of fractional delay
numerictype(0,8) (default) | numerictype object

Data type of the fractional delay, specified as an unsigned numerictype object. The default data type
is an unsigned, 8-bit numerictype object. You must specify a numerictype object without specific
binary-point scaling. To maximize precision, the object determines the fraction length of this data
type based on the fractional delay values.

MultiplicandDataType — Data type of multiplicand
numerictype(1,16,13) (default) | numerictype object

Data type of the multiplicand, specified as a signed numerictype object. The default data type is a
signed 16-bit numerictype object with 13-bit fraction length. You must specify a numerictype
object that has a specific binary point scaling.

OutputDataType — Data type of output
'Same word length as input' (default) | 'Same as accumulator' | numerictype object

Data type of the output, specified as one of the following:

• 'Same word length as input' — Output word length and fraction length are the same as the
input.

• 'Same as accumulator' — Output word length and fraction length are the same as the
accumulator.

• numerictype object — Signed fixed-point output data type. If you do not specify a fraction
length, the object computes the fraction length based on the input range. The object preserves the
dynamic range of the input.

Usage

Syntax
y = frc(x)

Description

y = frc(x) resamples input x to create output y according to the rate conversion defined by frc.

Input Arguments

x — Input signal
vector | matrix

4 System Objects

4-466

Input signal, specified as a vector or a matrix. Each column of the input is treated as a separate
channel.

Output Arguments

y — Resampled signal
vector | matrix

Resampled signal, returned as a vector or matrix.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.FarrowRateConverter
getPolynomialCoefficients Get polynomial coefficients of farrow rate conversion filter
getActualOutputRate Get actual output rate
getRateChangeFactors Get overall interpolation and decimation factors
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL

Coder)

Filter Analysis
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
info Information about filter System object
cost Estimate cost of implementing filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Upsample an Audio Signal Using dsp.FarrowRateConverter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The dsp.AudioFileWriter System object™ is not supported in MATLAB Online.

Create a dsp.FarrowRateConverter System object™ to convert an audio signal from 44.1 kHz to
96 kHz. Set the polynomial order for the filter.

fs1 = 44.1e3;
fs2 = 96e3;

 dsp.FarrowRateConverter

4-467

https://www.mathworks.com/products/matlab-online.html

LagrangeOrder = 2; % 1 = linear interpolation
frc = dsp.FarrowRateConverter('InputSampleRate',fs1,...
 'OutputSampleRate',fs2,...
 'PolynomialOrder',LagrangeOrder);
ar = dsp.AudioFileReader('guitar10min.ogg','SamplesPerFrame',14700);
aw = dsp.AudioFileWriter('guitar10min_96kHz.wav','SampleRate',fs2);

Check the resulting interpolation and decimation factors.

[interp,decim] = getRateChangeFactors(frc)

interp = 320

decim = 147

Display the polynomial that the object uses to fit the input samples.

coeffs = getPolynomialCoefficients(frc)

coeffs = 3×3

 0.5000 -0.5000 0
 -1.0000 0 1.0000
 0.5000 0.5000 0

Convert 100 frames of the audio signal. Write the result to a file.

for n = 1:1:100
 x = ar();
 y = frc(x);
 aw(y);
end

Release the AudioFileWriter System object™ to complete creation of the output file.

release(aw)
release(ar)

Plot the input and output signals of the 100th frame of data. Delay the input to compensate for the
latency of the filter.

t1 = 0:1/fs1:1/30-1/fs1;
t2 = 0:1/fs2:1/30-1/fs2;

delay = ceil((LagrangeOrder+1)/2)/fs1;
el1 = 1:length(t1)-delay;
el2 = 1:length(t2);
el2(1:delay) = [];

figure

subplot(2,1,1)
plot(t1(1:length(el1)),x(el1,1))
hold on
plot(t1(1:length(el1)),x(el1,2))
xlabel('Time (s)')
title('Input Channels')

4 System Objects

4-468

subplot(2,1,2)
plot(t2(1:length(el2)),y(el2,1))
hold on
plot(t2(1:length(el2)),y(el2,2))
xlabel('Time (s)')
title('Output Channels')

Zoom in to see the difference in sample rates.

figure

subplot(2,1,1)
plot(t1(1:length(el1)),x(el1,1),'o-')
hold on
plot(t2(1:length(el2)),y(el2,1),'d--')
xlim([0.0104 0.0107])
title('First Channel')
xlabel('Time (s)')
legend('Input','Output')

subplot(2,1,2)
plot(t1(1:length(el1)),x(el1,2),'o-')
hold on
plot(t2(1:length(el2)),y(el2,2),'d--')
xlim([0.0104 0.0107])
xlabel('Time (s)')
title('Second Channel')
legend('Input','Output')

 dsp.FarrowRateConverter

4-469

Reduce Input Size Restriction by Adjusting Tolerance

Create a dsp.FarrowRateConverter System object™ with 0% tolerance. The output rate is equal
to the OutputSampleRate property. The input size must be a multiple of the decimation factor, M.
In this case M is 320.

frc = dsp.FarrowRateConverter('InputSampleRate',96e3,...
 'OutputSampleRate',44.1e3);
FsOut = getActualOutputRate(frc)

FsOut = 44100

[L,M] = getRateChangeFactors(frc)

L = 147

M = 320

Allow a 1% tolerance on the output rate and observe the difference in decimation factor.

frc.OutputRateTolerance = 0.01;
FsOut2 = getActualOutputRate(frc)

FsOut2 = 4.4308e+04

[L2,M2] = getRateChangeFactors(frc)

4 System Objects

4-470

L2 = 6

M2 = 13

The decimation factor is now only 13. The lower the decimation factor, the more flexibility in input
size. The output rate is within the range OutputSampleRate ± 1%.

Frequency Response of dsp.FarrowRateConverter

Create a dsp.FarrowRateConverter System object™ with default properties. Compute and display
the frequency response.

frc = dsp.FarrowRateConverter;
[h,f] = freqz(frc);
plot(f,20*log10(abs(h)))
ylabel('Filter Response')
xlabel('Frequency (rad/s)')

Determine Computational Cost of dsp.FarrowRateConverter

Create a dsp.FarrowRateConverter System object™ with default values. Determine its computational
cost: the number of coefficients, number of states, multiplications per input sample, and additions per
input sample.

frc = dsp.FarrowRateConverter;
cst = cost(frc)

 dsp.FarrowRateConverter

4-471

cst = struct with fields:
 NumCoefficients: 16
 NumStates: 3
 MultiplicationsPerInputSample: 13.0612
 AdditionsPerInputSample: 11.9728

Repeat the computation, allowing for a 10% tolerance in the output sample rate.

frc.OutputRateTolerance = 0.1;
ctl = cost(frc)

ctl = struct with fields:
 NumCoefficients: 16
 NumStates: 3
 MultiplicationsPerInputSample: 12
 AdditionsPerInputSample: 11

Algorithms
Farrow filters implement piecewise polynomial interpolation using Horner’s rule to compute samples
from the polynomial. The polynomial coefficients used to fit the input samples correspond to the
Lagrange interpolation coefficients.

Once a polynomial is fitted to the input data, the value of the polynomial can be calculated at any
point. Therefore, a polynomial filter enables interpolation at arbitrary locations between input
samples.

You can use a polynomial of any order to fit to the existing samples. However, since large-order
polynomials frequently oscillate, polynomials of order 1, 2, 3, or 4 are used in practice.

The block computes interpolated values at the desired locations by varying only the fractional delay,
µ. This value is the interval between the previous input sample and the current output sample. All
filter coefficients remain constant.

• The input samples are filtered using M + 1 FIR filters, where M is the polynomial order.
• The outputs of these filters are multiplied by the fractional delay, µ.
• The output is the sum of the multiplication results.

References
[1] Hentschel, T., and G. Fettweis. "Continuous-Time Digital Filters for Sample-Rate Conversion in

Reconfigurable Radio Terminals." Frequenz. Vol. 55, Number 5-6, 2001, pp. 185–188.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

4 System Objects

4-472

The getRateChangeFactors function supports C and C++ code generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

If the input is fixed point, it must be signed integer or signed fixed point with power-of-two slope and
zero bias.

The diagram shows the data types that the dsp.FarrowRateConverter object uses for fixed-point
signals and floating-point signals. You can specify these data types using the properties of the object,
see “Fixed-Point Properties” on page 4-0 . If the input is floating point, all data types in filter are the
same as the input data type, single or double.

If the input is fixed point, the FIR filter defines internal data types using the RoundingMode,
OverflowMode, and CoefficientsDataType properties. The accumulators and products within the
FIR filter use full precision data types. The object casts the output of the FIR filter to
MultiplicandDataType.

See Also
Functions
getPolynomialCoefficients | getActualOutputRate | getRateChangeFactors |
generatehdl | freqz | fvtool | info | cost

Objects
dsp.FIRRateConverter | dsp.SampleRateConverter

Blocks
Farrow Rate Converter

 dsp.FarrowRateConverter

4-473

Topics
“Efficient Sample Rate Conversion Between Arbitrary Factors”

Introduced in R2014b

4 System Objects

4-474

dsp.FastTransversalFilter
Package: dsp

Fast transversal least-squares FIR adaptive filter

Description
The dsp.FastTransversalFilter computes output, error and coefficients using a fast transversal
least-squares FIR adaptive filter.

To implement the adaptive FIR filter object:

1 Create the dsp.FastTransversalFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ftf = dsp.FastTransversalFilter
ftf = dsp.FastTransversalFilter(len)
ftf = dsp.FastTransversalFilter(Name,Value)

Description

ftf = dsp.FastTransversalFilter returns a System object, ftf, which is a fast transversal,
least-squares FIR adaptive filter. This System object computes the filtered output and the filter error
for a given input and desired signal.

ftf = dsp.FastTransversalFilter(len) returns a dsp.FastTrasversalFilter System
object with the Length property set to len.

ftf = dsp.FastTransversalFilter(Name,Value) returns a dsp.FastTransversalFilter
System object with each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 dsp.FastTransversalFilter

4-475

Method — Method to calculate filter coefficients
'Fast transversal least-squares' (default) | 'Sliding-window fast transversal
least-squares'

Specify the method used to calculate filter coefficients as either 'Fast transversal least-
squares' or 'Sliding-window fast transversal least-squares'. For algorithms used to
implement these two different methods, refer to [1]. This property is nontunable.

Length — Length of filter coefficients vector
32 (default) | positive integer

Specify the length of the FIR filter coefficients vector as a positive integer value.
Data Types: double

SlidingWindowBlockLength — Width of sliding window
32 (default) | positive integer

Specify the width of the sliding window as a positive integer value greater than or equal to the
Length property value. The default vale is the value of the Length property.
Dependencies

This property applies only if the Method property is set to 'Sliding-window fast transversal
least-squares'.
Data Types: double

ForgettingFactor — Fast transversal filter forgetting factor
1 (default) | positive scalar

Specify the fast transversal filter forgetting factor as a positive scalar in the range (0,1]. Setting this
value to 1 denotes infinite memory while filter adaptation. Setting this property value to 1 denotes
infinite memory while adapting to find the new filter. For best results, set this property to a value that
lies in the range [1-0.5/L,1], where L is the Length property value.

Tunable: Yes
Dependencies

This property applies only if the Method property is set to 'Fast transversal least-squares'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

InitialPredictionErrorPower — Initial prediction error power
10 (default) | positive scalar

Specify the initial value of the forward and backward prediction error vectors as a positive numeric
scalar. This scalar should be sufficiently large to maintain stability and prevent an excessive number
of Kalman gain rescues.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialConversionFactor — Initial conversion factor (gamma)
1 (default) | scalar | 2-element row vector

4 System Objects

4-476

Specify the initial value of the conversion factor of the fast transversal filter.

The value of this property depends on the Method property. If Method is set to:

• 'Fast transversal least-squares' –– This property must be a positive numeric value less
than or equal to 1

• 'Sliding-window fast transversal least-squares' –– This property must be a two-
element numeric vector. The first element of this vector must lie within the range [0,1], and the
second element must be less than or equal to -1. In this case, the default value is [1,-1].

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

InitialCoefficients — Initial coefficients of filter
0 (default) | scalar | vector

Specify the initial values of the FIR adaptive filter coefficients as a scalar or a vector of length equal
to the value of the Length property.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LockCoefficients — Locked status of coefficient updates
false (default) | true

Specify whether to lock the filter coefficient values. By default, the value of this property is false,
and the object continuously updates the filter coefficients. If this property is set to true, the filter
coefficients do not update, and their values remain the same.

Tunable: Yes

Usage

Syntax
[y,err] = ftf(x,d)

Description

[y,err] = ftf(x,d) filters the input x, using d as the desired signal, and returns the filtered
output in y and the filter error in err. The System object estimates the filter weights needed to
minimize the error between the output signal and the desired signal.

Input Arguments

x — Data input
scalar | column vector

The signal to be filtered by the fast transversal filter. The input, x, and the desired signal, d must
have the same size and data type.

 dsp.FastTransversalFilter

4-477

The data input can be a variable-size signal. You can change the number of elements in the column
vector even when the object is locked. The System object locks when you call the object to run its
algorithm.
Data Types: single | double

d — Desired signal
scalar | column vector

The fast transversal filter adapts its filter weights, wts, to minimize the error, err, and converge the
input signal x to the desired signal d as closely as possible. You can access the current filter weights
by calling ftf.Coefficients, where ftf is the fast transversal filter object.

The input and the desired signal must have the same size and data type.

The desired signal can be a variable-size signal. You can change the number of elements in the
column vector even when the object is locked. The System object locks when you call the object to
run its algorithm.
Data Types: single | double

Output Arguments

y — Filtered output
scalar | column vector

Filtered output, returned as a scalar or a column vector. The object adapts its filter weights to
converge the input signal x to match the desired signal d. The filter outputs the converged signal.
Data Types: single | double

err — Difference between output and desired signal
scalar | column vector

Difference between the output signal y and the desired signal d, returned as a scalar or a column
vector. The data type of err matches the data type of y. The objective of the adaptive filter is to
minimize this error. The object adapts its weights to converge toward optimal filter weights that
produce an output signal that matches closely with the desired signal.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.FastTransversalFilter
msesim Estimated mean squared error for adaptive filters

Common to All System Objects
step Run System object algorithm

4 System Objects

4-478

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

System Identification of FIR Filter Using Fast Transversal Filter

System identification is the process of identifying the coefficients of an unknown system using an
adaptive filter. The general overview of the process is shown in “System Identification –– Using an
Adaptive Filter to Identify an Unknown System”. The main components involved are:

• The adaptive filter algorithm.
• An unknown system or process to adapt to. In this example, the filter designed by fir1 is the

unknown system.
• Appropriate input data to exercise the adaptation process. In a generic system identification

model, the desired signal d(k) and the input signal x(k) are used to exercise the adaptation
process.

The objective of the adaptive filter is to minimize the error signal between the output of the adaptive
filter y(k) and the output of the unknown system (or the system to be identified) d(k). Once the error
signal is minimized, the adapted filter resembles the unknown system. The coefficients of both the
filters match closely.

Note: If you are using R2016a or earlier, replace each call to the object with the equivalent step
syntax. For example, obj(x) becomes step(obj,x).

Unknown System

Create a dsp.FIRFilter object that represents the system to be identified. Use the fir1 function
to design the filter coefficients. The designed filter is a 10th order lowpass digital filter with a cutoff
frequency of 0.25.

filt = dsp.FIRFilter;
filt.Numerator = fir1(10,.25)

filt =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [-0.0039 1.7585e-18 0.0321 0.1167 0.2207 0.2687 ...]
 InitialConditions: 0

 Show all properties

Pass the signal x to the FIR filter. The desired signal d is the sum of the output of the unknown
system (FIR filter) and an additive noise signal n.

x = randn(1000,1);
d = filt(x) + 0.01*randn(1000,1);

 dsp.FastTransversalFilter

4-479

Adaptive Filter

With the unknown filter designed and the desired signal in place, create and apply the fast
transversal filter object to identify the unknown filter.

Create a dsp.FastTransversalFilter object to represent an adaptive filter. Set the length of the
adaptive filter to 11 taps and a forgetting factor of 0.99.

ftf1 = dsp.FastTransversalFilter(11,...
 'ForgettingFactor',0.99)

ftf1 =
 dsp.FastTransversalFilter with properties:

 Method: 'Fast transversal least-squares'
 Length: 11
 ForgettingFactor: 0.9900
 InitialPredictionErrorPower: 10
 InitialCoefficients: 0
 InitialConversionFactor: 1
 LockCoefficients: false

Pass the primary input signal x and the desired signal d to the fast transversal filter. Run the adaptive
filter to determine the unknown system. The output y of the adaptive filter is the signal converged to
the desired signal d, thereby minimizing the error e between the two signals.

[y,e] = ftf1(x,d);
w = ftf1.Coefficients

w = 1×11

 -0.0043 0.0016 0.0308 0.1171 0.2204 0.2677 0.2210 0.1181 0.0323 0.0013 -0.0037

Plot the results. The output signal matches the desired signal very closely making the error between
the two close to zero.

subplot(2,1,1);
plot(1:1000,[d,y,e])
title('System Identification of an FIR filter');
legend('Desired','Output','Error');
xlabel('time index');
ylabel('signal value');

The coefficients of the FIR filter match very closely with the coefficients of the adapted filter, thereby
confirming the convergence.

subplot(2,1,2);
stem([filt.Numerator; w].');
legend('Actual','Estimated');
xlabel('coefficient #');
ylabel('coefficient value');

4 System Objects

4-480

References
[1] Haykin, Simon. Adaptive Filter Theory, 4th Ed. Upper Saddle River, NJ: Prentice Hall, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.LMSFilter | dsp.RLSFilter | dsp.AffineProjectionFilter |
dsp.FrequencyDomainAdaptiveFilter | dsp.FilteredXLMSFilter | dsp.FIRFilter

Introduced in R2013b

 dsp.FastTransversalFilter

4-481

dsp.FFT
Package: dsp

Discrete Fourier transform

Description
The dsp.FFT System object computes the discrete Fourier transform (DFT) of an input using fast
Fourier transform (FFT). The object uses one or more of the following fast Fourier transform (FFT)
algorithms depending on the complexity of the input and whether the output is in linear or bit-
reversed order:

• Double-signal algorithm
• Half-length algorithm
• Radix-2 decimation-in-time (DIT) algorithm
• Radix-2 decimation-in-frequency (DIF) algorithm
• An algorithm chosen from FFTW [1] , [2]

To compute the DFT of an input:

1 Create the dsp.FFT object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ft = dsp.FFT
ft = dsp.FFT(Name,Value)

Description

ft = dsp.FFT returns a FFT object, ft, that computes the DFT of an N-D array. For column vectors
or multidimensional arrays, the FFT object computes the DFT along the first dimension. If the input is
a row vector, the FFT object computes a row of single-sample DFTs and issues a warning.

ft = dsp.FFT(Name,Value) returns a FFT object with each specified property set to the specified
value. Enclose each property name in single quotes. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

4 System Objects

4-482

For more information on changing property values, see System Design in MATLAB Using System
Objects.

FFTImplementation — FFT implementation
Auto (default) | Radix-2 | FFTW

Specify the implementation used for the FFT as one of Auto, Radix-2, or FFTW. When you set this
property to Radix-2, the FFT length must be a power of two.

BitReversedOutput — Order of output elements relative to input elements
false (default) | true

Designate order of output channel elements relative to order of input elements. Set this property to
true to output the frequency indices in bit-reversed order. The default is false, which corresponds
to a linear ordering of frequency indices.

Normalize — Divide butterfly outputs by two
false (default) | true

Set this property to true if the output of the FFT should be divided by the FFT length. This option is
useful when you want the output of the FFT to stay in the same amplitude range as its input. This is
particularly useful when working with fixed-point data types.

The default value of this property is false with no scaling.

FFTLengthSource — Source of FFT length
Auto (default) | Property

Specify how to determine the FFT length as Auto or Property. When you set this property to Auto,
the FFT length equals the number of rows of the input signal.

FFTLength — FFT length
64 (default) | integer

FFT length, specified as an integer greater than or equal to 2.

This property must be a power of two if any of these conditions apply:

• The input is a fixed-point data type.
• The BitReversedOutput property is true.
• The FFTImplementation property is Radix-2.

Dependencies

This property applies when you set the FFTLengthSource property to Property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WrapInput — Boolean value of wrapping or truncating input
true (default) | false

Wrap input data when FFT length is shorter than input length. If this property is set to true, modulo-
length data wrapping occurs before the FFT operation, given FFT length is shorter than the input
length. If this property is set to false, truncation of the input data to the FFT length occurs before the
FFT operation.

 dsp.FFT

4-483

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as Wrap or Saturate.

SineTableDataType — Sine table word and fraction lengths
Same word length as input (default) | Custom

Specify the sine table data type as Same word length as input or Custom.

CustomSineTableDataType — Sine table word and fraction lengths
numerictype([],16) (default) | numerictype

Specify the sine table fixed-point type as an unscaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies when you set the SineTableDataType property to Custom.

ProductDataType — Product word and fraction lengths
Full precision (default) | Same as input | Custom

Specify the product data type as Full precision, Same as input, or Custom.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies when you set the ProductDataType property to Custom.

AccumulatorDataType — Accumulator word and fraction lengths
Full precision (default) | Same as input | Same as product | Custom

Specify the accumulator data type as Full precision, Same as input, Same as product, or
Custom.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies when you set the AccumulatorDataType property to Custom.

4 System Objects

4-484

OutputDataType — Output word and fraction lengths
Full precision (default) | Same as input | Custom

Specify the output data type as one of Full precision, Same as input, Custom.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies when you set the “OutputDataType” on page 4-0 property to Custom.

Usage

Syntax
y = ft(x)

Description

y = ft(x) computes the DFT, y, of the input x along the first dimension of x.

Input Arguments

x — Time-domain input signal
vector | matrix | N-D array

Time-domain input signal, specified as a vector, matrix, or N-D array.

When the FFTLengthSource property is set to 'Auto', the length of x along the first dimension
must be a positive integer power of two. This length is also the FFT length. When the
FFTLengthSource property is 'Property', the value you specify in FFTLength property must be a
positive integer power of two.

Variable-size input signals are only supported when the FFTLengthSource property is set to
'Auto'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — Discrete Fourier transform of input signal
vector | matrix | N-D array

Discrete Fourier transform of input signal, returned as a vector, matrix, or an N-D array. When
FFTLengthSource property is set to 'Auto', the FFT length is same as the number of rows in the
input signal. When FFTLengthSource property is set to 'Property', the FFT length is specified
through the FFTLength property.

To support non-power-of-two transform lengths with variable-size data, set the FFTImplementation
property to 'FFTW'.

 dsp.FFT

4-485

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Single-Sided Amplitude Spectrum of Signal

Find frequency components of a signal in additive noise.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Fs = 800; L = 1000;
t = (0:L-1)'/Fs;
x = sin(2*pi*250*t) + 0.75*cos(2*pi*340*t);
y = x + .5*randn(size(x)); % noisy signal
ft = dsp.FFT('FFTLengthSource','Property', ...
 'FFTLength',1024);
Y = ft(y);

Plot the single-sided amplitude spectrum

plot(Fs/2*linspace(0,1,512), 2*abs(Y(1:512)/1024))
title('Single-sided amplitude spectrum of noisy signal y(t)')
xlabel('Frequency (Hz)'); ylabel('|Y(f)|')

4 System Objects

4-486

Construct a Sinusoidal Signal Using High Energy FFT Coefficients

Compute the FFT of a noisy sinusoidal input signal. The energy of the signal is stored as the
magnitude square of the FFT coefficients. Determine the FFT coefficients which occupy 99.99% of the
signal energy and reconstruct the time-domain signal by taking the IFFT of these coefficients.
Compare the reconstructed signal with the original signal.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj(x)).

Consider a time-domain signal x n , which is defined over the finite time interval 0 ≤ n ≤ N − 1. The
energy of the signal x n is given by the following equation:

EN = ∑n = 0
N − 1 x n 2

FFT coefficients, X k , are considered signal values in the frequency domain. The energy of the signal
x n in the frequency-domain is therefore the sum of the squares of the magnitude of the FFT
coefficients:

EN = 1
N∑k = 0

N − 1 X k 2

 dsp.FFT

4-487

According to Parseval's theorem, the total energy of the signal in time or frequency-domain is the
same.

EN = ∑n = 0
N − 1 x n 2 = 1

N∑k = 0
N − 1 X k 2

Initialization

Initialize a dsp.SineWave System object to generate a sine wave sampled at 44.1 kHz and has a
frequency of 1000 Hz. Construct a dsp.FFT and dsp.IFFT objects to compute the FFT and the IFFT
of the input signal.

The 'FFTLengthSource' property of each of these transform objects is set to 'Auto'. The FFT
length is hence considered as the input frame size. The input frame size in this example is 1020,
which is not a power of 2, so select the 'FFTImplementation' as 'FFTW'.

L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
 'PhaseOffset',10,...
 'SampleRate',44100,...
 'Frequency',1000);
ft = dsp.FFT('FFTImplementation','FFTW');
ift = dsp.IFFT('FFTImplementation','FFTW',...
 'ConjugateSymmetricInput',true);
rng(1);

Streaming

Stream in the noisy input signal. Compute the FFT of each frame and determine the coefficients that
constitute 99.99% energy of the signal. Take IFFT of these coefficients to reconstruct the time-
domain signal.

numIter = 1000;
for Iter = 1:numIter
 Sinewave1 = Sineobject();
 Input = Sinewave1 + 0.01*randn(size(Sinewave1));
 FFTCoeff = ft(Input);
 FFTCoeffMagSq = abs(FFTCoeff).^2;

 EnergyFreqDomain = (1/L)*sum(FFTCoeffMagSq);
 [FFTCoeffSorted, ind] = sort(((1/L)*FFTCoeffMagSq),...
 1,'descend');

 CumFFTCoeffs = cumsum(FFTCoeffSorted);
 EnergyPercent = (CumFFTCoeffs/EnergyFreqDomain)*100;
 Vec = find(EnergyPercent > 99.99);
 FFTCoeffsModified = zeros(L,1);
 FFTCoeffsModified(ind(1:Vec(1))) = FFTCoeff(ind(1:Vec(1)));
 ReconstrSignal = ift(FFTCoeffsModified);
end

99.99% of the signal energy can be represented by the number of FFT coefficients given by Vec(1):

Vec(1)

ans = 296

4 System Objects

4-488

The signal is reconstructed efficiently using these coefficients. If you compare the last frame of the
reconstructed signal with the original time-domain signal, you can see that the difference is very
small and the plots match closely.

max(abs(Input-ReconstrSignal))

ans = 0.0431

plot(Input,'*');
hold on;
plot(ReconstrSignal,'o');
hold off;

Algorithms
This object implements the algorithm, inputs, and outputs described on the FFT block reference
page. The object properties correspond to the block parameters.

References
[1] FFTW (http://www.fftw.org)

[2] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the FFT,” Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp.
1381-1384.

 dsp.FFT

4-489

http://www.fftw.org

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder).
• When the following conditions apply, the executable generated from this System object relies on

prebuilt dynamic library files (.dll files) included with MATLAB:

• FFTImplementation is set to 'FFTW'.
• FFTImplementation is set to 'Auto', FFTLengthSource is set to 'Property', and

FFTLength is not a power of two.

Use the packNGo function to package the code generated from this System object and all the
relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild
your project in another development environment where MATLAB is not installed. For more
details, see “How To Run a Generated Executable Outside MATLAB”.

• When the FFT length is a power of two, you can generate standalone C and C++ code from this
System object.

See Also
Objects
dsp.IFFT

Introduced in R2012a

4 System Objects

4-490

dsp.FilterCascade
Package: dsp

Create cascade of filter System objects

Description
The dsp.FilterCascade object creates a multistage System object that enables cascading of filter
System objects, delays, and scalar gains. This object operates similar to the cascade function.
However, the cascade function does not support delay as a filter stage.

You can pass the dsp.FilterCascade System object as a stage to another dsp.FilterCascade
System object. You can also pass dsp.FilterCascade System object as an input to the cascade
function.

When you call the object, the size, data type, and complexity of the input signal must be supported by
all of the stages in the filter cascade. This object supports variable-size signals if the filter stages
within the object support variable-size signals.

To filter a signal with a cascade of filters:

1 Create the dsp.FilterCascade object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Alternatively, you can generate a MATLAB function from the filter cascade object, and call that
function to filter a signal. The generated function supports C/C++ code generation. For more details,
see the generateFilteringCode function.

Creation

Syntax
FC = dsp.FilterCascade
FC = dsp.FilterCascade(filt1,filt2,...,filtn)

Description

FC = dsp.FilterCascade returns a System object, FC that has a single stage, a dsp.FIRFilter
System object with default properties.

FC = dsp.FilterCascade(filt1,filt2,...,filtn) returns a multistage System object, FC,
with the first stage set to filt1, the second stage set to filt2, and so on. Each stage can be a filter
System object, a dsp.FilterCascade System object, a dsp.Delay System object, or a scalar gain
value.

For example, create a filter cascade that includes a lowpass filter, a highpass filter, and a gain stage.

 dsp.FilterCascade

4-491

lpFilt = dsp.LowpassFilter('StopbandFrequency',15000,...
 'PassbandFrequency',12000);
hpFilt = dsp.HighpassFilter('StopbandFrequency',5000,...
 'PassbandFrequency',8000);
gain = 2;
bpFilt = dsp.FilterCascade(lpFilt,hpFilt,2);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Stagei — Filter stage
dsp.FIRFilter System object with default properties (default) | filter System object | delay System
object | scalar gain value

Filter stage, specified as a filter System object, delay System object, or a scalar gain value. To see
which System objects you can add to a filter cascade, use:

dsp.FilterCascade.helpSupportedSystemObjects

You can modify an existing stage by modifying the associated property. For example:

FC = dsp.FilterCascade(dsp.FIRFilter,5)

FC =

 dsp.FilterCascade with properties:

 Stage1: [1×1 dsp.FIRFilter]
 Stage2: 5

K>> FC.Stage2 = dsp.FIRDecimator

FC =

 dsp.FilterCascade with properties:

 Stage1: [1×1 dsp.FIRFilter]
 Stage2: [1×1 dsp.FIRDecimator]

To change the number of stages in a cascade, use the addStage and removeStage functions.

Usage

Syntax
y = FC(x)

4 System Objects

4-492

Description

y = FC(x) filters input signal x by using the filter cascade defined in FC and returns filtered output
y. The size, data type, and complexity of the input signal must be supported by all of the stages in the
filter cascade. This object supports variable-size signals if the filter stages within the object support
variable-size signals.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. When the input is a matrix, each column of the matrix
represents an independent data channel.
Data Types: single | double

Output Arguments

y — Filtered output data
vector | matrix

Filtered output data, returned as a vector or a matrix. The size, data type, and complexity of the
output signal matches that of the input signal.
Data Types: double | single

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.FilterCascade
addStage Add filter stage to cascade
generateFilteringCode Generate MATLAB code for a filter cascade
getNumStages Get number of stages in filter cascade
releaseStages Release locked state of all stages in cascade
removeStage Remove stage from filter cascade

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

 dsp.FilterCascade

4-493

Filter Signal Using Cascaded Lowpass and Highpass Filters

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes
step(myObject,x).

Design a bandpass filter by cascading:

• A highpass filter with a stopband frequency of 5000 Hz and a passband frequency of 8000 Hz
• A lowpass filter with a passband frequency of 12,000 Hz and a stopband frequency of 15,000 Hz

Visualize the frequency response using fvtool.

lpFilt = dsp.LowpassFilter('StopbandFrequency',15000,...
 'PassbandFrequency',12000);
hpFilt = dsp.HighpassFilter('StopbandFrequency',5000,...
 'PassbandFrequency',8000);

bpFilt = dsp.FilterCascade(lpFilt,hpFilt);

fvtool(bpFilt);
legend('Bandpass filter');

Pass a noisy sine wave as the input to the bandpass filter. The input is a sum of three sine waves with
frequencies at 3 kHz, 10 kHz, and 15 kHz. The sampling frequency is 48 kHz. View the input and the
filtered output on a spectrum analyzer.

4 System Objects

4-494

The tones at 3 kHz and 15 kHz are attenuated, and the tone at 10 kHz is preserved by the bandpass
filter.

Sine1 = dsp.SineWave('Frequency',3e3,...
 'SampleRate',48e3,...
 'SamplesPerFrame',6000);
Sine2 = dsp.SineWave('Frequency',10e3,...
 'SampleRate',48e3,...
 'SamplesPerFrame',6000);
Sine3 = dsp.SineWave('Frequency',15e3,...
 'SampleRate',48e3,...
 'SamplesPerFrame',6000);

SpecAna = dsp.SpectrumAnalyzer(...
 'PlotAsTwoSidedSpectrum',false,...
 'SampleRate',Sine1.SampleRate, ...
 'NumInputPorts',2,...
 'ShowLegend',true, ...
 'YLimits',[-160,60]);

SpecAna.ChannelNames = {'Original noisy signal','Filtered signal'};

for i = 1:1000
 x = Sine1()+Sine2()+Sine3()+0.1.*randn(Sine1.SamplesPerFrame,1);
 y = bpFilt(x);
 SpecAna(x,y);

end
release(SpecAna)

 dsp.FilterCascade

4-495

Design Compensation Decimator for CIC Decimator

Create a CIC decimator. Cascade the decimator with a gain.

cicdecim = dsp.CICDecimator(...
 'DecimationFactor',6,...
 'NumSections',6);
decimcasc = dsp.FilterCascade(cicdecim,...
 1/gain(cicdecim));

Design a compensation decimator and cascade it with the filter cascade, decimcasc. This operation
nests a dsp.FilterCascade object as a stage in another filter cascade. The CIC compensation
decimator has an inherent gain, gain(cicdecim). The factor of 1/gain(cicdecim) from the
decimation filter cascade, decimcasc, compensates for the compensation filter gain.

% Sample rate of input of compensation decimator
fs = 16e3;
% Passband frequency
fPass = 4e3;
% Stopband frequency
fStop = 4.5e3;
ciccomp = dsp.CICCompensationDecimator(cicdecim,...
 'DecimationFactor',2, ...

4 System Objects

4-496

 'PassbandFrequency',fPass, ...
 'StopbandFrequency',fStop, ...
 'SampleRate',fs);
filtchain = dsp.FilterCascade(decimcasc,ciccomp);

Visualize the frequency response of the cascade of cascades.

f = fvtool(decimcasc,ciccomp,...
 filtchain,'Fs',[fs*6,fs,fs*6],...
 'Arithmetic','fixed');
legend(f,'CIC Decimator',...
 'CIC Compensation Decimator',...
 'Overall Response');

Generate Code to Filter Using Cascade

Design a two-stage decimator with a 100-Hz transition width, a 2-kHz sampling frequency, and 60-dB
attenuation in the stopband. The decimator needs to downsample by a factor of 4.

decimSpec = fdesign.decimator(4,'Nyquist',...
 4,'Tw,Ast',...
 100,60,2000);
filtCasc = design(decimSpec,'multistage',...
 'SystemObject',true);

 dsp.FilterCascade

4-497

Verify your design by using fvtool.

 info(filtCasc)

ans =
 'Discrete-Time Filter Cascade

 Number of stages: 2

 Stage1: dsp.FIRDecimator

 Discrete-Time FIR Multirate Filter (real)

 Filter Structure : Direct-Form FIR Polyphase Decimator
 Decimation Factor : 2
 Polyphase Length : 10
 Filter Length : 19
 Stable : Yes
 Linear Phase : Yes (Type 1)

 Arithmetic : double

 Stage2: dsp.FIRDecimator

 Discrete-Time FIR Multirate Filter (real)

 Filter Structure : Direct-Form FIR Polyphase Decimator
 Decimation Factor : 2
 Polyphase Length : 18
 Filter Length : 35
 Stable : Yes
 Linear Phase : Yes (Type 1)

 Arithmetic : double

 '

 fvtool(filtCasc)

4 System Objects

4-498

Generate code to filter data using this design. You cannot generate C/C++ code from the
dsp.FilterCascade object directly, but you can generate C/C++ code from the generated function.
The function defines the filter stages and calls them in sequence. The function is saved in a file called
myDecimator.m in the current directory.

 generateFilteringCode(filtCasc,'myDecimator');

The myDecimator function creates a filter cascade and calls each stage object in turn.

 type myDecimator

function y = myDecimator(x)
%MYDECIMATOR Construct filter cascade and process each stage

% MATLAB Code
% Generated by MATLAB(R) 9.11 and DSP System Toolbox 9.13.
% Generated on: 01-Sep-2021 13:54:23

% To generate C/C++ code from this function use the codegen command.
% Type 'help codegen' for more information.
%#codegen

%% Construction
persistent filter1 filter2
if isempty(filter1)
 filter1 = dsp.FIRDecimator(...
 'Numerator', [0.0021878514650437845 0 -0.010189095418136306 0 0.031140395225498115 0 -0.082785931644222821 0 0.30979571849010851 0.5 0.30979571849010851 0 -0.082785931644222821 0 0.031140395225498115 0 -0.010189095418136306 0 0.0021878514650437845]);
 filter2 = dsp.FIRDecimator(...

 dsp.FilterCascade

4-499

 'Numerator', [0.001155501175048853 0 -0.0027482166351234854 0 0.0057681982289523714 0 -0.010736374060960903 0 0.018592020073668589 0 -0.031093723586671423 0 0.052603914610235863 0 -0.099130756073130363 0 0.31592697826202443 0.5 0.31592697826202443 0 -0.099130756073130363 0 0.052603914610235863 0 -0.031093723586671423 0 0.018592020073668589 0 -0.010736374060960903 0 0.0057681982289523714 0 -0.0027482166351234854 0 0.001155501175048853]);
end

%% Process
y1 = filter1(x);
y = filter2(y1);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You cannot generate code directly from dsp.FilterCascade. If the filters in each stage support
code generation, you can generate C/C++ code from the function returned by
generateFilteringCode.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

See Also
Objects
dsp.FIRFilter | dsp.Delay

Functions
cascade

Introduced in R2014b

4 System Objects

4-500

addStage
Package: dsp

Add filter stage to cascade

Syntax
addStage(FC,newFilt)
addStage(FC,newFilt,stageId)

Description
addStage(FC,newFilt) adds a filter stage represented by the newFilt System object as the final
stage of the dsp.FilterCascade System object, FC. To see which System objects you can add to a
filter cascade, use:

dsp.FilterCascade.helpSupportedSystemObjects

addStage(FC,newFilt,stageId) adds newFilt at stage position stageId of the filter cascade
FC. All existing filters from stageId to the end of the cascade are shifted up in the cascade when
newFilt is added.

Examples

Add Filter Stage to Filter Cascade

Call addStage with only the System object™ arguments,. The function adds the new filter stage as
the final stage in the filter cascade.

FC = dsp.FilterCascade

FC =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRFilter]

addStage(FC,dsp.IIRFilter)
FC

FC =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRFilter]
 Stage2: [1x1 dsp.IIRFilter]

Call addStage with an index argument. The function adds the new filter stage at the specified index.
This example creates a filter cascade with three stages, and then adds a filter as the second stage of
the cascade.

 addStage

4-501

FC = dsp.FilterCascade(dsp.CICDecimator,dsp.FIRDecimator,dsp.FIRFilter)

FC =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.CICDecimator]
 Stage2: [1x1 dsp.FIRDecimator]
 Stage3: [1x1 dsp.FIRFilter]

addStage(FC,dsp.IIRFilter,2)
FC

FC =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.CICDecimator]
 Stage2: [1x1 dsp.IIRFilter]
 Stage3: [1x1 dsp.FIRDecimator]
 Stage4: [1x1 dsp.FIRFilter]

Input Arguments
FC — Filter cascade
dsp.FilterCascade System object

Filter cascade, specified as a dsp.FilterCascade System object.

newFilt — Filter stage to add
filter System object | delay System object | scalar gain value

Filter stage to add, specified as one of the supported System objects or a scalar gain value. Each
stage can be a filter or delay object, or a scalar gain value. To see which System objects you can add
to a filter cascade, use:

dsp.FilterCascade.helpSupportedSystemObjects

stageId — Index of filter stage to be added
positive integer

Index of filter stage to be added, specified as a positive integer. The object adds this stage to the filter
cascade. All existing filters from stageId to the end of the cascade are shifted up in the cascade
when the new filter is added.

See Also
Objects
dsp.FilterCascade

Functions
addStage | generateFilteringCode | getNumStages | releaseStages | removeStage

Introduced in R2014b

4 System Objects

4-502

generateFilteringCode
Package: dsp

Generate MATLAB code for a filter cascade

Syntax
generateFilteringCode(FC)
generateFilteringCode(FC,fileName)

Description
generateFilteringCode(FC) creates a MATLAB function that contains code to create the stages
of a filter cascade, FC, and calls each stage in sequence. If the filters in each stage support code
generation, you can generate C/C++ code from the function returned by generateFilteringCode.

generateFilteringCode(FC,fileName) generates code and saves the resulting function to the
file specified in fileName.

Examples

Generate Code to Filter Using Cascade

Design a two-stage decimator with a 100-Hz transition width, a 2-kHz sampling frequency, and 60-dB
attenuation in the stopband. The decimator needs to downsample by a factor of 4.

decimSpec = fdesign.decimator(4,'Nyquist',...
 4,'Tw,Ast',...
 100,60,2000);
filtCasc = design(decimSpec,'multistage',...
 'SystemObject',true);

Verify your design by using fvtool.

 info(filtCasc)

ans =
 'Discrete-Time Filter Cascade

 Number of stages: 2

 Stage1: dsp.FIRDecimator

 Discrete-Time FIR Multirate Filter (real)

 Filter Structure : Direct-Form FIR Polyphase Decimator
 Decimation Factor : 2
 Polyphase Length : 10
 Filter Length : 19
 Stable : Yes
 Linear Phase : Yes (Type 1)

 generateFilteringCode

4-503

 Arithmetic : double

 Stage2: dsp.FIRDecimator

 Discrete-Time FIR Multirate Filter (real)

 Filter Structure : Direct-Form FIR Polyphase Decimator
 Decimation Factor : 2
 Polyphase Length : 18
 Filter Length : 35
 Stable : Yes
 Linear Phase : Yes (Type 1)

 Arithmetic : double

 '

 fvtool(filtCasc)

Generate code to filter data using this design. You cannot generate C/C++ code from the
dsp.FilterCascade object directly, but you can generate C/C++ code from the generated function.
The function defines the filter stages and calls them in sequence. The function is saved in a file called
myDecimator.m in the current directory.

 generateFilteringCode(filtCasc,'myDecimator');

4 System Objects

4-504

The myDecimator function creates a filter cascade and calls each stage object in turn.

 type myDecimator

function y = myDecimator(x)
%MYDECIMATOR Construct filter cascade and process each stage

% MATLAB Code
% Generated by MATLAB(R) 9.11 and DSP System Toolbox 9.13.
% Generated on: 01-Sep-2021 13:54:23

% To generate C/C++ code from this function use the codegen command.
% Type 'help codegen' for more information.
%#codegen

%% Construction
persistent filter1 filter2
if isempty(filter1)
 filter1 = dsp.FIRDecimator(...
 'Numerator', [0.0021878514650437845 0 -0.010189095418136306 0 0.031140395225498115 0 -0.082785931644222821 0 0.30979571849010851 0.5 0.30979571849010851 0 -0.082785931644222821 0 0.031140395225498115 0 -0.010189095418136306 0 0.0021878514650437845]);
 filter2 = dsp.FIRDecimator(...
 'Numerator', [0.001155501175048853 0 -0.0027482166351234854 0 0.0057681982289523714 0 -0.010736374060960903 0 0.018592020073668589 0 -0.031093723586671423 0 0.052603914610235863 0 -0.099130756073130363 0 0.31592697826202443 0.5 0.31592697826202443 0 -0.099130756073130363 0 0.052603914610235863 0 -0.031093723586671423 0 0.018592020073668589 0 -0.010736374060960903 0 0.0057681982289523714 0 -0.0027482166351234854 0 0.001155501175048853]);
end

%% Process
y1 = filter1(x);
y = filter2(y1);

Input Arguments
FC — Filter cascade
dsp.FilterCascade System object

Filter cascade, specified as a dsp.FilterCascade System object.

fileName — File name
character vector | string scalar

File name where the generated function is saved, specified as a character vector or string scalar.
Data Types: char | string

See Also
Objects
dsp.FilterCascade

Functions
addStage | generateFilteringCode | getNumStages | releaseStages | removeStage

Introduced in R2014b

 generateFilteringCode

4-505

getNumStages
Package: dsp

Get number of stages in filter cascade

Syntax
getNumStages(FC)

Description
getNumStages(FC) returns the number of stages in the dsp.FilterCascade object, FC.

Examples

Find Number of Stages

This example shows how to query the number of stages in a filter cascade.

Create a filter cascade with two stages and call getNumStages on the cascade object.

 FC = cascade(dsp.FIRFilter,dsp.IIRFilter)

FC =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRFilter]
 Stage2: [1x1 dsp.IIRFilter]

 FCstages = getNumStages(FC)

FCstages = 2

Input Arguments
FC — Filter cascade
dsp.FilterCascade System object

Filter cascade, specified as a dsp.FilterCascade System object.

See Also
Objects
dsp.FilterCascade

Functions
addStage | generateFilteringCode | getNumStages | releaseStages | removeStage

4 System Objects

4-506

Introduced in R2014b

 getNumStages

4-507

releaseStages
Package: dsp

Release locked state of all stages in cascade

Syntax
releaseStages(FC)

Description
releaseStages(FC) calls the release function of each individual stage in the
dsp.FilterCascade System object FC.

For instance, if a dsp.FilterCascade object consists of a dsp.FIRFilter and a
dsp.FIRInterpolator object, the releaseStages function calls the:

• release function of the dsp.FIRFilter object
• release function of the dsp.FIRInterpolator object

Examples

Release Stages of a Filter Cascade

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes
step(myObject,x).

Create and release stages of a filter cascade.

firfilt = dsp.FIRFilter;
y = firfilt(randn);
FC = dsp.FilterCascade(dsp.FIRInterpolator, firfilt);
isLocked(FC.Stage2)

ans = logical
 1

releaseStages(FC);
isLocked(FC.Stage2)

ans = logical
 0

4 System Objects

4-508

Input Arguments
FC — Filter cascade
dsp.FilterCascade System object

Filter cascade, specified as a dsp.FilterCascade System object.

See Also
Objects
dsp.FilterCascade

Functions
addStage | generateFilteringCode | getNumStages | releaseStages | removeStage

Introduced in R2014b

 releaseStages

4-509

removeStage
Package: dsp

Remove stage from filter cascade

Syntax
removeStage(FC)
removeStage(FC,stageId)

Description
removeStage(FC) removes the final stage of the dsp.FilterCascade System object FC.

removeStage(FC,stageId) removes the stage from stage position stageId of the filter cascade
FC. All existing filter stages from stageId to the end of the cascade are shifted down in the cascade
when the stage is removed.

Examples

Remove Filter Stage

Call removeStage with no arguments other than the filter cascade System object™. The function
removes the last stage in the filter cascade.

FC2= dsp.FilterCascade(dsp.FIRFilter,...
 dsp.IIRFilter)

FC2 =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRFilter]
 Stage2: [1x1 dsp.IIRFilter]

removeStage(FC2);
FC2

FC2 =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRFilter]

To remove a specific stage of the cascade, specify the index for that stage as an input argument. This
example creates a filter cascade that has four stages, and then removes the third stage.

 FC4 = cascade(dsp.FIRInterpolator,...
 dsp.FIRInterpolator,...
 dsp.FIRDecimator,...
 dsp.FIRDecimator)

4 System Objects

4-510

FC4 =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRInterpolator]
 Stage2: [1x1 dsp.FIRInterpolator]
 Stage3: [1x1 dsp.FIRDecimator]
 Stage4: [1x1 dsp.FIRDecimator]

 removeStage(FC4,3);
 FC4

FC4 =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRInterpolator]
 Stage2: [1x1 dsp.FIRInterpolator]
 Stage3: [1x1 dsp.FIRDecimator]

Input Arguments
FC — Filter cascade
dsp.FilterCascade System object

Filter cascade, specified as a dsp.FilterCascade System object.

stageId — Index of filter stage to be removed
positive integer

Index of filter stage to be removed, specified as a positive integer. The function removes this stage
from the filter cascade. All existing filters from stageId to the end of the cascade are shifted up in
the cascade when the filter is removed.

See Also
Objects
dsp.FilterCascade

Functions
addStage | generateFilteringCode | getNumStages | releaseStages | removeStage

Introduced in R2014b

 removeStage

4-511

dsp.FilteredXLMSFilter
Package: dsp

Filtered XLMS filter

Description
The dsp.FilteredXLMSFilter System object computes output, error and coefficients using
filtered-x least mean square FIR adaptive filter.

To implement the adaptive FIR filter object:

1 Create the dsp.FilteredXLMSFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
fxlms = dsp.FilteredXLMSFilter
fxlms = dsp.FilteredXLMSFilter(len)
fxlms = dsp.FilteredXLMSFilter(Name,Value)

Description

fxlms = dsp.FilteredXLMSFilter returns a filtered-x least mean square FIR adaptive filter
System object, fxlms. This System object is used to compute the filtered output and the filter error
for a given input and desired signal.

fxlms = dsp.FilteredXLMSFilter(len) returns a FilteredXLMSFilter System object,
fxlms, with the Length property set to len.

fxlms = dsp.FilteredXLMSFilter(Name,Value) returns a FilteredXLMSFilter System
object, fxlms, with each specified property set to the specified value. Enclose each property name in
single quotes. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-512

Length — Length of filter coefficients vector
10 (default) | positive integer

Specify the length of the FIR filter coefficients vector as a positive integer value. This property is
nontunable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StepSize — Adaptation step size
0.1 (default) | positive scalar

Specify the adaptation step size factor as a positive numeric scalar.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LeakageFactor — Adaptation leakage factor
1 (default) | scalar

Specify the leakage factor used in a leaky adaptive filter as a numeric value between 0 and 1, both
inclusive. When the value is less than 1, the System object implements a leaky adaptive algorithm.
The default value is 1, providing no leakage in the adapting method.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

SecondaryPathCoefficients — Coefficients of the secondary path filter model
[0.0051 -3.2506e-18 -0.0419 1.3210e-17 0.2885 0.4968 0.2885 1.3210e-17
-0.0419 -3.2506e-18 0.0051] (default) | vector

Specify the coefficients of the secondary path filter model as a numeric vector. The secondary path
connects the output actuator and the error sensor. The default value is a vector that represents the
coefficients of a 10th-order FIR lowpass filter.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SecondaryPathEstimate — Estimate of secondary path filter model
[0.0051 -3.2506e-18 -0.0419 1.3210e-17 0.2885 0.4968 0.2885 1.3210e-17
-0.0419 -3.2506e-18 0.0051] (default) | vector

Specify the estimate of the secondary path filter model as a numeric vector. The secondary path
connects the output actuator and the error sensor. The default value equals to the
SecondayPathCoefficients property value. This property is not tunable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialCoefficients — Initial coefficients of filter
0 (default) | scalar | vector

Specify the initial values of the FIR adaptive filter coefficients as a scalar or a vector of length equal
to the value of the Length property.

Tunable: Yes

 dsp.FilteredXLMSFilter

4-513

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LockCoefficients — Locked status of coefficient updates
false (default) | true

Specify whether to lock the filter coefficient values. By default, the value of this property is false,
and the object continuously updates the filter coefficients. If this property is set to true, the filter
coefficients do not update and their values remain the same.

Tunable: Yes

Usage

Syntax
[y,err] = fxlms(x,d)

Description

[y,err] = fxlms(x,d) filters the input x, using d as the desired signal, and returns the filtered
output y and the filter error err. The System object estimates the filter weights needed to minimize
the error between the output signal and the desired signal. You can access these coefficients by
accessing the Coefficients property of the object. This can be done only after calling the object.
For example, to access the optimized coefficients of the fxlms filter, call fxlms.Coefficients
after you pass the input and desired signal to the object.

Input Arguments

x — Data input
scalar | column vector

The signal to be filtered by the filtered XLMS filter. The input, x, and the desired signal, d, must have
the same size and data type.

The input, x can be a variable-size signal. You can change the number of elements in the column
vector even when the object is locked. The System object locks when you call the object to run its
algorithm.
Data Types: single | double

d — Desired signal
scalar | column vector

The filtered XLMS filter adapts its coefficients to minimize the error, err, and converge the input
signal x to the desired signal d as closely as possible.

The input, x, and the desired signal, d, must have the same size and data type.

The desired signal, d, can be a variable-size signal. You can change the number of elements in the
column vector even when the object is locked. The System object locks when you call the object to
run its algorithm.
Data Types: single | double
Complex Number Support: Yes

4 System Objects

4-514

Output Arguments

y — Filtered output
scalar | column vector

Filtered output, returned as a scalar or a column vector. The object adapts its filter coefficients to
converge the input signal x to match the desired signal d. The filter outputs the converged signal.
Data Types: single | double

err — Difference between output and desired signal
scalar | column vector

Difference between the output signal y and the desired signal d, returned as a scalar or a column
vector. The objective of the filtered XLMS filter is to minimize this error. The object adapts its
coefficients to converge towards optimal filter coefficients that produce an output signal that matches
closely with the desired signal. To access the filtered XLMS filter coefficients, call
fxlms.Coefficients after you pass the input and desired signal to the object.
Data Types: single | double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.FilteredXLMSFilter
msesim Estimated mean squared error for adaptive filters

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Active Noise Control of Random Noise Signal

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Generate noise, create FIR primary path system model, generate observation noise, filter the primary
path system model output with added noise, and create FIR secondary path system model.

x = randn(1000,1);
g = fir1(47,0.4);
n = 0.1*randn(1000,1);
d = filter(g,1,x) + n;
b = fir1(31,0.5);

 dsp.FilteredXLMSFilter

4-515

Use the dsp.FilteredXLMSFilter System object™ to compute the filtered output and the filter
error for the input and the signal to be canceled.

mu = 0.008;
fxlms = dsp.FilteredXLMSFilter(32, 'StepSize', mu, 'LeakageFactor', ...
 1, 'SecondaryPathCoefficients', b);
[y,e] = fxlms(x,d);

Plot the results.

plot(1:1000,d,'b',1:1000,e,'r');
title('Active Noise Control of a Random Noise Signal');
legend('Original','Attenuated');
xlabel('Time Index'); ylabel('Signal Value'); grid on;

System Identification of FIR Filter Using Filtered XLMS Filter

Identify an unknown system by performing active noise control using a filtered-x LMS algorithm. The
objective of the adaptive filter is to minimize the error signal between the output of the adaptive filter
and the output of the unknown system (or the system to be identified). Once the error signal is
minimal, the unknown system converges to the adaptive filter.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

4 System Objects

4-516

Initialization

Create a dsp.FIRFilter System object that represents the system to be identified. Pass the signal,
x, to the FIR filter. The output of the unknown system is the desired signal, d, which is the sum of the
output of the unknown system (FIR filter) and an additive noise signal, n.

num = fir1(31,0.5);
fir = dsp.FIRFilter('Numerator',num);
iir = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
x = iir(sign(randn(2000,25)));
n = 0.1*randn(size(x));
d = fir(x) + n;

Adaptive Filter

Create a dsp.FilteredXLMSFilter System object to create an adaptive filter that uses the filtered-
x LMS algorithm. Set the length of the adaptive filter to 32 taps, step size to 0.008, and the
decimation factor for analysis and simulation to 5. The variable simmse represents the error between
the output of the unknown system, d, and the output of the adaptive filter.

l = 32;
mu = 0.008;
m = 5;
fxlms = dsp.FilteredXLMSFilter(l,'StepSize',mu);
[simmse,meanWsim,Wsim,traceKsim] = msesim(fxlms,x,d,m);
plot(m*(1:length(simmse)),10*log10(simmse))
xlabel('Iteration')
ylabel('MSE (dB)')
% Plot the learning curve for filtered-x LMS filter
% used in system identification
title('Learning curve')

 dsp.FilteredXLMSFilter

4-517

With each iteration of adaptation, the value of simmse decreases to a minimal value, indicating that
the unknown system has converged to the adaptive filter.

References
[1] Kuo, S.M. and Morgan, D.R. Active Noise Control Systems: Algorithms and DSP Implementations.

New York: John Wiley & Sons, 1996.

[2] Widrow, B. and Stearns, S.D. Adaptive Signal Processing. Upper Saddle River, N.J: Prentice Hall,
1985.

See Also
Objects
dsp.LMSFilter | dsp.RLSFilter | dsp.AffineProjectionFilter |
dsp.AdaptiveLatticeFilter | dsp.FrequencyDomainAdaptiveFilter | dsp.FIRFilter

Introduced in R2013b

4 System Objects

4-518

dsp.FIRDecimator
Package: dsp

Polyphase FIR decimator

Description
The dsp.FIRDecimator System object resamples vector or matrix inputs along the first dimension.
The FIR decimator (as shown in the schematic) conceptually consists of an anti-aliasing FIR filter
followed by a downsampler.

The FIR filter filters the data in each channel of the input using a direct-form FIR filter. The FIR filter
coefficients can be specified through the Numerator property, or can be automatically designed by
the object using the designMultirateFIR function. The designMultirateFIR function designs
an anti-aliasing FIR filter. The downsampler that follows the FIR filter downsamples each channel of
filtered data by taking every M-th sample and discarding the M – 1 samples that follow. M is the value
of the decimation factor that you specify. The resulting discrete-time signal has a sample rate that is
1/M times the original sample rate.

Note that the actual object algorithm implements a direct-form FIR polyphase structure, an efficient
equivalent of the combined system depicted in the diagram. For more details, see “Algorithms” on
page 4-533.

To resample vector or matrix inputs along the first dimension:

1 Create the dsp.FIRDecimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Under specific conditions, this System object also supports SIMD code generation. For details, see
“Code Generation” on page 4-536.

 dsp.FIRDecimator

4-519

Creation

Syntax
firdecim = dsp.FIRDecimator
firdecim = dsp.FIRDecimator(M)
firdecim = dsp.FIRDecimator(M,'Auto')
firdecim = dsp.FIRDecimator(M,num)
firdecim = dsp.FIRDecimator(___ ,Name,Value)
firdecim = dsp.FIRDecimator(M,'legacy')

Description

firdecim = dsp.FIRDecimator returns an FIR decimator object with a decimation factor of 2.
The object designs the FIR filter coefficients using the designMultirateFIR(1,2) function.

firdecim = dsp.FIRDecimator(M) returns an FIR decimator with the integer-valued
DecimationFactor property set to M. The object designs its filter coefficients based on the
decimation factor M that you specify while creating the object, using the
designMultirateFIR(1,M) function. The designed filter corresponds to a lowpass with a cutoff at
π/M in radial frequency units.

firdecim = dsp.FIRDecimator(M,'Auto') returns an FIR decimator with the
NumeratorSource property set to 'Auto'. In this mode, every time there is an update in the
decimation factor, the object redesigns the filter using designMultirateFIR(1,M).

firdecim = dsp.FIRDecimator(M,num) returns an FIR decimator with the DecimationFactor
property set to M and the Numerator property set to num.

firdecim = dsp.FIRDecimator(___ ,Name,Value) returns an FIR decimator object with each
specified property set to the specified value. Enclose each property name in quotes. You can use this
syntax with any previous input argument combinations.

firdecim = dsp.FIRDecimator(M,'legacy') returns an FIR decimator where the filter
coefficients are designed using fir1(35,0.4). The designed filter has a cutoff frequency of 0.4π
radians/sample.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

DecimationFactor — Decimation factor
2 (default) | positive integer

Decimation factor M, specified as a positive integer. The FIR decimator reduces the sampling rate of
the input by this factor. The number of input rows must be a multiple of the decimation factor.

4 System Objects

4-520

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumeratorSource — FIR filter coefficient source
'Property' (default) | 'Input port' | 'Auto'

FIR filter coefficient source, specified as one of the following:

• 'Property' –– The numerator coefficients are specified through the Numerator property.
• 'Input port' –– The numerator coefficients are specified as an input to the object algorithm.
• 'Auto' –– The numerator coefficients are designed automatically using the

designMultirateFIR(1,M) function.

Numerator — FIR filter coefficients
designMultirateFIR(1,M) (default) | row vector

Numerator coefficients of the FIR filter, specified as a row vector in powers of z–1. The following
equation defines the system function for a filter of length N+1:

H(z) = ∑
l = 0

N
blz−l

The vector b = [b0, b1, …, bN] represents the vector of filter coefficients.

To prevent aliasing as a result of downsampling, the filter transfer function should have a normalized
cutoff frequency no greater than 1/M. To design an effective anti-aliasing filter, use the
designMultirateFIR function. For an example, see “Decimate Sum of Sine Waves” on page 4-526.

Dependencies

This property is visible only when you set NumeratorSource to 'Property'.

When NumeratorSource is set to 'Auto', the numerator coefficients are automatically redesigned
using designMultirateFIR(1,M). To access the filter coefficients in the automatic design mode,
type objName.Numerator in the MATLAB command prompt.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Structure — Filter structure
'Direct form' (default) | 'Direct form transposed'

Specify the implementation of the FIR filter as either Direct form or Direct form transposed.

Fixed-Point Properties

FullPrecisionOverride — Full-precision override for fixed-point arithmetic
true (default) | false

Flag to use full-precision rules for fixed-point arithmetic, specified as one of the following:

• true –– The object computes all internal arithmetic and output data types using the full-precision
rules. These rules provide the most accurate fixed-point numerics. In this mode, other fixed-point
properties do not apply. No quantization occurs within the object. Bits are added, as needed, to
ensure that no roundoff or overflow occurs.

• false –– Fixed-point data types are controlled through individual fixed-point property settings.

 dsp.FIRDecimator

4-521

For more information, see “Full Precision for Fixed-Point System Objects” and “Set System Object
Fixed-Point Properties”.

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Rounding method for fixed-point operations. For more details, see rounding mode.

Dependencies

This property is not visible and has no effect on the numerical results when the following conditions
are met:

• FullPrecisionOverride set to true.
• FullPrecisionOverride set to false, ProductDataType set to 'Full precision',

AccumulatorDataType set to 'Full precision', and OutputDataType set to 'Same as
accumulator'.

Under these conditions, the object operates in full precision mode.

OverflowAction — Overflow action for fixed-point operations
'Wrap' (default) | 'Saturate'

Overflow action for fixed-point operations, specified as one of the following:

• 'Wrap' –– The object wraps the result of its fixed-point operations.
• 'Saturate' –– The object saturates the result of its fixed-point operations.

For more details on overflow actions, see overflow mode for fixed-point operations.

Dependencies

This property is not visible and has no effect on the numerical results when the following conditions
are met:

• FullPrecisionOverride set to true.
• FullPrecisionOverride set to false, OutputDataType set to 'Same as accumulator',

ProductDataType set to 'Full precision', and AccumulatorDataType set to 'Full
precision'

Under these conditions, the object operates in full precision mode.

CoefficientsDataType — Data type of FIR filter coefficients
Same word length as input (default) | Custom

Data type of the FIR filter coefficients, specified as:

• Same word length as input –– The word length of the coefficients is the same as that of the
input. The fraction length is computed to give the best possible precision.

• Custom –– The coefficients data type is specified as a custom numeric type through the
CustomCoefficientsDataType property.

CustomCoefficientsDataType — Word and fraction lengths of coefficients data type
numerictype([],16,15) (default) | custom numeric type

4 System Objects

4-522

Word and fraction lengths of the coefficients data type, specified as an autosigned numerictype with
a word length of 16 and a fraction length of 15.

Dependencies

This property applies when you set the CoefficientsDataType property to Custom.

ProductDataType — Data type of product output
'Full precision' (default) | 'Custom' | 'Same as input'

Data type of the product output in this object, specified as one of the following:

• 'Full precision' –– The product output data type has full precision.
• 'Same as input' –– The object specifies the product output data type to be the same as that of

the input data type.
• 'Custom' –– The product output data type is specified as a custom numeric type through the

CustomProductDataType property.

For more information on the product output data type, see “Multiplication Data Types”.

Dependencies

This property applies when you set FullPrecisionOverride to false.

CustomProductDataType — Word and fraction lengths of product data type
numerictype([],32,30) (default) | custom numeric type

Word and fraction lengths of the product data type, specified as an autosigned numeric type with a
word length of 32 and a fraction length of 30.

Dependencies

This property applies only when you set FullPrecisionOverride to false and
ProductDataType to 'Custom'.

AccumulatorDataType — Data type of accumulation operation
'Full precision' (default) | 'Same as input' | 'Same as product' | 'Custom'

Data type of an accumulation operation in this object, specified as one of the following:

• 'Full precision' –– The accumulation operation has full precision.
• 'Same as product' –– The object specifies the accumulator data type to be the same as that of

the product output data type.
• 'Same as input' –– The object specifies the accumulator data type to be the same as that of the

input data type.
• 'Custom' –– The accumulator data type is specified as a custom numeric type through the

CustomAccumulatorDataType property.

Dependencies

This property applies when you set FullPrecisionOverride to false.

CustomAccumulatorDataType — Word and fraction lengths of accumulator data type
numerictype([],32,30) (default) | custom numeric type

 dsp.FIRDecimator

4-523

Word and fraction lengths of the accumulator data type, specified as an autosigned numeric type with
a word length of 32 and a fraction length of 30.

Dependencies

This property applies only when you set FullPrecisionOverride to false and
AccumulatorDataType to 'Custom'.

OutputDataType — Data type of object output
'Same as accumulator' (default) | 'Same as input' | 'Same as product' | 'Custom'

Data type of the object output, specified as one of the following:

• 'Same as accumulator' –– The output data type is the same as that of the accumulator output
data type.

• 'Same as input' –– The output data type is the same as that of the input data type.
• 'Same as product' –– The output data type is the same as that of the product output data type.
• 'Custom' –– The output data type is specified as a custom numeric type through the

CustomOutputDataType property.

Dependencies

This property applies when you set FullPrecisionOverride to false.

CustomOutputDataType — Word and fraction lengths of output data type
numerictype([],16,15) (default) | custom numeric type

Word and fraction lengths of the output data type, specified as an autosigned numeric type with a
word length of 16 and a fraction length of 15.

Dependencies

This property applies only when you set FullPrecisionOverride to false and OutputDataType
to 'Custom'.

Usage

Syntax
y = firdecim(x)
y = firdecim(x,num)

Description

y = firdecim(x) outputs the filtered and downsampled values, y, of the input signal, x.

y = firdecim(x,num) uses the FIR filter, num, to decimate the input signal. This configuration is
valid only when the 'NumeratorSource' property is set to 'Input port'.

Input Arguments

x — Data input
column vector | matrix

4 System Objects

4-524

Data input, specified as a column vector or a matrix of size P-by-Q. The number of input rows, P, must
be a multiple of the DecimationFactor property. The input columns represent the Q independent
channels.

This object supports variable-size input and does not support complex unsigned fixed-point inputs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

num — FIR filter coefficients
row vector

FIR filter coefficients, specified as a row vector.

Dependencies

This input is accepted only when the 'NumeratorSource' property is set to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — FIR decimator output
column vector | matrix

FIR decimated output, returned as a column vector or a matrix of size P/M-by-Q, where M is the
decimation factor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.FIRDecimator
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
info Information about filter System object
cost Estimate cost of implementing filter System object
polyphase Polyphase decomposition of multirate filter
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)
impz Impulse response of discrete-time filter System object
coeffs Returns the filter System object coefficients in a structure

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

 dsp.FIRDecimator

4-525

Examples

Decimate Sum of Sine Waves

Decimate a sum of sine waves by a factor of 2 and by a factor of 4.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Start with a cosine wave that has an angular frequency of π
4 radians/sample.

x = cos(pi/4*(0:95)');

Design Default Filter

Create a dsp.FIRDecimator object. To prevent aliasing, the object uses an anti-aliasing lowpass
filter before downsampling. By default, the anti-aliasing lowpass filter is designed using the
designMultirateFIR function. The function designs the filter based on the decimation factor that
you specify, and stores the coefficients in the Numerator property. For a decimation factor of 2, the
object designs the coefficients using designMultirateFIR(1,2).

firdecim = dsp.FIRDecimator(2)

firdecim =
 dsp.FIRDecimator with properties:

 DecimationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [0 -1.0054e-04 0 3.8704e-04 0 -0.0010 0 0.0022 0 ...]
 Structure: 'Direct form'

 Show all properties

Visualize the filter response using fvtool. The designed filter meets the ideal filter constraints that
are marked in red. The cutoff frequency is approximately half the spectrum.

fvtool(firdecim)

4 System Objects

4-526

Decimate by 2

Decimate the cosine signal by a factor of 2.

y = firdecim(x);

Plot the original and the decimated signals. In order to plot the two signals on the same plot, obtain
the time affine transformation parameters. Use these parameters to compute the output sample
times. The nth output sample time equals scale × n + delay.

scale = 1/firdecim.DecimationFactor;
delay = length(firdecim.Numerator)/(2*firdecim.DecimationFactor);

nx = (0:length(x)-1);
ty = ((0:length(y)-1)-delay)/scale;

After a short transition, the output converges to a cosine of frequency π
2 as expected, which is twice

the frequency of the input signal π
4 . Due to the decimation factor of 2, the output samples coincide

with every other input sample.

stem(ty,y,'filled',MarkerSize=4); hold on;
stem(nx,x); hold off;
xlim([-10,22])
ylim([-2.5 2.5])
legend('Decimated by 2 (y)','Input signal (x)');

 dsp.FIRDecimator

4-527

Add a High Frequency Component to Input and Decimate

Add another frequency component to the input signal, a sine with an angular frequency of 2π
3 radians/

sample. Since ω = 2π
3 is above the FIR lowpass cutoff, π

2 , the frequency 2π
3 radians/sample is filtered

out from the signal.

xhigh = x + 0.2*sin(2*pi/3*(0:95)');
release(firdecim)
yhigh = firdecim(xhigh);

Plot the input signal, decimated signal, and the output of the low frequency component. The
decimated signal yhigh has the high frequency component filtered out. yhigh is almost identiical to
the output of the low frequency component y.

stem(ty,yhigh,'filled',MarkerSize=4); hold on;
stem(nx,xhigh);
stem(ty,y,':m',MarkerSize=7);
hold off;
xlim([-10,22])
ylim([-2.5 2.5])
legend('Decimated by 2 (yhigh)',...
 'Input signal with the high tone added (xhigh)',...
 'Decimated by 2 - low tone only (y)');

4 System Objects

4-528

Decimate by 4 in Automatic Filter Design Mode

Now decimate by a factor of 4. In order for the filter design to be updated automatically based on the
new decimation factor, set the NumeratorSource property to 'Auto'. Alternately, you can pass
'auto' as the keyword while creating the object. The object then operates in the automatic filter
design mode. Every time there is a change in the decimation factor, the object updates the filter
design.

release(firdecim)
firdecim.NumeratorSource = 'Auto';
firdecim.DecimationFactor = 4

firdecim =
 dsp.FIRDecimator with properties:

 DecimationFactor: 4
 NumeratorSource: 'Auto'
 Structure: 'Direct form'

 Show all properties

To access the filter coefficients in the automatic mode, type firdecim.Numerator in the MATLAB
command prompt.

The designed filter occupies a narrower passband that is approximately a quarter of the spectrum.

fvtool(firdecim)

 dsp.FIRDecimator

4-529

Decimate the cosine signal by a factor of 4. After a short transition, the output converges to a cosine
of frequency π as expected, which is four times the lower frequency component of the input signal π

4 .
This time, the amplitude of the output is half the amplitude of the input since the gain of the FIR at
ω = π

4 is exactly 1
2 . The high frequency component 2π

3 diminishes by the lowpass FIR whose cutoff

frequency is π
4 .

yAuto = firdecim(xhigh);

Plot the input signal with the high frequency component added, low frequency component scaled by
1/2, and the decimated signal. Recalculate the time affine transformation parameters since the
decimation factor has changed.

scale = 1/firdecim.DecimationFactor;
delay = length(firdecim.Numerator)/(2*firdecim.DecimationFactor);
tyAuto = ((0:length(yAuto)-1)-delay)/scale;

stem(tyAuto,yAuto,'filled',MarkerSize=4); hold on;
stem(nx,xhigh);
stem(nx,x/2,'m:',MarkerSize=7); hold off;

xlim([-20,36])
ylim([-2.5 2.5])
legend('Decimated by 4 (yAuto)',...
 'Input signal with the high frequency component added (xhigh)',...
 'Low tone input scaled by 1/2');

4 System Objects

4-530

Reduce Sample Rate of Audio Signal

Reduce the sample rate of an audio signal by a factor of 2 and play the decimated signal using the
audioDeviceWriter object.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

Create a dsp.AudioFileReader object. The default audio file read by the object has a sample rate
of 22050 Hz.

afr = dsp.AudioFileReader('OutputDataType',...
 'single');

Create a dsp.FIRDecimator object and specify the decimation factor to be 2. The object designs the
filter using designMultirateFIR(1,2) and stores the coefficients in the Numerator property of
the object.

firdecim = dsp.FIRDecimator(2)

firdecim =
 dsp.FIRDecimator with properties:

 dsp.FIRDecimator

4-531

https://www.mathworks.com/products/matlab-online.html

 DecimationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [0 -1.0054e-04 0 3.8704e-04 0 -0.0010 0 0.0022 0 ...]
 Structure: 'Direct form'

 Show all properties

Create an audioDeviceWriter object. Specify the sample rate to be 22050/2.

adw = audioDeviceWriter(22050/2)

adw =
 audioDeviceWriter with properties:

 Driver: 'DirectSound'
 Device: 'Default'
 SampleRate: 11025

 Show all properties

Read the audio signal using the file reader object, decimate the signal by a factor of 2, and play the
decimated signal.

while ~isDone(afr)
 frame = afr();
 y = firdecim(frame);
 adw(y);
end

release(afr);
pause(0.5);
release(adw);

More About
Polyphase Subfilters

A polyphase implementation of an FIR decimator splits the lowpass FIR filter impulse response into M
different subfilters, where M is the downsampling or decimation factor. For more details on the
polyphase implementation, see “Algorithms” on page 4-533.

Let h(n) denote the FIR filter impulse response of length N+1 and x(n) the input signal. Decimating
the filter output by a factor of M is equivalent to the downsampled convolution:

y(n) = ∑
l = 0

N
h(l)x(nM − l)

The key to the efficiency of polyphase filtering is that specific input values are only multiplied by
select values of the impulse response in the downsampled convolution. For example, letting M = 2,
the input values x(0),x(2),x(4), ... are combined only with the filter coefficients h(0),h(2),h(4),..., and
the input values x(1),x(3),x(5), ... are combined only with the filter coefficients h(1),h(3),h(5),.... By
splitting the filter coefficients into two polyphase subfilters, no unnecessary computations are

4 System Objects

4-532

performed in the convolution. The outputs of the convolutions with the polyphase subfilters are
interleaved and summed to yield the filter output.

The following code demonstrates how to construct the two polyphase subfilters for the default order
35 filter.

M = 2;
Num = fir1(35,0.4);
FiltLength = length(Num);
Num = flipud(Num(:));

if (rem(FiltLength, M) ~= 0)
 nzeros = M - rem(FiltLength, M);
 Num = [zeros(nzeros,1); Num]; % Appending zeros
end

len = length(Num);
nrows = len / M;
PolyphaseFilt = flipud(reshape(Num, M, nrows).');

The columns of PolyphaseFilt are subfilters containing the two phases of the filter in Num. For a
general downsampling factor of M, there are M phases and therefore M subfilters.

Algorithms
The FIR decimation filter is implemented efficiently using a polyphase structure. For more details on
polyphase filters, see Polyphase Subfilters on page 4-532.

To derive the polyphase structure, start with the transfer function of the FIR filter:

H(z) = b0 + b1z−1 + ... + bNz−N

N+1 is the length of the FIR filter.

You can rearrange this equation as follows:

H(z) =

b0 + bMz−M + b2Mz−2M + .. + bN −M + 1z−(N −M + 1) +

z−1 b1 + bM + 1z−M + b2M + 1z−2M + .. + bN −M + 2z−(N −M + 1) +
⋮

z−(M − 1) bM − 1 + b2M − 1z−M + b3M − 1z−2M + .. + bNz−(N −M + 1)

M is the number of polyphase components, and its value equals the decimation factor that you
specify.

You can write this equation as:

H(z) = E0(zM) + z−1E1(zM) + ... + z−(M − 1)EM − 1(zM)

E0(zM), E1(zM), ..., EM-1(zM) are the polyphase components of the FIR filter H(z).

Conceptually, the FIR decimation filter contains a lowpass FIR filter followed by a downsampler.

 dsp.FIRDecimator

4-533

Replace H(z) with its polyphase representation.

Here is the multirate noble identity for decimation.

Applying the noble identity for decimation moves the downsampling operation to before the filtering
operation. This move enables you to filter the signal at a lower rate.

4 System Objects

4-534

You can replace the delays and the decimation factor at the input with a commutator switch. The
switch starts on the first branch 0 and moves in the counterclockwise direction as shown in this
diagram. The accumulator at the output receives the processed input samples from each branch of
the polyphase structure and accumulates these processed samples until the switch goes to branch 0.
When the switch goes to branch 0, the accumulator outputs the accumulated value.

When the first input sample is delivered, the switch feeds this input to the branch 0 and the
decimator computes the first output value. As more input samples come in, the switch moves in the
counter clockwise direction through branches M−1, M−2, and all the way up to branch 0, delivering
one sample at a time to each branch. When the switch comes to branch 0, the decimator outputs the
next set of output values. This process continues as data keeps coming in. Every time the switch
comes to the branch 0, the decimator outputs y[m]. The decimator effectively outputs one sample for
every M samples it receives. Hence the sample rate at the output of the FIR decimation filter is fs/M.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 dsp.FIRDecimator

4-535

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

The dsp.FIRDecimator System object supports SIMD code generation using Intel AVX2 technology
under these conditions:

• Filter structure is set to 'Direct form'.
• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
freqz | fvtool | info | cost | polyphase | generatehdl | impz | coeffs

Objects
dsp.FIRInterpolator | dsp.FIRRateConverter

Blocks
FIR Decimation

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2012a

4 System Objects

4-536

dsp.FIRFilter
Package: dsp

Static or time-varying FIR filter

Description
The dsp.FIRFilter System object filters each channel of the input using static or time-varying FIR
filter implementations.

To filter each channel of the input:

1 Create the dsp.FIRFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Under specific conditions, this System object also supports SIMD code generation. For details, see
“Code Generation” on page 4-547.

Creation

Syntax
fir = dsp.FIRFilter
fir = dsp.FIRFilter(num)
fir = dsp.FIRFilter(Name,Value)

Description

fir = dsp.FIRFilter returns a finite impulse response (FIR) filter object, fir, which
independently filters each channel of the input over time using a specified FIR filter implementation.

fir = dsp.FIRFilter(num) returns an FIR filter System object, fir, with the Numerator
property set to num.

fir = dsp.FIRFilter(Name,Value) returns an FIR filter System object, fir, with each property
set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 dsp.FIRFilter

4-537

Structure — Filter structure
Direct form (default) | Direct form symmetric | Direct form antisymmetric | Direct
form transposed | Lattice MA

Specify the filter structure. You can specify the filter structure as one of Direct form | Direct
form symmetric | Direct form antisymmetric | Direct form transposed | Lattice MA.

NumeratorSource — Source of filter coefficients
Property (default) | Input port

Specify the source of the filter coefficients as Property or Input port. When you specify Input
port, the filter object updates the time-varying filter once every frame.

Dependencies

This applies when you set the Structure to Direct form | Direct form symmetric | Direct
form antisymmetric | Direct form transposed.

ReflectionCoefficientsSource — Source of filter coefficients
Property (default) | Input port

Specify the source of the Lattice filter coefficients as Property or Input port. When you specify
Input port, the filter object updates the time-varying filter once every frame.

Dependencies

This applies when you set the Structure to Lattice MA.

Numerator — Numerator coefficients
[0.5 0.5] (default) | row vector

Specify the filter coefficients as a real or complex numeric row vector.

Tunable: Yes

Dependencies

This property applies when you set the NumeratorSource property to Property, and the
“Structure” on page 4-0 property is set to Direct form, Direct form symmetric, Direct
form antisymmetric, or Direct form transposed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ReflectionCoefficients — Reflection coefficients of lattice filter structure
[0.5 0.5] (default) | row vector

Specify the reflection coefficients of a lattice filter as a real or complex numeric row vector.

Tunable: Yes

Dependencies

This property applies when you set the “Structure” on page 4-0 property to Lattice MA, and the
ReflectionCoefficientsSource property to Property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

4 System Objects

4-538

InitialConditions — Initial conditions for the FIR filter
0 (default) | scalar | vector | matrix

Specify the initial conditions of the filter states. The number of states or delay elements equals the
number of reflection coefficients for the lattice structure, or the number of filter coefficients–1 for the
other direct form structures.

You can specify the initial conditions as a scalar, vector, or matrix. If you specify a scalar value, the
FIR filter object initializes all delay elements in the filter to that value. If you specify a vector whose
length equals the number of delay elements in the filter, each vector element specifies a unique initial
condition for the corresponding delay element. The object applies the same vector of initial conditions
to each channel of the input signal.

If you specify a vector whose length equals the product of the number of input channels and the
number of delay elements in the filter, each element specifies a unique initial condition for the
corresponding delay element in the corresponding channel.

If you specify a matrix with the same number of rows as the number of delay elements in the filter,
and one column for each channel of the input signal, each element specifies a unique initial condition
for the corresponding delay element in the corresponding channel.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

FullPrecisionOverride — Full precision override for fixed-point arithmetic
true (default) | false

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects”.

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method.

Dependencies

This property applies only if the object is not in full precision mode.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as Wrap or Saturate.

Dependencies

This property applies only if the object is not in full precision mode.

 dsp.FIRFilter

4-539

CoefficientsDataType — Coefficients word and fraction lengths
Same word length as input (default) | Custom

Specify the coefficients fixed-point data type as Same word length as input or Custom.

Dependencies

This property applies when you set the NumeratorSource property to Property.

CustomCoefficientsDataType — Custom coefficients word and fraction lengths
numerictype(true,16,15) (default) | numerictype

Specify the coefficients fixed-point type as a signed or unsigned numerictype object.

Dependencies

This property applies when you set the CoefficientsDataType property to Custom.

ReflectionCoefficientsDataType — Reflection coefficients word and fraction lengths
Same word length as input (default) | Custom

Specify the reflection coefficients fixed-point data type as Same word length as input or
Custom.

Dependencies

This property applies when you set the ReflectionCoefficientsSource property to Property.

CustomReflectionCoefficientsDataType — Custom reflection coefficients word and
fraction lengths
numerictype(true,16,15) (default) | numerictype

Specify the reflection coefficients fixed-point type as a signed or unsigned numerictype object.

Dependencies

This property applies when you set the ReflectionCoefficientsDataType property to Custom.

ProductDataType — Product word and fraction lengths
Full precision (default) | Same as input | Custom

Specify the product fixed-point data type as Full precision, Same as input, or Custom.

CustomProductDataType — Custom product word and fraction lengths
numerictype(true,32,30) (default) | numerictype

Specify the product fixed-point type as a signed or unsigned scaled numerictype object.

Dependencies

This property applies when you set the ProductDataType property to Custom.

AccumulatorDataType — Accumulator word and fraction lengths
Full precision (default) | Same as input | Same as product | Custom

Specify the accumulator fixed-point data type to Full precision, Same as input, Same as
product, or Custom.

4 System Objects

4-540

CustomAccumulatorDataType — Custom accumulator word and fraction lengths
numerictype(true,32,30) (default) | numerictype

Specify the accumulator fixed-point type as a signed or unsigned scaled numerictype object.

Dependencies

This property applies when you set the AccumulatorDataType property to Custom.

StateDataType — State word and fraction lengths
Same as accumulator (default) | Same as input | Custom

Specify the state fixed-point data type as one of Same as input, Same as accumulator, or
Custom.

Dependencies

This property does not apply to any of the direct form or direct form I filter structures.

CustomStateDataType — Custom state word and fraction lengths
numerictype(true,16,15) (default) | numerictype

Specify the state fixed-point type as a signed or unsigned scaled numerictype object.

Dependencies

This property applies when you set the StateDataType property to Custom.

OutputDataType — Output word and fraction lengths
Same as accumulator (default) | Same as input | Custom

Specify the output fixed-point data type as one of Same as input, Same as accumulator, or
Custom.

CustomOutputDataType — Custom output word and fraction lengths
numerictype(true,16,15) (default) | numerictype

Specify the output fixed-point type as a signed or unsigned scaled numerictype object.

Dependencies

This property applies when you set the “OutputDataType” on page 4-0 property to Custom.

Usage

Syntax
y = fir(x)
y = fir(x,coeff)

Description

y = fir(x) applies an FIR filter to the real or complex input signal x to produce the output y.

 dsp.FIRFilter

4-541

y = fir(x,coeff) uses the time-varying coefficients, coeff , to filter the input signal x and
produce the output y . You can use this option when you set the NumeratorSource or
ReflectionCoefficientsSource property to Input port.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. When the input data is of a fixed-point type, it must be
signed when the structure is set to Direct form symmetric or Direct form antisymmetric.
The FIR filter object operates on each channel of the input signal independently over successive calls
to the object.

This System object supports variable-size input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

coeff — Filter coefficients
row vector

Time-varying filter coefficients, specified as a row vector. The data and coefficient inputs must have
the same data type.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi
Complex Number Support: Yes

Output Arguments

y — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix. The output has the same size and data type as the
input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.FIRFilter
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
impz Impulse response of discrete-time filter System object
info Information about filter System object
coeffs Returns the filter System object coefficients in a structure
cost Estimate cost of implementing filter System object
grpdelay Group delay response of discrete-time filter System object
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)

4 System Objects

4-542

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Lowpass Filter a Sinusoid Signal Using FIRFilter object

Use an FIR filter to apply a low pass filter to a waveform with two sinusoidal components.

 t = (0:1000)'/8e3;
 xin = sin(2*pi*0.3e3*t)+sin(2*pi*3e3*t);

 sr = dsp.SignalSource;
 sr.Signal = xin;
 sink = dsp.SignalSink;

 fir = dsp.FIRFilter(fir1(10,0.5));

sa = dsp.SpectrumAnalyzer(...
 'SampleRate',8e3,...
 'PlotAsTwoSidedSpectrum',false,...
 'OverlapPercent', 80,...
 'PowerUnits','dBW',...
 'YLimits', [-150 -10]);

 while ~isDone(sr)
 input = sr();
 filteredOutput = fir(input);
 sink(filteredOutput);
 sa(filteredOutput)
 end

 filteredResult = sink.Buffer;
 fvtool(fir,'Fs',8000)

 dsp.FIRFilter

4-543

4 System Objects

4-544

Design an FIR filter as a System object.

N = 10;
Fc = 0.4;
B = fir1(N,Fc);
fir1 = dsp.FIRFilter(B);
fvtool(fir1)

 dsp.FIRFilter

4-545

This can also be achieved by using fdesign as a constructor and design to design the filter.

N = 10;
Fc = 0.4;
specLowpass = fdesign.lowpass('N,Fc',...
 N,Fc);
fir2 = design(specLowpass,...
 'systemobject',true)
fvtool(fir2);

fir2 =

 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [-1.2414e-18 -0.0126 -0.0247 0.0635 0.2748 0.3981 ...]
 InitialConditions: 0

 Use get to show all properties

4 System Objects

4-546

Algorithms
This object implements the algorithm, inputs, and outputs described on the Discrete FIR Filter block
reference page. The object properties correspond to the block parameters.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the Numerator property is tunable for code generation.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

The dsp.FIRFilter System object supports SIMD code generation using Intel AVX2 technology
under these conditions:

• Filter structure is set to 'Direct form' or 'Direct form transposed'.
• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

 dsp.FIRFilter

4-547

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the HDL Coder or Filter Design HDL Coder products.
For HDL Coder workflow and limitations, see “HDL Code Generation for System Objects” (HDL
Coder). For Filter Design HDL Coder workflow and limitations, see “Generate HDL Code for Filter
System Objects” (Filter Design HDL Coder).

See Also
Functions
freqz | fvtool | impz | info | coeffs | cost | grpdelay | generatehdl | designFracDelayFIR

Objects
dsp.BiquadFilter

Blocks
Discrete FIR Filter

Topics
“FIR Nyquist (L-th band) Filter Design”
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2012a

4 System Objects

4-548

dsp.HDLFIRFilter
Package: dsp

Finite impulse response filter—optimized for HDL code generation

Description
The dsp.HDLFIRFilter System object models finite-impulse response filter architectures optimized
for HDL code generation. The object accepts one input sample at a time, and provides an option for
programmable coefficients. It provides a hardware-friendly interface with input and output control
signals. To provide a cycle-accurate simulation of the generated HDL code, the object models
architectural latency including pipeline registers and resource sharing.

The object provides three filter structures. The direct form systolic architecture provides a fully
parallel implementation that makes efficient use of Intel and Xilinx DSP blocks. The direct form
transposed architecture is a fully parallel implementation and is suitable for FPGA and ASIC
applications. The partly-serial systolic architecture provides a configurable serial implementation that
makes efficient use of FPGA DSP blocks. For a filter implementation that matches multipliers,
pipeline registers, and pre-adders to the DSP configuration of your FPGA vendor, specify your target
device when you generate HDL code.

All three structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters. The parallel implementations also remove the multipliers for zero-valued
coefficients such as in half-band filters and Hilbert transforms.

The latency between valid input data and the corresponding valid output data depends on the filter
structure, serialization options, the number of coefficients and whether the coefficient values provide
optimization opportunities.

For a FIR filter with multichannel or frame-based inputs, use the dsp.FIRFilter System object
instead of this System object.

To filter input data with an HDL-optimized FIR filter:

1 Create the dsp.HDLFIRFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
firFilt = dsp.HDLFIRFilter
firFilt = dsp.HDLFIRFilter(num)
firFilt = dsp.HDLFIRFilter(___ ,Name,Value)

 dsp.HDLFIRFilter

4-549

Description

firFilt = dsp.HDLFIRFilter creates an HDL-optimized discrete FIR filter System object,
firFilt, with default properties.

firFilt = dsp.HDLFIRFilter(num) creates a filter with the Numerator property set to num.

firFilt = dsp.HDLFIRFilter(___ ,Name,Value)sets properties using one or more name-value
pairs. Enclose each property name in single quotes.

For example:
Numerator = firpm(10,[0,0.1,0.5,1],[1,1,0,0]);
fir = dsp.HDLFIRFilter(Numerator,'FilterStructure','Direct form transposed');
...
[dataOut,validOut] = fir(dataIn,validIn);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Main

NumeratorSource — Source of filter coefficients
'Property' (default) | 'Input port (Parallel interface)'

You can enter constant filter coefficients as a property or provide time-varying filter coefficients using
an input argument.

Setting this property to 'Input port (Parallel interface)' enables the coeff argument, and
the NumeratorPrototype property. Specify a prototype to enable the object to optimize the filter
implementation according to the symmetry of your coefficients. To use 'Input port (Parallel
interface)', set the FilterStructure property to 'Direct form systolic'.

Numerator — Discrete FIR filter coefficients
[0.5 0.5] (default) | real or complex vector

Discrete FIR filter coefficients, specified as a vector of real or complex values. You can also specify
the vector as a workspace variable, or as a call to a filter design function. When the input data type is
a floating-point type, the object casts the coefficients to the same data type as the input. When the
input data type is an integer type or a fixed-point type, you can modify the coefficient data type by
using the CoefficientsDataType property.
Example: dsp.HDLFIRFIlter('Numerator',firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]))
defines coefficients using a linear-phase filter design function.

Dependencies

To enable this property, set NumeratorSource to 'Property'.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

4 System Objects

4-550

NumeratorPrototype — Prototype filter coefficients
[] (default) | real or complex vector

Prototype filter coefficients, specified as a vector of real or complex values. The prototype specifies a
sample coefficient vector that is representative of the symmetry and zero-value locations of the
expected input coefficients. If all of your input coefficient vectors have the same symmetry and zero-
value coefficient locations, set NumeratorPrototype to one of those vectors. If your coefficients are
unknown or not expected to share symmetry or zero-value locations, set NumeratorPrototype to
[]. The object uses the prototype to optimize the filter by sharing multipliers for symmetric or
antisymmetric coefficients, and removing multipliers for zero-value coefficients.

Coefficient optimizations affect the expected size of the coeff input argument. Provide only the
nonduplicate coefficients as the argument. For example, if you set the NumeratorPrototype
property to a symmetric 14-tap filter, the object shares one multiplier between each pair of duplicate
coefficients, so the object expects a vector of 7 values for the coeff argument. You must still provide
zeros in the input coeff vector for the nonduplicate zero-value coefficients.

Dependencies

To enable this property, set NumeratorSource to 'Input port (Parallel interface)'.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

FilterStructure — HDL filter architecture
'Direct form systolic' (default) | 'Direct form transposed' | 'Partly serial
systolic'

HDL filter architecture, specified as one of these structures:

• 'Direct form systolic' — This architecture provides a fully parallel filter implementation
that makes efficient use of Intel and Xilinx DSP blocks. For architecture and performance details,
see “Fully Parallel Systolic Architecture” on page 2-463.

• 'Direct form transposed' — This architecture is a fully parallel implementation that is
suitable for FPGA and ASIC applications. For architecture and performance details, see “Fully
Parallel Transposed Architecture” on page 2-464.

• 'Partly serial systolic' — This architecture provides a serial filter implementation and
options for tradeoffs between throughput and resource utilization. It makes efficient use of Intel
and Xilinx DSP blocks. The object implements a serial L-coefficient filter with M multipliers and
requires input samples that are at least N cycles apart, such that L = N×M. You can specify either
M or N. For this implementation, the object provides an output signal, ready, that indicates when
the object is ready for new input data. For architecture and performance details, see “Partly Serial
Systolic Architecture (1 < N < L)” on page 2-464 and “Fully Serial Systolic Architecture (N ≥ L)”
on page 2-465.

All implementations share multipliers for symmetric and antisymmetric coefficients. The 'Direct
form systolic' and 'Direct form transposed' structures also remove multipliers for zero-
valued coefficients.

SerializationOption — Rule to define serial implementation
'Minimum number of cycles between valid input samples' (default) | 'Maximum number
of multipliers'

Specify the rule that the object uses to serialize the filter as one of:

 dsp.HDLFIRFilter

4-551

• 'Minimum number of cycles between valid input samples' – Specify a requirement for
input data timing by using the NumberOfCycles property.

• 'Maximum number of multipliers' – Specify a requirement for resource usage by using the
NumberOfMultipliers property.

For a filter with L coefficients, the object implements a serial filter with not more than M multipliers
and requires input samples that are at least N cycles apart, such that L = N×M. The object applies
coefficient optimizations after serialization, so the M or N values of the final filter implementation can
be lower than the value that you specified.
Dependencies

To enable this property, set FilterStructure to 'Partly serial systolic'.

NumberOfCycles — Serialization requirement for input timing
2 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This property represents N,
the minimum number of cycles between valid input samples. In this case, the object calculates M =
L/N. To implement a fully-serial architecture, set NumberOfCycles to a value greater than the filter
length, L, or to Inf.

The object applies coefficient optimizations after serialization, so the M and N values of the final filter
can be lower than the value you specified.
Dependencies

To enable this property, set FilterStructure to 'Partly serial systolic' and set
SerializationOption to 'Minimum number of cycles between valid input samples'.

NumberOfMultipliers — Serialization requirement for resource usage
2 (default) | positive integer

Serialization requirement for resource usage, specified as a positive integer. This property represents
M, the maximum number of multipliers in the filter implementation. In this case, the object calculates
N = L/M. If the input data is complex, the object allocates floor(M/2) multipliers for the real part
of the filter and floor(M/2) multipliers for the imaginary part of the filter. To implement a fully-
serial architecture, set NumberOfMultipliers to 1 for real input, or 2 for complex input.

The object applies coefficient optimizations after serialization, so the M and N values of the final filter
can be lower than the value you specified.
Dependencies

To enable this property, set the FilterStructure to 'Partly serial systolic', and set
SerializationOption to 'Maximum number of multipliers'.

Data Types

Rounding — Rounding method for type-casting the output
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest', 'Round', or 'Zero'. The rounding method is used when casting the output to the data
type specified by the OutputDataType property. When the input data type is floating point, the
object ignores the RoundingMethod property. For more details, see “Rounding Modes”.

4 System Objects

4-552

OverflowAction — Overflow handling for type-casting the output
'Wrap' (default) | 'Saturate'

Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. Overflow
handling is used when casting the output to the data type specified by the OutputDataType
property. When the input data type is floating point, the object ignores the OverflowAction
property. For more details, see “Overflow Handling”.

CoefficientsDataType — Data type of discrete FIR filter coefficients
'Same word length as input' (default) | numerictype object

Data type of discrete FIR filter coefficients, specified as 'Same word length as input' or a
numerictype object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object type-casts the filter coefficients of the discrete FIR filter to the specified data type. The
quantization rounds to the nearest representable value and saturates on overflow. When the input
data type is floating point, the object ignores the Coefficients property.

Dependencies

To enable this property, set NumeratorSource to 'Property'.

OutputDataType — Data type of discrete FIR filter output
'Full precision' (default) | 'Same word length as input' | numerictype object

Data type of discrete FIR filter output, specified as 'Same word length as input', 'Full
precision', or a numerictype object. To specify a numerictype object, call
numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object type-casts the output of the discrete FIR filter to the specified data type. The quantization
uses the settings of the RoundingMethod and OverflowAction properties. When the input data
type is floating point, the object ignores the OutputDataType property.

The object increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

When you specify a fixed set of coefficients, usually the actual full-precision internal word length is
smaller than WF because the values of the coefficients limit the potential growth. When you use
programmable coefficients, the object cannot calculate the dynamic range, and the internal data type
is always WF.

 dsp.HDLFIRFilter

4-553

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true

Option to enable reset input argument, specified as true or false. When you set this property to
true, the object expects a value for the reset input argument. The reset signal implements a local
synchronous reset of the data path registers.

For more reset considerations, see “Tips” on page 4-563.

HDLGlobalReset — Option to connect data path registers to generated HDL global reset
signal
false (default) | true

Option to connect data path registers to generated HDL global reset signal, specified as true or
false. Set this property to true to connect the generated HDL global reset signal to the data path
registers. This property does not change the arguments of the object or modify simulation behavior in
MATLAB. When you set this property to false, the generated HDL global reset clears only the
control path registers. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings.

For more reset considerations, see “Tips” on page 4-563.

Usage

Syntax
[dataOut,validOut] = firFilt(dataIn,validIn)
[dataOut,validOut,ready] = firFilt(dataIn,validIn)
[dataOut,validOut] = firFilt(dataIn,validIn,coeff)
[dataOut,validOut] = firFilt(dataIn,validIn,reset)

Description

[dataOut,validOut] = firFilt(dataIn,validIn) filters the input data only when validIn is
true.

[dataOut,validOut,ready] = firFilt(dataIn,validIn) returns ready set to true when
the object is ready to accept new input data on the next call.

The object returns the ready argument only when you set the FilterStructure property to
'Partly serial systolic'. For example:
firFilt = dsp.HDLFIRFilter(Numerator,...
 'FilterStructure','Partly serial systolic',...
 'SerializationOption','Minimum number of cycles between valid input samples',...
 'NumberOfCycles',8)
...
for k=1:length(dataIn)
 [dataOut,validOut,ready] = firFilt(dataIn(k),validIn(k));

[dataOut,validOut] = firFilt(dataIn,validIn,coeff) filters data using the coefficients,
coeff. The object expects the coeff argument only when you set the NumeratorSource property
to 'Input port (Parallel interface)'. For example:
firFilt = dsp.HDLFIRFilter(NumeratorSource,'Input Port (Parallel interface)')
...

4 System Objects

4-554

for k=1:length(dataIn)
 Numerator = myGetNumerator(); %calculate coefficients
 [dataOut,validOut] = firFilt(dataIn(k),validIn(k),Numerator);

[dataOut,validOut] = firFilt(dataIn,validIn,reset) filters data when reset is false.
When reset is true, the object resets the filter registers. The object expects the reset argument
only when you set the ResetInputPort property to true. For example:

firFilt = dsp.HDLFIRFilter(Numerator,'ResetInputPort',true)
...
% reset the filter
firFilt(0,false,true);
for k=1:length(dataIn)
 [dataOut,validOut] = firFilt(dataIn(k),validIn(k),false);

For more reset considerations, see “Tips” on page 4-563.

Input Arguments

dataIn — Input data
real or complex scalar

Input data, specified as a real or complex scalar. When the input data type is an integer type or fixed-
point type, the object uses fixed-point arithmetic for internal calculations.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32
Complex Number Support: Yes

validIn — Validity of input data
logical scalar

Validity of the input data, specified as a logical scalar. The dataIn argument is valid only when
validIn is 1 (true).
Data Types: logical

coeff — Filter coefficients
real or complex vector

Filter coefficients, specified as a vector of real or complex values. You can change the input
coefficients at any time. The size of the vector depends on the size and symmetry of the sample
coefficients specified in the NumeratorPrototype property. The prototype specifies a sample
coefficient vector that is representative of the symmetry and zero-value locations of the expected
input coefficients. The object uses the prototype to optimize the filter by sharing multipliers for
symmetric or antisymmetric coefficients, and removing multipliers for zero-value coefficients.
Therefore, provide only the nonduplicate coefficients in the argument. For example, if you set the
NumeratorPrototype property to a symmetric 14-tap filter, the object expects a vector of 7 values
for the coeff argument. You must still provide zeros in the input coeff vector for the nonduplicate
zero-value coefficients.

double and single data types are supported for simulation, but not for HDL code generation.
Dependencies

To enable this argument, set the NumeratorSource property to 'Input port (Parallel
interface)'.

 dsp.HDLFIRFilter

4-555

Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

reset — Clear data path state
logical scalar

When the reset argument is true, the object stops the current calculation and clears the internal
state of the filter. The reset signal is synchronous and clears the data path and control path states.
For more reset considerations, see “Tips” on page 4-563.

Dependencies

To enable this argument, set the ResetInputPort property to true.
Data Types: logical

Output Arguments

dataOut — Filtered output data
real or complex scalar

Filtered output data, returned as a real or complex scalar. When the input data is floating point, the
output data inherits the data type of the input data. When the input data is an integer type or fixed-
point type, the OutputDataType property determines the output data type.
Data Types: fi | single | double

validOut — Validity of output data
logical scalar

Validity of the output data, returned as a logical scalar. The object sets validOut to 1 (true) with
each valid output data in the dataOut argument.
Data Types: logical

ready — Indication object is ready for new input data
logical scalar

Indication of whether the object is ready for new input data, returned as a logical scalar. The object
sets this value to true to indicate that it is ready to accept new input data on the next call.

When using the partly-serial architecture, the object processes one sample at a time. If your design
waits for the object to return ready set to false before de-asserting validIn, then one extra data
input value arrives at the object. The object stores this extra data while processing the current data,
and then does not set ready to true until the extra input is processed.

Dependencies

The object returns this value only when the FilterStructure property is set to 'Partly serial
systolic'.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

4 System Objects

4-556

release(obj)

Specific to dsp.HDLFIRFilter
getLatency Latency of FIR filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create HDL FIR Filter System Object with Default Settings

Create an HDL FIR filter System object with default settings.

firFilt = dsp.HDLFIRFilter;

Create an input signal of random noise, and allocate memory for outputs.

L = 100;
dataIn = randn(L,1);
dataOut = zeros(L,1);
validOut = false(L,1);

Call the object on the input signal, asserting that the input data is always valid. The object processes
one data sample at a time.

for k=1:L
 [dataOut(k),validOut(k)] = firFilt(dataIn(k),true);
end

Implement a Partly-Serial Streaming FIR Filter

This example shows how to configure the dsp.HDLFIRFilter System object™ as a partly-serial 31-
tap lowpass filter.

Design the filter coefficients. Then create an HDL FIR filter System object. Set the
FilterStructure to 'Partly serial systolic'. By default, the SerializationOption
property is 'Minimum number of cycles between valid input samples', and so you must
specify the serialization rule using the NumberOfCycles property. To share each multiplier between
10 coefficients, set the NumberOfCycles to 10.

numerator = firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]);
numCycles = 10;
firFilt = dsp.HDLFIRFilter('Numerator',numerator, ...
 'FilterStructure','Partly serial systolic','NumberOfCycles',numCycles);

This serial filter implementation requires 10 time steps to calculate each output. Create input signals
dataIn and validIn such that new data is applied only every NumberOfCycles time steps.

 dsp.HDLFIRFilter

4-557

L = 16;
x = fi(randn(L,1),1,16);
dataIn = zeros(L*numCycles,1,'like',x);
dataIn(1:numCycles:end) = x;
validIn = false(L*numCycles,1);
validIn(1:numCycles:end) = true;

Create a LogicAnalyzer object to view the inputs and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',5, ...
 'SampleTime',1,'TimeSpan',length(dataIn));
tags = getDisplayChannelTags(la);
modifyDisplayChannel(la,tags{1},'Name','dataIn');
modifyDisplayChannel(la,tags{2},'Name','validIn');
modifyDisplayChannel(la,tags{3},'Name','dataOut');
modifyDisplayChannel(la,tags{4},'Name','validOut');
modifyDisplayChannel(la,tags{5},'Name','ready');

Call the filter System object on the input signals, and view the results in the Logic Analyzer. The
object models HDL pipeline registers and resource sharing, so the waveform shows an initial delay
before the object returns valid output samples.

for k=1:length(dataIn)
 [dataOut,validOut,ready] = firFilt(dataIn(k),validIn(k));
 la(dataIn(k),validIn(k),dataOut,validOut,ready)
end

4 System Objects

4-558

Create HDL FIR Filter System Object for HDL Code Generation

To generate HDL code from a System object™, create a function that contains and calls the object.

Create Function

Write a function that creates and calls an 11-tap HDL FIR filter System object. You can generate HDL
code from this function.

function [dataOut,validOut] = HDLFIR11Tap(dataIn, validIn)
%HDLFIR11Tap
% Process one sample of data by using the dsp.HDLFIRFilter System
% object.
% dataIn is a fixed-point scalar value.
% You can generate HDL code from this function.
 persistent fir
 if isempty(fir)

 dsp.HDLFIRFilter

4-559

 Numerator = firpm(10,[0 0.1 0.5 1],[1 1 0 0]);
 fir = dsp.HDLFIRFilter('Numerator',Numerator);
 end
 [dataOut,validOut] = fir(dataIn,validIn);
end

Create Test Bench for Function

Clear the workspace, create an input signal of random noise, and allocate memory for outputs.

clear variables
clear HDLFIR11Tap
L = 200;
dataIn = fi(randn(L,1),1,16);
validIn = ones(L,'logical');
dataOut = zeros(L,1);
validOut = false(L,1);

Call the function on the input signal.

for k = 1:L
 [dataOut(k),validOut(k)] = HDLFIR11Tap(dataIn(k), validIn(k));
end

Plot the signals with the Logic Analyzer.

la = dsp.LogicAnalyzer('NumInputPorts',3,'SampleTime',1,'TimeSpan',L);
tags = getDisplayChannelTags(la);
modifyDisplayChannel(la,tags{1},'Name','dataIn','Format','Analog','Height',50);
modifyDisplayChannel(la,tags{2},'Name','dataOut','Format','Analog','Height',50);
modifyDisplayChannel(la,tags{3},'Name','validOut');
la(dataIn,dataOut,validOut)

4 System Objects

4-560

 dsp.HDLFIRFilter

4-561

Explore Latency of HDL FIR Object

The latency of the dsp.HDLFIRFilter System object™ varies with filter structure, serialization
options, and whether the coefficient values provide optimization opportunities. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output.

Create a dsp.HDLFIRFilter System object™ and request the latency. The default architecture is
fully parallel systolic. The default data type for the coefficients is 'Same word length as input'.
Therefore, when you call the getLatency object function, you must specify an input data type. The
object casts the coefficient values to the input data type, and then checks for symmetric coefficients.
This Numerator has 31 symmetric coefficients, so the object optimizes for the shared coefficients,
and implements 16 multipliers.

Numerator = firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]);
Input_type = numerictype(1,16,15); % object uses only the word length for coefficient type cast
hdlfir = dsp.HDLFIRFilter('Numerator',Numerator);
L_sysp = getLatency(hdlfir,Input_type)

L_sysp = 23

Check the latency for a partly serial systolic implementation of the same filter. By default, the
SerializationOption property is 'Minimum number of cycles between valid input
samples', and so you must specify the serialization rule using the NumberOfCycles property. To
share each multiplier between 8 coefficients, set the NumberOfCycles to 8. The object then
optimizes based on the coefficient symmetry, so there are 16 unique coefficients shared 8 times each
over 2 multipliers. This serial filter implementation requires input samples that are valid every 8
cycles.

hdlfir = dsp.HDLFIRFilter('Numerator',Numerator,'FilterStructure','Partly serial systolic','NumberOfCycles',8);
L_syss = getLatency(hdlfir,Input_type)

L_syss = 19

Check the latency of a nonsymmetric fully parallel systolic filter. The Numerator has 31 coefficients.

4 System Objects

4-562

Numerator = sinc(0.4*[-30:0]);
hdlfir = dsp.HDLFIRFilter('Numerator',Numerator);
L_sysp = getLatency(hdlfir,Input_type)

L_sysp = 37

Check the latency of the same nonsymmetric filter implemented as a partly serial systolic filter. In this
case, specify the SerializationOption by the number of multipliers. The object implements a
filter that has 2 multipliers and requires 8 cycles between input samples.

hdlfir = dsp.HDLFIRFilter('Numerator',Numerator,'FilterStructure','Partly serial systolic',...
 'SerializationOption','Maximum number of multipliers','NumberOfMultipliers',2);
L_syss = getLatency(hdlfir,Input_type)

L_syss = 37

Check the latency of a fully parallel transposed architecture. The latency for this filter structure is
always 6 cycles.

hdlfir = dsp.HDLFIRFilter('Numerator',Numerator,'FilterStructure','Direct form transposed');
L_trans = getLatency(hdlfir,Input_type)

L_trans = 6

Tips
Reset Behavior

• By default, the dsp.HDLFIRFilter object connects the generated HDL global reset to only the
control path registers. The two reset properties, ResetInputPort and HDLGlobalReset,
connect a reset signal to the data path registers. Because of the additional routing and loading on
the reset signal, resetting data path registers can reduce synthesis performance.

• The ResetInputPort property enables the reset argument of the object. The reset signal
implements a local synchronous reset of the data path registers. For optimal use of FPGA
resources, this option does not connect the reset signal to registers targeted to the DSP blocks of
the FPGA.

• The HDLGlobalReset property connects the generated HDL global reset signal to the data path
registers. This property does not change the arguments of the object or modify simulation
behavior in MATLAB. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings. Depending on your device, using the global
reset might move registers out of the DSP blocks and increase resource use.

• When you set both the ResetInputPort and HDLGlobalReset properties to true, the global
and local reset signals clear the control and data path registers.

Algorithms
This System object implements the algorithms described on the Discrete FIR Filter HDL Optimized
block reference page.

Compatibility Considerations
Changes to Serial Filter Properties
Behavior changed in R2019a

 dsp.HDLFIRFilter

4-563

The options for configuring a serial filter architecture have changed. Prior to R2019a, you specified
the serial implementation by setting a requirement for input timing. Now, you can specify the
serialization requirement based on either input timing (N) or resource usage (M).

Serial Filter Requirement Configuration Prior to
R2019a

Configuration After R2019a

Specify a serialization rule
based on input timing, that is, N
cycles.

• Set the FilterStructure
property to 'Direct form
systolic'.

• Set the Sharing property to
true.

• Set the SharingFactor
property to N.

• Set the FilterStructure
property to 'Partly
serial systolic'.

• Set the
SerializationOption
property to 'Minimum
number of cycles
between valid input
samples'.

• Set the NumberOfCycles
property to N.

Specify a serialization rule
based on resource usage, that
is, M multipliers.

Serialization by resource usage
is not supported prior to
R2019a. However, you can
calculate N based on your
multiplier requirement.

• Set the FilterStructure
property to 'Direct form
systolic'.

• Set the Sharing property to
true.

• Set the SharingFactor
property to
ceil(NumCoeffs/M).

• Set the FilterStructure
property to 'Partly
serial systolic'.

• Set the
SerializationOption
property to 'Maximum
number of
multipliers'.

• Set the
NumberOfMultipliers
property to M.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

4 System Objects

4-564

See Also
Blocks
Discrete FIR Filter HDL Optimized | Discrete FIR Filter

Objects
dsp.FIRFilter | dsp.HDLFIRDecimation

Introduced in R2017a

 dsp.HDLFIRFilter

4-565

dsp.HDLFIRDecimation
Package: dsp

Finite impulse response (FIR) decimation filter—optimized for HDL code generation

Description
The dsp.HDLFIRDecimation System object implements a polyphase FIR decimation filter that is
optimized for HDL code generation. It provides a hardware-friendly interface with input and output
control signals. To provide a cycle-accurate simulation of the generated HDL code, the object models
architectural latency including pipeline registers and resource sharing.

The object accepts scalar or vector input. When you use vector input, the decimation factor must be
an integer multiple of the vector size. The object uses a single-rate implementation. The output is
scalar and a valid signal indicates which samples are valid after decimation. The waveform shows an
input vector of four samples and a decimation factor of eight. The output sample is valid every second
cycle.

The object provides two filter structures. The direct form systolic architecture provides a fully
parallel implementation that makes efficient use of Intel and Xilinx DSP blocks. The direct form
transposed architecture is a fully parallel implementation that is suitable for FPGA and ASIC
applications. For a filter implementation that matches multipliers, pipeline registers, and pre-adders
to the DSP configuration of your FPGA vendor, specify your target device when you generate HDL
code.

The object implements one filter for each sample in the input vector. The object then shares this filter
between the polyphase subfilters by interleaving the subfilter coefficients in time.

To filter and decimate input data with an HDL-optimized algorithm:

1 Create the dsp.HDLFIRDecimation object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
firDecim = dsp.HDLFIRDecimation
firDecim = dsp.HDLFIRDecimation(dec,num)
firDecim = dsp.HDLFIRDecimator(___ ,Name,Value)

4 System Objects

4-566

Description

firDecim = dsp.HDLFIRDecimation creates a default HDL-optimized FIR decimation filter
System object.

firDecim = dsp.HDLFIRDecimation(dec,num) sets the DecimationFactor property to dec
and the Numerator property to num.

firDecim = dsp.HDLFIRDecimator(___ ,Name,Value) sets properties using one or more
name-value pairs in addition to any input argument combination from previous syntaxes. Enclose
each property name in quotes. For example, 'FilterStructure','Direct form transposed'
specifies the filter architecture as a fully parallel implementation that is suitable for FPGA and ASIC
applications.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Main

Numerator — FIR filter coefficients
fir1(35,0.4) (default) | real- or complex-valued vector

FIR filter coefficients, specified as a real- or complex-valued vector. You can specify the vector as a
workspace variable or as a call to a filter design function. When the input data type is a floating-point
type, the object casts the coefficients to the same data type as the input. When the input data type is
an integer type or a fixed-point type, you can modify the coefficient data type by using the
CoefficientsDataType property.
Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]) defines coefficients using a linear-phase
filter design function.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

FilterStructure — HDL filter architecture
'Direct form systolic' (default) | 'Direct form transposed'

HDL filter architecture, specified as one of these structures:

• 'Direct form systolic' — This architecture provides a fully parallel filter implementation
that makes efficient use of Intel and Xilinx DSP blocks.

• 'Direct form transposed' — This architecture is a fully parallel implementation that is
suitable for FPGA and ASIC applications.

Both implementations share resources by interleaving the subfilter coefficients over one filter
implementation for each sample in the input vector.

The object implements a polyphase decomposition filter using dsp.HDLFIRFilter System objects.
For architecture details, see the “Fully Parallel Systolic Architecture” on page 2-463 and the “Fully

 dsp.HDLFIRDecimation

4-567

Parallel Transposed Architecture” on page 2-464 sections on the Discrete FIR Filter HDL Optimized
block reference page.

DecimationFactor — Decimation factor
2 (default) | integer greater than two

Decimation factor, specified as integer greater than two. When you use vector input, the decimation
factor must be an integer multiple of the vector size.

Data Types

RoundingMethod — Rounding method for type-casting output
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest', 'Round', or 'Zero'. The object uses this property when casting the output to the data
type specified by the OutputDataType property. When the input data type is floating point, the
object ignores this property. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
'Wrap' (default) | 'Saturate'

Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. The object uses
this property when casting the output to the data type specified by the OutputDataType property.
When the input data type is floating point, the object ignores this property. For more details, see
“Overflow Handling”.

CoefficientsDataType — Data type of filter coefficients
'Same word length as input' (default) | numerictype object

Data type of filter coefficients, specified as 'Same word length as input' or a numerictype
object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object casts the filter coefficients to the specified data type. The quantization rounds to the
nearest representable value and saturates on overflow. When the input data type is floating point, the
object ignores this property.

OutputDataType — Data type of filter output
'Full precision' (default) | 'Same word length as input' | numerictype object

Data type of the filter output, specified as 'Same word length as input', 'Full precision',
or a numerictype object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object casts the output of the filter to the specified data type. The quantization uses the settings
of the RoundingMethod and OverflowAction properties. When the input data type is floating
point, the object ignores this property.

4 System Objects

4-568

The object increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

Because the coefficient values limit the potential growth, usually the actual full-precision internal
word length is smaller than WF.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true

Option to enable reset input argument, specified as true or false. When you set this property to
true, the object expects a value for the reset input argument. The reset signal implements a local
synchronous reset of the data path registers.

For more reset considerations, see “Tips” on page 4-571.

HDLGlobalReset — Option to connect data path registers to generated HDL global reset
signal
false (default) | true

Option to connect data path registers to generated HDL global reset signal, specified as true or
false. Set this property to true to connect the generated HDL global reset signal to the data path
registers. This property does not change the arguments of the object or modify simulation behavior in
MATLAB. When you set this property to false, the generated HDL global reset clears only the
control path registers. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings.

For more reset considerations, see “Tips” on page 4-571.

Usage

Syntax
[dataOut,validOut] = firDecim(dataIn,validIn)
[dataOut,validOut] = firDecim(dataIn,validIn,reset)

Description

[dataOut,validOut] = firDecim(dataIn,validIn) filters the input data only when validIn
is true.

[dataOut,validOut] = firDecim(dataIn,validIn,reset) filters data when reset is false.
When reset is true, the object resets the filter registers. The object expects the reset argument
only when you set the ResetInputPort property to true. For more reset considerations, see “Tips”
on page 4-571.

Input Arguments

dataIn — Input data
scalar | vector

 dsp.HDLFIRDecimation

4-569

Input data, specified as a real- or complex-valued scalar or vector. When you use vector input, the
decimation factor must be an integer multiple of the vector size. The vector size must be less than or
equal to 64.

When the input data type is an integer type or fixed-point type, the object uses fixed-point arithmetic
for internal calculations.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32
Complex Number Support: Yes

validIn — Validity of input data
logical scalar

Validity of the input data, specified as a logical scalar. The dataIn argument is valid only when this
argument is 1 (true).
Data Types: logical

reset — Control signal that clears data path state
logical scalar

Control signal that clears data path state, specified as a logical scalar. When this argument is 1, the
object stops the current calculation and clears the internal state of the filter. The reset signal is
synchronous and clears the data path and control path states. For more reset considerations, see
“Tips” on page 4-571.

Dependencies

To enable this argument, set the ResetInputPort property to true.
Data Types: logical

Output Arguments

dataOut — Filtered output data
scalar

Filtered output data, returned as a real- or complex-valued scalar. When the input data is floating
point, the output data inherits the data type of the input data. When the input data is an integer type
or fixed-point type, the OutputDataType property specifies the output data type.

The output valid signal indicates which samples are valid after decimation.
Data Types: fi | single | double

validOut — Validity of output data
logical scalar

Validity of the output data, returned as a logical scalar. The object sets this argument to 1 (true) with
each valid output data in the dataOut argument.
Data Types: logical

4 System Objects

4-570

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.HDLFIRDecimation
getLatency Latency of FIR decimation filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Tips
Reset Behavior

• By default, the dsp.HDLFIRDecimation object connects the generated HDL global reset to only the
control path registers. The two reset properties, ResetInputPort and HDLGlobalReset,
connect a reset signal to the data path registers. Because of the additional routing and loading on
the reset signal, resetting data path registers can reduce synthesis performance.

• The ResetInputPort property enables the reset argument of the object. The reset signal
implements a local synchronous reset of the data path registers. For optimal use of FPGA
resources, this option does not connect the reset signal to registers targeted to the DSP blocks of
the FPGA.

• The HDLGlobalReset property connects the generated HDL global reset signal to the data path
registers. This property does not change the arguments of the object or modify simulation
behavior in MATLAB. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings. Depending on your device, using the global
reset might move registers out of the DSP blocks and increase resource use.

• When you set both the ResetInputPort and HDLGlobalReset properties to true, the global
and local reset signals clear the control and data path registers.

Algorithms
This System object implements the algorithms described on the FIR Decimation HDL Optimized block
reference page.

Note The output of the dsp.HDLFIRDecimation object does not match the output from the
dsp.FIRDecimation object sample-for-sample. This difference is mainly because of the phase that
the samples are applied across the subfilters. To match the dsp.FIRDecimation object, apply
DecimationFactor – 1 zeroes to the dsp.HDLFIRDecimation object at the start of the data stream.

The dsp.HDLFIRDecimation object also uses slightly different data types for full-precision
calculations. The different data types can also introduce differences in output values if the values
overflow the internal datatypes.

 dsp.HDLFIRDecimation

4-571

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsp.HDLFIRFilter | dsp.FIRDecimator

Blocks
FIR Decimation | FIR Decimation HDL Optimized | Discrete FIR Filter HDL Optimized

Introduced in R2020b

4 System Objects

4-572

dsp.FIRHalfbandDecimator
Package: dsp

Halfband decimator

Description
The dsp.FIRHalfbandDecimator System object performs an efficient polyphase decimation of the
input signal by a factor of two. You can use dsp.FIRHalfbandDecimator to implement the analysis
portion of a two-band filter bank to filter a signal into lowpass and highpass subbands.
dsp.FIRHalfbandDecimator uses an FIR equiripple design to construct the halfband filters and a
polyphase implementation to filter the input.

To filter and downsample your data:

1 Create the dsp.FIRHalfbandDecimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
firhalfbanddecim = dsp.FIRHalfbandDecimator
firhalfbanddecim = dsp.FIRHalfbandDecimator(Name,Value)

Description

firhalfbanddecim = dsp.FIRHalfbandDecimator returns a halfband decimator,
firhalfbanddecim, with the default settings. Under the default settings, the System object filters
and downsamples the input data with a halfband frequency of 11025 Hz, a transition width of 4.1
kHz, and a stopband attenuation of 80 dB.

firhalfbanddecim = dsp.FIRHalfbandDecimator(Name,Value) returns a halfband
decimator, with additional properties specified by one or more Name,Value pair arguments.
Example: firhalfbanddecim = dsp.FIRHalfbandDecimator('Specification','Filter
order and stopband attenuation') creates an FIR halfband decimator object with filter order
set to 52 and stopband attenuation set to 80 dB.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 dsp.FIRHalfbandDecimator

4-573

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Specification — Filter design parameters
'Transition width and stopband attenuation' (default) | 'Filter order and stopband
attenuation' | 'Filter order and transition width' | 'Coefficients'

Filter design parameters, specified as a character vector. When you set Specification to one of the
following, you choose two of the three available design parameters to design the FIR Halfband filter.

• 'Transition width and stopband attenuation' –– Transition width and stopband
attenuation are the design parameters.

• 'Filter order and stopband attenuation' –– Filter order and stopband attenuation are
the design parameters.

• 'Filter order and transition width' –– Filter order and transition width are the design
parameters.

The filter is designed using the optimal equiripple filter design method.

When you set Specification to 'Coefficients', you specify the halfband filter coefficients
directly through the Numerator property.

FilterOrder — Filter order
52 (default) | even positive integer

Filter order, specified as an even positive integer.

Dependencies

This property applies when you set Specification to either 'Filter order and stopband
attenuation' or 'Filter order and transition width'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandAttenuation — Stopband attenuation
80 (default) | positive real scalar

Stopband attenuation in dB, specified as a positive real scalar.

Dependencies

This property applies when you set Specification to either 'Filter order and stopband
attenuation' or 'Transition width and stopband attenuation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TransitionWidth — Transition width
4100 (default) | positive real scalar

Transition width in Hz, specified as a positive real scalar. The value of the transition width in Hz must
be less than 1/2 the input sample rate.

Dependencies

This property applies when you set Specification to either 'Transition width and stopband
attenuation' or 'Filter order and transition width'.

4 System Objects

4-574

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Numerator — FIR halfband filter coefficients
firhalfband('minorder',0.407,1e-4) (default) | row vector

FIR halfband filter coefficients, specified as a row vector. The coefficients must comply with the FIR
halfband impulse response format. For details on this format, see “Halfband Filters” on page 4-583
and “FIR Halfband Filter Design”. If half the order of the filter, (length(Numerator) - 1)/2, is
even, every other coefficient starting from the first coefficient must be a zero except for the center
coefficient which must be a 0.5. If half the order of the filter is odd, the sequence of alternating zeros
with a 0.5 at the center starts at the second coefficient.
Dependencies

This property applies when you set Specification to 'Coefficients'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Input sample rate
44100 (default) | positive real scalar

Input sample rate in Hz, specified as a positive real scalar. The input sample rate defaults to 44100
Hz. If you specify transition width as one of your filter design parameters, the transition width cannot
exceed 1/2 the input sample rate.
Data Types: single | double

Fixed-Point Properties

CoefficientsDataType — Word and fraction lengths of coefficients
numerictype(1,16) (default) | numerictype object

Word and fraction lengths of coefficients, specified as a signed or unsigned numerictype object. The
default, numerictype(1,16) corresponds to a signed numeric type object with 16-bit coefficients
and a fraction length determined based on the coefficient values, to give the best possible precision.

This property is not tunable.

Word length of the output is same as the word length of the input. Fraction length of the output is
computed such that the entire dynamic range of the output can be represented without overflow. For
details on how the fraction length of the output is computed, see “Fixed-Point Precision Rules for
Avoiding Overflow in FIR Filters”.

RoundingMethod — Rounding method for output fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Rounding method for output fixed-point operations, specified as a character vector. For more
information on the rounding modes, see “Precision and Range”.

Usage

Syntax
ylow = firhalfbanddecim(x)
[ylow,yhigh] = firhalfbanddecim(x)

 dsp.FIRHalfbandDecimator

4-575

Description

ylow = firhalfbanddecim(x) filters the input signal x using the FIR halfband filter,
firhalfbanddecim, and downsamples the output by a factor of 2.

[ylow,yhigh] = firhalfbanddecim(x) computes the ylow and yhigh, of the analysis filter
bank, firhalfbanddecim for input x. A Ki-by-N input matrix is treated as N independent channels.
The System object generates two power-complementary output signals by adding and subtracting the
two polyphase branch outputs respectively. ylow and yhigh are of the same size (Ko-by-N) and data
type. Ko = Ki/2, where 2 is the decimation factor.

Input Arguments

x — Data input
column vector | matrix

Data input, specified as a column vector or a matrix. If the input signal is a matrix, each column of the
matrix is treated as an independent channel. The number of rows in the input signal must be a
multiple of 2.

This object supports variable-size input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

ylow — Lowpass subband of decimator output
column vector | matrix

Lowpass subband of decimator output, returned as a column vector or a matrix. The output, ylow is a
lowpass halfband filtered and downsampled version of the input x. Due to the halfband nature of the
filter, the downsampling factor is always 2.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

yhigh — Highpass subband of decimator output
column vector | matrix

Highpass subband of decimator output, returned as a column vector or a matrix. The output, yhigh is
a highpass halfband filtered and downsampled version of the input x. Due to the halfband nature of
the filter, the downsampling factor is always 2.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

4 System Objects

4-576

Specific to dsp.FIRHalfbandDecimator
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
info Information about filter System object
cost Estimate cost of implementing filter System object
coeffs Returns the filter System object coefficients in a structure
polyphase Polyphase decomposition of multirate filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Impulse and Frequency Response of Halfband Decimation Filter

Create a lowpass halfband decimation filter for data sampled at 44.1 kHz. The output data rate is 1/2
the input sampling rate, or 22.05 kHz. Specify the filter order to be 52 with a transition width of 4.1
kHz.

Fs = 44.1e3;
filterspec = 'Filter order and transition width';
Order = 52;
TW = 4.1e3;
firhalfbanddecim = dsp.FIRHalfbandDecimator(...
 'Specification',filterspec, ...
 'FilterOrder',Order, ...
 'TransitionWidth',TW, ...
 'SampleRate',Fs);

Plot the impulse response. The zeroth-order coefficient is delayed 26 samples, which is equal to the
group delay of the filter. This yields a causal halfband filter.

fvtool(firhalfbanddecim,...
 'Analysis','impulse')

 dsp.FIRHalfbandDecimator

4-577

Plot the magnitude and phase response.

fvtool(firhalfbanddecim,...
 'Analysis','freq')

4 System Objects

4-578

Extract Low Frequency Subband From Speech

Use a halfband analysis filter bank and interpolation filter to extract the low frequency subband from
a speech signal.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

Set up the audio file reader, the analysis filter bank, audio device writer, and interpolation filter. The
sampling rate of the audio data is 22050 Hz. The order of the halfband filter is 52, with a transition
width of 2 kHz.

afr = dsp.AudioFileReader(...
 'speech_dft.mp3',...
 'SamplesPerFrame',1024);

filtSpec = 'Filter order and transition width';
Order = 52;
TW = 2000;

firhalfbanddecim = dsp.FIRHalfbandDecimator(...
 'Specification',filtSpec,...

 dsp.FIRHalfbandDecimator

4-579

https://www.mathworks.com/products/matlab-online.html

 'FilterOrder',Order,...
 'TransitionWidth',TW,...
 'SampleRate',afr.SampleRate);

firhalfbandinterp = dsp.FIRHalfbandInterpolator(...
 'Specification',filtSpec,...
 'FilterOrder',Order,...
 'TransitionWidth',TW,...
 'SampleRate',afr.SampleRate/2);

adw = audioDeviceWriter('SampleRate',...
 afr.SampleRate);

View the magnitude response of the halfband filter.

fvtool(firhalfbanddecim)

Read the speech signal from the audio file in frames of 1024 samples. Filter the speech signal into
lowpass and highpass subbands with a halfband frequency of 5512.5 Hz. Reconstruct a lowpass
approximation of the speech signal by interpolating the lowpass subband. Play the filtered output.

while ~isDone(afr)
 audioframe = afr();
 xlo = firhalfbanddecim(audioframe);
 ylow = firhalfbandinterp(xlo);
 adw(ylow);
end

4 System Objects

4-580

Wait until the audio file is played to the end, then close the input file and release the audio output
resource.

release(afr);
release(adw);

Two-Channel Filter Bank

Use a halfband decimator and interpolator to implement a two-channel filter bank. This example uses
an audio file input and shows that the power spectrum of the filter bank output does not differ
significantly from the input.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

Set up the audio file reader and device writer. Construct the FIR halfband decimator and interpolator.
Finally, set up the spectrum analyzer to display the power spectra of the filter-bank input and output.

AF = dsp.AudioFileReader('speech_dft.mp3','SamplesPerFrame',1024);
AP = audioDeviceWriter('SampleRate',AF.SampleRate);

filterspec = 'Filter order and transition width';
Order = 52;
TW = 2000;

firhalfbanddecim = dsp.FIRHalfbandDecimator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',AF.SampleRate);

firhalfbandinterp = dsp.FIRHalfbandInterpolator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',AF.SampleRate/2,...
 'FilterBankInputPort',true);

SpecAna = dsp.SpectrumAnalyzer('SampleRate',AF.SampleRate,...
 'PlotAsTwoSidedSpectrum',false,'ReducePlotRate',false,...
 'ShowLegend',true,...
 'ChannelNames',{'Input signal','Filtered output signal'});

Read the audio 1024 samples at a time. Filter the input to obtain the lowpass and highpass subband
signals decimated by a factor of two. This is the analysis filter bank. Use the halfband interpolator as
the synthesis filter bank. Display the running power spectrum of the audio input and the output of the
synthesis filter bank. Play the output.

while ~isDone(AF)
 audioInput = AF();
 [xlo,xhigh] = firhalfbanddecim(audioInput);
 audioOutput = firhalfbandinterp(xlo,xhigh);
 spectrumInput = [audioInput audioOutput];
 SpecAna(spectrumInput);
 AP(audioOutput);
end

 dsp.FIRHalfbandDecimator

4-581

release(AF);
release(AP);
release(SpecAna);

Filter Input into Lowpass and Highpass Subbands Using FIR Halfband Decimator

Create a halfband decimator for data sampled at 44.1 kHz. Use a minimum-order design with a
transition width of 2 kHz and a stopband attenuation of 60 dB.

hfirhalfbanddecim = dsp.FIRHalfbandDecimator(...
 'Specification',...
 'Transition width and stopband attenuation',...
 'TransitionWidth',2000,...
 'StopbandAttenuation',60,...
 'SampleRate',44.1e3);

Filter a two-channel input into low and highpass subbands.

x = randn(1024,2);
[ylow,yhigh] = hfirhalfbanddecim(x);

4 System Objects

4-582

More About
Halfband Filters

The ideal lowpass halfband filter is given by

h(n) = 1
2π∫−π/2

π/2
e jωndω =

sin(π
2n)

πn .

The ideal filter is not realizable because the impulse response is noncausal and not absolutely
summable. However, the impulse response of the ideal lowpass filter possesses some important
properties that are required of a realizable approximation. Specifically, the ideal lowpass halfband
filter’s impulse response is:

• equal to 0 for all even-indexed samples
• equal to 1/2 at n=0. You can see this by using L’Hopital’s rule on the continuous-valued equivalent

of the discrete-time impulse response.

The ideal highpass halfband filter is given by

g(n) = 1
2π∫−π

−π/2
e jωndω + 1

2π∫π/2
π

e jωndω .

Evaluating the preceding integral gives the following impulse response

g(n) = sin(πn)
πn −

sin(π
2n)

πn .

The ideal highpass halfband filter’s impulse is:

• equal to 0 for all even-indexed samples
• equal to 1/2 at n=0.

dsp.FIRHalfbandDecimator uses a causal FIR approximation to the ideal halfband response,
which is based on minimizing the ℓ∞ norm of the error (minimax). See “Algorithms” on page 4-583
for more details.

Algorithms
Halfband Equiripple Design

dsp.FIRHalfbandDecimator uses a minimax FIR design to design a fullband linear phase filter
with the desired specifications. The fullband filter is upsampled so that the even-indexed samples of
the filter are replaced with zeros. The upsampling of the filter produces a halfband filter. Finally, the
filter tap corresponding to the group delay of the filter in samples is set equal to 1/2. This yields a
causal linear-phase FIR filter approximation to the ideal halfband filter defined in “Halfband Filters”
on page 4-583. See [1] for a description of this filter design method using the Remez exchange
algorithm.

 dsp.FIRHalfbandDecimator

4-583

Polyphase Implementation with Halfband Filters

dsp.FIRHalfbandDecimator uses an efficient polyphase implementation for halfband filters when
you filter the input signal. The chief advantage of the polyphase implementation is that you can
downsample the signal prior to filtering. This allows you to filter at the lower sampling rate.

Splitting a filter’s impulse response, h(n), into two polyphase components results in an even
polyphase component with z-transform

H0(z) = ∑
n

h(2n)z−n .

and an odd polyphase component with z-transform

H1(z) = ∑
n

h(2n + 1)z−n .

The z-transform of the filter can be written in terms of the even and odd polyphase components as

H(z) = H0(z2) + z−1H1(z2) .

Graphically, you can represent filtering and input followed by downsampling by two with the
following figure

Using the multirate noble identity for downsampling, you can move the downsampling operation
before filtering. This allows you to filter at the lower rate.

For a halfband filter, the only nonzero coefficient in the even polyphase component is the coefficient
corresponding to z0. Implementing the halfband filter as a causal FIR filter shifts the nonzero
coefficient to approximately z-N/4 where N is the number of filter taps. This process is illustrated in the
following figure.

4 System Objects

4-584

The top plot shows a halfband filter of order 52. The bottom plot shows the even polyphase
component. Both of these filters are noncausal. Delaying the even polyphase component by 13
samples creates a causal FIR filter.

To efficiently implement the halfband decimator, dsp.FIRHalfbandDecimator replaces the delay
block and downsampling operator with a commutator switch. This is illustrated in the following figure
where one polyphase component is replaced by a gain and delay.

 dsp.FIRHalfbandDecimator

4-585

The commutator switch takes input samples from a single branch and supplies every other sample to
one of the two polyphase components for filtering. This halves the sampling rate of the input signal.
Which polyphase component reduces to a simple delay depends on whether the half order of the filter
is even or odd. This is because the delay required to make the even polyphase component causal can
be odd or even depending on the filter half order. You can see this by inspecting the polyphase
components of the following filters.

filterspec = 'Filter order and stopband attenuation' ;
halfOrderEven = dsp.FIRHalfbandDecimator('Specification',filterspec,...
 'FilterOrder',64,'StopbandAttenuation',80);
halfOrderOdd = dsp.FIRHalfbandDecimator('Specification',filterspec,...
 'FilterOrder', 54,'StopbandAttenuation',80);
polyphase(halfOrderEven)
polyphase(halfOrderOdd)

To summarize, dsp.FIRHalfbandDecimator

• decimates the input prior to filtering and filters the even and odd polyphase components of the
input separately with the even and odd polyphase components of the filter.

• exploits the fact that one filter polyphase component is a simple delay for a halfband filter.

References
[1] Harris, F.J. Multirate Signal Processing for Communication Systems, Prentice Hall, 2004, pp. 208–

209.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object supports code generation for ARM Cortex-M and ARM Cortex-A processors.

4 System Objects

4-586

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
freqz | fvtool | info | cost | coeffs | polyphase

Objects
dsp.FIRHalfbandInterpolator | dsp.IIRHalfbandDecimator |
dsp.DyadicAnalysisFilterBank | dsp.Channelizer

Blocks
FIR Halfband Decimator | FIR Halfband Interpolator | IIR Halfband Decimator | Dyadic Analysis Filter
Bank

Topics
“FIR Halfband Filter Design”
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2014b

 dsp.FIRHalfbandDecimator

4-587

dsp.FIRHalfbandInterpolator
Package: dsp

Halfband interpolator

Description
The dsp.FIRHalfbandInterpolator System object performs efficient polyphase interpolation of
the input signal using an upsampling factor of two. You can use dsp.FIRHalfbandInterpolator to
implement the synthesis portion of a two-band filter bank to synthesize a signal from lowpass and
highpass subbands. dsp.FIRHalfbandInterpolator uses an FIR equiripple design to construct
the halfband filters and a polyphase implementation to filter the input.

To upsample and interpolate your data:

1 Create the dsp.FIRHalfbandInterpolator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
firhalfbandinterp = dsp.FIRHalfbandInterpolator
firhalfbandinterp = dsp.FIRHalfbandInterpolator(Name,Value)

Description

firhalfbandinterp = dsp.FIRHalfbandInterpolator returns a FIR halfband interpolation
filter, firhalfbandinterp, with the default settings. Under the default settings, the System object
upsamples and interpolates the input data using a halfband frequency of 11025 Hz, a transition width
of 4.1 kHz, and a stopband attenuation of 80 dB.

firhalfbandinterp = dsp.FIRHalfbandInterpolator(Name,Value) returns a halfband
interpolator, with additional properties specified by one or more Name,Value pair arguments.
Example: firhalfbandinterp =
dsp.FIRHalfbandInterpolator('Specification','Filter order and stopband
attenuation') creates an FIR halfband interpolator object with filter order set to 52 and stopband
attenuation set to 80 dB.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

4 System Objects

4-588

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Specification — Filter design parameters
'Transition width and stopband attenuation' (default) | 'Filter order and stopband
attenuation' | 'Filter order and transition width' | 'Coefficients'

Filter design parameters, specified as a character vector. When you set Specification to one of the
following, you choose two of the three available design parameters to design the FIR Halfband filter.

• 'Transition width and stopband attenuation' –– Transition width and stopband
attenuation are the design parameters.

• 'Filter order and stopband attenuation' –– Filter order and stopband attenuation are
the design parameters.

• 'Filter order and transition width' –– Filter order and transition width are the design
parameters.

The filter is designed using optimal equiripple filter design method.

When you set Specification to 'Coefficients', you specify the halfband filter coefficients
directly through the Numerator property.

FilterOrder — Filter order
52 (default) | even positive integer

Filter order, specified as an even positive integer.

Dependencies

This property applies when you set Specification to either 'Filter order and stopband
attenuation' or 'Filter order and transition width'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandAttenuation — Stopband attenuation
80 (default) | positive real scalar

Stopband attenuation in dB, specified as a positive real scalar.

Dependencies

This property applies when you set Specification to either 'Filter order and stopband
attenuation' or 'Transition width and stopband attenuation'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TransitionWidth — Transition width
4100 (default) | positive real scalar

Transition width in Hz, specified as a positive real scalar. The value of the transition width in Hz must
be less than 1/2 the input sample rate.

Dependencies

This property applies when you set Specification to either 'Transition width and stopband
attenuation' or 'Filter order and transition width'.

 dsp.FIRHalfbandInterpolator

4-589

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Numerator — FIR halfband filter coefficients
2*firhalfband('minorder',0.407,1e-4) (default) | row vector

FIR halfband filter coefficients, specified as a row vector. The coefficients must comply with the FIR
halfband impulse response format. For details on this format, see “Halfband Filters” on page 4-598
and “FIR Halfband Filter Design”. If half the order of the filter, (length(Numerator) - 1)/2 is
even, every other coefficient starting from the first coefficient must be a zero except for the center
coefficient which must be a 1.0. If half the order of the filter is odd, the sequence of alternating zeros
with a 1.0 at the center starts at the second coefficient.
Dependencies

This property applies when you set Specification to 'Coefficients'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Input sample rate
44100 (default) | positive real scalar

Input sample rate in Hz, specified as a positive real scalar. The input sample rate defaults to 44100
Hz. If you specify a transition width as one of your filter design parameters, the transition width
cannot exceed 1/2 the input sample rate.
Data Types: single | double

FilterBankInputPort — Synthesis filter bank
false (default) | true

Synthesis filter bank, specified as either false or true. If this property is false,
dsp.FIRHalfbandInterpolator is an interpolation filter for a single vector- or matrix-valued input
when you call the algorithm. If this property is true, dsp.FIRHalfbandInterpolator is a
synthesis filter bank and the algorithm accepts two inputs, the lowpass and highpass subbands to
synthesize.

Fixed-Point Properties

CoefficientsDataType — Word and fraction lengths of coefficients
numerictype(1,16) (default) | numerictype object

Word and fraction lengths of coefficients, specified as a signed or unsigned numerictype object. The
default, numerictype(1,16) corresponds to a signed numeric type object with 16-bit coefficients
and a fraction length determined based on the coefficient values, to give the best possible precision.

This property is not tunable.

Word length of the output is same as the word length of the input. Fraction length of the output is
computed such that the entire dynamic range of the output can be represented without overflow. For
details on how the fraction length of the output is computed, see “Fixed-Point Precision Rules for
Avoiding Overflow in FIR Filters”.

RoundingMethod — Rounding method for output fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Rounding method for output fixed-point operations, specified as a character vector. For more
information on the rounding modes, see “Precision and Range”.

4 System Objects

4-590

Usage

Syntax
y = firhalfbandinterp(x1)
y = firhalfbandinterp(x1,x2)

Description

y = firhalfbandinterp(x1) upsamples by two and interpolates the input signal x1 using the FIR
halfband interpolator, firhalfbandinterp.

y = firhalfbandinterp(x1,x2) implements a halfband synthesis filter bank for the inputs x1
and x2. x1 is the lowpass output of a halfband analysis filter bank and x2 is the highpass output of a
halfband analysis filter bank. dsp.FIRHalfbandInterpolator implements a synthesis filter bank
only when the 'FilterBankInputPort' property is set to true.

Input Arguments

x1 — Data input
column vector | matrix

Data input to the FIR halfband interpolator, specified as a column vector or a matrix. This signal is
the lowpass output of a halfband analysis filter bank. If the input signal is a matrix, each column of
the matrix is treated as an independent channel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

x2 — Second data input
column vector | matrix

Second data input to the synthesis filter bank, specified as a column vector or a matrix. This signal is
the highpass output of a halfband analysis filter bank. If the input signal is a matrix, each column of
the matrix is treated as an independent channel.

The size, data type, and complexity of both the inputs must be the same.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — Output of interpolator
column vector | matrix

Output of the interpolator, returned as a column vector or a matrix. The number of rows in the
interpolator output is twice the number of rows in the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 dsp.FIRHalfbandInterpolator

4-591

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.FIRHalfbandInterpolator
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
info Information about filter System object
cost Estimate cost of implementing filter System object
coeffs Returns the filter System object coefficients in a structure
polyphase Polyphase decomposition of multirate filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Impulse and Frequency Response of Halfband Interpolation Filter

Create a lowpass halfband interpolation filter for upsampling data to 44.1 kHz. Specify a filter order
of 52 and a transition width of 4.1 kHz.

Fs = 44.1e3;
InputSampleRate = Fs/2;
Order = 52;
TW = 4.1e3;
filterspec = 'Filter order and transition width';

firhalfbandinterp = dsp.FIRHalfbandInterpolator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',InputSampleRate);

Plot the impulse response. The 0th order coefficient is delayed 26 samples, which is equal to the
group delay of the filter. This yields a causal halfband filter.

fvtool(firhalfbandinterp,'Analysis','Impulse');

4 System Objects

4-592

Plot the magnitude and phase response.

fvtool(firhalfbandinterp,'Analysis','freq');

 dsp.FIRHalfbandInterpolator

4-593

Extract Low Frequency Subband From Speech

Use a halfband analysis filter bank and interpolation filter to extract the low frequency subband from
a speech signal.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

Set up the audio file reader, the analysis filter bank, audio device writer, and interpolation filter. The
sampling rate of the audio data is 22050 Hz. The order of the halfband filter is 52, with a transition
width of 2 kHz.

afr = dsp.AudioFileReader(...
 'speech_dft.mp3',...
 'SamplesPerFrame',1024);

filtSpec = 'Filter order and transition width';
Order = 52;
TW = 2000;

firhalfbanddecim = dsp.FIRHalfbandDecimator(...
 'Specification',filtSpec,...

4 System Objects

4-594

https://www.mathworks.com/products/matlab-online.html

 'FilterOrder',Order,...
 'TransitionWidth',TW,...
 'SampleRate',afr.SampleRate);

firhalfbandinterp = dsp.FIRHalfbandInterpolator(...
 'Specification',filtSpec,...
 'FilterOrder',Order,...
 'TransitionWidth',TW,...
 'SampleRate',afr.SampleRate/2);

adw = audioDeviceWriter('SampleRate',...
 afr.SampleRate);

View the magnitude response of the halfband filter.

fvtool(firhalfbanddecim)

Read the speech signal from the audio file in frames of 1024 samples. Filter the speech signal into
lowpass and highpass subbands with a halfband frequency of 5512.5 Hz. Reconstruct a lowpass
approximation of the speech signal by interpolating the lowpass subband. Play the filtered output.

while ~isDone(afr)
 audioframe = afr();
 xlo = firhalfbanddecim(audioframe);
 ylow = firhalfbandinterp(xlo);
 adw(ylow);
end

 dsp.FIRHalfbandInterpolator

4-595

Wait until the audio file is played to the end, then close the input file and release the audio output
resource.

release(afr);
release(adw);

Two-Channel Filter Bank

Use a halfband decimator and interpolator to implement a two-channel filter bank. This example uses
an audio file input and shows that the power spectrum of the filter bank output does not differ
significantly from the input.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

Set up the audio file reader and device writer. Construct the FIR halfband decimator and interpolator.
Finally, set up the spectrum analyzer to display the power spectra of the filter-bank input and output.

AF = dsp.AudioFileReader('speech_dft.mp3','SamplesPerFrame',1024);
AP = audioDeviceWriter('SampleRate',AF.SampleRate);

filterspec = 'Filter order and transition width';
Order = 52;
TW = 2000;

firhalfbanddecim = dsp.FIRHalfbandDecimator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',AF.SampleRate);

firhalfbandinterp = dsp.FIRHalfbandInterpolator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',AF.SampleRate/2,...
 'FilterBankInputPort',true);

SpecAna = dsp.SpectrumAnalyzer('SampleRate',AF.SampleRate,...
 'PlotAsTwoSidedSpectrum',false,'ReducePlotRate',false,...
 'ShowLegend',true,...
 'ChannelNames',{'Input signal','Filtered output signal'});

Read the audio 1024 samples at a time. Filter the input to obtain the lowpass and highpass subband
signals decimated by a factor of two. This is the analysis filter bank. Use the halfband interpolator as
the synthesis filter bank. Display the running power spectrum of the audio input and the output of the
synthesis filter bank. Play the output.

while ~isDone(AF)
 audioInput = AF();
 [xlo,xhigh] = firhalfbanddecim(audioInput);
 audioOutput = firhalfbandinterp(xlo,xhigh);
 spectrumInput = [audioInput audioOutput];
 SpecAna(spectrumInput);
 AP(audioOutput);
end

4 System Objects

4-596

release(AF);
release(AP);
release(SpecAna);

Upsample and Interpolate Multichannel Input Using FIR Halfband Interpolator

Create a half-band interpolation filter for data sampled at 44.1 kHz. The filter order is 52 with a
transition width of 4.1 kHz. Use the filter to upsample and interpolate a multichannel input.

Fs = 44.1e3;
filterspec = 'Filter order and transition width';
Order = 52;
TW = 4.1e3;
firhalfbandinterp = dsp.FIRHalfbandInterpolator(...
 'Specification',filterspec,...
 'FilterOrder',Order,...
 'TransitionWidth',TW,...
 'SampleRate',Fs);

x = randn(1024,4);
y = firhalfbandinterp(x);

 dsp.FIRHalfbandInterpolator

4-597

More About
Halfband Filters

The ideal lowpass halfband filter is given by

h(n) = 1
2π∫−π/2

π/2
e jωndω =

sin(π
2n)

πn .

The ideal filter is not realizable because the impulse response is noncausal and not absolutely
summable. However, the impulse response of the ideal lowpass filter possesses some important
properties that are required of a realizable approximation. Specifically, the ideal lowpass halfband
filter’s impulse response is:

• equal to 0 for all even-indexed samples
• equal to 1/2 at n=0. You can see this by using L’Hopital’s rule on the continuous-valued equivalent

of the discrete-time impulse response.

The ideal highpass halfband filter is given by

g(n) = 1
2π∫−π

−π/2
e jωndω + 1

2π∫π/2
π

e jωndω .

Evaluating the preceding integral gives the following impulse response

g(n) = sin(πn)
πn −

sin(π
2n)

πn .

The ideal highpass halfband filter’s impulse is:

• Equal to 0 for all even-indexed samples
• Equal to 1/2 at n=0.

dsp.FIRHalfbandInterpolator uses a causal FIR approximation to the ideal halfband response,
which is based on minimizing the ℓ∞ norm of the error (minimax). See “Algorithms” on page 4-598
for more details.

Algorithms
Halfband Equiripple Design

dsp.FIRHalfbandInterpolator uses a minimax FIR design to design a fullband linear phase filter
with the desired specifications. The fullband filter is upsampled so that the even-indexed samples of
the filter are replaced with zeros. The upsampling of the filter produces a halfband filter. Finally, the
filter tap corresponding to the group delay of the filter in samples is set equal to 1/2. This yields a
causal linear-phase FIR filter approximation to the ideal halfband filter defined in “Halfband Filters”
on page 4-598. See [1] for a description of this filter design method using the Remez exchange
algorithm.

The coefficients of the halfband interpolation filter are scaled by the interpolation factor, two, to
preserve the output power of the signal.

4 System Objects

4-598

Polyphase Implementation with Halfband Filters

dsp.FIRHalfbandInterpolator uses an efficient polyphase implementation for halfband filters
when you filter the input signal. You can use a polyphase implementation to move the upsampling
operation after filtering. This allows you to filter at the lower sampling rate.

Splitting a filter’s impulse response, h(n), into two polyphase components results in an even
polyphase component with z-transform

H0(z) = ∑
n

h(2n)z−n .

and an odd polyphase component with z-transform

H1(z) = ∑
n

h(2n + 1)z−n .

The z-transform of the filter can be written in terms of the even and odd polyphase components as

H(z) = H0(z2) + z−1H1(z2) .

Graphically, you can represent upsampling by two followed by filtering with the following figure

Using the multirate noble identity for upsampling, you can move the upsampling operation after
filtering. This enables you to filter at the lower rate.

For a halfband filter, the only nonzero coefficient in the even polyphase component is the coefficient
corresponding to z0. Implementing the halfband filter as a causal FIR filter shifts the nonzero
coefficient to approximately z-N/4, where N is the number of filter taps. This process is shown in the
following figure.

 dsp.FIRHalfbandInterpolator

4-599

The top plot shows a halfband filter of order 52. The bottom plot shows the even polyphase
component. Both of these filters are noncausal. Delaying the even polyphase component by 13
samples creates a causal FIR filter.

To efficiently implement the halfband interpolator, dsp.FIRHalfbandInterpolator replaces the
upsampling operator, delay block, and adder with a commutator switch. This is shown in the following
figure, where one polyphase component is replaced by a delay.

4 System Objects

4-600

The commutator switch takes input samples from the two branches alternately, one sample at a time.
This doubles the sampling rate of the input signal. The polyphase component that reduces to a simple
delay depends on whether the half order of the filter is even or odd. This is because the delay
required to make the even polyphase component causal can be odd or even, depending on the filter
half order. For an example of this behavior, inspect the polyphase components of the following filters.
filterspec = 'Filter order and stopband attenuation';
halfOrderEven = dsp.FIRHalfbandInterpolator('Specification',filterspec,...
 'FilterOrder',64,'StopbandAttenuation',80);
halfOrderOdd = dsp.FIRHalfbandInterpolator('Specification',filterspec,...
 'FilterOrder', 54,'StopbandAttenuation',80);
polyphase(halfOrderEven)
polyphase(halfOrderOdd)

One of the polyphase components has a single nonzero coefficient indicating that it is a simple delay.
To preserve the output power of the signal, the coefficients are scaled by the interpolation factor, two.
To see this scaling, compare the polyphase components of a halfband interpolator with the
coefficients of a halfband decimator.

hfirinterp = dsp.FIRHalfbandInterpolator;
hfirdecim = dsp.FIRHalfbandDecimator;
polyphase(hfirdecim)
polyphase(hfirinterp)

To summarize, dsp.FIRHalfbandInterpolator

• Filters the input before upsampling with the even and odd polyphase components of the filter.
• Exploits the fact that one filter polyphase component is a simple delay for a halfband filter.

References
[1] Harris, F.J. Multirate Signal Processing for Communication Systems, Prentice Hall, 2004, pp. 208–

209.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object supports code generation for ARM Cortex-M and ARM Cortex-A processors. To learn more
about ARM Cortex code generation, see “Code Generation for ARM Cortex-M and ARM Cortex-A
Processors”.

This object also supports SIMD code generation using Intel AVX2 technology when the input signal
has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 dsp.FIRHalfbandInterpolator

4-601

See Also
Functions
freqz | fvtool | info | cost | coeffs | polyphase

Objects
dsp.FIRHalfbandDecimator | dsp.IIRHalfbandInterpolator |
dsp.DyadicSynthesisFilterBank | dsp.ChannelSynthesizer

Blocks
FIR Halfband Interpolator | FIR Halfband Decimator | IIR Halfband Interpolator | Dyadic Synthesis
Filter Bank

Topics
“FIR Halfband Filter Design”
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2014b

4 System Objects

4-602

dsp.FIRInterpolator
Package: dsp

Polyphase FIR interpolator

Description
The dsp.FIRInterpolator System object upsamples an input by the integer upsampling factor L
along the first dimension. The FIR interpolator (as shown in the schematic) conceptually consists of
an upsampler followed by an FIR anti-imaging filter, which is usually an approximation of an ideal
band-limited interpolation filter. The coefficients of the anti-imaging filter can be specified through
the Numerator property, or can be automatically designed by the object using the
designMultirateFIR function.

The upsampler upsamples each channel of the input to a higher rate by inserting L–1 zeros between
samples. The FIR filter that follows filters each channel of the upsampled data. The resulting discrete-
time signal has a sample rate that is L times the original sample rate.

Note that the actual object algorithm implements a direct-form FIR polyphase structure, an efficient
equivalent of the combined system depicted in the diagram. For more details, see “Algorithms” on
page 4-618.

To upsample an input:

1 Create the dsp.FIRInterpolator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Under specific conditions, this System object also supports SIMD code generation. For details, see
“Code Generation” on page 4-620.

Creation

Syntax
firinterp = dsp.FIRInterpolator
firinterp = dsp.FIRInterpolator(L)
firinterp = dsp.FIRInterpolator(L,'Auto')

 dsp.FIRInterpolator

4-603

firinterp = dsp.FIRInterpolator(L,num)
firinterp = dsp.FIRInterpolator(L,method)
firinterp = dsp.FIRInterpolator(___ ,Name,Value)
firinterp = dsp.FIRInterpolator(L,'legacy')

Description

firinterp = dsp.FIRInterpolator returns an FIR interpolator with an interpolation factor of 3.
The object designs the FIR filter coefficients using the designMultirateFIR(3,1) function.

firinterp = dsp.FIRInterpolator(L) returns an FIR interpolator with the integer-valued
InterpolationFactor property set to L. The object designs its filter coefficients based on the
interpolation factor L that you specify while creating the object using the
designMultirateFIR(L,1) function. The designed filter corresponds to a lowpass with a cutoff at
π/L in radial frequency units.

firinterp = dsp.FIRInterpolator(L,'Auto') returns an FIR interpolator with the
NumeratorSource property set to 'Auto'. In this mode, every time there is an update in the
interpolation factor, the object redesigns the filter using the design method specified in
DesignMethod.

firinterp = dsp.FIRInterpolator(L,num) returns an FIR interpolator with the
InterpolationFactor property set to L and the Numerator property set to num.

firinterp = dsp.FIRInterpolator(L,method) returns an FIR interpolator with the
InterpolationFactor property set to L and the DesignMethod property set to method. When you
pass the design method as an input, the NumeratorSource property is automatically set to 'Auto'.

firinterp = dsp.FIRInterpolator(___ ,Name,Value) returns an FIR interpolator object
with each specified property set to the specified value. Enclose each property name in quotes. You
can use this syntax with any previous input argument combinations.

firinterp = dsp.FIRInterpolator(L,'legacy') returns an FIR interpolator where the filter
coefficients are designed using fir1(15,0.25). The designed filter has a cutoff frequency of 0.25π
radians/sample.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InterpolationFactor — Interpolation factor
3 (default) | positive integer

Specify the integer factor, L, by which to increase the sampling rate of the input signal. The
polyphase implementation uses L polyphase subfilters to compute convolutions at the lower sample
rate. The FIR interpolator delays and interleaves these lower-rate convolutions to obtain the higher-
rate output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

4 System Objects

4-604

NumeratorSource — FIR filter coefficient source
'Property' (default) | 'Input port' | 'Auto'

FIR filter coefficient source, specified as either:

• 'Property' –– The numerator coefficients are specified through the Numerator property.
• 'Input port' –– The numerator coefficients are specified as an input to the object algorithm.
• 'Auto' –– The numerator coefficients are designed automatically using the design method
specified in DesignMethod.

Numerator — FIR filter coefficients
designMultirateFIR(L,1) (default) | row vector

Numerator coefficients of the anti-imaging FIR filter, specified as a row vector in powers of z–1. The
following equation defines the system function for a filter of length N+1:

H(z) = ∑
n = 0

N
b(n)z−n

The vector b = [b(0), b(1), …, b(N)] represents the vector of filter coefficients.

To act as an effective anti-imaging filter, the coefficients usually correspond to a lowpass filter with a
normalized cutoff frequency no greater than the reciprocal of the InterpolationFactor. Use
designMultirateFIR to design such a filter. More generally, any complex bandpass filter can be
used. For an example, see “Double the Sample Rate Using FIR Interpolator” on page 4-616.

The filter coefficients are scaled by the value of the InterpolationFactor property before filtering
the signal. To form the L polyphase subfilters, Numerator is appended with zeros if necessary.

Dependencies

This property is visible only when you set NumeratorSource to 'Property'.

When NumeratorSource is set to 'Auto', the numerator coefficients are automatically redesigned
using the design method specified in DesignMethod. To access the filter coefficients in the automatic
design mode, type objName.Numerator in the MATLAB command prompt.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DesignMethod — Auto design method
'Kaiser' (default) | 'ZOH' | 'Linear'

Design method of the FIR filter coefficients, specified as one of the following:

• 'Kaiser' –– Kaiser method. Approximate anti-imaging lowpass filter using the
designMultirateFIR function.

• 'ZOH' –– Zero order hold method. Hold the input sequence values.
• 'Linear' –– Linear interpolation method.

Dependencies

This property is visible only when you set the NumeratorSource property to 'Auto', or if you pass
the 'auto' keyword as an input while creating the object.

 dsp.FIRInterpolator

4-605

Fixed-Point Properties

FullPrecisionOverride — Full-precision override for fixed-point arithmetic
true (default) | false

Flag to use full-precision rules for fixed-point arithmetic, specified as one of the following:

• true –– The object computes all internal arithmetic and output data types using the full-precision
rules. These rules provide the most accurate fixed-point numerics. In this mode, other fixed-point
properties do not apply. No quantization occurs within the object. Bits are added, as needed, to
ensure that no roundoff or overflow occurs.

• false –– Fixed-point data types are controlled through individual fixed-point property settings.

For more information, see “Full Precision for Fixed-Point System Objects” and “Set System Object
Fixed-Point Properties”.

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Rounding method for fixed-point operations. For more details, see rounding mode.

Dependencies

This property is not visible and has no effect on the numerical results when the following conditions
are met:

• FullPrecisionOverride set to true.
• FullPrecisionOverride set to false, ProductDataType set to 'Full precision',

AccumulatorDataType set to 'Full precision', and OutputDataType set to 'Same as
accumulator'.

Under these conditions, the object operates in full precision mode.

OverflowAction — Overflow action for fixed-point operations
'Wrap' (default) | 'Saturate'

Overflow action for fixed-point operations, specified as one of the following:

• 'Wrap' –– The object wraps the result of its fixed-point operations.
• 'Saturate' –– The object saturates the result of its fixed-point operations.

For more details on overflow actions, see overflow mode for fixed-point operations.

Dependencies

This property is not visible and has no effect on the numerical results when the following conditions
are met:

• FullPrecisionOverride set to true.
• FullPrecisionOverride set to false, OutputDataType set to 'Same as accumulator',

ProductDataType set to 'Full precision', and AccumulatorDataType set to 'Full
precision'

Under these conditions, the object operates in full precision mode.

4 System Objects

4-606

CoefficientsDataType — Data type of FIR filter coefficients
Same word length as input (default) | Custom

Data type of the FIR filter coefficients, specified as:

• Same word length as input –– The word length of the coefficients is the same as that of the
input. The fraction length is computed to give the best possible precision.

• Custom –– The coefficients data type is specified as a custom numeric type through the
CustomCoefficientsDataType property.

CustomCoefficientsDataType — Word and fraction lengths of coefficients data type
numerictype([],16,15) (default) | custom numeric type

Word and fraction lengths of the coefficients data type, specified as an autosigned numerictype with
a word length of 16 and a fraction length of 15.
Dependencies

This property applies when you set the CoefficientsDataType property to Custom.

ProductDataType — Data type of product output
'Full precision' (default) | 'Custom' | 'Same as input'

Data type of the product output in this object, specified as one of the following:

• 'Full precision' –– The product output data type has full precision.
• 'Same as input' –– The object specifies the product output data type to be the same as that of

the input data type.
• 'Custom' –– The product output data type is specified as a custom numeric type through the

CustomProductDataType property.

For more information on the product output data type, see “Multiplication Data Types”.
Dependencies

This property applies when you set FullPrecisionOverride to false.

CustomProductDataType — Word and fraction lengths of product data type
numerictype([],32,30) (default) | custom numeric type

Word and fraction lengths of the product data type, specified as an autosigned numeric type with a
word length of 32 and a fraction length of 30.
Dependencies

This property applies only when you set FullPrecisionOverride to false and
ProductDataType to 'Custom'.

AccumulatorDataType — Data type of accumulation operation
'Full precision' (default) | 'Same as input' | 'Same as product' | 'Custom'

Data type of an accumulation operation in this object, specified as one of the following:

• 'Full precision' –– The accumulation operation has full precision.
• 'Same as product' –– The object specifies the accumulator data type to be the same as that of

the product output data type.

 dsp.FIRInterpolator

4-607

• 'Same as input' –– The object specifies the accumulator data type to be the same as that of the
input data type.

• 'Custom' –– The accumulator data type is specified as a custom numeric type through the
CustomAccumulatorDataType property.

Dependencies

This property applies when you set FullPrecisionOverride to false.

CustomAccumulatorDataType — Word and fraction lengths of accumulator data type
numerictype([],32,30) (default) | custom numeric type

Word and fraction lengths of the accumulator data type, specified as an autosigned numeric type with
a word length of 32 and a fraction length of 30.

Dependencies

This property applies only when you set FullPrecisionOverride to false and
AccumulatorDataType to 'Custom'.

OutputDataType — Data type of object output
'Same as accumulator' (default) | 'Same as input' | 'Same as product' | 'Custom'

Data type of the object output, specified as one of the following:

• 'Same as accumulator' –– The output data type is the same as that of the accumulator output
data type.

• 'Same as input' –– The output data type is the same as that of the input data type.
• 'Same as product' –– The output data type is the same as that of the product output data type.
• 'Custom' –– The output data type is specified as a custom numeric type through the

CustomOutputDataType property.

Dependencies

This property applies when you set FullPrecisionOverride to false.

CustomOutputDataType — Word and fraction lengths of output data type
numerictype([],16,15) (default) | custom numeric type

Word and fraction lengths of the output data type, specified as an autosigned numeric type with a
word length of 16 and a fraction length of 15.

Dependencies

This property applies only when you set FullPrecisionOverride to false and OutputDataType
to 'Custom'.

Usage

Syntax
y = firinterp(x)
y = firinterp(x,num)

4 System Objects

4-608

Description

y = firinterp(x) interpolates the input signal x along the first dimension, and outputs the
upsampled and filtered values, y.

y = firinterp(x,num) uses the FIR filter, num, to interpolate the input signal. This configuration
is valid only when the 'NumeratorSource' property is set to 'Input port'.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. A P-by-Q input matrix is treated as Q independent
channels, and the System object interpolates each channel over the first dimension and generates a
P*L-by-Q output matrix, where L is the interpolation factor.

This object supports variable-size input and does not support complex unsigned fixed-point inputs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

num — FIR filter coefficients
row vector

FIR filter coefficients, specified as a row vector.

Dependencies

This input is accepted only when the 'NumeratorSource' property is set to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — FIR interpolator output
vector | matrix

FIR interpolator output, returned as a vector or a matrix of size P*L-by-Q, where L is the interpolation
factor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.FIRInterpolator
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters

 dsp.FIRInterpolator

4-609

info Information about filter System object
cost Estimate cost of implementing filter System object
polyphase Polyphase decomposition of multirate filter
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)
impz Impulse response of discrete-time filter System object
coeffs Returns the filter System object coefficients in a structure

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Interpolate a Cosine Wave

Interpolate a cosine wave by a factor of 2. In the automatic filter design mode, change the underlying
D/A signal interpolation model to 'linear' and interpolate the signal by a factor of 4, change the
underlying D/A signal interpolation model to 'ZOH' and interpolate the signal by a factor of 5.

The cosine wave has an angular frequency of π
4 radians/sample.

x = cos(pi/4*(0:39)');

Design Default Filter

Create a dsp.FIRInterpolator object. The object uses an anti-imaging lowpass filter after
upsampling. By default, the anti-imaging lowpass filter is designed using the designMultirateFIR
function. The function designs the filter based on the interpolation factor that you specify, and stores
the coefficients in the Numerator property. For an interpolation factor of 2, the object designs the
coefficients using designMultirateFIR(2,1).

firinterp = dsp.FIRInterpolator(2)

firinterp =
 dsp.FIRInterpolator with properties:

 InterpolationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [0 -2.0108e-04 0 7.7408e-04 0 -0.0020 0 0.0045 ...]

 Show all properties

Visualize the filter response using fvtool. The designed filter meets the ideal filter constraints that
are marked in red. The cutoff frequency is approximately half the spectrum.

fvtool(firinterp)

4 System Objects

4-610

Interpolate by 2

Interpolate the cosine signal by a factor of 2.

y = firinterp(x);

Plot the original and interpolated signals. In order to plot the two signals on the same plot, obtain the
time affine transformation parameters. Use these parameters to compute the output sample times.
The nth output sample time equals scale × n + delay. The input and output values coincide every other
sample, due to the interpolation factor of 2.

scale = firinterp.InterpolationFactor;
delay = length(firinterp.Numerator)/2;
nx = (0:length(x)-1);

% Calculate output times for vector y in input units
ty = ((0:length(y)-1)-delay)/scale;

stem(ty,y,'filled',MarkerSize=4); hold on;
stem(nx,x); hold off;
xlim([-5,20])
ylim([-2.5 2.5])
legend('Interpolated by 2','Input signal');

 dsp.FIRInterpolator

4-611

Interpolate by 4 in Automatic Filter Design Mode

Now interpolate by a factor of 4. In order for the filter design to be updated automatically based on
the new interpolation factor, set the NumeratorSource property to 'Auto'. Alternately, you can
pass the keyword 'auto' as an input while creating the object. The object then operates in the
automatic filter design mode. Every time there is a change in the interpolation factor, the object
updates the filter design.

release(firinterp)
firinterp.NumeratorSource = 'Auto';
firinterp.InterpolationFactor = 4

firinterp =
 dsp.FIRInterpolator with properties:

 InterpolationFactor: 4
 NumeratorSource: 'Auto'
 DesignMethod: 'Kaiser'

 Show all properties

To access the filter coefficients in the automatic filter design mode, type firinterp.Numerator in
the MATLAB command prompt.

The designed filter occupies a narrower passband that is approximately a quarter of the spectrum.

fvtool(firinterp)

4 System Objects

4-612

Interpolate the cosine signal by a factor of 4.

yAuto = firinterp(x);

Plot the original and resampled signals. Recalculate the time affine transformation parameters since
the interpolation factor has changed. The input and output values coincide every 4 output samples,
owing to the interpolation factor of 4.

scale = firinterp.InterpolationFactor;
delay = length(firinterp.Numerator)/2;
nx = (0:length(x)-1);

% Calculate output times for vector yAuto in input units
tyAuto = ((0:length(yAuto)-1)-delay)/scale;

stem(tyAuto,yAuto,'filled',MarkerSize=4); hold on;
stem(nx,x); hold off;
xlim([-5,10])
ylim([-2.5 2.5])
legend('Interpolated by 4','Input signal');

 dsp.FIRInterpolator

4-613

Specify Signal Interpolation Model

In the automatic design mode, you can also specify the underlying D/A signal interpolation model
through the DesignMethod property.

Set DesignMethod to 'linear'

If you set the DesignMethod to 'linear', the object uses the linear interpolation model.

release(firinterp)
firinterp.DesignMethod = 'linear'

firinterp =
 dsp.FIRInterpolator with properties:

 InterpolationFactor: 4
 NumeratorSource: 'Auto'
 DesignMethod: 'Linear'

 Show all properties

Interpolate the signal using the linear interpolation model.

ylinear = firinterp(x);

Plot the original and the linearly interpolated signal.

4 System Objects

4-614

scale = firinterp.InterpolationFactor;
delay = (length(firinterp.Numerator)-1)/2;
nx = (0:length(x)-1);

% Calculate output times for vector ylinear in input units
tylinear = ((0:length(ylinear)-1)-delay)/scale;

stem(tylinear,ylinear,'filled',MarkerSize=4); hold on;
stem(nx,x);
hold off;
xlim([0,10])
ylim([-2.5 2.5])
legend('Linear Interpolation by 4','Input signal');

Set DesignMethod to 'ZOH' and Change InterpolationFactor to 5

If you set the DesignMethod to 'ZOH', the object uses the zero order hold method. Change the
interpolation factor to 5.

release(firinterp)
firinterp.DesignMethod = 'ZOH';
firinterp.InterpolationFactor = 5

firinterp =
 dsp.FIRInterpolator with properties:

 InterpolationFactor: 5
 NumeratorSource: 'Auto'

 dsp.FIRInterpolator

4-615

 DesignMethod: 'ZOH'

 Show all properties

Interpolate the signal using the zero order hold method.

yzoh = firinterp(x);

Plot the original and ZOH interpolated signal.

scale = firinterp.InterpolationFactor;
delay = floor((length(firinterp.Numerator)-1)/2);
nx = (0:length(x)-1);

% Calculate output times for vector yzoh in input units
tyzoh = ((0:length(yzoh)-1)-delay)/scale;

stem(tyzoh,yzoh,'filled',MarkerSize=4); hold on;
stem(nx,x); hold off;
xlim([0,10])
ylim([-1.5 1.5])
legend('ZOH Interpolation by 4','Input signal');

4 System Objects

4-616

Double the Sample Rate Using FIR Interpolator

Double the sample rate of an audio signal and play the interpolated signal using the
audioDeviceWriter object.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

Create a dsp.AudioFileReader object. The default audio file ready by the object has a sample rate
of 22050 Hz.

afr = dsp.AudioFileReader('OutputDataType',...
 'single');

Create a dsp.FIRInterpolator object and specify the interpolation factor to be 2. The object
designs the filter using the designMultirateFIR(2,1) function and stores the coefficients in the
Numerator property of the object.

firInterp = dsp.FIRInterpolator(2)

firInterp =
 dsp.FIRInterpolator with properties:

 InterpolationFactor: 2
 NumeratorSource: 'Property'
 Numerator: [0 -2.0108e-04 0 7.7408e-04 0 -0.0020 0 0.0045 ...]

 Show all properties

Create an audioDeviceWriter object. Specify the sample rate to be 22050×2, which equals 44100
Hz.

adw = audioDeviceWriter(44100)

adw =
 audioDeviceWriter with properties:

 Driver: 'DirectSound'
 Device: 'Default'
 SampleRate: 44100

 Show all properties

Read the audio signal using the file reader object, double the sample rate of the signal from 22050 Hz
to 44100 Hz and play the interpolated signal.

while ~isDone(afr)
 frame = afr();
 y = firInterp(frame);
 adw(y);
end

pause(1);

 dsp.FIRInterpolator

4-617

https://www.mathworks.com/products/matlab-online.html

release(afr);
release(adw);

Algorithms
The FIR interpolation filter is implemented efficiently using a polyphase structure.

To derive the polyphase structure, start with the transfer function of the FIR filter:

H(z) = b0 + b1z−1 + ... + bNz−N

N+1 is the length of the FIR filter.

You can rearrange this equation as follows:

H(z) =

b0 + bLz−L + b2Lz−2L + .. + bN − L + 1z−(N − L + 1) +

z−1 b1 + bL + 1z−L + b2L + 1z−2L + .. + bN − L + 2z−(N − L + 1) +
⋮

z−(L− 1) bL− 1 + b2L− 1z−L + b3L− 1z−2L + .. + bNz−(N − L + 1)

L is the number of polyphase components, and its value equals the interpolation factor that you
specify.

You can write this equation as:

H(z) = E0(zL) + z−1E1(zL) + ... + z−(L− 1)EL− 1(zL)

E0(zL), E1(zL), ..., EL-1(zL) are polyphase components of the FIR filter H(z).

Conceptually, the FIR interpolation filter contains an upsampler followed by an FIR lowpass filter
H(z).

Replace H(z) with its polyphase representation.

4 System Objects

4-618

Here is the multirate noble identity for interpolation.

Applying the noble identity for interpolation moves the upsampling operation to after the filtering
operation. This move enables you to filter the signal at a lower rate.

You can replace the upsampling operator, delay block, and adder with a commutator switch. The
switch starts on the first branch 0 and moves in the counterclockwise direction, each time receiving
one sample from each branch. The interpolator effectively outputs L samples for every one input
sample it receives. Hence the sample rate at the output of the FIR interpolation filter is Lfs.

 dsp.FIRInterpolator

4-619

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

The dsp.FIRInterpolator System object supports SIMD code generation using Intel AVX2
technology under these conditions:

• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
freqz | fvtool | info | cost | polyphase | generatehdl | impz | coeffs

Objects
dsp.FIRDecimator | dsp.FIRRateConverter

Blocks
FIR Interpolation

4 System Objects

4-620

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2012a

 dsp.FIRInterpolator

4-621

dsp.FIRRateConverter
Package: dsp

Sample rate converter

Description
The dsp.FIRRateConverter System object performs sampling rate conversion by a rational factor
on a vector or matrix input. The FIR rate convertor cascades an interpolator with a decimator. The
rate converter (as shown in the schematic) conceptually consists of an upsampler, followed by a
combined anti-imaging and anti-aliasing FIR filter, followed by a downsampler. The coefficients of the
anti-imaging and anti-aliasing FIR filter can be specified through the Numerator property, or can be
automatically designed by the object using the designMultirateFIR function. For an example, see
“Resample Signal Using FIR Rate Converter” on page 4-628.

The upsampler increases the sample rate of the signal by a factor L and the downsampler reduces the
sample rate of the signal by a factor M. Use upsampling and downsampling factors that are relatively
prime or coprime. The resulting discrete-time signal has a sample rate that is L/M times the original
sample rate.

Note that the actual object algorithm implements a polyphase structure, an efficient equivalent of the
combined system depicted in the diagram. For more details, see “Algorithms” on page 4-633.

To perform sampling rate conversion:

1 Create the dsp.FIRRateConverter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

4 System Objects

4-622

Creation

Syntax
firrc = dsp.FIRRateConverter
firrc = dsp.FIRRateConverter(L,M)
firrc = dsp.FIRRateConverter(L,M,'Auto')
firrc = dsp.FIRRateConverter(L,M,num)
firrc = dsp.FIRRateConverter(L,M,method)
firrc = dsp.FIRRateConverter(___ ,Name,Value)
firrc = dsp.FIRRateConverter(L,M,'legacy')

Description

firrc = dsp.FIRRateConverter returns an FIR sample rate converter object with an
interpolation factor of 3 and a decimation factor of 2. The object designs the FIR filter coefficients
using the designMultirateFIR(3,2) function.

firrc = dsp.FIRRateConverter(L,M) returns an FIR sample rate converter with the integer-
valued InterpolationFactor property set to L and the DecimationFactor property set to M. The
object designs its filter coefficients based on the rate conversion factors that you specify while
creating the object, using the designMultirateFIR(L,M) function. The designed filter corresponds
to a lowpass with normalized cutoff frequency no greater than min(π/L,π/M) in radial frequency
units.

firrc = dsp.FIRRateConverter(L,M,'Auto') returns an FIR sample rate converter where the
NumeratorSource property is set to 'Auto'. In this mode, every time there is an update in the rate
conversion factors, the object redesigns the filter using the design method specified in
DesignMethod.

firrc = dsp.FIRRateConverter(L,M,num) returns an FIR sample rate converter with the
InterpolationFactor property set to L, the DecimationFactor property set to M, and the
Numerator property set to num.

firrc = dsp.FIRRateConverter(L,M,method) returns an FIR sample rate converter with the
InterpolationFactor property set to L, the DecimationFactor property set to M, and the
DesignMethod property set to method. When you pass the design method as an input, the
NumeratorSource property is automatically set to 'Auto'.

firrc = dsp.FIRRateConverter(___ ,Name,Value) returns an FIR sample rate converter with
each specified property set to the specified value. Enclose each property name in quotes. You can use
this syntax with any previous input argument combinations.
Example: firrc = dsp.FIRRateConverter('FullPrecisionOverride','false') enables
the fixed-point data types to be controlled through the individual fixed-point property settings.

firrc = dsp.FIRRateConverter(L,M,'legacy') returns an FIR sample rate converter where
the filter coefficients are designed using firpm(70,[0 0.28 0.32 1],[1 1 0 0]). The designed
filter has a cutoff frequency of π/3 radians/sample.

 dsp.FIRRateConverter

4-623

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InterpolationFactor — Interpolation factor
3 (default) | positive integer

Interpolation factor L, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DecimationFactor — Decimation factor
2 (default) | positive integer

Decimation factor M, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumeratorSource — FIR filter coefficient source
'Property' (default) | 'Auto'

FIR filter coefficient source, specified as one of the following:

• 'Property' –– The numerator coefficients are specified through the Numerator property.
• 'Auto' –– The numerator coefficients are designed automatically using the design method
specified in DesignMethod.

Numerator — FIR filter coefficients
designMultirateFIR(L,M) (default) | row vector

Numerator coefficients of the FIR filter, specified as a row vector in powers of z-1.

The following equation defines the transfer function of the filter:

H(z) = ∑
n = 0

N
b(n)z−n

The vector b = [b(0), b(1), …, b(N)] represents the vector of filter coefficients.

Use a lowpass with normalized cutoff frequency no greater than min(1/L,1/M), where L is the
interpolation factor and M is the decimation factor. The gain of the lowpass filter should equal L, the
interpolation factor. Choose the length of the filter to be a multiple of the interpolation factor. To
design such a filter, use the designMultirateFIR function. For an example, see “Resample Signal
Using FIR Rate Converter” on page 4-628. All initial filter states are zero.

Dependencies

This property is visible only when you set NumeratorSource to 'Property'.

4 System Objects

4-624

When NumeratorSource is set to 'Auto', the numerator coefficients are automatically redesigned
using the design method specified in DesignMethod. To access the filter coefficients in the automatic
design mode, type objName.Numerator in the MATLAB command prompt.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DesignMethod — Auto design method
'Kaiser' (default) | 'ZOH' | 'Linear'

Design method of the FIR filter coefficients, specified as one of the following:

• 'Kaiser' –– Kaiser method. Approximate combined anti-aliasing and anti-imaging lowpass filter
using the designMultirateFIR function.

• 'ZOH' –– Zero order hold method. Hold the input sequence values.
• 'Linear' –– Linear interpolation method.

Dependencies

This property is visible only when you set the NumeratorSource property to 'Auto', or if you pass
the 'auto' keyword as an input while creating the object.

Fixed-Point Properties

FullPrecisionOverride — Full precision override for fixed-point arithmetic
true (default) | false

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects”.

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method as one of | Ceiling | Convergent | Floor | Nearest | Round |
Simplest | Zero |.

Dependencies

This property applies only if the object is not in full precision mode.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as one of | Wrap | Saturate |.

Dependencies

This property applies only if the object is not in full precision mode.

CoefficientsDataType — Word and fraction lengths of filter coefficients
Same word length as input (default) | Custom

 dsp.FIRRateConverter

4-625

Specify the filter coefficient fixed-point data type as one of | Same word length as input |
Custom |.

CustomCoefficientsDataType — Word and fraction lengths of filter coefficients
numerictype([],16,15) (default) | numerictype

Specify the filter coefficient fixed-point type as a numerictype object with a Signedness of Auto.

Dependencies

This property applies only when the CoefficientsDataType property is Custom.

ProductDataType — Product word and fraction lengths
Full precision (default) | Same as input | Custom

Specify the product fixed-point data type as one of | Full precision | Same as input | Custom |.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when the ProductDataType property is Custom.

AccumulatorDataType — Accumulator word and fraction lengths
Full precision (default) | Same as product | Same as input | Custom

Specify the accumulator fixed-point data type as one of | Full precision | Same as product |
Same as input | Custom |.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when the AccumulatorDataType property is Custom.

OutputDataType — Output word and fraction lengths
Same as accumulator (default) | Same as product | Same as input | Custom

Specify the output fixed-point data type as one of | Same as accumulator | Same as product |
Same as input | Custom |.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when the OutputDataType property is Custom.

4 System Objects

4-626

Usage

Syntax
y = firrc(x)

Description

y = firrc(x) resamples the input x and returns the resampled signal y.

Input Arguments

x — Data input
column vector | matrix

Data input, specified as a column vector or a matrix. The number of input rows P must be a multiple
of the decimation factor M. A P-by-Q matrix input is treated as Q independent channels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — Resampled output
column vector | matrix

Resampled output, returned as a column vector or a matrix. The number of rows in the output signal
is given by PL/M, where P is the number of input rows, L is the interpolation factor, and M is the
decimation factor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.FIRRateConverter
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
info Information about filter System object
cost Estimate cost of implementing filter System object
coeffs Returns the filter System object coefficients in a structure
polyphase Polyphase decomposition of multirate filter
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)

Common to All System Objects
step Run System object algorithm

 dsp.FIRRateConverter

4-627

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Resample Signal Using FIR Rate Converter

Resample a 100 Hz sine wave signal by a factor of 3/2.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a dsp.SineWave object which generates a sinusoidal signal with 54 samples per frame,
contains a tone at 100 Hz, and has a sample rate of 1250 Hz.

sine = dsp.SineWave(1,100,'SampleRate',1250,'SamplesPerFrame',54);

% Grab a frame
x = sine();

% Calcualte input time vector
tx = (0:length(x)-1)/sine.SampleRate;

Design Default Filter

Create a dsp.FIRRateConverter object. The object uses a combined anti-imaging and anti-aliasing
FIR filter. By default, this filter is designed using the designMultirateFIR function. The function
designs the filter based on the rate conversion factors that you specify, and stores the coefficients in
the Numerator property. For an interpolation factor of 3 and a decimation factor of 2, the object
designs the coefficients using designMultirateFIR(3,2).

firrc = dsp.FIRRateConverter(3,2);

Resample by a Factor of 3/2

Resample the signal by a factor of 3/2.

y = firrc(x);

Plot the original and resampled signals. In order to plot the two signals on the same plot, obtain the
time affine transformation parameters. Use these parameters to compute the output sample times.
The nth output sample time equals scale × n + delay. The input and output values coincide every 3
output samples, and every other input sample, owing to the conversion rate of 3/2.

scale = firrc.InterpolationFactor/firrc.DecimationFactor;
delay = length(firrc.Numerator)/(2*firrc.DecimationFactor);

% Calculate output times for vector y in input units
ty = (((0:length(y)-1)-delay)/scale)/sine.SampleRate;

stem(tx, x,'filled',MarkerSize=4); hold on;
stem(ty, y);
hold off;
xlim([0.0 0.0145])

4 System Objects

4-628

ylim([-1.5 1.5])
legend('Original input','Resampled');

Resample by a Factor of 5/3 in Automatic Filter Design Mode

Now change the interpolation factor to 5 and the decimation factor to 3. In order for the filter design
to be updated automatically based on the new rate conversion factors, set the NumeratorSource
property to 'Auto'. Alternately, you can pass the keyword 'auto' as an input while creating the
object. The object then operates in the automatic filter design mode. Every time there is a change in
the rate conversion factors, the object updates the filter design accordingly.

release(firrc)
firrc.NumeratorSource = 'Auto';
firrc.InterpolationFactor = 5;
firrc.DecimationFactor = 3

firrc =
 dsp.FIRRateConverter with properties:

 InterpolationFactor: 5
 DecimationFactor: 3
 NumeratorSource: 'Auto'
 DesignMethod: 'Kaiser'

 Show all properties

 dsp.FIRRateConverter

4-629

To access the filter coefficients in the automatic filter design mode, type firrc.Numerator in the
MATLAB command prompt.

Resample the signal with the updated rate conversion values.

yAuto = firrc(x);

Plot the original and resampled signals. Recalculate the time affine transformation parameters since
the rate conversion factors have changed. Note the input and output coincide every 3 input samples,
and every 5 output samples, owing to the 5/3 conversion factor.

scale = firrc.InterpolationFactor/firrc.DecimationFactor;
delay = length(firrc.Numerator)/(2*firrc.DecimationFactor);

% Calculate output times for vector yAuto in input units
tyAuto = (((0:length(yAuto)-1)-delay)/scale)/sine.SampleRate;

stem(tx, x,'filled',MarkerSize=4); hold on;
stem(tyAuto, yAuto,'r');
hold off;
xlim([0.0 0.015])
ylim([-1.5 1.5])
legend('Original input','Resampled');

Specify Signal Interpolation Model

In the automatic design mode, you can also specify the underlying D/A signal interpolation model
through the DesignMethod property.

4 System Objects

4-630

Set DesignMethod to 'linear' and change the interpolation factor to 11.

release(firrc)
firrc.DesignMethod = 'linear';
firrc.InterpolationFactor = 11;

Resample the signal using the linear interpolation model.

yLinear = firrc(x);

Plot the original and resampled signals. The output samples lie on a piecewise-linear curve. Note the
input and output coincide every three input samples and every 11 output samples as expected from
the ratio 11/3.

scale = firrc.InterpolationFactor/firrc.DecimationFactor;
delay = (length(firrc.Numerator)-1)/(2*firrc.DecimationFactor);

% Calculate output times for vector yLinear in input units
tyLinear = (((0:length(yLinear)-1)-delay)/scale)/sine.SampleRate;

stem(tx, x, 'filled',MarkerSize=4); hold on;
stem(tyLinear, yLinear);
plot(tyLinear, yLinear,Color=[1 0 0 0.3]);
hold off;
xlim([0.0 0.009])
ylim([-1.5 1.5])
legend('Original input','Resampled');

 dsp.FIRRateConverter

4-631

Resample and Play Audio Signal

Resample an audio signal from 48 kHz to 44 kHz and play the resampled signal using the
audioDeviceWriter object.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

Create a dsp.AudioFileReader object. The object reads an audio file that has a sample rate of 48
kHz.

L = 11;
M = 12;
afr = dsp.AudioFileReader('audio48kHz.wav', ...
 'OutputDataType', 'single', ...
 'SamplesPerFrame', 4*M);

Create a dsp.FIRRateConverter object with an interpolation factor of L = 11 and a decimation
factor of M = 12 (the co-prime representation of the ratio 44k/48k), a reasonable approximation of
the standard 44.1 kHz rate. The object designs the filter using designMultirateFIR(11,12) and
stores the coefficients in the Numerator property of the object.

firrc = dsp.FIRRateConverter(L,M)

4 System Objects

4-632

https://www.mathworks.com/products/matlab-online.html

firrc =
 dsp.FIRRateConverter with properties:

 InterpolationFactor: 11
 DecimationFactor: 12
 NumeratorSource: 'Property'
 Numerator: [0 2.3076e-05 5.4790e-05 9.3620e-05 1.3665e-04 ...]

 Show all properties

Create an audioDeviceWriter object. Specify the sample rate to be 44100 Hz.

adw = audioDeviceWriter(44100);

Read the audio file, convert the sample rate of the audio signal, and play the resampled audio.

while ~isDone(afr)
 audio1 = afr();
 audio2 = firrc(audio1);
 adw(audio2);
end
release(afr);
release(adw);

Algorithms
The FIR rate converter is implemented efficiently using a polyphase structure.

To derive the polyphase structure, start with the transfer function of the FIR filter: This FIR filter is a
combined anti-imaging and anti-aliasing filter.

H(z) = b0 + b1z−1 + ... + bNz−N

N+1 is the length of the FIR filter.

You can rearrange this equation as follows:

H(z) =

b0 + bLz−L + b2Lz−2L + .. + bN − L + 1z−(N − L + 1) +

z−1 b1 + bL + 1z−L + b2L + 1z−2L + .. + bN − L + 2z−(N − L + 1) +
⋮

z−(L− 1) bL− 1 + b2L− 1z−L + b3L− 1z−2L + .. + bNz−(N − L + 1)

L is the number of polyphase components, and its value equals the interpolation factor that you
specify.

You can write this equation as:

H(z) = E0(zL) + z−1E1(zL) + ... + z−(L− 1)EL− 1(zL)

E0(zL), E1(zL), ..., EL-1(zL) are polyphase components of the FIR filter H(z).

 dsp.FIRRateConverter

4-633

Conceptually, the FIR rate converter contains an upsampler, followed by a combined anti-imaging,
anti-aliasing FIR filter H(z), which is followed by a downsampler.

Replace H(z) with its polyphase representation.

Here is the multirate noble identity for interpolation.

Applying the noble identity for interpolation moves the upsampling operation to after the filtering
operation. This move enables you to filter the signal at a lower rate.

4 System Objects

4-634

You can replace the upsampling operator, delay block, and the adder with a commutator switch. To
account for the downsampler that follows, the switch moves in steps of size M. The switch receives
the first sample from branch 0 and moves in the counter clockwise direction, each time skipping M−1
branches.

As an example, consider a rate converter with L set to 5 and M set to 3. The polyphase components
are E0(z), E1(z), E2(z), E3(z), and E4(z). The switch starts on the first branch 0, skips branches 1 and 2,
receives the next sample from branch 3, then skips branches 4 and 0, receives the next sample from
branch 2, and so on. The sequence of branches from which the switch receives the data sample is [0,
3, 1, 4, 2, 0, 3, 1, ….].

The rate converter implements the L/M conversion by first applying the interpolation factor L to the
incoming data, and using the commutator switch at the end to receive only 1 in M samples, effectively
accounting for the dowsampling factor M. Hence, the sample rate at the output of the FIR rate
converter is Lfs/M.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 dsp.FIRRateConverter

4-635

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
freqz | fvtool | info | cost | coeffs | polyphase | generatehdl

Objects
dsp.FIRInterpolator | dsp.FIRDecimator

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2012a

4 System Objects

4-636

dsp.FrequencyDomainAdaptiveFilter
Package: dsp

Compute output, error, and coefficients using frequency-domain FIR adaptive filter

Description
The dsp.FrequencyDomainAdaptiveFilter System object implements an adaptive finite impulse
response (FIR) filter in the frequency domain using the fast block least mean squares (LMS)
algorithm. The “Length” on page 4-0 and the “BlockLength” on page 4-0 properties specify
the filter length and the block length values the algorithm uses. The “FFTCoefficients” on page 4-
0 property contains the discrete Fourier transform of the current filter coefficients. The object
offers the constrained and unconstrained versions of the algorithm with partitioned and non-
partitioned modes. For details, see “Algorithms” on page 4-650.

To filter a signal using frequency-domain FIR adaptive filter:

1 Create the dsp.FrequencyDomainAdaptiveFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
fdaf = dsp.FrequencyDomainAdaptiveFilter
fdaf = dsp.FrequencyDomainAdaptiveFilter(len)
fdaf = dsp.FrequencyDomainAdaptiveFilter(___ ,Name,Value)

Description

fdaf = dsp.FrequencyDomainAdaptiveFilter returns a frequency domain FIR adaptive filter
System object, fdaf. This System object is used to compute the filtered output and the filter error for
a given input and desired signal.

fdaf = dsp.FrequencyDomainAdaptiveFilter(len) returns a frequency domain FIR adaptive
filter object with the Length property set to len.

fdaf = dsp.FrequencyDomainAdaptiveFilter(___ ,Name,Value) returns a frequency
domain FIR adaptive filter object with each specified property set to the specified value. Enclose each
property name in quotes. You can use this syntax with any previous input argument combinations.
Example: fdaf = dsp.FrequencyDomainAdaptiveFilter('Length',32,'StepSize',0.1)
models a frequency-domain adaptive filter with a length of 32 taps and a step size of 0.1.

 dsp.FrequencyDomainAdaptiveFilter

4-637

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Method to calculate filter coefficients
'Constrained FDAF' (default) | 'Unconstrained FDAF' | 'Partitioned constrained
FDAF' | 'Partitioned unconstrained FDAF'

Method used to calculate the filter coefficients, specified as:

• 'Constrained FDAF' –– Imposes a gradient constraint on the filter tap weights.
• 'Unconstrained FDAF' –– No gradient constraint is imposed on the filter tap weights.
• 'Partitioned constrained FDAF' –– Partitions the impulse response of the filter to reduce

latency.
• 'Partitioned unconstrained FDAF' –– Partitions the impulse response of the filter to reduce

latency. No gradient constraint is imposed on the filter tap weights.

For more details, see “Algorithms” on page 4-650.

Length — Length of filter coefficients vector
32 (default) | positive, integer-valued scalar

Length of the FIR filter coefficients vector, specified as a positive, integer-valued scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BlockLength — Block length for coefficient updates
32 (default) | positive, integer-valued scalar

Block length for the coefficient updates, specified as a positive, integer-valued scalar. The adaptive
filter processes the input data and the desired signal as a block of samples of length set by this
property. For details on how this data is processed by the filter, see “Algorithms” on page 4-650. The
length of the input vector must be divisible by the BlockLength property value. The default value of
the BlockLength property is set to the value of the Length property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StepSize — Adaptation step size
1 (default) | real scalar in the range (0,1]

Adaptation step size factor, specified as a real scalar in the range (0,1]. Using a small step size
ensures a small steady-state error. However, a small step size decreases the resulting convergence
speed of the adaptive filter. Increasing the step size improves the convergence speed, at the cost of
increased steady-state mean squared error. When the step size value is 1, the algorithm provides the
optimal tradeoff between the convergence speed and the steady-state mean squared error.

Tunable: Yes

4 System Objects

4-638

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

LeakageFactor — Adaptation leakage factor
1 (default) | scalar in the range [0,1]

Leakage factor used when implementing a leaky adaptive filter, specified as a scalar numeric value in
the range [0,1]. When the value is less than 1, the System object implements a leaky adaptive
algorithm. When the value is 1, the object provides no leakage in the adapting method.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

AveragingFactor — Averaging factor for signal power
0.9 (default) | real scalar in the range (0,1]

Averaging factor used to compute the exponentially windowed FFT input signal powers for the
coefficient updates, specified as a real scalar in the range (0,1].

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Offset — Offset for normalization terms
0 (default) | nonnegative real scalar

Offset for the normalization terms in the coefficient updates, specified as a nonnegative real scalar
value. This property value is used to avoid division by zero or division by very small numbers if any of
the FFT input signal powers become very small.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitalPower — Initial FFT input signal power
1 (default) | positive numeric scalar

Initial common value of all of the FFT input signal powers, specified as a positive numeric scalar.

If you change this value once the object is locked, the change takes effect only after you reset the
object.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialCoefficients — Initial time-domain coefficients of filter
0 (default) | scalar | vector

Initial time-domain coefficients of the adaptive filter, specified as a scalar or a vector of length equal
to the Length property value. The adaptive filter object uses these coefficients to compute the initial
frequency-domain filter coefficients.

 dsp.FrequencyDomainAdaptiveFilter

4-639

If you change this value once the object is locked, the change takes effect only after you reset the
object.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LockCoefficients — Locked status of coefficient updates
false (default) | true

Locked status of the coefficient updates, specified as:

• false –– The object continuously updates the filter coefficients.
• true –– The filter coefficients do not get updated and their values remain at the current value.

Tunable: Yes
Data Types: logical

FFTCoefficients — Current FFT coefficients of filter
[] (default) | row vector

This property is read-only.

Current discrete Fourier transform of the filter coefficients, returned as a row vector. For
'Constrained FDAF' and 'Unconstrained FDAF' algorithms, the length of this vector is equal
to the sum of the Length value and the BlockLength value. This property is initialized to the FFT
values of the InitialCoefficients property. To get the discrete Fourier transform of the filter
coefficients, call the object, and access the FFTCoefficients property of the object.
Data Types: single | double
Complex Number Support: Yes

Usage

Syntax
[y,err] = fdaf(x,d)

Description

[y,err] = fdaf(x,d) filters the input signal, x, using d as the desired signal, and returns the
filtered output in y and the filter error in err. The System object estimates the filter weights needed
to minimize the error between the output signal and the desired signal. The FFT of these filter
weights can be obtained by accessing the FFTCoefficients property after calling the object
algorithm.

Input Arguments

x — Data input
column vector

The signal to be filtered by the frequency-domain FIR adaptive filter. The input, x, and the desired
signal, d, must have the same size and data type. The length of the input vector must be divisible by
the “BlockLength” on page 4-0 property value.

4 System Objects

4-640

The input, x, can be a variable-size signal as long as the frame length is a multiple of the
BlockLength. You can change the number of elements in the column vector even when the object is
locked. The System object locks when you call the object to run its algorithm.
Data Types: single | double

d — Desired signal
column vector

The frequency domain adaptive filter adapts its filter weights to minimize the error, err, and
converge the input signal, x, to the desired signal, d, as closely as possible.

The input signal and the desired signal must have the same size and data type. The length of the
desired signal vector must be divisible by the BlockLength property value.

The input signal can be a variable-size signal as long as the frame length is a multiple of the
BlockLength. You can change the number of elements in the column vector even when the object is
locked. The System object locks when you call the object to run its algorithm.
Data Types: single | double

Output Arguments

y — Filtered output
column vector

Filtered output, returned as a column vector. The object adapts its filter weights to converge the
input signal, x, to match the desired signal, d. The filter outputs the converged signal.
Data Types: single | double

err — Difference between output and desired signal
column vector

Difference between the output signal and the desired signal, returned as a column vector. The
objective of the adaptive filter is to minimize this error. The object adapts its weights to converge
towards optimal filter weights which produce an output signal that matches the desired signal as
closely as possible. For more details on how err is computed, see [2].
Data Types: single | double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

 dsp.FrequencyDomainAdaptiveFilter

4-641

Examples

QPSK Adaptive Equalization With FIR Filter

Transmit a quadrature phase shift keying (QPSK) signal across a noisy transmission channel.
Minimize the noise in the received signal using a frequency-domain adaptive filter.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

The QPSK signal, s, is transmitted across a noisy channel. The numerator and the denominator
coefficients of the channel are contained in the vectors b and a, respectively. The received signal, r,
obtained at the end of the transmission channel contains the transmitted QPSK signal and the noise
added to the channel, n. The adaptive filter is used to extract the QPSK signal from the received noisy
input. The desired signal, d, is the delayed version of the QPSK signal.

D = 16;
b = exp(1i*pi/4)*[-0.7 1];
a = [1 -0.7];
ntr = 1024;
s = sign(randn(1,ntr+D)) + 1i*sign(randn(1,ntr+D));
n = 0.1*(randn(1,ntr+D) + 1i*randn(1,ntr+D));
r = filter(b,a,s) + n;
x = r(1+D:ntr+D);
d = s(1:ntr);

Create a dsp.FrequencyDomainAdaptiveFilter object to model a frequency-domain adaptive
filter of length 32 taps and a step size of 0.1. The adaptive filter accepts the delayed version of the
received signal and the desired signal as inputs. The output of the adaptive filter is compared to the
desired signal. The error between the two signals represents the noise added to the transmission
channel. The adaptive filter updates its coefficients until this error becomes minimal. To get the
discrete Fourier transform of the filter coefficients, call the fdaf object, and access the
FFTCoefficients property of this object.

mu = 0.1;
fdaf = dsp.FrequencyDomainAdaptiveFilter('Length',32,'StepSize',mu);
[y,e] = fdaf(x,d);
fftCoeffs = fdaf.FFTCoefficients

fftCoeffs = 1×64 complex

 0.6802 - 0.6847i -0.2485 - 0.9427i -0.9675 - 0.2123i -0.5605 + 0.8002i 0.5748 + 0.7593i 0.8541 - 0.3917i -0.2526 - 0.9022i -0.9298 + 0.1255i 0.0181 + 0.9366i 0.9207 + 0.0511i 0.1063 - 0.8972i -0.8919 - 0.1829i -0.2668 + 0.9113i 0.9215 + 0.3186i 0.3417 - 0.8859i -0.8285 - 0.3760i -0.4317 + 0.8200i 0.8741 + 0.4765i 0.4874 - 0.9075i -0.8517 - 0.4774i -0.4709 + 0.7632i 0.7468 + 0.4833i 0.5193 - 0.7995i -0.8218 - 0.5649i -0.5908 + 0.7768i 0.7316 + 0.5866i 0.5806 - 0.7270i -0.7148 - 0.5998i -0.6287 + 0.6702i 0.6575 + 0.6379i 0.6332 - 0.7153i -0.7659 - 0.6424i -0.6678 + 0.7294i 0.6536 + 0.6891i 0.7006 - 0.6333i -0.6594 - 0.7117i -0.7207 + 0.6517i 0.6031 + 0.7239i 0.7362 - 0.5776i -0.5869 - 0.7682i -0.7975 + 0.5789i 0.5449 + 0.7992i 0.7909 - 0.5343i -0.5512 - 0.8070i -0.8392 + 0.5338i 0.4605 + 0.8493i 0.8358 - 0.3921i -0.3751 - 0.8388i -0.8739 + 0.3785i 0.3625 + 0.9048i

Plot the In-Phase and the Quadrature components of the desired, output, and the error signals.

plot(1:ntr,real([d;y;e]))
legend('Desired','Output','Error')
title('In-Phase Components')
xlabel('Time Index'); ylabel('signal value')

4 System Objects

4-642

plot(1:ntr,imag([d;y;e]))
legend('Desired','Output','Error')
title('Quadrature Components')
xlabel('Time Index')
ylabel('signal value')

 dsp.FrequencyDomainAdaptiveFilter

4-643

Create scatter plots of the received signal and the desired signal.

plot(x(ntr-100:ntr),'.')
axis([-3 3 -3 3])
title('Received Signal Scatter Plot')
axis('square')
xlabel('Real[x]')
ylabel('Imag[x]')
grid on

4 System Objects

4-644

plot(d(ntr-100:ntr),'.')
axis([-3 3 -3 3])
title('Desired Signal Scatter Plot')
axis('square')
xlabel('Real[y]')
ylabel('Imag[y]')
grid on

 dsp.FrequencyDomainAdaptiveFilter

4-645

The adaptive filter equalizes the received signal to eliminate noise. Plot the scatter plot of the
equalized signal.

plot(y(ntr-100:ntr),'.')
axis([-3 3 -3 3])
title('Equalized Signal Scatter Plot')
axis('square')
xlabel('Real[y]')
ylabel('Imag[y]')
grid on

4 System Objects

4-646

Estimate Coefficients of long FIR Filter using Frequency-Domain Adaptive Filter

Use a frequency-domain adaptive filter to estimate the coefficients of a long FIR filter. The FIR filter
models the impulse response of a room. Use the partitioned mode in the frequency-domain adaptive
filter to reduce filter latency.

Note: This example runs only in R2018a or later.

Initialization

Generate a long FIR impulse response of 8192 samples and assign the impulse response to a
dsp.FIRFilter object, room. This object models the impulse response of a room. Create a
dsp.FrequencyDomainAdaptiveFilter filter, lmsfilt, in partitioned constrained mode. Set the
length of the filter to one-fourth the length of the impulse response of the room. Set the block length
of the filter to 128 samples. Set the step size to 0.025, initial power to 0.01, averaging factor to 0.98,
offset to 1, and the leakage factor to 1. Initialize a dsp.ArrayPlot object to view the filter
coefficients. Initialize a timescope object to show the mean-squared error between the filter output
and the desired signal.

fs = 16e3;
m = 8192;
[b,a] = cheby2(4,20,[0.1 0.7]);
impulseResponseGenerator = dsp.IIRFilter(...
 'Numerator', [zeros(1,6) b], ...

 dsp.FrequencyDomainAdaptiveFilter

4-647

 'Denominator', a);
roomImpulseResponse = impulseResponseGenerator(...
 (log(0.99*rand(1,m)+0.01).*sign(randn(1,m)).*exp(-0.002*(1:m)))');
roomImpulseResponse = roomImpulseResponse/norm(roomImpulseResponse);
room = dsp.FIRFilter('Numerator',roomImpulseResponse');

lmsfilt = dsp.FrequencyDomainAdaptiveFilter(...
 'Method','Partitioned constrained FDAF',...
 'Length',m/4, ...
 'BlockLength',128,...
 'StepSize',0.025, ...
 'InitialPower',0.01, ...
 'AveragingFactor',0.98,...
 'Offset',1,...
 'LeakageFactor',1);

FrameSize = lmsfilt.BlockLength; NIter = 2000;

AP = dsp.ArrayPlot('YLimits',[-0.2 .2],'ShowLegend',true, ...
 'Position',[0 0 560 420],'ChannelNames', ...
 {'Actual Coefficients','Estimated Coefficients'});

TS = timescope('SampleRate',fs,'TimeSpanSource','property',...
 'TimeSpan',FrameSize*NIter/fs,...
 'TimeUnits','Seconds',...
 'YLimits',[-50 0],'Title','Learning curve',...
 'YLabel','dB', ...
 'BufferLength',FrameSize*NIter,...
 'ShowGrid',true);

signalmean = dsp.MovingAverage('SpecifyWindowLength',false);

Streaming

Generate a random input signal using the randn function. The frame size of the input matches the
block length of the adaptive filter. The desired signal is the sum of the output of the FIR filter (room)
and a white Gaussian noise signal. Pass the input signal and the desired signal to the adaptive filter.
Compute the adaptive filter output and the error between the output and the desired signal.

Estimate the time-domain coefficients of the adaptive filter by taking the IFFT of the frequency-
domain coefficients vector returned by the lmsfilt.FFTCoefficients property. Compare the
estimated coefficients with the actual coefficients assigned to the FIR filter (room). Once the adaptive
filter has converged its output to the desired signal, and minimized the error signal, the estimated
coefficients match closely with the actual coefficients. This means that the adaptive filter has
successfully adapted itself to model the impulse response of the FIR filter (room).

for k = 1:NIter
 x = randn(FrameSize,1);
 d = room(x) + 0.01*randn(FrameSize,1);
 [y,e] = lmsfilt(x,d);
 FFTCoeffs = lmsfilt.FFTCoefficients;
 w = ifft(FFTCoeffs,[],2,'symmetric');
 w = w(:,1:FrameSize) + w(:,FrameSize+1:end);
 w = reshape(w.',1,m/4);
 AP([roomImpulseResponse(1:m/4),w.']);
 TS(10*log10(signalmean(abs(e).^2)));
end

4 System Objects

4-648

 dsp.FrequencyDomainAdaptiveFilter

4-649

As the filter adapts with time, you can see in the time scope that the mean-squared error becomes
minimal. Simultaneously, the estimated coefficients match the actual coefficients closely in the array
plot.

Algorithms
Frequency-domain adaptive filtering consists of three steps - filtering, error estimation, and tap-
weight adaptation. This algorithm implements FIR filtering in the frequency domain using the
overlap-save or overlap-add method. For more implementation details of these two methods, see the
“Algorithms” on page 4-663 section in the dsp.FrequencyDomainFIRFilter object page. The
error estimation and the tap-weight adaptation are implemented using the fast block LMS algorithm
(FBLMS).

Fast Block LMS Algorithm

The frequency-domain adaptive filter processes input data and the desired signal data as a block of
samples using the fast block LMS (FBLMS) algorithm. Here is the block diagram of the frequency-
domain adaptive filter using the FBLMS algorithm. The frequency-domain FIR filter in this diagram
uses the overlap-save method.

4 System Objects

4-650

where:

• N –– Filter length
• L –– Block length
• μ –– Step size parameter
• x(n) –– Input signal
• X(k) –– Transformed input signal in the frequency domain
• d(n) –– Desired signal
• e(n) –– Error between the desired signal and the filter output
• E(n) –– Transformed error signal in the frequency domain
• W(k) –– Tap-weights vector in the frequency domain

For more details on how the error is estimated and the tap-weights are adapted, see [2].

 dsp.FrequencyDomainAdaptiveFilter

4-651

Constrained and Unconstrained FBLMS Algorithms

The previous diagram is the constrained version. If you remove the gradient constraint portion of the
algorithm, you have the unconstrained FBLMS implementation. For details on the convergence
behavior of both constrained and unconstrained variations, see [2].

Partitioned FBLMS Algorithm

The latency of the filter roughly equals the length of the FIR numerator. If the impulse response of
the filter is very long, the latency becomes significantly large. The partitioned FBLMS algorithm
reduces latency by partitioning the impulse response. The nonpartitioned frequency-domain FIR
filtering is faster than the time-domain filtering for long impulse responses, at the cost of increased
latency. To mitigate the latency and make the frequency domain filtering even more efficient, the
algorithm partitions the impulse response into multiple short blocks and performs overlap-save or
overlap-add on each block. The results of the different blocks are then combined to obtain the final
output. The latency of this approach is of the order of the block length, rather than the entire impulse
response length. This reduced latency comes at the cost of additional computation. For more details
on the implementation, see [2].

References
[1] Shynk, J.J. "Frequency-Domain and Multirate Adaptive Filtering." IEEE Signal Processing

Magazine. Vol. 9, Number 1, 1992, pp. 14–37.

[2] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England, Wiley,
1998.

[3] Stockham, T. G., Jr. "High Speed Convolution and Correlation." Proceedings of the 1966 Spring
Joint Computer Conference, AFIPS, Vol. 28, 1966, pp. 229–233.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.LMSFilter | dsp.RLSFilter | dsp.AffineProjectionFilter |
dsp.AdaptiveLatticeFilter | dsp.FilteredXLMSFilter | dsp.FIRFilter |
dsp.FastTransversalFilter | dsp.FrequencyDomainFIRFilter

Blocks
LMS Filter | RLS Filter | LMS Update | Kalman Filter | Fast Block LMS Filter | Block LMS Filter |
Frequency-Domain FIR Filter | Frequency-Domain Adaptive Filter

Topics
“Overview of Adaptive Filters and Applications”

4 System Objects

4-652

“Variable-Size Signal Support DSP System Objects”

Introduced in R2013b

 dsp.FrequencyDomainAdaptiveFilter

4-653

dsp.FrequencyDomainFIRFilter
Package: dsp

Filter input signal in frequency domain

Description
The dsp.FrequencyDomainFIRFilter System object implements frequency-domain, fast Fourier
transform (FFT)-based filtering to filter a streaming input signal. In the time domain, the filtering
operation involves a convolution between the input and the impulse response of the finite impulse
response (FIR) filter. In the frequency domain, the filtering operation involves the multiplication of
the Fourier transform of the input and the Fourier transform of the impulse response. The frequency-
domain filtering is efficient when the impulse response is very long. You can specify the filter
coefficients directly in the frequency domain by setting NumeratorDomain to 'Frequency'.

This object uses the overlap-save and overlap-add methods to perform the frequency-domain filtering.
For filters with a long impulse response length, the latency inherent to these two methods can be
significant. To mitigate this latency, the dsp.FrequencyDomainFIRFilter object partitions the
impulse response into shorter blocks and implements the overlap-save and overlap-add methods on
these shorter blocks. To partition the impulse response, set the “PartitionForReducedLatency” on
page 4-0 property to true. For more details on these two methods and on reducing latency
through impulse response partitioning, see “Algorithms” on page 4-663.

To filter the input signal in the frequency domain:

1 Create the dsp.FrequencyDomainFIRFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
fdf = dsp.FrequencyDomainFIRFilter
fdf = dsp.FrequencyDomainFIRFilter(num)
fdf = dsp.FrequencyDomainFIRFilter(Name,Value)

Description

fdf = dsp.FrequencyDomainFIRFilter creates a frequency domain FIR filter System object that
filters each channel of the input signal independently over time in the frequency domain using the
overlap-save or overlap-add method.

fdf = dsp.FrequencyDomainFIRFilter(num) creates a frequency domain FIR filter object with
the “Numerator” on page 4-0 property set to num.
Example: dsp.FrequencyDomainFIRFilter(fir1(400,2 * 2000 / 8000));

4 System Objects

4-654

fdf = dsp.FrequencyDomainFIRFilter(Name,Value) creates a frequency domain FIR filter
System object with each specified property set to the specified value. Enclose each property name in
single quotes. You can use this syntax with any previous input argument combinations.
Example: dsp.FrequencyDomainFIRFilter('Method','Overlap-add');

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Frequency-domain filter method
'Overlap-save' (default) | 'Overlap-add'

Frequency-domain filter method, specified as either 'Overlap-save' or 'Overlap-add'. For more
details on these two methods, see “Algorithms” on page 4-663.

NumeratorDomain — Numerator domain
'Time' (default) | 'Frequency'

Domain of the filter coefficients, specified as one of the following:

• 'Time' –– Specify the time-domain filter numerator in the Numerator property.
• 'Frequency' –– Specify the filter's frequency response in the FrequencyResponse property.

Numerator — FIR filter coefficients
fir1(100,0.3) (default) | row vector

FIR filter coefficients, specified as a row vector.

Tunable: Yes

Dependencies

This property applies when NumeratorDomain is set to 'Time'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

FrequencyResponse — Filter frequency response
fft(fir1(100,0.3),202) (default) | row vector | matrix

Frequency response of the filter, specified as a row vector or a matrix. When
PartitionForReducedLatency is false, FrequencyResponse must be a row vector. The FFT
length is equal to the length of the FrequencyResponse vector. When
PartitionForReducedLatency is true, FrequencyResponse must be a 2P-by-N matrix, where P
is the partition size, and N is the number of partitions.

Tunable: Yes

 dsp.FrequencyDomainFIRFilter

4-655

Dependencies

This property applies when NumeratorDomain is set to 'Frequency'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

NumeratorLength — Time-domain numerator length
101 (default) | positive integer-valued scalar

Time-domain numerator length, specified as a positive integer-valued scalar.

Dependencies

This property applies when NumeratorDomain is set to 'Frequency' and
PartitionForReducedLatency is set to false.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FilterIsReal — Flag to specify if filter is real
true (default) | false

Flag to specify if the filter coefficients are all real, specified as true or false.

Dependencies

This property applies when NumeratorDomain is set to 'Frequency'.

PartitionForReducedLatency — Flag to partition numerator to reduce latency
false (default) | true

Flag to partition numerator to reduce latency, specified as one of the following:

• false –– The filter uses the traditional overlap-save or overlap-add method. The latency in this
case is “FFTLength” on page 4-0 – length(“Numerator” on page 4-0) + 1.

• true –– In this mode, the object partitions the numerator into segments of length specified by the
“PartitionLength” on page 4-0 property. The filter performs overlap-save or overlap-add on
each partition, and combines the partial results to form the overall output. The latency is now
reduced to the partition length.

FFTLength — FFT length
[] (default) | positive integer

FFT length, specified as a positive integer. The default value of this property, [], indicates that the
FFT length is equal to twice the numerator length. The FFT length must be greater than or equal to
the numerator length.
Example: 64

Dependencies

This property applies when you set NumeratorDomain property to 'Time' and
“PartitionForReducedLatency” on page 4-0 property to false.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PartitionLength — Numerator partition length
32 (default) | positive integer

4 System Objects

4-656

Numerator partition length, specified as a positive integer less than or equal to the length of the
numerator.
Example: 40
Example: 60
Dependencies

This property applies when you set the NumeratorDomain property to 'Time' and
“PartitionForReducedLatency” on page 4-0 property to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Latency — Filter latency
102 (default) | positive integer

This property is read-only.

Filter latency in samples, returned as an integer greater than 0. When “PartitionForReducedLatency”
on page 4-0 is false, the latency is equal to “FFTLength” on page 4-0 – length(“Numerator”
on page 4-0) + 1. When PartitionForReducedLatency is true, the latency is equal to the
partition length.
Data Types: uint32

Usage

Syntax
fdfOut = fdf(input)

Description

fdfOut = fdf(input) filters the input signal and outputs the filtered signal. The object filters each
channel of the input signal independently over time in the frequency domain.

Input Arguments

input — Data input
vector | matrix

Data input, specified as a vector or a matrix. This object supports variable-size input signals. That is,
you can change the input frame size (number of rows) even after calling the algorithm. However, the
number of channels (number of columns) must remain constant.
Example: randn(164,4)
Data Types: single | double

Output Arguments

fdfOut — Filtered output
vector | matrix

Filtered output, returned as a vector or matrix. The size, data type, and complexity of the output
match those of the input.

 dsp.FrequencyDomainFIRFilter

4-657

Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.FrequencyDomainFIRFilter
fvtool Visualize frequency response of DSP filters

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Frequency Domain Filtering Using Overlap-Add and Overlap-Save

Filter input signal using overlap-add and overlap-save methods, and compare the outputs to the
output of a FIR filter.

Initialization

Design the FIR lowpass filter coefficients using the fir1 function. The sampling frequency is 8 kHz,
and the cutoff frequency of the filter is 2 kHz. The impulse response has a length of 400.

impL = 400;
Fs = 8000;
Fcutoff = 2000;
imp = fir1(impL,2*Fcutoff/Fs);

Create two dsp.FrequencyDomainFIRFilter objects and a dsp.FIRFilter object. Set the
numerator of all the three filters to imp. Delay the FIR output by the latency of the frequency-domain
filter.

fdfOA = dsp.FrequencyDomainFIRFilter(imp,'Method','overlap-add');
fdfOS = dsp.FrequencyDomainFIRFilter(imp,'Method','overlap-save');
fir = dsp.FIRFilter('Numerator',imp);
dly = dsp.Delay('Length',fdfOA.Latency);

Create two dsp.SineWave objects. The sine waves generated have a sample rate of 8000 Hz, frame
size of 256, and frequencies of 100 Hz and 3 kHz, respectively. Create a timescope object to view
the filtered outputs.

frameLen = 256;

sin_100Hz = dsp.SineWave('Frequency',100,'SampleRate',Fs,...
 'SamplesPerFrame',frameLen);

4 System Objects

4-658

sin_3KHz = dsp.SineWave('Frequency',3e3,'SampleRate',Fs,...
 'SamplesPerFrame',frameLen);
ts = timescope('TimeSpanOverrunAction','Scroll',...
 'ShowGrid',true,'TimeSpanSource','Property','TimeSpan',5 * frameLen/Fs,...
 'YLimits',[-1.1 1.1],...
 'ShowLegend',true,...
 'SampleRate',Fs,...
 'ChannelNames',{'Overlap-add','Overlap-save','Direct-form FIR'});

Streaming

Stream 1e4 frames of noisy input data. Pass this data through the frequency domain filters and the
FIR filter. View the filtered outputs in the time scope.

numFrames = 1e4;
for idx = 1:numFrames
 x = sin_100Hz() + sin_3KHz() + 0.01*randn(frameLen,1);
 yOA = fdfOA(x);
 yOS = fdfOS(x);
 yFIR = fir(dly(x));
 ts([yOA,yOS,yFIR]);
end

The outputs of all the three filters match exactly.

 dsp.FrequencyDomainFIRFilter

4-659

Reduce Latency Through Partitioned Numerator

Partition the impulse response length of a frequency domain FIR filter. Compare the outputs of the
partitioned filter and the original filter.

Design the FIR lowpass filter coefficients using the fir1 function. The sampling frequency is 8 kHz
and the cutoff frequency of the filter is 2 kHz. The impulse response is of length 4000.

impL = 4000;
Fs = 8000;
Fcutoff = 2000;
imp = fir1(impL,2 * Fcutoff / Fs);

Create a dsp.FrequencyDomainFIRFilter with coefficients set to the imp vector. The latency of
this filter is given by , which is equal to 4002. By default,
FFT length is equal to twice the numerator length. This makes the latency proportional to the impulse
response length.

fdfOS = dsp.FrequencyDomainFIRFilter(imp,'Method','overlap-save');
fprintf('Frequency domain filter latency is %d samples\n',fdfOS.Latency);

Frequency domain filter latency is 4002 samples

Partition the impulse response to blocks of length 256. The latency after partitioning is proportional
to the block length.

fdfRL = dsp.FrequencyDomainFIRFilter(imp,'Method','overlap-save',...
 'PartitionForReducedLatency',true,...
 'PartitionLength',256);
fprintf('Frequency domain filter latency is %d samples\n',fdfRL.Latency);

Frequency domain filter latency is 256 samples

Compare the outputs of the two frequency domain filters. The latency of fdfOS is 4002, and the
latency of fdfRL is 256. To compare the two outputs, delay the input to fdfRL by 4002 - 256
samples.

dly = dsp.Delay('Length',(fdfOS.Latency-fdfRL.Latency));

Create two dsp.SineWave objects. The sine waves have a sample rate of 8000 Hz, frame size of 256,
and frequencies of 100 Hz and 3 kHz, respectively. Create a timescope object to view the filtered
outputs.

frameLen = 256;
sin_100Hz = dsp.SineWave('Frequency',100,'SampleRate',Fs,...
 'SamplesPerFrame',frameLen);
sin_3KHz = dsp.SineWave('Frequency',3e3,'SampleRate',Fs,...
 'SamplesPerFrame',frameLen);
ts = timescope('TimeSpanOverrunAction','Scroll','ShowGrid',true,...
 'TimeSpanSource','Property','TimeSpan',5 * frameLen/Fs,...
 'YLimits',[-1.1 1.1],...
 'ShowLegend',true,...
 'SampleRate',Fs,...
 'ChannelNames',{'Overlap-save With Partition','Overlap-save Without Partition'});

Stream 1e4 frames of noisy input data. Pass this data through the two frequency domain filters. View
the filtered outputs in the time scope.

4 System Objects

4-660

numFrames = 1e4;
for idx = 1:numFrames
 x = sin_100Hz() + sin_3KHz() + .1 * randn(frameLen,1);
 yRL = fdfRL(dly(x));
 yOS = fdfOS(x);
 ts([yRL,yOS]);
end

The outputs match exactly.

Specify Frequency Response of the Frequency-Domain FIR Filter

Specify the numerator coefficients of the frequency-domain FIR filter in the frequency domain. Filter
the input signal using the overlap-add method. Compare the frequency-domain FIR filter output to the
corresponding time-domain FIR filter output.

Initialization

Design the FIR lowpass filter coefficients using the fir1 function. The sampling frequency is 8 kHz,
and the cutoff frequency of the filter is 2 kHz. The time-domain impulse response has a length of 400.
Compute the FFT of this impulse response and specify this response as the frequency response of the
frequency-domain FIR filter. Set the time-domain numerator length, specified by the
NumeratorLength property, to the number of elements in the time-domain impulse response.

 dsp.FrequencyDomainFIRFilter

4-661

impL = 400;
Fs = 8000;
Fcutoff = 2000;
imp = fir1(impL,2 * Fcutoff / Fs);
H = fft(imp , 2 * numel(imp));
oa = dsp.FrequencyDomainFIRFilter('NumeratorDomain','Frequency',...
 'FrequencyResponse', H,...
 'NumeratorLength',numel(imp),...
 'Method','overlap-add');
fprintf('Frequency domain filter latency is %d samples\n',oa.Latency);

Frequency domain filter latency is 402 samples

Create a dsp.FIRFilter System object? and specify the numerator as the time-domain coefficients
computed using the fir1 function, imp. Delay the FIR output by the latency of the frequency-domain
FIR filter.

fir = dsp.FIRFilter('Numerator',imp);
dly = dsp.Delay('Length',oa.Latency);

Create two dsp.SineWave objects. The sine waves generated have a sample rate of 8000 Hz, frame
size of 256, and frequencies of 100 Hz and 3 kHz, respectively. Create a timescope object to view
the filtered outputs.

frameLen = 256;

sin_100Hz = dsp.SineWave('Frequency',100,'SampleRate',Fs,...
 'SamplesPerFrame',frameLen);
sin_3KHz = dsp.SineWave('Frequency',3e3,'SampleRate',Fs,...
 'SamplesPerFrame',frameLen);

ts = timescope('TimeSpanOverrunAction','Scroll',...
 'ShowGrid',true,'YLimits',[-1.1 1.1],...
 'TimeSpanSource','Property','TimeSpan',5 * frameLen/Fs,...
 'ShowLegend',true,...
 'SampleRate',Fs,...
 'ChannelNames',{'Overlap-add','Direct-form FIR'});

Streaming

Stream 1e4 frames of noisy input data. Pass this data through the frequency-domain FIR filter and the
time-domain FIR filter. View the filtered outputs in the time scope.

numFrames = 1e4;
for idx = 1:numFrames
 x = sin_100Hz() + sin_3KHz() + 0.01 * randn(frameLen,1);
 y1 = oa(x);
 y2 = fir(dly(x));
 ts([y1,y2]);
end

4 System Objects

4-662

The outputs of both the filters match exactly.

Algorithms
Overlap-save and overlap-add are the two frequency-domain FFT-based filtering methods this
algorithm uses.

Overlap-Save

The overlap-save method is implemented using the following approach:

The input stream is partitioned into overlapping blocks of size FFTLen, with an overlap factor of
NumLen – 1 samples. FFTLen is the FFT length and NumLen is the length of the FIR filter numerator.
The FFT of each block of input samples is computed and multiplied with the length-FFTLen FFT of

 dsp.FrequencyDomainFIRFilter

4-663

the FIR numerator. The inverse fast Fourier transform (IFFT) of the result is performed, and the last
FFTLen – NumLen + 1 samples are saved. The remaining samples are dropped.

The latency of overlap-save is FFTLen – NumLen + 1. The first FFTLen – NumLen + 1 samples are
equal to zero. The filtered value of the first input sample appears as the FFTLen – NumLen + 2 output
sample.

Note that the FFT length must be larger than the numerator length, and is typically set to a value
much greater than NumLen.

Overlap-Add

The overlap-add method is implemented using the following approach:

The input stream is partitioned into blocks of length FFLen – NumLen + 1, with no overlap between
consecutive blocks. Similar to overlap-save, the FFT of the block is computed, and multiplied by the
FFT of the FIR numerator. The IFFT of the result is then computed. The first NumLen + 1 samples
are modified by adding the values of the last NumLen + 1 samples from the previous computed IFFT.

The latency of overlap-add is FFTLen – NumLen + 1. The first FFTLen – NumLen + 1 samples are
equal to zero. The filtered value of the first input sample appears as the FFTLen – NumLen + 2 output
sample.

Reduce Latency Through Impulse Response Partitioning

With an FFT length that is twice the length of the FIR numerator, the latency roughly equals the
length of the FIR numerator. If the impulse response is very long, the latency becomes significantly
large. However, frequency domain FIR filtering is still faster than the time-domain filtering. To
mitigate the latency and make the frequency domain filtering even more efficient, the algorithm
partitions the impulse response into multiple short blocks and performs overlap-save or overlap-add
on each block. The results of the different blocks are then combined to obtain the final output. The
latency of this approach is of the order of the block length, rather than the entire impulse response
length. This reduced latency comes at the cost of additional computation. For more details, see [1].

References
[1] Stockham, T. G., Jr. "High Speed Convolution and Correlation." Proceedings of the 1966 Spring

Joint Computer Conference, AFIPS, Vol 28, 1966, pp. 229–233.

4 System Objects

4-664

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
fvtool

Objects
dsp.FIRFilter | dsp.Delay | dsp.VariableBandwidthFIRFilter |
dsp.FrequencyDomainAdaptiveFilter

Blocks
Frequency-Domain FIR Filter | Frequency-Domain Adaptive Filter | Variable Bandwidth FIR Filter

Introduced in R2017b

 dsp.FrequencyDomainFIRFilter

4-665

dsp.HampelFilter
Package: dsp

Filter outliers using Hampel identifier

Description
The dsp.HampelFilter System object detects and removes the outliers of the input signal by using
the Hampel identifier. The Hampel identifier is a variation of the three-sigma rule of statistics that is
robust against outliers. For each sample of the input signal, the object computes the median of a
window composed of the current sample and Len− 1

2 adjacent samples on each side of current
sample. Len is the window length you specify through the WindowLength property. The object also
estimates the standard deviation of each sample about its window median by using the median
absolute deviation. If a sample differs from the median by more than the threshold multiplied by the
standard deviation, the filter replaces the sample with the median. For more information, see
“Algorithms” on page 4-673.

To filter the input signal using a Hampel identifier:

1 Create the dsp.HampelFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
hampFilt = dsp.HampelFilter
hampFilt = dsp.HampelFilter(Len)
hampFilt = dsp.HampelFilter(Len, Lim)
hampFilt = dsp.HampelFilter(Name,Value)

Description

hampFilt = dsp.HampelFilter returns a Hampel filter object, hampFilt, using the default
properties.

hampFilt = dsp.HampelFilter(Len) sets the WindowLength property to Len.

hampFilt = dsp.HampelFilter(Len, Lim) sets the WindowLength property to Len and the
Threshold property to Lim.
Example: hampFilt = dsp.HampelFilter(11,2);

hampFilt = dsp.HampelFilter(Name,Value) specifies properties using Name,Value pairs.
Unspecified properties have default values.

4 System Objects

4-666

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

If a property is listed as tunable, then you can change its value even when the object is locked.

WindowLength — Length of the sliding window
11 (default) | positive odd scalar integer

Length of the sliding window, specified as a positive odd scalar integer. The window of finite length
slides over the data, and the object computes the median and median absolute deviation of the data
in the window.
Data Types: single | double

Threshold — Threshold for outlier detection
3 (default) | positive real scalar

Threshold for outlier detection, specified as a positive real scalar. For information on how this
property is used to detect the outlier, see “Algorithms” on page 4-673.

Tunable: Yes
Data Types: single | double

Usage

Syntax
y = hampFilt(x)
[y,isOutlier] = hampFilt(x)

Description

y = hampFilt(x) detects and removes the outliers of each channel of the input signal, x,
independently over time using the Hampel filter.

[y,isOutlier] = hampFilt(x) returns a logical array, isOutlier, in which each true element
indicates that the corresponding element in the input is an outlier. isOutlier is the same size as the
input and output vectors.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. The object accepts multichannel inputs, that is, m-by-n
size inputs, where m ≥ 1, and n > 1. m is the number of samples in each frame (channel), and n is the

 dsp.HampelFilter

4-667

number of channels. The object also accepts variable-size inputs. After the object is locked, you can
change the size of each input channel, but you cannot change the number of channels.
Data Types: single | double

Output Arguments

y — Filtered data
vector | matrix

Filtered data, returned as a vector or a matrix.
Data Types: single | double

isOutlier — Indicate outlier
true | false

Logical array whose elements indicate if the corresponding element in the input array is an outlier. If
an element in isOutlier is true, the corresponding element in the input array is an outlier.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Remove High-Frequency Noise Using Hampel Filter

Filter high-frequency noise from a noisy sine wave signal using a Hampel filter. Compare the
performance of the Hampel filter with a median filter.

Initialization

Set up a dsp.HampelFilter and a dsp.MedianFilter object. These objects use the sliding
window method with a window length of 7. Create a time scope for viewing the output.

Fs = 1000;
hampFilt = dsp.HampelFilter(7);
medFilt = dsp.MedianFilter(7);
scope = timescope('SampleRate',Fs, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpanSource','Property',...
 'TimeSpan',1,'ShowGrid',true, ...

4 System Objects

4-668

 'LayoutDimensions',[3 1], ...
 'NumInputPorts',3);
scope.ActiveDisplay = 1;
scope.Title = 'Signal + Noise';
scope.YLimits = [-1 3];
scope.ActiveDisplay = 2;
scope.Title = 'Hampel Filter Output (Window Length = 7)';
scope.YLimits = [-1 1];
scope.ActiveDisplay = 3;
scope.Title = 'Median Filter Output (Window Length = 7)';
scope.YLimits = [-1 1];

Filter the Noisy Sine Wave Using a Window of Length 7

Generate a noisy sine wave signal with a frequency of 10 Hz. Apply the Hampel filter and the median
filter object to the signal. View the output on the time scope.

FrameLength = 256;
sine = dsp.SineWave('SampleRate',Fs,'Frequency',10,...
 'SamplesPerFrame',FrameLength);

for i = 1:500
 hfn = 3 * (rand(FrameLength,1) < 0.02);
 x = sine() + 1e-2 * randn(FrameLength,1) + hfn;
 y1 = hampFilt(x);
 y2 = medFilt(x);
 scope(x,y1,y2);
end
release(scope)

 dsp.HampelFilter

4-669

Both filters remove the high-frequency noise. However, when you increase the window length, the
Hampel filter is preferred. Unlike the median filter, the Hampel filter preserves the shape of the sine
wave even with large window lengths.

Filter the Noisy Sine Wave Using a Window of Length 37

Increase the window length of both the filters to 37. Filter the noisy sine wave and view the filtered
output on the time scope. To change the window length of the filters, you must release the filter
objects at the start of the processing loop.

release(hampFilt);
release(medFilt);
hampFilt.WindowLength = 37;
medFilt.WindowLength = 37;
scope.ActiveDisplay = 1;
scope.Title = 'Signal + Noise';
scope.ActiveDisplay = 2;
scope.Title = 'Hampel Filter Output (Window Length = 37)';
scope.ActiveDisplay = 3;
scope.Title = 'Median Filter Output (Window Length = 37)';
for i = 1:500
 hfn = 3 * (rand(FrameLength,1) < 0.02);
 x = sine() + 1e-2 * randn(FrameLength,1) + hfn;
 y1 = hampFilt(x);
 y2 = medFilt(x);
 scope(x,y1,y2);

4 System Objects

4-670

end
release(scope)

The median filter flattens the crests and troughs of the sine wave due to the median operation over a
large window of data. The Hampel filter preserves the shape of the signal, in addition to removing the
outliers.

Remove High-Frequency Noise from Gyroscope Data Using Hampel Filter

Remove the high-frequency outliers from a streaming signal using the dsp.HampelFilter System
object™.

Use the dsp.MatFileReader System object to read the gyroscope MAT file. The file contains three
columns of data, with each column containing 7140 samples. The three columns represent the x-axis,
y-axis, and z-axis data from the gyroscope motion sensor. Choose a frame size of 714 samples so that
each column of the data contains 10 frames. The dsp.HampelFilter System object uses a window
length of 11. Create a timescope object to view the filtered output.

reader = dsp.MatFileReader('SamplesPerFrame',714,'Filename','LSM9DSHampelgyroData73.mat', ...
 'VariableName','data');
hampFilt = dsp.HampelFilter(11);
scope = timescope('NumInputPorts',1,'SampleRate',119,'YLimits',[-300 300], ...
 'ChannelNames',{'Input','Filtered Output'},...
 'TimeSpanSource','Property','TimeSpan',60,'ShowLegend',true);

 dsp.HampelFilter

4-671

Filter the gyroscope data using the dsp.HampelFilter System object. View the filtered z-axis data
in the Time Scope.

for i = 1:10
 gyroData = reader();
 filteredData = hampFilt(gyroData);
 scope([gyroData(:,3),filteredData(:,3)]);
end

The Hampel filter removes all the outliers and preserves the shape of the signal.

More About
Hampel Identifier

The Hampel identifier is a variation of the three-sigma rule of statistics that is robust against outliers.

Given a sequence x1, x2, x3, …, xn and a sliding window of length k, define point-to-point median and
standard-deviation estimates using:

• Local median — mi = median xi− k, xi− k + 1, xi− k + 2, …, xi, …, xi + k− 2, xi + k− 1, xi + k

• Standard deviation — σi = κmedian xi− k−mi , …, xi + k−mi , where κ = 1
2erfc−1 1/2

≈ 1.4826

The quantity σi /κ is known as the median absolute deviation (MAD).

4 System Objects

4-672

If a sample xi is such that

xi−mi > nσσi

for a given threshold nσ, then the Hampel identifier declares xi an outlier and replaces it with mi. If nσ
is 0, then the Hampel filter behaves as a regular median filter.

Algorithms

For a given sample of data, xs, the algorithm:

• Centers the window of odd length at the current sample.
• Computes the local median, mi, and standard deviation, σi, over the current window of data.
• Compares the current sample with nσ × σi, where nσ is the threshold value. If xs−mi > nσ × σi,

the filter identifies the current sample, xs, as an outlier and replaces it with the median value, mi.

Consider a frame of data that is passed into the Hampel filter.

In this example, the Hampel filter slides a window of length 5 (Len) over the data. The filter has a
threshold value of 2 (nσ). To have a complete window at the beginning of the frame, the filter
algorithm prepends the frame with Len – 1 zeros. To compute the first sample of the output, the

window centers on the Len− 1
2 + 1

th
 sample in the appended frame, the third zero in this case. The

filter computes the median, median absolute deviation, and the standard deviation over the data in
the local window.

• Current sample: xs = 0.
• Window of data: win = [0 0 0 0 1].

 dsp.HampelFilter

4-673

• Local median: mi = median([0 0 0 0 1]) = 0.
• Median absolute deviation: madi = median xi− k−mi , …, xi + k−mi . For this window of data,

mad = median 0− 0 , …, 1− 0 = 0.
• Standard deviation: σi = κ × madi = 0, where κ = 1

2erfc−1 1/2
≈ 1.4826.

• The current sample, xs = 0, does not obey the relation for outlier detection.

xs−mi = 0 > nσ × σi = 0

Therefore, the Hampel filter outputs the current input sample, xs = 0.

Repeat this procedure for every succeeding sample until the algorithm centers the window on the

End− Len− 1
2

th
 sample, marked as End. Because the window centered on the last Len− 1

2 samples
cannot be full, these samples are processed with the next frame of input data.

Here is the first output frame the Hampel filter generates:

The seventh sample of the appended input frame, 23, is an outlier. The Hampel filter replaces this
sample with the median over the local window [4 9 23 8 12].

References
[1] Bodenham, Dean. “Adaptive Filtering and Change Detection for Streaming Data.” PH.D. Thesis.

Imperial College, London, 2012.

[2] Liu, Hancong, Sirish Shah, and Wei Jiang. “On-line outlier detection and data cleaning.”
Computers and Chemical Engineering. Vol. 28, March 2004, pp. 1635–1647.

[3] Suomela, Jukka. Median Filtering Is Equivalent to Sorting, 2014.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
hampel

4 System Objects

4-674

https://arxiv.org/pdf/1406.1717.pdf

Objects
dsp.MedianFilter | dsp.MovingAverage

Blocks
Hampel Filter | Median Filter | Moving Average

Introduced in R2017a

 dsp.HampelFilter

4-675

dsp.HDLChannelizer
Package: dsp

Polyphase filter bank and fast Fourier transform—optimized for HDL code generation

Description
The dsp.HDLChannelizer System object separates a broadband input signal into multiple
narrowband output signals. It provides hardware speed and area optimization for streaming data
applications. The object accepts scalar or vector input of real or complex data, provides hardware-
friendly control signals, and has optional output frame control signals. You can achieve giga-sample-
per-second (GSPS) throughput by using vector input. The object implements a polyphase filter, with
one subfilter per input vector element. The hardware implementation interleaves the subfilters, which
results in sharing each filter multiplier (FFT Length / Input Size) times. The object implements the
same pipelined Radix 2^2 FFT algorithm as the dsp.HDLFFT System object.

To channelize input data:

1 Create the dsp.HDLChannelizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
channelizer = dsp.HDLChannelizer
channelizer = dsp.HDLChannelizer(Name,Value)

Description

channelizer = dsp.HDLChannelizer returns a System object, channelizer, that implements a
raised-cosine filter and an 8-point FFT.

channelizer = dsp.HDLChannelizer(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in single quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-676

NumFrequencyBands — FFT length
8 (default) | integer power of two

FFT length, specified as an integer power of two. For HDL code generation, the FFT length must be
between 23 and 216, inclusive.

FilterCoefficients — Polyphase filter coefficients
[-0.032 0.121 0.318 0.482 0.546 0.482 0.318 0.121 -0.032] (default) | vector of
numeric values

Polyphase filter coefficients, specified as a vector of numeric values. If the number of coefficients is
not a multiple of NumFrequencyBands, the object pads this vector with zeros. The default filter
specification is a raised-cosine FIR filter, rcosdesign(0.25,2,4,'sqrt'). You can specify a vector
of coefficients or a call to a filter design function that returns the coefficient values. Complex
coefficients are not supported. By default, the object casts the coefficients to the same data type as
the input.

ComplexMultiplication — HDL implementation of complex multipliers
'Use 4 multipliers and 2 adders' (default) | 'Use 3 multipliers and 5 adders'

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target
device, one option may be faster or smaller.

Dependencies

This option applies only if you use the Radix 2^2 architecture.

OutputSize — Size of output data
'Same as number of frequency bands' (default) | 'Same as input size'

Size of output data, specified as:

• 'Same as number of frequency bands' — Output data is a 1-by-M vector, where M is the
FFT length.

• 'Same as input size' — Output data is an M-by-1 vector, where M is the input vector size.

The output order is bit natural for both output sizes.

Normalize — FFT scaling
true (default) | false

FFT output scaling, specified as either:

• true — The FFT implements an overall 1/N scale factor by scaling the result of each pipeline
stage by 2. This adjustment keeps the output of the FFT in the same amplitude range as its input.

• false — The FFT avoids overflow by increasing the word length by one bit at each stage.

RoundingMethod — Rounding mode used for internal fixed-point calculations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode used for fixed-point operations. The object uses fixed-point arithmetic for internal
calculations when the input is any integer or fixed-point data type. This option does not apply when
the input is single or double. Each FFT stage rounds after the twiddle factor multiplication but

 dsp.HDLChannelizer

4-677

before the butterflies. Rounding can also occur when casting the coefficients and the output of the
polyphase filter to the data types you specify.

OverflowAction — Overflow handling for internal fixed-point calculations
'Wrap' (default) | 'Saturate'

“Overflow Handling” used for fixed-point operations. The object uses fixed-point arithmetic for
internal calculations when the input is any integer or fixed-point data type. This option does not apply
when the input is single or double. This option applies to casting the coefficients and the output of
the polyphase filter to the data types you specify.

The FFT algorithm avoids overflow by either scaling the output of each stage (Normalize enabled), or
by increasing the word length by 1 bit at each stage (Normalize disabled).

CoefficientsDataType — Data type of filter coefficients
'Same word length as input' (default) | numerictype object

The object casts the polyphase filter coefficients to this data type, using the rounding and overflow
settings you specify. When you select Inherit: Same word length as input (default), the
object selects the binary point using fi() best-precision rules.

FilterOutputDataType — Data type of output of polyphase filter
'Same word length as input' (default) | 'Full precision' | numerictype object

Data type of the output of the polyphase filter, specified as 'Same word length as input',
'Full precision', or a numerictype object. The object casts the output of the polyphase filter
(the input to the FFT) to this data type, using the rounding and overflow settings you specify. When
you specify 'Same word length as input', the object selects a best-precision binary point by
considering the values of your filter coefficients and the range of your input data type.

By default, the FFT logic does not change the data type. When you disable Normalize, the FFT
algorithm avoids overflow by increasing the word length by 1 bit at each stage.

ResetInputPort — Enable reset argument
false (default) | true

Enable reset input argument to the object. When reset is 1 (true), the object stops calculation and
clears all internal state.

StartOutputPort — Enable start output argument
false (default) | true

Enable startOut output argument of the object. When enabled, the object returns an additional
output signal that is 1 (true) on the first cycle of each valid output frame.

EndOutputPort — Enable end output argument
false (default) | true

Enable endOut output argument of the object. When enabled, the object returns an additional output
signal that is 1 (true) on the first cycle of each valid output frame.

4 System Objects

4-678

Usage

Syntax
[dataOut,validOut] = channelizer(dataIn,validIn)
[dataOut,validOut] = channelizer(dataIn,validIn,reset)
[dataOut,startOut,endOut,validOut] = channelizer(___)

Description

[dataOut,validOut] = channelizer(dataIn,validIn) filters and computes a fast Fourier
transform, and returns the frequency channels, dataOut, detected in the input signal, dataIn, when
validIn is 1 (true). The validIn and validOut arguments are logical scalars that indicate the
validity of the input and output signals, respectively.

[dataOut,validOut] = channelizer(dataIn,validIn,reset) returns the frequency
channels, dataOut, detected in the input signal, dataIn, when validIn is 1 (true) and reset is 0
(false). When reset is 1 (true), the object stops the current calculation and clears all internal state.

To use this syntax, set the ResetInputPort property to true. For example:

channelizer = dsp.HDLChannelizer(...,'ResetInputPort',true);
...
[dataOut,validOut] = channelizer(dataIn,validIn,reset)

[dataOut,startOut,endOut,validOut] = channelizer(___) returns the frequency
channels, dataOut, computed from the input arguments of any of the previous syntaxes. startOut
is 1 (true) for the first sample of a frame of output data. endOut is 1 (true) for the last sample of a
frame of output data.

To use this syntax, set the StartOutputPort and EndOutputPort properties to true. For example:
channelizer = dsp.HDLChannelizer(...,'StartOutputPort',true,'EndOutputPort',true);
...
[dataOut,startOut,endOut,validOut] = channelizer(dataIn,validIn)

Input Arguments

dataIn — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values. The vector size must be a
power of 2 between 1 and 64 that is not greater than the number of channels (FFT length).

double and single data types are supported for simulation, but not for HDL code generation.

The object does not accept uint64 data.
Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validIn — Validity of input data
logical scalar

Validity of input data, specified as a logical scalar. When validIn is 1 (true), the object captures the
value on dataIn.
Data Types: logical

 dsp.HDLChannelizer

4-679

reset — Reset internal state
logical scalar

Reset internal state, specified as a logical scalar. When reset is 1 (true), the object stops the current
calculation and clears internal state.

Dependencies

To enable this argument, set ResetInputPort to true.
Data Types: logical

Output Arguments

dataOut — Frequency channel output data
row vector

Frequency channel output data, returned as a row vector.

• If you set OutputSize to 'Same as number of frequency bands' (default), the output data is
a 1-by-M vector, where M is the FFT length.

• If you set OutputSize to 'Same as input size', the output data is an M-by-1 vector, where M
is the input vector size.

The output order is bit natural for either output size. The data type is a result of the
FilterOutputDataType and the FFT bit growth necessary to avoid overflow.

validOut — Validity of output data
logical scalar

Validity of output data, returned as a logical scalar. The object sets validOut to 1 (true) with each
valid sample on dataOut.
Data Types: logical

startOut — First valid cycle of output data
logical scalar

First sample of output frame, returned as a logical scalar. The object sets startOut to 1 (true)
during the first valid sample on dataOut.

Dependencies

To enable this argument, set StartOutputPort to true.
Data Types: logical

endOut — Last valid cycle of output data
logical scalar

Last sample of output frame, returned as a logical scalar. The object sets endOut to 1 (true) during
the last valid sample on dataOut.

Dependencies

To enable this argument, set EndOutputPort to true.
Data Types: logical

4 System Objects

4-680

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.HDLChannelizer
getLatency Latency of FFT or channelizer calculation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create Channelizer for HDL Generation

Create a function that contains a channelizer object and supports HDL code generation.

Create the specifications and input signal. The signal has 8 frequency channels.

N = 8;
loopCount = 1024;
offsets = [-40 -30 -20 10 15 25 35 -15];
sinewave = dsp.SineWave('ComplexOutput',true,'Frequency', ...
 offsets+(-375:125:500),'SamplesPerFrame',loopCount);
spectrumAnalyzer = dsp.SpectrumAnalyzer('ShowLegend',true, ...
 'SampleRate',sinewave.SampleRate/N);

Write a function that creates and calls the channelizer System object™. You can generate HDL from
this function.

function [yOut,validOut] = HDLChannelizer8(yIn,validIn)
%HDLChannelizer8
% Process one sample of data using the dsp.HDLChannelizer System object
% yIn is a fixed-point scalar or column vector.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent channelize8;
 coder.extrinsic('tf');
 coder.extrinsic('dsp.Channelizer');

 if isempty(channelize8)
 % Use filter coeffs from non-HDL channelizer, or supply your own.
 channelizer = coder.const(dsp.Channelizer('NumFrequencyBands',8));
 coeff = coder.const(tf(channelizer));
 channelize8 = dsp.HDLChannelizer('NumFrequencyBands',8,'FilterCoefficients',coeff);
 end

 dsp.HDLChannelizer

4-681

 [yOut,validOut] = channelize8(yIn,validIn);
end

Channelize the input data by calling the object for each data sample.

y = zeros(loopCount/N,N);
validOut = false(loopCount/N,1);
yValid = zeros(loopCount/(N*N),N);
for reps=1:20
 x = fi(sum(sinewave(),2),1,18);
 for loop=1:length(x)
 [y(loop,:),validOut(loop)]= HDLChannelizer8(x(loop),true);
 end
 yValid = y(validOut == 1,:);
 spectrumAnalyzer(yValid);
end

Explore Latency of the HDL Channelizer Object

The latency of the dsp.HDLChannelizer object varies with the FFT length and the vector size. Use
the getLatency function to find the latency of a particular configuration. The latency is measured as

4 System Objects

4-682

the number of cycles between the first valid input and the first valid output, assuming that the input
is contiguous. The number of filter coefficients does not affect the latency. Setting the output size
equal to the input size reduces the latency because the samples are not saved and reordered.

Create a dsp.HDLChannelizer object and request the latency.

channelize = dsp.HDLChannelizer('NumFrequencyBands',512);
L512 = getLatency(channelize)

L512 = 1118

Request hypothetical latency information about a similar object with a different number of frequency
bands (FFT length). The properties of the original object do not change.

L256 = getLatency(channelize,256)

L256 = 592

N = channelize.NumFrequencyBands

N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.

L256v8 = getLatency(channelize,256,8)

L256v8 = 132

Enable scaling at each stage of the FFT. The latency does not change.

channelize.Normalize = true;
L512n = getLatency(channelize)

L512n = 1118

Request the same output size and order as the input data. The latency decreases because the object
does not need to store and reorder the data before output. The default input size is scalar.

channelize.OutputSize = 'Same as input size';
L512r = getLatency(channelize)

L512r = 1084

Check the latency of a vector input implementation where the input and output are the same size.
Specify the current value of the FFT length and a vector size of 8 samples. The latency decreases
because the object computes results in parallel when the input is a vector.

L256rv8 = getLatency(channelize,channelize.NumFrequencyBands,8)

L256rv8 = 218

Algorithms
This object implements the algorithm described on the Channelizer HDL Optimized block reference
page.

 dsp.HDLChannelizer

4-683

Latency

The latency varies with the FFT length and the vector size. Use the getLatency function to find the
latency of a particular configuration. The latency is the number of cycles between the first valid input
and the first valid output, assuming that the input is contiguous. The filter coefficients do not affect
the latency. Setting the output size equal to the input size reduces the latency, because the samples
are not saved and reordered.

Control Signals

This diagram shows validIn and validOut signals for contiguous input data with a vector size of
16 and an FFT length of 512.

The diagram also shows the optional startOut and endOut signals that indicate frame boundaries.
When enabled, startOut pulses for one cycle with the first validOut of the frame, and endOut
pulses for one cycle with the last validOut of the frame.

If you apply continuous input frames (no gap in validIn between frames), the output will also be
continuous, after the initial latency.

The validIn signal can be noncontiguous. Data accompanied by a validIn signal is stored until a
frame is filled. Then the data is output in a contiguous frame of N (FFT length) cycles. This diagram
shows noncontiguous input and contiguous output for an FFT length of 512 and a vector size of 16
samples.

Performance

These resource and performance data are the place-and-route results from the generated HDL
targeted to a Xilinx Virtex 6 (XC6VLX240-1ff784) FPGA. The three examples in the tables use this
configuration:

• FFT length (default) — 8
• Filter length — 96 coefficients
• 16-bit complex input data
• Coefficient and filter output data types (default) — Same as number of frequency bands

4 System Objects

4-684

• Complex multiplication (default) — 4 multipliers, 2 adders
• Output scaling — Enabled
• Minimize clock enables (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options.

For scalar input, the design achieves a clock frequency of 346 MHz. The latency is 53 cycles. The
subfilters share each multiplier eight (N) times. The design uses these resources.

Resource Number Used
LUT 1591
FFS 2681
Xilinx LogiCORE DSP48 16

For four-sample vector input, the design achieves a clock frequency of 333 MHz. The latency is 31
cycles. The subfilters share each multiplier twice (N/M). The design uses these resources.

Resource Number Used
LUT 1912
FFS 3986
Xilinx LogiCORE DSP48 56

For eight-sample vector input, the design achieves a clock frequency of 292 MHz. The latency is 20
cycles. When the input size is the same as the FFT length, the subfilters do not share any multipliers.
The design uses these resources.

Resource Number Used
LUT 1388
FFS 2302
Xilinx LogiCORE DSP48 110

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

 dsp.HDLChannelizer

4-685

See Also
Blocks
FFT HDL Optimized | Channelizer HDL Optimized

Objects
dsp.Channelizer | dsp.HDLFFT

Introduced in R2017a

4 System Objects

4-686

dsp.HDLComplexToMagnitudeAngle
Package: dsp

Magnitude and phase angle of complex signal—optimized for HDL code generation

Description
The dsp.HDLComplexToMagnitudeAngle System object computes the magnitude and phase angle
of a complex signal. It provides hardware-friendly control signals. The System object uses a pipelined
coordinate rotation digital computer (CORDIC) algorithm to achieve an HDL-optimized
implementation.

To compute the magnitude and phase angle of a complex signal:

1 Create the dsp.HDLComplexToMagnitudeAngle object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
HCMA = dsp.HDLComplexToMagnitudeAngle
HCMA = dsp.HDLComplexToMagnitudeAngle(Name,Value)

Description

HCMA = dsp.HDLComplexToMagnitudeAngle returns a dsp.HDLComplexToMagnitudeAngle
System object, HCMA, that computes the magnitude and phase angle of a complex input signal.

HCMA = dsp.HDLComplexToMagnitudeAngle(Name,Value) sets properties of HCMA using one or
more name-value pairs. Enclose each property name in single quotes.
Example: cma = dsp.HDLComplexToMagnitudeAngle('AngleFormat','Radians')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

OutputValue — Type of values to return
'Magnitude and angle' (default) | 'Magnitude' | 'Angle'

 dsp.HDLComplexToMagnitudeAngle

4-687

Type of output values to return, specified as 'Magnitude and angle', 'Magnitude', or 'Angle'.
You can choose for the object to return the magnitude of the input signal, or the phase angle of the
input signal, or both.

AngleFormat — Format of phase angle output value
'Normalized' (default) | 'Radians'

Format of the phase angle output value from the object, specified as:

• 'Normalized' — Fixed-point format that normalizes the angle in the range [–1,1].
• 'Radians' — Fixed-point values in the range [π,−π].

ScaleOutput — Scale output by inverse of CORDIC gain factor
true (default) | false

Scale output by the inverse of the CORDIC gain factor, specified as true or false.

Note If your design includes a gain factor later in the datapath, you can set ScaleOutput to false,
and include the CORDIC gain factor in the later gain. For calculation of this gain factor, see
“Algorithm” on page 4-693. The object replaces the first CORDIC iteration by mapping the input
value onto the angle range [0,π/4]. Therefore, the initial rotation does not contribute a gain term.

NumIterationsSource — Source of NumIterations
'Auto' (default) | 'Property'

Source of the NumIterations property for the CORDIC algorithm, specified as:

• 'Auto' — Sets the number of iterations to one less than the input word length. If the input is
double or single, the number of iterations is 16.

• 'Property' — Uses the NumIterations property.

For details of the CORDIC algorithm, see “Algorithm” on page 4-693.

NumIterations — Number of CORDIC iterations
integer less than or equal to one less than the input word length

Number of CORDIC iterations that the object executes, specified as an integer. The number of
iterations must be less than or equal to one less than the input word length.

For details of the CORDIC algorithm, see “Algorithm” on page 4-693.
Dependencies

To enable this property, set NumIterationsSource to 'Property'.

Usage

Syntax
[mag,angle,validOut] = HCMA(X,validIn)
[mag,validOut] = HCMA(X,validIn)
[angle,validOut] = HCMA(X,validIn)

4 System Objects

4-688

Description

[mag,angle,validOut] = HCMA(X,validIn) converts a scalar or vector of complex values X into
their component magnitude and phase angles. validIn and validOut are logical scalars that
indicate the validity of the input and output signals, respectively.

[mag,validOut] = HCMA(X,validIn) returns only the component magnitudes of X.

To use this syntax, set OutputValue to 'Magnitude'.
Example: HCMA = dsp.HDLComplextoMagnitudeAngle('OutputValue','Magnitude');

[angle,validOut] = HCMA(X,validIn) returns only the component phase angles of X.

To use this syntax, set OutputValue to 'Angle'.
Example: HCMA = dsp.HDLComplextoMagnitudeAngle('OutputValue','Angle');

Input Arguments

X — Input signal
complex scalar or vector

Input signal, specified as a scalar, a column vector representing samples in time, or a row vector
representing channels. Using vector input increases data throughput while using more hardware
resources. The object implements the conversion logic in parallel for each element of the vector. The
input vector can contain up to 64 elements.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | int8 | int16 | int32 | uint8 | uint16 | uint32 | single | double

validIn — Validity of input signal
scalar

When validIn is true, the block captures the data from the dataIn input argument. The validIn
argument applies to all samples in a vector input argument.
Data Types: logical

Output Arguments

mag — Magnitude component of input signal
scalar | vector

Magnitude calculated from the complex input signal, returned as a scalar, a column vector
representing samples in time, or a row vector representing channels. The dimensions and data type
of this argument match the dimensions of the dataIn argument.

Dependencies

To enable this argument, set the OutputValue property to 'Magnitude and Angle' or
'Magnitude'.

angle — Phase angle component of input signal
scalar | vector

 dsp.HDLComplexToMagnitudeAngle

4-689

Angle calculated from the complex input signal, returned as a scalar, a column vector representing
samples in time, or a row vector representing channels. The dimensions and data type of this
argument match the dimensions of the dataIn argument. The format of this value depends on the
AngleFormat property.

Dependencies

To enable this argument, set the OutputValue property to 'Magnitude and Angle' or 'Angle'.

validOut — Validity of output components
scalar

The object sets validOut to true with each valid data returned on the magnitude or angle output
arguments. The validOut argument applies to all samples in a vector output argument.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Magnitude and Phase Angle of Complex Signal

Use the dsp.HDLComplextoMagnitudeAngle object to compute the magnitude and phase angle of
a complex signal. The object uses a CORDIC algorithm for an efficient hardware implementation.

Choose word lengths and create random complex input signal. Then, convert the input signal to fixed-
point.

a = -4;
b = 4;
inputWL = 16;
inputFL = 12;
numSamples = 10;
reData = ((b-a).*rand(numSamples,1)+a);
imData = ((b-a).*rand(numSamples,1)+a);
dataIn = (fi(reData+imData*1i,1,inputWL,inputFL));
figure
plot(dataIn)
title('Random Complex Input Data')
xlabel('Real')
ylabel('Imaginary')

4 System Objects

4-690

Write a function that creates and calls the System object™. You can generate HDL from this function.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

function [mag,angle,validOut] = Complex2MagAngle(yIn,validIn)
%Complex2MagAngle
% Converts one sample of complex data to magnitude and angle data.
% yIn is a fixed-point complex number.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent cma;
 if isempty(cma)
 cma = dsp.HDLComplexToMagnitudeAngle('AngleFormat','Radians');
 end
 [mag,angle,validOut] = cma(yIn,validIn);
end

The number of CORDIC iterations determines the latency that the object takes to compute the answer
for each input sample. The latency is NumIterations+4. In this example, NumIterationsSource
is set to the default, 'Auto', so the object uses inputWL-1 iterations. The latency is inputWL+3.

 dsp.HDLComplexToMagnitudeAngle

4-691

latency = inputWL+3;
mag = zeros(1,numSamples+latency);
ang = zeros(1,numSamples+latency);
validOut = false(1,numSamples+latency);

Call the function to convert each sample. After you apply all input samples, continue calling the
function with invalid input to flush remaining output samples.

for ii = 1:1:numSamples
 [mag(ii),ang(ii),validOut] = Complex2MagAngle(dataIn(ii),true);
end
for ii = (numSamples+1):1:(numSamples+latency)
 [mag(ii),ang(ii),validOut(ii)] = Complex2MagAngle(fi(0+0*1i,1,inputWL,inputFL),false);
end
% Remove invalid output values
mag = mag(validOut == 1);
ang = ang(validOut == 1);
figure
polar(ang,mag,'--r') % Red is output from HDL-optimized System object
title('Output from dsp.HDLComplexToMagnitudeAngle')
magD = abs(dataIn);
angD = angle(dataIn);
figure
polar(angD,magD,'--b') % Blue is output from abs and angle functions
title('Output from abs and angle Functions')

4 System Objects

4-692

Algorithms
CORDIC Algorithm

The CORDIC algorithm is a hardware-friendly method for performing trigonometric functions. It is an
iterative algorithm that approximates the solution by converging toward the ideal point. The object
uses CORDIC vectoring mode to iteratively rotate the input onto the real axis.

The Givens method for rotating a complex number x+iy by an angle θ is as follows. The direction of
rotation, d, is +1 for counterclockwise and −1 for clockwise.

xr = xcosθ− dysinθ
yr = ycosθ + dxsinθ

For a hardware implementation, factor out the cosθ to leave a tanθ term.

xr = cosθ x− dytanθ
yr = cosθ y + dxtanθ

To rotate the vector onto the real axis, choose a series of rotations of θn so that tanθn = 2−n. Remove
the cosθ term so each iterative rotation uses only shift and add operations.

Rxn = xn− 1− dnyn− 12−n

Ryn = yn− 1 + dnxn− 12−n

 dsp.HDLComplexToMagnitudeAngle

4-693

Combine the missing cosθ terms from each iteration into a constant, and apply it with a single
multiplier to the result of the final rotation. The output magnitude is the scaled final value of x. The
output angle, z, is the sum of the rotation angles.

xr = cosθ0cosθ1...cosθn RxN

z = ∑
0

N
dnθn

Modified CORDIC Algorithm

The convergence region for the standard CORDIC rotation is ≈±99.7°. To work around this limitation,
before doing any rotation, the object maps the input into the [0,π/4] range using the following
algorithm.

if abs(x) > abs(y)
 input_mapped = [abs(x), abs(y)];
else
 input_mapped = [abs(y), abs(x)];
end

At each iteration, the object rotates the vector towards the real axis. The rotation is counterclockwise
when y is negative, and clockwise when y is positive.

Quadrant mapping saves hardware resources and reduces latency by reducing the number of
CORDIC pipeline stages by one. The CORDIC gain factor, Kn, therefore does not include the n=0, or
cos(π/4) term.

Kn = cosθ1...cosθn = cos(26.565) ⋅ cos(14.036) ⋅ cos(7.125) ⋅ cos(3.576)

After the CORDIC iterations are complete, the object corrects the angle back to its original location.
First it adjusts the angle to the correct side of π/4.

if abs(x) > abs(y)
 angle_unmapped = CORDIC_out;
else
 angle_unmapped = (pi/2) - CORDIC_out;
end

Then it flips the angle to the original quadrant.

if (x < 0)
 if (y < 0)
 output_angle = - pi + angle_unmapped;
 else
 output_angle = pi - angle_unmapped;
else
 if (y<0)
 output_angle = -angle_unmapped;

Architecture

The object generates a pipelined HDL architecture to maximize throughput. Each CORDIC iteration is
done in one pipeline stage. The gain multiplier, if enabled, is implemented with Canonical Signed
Digit (CSD) logic.

4 System Objects

4-694

If you use vector input, this object replicates this architecture in parallel for each element of the
vector.

Input Word Length Output Magnitude Word Length
fixdt(0,WL,FL) fixdt(0,WL+2,FL)
fixdt(1,WL,FL) fixdt(1,WL+1,FL)

Input Word Length Output Angle Word Length
fixdt([],WL,FL) Radians fixdt(1,WL+3,WL)

Normalized fixdt(1,WL+3,WL+2)

The CORDIC logic at each pipeline stage implements one iteration. For each pipeline stage, the shift
and angle rotation are constants.

 dsp.HDLComplexToMagnitudeAngle

4-695

When you set OutputValue to 'Magnitude', the object does not generate HDL code for the angle
accumulation and quadrant correction logic.

Normalized Angle Format

This format normalizes the fixed-point radian angle values around the unit circle. This is a more
efficient use of bits than a range of [0,2π] radians. Normalized angle format also enables wraparound
at 0/2π without additional detect and correct logic.

For example, representing the angle with 3 bits results in the following normalized values.

4 System Objects

4-696

Using the mapping described in “Modified CORDIC Algorithm” on page 2-687, the object normalizes
the angles across [0,π/4] and maps them to the correct octant at the end of the calculation.

Delay

The latency is NumIterations + 4 cycles from input to output. Each call to the object models one clock
cycle.

When you set NumIterationsSource to 'Auto', the number of iterations is one less than the input
word length and the latency is three more than the input word length. If the data type of the input is
double or single, the number of iterations is 16 and the latency is 20.

Performance

Performance was measured for the default configuration, with output scaling disabled and
fixdt(1,16,12) input. When the generated HDL code is synthesized into a Xilinx Virtex-6
(XC6VLX240T-1FFG1156) FPGA, the design achieves 260 MHz clock frequency. It uses the following
resources.

Resource Number Used
LUT 882
FFS 792
Xilinx LogiCORE DSP48 0
Block RAM (16K) 0

Performance of the synthesized HDL code varies depending on your target and synthesis options.
When you use vector input, the resource usage is about VectorSize times the scalar resource usage.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 dsp.HDLComplexToMagnitudeAngle

4-697

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Blocks
Complex to Magnitude-Angle HDL Optimized

Functions
cordicangle (Fixed-Point Designer) | cordiccart2pol (Fixed-Point Designer) | cordicabs
(Fixed-Point Designer) | angle

Introduced in R2014b

4 System Objects

4-698

dsp.HDLFIRRateConverter
Package: dsp

Upsample, filter, and downsample—optimized for HDL code generation

Description
The dsp.HDLFIRRateConverter System object upsamples, filters, and downsamples input signals.
It is optimized for HDL code generation and operates on one sample of each channel at a time. The
object implements an efficient polyphase architecture to avoid unnecessary arithmetic operations and
high intermediate sample rates.

The object upsamples by an integer factor of L, applies an FIR filter, and downsamples by an integer
factor of M. The object accepts and returns control signal arguments for pacing the flow of samples.
For detail of the flow control interface, see “Flow Control” on page 4-712.

To resample and filter input data:

1 Create the dsp.HDLFIRRateConverter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
HDLFIRRC = dsp.HDLFIRRateConverter
HDLFIRRC = dsp.HDLFIRRateConverter(L,M,num)
HDLFIRRC = dsp.HDLFIRRateConverter(___ ,Name,Value)

Description

HDLFIRRC = dsp.HDLFIRRateConverter returns a System object, HDLFIRRC, that resamples
each channel of the input. The object upsamples by an integer factor of L, applies an FIR filter, and
downsamples by an integer factor of M. The default L/M is 3/2.

HDLFIRRC = dsp.HDLFIRRateConverter(L,M,num) sets the InterpolationFactor property
to L, the DecimationFactor property to M, and the Numerator property to num.

 dsp.HDLFIRRateConverter

4-699

HDLFIRRC = dsp.HDLFIRRateConverter(___ ,Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in single quotes. For example:
HDLFIRRC = dsp.HDLFIRRateConverter(L,M,Num,'ReadyPort',true,'RequestPort',true);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InterpolationFactor — Upsampling factor
3 (default) | positive integer scalar

Upsampling factor, L, specified as a positive integer.

DecimationFactor — Downsampling factor
2 (default) | positive integer scalar

Downsampling factor, M, specified as a positive integer scalar.

Numerator — FIR filter coefficients
firpm(70,[0 .28 .32 1],[1 1 0 0]) (default) | vector in descending powers of z-1

FIR filter coefficients, specified as a vector in descending powers of z-1.

You can generate filter coefficients by using the Signal Processing Toolbox filter design functions,
such as fir1. Design a lowpass filter with normalized cutoff frequency no greater than
min(1/L,1/M). The object initializes internal filter states to zero.

ReadyPort — Enable ready argument
false (default) | true

Enable ready output argument of the object. When enabled, the object returns a logical scalar value,
ready, when you call the object. When ready is 1 (true), the object is ready for a new input sample
the next time you call it.

RequestPort — Enable request argument
false (default) | true

Enable request input argument of the object. When request is 1 (true), the object returns a new
output sample on the current call to the object.

RoundingMethod — Rounding mode used for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode used for fixed-point operations. This property does not apply when the input is
single or double type. 'Simplest' mode is not supported.

OverflowAction — Overflow mode used for fixed-point operations
'Wrap' (default) | 'Saturate'

4 System Objects

4-700

Overflow mode used for fixed-point operations. This property does not apply when the input is
single or double type.

CoefficientsDataType — Data type of the FIR filter coefficients
numerictype(1,16,16) (default) | numerictype(s,wl,fl)

Data type of the FIR filter coefficients, specified as a numerictype(s,wl,fl) object with
signedness, word length, and fractional length properties.

OutputDataType — Data type of the output data samples
'Same word length as input' (default) | numerictype(s,wl,fl) | 'Full precision'

Data type of the output data samples, specified as 'Same word length as input', 'Full
precision', or as a numerictype(s,wl,fl) object with signedness, word length, and
fractional length properties.

Usage

Syntax
[dataOut,validOut] = HDLFIRRC(dataIn,validIn)
[dataOut,ready,validOut] = HDLFIRRC(dataIn,validIn)
[dataOut,ready,validOut] = HDLFIRRC(dataIn,validIn,request)

Description

[dataOut,validOut] = HDLFIRRC(dataIn,validIn) resamples dataIn according to the
InterpolationFactor (L) and DecimationFactor (M) properties. To avoid dropped samples when using
this syntax, apply new valid input samples, with validIn set to true, only every ceil(L/M) calls to
the object. The object sets validOut to true when dataOut is a new valid sample.

[dataOut,ready,validOut] = HDLFIRRC(dataIn,validIn) resamples the input data and
returns ready to indicate whether the object can accept a new sample on the next call.

This syntax applies when you set the ReadyPort property to true. For example:

HDLFIRRC = dsp.HDLFIRRateConverter(...,'ReadyPort',true);
...
[dataOut,validOut,ready] = rateConverter(dataIn,validIn);

[dataOut,ready,validOut] = HDLFIRRC(dataIn,validIn,request) resamples the input
data, indicates whether the object can accept a new sample, and, if request is true, returns the
next available sample.

This syntax applies when you set the RequestPort property to true. For example:

HDLFIRRC = dsp.HDLFIRRateConverter(...,'RequestPort',true);
...
[dataOut,validOut] = rateConverter(dataIn,validIn,request);

You can connect the ready output of a downstream object to the request input of an upstream
object.

 dsp.HDLFIRRateConverter

4-701

Input Arguments

dataIn — Data input
scalar or row vector

Data input, specified as a scalar, or as a row vector where each element represents an independent
channel.

The data can be real or complex.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validIn — Validity of input data
logical scalar

Validity of the input data, specified as a logical scalar.

When validIn is 1 (true), the object captures the value on dataIn. You can apply a valid data
sample every ceil(L/M) calls to the object. You can use the optional ready output signal to indicate
when the object can accept a new sample.
Data Types: logical

request — Request for a new output sample
logical scalar

Request for a new output sample, specified as a logical scalar.

When request is 1 (true), and a new output data sample is available, the object returns the sample
with validOut set to 1 (true). If no sample is available, the object returns validOut set to 0 (false).
The object accepts this argument when you set the RequestPort property to true.
Data Types: logical

Output Arguments

dataOut — Resampled and filtered data sample
scalar or row vector

Resampled and filtered data sample, returned as a scalar, or as a vector in which each element
represents an independent channel.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validOut — Validity of output data
logical scalar

Validity of the output data, returned as a logical scalar.

When validOut is 1 (true), the data output is valid. When validOut is 0 (false), the data output is
not valid.
Data Types: logical

4 System Objects

4-702

ready — Ready for a new input sample
logical scalar

Indicator that the object is ready for a new input sample, returned as a logical scalar.

The object returns ready = 1 (true) to indicate that the object can accept a new input data sample on
the next call. The object returns this additional output when you set the ReadyPort property to true.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Downsample Signal

Convert a signal from 48 kHz to 32 kHz by using the dsp.HDLFIRRateConverter System object™.

Define the sample rate and length of the input signal, and a 2 kHz cosine waveform. Set validIn =
true for every sample.

Fs = 48e3;
Ns = 100;
t = (0:Ns-1).'/Fs;
dataIn = cos(2*pi*2e3*t);
validIn = true(Ns,1);

Preallocate dataOut and validOut signals for faster simulation.

dataOut = zeros(Ns,1);
validOut = false(Ns,1);

Create the System object. Configure it to perform rate conversion by a factor of 2/3, using an
equiripple filter.

Numerator = firpm(70,[0 0.25 0.32 1],[1 1 0 0]);
firrc = dsp.HDLFIRRateConverter(2,3,Numerator);

Call the System object to perform the rate conversion and obtain each output sample.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

 dsp.HDLFIRRateConverter

4-703

for k = 1:Ns
 [dataOut(k),validOut(k)] = firrc(dataIn(k),validIn(k));
end

Because the input sample rate is higher than the output sample rate, not every member of dataOut
is valid. Use validOut to extract the valid samples from dataOut.

y = dataOut(validOut);

View the input and output signals with the Logic Analyzer.

la = dsp.LogicAnalyzer('NumInputPorts',4,'SampleTime',1/Fs,'TimeSpan',Ns/Fs);
modifyDisplayChannel(la,1,'Name','dataIn','Format','Analog','Height',8)
modifyDisplayChannel(la,2,'Name','validIn')
modifyDisplayChannel(la,3,'Name','dataOut','Format','Analog','Height',8)
modifyDisplayChannel(la,4,'Name','validOut')
la(dataIn,validIn,dataOut,validOut)

4 System Objects

4-704

Upsample Signal

Convert a signal from 40 MHz to 100 MHz by using the dsp.HDLFIRRateConverter System
object™. To avoid overrunning the object as the signal is upsampled, control the input rate manually.

Define the sample rate and length of the input signal, and a fixed-point cosine waveform.

Fs = 40e6;
Ns = 50;
t = (0:Ns-1).'/Fs;
x = fi(cos(2*pi*1.2e6*t),1,16,14);

Define the rate conversion parameters. Use an interpolation factor of 5 and a decimation factor of 2.
Calculate how often the object can accept a new input sample.

L = 5;
M = 2;
stepsPerInput = ceil(L/M);
numSteps = stepsPerInput*Ns;

Generate dataIn and validIn based on how often the object can accept a new sample.

dataIn = zeros(numSteps,1,'like',x);
dataIn(1:stepsPerInput:end) = x;
validIn = false(numSteps,1);
validIn(1:stepsPerInput:end) = true;

Create the System object. Configure it to perform rate conversion using the specified factors and an
equiripple FIR filter.

Numerator = firpm(70,[0 0.15 0.25 1],[1 1 0 0]);
rateConverter = dsp.HDLFIRRateConverter(L,M,Numerator);

Create a Logic Analyzer to capture and view the input and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',4,'SampleTime',1/Fs,'TimeSpan',numSteps/Fs);
modifyDisplayChannel(la,1,'Name','dataIn','Format','Analog','Height',8)
modifyDisplayChannel(la,2,'Name','validIn')
modifyDisplayChannel(la,3,'Name','dataOut','Format','Analog','Height',8)
modifyDisplayChannel(la,4,'Name','validOut')

Call the System object to perform the rate conversion and obtain each output sample. Call the Logic
Analyzer to add each sample to the waveform display.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

for k = 1:numSteps
 [dataOut,validOut] = rateConverter(dataIn(k),validIn(k));
 la(dataIn(k),validIn(k),dataOut,validOut)
end

 dsp.HDLFIRRateConverter

4-705

Control Input Rate When Upsampling

Convert a signal from 40 MHz to 100 MHz by using the dsp.HDLFIRRateConverter System
object™. Use the optional ready output signal to avoid overrunning the object as the data is
upsampled. The ready signal indicates the object can accept a new data sample on the next call to
the object.

Define the sample rate and length of the input signal, and a fixed-point cosine waveform. Create a
SignalSource object to provide data samples on demand.

Fs = 40e6;
Ns = 50;
t = (0:Ns-1).'/Fs;
x = fi(cos(2*pi*1.2e6*t),1,16,14);
inputSource = dsp.SignalSource(x);

Define the rate conversion parameters. Use an interpolation factor of 5 and a decimation factor of 2.
Determine the number of calls to the object needed to convert Ns samples.

4 System Objects

4-706

L = 5;
M = 2;
numSteps = floor(Ns*L/M);

Create the HDL FIR rate converter System object. Configure it to perform rate conversion using the
specified factors and an equiripple FIR filter. Enable the optional ready output port.

Numerator = firpm(70,[0 0.15 0.25 1],[1 1 0 0]);
rateConverter = dsp.HDLFIRRateConverter(L,M,Numerator,'ReadyPort',true);

Create a Logic Analyzer to capture and view the input and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',5,'SampleTime',1/Fs,'TimeSpan',numSteps/Fs);
modifyDisplayChannel(la,1,'Name','dataIn','Format','Analog','Height',8)
modifyDisplayChannel(la,2,'Name','validIn')
modifyDisplayChannel(la,3,'Name','dataOut','Format','Analog','Height',8)
modifyDisplayChannel(la,4,'Name','validOut')
modifyDisplayChannel(la,5,'Name','ready')

Initialize the ready signal. The object is always ready for input data on the first call.

ready = true;

Call the System object to perform the rate conversion and obtain each output sample. Apply a new
input sample when the object indicates it is ready. Otherwise, set validIn to false.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

for k = 1:numSteps
 if ready
 dataIn = inputSource();
 end
 validIn = ready;
 [dataOut,validOut,ready] = rateConverter(dataIn,validIn);
 la(dataIn,validIn,dataOut,validOut,ready)
end

 dsp.HDLFIRRateConverter

4-707

Control Output Rate When Upsampling

Convert a signal from 40 MHz to 100 MHz by using the dsp.HDLFIRRateConverter System
object™. Use the optional request input signal to control the output data rate. When the object
receives the request signal, it returns a new output data sample. This example models a clock rate
of 200 MHz by requesting an output sample every second call to the object.

Define the sample rate and length of the input signal, and a fixed-point cosine waveform. Create a
SignalSource object to provide data samples on demand.

Fs = 40e6;
Ns = 50;
t = (0:Ns-1).'/Fs;
x = fi(cos(2*pi*1.2e6*t),1,16,14);
inputSource = dsp.SignalSource(x);

Define the rate conversion parameters. Use an interpolation factor of 5 and a decimation factor of 2.
Determine the number of calls to the object needed to convert Ns samples.

4 System Objects

4-708

L = 5;
M = 2;
numSteps = floor(2*Ns*L/M);

Create the HDL FIR rate converter System object. Configure it to perform rate conversion using the
specified factors and an equiripple FIR filter. Enable the optional ready and request ports.

Numerator = firpm(70,[0 0.15 0.25 1],[1 1 0 0]);
rateConverter = dsp.HDLFIRRateConverter(L,M,Numerator,...
 'ReadyPort',true,...
 'RequestPort',true);

Create a Logic Analyzer to capture and view the input and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',6,'SampleTime',1/Fs,'TimeSpan',numSteps/Fs);
modifyDisplayChannel(la,1,'Name','dataIn','Format','Analog','Height',8)
modifyDisplayChannel(la,2,'Name','validIn')
modifyDisplayChannel(la,3,'Name','request')
modifyDisplayChannel(la,4,'Name','dataOut','Format','Analog','Height',8)
modifyDisplayChannel(la,5,'Name','validOut')
modifyDisplayChannel(la,6,'Name','ready')

Generate a signal that requests a new output sample every second call to the object.

request = false(numSteps,1);
request(1:2:end) = true;

Initialize the ready signal. The object is always ready for input data on the first call.

ready = true;

Call the System object to perform the rate conversion and obtain each output sample. Apply a new
input sample when the object indicates it is ready. Otherwise, set validIn to false. The object
returns valid output samples when request is set to true.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

for k = 1:numSteps
 if ready
 dataIn = inputSource();
 end
 validIn = ready;
 [dataOut,validOut,ready] = rateConverter(dataIn,validIn,request(k));
 la(dataIn,validIn,request(k),dataOut,validOut,ready)
end

 dsp.HDLFIRRateConverter

4-709

Design for HDL Code Generation from HDL FIR Rate Converter

Create a rate conversion function targeted for HDL code generation, and a test bench to exercise it.
The function converts a signal from 40 MHz to 100 MHz. To avoid overrunning the object, the test
bench manually controls the input rate.

Define the sample rate and length of the input signal, and a fixed-point cosine waveform.

Fs = 40e6;
Ns = 50;
t = (0:Ns-1).'/Fs;
x = fi(cos(2*pi*1.2e6*t), 1, 16, 14);

Define the rate conversion parameters. Use an interpolation factor of 5 and a decimation factor of 2.
Calculate how often the object can accept a new data sample.

L = 5;
M = 2;

4 System Objects

4-710

stepsPerInput = ceil(L/M);
numSteps = stepsPerInput*Ns;

Generate dataIn and validIn based on how often the object can accept a new sample.

dataIn = zeros(numSteps,1,'like',x);
dataIn(1:stepsPerInput:end) = x;
validIn = false(numSteps,1);
validIn(1:stepsPerInput:end) = true;

Create a Logic Analyzer to capture and view the input and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',4,'SampleTime',1/Fs,'TimeSpan',numSteps/Fs);
modifyDisplayChannel(la,1,'Name','dataIn','Format','Analog','Height',8)
modifyDisplayChannel(la,2,'Name','validIn')
modifyDisplayChannel(la,3,'Name','dataOut','Format','Analog','Height',8)
modifyDisplayChannel(la,4,'Name','validOut')

Write a function that creates and calls the System object.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

function [dataOut,validOut] = HDLFIRRC5_2(dataIn,validIn)
%HDLFIRRC5_2
% Processes one sample of data using the dsp.HDLFIRRateConverter System
% object. dataIn is a fixed-point scalar value. validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent firrc5_2;
 if isempty(firrc5_2)
 Numerator = firpm(70,[0,.15,.25,1],[1,1,0,0]);
 firrc5_2 = dsp.HDLFIRRateConverter(5,2,Numerator);
 end
 [dataOut,validOut] = firrc5_2(dataIn,validIn);
end

Resample the signal by calling the function for each data sample.

for k = 1:numSteps
 [dataOut,validOut] = HDLFIRRC5_2(dataIn(k),validIn(k));
 la(dataIn(k),validIn(k),dataOut,validOut)
end

 dsp.HDLFIRRateConverter

4-711

Algorithms
This object implements the algorithms described on the FIR Rate Conversion HDL Optimized block
reference page.

Flow Control

The object accepts and returns control signal arguments for pacing the flow of samples. By default,
the object uses validIn and validOut control signals. You can also enable a ready output signal
and a request input signal.

4 System Objects

4-712

The ready output indicates that the object can accept a new input data sample on the next call to to
the object. When L ≥ M, you can use the ready argument to achieve continuous output data samples.
If you apply a new input sample after each time object returns ready = true, each call to the object
returns a data output sample with validOut = true.

When you do not enable the ready argument, you can apply a valid data sample only every
ceil(L/M) calls to the object. For example:

• L/M = 4/5 — You can apply a new input sample on every call.
• L/M = 3/2 — You can apply a new input sample on every other call.

When you enable the request input, the object returns the next output sample when request is
true and a valid output sample is available. When you do not use request, the object returns output
samples when they are available. Calls to the object that do not return a new sample return
validOut = false.

You can connect request to the ready output of a downstream object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

 dsp.HDLFIRRateConverter

4-713

See Also
Blocks
FIR Rate Conversion HDL Optimized

Objects
dsp.FIRRateConverter

Introduced in R2015b

4 System Objects

4-714

dsp.HDLFFT
Package: dsp

Fast Fourier transform — optimized for HDL code generation

Description
The HDL FFT System object provides two architectures to optimize either throughput or area. Use
the streaming Radix 2^2 architecture for high-throughput applications. This architecture supports
scalar or vector input data. You can achieve giga-sample-per-second (GSPS) throughput using vector
input. Use the burst Radix 2 architecture for a minimum resource implementation, especially with
large FFT sizes. Your system must be able to tolerate bursty data and higher latency. This
architecture supports only scalar input data. The object accepts real or complex data, provides
hardware-friendly control signals, and has optional output frame control signals.

To calculate the fast Fourier transform:

1 Create the dsp.HDLFFT object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
FFT_N = dsp.HDLFFT
FFT_N = dsp.HDLFFT(Name,Value)

Description

FFT_N = dsp.HDLFFT returns an HDL FFT System object, FFT_N, that performs a fast Fourier
transform.

FFT_N = dsp.HDLFFT(Name,Value) sets properties using one or more name-value pairs. Enclose
each property name in single quotes.
Example: fft128 = dsp.HDLFFT('FFTLength',128)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 dsp.HDLFFT

4-715

Architecture — Hardware implementation
'Streaming Radix 2^2' (default) | 'Burst Radix 2'

Hardware implementation, specified as either:

• 'Streaming Radix 2^2' — Low-latency architecture. Supports giga-sample-per-second (GSPS)
throughput when you use vector input.

• 'Burst Radix 2'— Minimum resource architecture. Vector input is not supported when you
select this architecture. When you use this architecture, your input data must comply with the
ready backpressure signal. For a waveform that shows this protocol, see the third diagram in the
“Timing Diagram” on page 2-709 section.

ComplexMultiplication — HDL implementation of complex multipliers
'Use 4 multipliers and 2 adders' (default) | 'Use 3 multipliers and 5 adders'

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target
device, one option may be faster or smaller.

BitReversedOutput — Order of the output data
true (default) | false

Order of the output data, specified as either:

• true — The output channel elements are bit reversed relative to the input order.
• false — The output channel elements are in linear order.

The FFT algorithm calculates output in the reverse order to the input. When you request output in
the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

BitReversedInput — Expected order of the input data
false (default) | true

Expected order of the input data, specified as either:

• true — The input channel elements are in bit-reversed order.
• false — The input channel elements are in linear order.

The FFT algorithm calculates output in the reverse order to the input. When you request output in
the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

Normalize — Output scaling
false (default) | true

Output scaling, specified as either:

• true — The object implements an overall 1/N scale factor by dividing the output of each butterfly
multiplication by 2. This adjustment keeps the output of the FFT in the same amplitude range as
its input.

• false — The object avoids overflow by increasing the word length by one bit after each butterfly
multiplication. The bit growth is the same for both architectures.

4 System Objects

4-716

FFTLength — Number of data points used for one FFT calculation
1024 (default) | integer power of 2 between 23 and 216

Number of data points used for one FFT calculation, specified as an integer power of 2 between 23

and 216. The object accepts FFT lengths outside this range, but they are not supported for HDL code
generation.

ResetInputPort — Enable reset argument
false (default) | true

Enable reset input argument to the object. When reset is true, the object stops calculation and
clears all internal state.

StartOutputPort — Enable start output argument
false (default) | true

Enable startOut output argument of the object. When enabled, the object returns an additional
output signal that is true on the first cycle of each valid output frame.

EndOutputPort — Enable end output argument
false (default) | true

Enable endOut output argument of the object. When enabled, the object returns an additional output
signal that is true on the first cycle of each valid output frame.

RoundingMethod — Rounding mode used for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode used for fixed-point operations. When the input is any integer or fixed-point data
type, the FFT algorithm uses fixed-point arithmetic for internal calculations. This option does not
apply when the input is single or double type. Rounding applies to twiddle factor multiplication and
scaling operations.

Usage

Syntax
[Y,validOut] = FFT_N(X,validIn)
[Y,validOut,ready] = FFT_N(X,validIn)
[Y,startOut,endOut,validOut] = FFT_N(X,validIn)
[Y,validOut] = FFT_N(X,validIn,resetIn)
[Y,startOut,endOut,validOut] = FFT_N(X,validIn,resetIn)

Description

[Y,validOut] = FFT_N(X,validIn) returns the FFT, Y, of the input, X, when validIn is true.
validIn and validOut are logical scalars that indicate the validity of the input and output signals,
respectively.

[Y,validOut,ready] = FFT_N(X,validIn) returns the fast Fourier transform (FFT) when using
the burst Radix 2 architecture. The ready signal indicates when the object has memory available for
new input samples. You must apply input data and valid signals only when ready is 1 (true). The
object ignores any input data and valid signals when ready is 0 (false).

 dsp.HDLFFT

4-717

To use this syntax, set the Architecture property to 'Burst Radix 2'. For example:

FFT_N = dsp.HDLFFT(___,'Architecture','Burst Radix 2');
...
[y,validOut,ready] = FFT_N(x,validIn)

[Y,startOut,endOut,validOut] = FFT_N(X,validIn) also returns frame control signals
startOut and endOut. startOut is true on the first sample of a frame of output data. endOut is
true for the last sample of a frame of output data.

To use this syntax, set the StartOutputPort and EndOutputPort properties to true. For example:

FFT_N = dsp.HDLFFT(___,'StartOutputPort',true,'EndOutputPort',true);
...
[y,startOut,endOut,validOut] = FFT_N(x,validIn)

[Y,validOut] = FFT_N(X,validIn,resetIn) returns the FFT when validIn is true and
resetIn is false. When resetIn is true, the object stops the current calculation and clears all
internal state.

To use this syntax set the ResetInputPort property to true. For example:

FFT_N = dsp.HDLFFT(___,'ResetInputPort',true);
...
[y,validOut] = FFT_N(x,validIn,resetIn)

[Y,startOut,endOut,validOut] = FFT_N(X,validIn,resetIn) returns the FFT, Y, using all
optional control signals. You can use any combination of the optional port syntaxes.

Input Arguments

X — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values, in fixed-point or integer
format. Vector input is supported with 'Streaming Radix 2^2' architecture only. The vector size
must be a power of 2 between 1 and 64, and not greater than the FFT length.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validIn — Validity of input data
logical scalar

Validity of input data, specified as a logical scalar.
Data Types: logical

resetIn — Reset internal state
logical scalar

Reset internal state, specified as a logical scalar. To enable this argument, set the ResetInputPort
property to true.
Data Types: logical

4 System Objects

4-718

Output Arguments

Y — Output data
scalar or column vector of real or complex values

Output data, returned as a scalar or column vector of real or complex values. The output format
matches the format of the input data.

ready — Memory available for input data
logical scalar

Indication that the object has memory available for new input data, returned as a logical scalar. This
output is returned when you select 'Burst Radix 2' architecture. When you use this architecture,
you must apply input data and valid signals only when ready is 1 (true). The object ignores any
input data and valid signals when ready is 0 (false). For a waveform that shows this protocol, see
the third diagram in the “Timing Diagram” on page 2-709 section.
Data Types: logical

startOut — First sample of output frame
logical scalar

First sample of output frame, returned as a logical scalar. To enable this argument, set the
StartOutputPort property to true.
Data Types: logical

endOut — Last sample of output frame
logical scalar

Last sample of output frame, returned as a logical scalar. To enable this argument, set the
EndOutputPort property to true.
Data Types: logical

validOut — Validity of output data
logical scalar

Validity of output data, returned as a logical scalar.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.HDLFFT
getLatency Latency of FFT or channelizer calculation

Common to All System Objects
step Run System object algorithm

 dsp.HDLFFT

4-719

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Create FFT for HDL Generation

Create the specifications and input signal.

N = 128;
Fs = 40;
t = (0:N-1)'/Fs;
x = sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
y = x + .25*randn(size(x));
y_fixed = sfi(y,32,24);

Write a function that creates and calls the System object™. You can generate HDL from this function.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

function [yOut,validOut] = HDLFFT128(yIn,validIn)
%HDLFFT128
% Processes one sample of FFT data using the dsp.HDLFFT System object(TM)
% yIn is a fixed-point scalar or column vector.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent fft128;
 if isempty(fft128)
 fft128 = dsp.HDLFFT('FFTLength',128);
 end
 [yOut,validOut] = fft128(yIn,validIn);
end

Compute the FFT by calling the function for each data sample.

Yf = zeros(1,3*N);
validOut = false(1,3*N);
for loop = 1:1:3*N
 if (mod(loop, N) == 0)
 i = N;
 else
 i = mod(loop, N);
 end
 [Yf(loop),validOut(loop)] = HDLFFT128(complex(y_fixed(i)),(loop <= N));
end

Discard invalid data samples. Then plot the frequency channel results from the FFT.

Yf = Yf(validOut == 1);
Yr = bitrevorder(Yf);

4 System Objects

4-720

plot(Fs/2*linspace(0,1,N/2), 2*abs(Yr(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)')
xlabel('Frequency (Hz)')
ylabel('Output of FFT (f)')

Create Vector-Input FFT for HDL Generation

Create specifications and input signal. This example uses a 128-point FFT and computes the
transform over 16 samples at a time.

N = 128;
V = 16;
Fs = 40;
t = (0:N-1)'/Fs;
x = sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
y = x + .25*randn(size(x));
y_fixed = sfi(y,32,24);
y_vect = reshape(y_fixed,V,N/V);

Write a function that creates and calls the System object™. The function does not need to know the
vector size. The object saves the size of the input signal the first time you call it.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

 dsp.HDLFFT

4-721

function [yOut,validOut] = HDLFFT128V16(yIn,validIn)
%HDLFFT128V16
% Processes 16-sample vectors of FFT data
% yIn is a fixed-point column vector.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent fft128v16;
 if isempty(fft128v16)
 fft128v16 = dsp.HDLFFT('FFTLength',128);
 end
 [yOut,validOut] = fft128v16(yIn,validIn);
end

Compute the FFT by passing 16-element vectors to the object. Use the getLatency function to find
out when the first output data sample will be ready. Then, add the frame length to determine how
many times to call the object. Because the object variable is inside the function, use a second object
to call getLatency. Use the loop counter to flip validIn to false after N input samples.

tempfft = dsp.HDLFFT;
loopCount = getLatency(tempfft,N,V)+N/V;
Yf = zeros(V,loopCount);
validOut = false(V,loopCount);
for loop = 1:1:loopCount
 if (mod(loop,N/V) == 0)
 i = N/V;
 else
 i = mod(loop,N/V);
 end
 [Yf(:,loop),validOut(loop)] = HDLFFT128V16(complex(y_vect(:,i)),(loop<=N/V));
end

Discard invalid output samples.

C = Yf(:,validOut==1);
Yf_flat = C(:);

Plot the frequency channel data from the FFT. The FFT output is in bit-reversed order. Reorder it
before plotting.

Yr = bitrevorder(Yf_flat);
plot(Fs/2*linspace(0,1,N/2),2*abs(Yr(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)')
xlabel('Frequency (Hz)')
ylabel('Output of FFT (f)')

4 System Objects

4-722

Explore Latency of HDL FFT Object

The latency of the object varies with the FFT length and the vector size. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output, assuming that the input is contiguous.

Create a new dsp.HDLFFT object and request the latency.

hdlfft = dsp.HDLFFT('FFTLength',512);
L512 = getLatency(hdlfft)

L512 = 599

Request hypothetical latency information about a similar object with a different FFT length. The
properties of the original object do not change.

L256 = getLatency(hdlfft,256)

L256 = 329

N = hdlfft.FFTLength

N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.

L256v8 = getLatency(hdlfft,256,8)

 dsp.HDLFFT

4-723

L256v8 = 93

Enable scaling at each stage of the FFT. The latency does not change.

hdlfft.Normalize = true;
L512n = getLatency(hdlfft)

L512n = 599

Request the same output order as the input order. The latency increases because the object must
collect the output before reordering.

hdlfft.BitReversedOutput = false;
L512r = getLatency(hdlfft)

L512r = 1078

Algorithms
Streaming Radix 2^2

The streaming Radix 2^2 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log4(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies
with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDF.

4 System Objects

4-724

The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
–j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.

If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1
bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not
including the memory.

 dsp.HDLFFT

4-725

Burst Radix 2

The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.

When you use this architecture, your input data must comply with the ready backpressure signal. For
a waveform that shows this protocol, see the third diagram in the “Timing Diagram” on page 2-709
section.

Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.

When the optional input reset port is 1, the algorithm stops the current calculation and clears all
internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.

4 System Objects

4-726

Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 2^2 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).

Latency

The latency varies with the FFT length and the vector size. Use the getLatency function to find the
latency of a particular configuration. The latency is the number of cycles between the first valid input
and the first valid output, assuming that the input is contiguous.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample

 dsp.HDLFFT

4-727

is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency – FFTLength.

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

• 1024 FFT length (default)
• Complex multiplication using 4 multipliers, 2 adders
• Output scaling enabled
• Natural order input, Bit-reversed output
• 16-bit complex input data
• Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,
reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 2^2 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597
FFS 5353
Xilinx LogiCORE DSP48 12
Block RAM (16K) 6

When you vectorize the same Radix 2^2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.

Resource Number Used
LUT 7653
FFS 9322
Xilinx LogiCORE DSP48 24

4 System Objects

4-728

Resource Number Used
Block RAM (16K) 8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these
resources.

Resource Number Used
LUT 971
FFS 1254
Xilinx LogiCORE DSP48 3
Block RAM (16K) 6

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsp.HDLChannelizer | dsp.HDLIFFT | dsp.FFT

Blocks
FFT HDL Optimized

Introduced in R2014b

 dsp.HDLFFT

4-729

dsp.HDLIFFT
Package: dsp

Inverse fast Fourier transform — optimized for HDL code generation

Description
The HDL IFFT System object provides two architectures to optimize either throughput or area. Use
the streaming Radix 2^2 architecture for high-throughput applications. This architecture supports
scalar or vector input data. You can achieve giga-sample-per-second (GSPS) throughput using vector
input. Use the burst Radix 2 architecture for a minimum resource implementation, especially with
large FFT sizes. Your system must be able to tolerate bursty data and higher latency. This
architecture supports only scalar input data. The object accepts real or complex data, provides
hardware-friendly control signals, and has optional output frame control signals.

To calculate the inverse fast Fourier transform:

1 Create the dsp.HDLIFFT object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
IFFT_N = dsp.HDLIFFT
IFFT_N = dsp.HDLIFFT(Name,Value)

Description

IFFT_N = dsp.HDLIFFT returns an HDL IFFT System object, IFFT_N, that performs a fast Fourier
transform.

IFFT_N = dsp.HDLIFFT(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in single quotes.
Example: ifft128 = dsp.HDLIFFT('FFTLength',128)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-730

Architecture — Hardware implementation
'Streaming Radix 2^2' (default) | 'Burst Radix 2'

Hardware implementation, specified as either:

• 'Streaming Radix 2^2' — Low-latency architecture. Supports giga-sample-per-second (GSPS)
throughput when you use vector input.

• 'Burst Radix 2'— Minimum resource architecture. Vector input is not supported when you
select this architecture. When you use this architecture, your input data must comply with the
ready backpressure signal. For a waveform that shows this protocol, see the third diagram in the
“Timing Diagram” on page 2-709 section.

ComplexMultiplication — HDL implementation of complex multipliers
'Use 4 multipliers and 2 adders' (default) | 'Use 3 multipliers and 5 adders'

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target
device, one option may be faster or smaller.

BitReversedOutput — Order of the output data
true (default) | false

Order of the output data, specified as either:

• true — The output channel elements are bit reversed relative to the input order.
• false — The output channel elements are in linear order.

The IFFT algorithm calculates output in the reverse order to the input. When you request output in
the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

BitReversedInput — Expected order of the input data
false (default) | true

Expected order of the input data, specified as either:

• true — The input channel elements are in bit-reversed order.
• false — The input channel elements are in linear order.

The IFFT algorithm calculates output in the reverse order to the input. When you request output in
the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

Normalize — Output scaling
true (default) | false

Output scaling, specified as either:

• true — The object implements an overall 1/N scale factor by dividing the output of each butterfly
multiplication by 2. This adjustment keeps the output of the IFFT in the same amplitude range as
its input.

• false — The object avoids overflow by increasing the word length by one bit after each butterfly
multiplication. The bit growth is the same for both architectures.

 dsp.HDLIFFT

4-731

FFTLength — Number of data points used for one FFT calculation
1024 (default) | integer power of 2 between 23 and 216

Number of data points used for one FFT calculation, specified as an integer power of 2 between 23

and 216. The object accepts FFT lengths outside this range, but they are not supported for HDL code
generation.

ResetInputPort — Enable reset argument
false (default) | true

Enable reset input argument to the object. When reset is true, the object stops calculation and
clears all internal state.

StartOutputPort — Enable start output argument
false (default) | true

Enable startOut output argument of the object. When enabled, the object returns an additional
output signal that is true on the first cycle of each valid output frame.

EndOutputPort — Enable end output argument
false (default) | true

Enable endOut output argument of the object. When enabled, the object returns an additional output
signal that is true on the first cycle of each valid output frame.

RoundingMethod — Rounding mode used for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode used for fixed-point operations. When the input is any integer or fixed-point data
type, the IFFT algorithm uses fixed-point arithmetic for internal calculations. This option does not
apply when the input is single or double type. Rounding applies to twiddle factor multiplication and
scaling operations.

Usage

Syntax
[Y,validOut] = IFFT_N(X,validIn)
[Y,validOut,ready] = IFFT_N(X,validIn)
[Y,startOut,endOut,validOut] = IFFT_N(X,validIn)
[Y,validOut] = IFFT_N(X,validIn,resetIn)
[Y,startOut,endOut,validOut] = IFFT_N(X,validIn,resetIn)

Description

[Y,validOut] = IFFT_N(X,validIn) returns the inverse fast Fourier transform (IFFT), Y, of the
input, X, when validIn is true. validIn and validOut are logical scalars that indicate the validity
of the input and output signals, respectively.

[Y,validOut,ready] = IFFT_N(X,validIn) returns the inverse fast Fourier transform (IFFT)
when using the burst Radix 2 architecture. The ready signal indicates when the object has memory
available to accept new input samples. You must apply input data and valid signals only when
ready is 1 (true). The object ignores the input data and valid signals when ready is 0 (false).

4 System Objects

4-732

To use this syntax, set the Architecture property to 'Burst Radix 2'. For example:

IFFT_N = dsp.HDLIFFT(___,'Architecture','Burst Radix 2');
...
[y,validOut,ready] = IFFT_N(x,validIn)

[Y,startOut,endOut,validOut] = IFFT_N(X,validIn) also returns frame control signals
startOut and endOut. startOut is true on the first sample of a frame of output data. endOut is
true for the last sample of a frame of output data.

To use this syntax, set the StartOutputPort and EndOutputPort properties to true. For example:

IFFT_N = dsp.HDLIFFT(___,'StartOutputPort',true,'EndOutputPort',true);
...
[y,startOut,endOut,validOut] = IFFT_N(x,validIn)

[Y,validOut] = IFFT_N(X,validIn,resetIn) returns the IFFT, Y, when validIn is true and
resetIn is false. When resetIn is true, the object stops the current calculation and clears all
internal state.

To use this syntax, set the ResetInputPort property to true. For example:

IFFT_N = dsp.HDLIFFT(___,'ResetInputPort',true);
...
[y,validOut] = IFFT_N(x,validIn,resetIn)

[Y,startOut,endOut,validOut] = IFFT_N(X,validIn,resetIn) returns the IFFT, Y, using
all optional control signals. You can use any combination of the optional port syntaxes.

Input Arguments

X — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values, in fixed-point or integer
format. Vector input is supported with 'Streaming Radix 2^2' architecture only. The vector size
must be a power of 2 between 1 and 64 that is not greater than the FFT length.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validIn — Validity of input data
logical scalar

Validity of input data, specified as a logical scalar.
Data Types: logical

resetIn — Reset internal state
logical scalar

Reset internal state, specified as a logical scalar. To enable this argument, set the ResetInputPort
property to true.
Data Types: logical

 dsp.HDLIFFT

4-733

Output Arguments

Y — Output data
scalar or column vector of real or complex values

Output data, returned as a scalar or column vector of real or complex values. The output format
matches the format of the input data.

ready — Memory available for input data
logical scalar

Indication that the object has memory available for input data, returned as a logical scalar. This
output is returned when you select 'Burst Radix 2' architecture. When you use this architecture,
you must apply input data and valid signals only when ready is 1 (true). The object ignores any
input data and valid signals when ready is 0 (false). For a waveform that shows this protocol, see
the third diagram in the “Timing Diagram” on page 2-709 section.
Data Types: logical

startOut — First sample of output frame
logical scalar

First sample of output frame, returned as a logical scalar. To enable this argument, set the
StartOutputPort property to true.
Data Types: logical

endOut — Last sample of output frame
logical scalar

Last sample of output frame, returned as a logical scalar. To enable this argument, set the
EndOutputPort property to true.
Data Types: logical

validOut — Validity of output data
logical scalar

Validity of output data, returned as a logical scalar.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.HDLIFFT
getLatency Latency of FFT or channelizer calculation

Common to All System Objects
step Run System object algorithm

4 System Objects

4-734

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Create IFFT for HDL Code Generation

Create the specifications and input signal. This example uses a 128-point FFT.

N = 128;
Fs = 40;
t = (0:N-1)'/Fs;
x = sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
y = x + .25*randn(size(x));
y_fixed = sfi(y,32,16);
noOp = zeros(1,'like',y_fixed);

Compute the FFT of the signal to use as the input to the IFFT object.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

hdlfft = dsp.HDLFFT('FFTLength',N,'BitReversedOutput',false);
Yf = zeros(1,4*N);
validOut = false(1,4*N);
for loop = 1:1:N
 [Yf(loop),validOut(loop)] = hdlfft(complex(y_fixed(loop)),true);
end
for loop = N+1:1:4*N
 [Yf(loop),validOut(loop)] = hdlfft(complex(noOp),false);
end
Yf = Yf(validOut == 1);

Plot the single-sided amplitude spectrum.

plot(Fs/2*linspace(0,1,N/2),2*abs(Yf(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)')
xlabel('Frequency (Hz)')
ylabel('Output of FFT (f)')

 dsp.HDLIFFT

4-735

Select frequencies that hold the majority of the energy in the signal. The cumsum function does not
accept fixed-point arguments, so convert the data back to double.

[Ysort,i] = sort(abs(double(transpose(Yf(1:N)))),1,'descend');
Ysort_d = double(Ysort);
CumEnergy = sqrt(cumsum(Ysort_d.^2))/norm(Ysort_d);
j = find(CumEnergy > 0.9, 1);
 disp(['Number of FFT coefficients that represent 90% of the ', ...
 'total energy in the sequence: ', num2str(j)])
Yin = zeros(N,1);
Yin(i(1:j)) = Yf(i(1:j));

Number of FFT coefficients that represent 90% of the total energy in the sequence: 4

Write a function that creates and calls the IFFT System object™. You can generate HDL from this
function.

function [yOut,validOut] = HDLIFFT128(yIn,validIn)
%HDLIFFT128
% Processes one sample of data using the dsp.HDLIFFT System object(TM)
% yIn is a fixed-point scalar or column vector.
% validIn is a logical scalar.
% You can generate HDL code from this function.

 persistent ifft128;
 if isempty(ifft128)
 ifft128 = dsp.HDLIFFT('FFTLength',128);

4 System Objects

4-736

 end
 [yOut,validOut] = ifft128(yIn,validIn);
end

Compute the IFFT by calling the function for each data sample.

Xt = zeros(1,3*N);
validOut = false(1,3*N);
for loop = 1:1:N
 [Xt(loop),validOut(loop)] = HDLIFFT128(complex(Yin(loop)),true);
end
for loop = N+1:1:3*N
 [Xt(loop),validOut(loop)] = HDLIFFT128(complex(0),false);
end

Discard invalid output samples. Then inspect the output and compare it with the input signal. The
original input is in green.

Xt = Xt(validOut==1);
Xt = bitrevorder(Xt);
norm(x-transpose(Xt(1:N)))
figure
stem(real(Xt))
figure
stem(real(x),'--g')

ans =

 0.7863

 dsp.HDLIFFT

4-737

4 System Objects

4-738

Create a Vector-Input IFFT for HDL Code Generation

Create the specifications and input signal. This example uses a 128-point FFT and computes the
transform over 16 samples at a time.

N = 128;
V = 16;
Fs = 40;
t = (0:N-1)'/Fs;
x = sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
y = x + .25*randn(size(x));
y_fixed = sfi(y,32,24);
y_vect = reshape(y_fixed,V,N/V);

Compute the FFT of the signal, to use as the input to the IFFT object.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

hdlfft = dsp.HDLFFT('FFTLength',N);
loopCount = getLatency(hdlfft,N,V)+N/V;
Yf = zeros(V,loopCount);
validOut = false(V,loopCount);
for loop = 1:1:loopCount

 dsp.HDLIFFT

4-739

 if (mod(loop,N/V) == 0)
 i = N/V;
 else
 i = mod(loop,N/V);
 end
 [Yf(:,loop),validOut(loop)] = hdlfft(complex(y_vect(:,i)),(loop<=N/V));
end

Plot the single-sided amplitude spectrum.

C = Yf(:,validOut==1);
Yf_flat = C(:);
Yr = bitrevorder(Yf_flat);
plot(Fs/2*linspace(0,1,N/2),2*abs(Yr(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)')
xlabel('Frequency (Hz)')
ylabel('Output of FFT(f)')

Select frequencies that hold the majority of the energy in the signal. The cumsum function doesn't
accept fixed-point arguments, so convert the data back to double.

[Ysort,i] = sort(abs(double(Yr(1:N))),1,'descend');
CumEnergy = sqrt(cumsum(Ysort.^2))/norm(Ysort);
j = find(CumEnergy > 0.9, 1);
 disp(['Number of FFT coefficients that represent 90% of the ', ...
 'total energy in the sequence: ', num2str(j)])
Yin = zeros(N,1);

4 System Objects

4-740

Yin(i(1:j)) = Yr(i(1:j));
YinVect = reshape(Yin,V,N/V);

Number of FFT coefficients that represent 90% of the total energy in the sequence: 4

Write a function that creates and calls the IFFT System object™. You can generate HDL from this
function.

function [yOut,validOut] = HDLIFFT128V16(yIn,validIn)
%HDLFFT128V16
% Processes 16-sample vectors of FFT data
% yIn is a fixed-point column vector.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent ifft128v16;
 if isempty(ifft128v16)
 ifft128v16 = dsp.HDLIFFT('FFTLength',128)
 end
 [yOut,validOut] = ifft128v16(yIn,validIn);
end

Compute the IFFT by calling the function for each data sample.

Xt = zeros(V,loopCount);
validOut = false(V,loopCount);
for loop = 1:1:loopCount
 if (mod(loop,N/V) == 0)
 i = N/V;
 else
 i = mod(loop,N/V);
 end
 [Xt(:,loop),validOut(loop)] = HDLIFFT128V16(complex(YinVect(:,i)),(loop<=N/V));
end

ifft128v16 =

 dsp.HDLIFFT with properties:

 FFTLength: 128
 Architecture: 'Streaming Radix 2^2'
 ComplexMultiplication: 'Use 4 multipliers and 2 adders'
 BitReversedOutput: true
 BitReversedInput: false
 Normalize: true

 Use get to show all properties

Discard invalid output samples. Then inspect the output and compare it with the input signal. The
original input is in green.

C = Xt(:,validOut==1);
Xt = C(:);
Xt = bitrevorder(Xt);

 dsp.HDLIFFT

4-741

norm(x-Xt(1:N))
figure
stem(real(Xt))
figure
stem(real(x),'--g')

ans =

 0.7863

4 System Objects

4-742

Explore Latency of HDL IFFT Object

The latency of the object varies with the FFT length and the vector size. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output, assuming that the input is contiguous.

Create a new dsp.HDLIFFT object and request the latency.

hdlifft = dsp.HDLIFFT('FFTLength',512);
L512 = getLatency(hdlifft)

L512 = 599

Request hypothetical latency information about a similar object with a different FFT length. The
properties of the original object do not change. When you do not specify a vector length, the function
assumes scalar input data.

L256 = getLatency(hdlifft,256)

L256 = 329

N = hdlifft.FFTLength

N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.

 dsp.HDLIFFT

4-743

L256v8 = getLatency(hdlifft,256,8)

L256v8 = 93

Enable scaling at each stage of the IFFT. The latency does not change.

hdlifft.Normalize = true;
L512n = getLatency(hdlifft)

L512n = 599

Request the same output order as the input order. This setting increases the latency because the
object must collect the output before reordering.

hdlifft.BitReversedOutput = false;
L512r = getLatency(hdlifft)

L512r = 1078

Algorithms
Streaming Radix 2^2

The streaming Radix 2^2 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log4(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies
with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDF.

4 System Objects

4-744

The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
–j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.

If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1
bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not
including the memory.

 dsp.HDLIFFT

4-745

Burst Radix 2

The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.

When you use this architecture, your input data must comply with the ready backpressure signal. For
a waveform that shows this protocol, see the third diagram in the “Timing Diagram” on page 2-709
section.

Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.

When the optional input reset port is 1, the algorithm stops the current calculation and clears all
internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.

4 System Objects

4-746

Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 2^2 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).

Latency

The latency varies with the FFT length and the vector size. Use the getLatency function to find the
latency of a particular configuration. The latency is the number of cycles between the first valid input
and the first valid output, assuming that the input is contiguous.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample

 dsp.HDLIFFT

4-747

is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency – FFTLength.

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

• 1024 FFT length (default)
• Complex multiplication using 4 multipliers, 2 adders
• Output scaling enabled
• Natural order input, Bit-reversed output
• 16-bit complex input data
• Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,
reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 2^2 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597
FFS 5353
Xilinx LogiCORE DSP48 12
Block RAM (16K) 6

When you vectorize the same Radix 2^2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.

Resource Number Used
LUT 7653
FFS 9322
Xilinx LogiCORE DSP48 24

4 System Objects

4-748

Resource Number Used
Block RAM (16K) 8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these
resources.

Resource Number Used
LUT 971
FFS 1254
Xilinx LogiCORE DSP48 3
Block RAM (16K) 6

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsp.HDLFFT | dsp.IFFT

Blocks
IFFT HDL Optimized

Introduced in R2014b

 dsp.HDLIFFT

4-749

dsp.HDLNCO
Package: dsp

Generate real or complex sinusoidal signals—optimized for HDL code generation

Description
The HDL NCO System object generates real or complex sinusoidal signals, while providing hardware-
friendly control signals. A numerically-controlled oscillator (NCO) accumulates a phase increment
and uses the quantized output of the accumulator as the index to a lookup table that contains the sine
wave values. The wrap around of the fixed-point accumulator and quantizer data types provide
periodicity of the sine wave, and quantization reduces the necessary size of the table for a given
frequency resolution.

For an example of how to generate a sine wave using this System object, see “Design a HDL-
Compatible NCO Source” on page 4-758. For more information on configuration and
implementation, refer to the “Algorithms” on page 2-1033 section.

The HDL NCO System object provides these features.

• Optional frame-based output.
• A lookup table compression option to reduce the lookup table size. This compression results in

less than one LSB loss in precision. See “Lookup Table Compression” on page 4-761 for more
information.

• An optional input argument for external dither.
• An optional reset argument that resets the phase accumulator to its initial value.
• An optional output argument for the current NCO phase.

To generate real or complex sinusoidal signals:

1 Create the dsp.HDLNCO object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

4 System Objects

4-750

Creation

Syntax
hdlnco = dsp.HDLNCO
hdlnco = dsp.HDLNCO(Name,Value)
hdlnco = dsp.HDLNCO(Inc,'PhaseIncrementSource','Property')

Description

hdlnco = dsp.HDLNCO creates a numerically controlled oscillator (NCO) System object, hdlnco,
that generates a real or complex sinusoidal signal. The amplitude of the generated signal is always 1.

hdlnco = dsp.HDLNCO(Name,Value) sets properties using one or more name-value pairs. Enclose
each property name in single quotes. For example,

hdlnco = dsp.HDLNCO('NumQuantizerAccumulatorBits',12, ...
 'AccumulatorWL',16);

hdlnco = dsp.HDLNCO(Inc,'PhaseIncrementSource','Property') creates an NCO with the
PhaseIncrement property set to Inc, an integer scalar. To use the PhaseIncrement property, set the
PhaseIncrementSource property to 'Property'. You can add other Name,Value pairs before or
after PhaseIncrementSource.

Properties

Note This object supports floating-point types for simulation but not for HDL code generation. When
all input values are fixed-point type or all input arguments are disabled, the object determines the
output type using the OutputDataType property. When any input value is floating-point type, the
object ignores the OutputDataType property. In this case, the object returns the waveform and
optional Phase as floating-point values.

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Waveform Generation

PhaseIncrementSource — Source of phase increment
'Input port' (default) | 'Property'

You can set the phase increment with an input argument or by specifying a value for the property.
Specify 'Property' to configure the phase increment using the PhaseIncrement property. Specify
'Input port' to set the phase increment using the inc argument.

PhaseIncrement — Phase increment for generated waveform
100 (default) | integer

 dsp.HDLNCO

4-751

Phase increment for generated waveform, specified as an integer. The object casts this value to match
the accumulator word length.

Dependencies

To enable this property, set the PhaseIncrementSource property to 'Property'.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixdt([],N,0)

PhaseOffsetSource — Source of phase offset
'Input port' (default) | 'Property'

You can set the phase offset with an input argument or by specifying a value for the property. Specify
'Property' to configure the phase increment using the PhaseOffset property. Specify 'Input
port' to set the phase increment using the offset argument.

PhaseOffset — Phase offset for generated waveform
0 (default) | integer

Phase offset for the generated waveform, specified as an integer.

Dependencies

To enable this property, set the PhaseOffsetSource property to 'Property'.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixdt([],N,0)

DitherSource — Source of number of dither bits
'Input port' (default) | 'Property' | 'None'

You can set the number of dither bits from an input argument or from a property, or you can disable
dither. Specify 'Property' to configure the number of dither bits using the NumDitherBits
property. Specify 'Input port' to set the number of dither bits using the dither argument.
Specify 'None' to disable dither.

NumDitherBits — Bits used to express dither
4 (default) | positive integer

Number of dither bits, specified as a positive integer.

Dependencies

To enable this property, set the DitherSource property to 'Property'.

SamplesPerFrame — Vector size for frame-based output
1 (default) | positive integer

Vector size for frame-based output, specified as a positive integer. When you set this value to 1, the
object has scalar input and output. When this value is greater than 1, the Dither input argument
must be a column vector of length SamplesPerFrame and the Y and Phase output arguments return
column vectors of length SamplesPerFrame.

LUTCompress — Lookup table compression
false or 0 (default) | true or 1

Lookup table compression, specified as a logical 0 (false) or 1 (true). By default, the object
implements a noncompressed lookup table, and the output matches the output of the dsp.NCO

4 System Objects

4-752

System object. When you enable this option, the object implements a compressed lookup table. The
Sunderland compression method reduces the size of the lookup table, losing less than one LSB of
precision. The spurious free dynamic range (SFDR) is empirically 1-3 dB lower than the
noncompressed case. The hardware savings of the compressed lookup table allow room to improve
performance by increasing the word length of the accumulator and the number of quantize bits. For
details of the compression method, see “Algorithms” on page 4-760.

Waveform — Type of output waveform
'Sine' (default) | 'Cosine' | 'Complex exponential' | 'Sine and cosine'

Type of output waveform. If you select 'Sine' or 'Cosine', the object returns a sin or cos value.
If you select 'Complex exponential', the output value, exp, is of the form cosine + j*sine. If
you select 'Sine and cosine', the object returns two values, sin and cos.

PhasePort — Return current phase
false or 0 (default) | true or 1

Set this property to 1 (true) to return the current NCO phase in the phase output argument. The
phase is the output of the quantized accumulator with offset and increment applied. If quantization is
disabled, this argument returns the output of the accumulator with offset and increment applied.

ResetAction — Enable reset accumulator input argument
false or 0 (default) | true or 1

When this property is 1 (true), the object accepts a ResetAccum input argument. When the
ResetAccum argument is 1 (true), the object resets the accumulator to its initial value.

Data Types

OverflowAction — Overflow mode for fixed-point operations
'Wrap' (default)

This property is read-only.

Overflow mode for fixed-point operations.

RoundingMethod — Rounding mode for fixed-point operations
'Floor' (default)

This property is read-only.

Rounding mode for fixed-point operations.

AccumulatorDataType — Accumulator data type
'Binary point scaling' (default)

This property is read-only.

Accumulator data type description. The object defines the fixed-point data type using the
AccumulatorSigned, AccumulatorWL, and AccumulatorFL properties.

AccumulatorSigned — Signed or unsigned accumulator data format
'Signed' (default)

This property is read-only.

 dsp.HDLNCO

4-753

Signed or unsigned accumulator data format. All output is signed format.

AccumulatorWL — Accumulator word length
16 (default) | integer

Accumulator word length, in bits, specified as an integer. This value must include the sign bit.

When the PhaseQuantization property is 0, then AccumulatorWL determines the LUT size. For
HDL code generation, the LUT size must be between 2 and 217 entries. When you set the
LUTCompress property to 1 (true), AccumulatorWL must be an integer in the range [5,21]. When
you set the LUTCompress property to 0 (false), AccumulatorWL must be an integer in the range
[3,19]. For more information on how this parameter affects the LUT size, see the “Lookup Table
Compression” on page 4-761 section.

When you set the PhaseQuantization property to 1, there is no limit to the accumulator word
length property value.

AccumulatorFL — Accumulator fraction length
0 (default)

This property is read-only.

Accumulator fraction length, in bits. The accumulator operates on integers. If the phase increment is
fixed-point type with a fractional part, the object returns an error.

PhaseQuantization — Quantize accumulated phase
false or 0 (default) | true or 1

Whether to quantize accumulated phase, specified as 1 (true) or 0 (false). When this property is
enabled, the object quantizes the result of the phase accumulator to a fixed bit-width. The object uses
this quantized value to select a waveform value from the lookup table. Quantizing the output of the
phase accumulator enables you to reduce the lookup table size without lowering the frequency
resolution. Select the size of the lookup table by using the NumQuantizerAccumulatorBits
property.

When you disable this property, the object uses the full accumulator value as the address of the
lookup table.

NumQuantizerAccumulatorBits — Number of quantizer accumulator bits
12 (default) | integer

Number of quantizer accumulator bits, specified as an integer greater than 4 and less than the
AccumulatorWL property value. For HDL code generation, this parameter value must result in a LUT
size between 2 and 217 entries.

When you set the LUTCompress property to 1 (true), AccumulatorWL must be an integer in the
range [5,21]. When you set the LUTCompress property to 0 (false), AccumulatorWL must be an
integer in the range [3,19]. For more information on how this parameter affects the LUT size, see the
“Lookup Table Compression” on page 4-761 section.

When you set the QuantizePhase property to true, there is no limit to the
NumQuantizerAccumulatorBits property value.
Dependencies

To enable this property, set the PhaseQuantization property to 1 (true).

4 System Objects

4-754

OutputDataType — Output data type
'Binary point scaling' (default) | 'double' | 'single'

Output data type. If you specify 'Binary point scaling', the object defines the fixed-point data
type using the OutputSigned, OutputWL, and OutputFL properties.

This parameter is ignored if any input is of floating-point type. In that case, the output data type is
double.

OutputSigned — Signed or unsigned output data format
'Signed' (default)

This property is read-only.

Signed or unsigned output data format. All output is signed format.

OutputWL — Output word length
16 (default) | integer

Output word length, in bits, specified as an integer. This value must include the sign bit.

OutputFL — Output fraction length
14 (default) | scalar integer

Output fraction length, in bits, specified as a scalar integer.

Usage

Syntax
[Y,ValidOut] = hdlnco(Inc,ValidIn)
[Y,ValidOut] = hdlnco (ValidIn)
[Y,ValidOut] = hdlnco(Inc,Offset,Dither,ValidIn)
[Y,Phase,ValidOut] = hdlnco(___)
[___] = hdlnco(___ ,ResetAccum,ValidIn)

Description

The object returns the waveform value, Y, as a sine value, a cosine value, a complex exponential
value, or a [Sine,Cosine] pair of values, depending on the Waveform property.

[Y,ValidOut] = hdlnco(Inc,ValidIn) returns a sinusoidal signal, Y, generated by the
HDLNCO System object, using the phase increment, Inc. When ValidIn is true, Inc is added to
the accumulator. The Inc argument is optional. Alternatively, you can specify the phase increment as
a property.

[Y,ValidOut] = hdlnco (ValidIn) returns a waveform, Y, using waveform parameters from
properties rather than input arguments.

To use this syntax, set the PhaseIncrementSource, PhaseOffsetSource, and DitherSource properties
to 'Property'. These properties are independent of each other. For example:

hdlnco = dsp.HDLNCO('PhaseIncrementSource','Property', ...
 'PhaseIncrement',phIncr,...

 dsp.HDLNCO

4-755

 'PhaseOffset',phOffset,...
 'NumDitherBits',4)

[Y,ValidOut] = hdlnco(Inc,Offset,Dither,ValidIn) returns a waveform, Y, with phase
increment, Inc, phase offset, Offset, and dither, Dither.

This syntax applies when you set the PhaseIncrementSource, PhaseOffsetSource, and DitherSource
properties to 'Input port'. These properties are independent of each other. You can mix and
match the activation of these arguments. PhaseIncrementSource is 'Input port' by default. For
example:

hdlnco = dsp.HDLNCO('PhaseOffsetSource','Input port',...
 'DitherSource','Input port')
for k = 1:1/Ts
 y(k) = hdlnco(phIncr,phOffset,ditherBits,true);
end

[Y,Phase,ValidOut] = hdlnco(___) returns a waveform, Y, and current phase, Phase. The
phase is the output of the quantized accumulator.

To use this syntax, set the PhasePort property to true. This syntax can include any of the arguments
from other syntaxes.

[___] = hdlnco(___ ,ResetAccum,ValidIn) resets the accumulator value, but does not reset
the output samples in the pipeline. If ValidIn is true, then the object continues to generate the
output waveform starting from the reset accumulator value.

To use this syntax, set the ResetAction property to 1 (true). This syntax can include any of the
arguments from other syntaxes.

Input Arguments

Inc — Phase increment (optional)
scalar integer

Phase increment, specified as a scalar integer. The object casts this value to match the accumulator
word length.

double and single data types are supported for simulation, but not for HDL code generation.

Dependencies

To enable this argument, set the PhaseIncrementSource property to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

ValidIn — Control signal that enables NCO operation
logical scalar

Control signal that enables NCO operation, specified as a logical scalar. When ValidIn is true,
the object increments the phase and captures any input values. When ValidIn is false, the object
holds the phase accumulator and ignores any input values.

When the SamplesPerFrame property value is greater than 1, this signal enables processing of
SamplesPerFrame samples.

4 System Objects

4-756

Data Types: logical

Offset — Phase offset
scalar integer

Phase offset, specified as a scalar integer.

double and single data types are supported for simulation but not for HDL code generation.

Dependencies

To enable this argument, set the PhaseOffsetSource property to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

Dither — Dither
scalar integer | column vector of integers

Dither, specified as an integer or as a column vector of integers. The length of the vector must equal
the SamplesPerFrame property value.

double and single data types are supported for simulation, but not for HDL code generation.

Dependencies

To enable this argument, set the DitherSource property to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

ResetAccum — Control signal that resets the accumulator (optional)
logical scalar

Control signal that resets the accumulator, specified as a logical scalar . When this signal is true,
the object resets the accumulator to its initial value. This signal does not reset the output samples in
the pipeline.

Dependencies

To enable this argument, set the ResetAction property to 1 (true).
Data Types: logical

Output Arguments

Y — Generated waveform
scalar | [Sine,Cosine] pair | vector

Generated waveform, returned as a scalar or a vector of length SamplesPerFrame. This argument
can be a sin or cos value, an exp value representing cosine + j*sine, or a pair of arguments in
the form [Sine,Cosine].

If any input is of floating-point type, the object returns floating-point values for the waveform and
Phase arguments, otherwise the object returns values using the type defined by the
OutputDataType property.

double and single data types are supported for simulation, but not for HDL code generation.

 dsp.HDLNCO

4-757

Dependencies

By default, the output waveform is a sine wave. The format of the output waveform depends on the
Waveform property.

ValidOut — Control signal that indicates validity of output data
logical scalar

Control signal that indicates validity of output data, specified as a logical scalar. When validOut
is true, the values of Y and Phase are valid. When validOut is false, the values of Y and Phase
are not valid.

When the SamplesPerFrame property value is greater than 1, this signal indicates the validity of all
elements in the output vectors.
Data Types: logical

Phase — Current phase of NCO
scalar | column vector

Current phase of the NCO, returned as a scalar or as a vector of length SamplesPerFrame. The
phase is the output of the quantized accumulator with offset and increment applied. If quantization is
disabled, this port returns the output of the accumulator with offset and increment applied.

The values are of type fixdt(1,N,0), where N is the NumQuantizerAccumulatorBits property
value. If quantization is disabled, then N is the AccumulatorWL property value.

If any input argument is floating-point type, the object returns the Phase argument as a floating point
value. Floating-point types are supported for simulation but not for HDL code generation.
Dependencies

To enable this argument, set the PhasePort property to 1 (true).
Data Types: single | double | fixdt(1,N,0)

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Design a HDL-Compatible NCO Source

This example shows how to design an HDL-compatible NCO source.

4 System Objects

4-758

Write a function that creates and calls the System object™, based on the waveform requirements. You
can generate HDL from this function.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

function yOut = HDLNCO510(validIn)
%HDLNCO510
% Generates one sample of NCO waveform using the dsp.HDLNCO System object(TM)
% validIn is a logical scalar value
% phase increment, phase offset, and dither are fixed.
% You can generate HDL code from this function.

 persistent nco510;

 if isempty(nco510)
 % Since calculation of the object parameters results in constant values, this
 % code is not included in the generated HDL. The generated HDL code for
 % the NCO object is initialized with the constant property values.

 F0 = 510; % Target output frequency in Hz
 dphi = pi/2; % Target phase offset
 df = 0.05; % Frequency resolution in Hz
 minSFDR = 96; % Spurious free dynamic range(SFDR) in dB
 Ts = 1/4000; % Sample period in seconds

 % Calculate the number of accumulator bits required for the frequency
 % resolution and the number of quantized accumulator bits to satisfy the SFDR
 % requirement.
 Nacc = ceil(log2(1/(df*Ts)));
 % Actual frequency resolution achieved = 1/(Ts*2^Nacc)
 Nqacc = ceil((minSFDR-12)/6);
 % Calculate the phase increment and offset to achieve the target frequency
 % and offset.
 phIncr = round(F0*Ts*2^Nacc);
 phOffset = 2^Nacc*dphi/(2*pi);
 nco510 = dsp.HDLNCO('PhaseIncrementSource','Property', ...
 'PhaseIncrement',phIncr,...
 'PhaseOffset',phOffset,...
 'NumDitherBits',4, ...
 'NumQuantizerAccumulatorBits',Nqacc,...
 'AccumulatorWL',Nacc);
 end

 yOut = nco510(validIn);

end

Call the object to generate data points in a sine wave. The input to the object is a valid control signal.

Ts = 1/4000;
y = zeros(1,1/Ts);
for k = 1:1/Ts
 y(k) = HDLNCO510(true);
end

 dsp.HDLNCO

4-759

Plot the mean-square spectrum of the 510 Hz sine wave generated by the NCO.

sa = dsp.SpectrumAnalyzer('SampleRate',1/Ts);
sa.SpectrumType = 'Power density';
sa.PlotAsTwoSidedSpectrum = false;
sa(y')

Algorithms
The frequency resolution of the sine wave depends on the size of the accumulator. Given a sample
time, Ts, and the desired output frequency resolution Δf, calculate the necessary accumulator word
length, N.

N = ceil log2
1

Ts ⋅ Δf

For a desired output frequency Fo, calculate the phase increment.

phaseincrement = round(F0Ts2N)

Quantizing the output of the phase accumulator enables you to reduce the lookup table size without
lowering the frequency resolution. Calculate the quantized word length to achieve a desired spurious
free dynamic range (SFDR).

4 System Objects

4-760

Q = ceil SFDR− 12
6

Phase offset and dither are optionally added at the accumulator stage. For a desired phase offset (in
radians) of the output waveform, calculate the phase offset value that the object adds in the
accumulator.

phaseof f set = 2N ⋅ desiredphaseof f set
2π

The NCO implementation depends on whether you enable the LUTCompress property.

Without lookup table compression, the object uses the same quarter-sine lookup table as the NCO
block. The size of the LUT is 2Q-2×W bits, where Q is NumQuantizerAccumulatorBits and W is
OutputWL.

The object casts the phase increment value to match the accumulator word length.

If you do not enable PhaseQuantization, then Q=N, where N is AccumulatorWL. Consider the
impact on simulator memory and hardware resources when you select these parameters.

For an example of how to generate a sine wave using this System object, see “Design a HDL-
Compatible NCO Source” on page 4-758.

Lookup Table Compression

When you select lookup table (LUT) compression, the object applies the Sunderland compression
method. Sunderland techniques use trigonometric identities to divide each phase of the quarter sine
wave into three components and express it as:

sin(A + B + C) = sin(A + B)cos(C) + cos(A)cos(B)sin(C)− sin(A)sin(B)sin(C)

If the quarter-sine phase has Q-2 bits, then the phase components A and B have a word length of
LA=LB=ceil((Q-2)/3). Phase component C contains the remaining phase bits. If the phase has 12
bits, then the quarter sine phase has 10 bits, and the components are defined as:

• A, the four most significant bits

(0 ≤ A ≤ π
2)

 dsp.HDLNCO

4-761

• B, the next four bits

(0 ≤ B ≤ π
2 × 2−4)

• C, the remaining two least significant bits

(0 ≤ C ≤ π
2 × 2−8)

Given the relative sizes of A, B, and C, the equation can be approximated by:

sin(A + B + C) ≈ sin(A + B) + cosAsinC

The object implements this equation with one LUT for sin(A + B) and one LUT for cos(A)sin(C). The
second term is a fine correction factor that you can truncate to fewer bits without losing precision.
Therefore, the second LUT returns a four-bit result.

With the default accumulator size of 16 bits, and the default quantized phase width of 12 bits, the
LUTs use 28×16 plus 26×4 bits (4.5 kb). For comparison, a quarter-sine lookup table without
compression uses 210×16 bits (16 kb). The compression approximation is accurate within one LSB,
resulting in an SNR of at least 60 dB on the output. See [1].

Compatibility Considerations
HDL-optimized NCO requires valid input argument
Behavior changed in R2020a

In previous releases, the input validIn argument of the dsp.HDLNCO System object was optional. It
is now required. If you are using no other input ports, the object uses the validIn argument as an
enable signal.

HDL-optimized NCO with floating-point inputs applies phase quantization
Behavior changed in R2020a

The output waveform returned from floating-point input values has changed. The output waveform
now matches that returned from the same input values specified in fixed-point types.

Prior to R2020a, when using floating-point input types, the dsp.HDLNCO System object did not
quantize the phase internally. The object expected floating-point phase increment and phase offset

4 System Objects

4-762

inputs specified in radians. Now, the object quantizes the phase internally, and you must specify the
input phase increment and offset in terms of the quantized size, for both floating-point and fixed-point
input types.

For example, prior to R2020a, for a floating-point HDL NCO to generate output samples with a
desired output frequency of F0 and sample frequency of Fs, you had to specify the phase increment as
2π(F0/Fs) and phase offset as π/2.

Starting in R2020a, you must specify the phase increment and phase offset in terms of the quantized
size, N. These input values are the same as the input values you use with fixed-point types. Specify
the phase increment as (F0*2N)/Fs, and the phase offset as (π/2)*2N/2π, or 2N/4.

References
[1] Cordesses, L., "Direct Digital Synthesis: A Tool for Periodic Wave Generation (Part 1)." IEEE

Signal Processing Magazine. Volume 21, Issue 4, July 2004, pp. 50–54.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsp.NCO

Blocks
NCO HDL Optimized

Introduced in R2013a

 dsp.HDLNCO

4-763

dsp.HighpassFilter
Package: dsp

FIR or IIR highpass filter

Description
The dsp.HighpassFilter System object independently filters each channel of the input over time
using the given design specifications. You can set the FilterType property of
dsp.HighpassFilter to 'FIR' or 'IIR' to implement the object as an FIR or IIR highpass filter.

To filter each channel of your input:

1 Create the dsp.HighpassFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
HPF = dsp.HighpassFilter
HPF = dsp.HighpassFilter(Name,Value)

Description

HPF = dsp.HighpassFilter returns a minimum order FIR highpass filter, HPF, with the default
filter settings. Calling the object with the default property settings filters the input data with a
stopband frequency of 8 kHz, a passband frequency of 12 kHz, a stopband attenuation of 80 dB, and
a passband ripple of 0.1 dB.

HPF = dsp.HighpassFilter(Name,Value) returns a highpass filter, with additional properties
specified by one or more Name,Value pair arguments. Name is the property name and Value is the
corresponding value. Name must appear inside single quotes (' '). You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input sample rate
44100 (default) | positive real scalar

4 System Objects

4-764

Input sample rate in Hz, specified as the comma-separated pair consisting of 'SampleRate' and a
positive real scalar.
Data Types: single | double

FilterType — Filter type
'FIR' (default) | 'IIR'

Filter type, specified as one of the following options:

• 'FIR' — The object designs an FIR highpass filter.
• 'IIR' — The object designs an IIR highpass (biquad) filter.

DesignForMinimumOrder — Minimum order filter design
true (default) | false

Minimum order filter design, specified as the comma-separated pair consisting of
'DesignForMinimumOrder' and a logical value. If this property is true, then
dsp.HighpassFilter designs filters with the minimum order that meets the passband frequency,
stopband frequency, passband ripple, and stopband attenuation specifications. Set these
specifications using the corresponding properties. If this property is false, then the object designs
filters with the order that you specify in the FilterOrder property. This filter design meets the
passband frequency, passband ripple, and stopband attenuation specifications that you set using the
respective properties.

FilterOrder — Order of the FIR or IIR filter
50 (default) | positive integer scalar

Order of the FIR or IIR filter, specified as the comma-separated pair consisting of 'FilterOrder'
and a positive integer scalar.

Dependencies

Specifying a filter order is only valid when the value of 'DesignForMinimumOrder' is false.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandFrequency — Filter stopband edge frequency
8000 (default) | real positive scalar

Filter stopband edge frequency in Hz, specified as the comma-separated pair consisting of
'StopbandFrequency' and a real positive scalar. The value of the stopband edge frequency in Hz
must be less than the passband frequency.

Dependencies

You can specify the stopband edge frequency only when 'DesignForMinimumOrder' is true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PassbandFrequency — Filter passband edge frequency
12000 (default) | real positive scalar

Filter passband edge frequency in Hz, specified as the comma-separated pair consisting of
'PassbandFrequency' and a real positive scalar. The value of the passband edge frequency in Hz
must be less than half the SampleRate and greater than StopbandFrequency.

 dsp.HighpassFilter

4-765

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandAttenuation — Minimum attenuation in the stopband
80 (default) | real positive scalar

Minimum attenuation in the stopband in dB, specified as the comma-separated pair consisting of
'StopbandAttenuation' and a real positive scalar. Minimum attenuation in the stopband defaults
to 80 dB.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PassbandRipple — Maximum ripple of filter response in the passband
0.1 (default) | real positive scalar

Maximum ripple of filter response in the passband, in dB, specified as the comma-separated pair
consisting of 'PassbandRipple' and a real positive scalar. Maximum ripple of filter response
defaults to 0.1 dB.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

RoundingMethod — Rounding method for output fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Rounding method for output fixed-point operations, specified as a character vector. For more
information on the rounding modes, see “Precision and Range”.

CoefficientsDataType — Word and fraction lengths of coefficients
numerictype([],16) (default) | numerictype object

Word and fraction lengths of coefficients, specified as a numerictype object. The default,
numerictype(1,16) corresponds to a signed numeric type object with 16-bit coefficients and a
fraction length determined based on the coefficient values, to give the best possible precision.

This property is not tunable.

Word length of the output is same as the word length of the input. Fraction length of the output is
computed such that the entire dynamic range of the output can be represented without overflow. For
details on how the fraction length of the output is computed, see “Fixed-Point Precision Rules for
Avoiding Overflow in FIR Filters”.

Usage

Syntax
y = HPF(x)

Description

y = HPF(x) highpass filters the input signal, x. y is a highpass-filtered version of x.

4 System Objects

4-766

Input Arguments

x — Noisy data input
vector | matrix

Noisy data input, specified as a vector or a matrix. If the input signal is a matrix, each column of the
matrix is treated as an independent channel. The number of rows in the input signal denote the
channel length. This object accepts variable-size inputs. After the object is locked, you can change the
size of each input channel, but you cannot change the number of channels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix. The output has the same size, data type, and
complexity characteristics as the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.HighpassFilter
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
impz Impulse response of discrete-time filter System object
info Information about filter System object
coeffs Returns the filter System object coefficients in a structure
cost Estimate cost of implementing filter System object
grpdelay Group delay response of discrete-time filter System object
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)
measure Measure frequency response characteristics of filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

 dsp.HighpassFilter

4-767

Impulse and Frequency Response of FIR and IIR Highpass Filters

Create a minimum order FIR highpass filter for data sampled at 44.1 kHz. Specify a passband
frequency of 12 kHz, a stopband frequency of 8 kHz, a passband ripple of 0.1 dB, and a stopband
attenuation of 80 dB.

Fs = 44.1e3;
filtertype = 'FIR';
Fpass = 12e3;
Fstop = 8e3;
Rp = 0.1;
Astop = 80;
FIRHPF = dsp.HighpassFilter('SampleRate',Fs,...
 'FilterType',filtertype,...
 'PassbandFrequency',Fpass,...
 'StopbandFrequency',Fstop,...
 'PassbandRipple',Rp,...
 'StopbandAttenuation',Astop);

Design a minimum order IIR highpass filter with the same properties as the FIR highpass filter. Use
clone to create a system object with the same properties as the FIR Highpass filter. Change the
FilterType property of the cloned filter to IIR.

IIRHPF = clone(FIRHPF);
IIRHPF.FilterType = 'IIR';

Plot the impulse response of the FIR highpass filter. The zeroth order coefficient is delayed by 19
samples, which is equal to the group delay of the filter. The FIR highpass filter is a causal FIR filter

fvtool(FIRHPF,'Analysis','impulse')

4 System Objects

4-768

Plot the impulse response of the IIR highpass filter.

fvtool(IIRHPF,'Analysis','impulse')

 dsp.HighpassFilter

4-769

Plot the magnitude and phase response of the FIR highpass filter.

fvtool(FIRHPF,'Analysis','freq')

4 System Objects

4-770

Plot the magnitude and phase response of the IIR highpass filter.

fvtool(IIRHPF,'Analysis','freq')

 dsp.HighpassFilter

4-771

Calculate the cost of implementing the FIR highpass filter.

cost(FIRHPF)

ans = struct with fields:
 NumCoefficients: 39
 NumStates: 38
 MultiplicationsPerInputSample: 39
 AdditionsPerInputSample: 38

Calculate the cost of implementing the IIR highpass filter. The IIR filter is more efficient to implement
than its FIR counterpart.

cost(IIRHPF)

ans = struct with fields:
 NumCoefficients: 18
 NumStates: 14
 MultiplicationsPerInputSample: 18
 AdditionsPerInputSample: 14

Calculate the group delay of the FIR highpass filter.

grpdelay(FIRHPF)

4 System Objects

4-772

Calculate the group delay of the IIR highpass filter. The FIR filter has a constant group delay (linear
phase) while its IIR counterpart does not.

grpdelay(IIRHPF)

 dsp.HighpassFilter

4-773

Filter White Gaussian Noise with an IIR Highpass filter

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Set up the IIR highpass filter. The sampling rate of the white Gaussian noise is 44,100 Hz. The
passband frequency of the filter is 12 kHz, the stopband frequency is 8 kHz, the passband ripple is
0.1 dB, and the stopband attenuation is 80 dB.

Fs = 44.1e3;
filtertype = 'IIR';
Fpass = 12e3;
Fstop = 8e3;
Rp = 0.1;
Astop = 80;
hpf = dsp.HighpassFilter('SampleRate',Fs,...
 'FilterType',filtertype,...
 'PassbandFrequency',Fpass,...
 'StopbandFrequency',Fstop,...
 'PassbandRipple',Rp,...
 'StopbandAttenuation',Astop);

View the magnitude response of the highpass filter.

fvtool(hpf)

4 System Objects

4-774

Create a spectrum analyzer object.

sa = dsp.SpectrumAnalyzer('SampleRate',44.1e3,...
 'PlotAsTwoSidedSpectrum',false,'ShowLegend',true,'YLimits',...
 [-150 30],...
 'Title',...
 'Input Signal and Output Signal of IIR Highpass Filter');
sa.ChannelNames = {'Input','Output'};

Filter the white Gaussian noisy input signal. View the input and output signals using the spectrum
analyzer.

for k = 1:100
 Input = randn(1024,1);
 Output = hpf(Input);
 sa([Input,Output]);
end

 dsp.HighpassFilter

4-775

Measure Frequency Response Characteristics of Highpass Filter

Measure the frequency response characteristics of a highpass filter. Create a dsp.HighpassFilter
System object with default properties. Measure the frequency response characteristics of the filter.

HPF = dsp.HighpassFilter

HPF =
 dsp.HighpassFilter with properties:

 FilterType: 'FIR'
 DesignForMinimumOrder: true
 StopbandFrequency: 8000
 PassbandFrequency: 12000
 StopbandAttenuation: 80
 PassbandRipple: 0.1000
 SampleRate: 44100

 Show all properties

HPFMeas = measure(HPF)

4 System Objects

4-776

HPFMeas =
Sample Rate : 44.1 kHz
Stopband Edge : 8 kHz
6-dB Point : 10.418 kHz
3-dB Point : 10.8594 kHz
Passband Edge : 12 kHz
Stopband Atten. : 81.8558 dB
Passband Ripple : 0.08066 dB
Transition Width : 4 kHz

Algorithms
FIR Highpass Filter

When the FilterType property is set to 'FIR', the dsp.HighpassFilter object acts as a FIR
highpass filter. In this configuration, dsp.HighpassFilter is an alternative to using firceqrip
and firgr with dsp.FIRFilter. This object condenses the two-step process into one. For the
minimum order design, the object uses generalized Remez FIR filter design algorithm. For the
specified order design, the object uses constrained equiripple FIR filter design algorithm. The
designed filter is then implemented as a linear phase Type-1 filter with a Direct form structure.
You can use measure to verify that the design meets the prescribed specifications.

IIR Highpass Filter

When the FilterType property is set to 'IIR', the dsp.HighpassFilter object acts as an IIR
highpass filter. In this configuration, this object uses the elliptic design method to compute the SOS
and scale values required to meet the filter design specifications. The object uses the SOS and scale
values to set up a Direct form I biquadratic IIR filter, which forms the basis of the IIR version of
the dsp.HighpassFilter System object. You can use measure to verify that the design meets the
prescribed specifications.

References
[1] Shpak, D.J., and A. Antoniou. "A generalized Remez method for the design of FIR digital filters."

IEEE Transactions on Circuits and Systems. Vol. 37, Issue 2, Feb. 1990, pp. 161–174.

[2] Selesnick, I.W., and C. S. Burrus. "Exchange algorithms that complement the Parks-McClellan
algorithm for linear-phase FIR filter design." IEEE Transactions on Circuits and Systems. Vol.
44, Issue 2, Feb. 1997, pp. 137–143.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object supports code generation for ARM Cortex-M and ARM Cortex-A processors. To learn more
about ARM Cortex code generation, see “Code Generation for ARM Cortex-M and ARM Cortex-A
Processors”.

 dsp.HighpassFilter

4-777

This object also supports SIMD code generation using Intel AVX2 technology under these conditions:

• FilterType is set to 'FIR'.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
freqz | fvtool | impz | info | coeffs | cost | grpdelay | generatehdl | measure

Objects
dsp.LowpassFilter

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2015a

4 System Objects

4-778

dsp.Histogram
Package: dsp

(Removed) Histogram of input or sequence of inputs

Note The dsp.Histogram System object™ has been removed. Use the histcounts function
instead. For more information, see “Compatibility Considerations”.

Description
The Histogram object generates a histogram for an input or a sequence of inputs.

To generate a histogram for an input or a sequence of inputs:

1 Create the dsp.Histogram object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
hist = dsp.Histogram
hist = dsp.Histogram(min,max,numbins)
hist = dsp.Histogram(Name,Value)

Description

hist = dsp.Histogram returns a histogram object, hist, that computes the frequency
distribution of the elements in each input matrix.

hist = dsp.Histogram(min,max,numbins) returns a histogram object, hist, with the
LowerLimit property set to min, UpperLimit property set to max, and NumBins property set to
numbins.

hist = dsp.Histogram(Name,Value) returns a histogram object, hist, with each specified
property set to the specified value. Enclose each property name in single quotes. Unspecified
properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 dsp.Histogram

4-779

For more information on changing property values, see System Design in MATLAB Using System
Objects.

LowerLimit — Lower boundary
0 (default) | real scalar

Specify the lower boundary of the lowest-valued bin as a real-valued scalar. NaN and Inf are not valid
values for this property.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

UpperLimit — Upper boundary
10 (default) | real scalar

Specify the upper boundary of the highest-valued bin as a real-valued scalar. NaN and Inf are not
valid values for this property.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumBins — Number of bins in histogram
11 (default) | positive integer

Specify the number of bins in the histogram.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Dimension — Dimension
Column (default) | All

Specify how the histogram calculation is performed over the data as All or Column.

Normalize — Enable output vector normalization
false (default) | true

Specify whether the histogram object normalizes the output vector, v, so that sum(v) = 1. When you
set this property to true, the output vector is normalized. When you set it to false, the object
supports fixed-point operations and does not use this property for normalization.

RunningHistogram — Enable calculation over successive calls to algorithm
false (default) | true

Set this property to true to enable running histogram calculations for the input elements over
successive calls to the algorithm. Set this property to false to compute a histogram for the current
input.

ResetInputPort — Enable resetting in running histogram mode
false (default) | true

Set this property to true to enable resetting the running histogram. When you set the property to
true, specify a reset input to the object algorithm that resets the running histogram. When this
property is false, the histogram object does not reset.

4 System Objects

4-780

Dependencies

This property applies when you set the RunningHistogram property to true.

ResetCondition — Reset condition for running histogram mode
Non-zero (default) | Rising edge | Falling edge | Either edge

Specify the event that resets the running histogram as Rising edge, Falling edge, Either
edge, or Non-zero.

Dependencies

This property applies when you set the ResetInputPort property to true.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as Wrap or Saturate.

ProductDataType — Product word and fraction lengths
Same as input (default) | Custom

Specify the product fixed-point data type as Same as input or Custom.

CustomProductDataType — Custom product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies when you set the ProductDataType property to Custom.

AccumulatorDataType — Accumulator word and fraction lengths
Same as input (default) | Same as product | Custom

Specify the accumulator fixed-point data type as one of Same as product, Same as input, or
Custom |.

CustomAccumulatorDataType — Custom accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies when you set the AccumulatorDataType property to Custom.

 dsp.Histogram

4-781

Usage

Syntax
y = hist(x)
y = hist(x,r)

Description

y = hist(x) returns a histogram y for the input data x . When the RunningHistogram property is
true, y corresponds to the histogram of the input elements over successive calls to the algorithm.

y = hist(x,r) resets the histogram state based on the reset signal, r and the object's
ResetCondition property. You can reset the histogram state only when the RunningHistogram
and the ResetInputPort properties are true.

Input Arguments

x — Data input
vector | matrix | N-D array

Data input, specified as a vector, matrix, or N-D array. If x is a matrix, each column is treated as an
independent channel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

r — Reset signal
scalar

Reset signal, specified as a scalar. The reset signal resets the histogram state based on the value of r
and the object's ResetCondition property.

Dependencies

You can reset the histogram state only when the RunningHistogram and the ResetInputPort
properties are true.
Data Types: single | double | int8 | int16 | int32 | logical

Output Arguments

y — Histogram output
scalar | vector

Histogram output of the input signal, returned as a scalar, vector, or matrix. The output depends on
the setting of Dimension:

• 'Column' –– The object computes the histogram value of each input channel. If the input is a
column vector, the output is a scalar. If the input is a multichannel signal, the output signal is 1-by-
N vector, where N is the number of input channels.

• 'All' –– The object computes the histogram value over all input channels.

Data Types: single | double | uint32

4 System Objects

4-782

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Histogram of Sequence

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Compute a histogram with four bins, for possible input values 1 through 4.

hist = dsp.Histogram(1,4,4);
y = hist([1 2 2 3 3 3 4 4 4 4]')

y = 4×1

 1
 2
 3
 4

Algorithms
This object implements the algorithm, inputs, and outputs described on the Histogram block
reference page. The object properties correspond to the block parameters, except:

• The Reset port block parameter corresponds to both the ResetCondition and the
ResetInputPort object properties.

• The Find histogram over block parameter corresponds to the “Dimension” on page 4-0
property of the object.

Compatibility Considerations
dsp.Histogram System object has been removed
Errors starting in R2021a

The dsp.Histogram System object has been removed. Use the histcounts function instead.

Update Code

 dsp.Histogram

4-783

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
x = [1 2 2 3 3 3 4 4 4 4]';
myhistogram = dsp.Histogram(1,4,4)
n = myhistogram(x)

n is the histogram.

myhistogram = dsp.Histogram(1,5,4)
n = myhistogram(x)

If you are using a release prior to R2016b,
replace myhistogram(x) with
step(myhistogram,x).

x = [1 2 2 3 3 3 4 4 4 4]';
[n,edges] = histcounts(x)

n is the histogram, and edges is the bin edges.

[n,edges] = histcounts(x,4,'BinLimits',[1 5],...
'BinEdges',[1 2.25 3.5 4.75 5])

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• This object has no tunable properties for code generation.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
histcounts

Introduced in R2012a

4 System Objects

4-784

dsp.IDCT
Package: dsp

(Removed) Inverse discrete cosine transform (IDCT)

Note The dsp.IDCT System object™ has been removed. Use idct instead. For more information,
see “Compatibility Considerations”.

Description
The IDCT object computes the inverse discrete cosine transform (IDCT) of an input.

To compute the IDCT of an input:

1 Define and set up your IDCT object. See “Construction” on page 4-785.
2 Call step to compute the IDCT of an input according to the properties of dsp.IDCT. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
idct = dsp.IDCT returns a inverse discrete cosine transform (IDCT) object, idct. This object
computes the IDCT of a real or complex input signal using the Table lookup method.

idct = dsp.IDCT('PropertyName',PropertyValue,...) returns an inverse discrete cosine
transform (IDCT) object, idct, with each property set to the specified value.

Properties
SineComputation

Method to compute sines and cosines

Specify how the IDCT object computes the trigonometric function values as Trigonometric
function or Table lookup. You must set this property to Table lookup for fixed-point inputs.
The default is Table lookup.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as one of Ceiling, Convergent, Floor , Nearest, Round, Simplest,
or Zero. This property applies when you set the SineComputation property to Table lookup.

 dsp.IDCT

4-785

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as one of Wrap or Saturate. This property applies when you set the
SineComputation property to Table lookup.

SineTableDataType

Sine table word-length designation

Specify the sine table fixed-point data type as one of Same word length as input or Custom.
This property applies when you set the SineComputation property to Table lookup.

CustomSineTableDataType

Sine table word length

Specify the sine table fixed-point type as a signed, unscaled numerictype object. This property
applies when you set the SineComputation property to Table lookup and the
SineTableDataType property to Custom. The default is numerictype(true,16).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as one of Full precision, Same as input, Custom.
This property applies when you set the SineComputation property to Table lookup.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a signed, scaled numerictype object. This property applies
when you set the SineComputation property to Table lookup and the ProductDataType
property to Custom. The default is numerictype(true,32,30).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as one of Full precision, Same as input, Same
as product, or Custom. This property applies when you set the SineComputation property to
Table lookup.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a signed, scaled numerictype object. This property
applies when you set the SineComputation property to Table lookup and the
AccumulatorDataType property to Custom. The default is numerictype(true,32,30).

OutputDataType

Output word and fraction lengths

4 System Objects

4-786

Specify the output fixed-point data type as one of Full precision , Same as input, Custom. This
property applies when you set the SineComputation property to Table lookup. The default is
Full precision.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a signed, scaled numerictype object. This property applies
when you set the SineComputation property to Table lookup and the “OutputDataType” on page
4-0 property to Custom. The default isnumerictype(true,16,15).

Methods

step Inverse discrete cosine transform (IDCT) of input

Common to All System Objects
release Allow System object property value changes

Examples

Analyze the Energy Content in a Sequence

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Use DCT to analyze the energy content in a sequence:

x = (1:128).' + 50*cos((1:128).'*2*pi/40);
dct = dsp.DCT;
X = dct(x);

Set the DCT coefficients which represent less than 0.1% of the total energy to 0 and reconstruct the
sequence using IDCT.

[XX, ind] = sort(abs(X),1,'descend');
ii = 1;
while (norm([XX(1:ii);zeros(128-ii,1)]) <= 0.999*norm(XX))
 ii = ii+1;
end
disp(['Number of DCT coefficients that represent 99.9%',...
 'of the total energy in the sequence: ',num2str(ii)]);

Number of DCT coefficients that represent 99.9%of the total energy in the sequence: 10

XXt = zeros(128,1);
XXt(ind(1:ii)) = X(ind(1:ii));
idct = dsp.IDCT;
xt = idct(XXt);
plot(1:128,[x xt]);

 dsp.IDCT

4-787

legend('Original signal','Reconstructed signal',...
 'location','best');

Algorithms
This object implements the algorithm, inputs, and outputs described on the IDCT block reference
page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.IDCT System object has been removed
Errors starting in R2021a

The dsp.IDCT System object has been removed. Use idct instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
idctObj = dsp.IDCT;
xt = idctObj(X);

The variable, X represents the DCT of a time-
domain signal.

If you are using a release prior to R2016b,
replace idctObj(X) with step(idctObj,X).

xt = idct(X);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
idct

Objects
dsp.FFT | dsp.IFFT.

Introduced in R2012a

4 System Objects

4-788

step
System object: dsp.IDCT
Package: dsp

Inverse discrete cosine transform (IDCT) of input

Syntax
Y = step(idct,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(idct,X) computes the inverse discrete cosine transform, Y , of input X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

 step

4-789

dsp.IFFT
Package: dsp

Inverse discrete Fourier transform (IDFT)

Description
The dsp.IFFT System object computes the inverse discrete Fourier transform (IDFT) of the input.
The object uses one or more of the following fast Fourier transform (FFT) algorithms depending on
the complexity of the input and whether the output is in linear or bit-reversed order:

• Double-signal algorithm
• Half-length algorithm
• Radix-2 decimation-in-time (DIT) algorithm
• Radix-2 decimation-in-frequency (DIF) algorithm
• An algorithm chosen from FFTW [1], [2]

To compute the IFFT of the input:

1 Create the dsp.IFFT object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ift = dsp.IFFT
ift = dsp.IFFT(Name,Value)

Description

ift = dsp.IFFT returns an IFFT object, ift, that computes the IDFT of a column vector or N-D
array. For column vectors or N-D arrays, the IFFT object computes the IDFT along the first dimension
of the array. If the input is a row vector, the IFFT object computes a row of single-sample IDFTs and
issues a warning.

ift = dsp.IFFT(Name,Value) returns an IFFT object, ift, with each property set to the
specified value. Enclose each property name in single quotes. Unspecified properties have default
values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

4 System Objects

4-790

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

FFTImplementation — FFT implementation
Auto (default) | Radix-2 | FFTW

Specify the implementation used for the FFT as Auto, Radix-2, or FFTW. When you set this property
to Radix-2, the FFT length must be a power of two.

BitReversedInput — Enable bit-reversed order interpretation of input elements
false (default) | true

Set this property to true if the order of Fourier transformed input elements to the IFFT object are in
bit-reversed order. The default is false, which denotes linear ordering.

Dependencies

This property applies only when the FFTLengthSource property is Auto.

ConjugateSymmetricInput — Enable conjugate symmetric interpretation of input
false (default) | true

Set this property to true if the input is conjugate symmetric to yield real-valued outputs. The
discrete Fourier transform of a real valued sequence is conjugate symmetric, and setting this
property to true optimizes the IDFT computation method. Setting this property to false for
conjugate symmetric inputs may result in complex output values with nonzero imaginary parts. This
occurs due to rounding errors. Setting this property to true for nonconjugate symmetric inputs
results in invalid outputs.

Dependencies

This property applies only when the FFTLengthSource property is Auto.

Normalize — Enable dividing output by FFT length
true (default) | false

Specify whether to divide the IFFT output by the FFT length. The default is true and each element of
the output is divided by the FFT length.

FFTLengthSource — Source of FFT length
Auto (default) | Property

Specify how to determine the FFT length as Auto or Property. When you set this property to Auto,
the FFT length equals the number of rows of the input signal.

Dependencies

This property applies only when both the BitReversedInput and ConjugateSymmetricInput
properties are false.

FFTLength — FFT length
64 (default) | integer

Specify the FFT length as an integer greater than or equal to 2.

 dsp.IFFT

4-791

This property must be a power of two if any of these conditions apply:

• The input is a fixed-point data type.
• The FFTImplementation property is Radix-2.

Dependencies

This property applies when you set the BitReversedInput and ConjugateSymmetricInput
properties to false, and the FFTLengthSource property to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WrapInput — Boolean value of wrapping or truncating input
true (default) | false

Wrap input data when FFTLength is shorter than input length. If this property is set to true, modulo-
length data wrapping occurs before the FFT operation, given FFTLength is shorter than the input
length. If this property is set to false, truncation of the input data to the FFTLength occurs before
the FFT operation.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as Wrap or Saturate.

SineTableDataType — Sine table word and fraction lengths
Same word length as input (default) | Custom

Specify the sine table data type as Same word length as input or Custom.

CustomSineTableDataType — Sine table word and fraction lengths
numerictype([],16) (default) | numerictype

Specify the sine table fixed-point type as an unscaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies when you set the SineTableDataType property to Custom.

ProductDataType — Product word and fraction lengths
Full precision (default) | Same as input | Custom

Specify the product data type as Full precision, Same as input, or Custom.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.

4 System Objects

4-792

Dependencies

This property applies when you set the ProductDataType property to Custom.

AccumulatorDataType — Accumulator word and fraction lengths
Full precision (default) | Same as input | Same as product | Custom

Specify the accumulator data type as Full precision, Same as input, Same as product, or
Custom.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.
Dependencies

This property applies when you set the AccumulatorDataType property to Custom.

OutputDataType — Output word and fraction lengths
Full precision (default) | Same as input | Custom

Specify the output data type as Full precision, Same as input, or Custom.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
Dependencies

This property applies when you set the OutputDataType property to Custom.

Usage

Syntax
y = ift(x)

Description

y = ift(x) computes the inverse discrete Fourier transform (IDFT) , y, of the input x along the first
dimension of x.

Input Arguments

x — Data input
vector | matrix | N-D array

Data input, specified as a vector, matrix, or N-D array.

When the FFTLengthSource property is Auto, the length of x along the first dimension must be a
positive integer power of two. When the FFTLengthSource property is 'Property', the length of x
along the first dimension can be any positive integer and the FFTLength property must be a positive
integer power of two.

 dsp.IFFT

4-793

Variable-size input signals are only supported when the FFTLengthSource property is set to
'Auto'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — Inverse discrete Fourier transform of input signal
vector | matrix | N-D array

Inverse discrete Fourier transform of input signal, returned as a vector, matrix, or N-D array.

When FFTLengthSource property is set to 'Auto', the FFT length is same as the number of rows in
the input signal. When FFTLengthSource property is set to 'Property', the FFT length is
specified through the FFTLength property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Construct a Sinusoidal Signal Using High Energy FFT Coefficients

Compute the FFT of a noisy sinusoidal input signal. The energy of the signal is stored as the
magnitude square of the FFT coefficients. Determine the FFT coefficients which occupy 99.99% of the
signal energy and reconstruct the time-domain signal by taking the IFFT of these coefficients.
Compare the reconstructed signal with the original signal.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj(x)).

Consider a time-domain signal x n , which is defined over the finite time interval 0 ≤ n ≤ N − 1. The
energy of the signal x n is given by the following equation:

EN = ∑n = 0
N − 1 x n 2

4 System Objects

4-794

FFT coefficients, X k , are considered signal values in the frequency domain. The energy of the signal
x n in the frequency-domain is therefore the sum of the squares of the magnitude of the FFT
coefficients:

EN = 1
N∑k = 0

N − 1 X k 2

According to Parseval's theorem, the total energy of the signal in time or frequency-domain is the
same.

EN = ∑n = 0
N − 1 x n 2 = 1

N∑k = 0
N − 1 X k 2

Initialization

Initialize a dsp.SineWave System object to generate a sine wave sampled at 44.1 kHz and has a
frequency of 1000 Hz. Construct a dsp.FFT and dsp.IFFT objects to compute the FFT and the IFFT
of the input signal.

The 'FFTLengthSource' property of each of these transform objects is set to 'Auto'. The FFT
length is hence considered as the input frame size. The input frame size in this example is 1020,
which is not a power of 2, so select the 'FFTImplementation' as 'FFTW'.

L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
 'PhaseOffset',10,...
 'SampleRate',44100,...
 'Frequency',1000);
ft = dsp.FFT('FFTImplementation','FFTW');
ift = dsp.IFFT('FFTImplementation','FFTW',...
 'ConjugateSymmetricInput',true);
rng(1);

Streaming

Stream in the noisy input signal. Compute the FFT of each frame and determine the coefficients that
constitute 99.99% energy of the signal. Take IFFT of these coefficients to reconstruct the time-
domain signal.

numIter = 1000;
for Iter = 1:numIter
 Sinewave1 = Sineobject();
 Input = Sinewave1 + 0.01*randn(size(Sinewave1));
 FFTCoeff = ft(Input);
 FFTCoeffMagSq = abs(FFTCoeff).^2;

 EnergyFreqDomain = (1/L)*sum(FFTCoeffMagSq);
 [FFTCoeffSorted, ind] = sort(((1/L)*FFTCoeffMagSq),...
 1,'descend');

 CumFFTCoeffs = cumsum(FFTCoeffSorted);
 EnergyPercent = (CumFFTCoeffs/EnergyFreqDomain)*100;
 Vec = find(EnergyPercent > 99.99);
 FFTCoeffsModified = zeros(L,1);
 FFTCoeffsModified(ind(1:Vec(1))) = FFTCoeff(ind(1:Vec(1)));
 ReconstrSignal = ift(FFTCoeffsModified);
end

 dsp.IFFT

4-795

99.99% of the signal energy can be represented by the number of FFT coefficients given by Vec(1):

Vec(1)

ans = 296

The signal is reconstructed efficiently using these coefficients. If you compare the last frame of the
reconstructed signal with the original time-domain signal, you can see that the difference is very
small and the plots match closely.

max(abs(Input-ReconstrSignal))

ans = 0.0431

plot(Input,'*');
hold on;
plot(ReconstrSignal,'o');
hold off;

Algorithms
This object implements the algorithm, inputs, and outputs described on the IFFT block reference
page. The object properties correspond to the block parameters, except the Output sampling mode
parameter is not supported by dsp.IFFT.

4 System Objects

4-796

References
[1] FFTW (http://www.fftw.org)

[2] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the FFT,” Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp.
1381-1384.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• When the following conditions apply, the executable generated from this System object relies on

prebuilt dynamic library files (.dll files) included with MATLAB:

• FFTImplementation is set to 'FFTW'.
• FFTImplementation is set to 'Auto', FFTLengthSource is set to 'Property', and

FFTLength is not a power of two.

Use the packNGo function to package the code generated from this System object and all the
relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild
your project in another development environment where MATLAB is not installed. For more
details, see “How To Run a Generated Executable Outside MATLAB”.

• When the FFT length is a power of two, you can generate standalone C and C++ code from this
System object.

See Also
Objects
dsp.FFT

Introduced in R2012a

 dsp.IFFT

4-797

http://www.fftw.org

dsp.IIRFilter
Package: dsp

Infinite impulse response (IIR) filter

Description
The dsp.IIRFilter System object filters each channel of the input using the specified filter. You can
specify the filter to have a 'Direct form I', 'Direct form I transposed', 'Direct form
II', or 'Direct form II transposed' structure.

Use the “Numerator” on page 4-0 and “Denominator” on page 4-0 properties to specify the
coefficients of the filter numerator and denominator coefficients. In addition to these coefficients, you
can also specify nonzero initial filter states through the “InitialConditions” on page 4-0 property.

To filter a signal using an IIR filter:

1 Create the dsp.IIRFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
iir = dsp.IIRFilter
iir = dsp.IIRFilter(Name,Value)

Description

iir = dsp.IIRFilter creates an infinite impulse response (IIR) filter System object that
independently filters each channel of the input over time using a specified IIR filter implementation.

iir = dsp.IIRFilter(Name,Value) creates an IIR filter object with each specified property set
to the specified value. Enclose each property name in single quotes.
Example: iir = dsp.IIRFilter('Structure','Direct form I');

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-798

Structure — IIR filter structure
'Direct form II transposed' (default) | 'Direct form I' | 'Direct form I
transposed' | 'Direct form II'

IIR filter structure, specified as 'Direct form I', 'Direct form I transposed', 'Direct
form II', or 'Direct form II transposed'.

Numerator — Numerator coefficients
[1 1] (default) | row vector

Numerator coefficients, specified as a row vector.
Example: [0.0296 0.1775 0.4438 0.5918 0.4438 0.1775 0.0296]

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

Denominator — Denominator coefficients
[1 0.1] (default) | row vector

Denominator coefficients, specified as a row vector. The leading denominator coefficient must equal
1.
Example: [1.0000 -0.0000 0.7777 -0.0000 0.1142 -0.0000 0.0018]

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

InitialConditions — Initial conditions
0 (default) | scalar | vector | matrix

Initial conditions of the filter states, specified as one of the following:

• scalar –– The object initializes all delay elements in the filter to the scalar value.
• vector –– The length of the vector equals the number of delay elements in the filter. Each vector

element specifies a unique initial condition for the corresponding delay element. The object
applies the same vector to each channel of the input signal.

• matrix –– The number of rows in the matrix must equal the number of delay elements in the filter.
The number of columns in the matrix must equal the number of channels in the input. Each
element specifies a unique initial condition for the corresponding delay element in the
corresponding channel.

The number of filter states equals max(N,M) – 1, where N is the number of poles, and M is the
number of zeros.

Tunable: Yes

Dependencies

This property applies only when you set the “Structure” on page 4-0 property to 'Direct form
II' or 'Direct form II transposed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 dsp.IIRFilter

4-799

Complex Number Support: Yes

NumeratorInitialConditions — Initial conditions on zeros side
0 (default) | scalar | vector | matrix

Initial conditions of the filter states on the side of the filter structure with the zeros, specified as one
of the following:

• scalar –– The object initializes all delay elements on the zeros side in the filter to the scalar value.
• vector –– The length of the vector equals the number of delay elements on the zeros side in the
filter. Each vector element specifies a unique initial condition for the corresponding delay element
on the zeros side. The object applies the same vector of initial conditions to each channel of the
input signal.

• matrix –– The number of rows in the matrix must equal the number of delay elements on the zeros
side in the filter. The number of columns in the matrix must equal the number of channels in the
input signal. Each element specifies a unique initial condition for the corresponding delay element
on the zeros side in the corresponding channel.

The number of filter states equals max(N,M) – 1, where N is the number of poles, and M is the
number of zeros, respectively.

Tunable: Yes

Dependencies

This property applies only when you set the “Structure” on page 4-0 property to 'Direct form
I' or 'Direct form I transposed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

DenominatorInitialConditions — Initial conditions on poles side
0 (default) | scalar | vector | matrix

Initial conditions of the filter states on the side of the filter structure with the poles, specified as one
of the following:

• scalar –– The object initializes all delay elements on the poles side in the filter to the scalar value.
• vector –– The length of the vector equals the number of delay elements on the poles side in the
filter. Each vector element specifies a unique initial condition for the corresponding delay element
on the poles side. The object applies the same vector of initial conditions to each channel of the
input signal.

• matrix –– The number of rows in the matrix must equal the number of delay elements on the poles
side in the filter. The number of columns in the matrix must equal the number of channels in the
input signal. Each element specifies a unique initial condition for the corresponding delay element
on the poles side in the corresponding channel.

The number of filter states equals max(N,M) – 1, where N is the number of poles, and M is the
number of zeros, respectively.

Tunable: Yes

4 System Objects

4-800

Dependencies

This property applies only when you set the “Structure” on page 4-0 property to 'Direct form
I' or 'Direct form I transposed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

Fixed-Point Properties

RoundingMethod — Rounding method
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Select the rounding mode for fixed-point operations.

OverflowAction — Overflow action
'Wrap' (default) | 'Saturate'

Overflow action for fixed-point operations, specified as one of the following:

• 'Wrap' –– The object wraps the result of its fixed-point operations.
• 'Saturate' –– The object saturates the result of its fixed-point operations.

For more details on overflow actions, see overflow mode for fixed-point operations.

StateDataType — State data type
'Same as input' (default) | 'Custom'

State data type, specified as one of the following:

• 'Same as input' –– The state data type is same as the input data type.
• 'Custom' –– The state output data type is an autosigned numeric type through the

“CustomStateDataType” on page 4-0 property.

CustomStateDataType — State word and fraction lengths
numerictype([],16,15) (default)

State word and fraction lengths, specified as an autosigned numeric type with a word length of 16
and a fraction length of 15.

Dependencies

This property applies only when you set “StateDataType” on page 4-0 to 'Custom'.

NumeratorCoefficientsDataType — Data type of numerator coefficients
'Same word length as input' (default) | 'Custom'

Data type of numerator coefficients, specified as one of the following:

• 'Same word length as input' –– The word length of the numerator coefficients is the same
as the input word length. The fraction length is chosen to give the best possible precision.

• 'Custom' –– The data type of the numerator coefficients is the autosigned numeric type specified
by the “CustomNumeratorCoefficientsDataType” on page 4-0 property.

 dsp.IIRFilter

4-801

CustomNumeratorCoefficientsDataType — Word and fraction lengths of the numerator
coefficients
numerictype([],16,15) (default)

Word and fraction lengths of the numerator coefficients, specified as an autosigned numeric type with
a word length of 16 and a fraction length of 15.

Dependencies

This property applies only when you set “NumeratorCoefficientsDataType” on page 4-0 to
'Custom'.

DenominatorCoefficientsDataType — Data type of the denominator coefficients
'Same word length as input' (default) | 'Custom'

Data type of the denominator coefficients, specified as one of the following:

• 'Same word length as input' –– The word length of the denominator coefficients is the same
as that of the input word length. The fraction length is chosen to give the best possible precision.

• 'Custom' –– The data type of the denominator coefficients is the autosigned numeric type
specified by the “CustomDenominatorCoefficientsDataType” on page 4-0 property.

CustomDenominatorCoefficientsDataType — Word and fraction lengths of denominator
coefficients
numerictype([],16,15) (default)

Word and fraction lengths of denominator coefficients, specified as an autosigned numeric type with a
word length of 16 and a fraction length of 15.

Dependencies

This property applies only when you set “DenominatorCoefficientsDataType” on page 4-0 to
'Custom'.

NumeratorProductDataType — Numerator product data type
'Full precision' (default) | 'Same as input' | 'Custom'

Data type of the output of a product operation in the numerator polynomial of the IIR filter, specified
as one of the following:

• 'Full precision' –– The object computes the numerator product output data type using the
full-precision rules. These rules provide the most accurate fixed-point numerics. No quantization
occurs. Bits are added, as needed, to ensure that no roundoff or overflow occurs.

• 'Same as input' –– The product output data type is the same as the input data type.
• 'Custom' –– The product output data type is the custom numeric type specified by the

“CustomNumeratorProductDataType” on page 4-0 property. The rounding method and the
overflow action are specified by the “RoundingMethod” on page 4-0 and “OverflowAction” on
page 4-0 properties.

CustomNumeratorProductDataType — Numerator product word and fraction lengths
numerictype([],32,30) (default)

Numerator product word and fraction lengths, specified as an autosigned numeric type with a word
length of 32 and a fraction length of 30.

4 System Objects

4-802

Dependencies

This property applies only when you set “NumeratorProductDataType” on page 4-0 to 'Custom'.

DenominatorProductDataType — Denominator product data type
'Full precision' (default) | 'Same as input' | 'Custom'

Data type of the output of a product operation in the denominator polynomial of the IIR filter,
specified as one of the following:

• 'Full precision' –– The object computes the denominator product output data type using the
full-precision rules. These rules provide the most accurate fixed-point numerics. No quantization
occurs. Bits are added, as needed, to ensure that no roundoff or overflow occurs.

• 'Same as input' –– The product output data type is the same as the input data type.
• 'Custom' –– The product output data type is custom numeric type specified by the

“CustomDenominatorProductDataType” on page 4-0 property. The rounding method and the
overflow action are specified by the “RoundingMethod” on page 4-0 and “OverflowAction” on
page 4-0 properties.

CustomDenominatorProductDataType — Denominator product word and fraction lengths
numerictype([],32,30) (default)

Denominator product word and fraction lengths, specified as an autosigned numeric type with a word
length of 32 and a fraction length of 30.

Dependencies

This property applies only when you set “DenominatorProductDataType” on page 4-0 to
'Custom'.

NumeratorAccumulatorDataType — Numerator accumulator data type
'Full precision' (default) | 'Same as input' | 'Same as product' | 'Custom'

Data type of the output of an accumulation operation in the numerator polynomial of the IIR filter,
specified as one of the following:

• 'Full precision' –– The object computes the numerator accumulator data type using the full-
precision rules. These rules provide the most accurate fixed-point numerics. No quantization
occurs. Bits are added, as needed, to ensure that no roundoff or overflow occurs.

• 'Same as input' –– The accumulator data type is the same as the input data type.
• 'Same as product' –– The accumulator data type is the same as the product output data type.
• 'Custom' –– The accumulator data type is the custom numeric type specified by the

“CustomNumeratorAccumulatorDataType” on page 4-0 property. The rounding method and
the overflow action are specified by the “RoundingMethod” on page 4-0 and “OverflowAction”
on page 4-0 properties.

CustomNumeratorAccumulatorDataType — Numerator accumulator word and fraction
lengths
numerictype([],32,30) (default)

Numerator accumulator word and fraction lengths, specified as an autosigned numeric type with a
word length of 32 and a fraction length of 30.

 dsp.IIRFilter

4-803

Dependencies

This property applies only when you set “NumeratorAccumulatorDataType” on page 4-0 to
'Custom'.

DenominatorAccumulatorDataType — Denominator accumulator data type
'Full precision' (default) | 'Same as input' | 'Same as product' | 'Custom'

Data type of the output of an accumulation operation in the denominator polynomial of the IIR filter,
specified as one of the following:

• 'Full precision' –– The object computes the denominator accumulator data type using the
full-precision rules. These rules provide the most accurate fixed-point numerics. No quantization
occurs. Bits are added, as needed, to ensure that no roundoff or overflow occurs.

• 'Same as input' –– The accumulator data type is the same as the input data type.
• 'Same as product' –– The accumulator data type is the same as the product output data type.
• 'Custom' –– The accumulator data type is the custom numeric type specified by the

“CustomDenominatorAccumulatorDataType” on page 4-0 property. The rounding method and
the overflow action are specified by the “RoundingMethod” on page 4-0 and “OverflowAction”
on page 4-0 properties.

CustomDenominatorAccumulatorDataType — Denominator accumulator word and fraction
lengths
numerictype([],32,30) (default)

Denominator accumulator word and fraction lengths, specified as an autosigned numeric type with a
word length of 32 and a fraction length of 30.

Dependencies

This property applies only when you set “DenominatorAccumulatorDataType” on page 4-0 to
'Custom'.

OutputDataType — Output data type
'Same as input' (default) | 'Full precision' | 'Custom'

Data type of the output of the dsp.IIRFilter object, specified as one of the following:

• 'Same as input' –– The output data type is the same as the input data type.
• 'Full precision' –– The object computes the output data type using the full-precision rules.

These rules provide the most accurate fixed-point numerics. No quantization occurs. Bits are
added, as needed, to ensure that no roundoff or overflow occurs.

• 'Custom' –– The output data type is the custom numeric type specified by the
“CustomOutputDataType” on page 4-0 property. The rounding method and the overflow action
are specified by the “RoundingMethod” on page 4-0 and “OverflowAction” on page 4-0
properties.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,15) (default)

Output word and fraction lengths, specified as an autosigned numeric type with a word length of 16
and a fraction length of 15.

4 System Objects

4-804

Dependencies

This property applies only when you set “OutputDataType” on page 4-0 to 'Custom'.

MultiplicandDataType — Multiplicand data type
'Same as input' (default) | 'Custom'

Multiplicand data type, specified as one of the following:

• 'Same as input' –– The multiplicand data type is the same as the input data type.
• 'Custom' –– The multiplicand data type is the autosigned numeric type specifies by the

“CustomMultiplicandDataType” on page 4-0 property.

CustomMultiplicandDataType — Multiplicand output word and fraction lengths
numerictype([],16,15) (default)

Multiplicand output word and fraction lengths, specified as an autosigned numeric type with a word
length of 16 and a fraction length of 15.

Dependencies

This property applies only when you set “MultiplicandDataType” on page 4-0 to 'Custom'.

Usage

Syntax
iirOut = iir(input)

Description

iirOut = iir(input) filters the input signal using the specified filter to produce the filtered
output. The System object filters each column of the input signal independently over time.

Input Arguments

input — Data input
vector | matrix

Data input that is filtered, specified as a vector or matrix.
Example: randn(34,24)
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Output Arguments

iirOut — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix. The size, data type, and complexity of the outpout
match that of the input.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

 dsp.IIRFilter

4-805

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.IIRFilter
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
impz Impulse response of discrete-time filter System object
phasez Phase response of discrete-time filter System object (unwrapped)
sos Convert to second order sections

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

For a list of filter analysis methods this object supports, type
dsp.IIRFilter.helpFilterAnalysis in the MATLAB command prompt. For the corresponding
function reference pages, see “Analysis Methods for Filter System Objects” on page 3-2.

Examples

Filter Noisy Signal Using IIR Filter

Filter a noisy sinusoidal signal using a lowpass butterworth IIR filter.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Input Signal

The input signal has three tones, 1 kHz, 5 kHz, and 12 kHz.

Sine1 = dsp.SineWave('Frequency',1e3,...
 'SampleRate',44.1e3);
Sine2 = dsp.SineWave('Frequency',5e3,...
 'SampleRate',44.1e3);
Sine3 = dsp.SineWave('Frequency',12e3,...
 'SampleRate',44.1e3);

Filter Design

Use the butter function to design a 10th order lowpass Butterworth filter.

N = 10;
Fc = 0.4;
[b,a] = butter(N,Fc);

4 System Objects

4-806

Create a dsp.IIRFilter object and assign the designed coefficients to the Numerator and the
Denominator properties.

iir = dsp.IIRFilter('Numerator',b,...
 'Denominator',a);

View the magnitude response of the filter. The cutoff frequency is at 0.4 rad/sample, which, with a
sample rate of 44.1 kHz, translates to 0 . 4 × 44100/2 or 8.82 kHz.

fvtool(iir,'Fs',Sine1.SampleRate)

View the power spectrum of the input and output signal using the Spectrum Analyzer.

sa = dsp.SpectrumAnalyzer('SampleRate',...
 Sine1.SampleRate,...
 'NumInputPorts',2,...
 'PlotAsTwoSidedSpectrum',false,...
 'OverlapPercent',80,...
 'PowerUnits','dBW',...
 'YLimits',[-220 -10]);

Streaming

Add zero-mean white Gaussian noise with a standard deviation of 0.01 to the sum of sine waves.
Filter the signal using the IIR filter.

The tones at 1 kHz and 5 kHz are unaffected since they fall in the passband. The frequency at 12 kHz
is attenuated since it falls in the transition band of the filter.

 dsp.IIRFilter

4-807

for i = 1:1000
 input = Sine1()+Sine2()+Sine3()+...
 0.01*randn(Sine1.SamplesPerFrame,1);
 output = iir(input);
 sa(input,output)
end

Design an IIR Filter

Design a notching comb filter with 8 notches, and a notch bandwidth of 0.02 referenced to a -3 dB
level.

Create a comb filter design specification object using the fdesign.comb function and specify these
design parameters.

combSpecs = fdesign.comb('notch','N,BW',8,0.02);

Design the notching comb filter using the design function. The resulting filter is a dsp.IIRFilter
System object™. For details on how to apply this filter on streaming data, refer to dsp.IIRFilter.

iirFilt = design(combSpecs,'Systemobject',true)

iirFilt =
 dsp.IIRFilter with properties:

4 System Objects

4-808

 Structure: 'Direct form II'
 Numerator: [0.8878 0 0 0 0 0 0 0 -0.8878]
 Denominator: [1 0 0 0 0 0 0 0 -0.7757]
 InitialConditions: 0

 Show all properties

View magnitude response of the designed filter using fvtool.

fvtool(iirFilt)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the Numerator and Denominator properties are tunable for code generation.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 dsp.IIRFilter

4-809

The dsp.IIRFilter System object supports the following filter structures. The diagrams in each
section show the data types used in the filter structures for fixed-point signals. You can set the data
types using the fixed-point properties of the object.

Direct form I

The following constraints apply when the Structure property is set to 'Direct form I':

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity characteristics. When

the numerator and denominator coefficients have different complexities from each other, the
object processes the filter as if two sets of complex coefficients are provided. The real-valued
coefficient set is treated as if it is a complex vector with zero-valued imaginary parts.

• The State data type cannot be specified for this structure. Doing so is not possible because the
input and output states have the same data types as the input and output buffers.

4 System Objects

4-810

 dsp.IIRFilter

4-811

Direct form I transposed

The following constraints apply when the Structure property is set to 'Direct form I
transposed':

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity characteristics. When

the numerator and denominator coefficients have different complexities from each other, the
object processes the filter as if two sets of complex coefficients are provided. The real-valued
coefficient set is treated as if it is a complex vector with zero-valued imaginary parts.

• States are complex when either the input or the coefficients are complex.

4 System Objects

4-812

 dsp.IIRFilter

4-813

Direct form II

The following constraints apply when the Structure property is set to 'Direct form II':

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity characteristics. When

the numerator and denominator coefficients have different complexities from each other, the
object processes the filter as if two sets of complex coefficients are provided. The real-valued
coefficient set is treated as if it is a complex vector with zero-valued imaginary parts.

• States are complex when either the inputs or the coefficients are complex.

4 System Objects

4-814

Direct form II transposed

The following constraints apply when the Structure property is set to 'Direct form II
transposed':

• Inputs can be real or complex.
• Numerator and denominator coefficients can be real or complex.
• Numerator and denominator coefficients must have the same complexity characteristics. When

the numerator and denominator coefficients have different complexities from each other, the
object processes the filter as if two sets of complex coefficients are provided. The real-valued
coefficient set is treated as if it is a complex vector with zero-valued imaginary parts.

• States are complex when either the inputs or the coefficients are complex.

 dsp.IIRFilter

4-815

See Also
Functions
freqz | fvtool | impz | phasez

4 System Objects

4-816

Objects
dsp.BiquadFilter | dsp.FIRFilter | dsp.AllpoleFilter

Introduced in R2012b

 dsp.IIRFilter

4-817

dsp.IIRHalfbandDecimator
Package: dsp

Decimate by factor of two using polyphase IIR

Description
The dsp.IIRHalfbandDecimator System object performs efficient polyphase decimation of the
input signal by a factor of two. To design the halfband filter, you can specify the object to use an
elliptic design or a quasi-linear phase design. The object uses these design methods to compute the
filter coefficients. To filter the inputs, the object uses a polyphase structure. The allpass filters in the
polyphase structure are in a minimum multiplier form.

Elliptic design introduces nonlinear phase and creates the filter using fewer coefficients than quasi
linear design. Quasi-linear phase design overcomes phase nonlinearity at the cost of additional
coefficients.

Alternatively, instead of designing the halfband filter using a design method, you can specify the filter
coefficients directly. When you choose this option, the allpass filters in the two branches of the
polyphase implementation can be in a minimum multiplier form or in a wave digital form.

You can also use the dsp.IIRHalfbandDecimator object to implement the analysis portion of a
two-band filter bank to filter a signal into lowpass and highpass subbands.

To filter and downsample your data:

1 Create the dsp.IIRHalfbandDecimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
iirhalfbanddecim = dsp.IIRHalfbandDecimator
iirhalfbanddecim = dsp.IIRHalfbandDecimator(Name,Value)

Description

iirhalfbanddecim = dsp.IIRHalfbandDecimator returns a halfband decimator,
iirhalfbanddecim, with the default settings. Under the default settings, the System object filters
and downsamples the input data with a halfband frequency of 22050 Hz, a transition width of 4100
Hz, and a stopband attenuation of 80 dB.

iirhalfbanddecim = dsp.IIRHalfbandDecimator(Name,Value) returns an IIR halfband
decimator, with additional properties specified by one or more Name,Value pair arguments.

4 System Objects

4-818

Example: iirhalfbanddecim = dsp.IIRHalfbandDecimator('Specification','Filter
order and stopband attenuation') creates an IIR halfband decimator object with filter order
set to 9 and stopband attenuation set to 80 dB.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Specification — Filter design parameters
'Transition width and stopband attenuation' (default) | 'Filter order and stopband
attenuation' | 'Filter order and transition width' | 'Coefficients'

Filter design parameters, specified as a character vector. When you set Specification to one of the
filter design options, you can specify the filter design parameters using the corresponding
FilterOrder, StopbandAttenuation, and TransitionWidth properties. Also, you can specify
the design method using DesignMethod. When you set Specification to 'Coefficients', you
can specify the coefficients directly.

FilterOrder — Order of the IIR halfband filter
9 (default) | positive scalar integer

Order of the IIR halfband filter, specified as a positive scalar integer. If you set DesignMethod to
'Elliptic', then FilterOrder must be an odd integer greater than one. If you set DesignMethod
to 'Quasi-linear phase', then FilterOrder must be a multiple of four.
Dependencies

This property applies when you set Specification to 'Filter order and stopband
attenuation' or 'Filter order and transition width'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandAttenuation — Minimum attenuation needed in stopband
80 (default) | positive real scalar

Minimum attenuation needed in the stopband of the IIR halfband filter, specified as a positive real
scalar. Units are in dB.
Dependencies

This property applies only when you set Specification to 'Filter order and stopband
attenuation' or 'Transition width and stopband attenuation'.
Data Types: single | double

TransitionWidth — Transition width
4100 (default) | positive real scalar

Transition width of the IIR halfband filter, specified as a positive real scalar. Units are in Hz. The
value of the transition width must be less than half the input sample rate.

 dsp.IIRHalfbandDecimator

4-819

Dependencies

This property applies only when you set Specification to 'Transition width and stopband
attenuation' or 'Filter order and transition width'.
Data Types: single | double

DesignMethod — Design method
'Elliptic' (default) | 'Quasi-linear phase'

Design method for the IIR halfband filter, specified as 'Elliptic' or 'Quasi-linear phase'.
When the property is set to 'Quasi-linear phase', the first branch of the polyphase structure is a
pure delay, which results in an approximately linear phase response.

Dependencies

This property applies only when you set Specification to any accepted value except
'Coefficients'.

SampleRate — Input sample rate
44100 (default) | positive real scalar

Input sample rate, specified as a positive real scalar. Units are in Hz.

Dependencies

This property applies only when you set Specification to any accepted value except
'Coefficients'.
Data Types: single | double

Structure — Internal allpass filter implementation structure
'Minimum multiplier' (default) | 'Wave Digital Filter'

Internal allpass filter implementation structure, specified as 'Minimum multiplier' or 'Wave
Digital Filter'.

This property is not tunable.

Dependencies

This property applies only when you set 'Specification' to 'Coefficients'. Each structure
uses a different coefficients set, independently stored in the corresponding object property.

AllpassCoefficients1 — Allpass polynomial filter coefficients of first branch
[0.1284563; 0.7906755] (default) | [0.1284563 0.1534; 0.7906755 0.6745]

Allpass polynomial filter coefficients of the first branch, specified as an N-by-1 or N-by-2 matrix. N is
the number of first-order or second-order allpass sections.

Tunable: Yes

Dependencies

This property applies only when you set Specification to 'Coefficients' and Structure to
'Minimum multiplier'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

4 System Objects

4-820

AllpassCoefficients2 — Allpass polynomial filter coefficients of second branch
[0.4295667] (default) | [0.7906755 0.1534]

Allpass polynomial filter coefficients of the second branch, specified as an N-by-1 or N-by-2 matrix. N
is the number of first-order or second-order allpass sections.

Tunable: Yes

Dependencies

This property applies only when you set Specification to 'Coefficients' and Structure to
'Minimum multiplier'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WDFCoefficients1 — Allpass filter coefficients of first branch in Wave Digital Filter form
[0.1284563; 0.7906755] (default) | [0.1284563 0.1534; 0.7906755 0.6745]

Allpass filter coefficients of the first branch in Wave Digital Filter form, specified as an N-by-1 or N-
by-2 matrix. N is the number of first-order or second-order allpass sections. Each element must have
an absolute value less than or equal to 1.

This property is not tunable.

Dependencies

This property applies only when you set Specification to 'Coefficients' and Structure to
'Wave Digital Filter'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WDFCoefficients2 — Allpass filter coefficients of second branch in Wave Digital Filter form
[0.4295667] (default) | [0.7906755 0.1534]

Allpass filter coefficients of the second branch in Wave Digital Filter form, specified as the comma-
separated pair consisting of 'WDFCoefficients2' and a N-by-1 or N-by-2 matrix. N is the number
of first-order or second-order allpass sections. Each element must have an absolute value less than or
equal to 1.

This property is not tunable.

Dependencies

This property applies only when you set 'Specification' to 'Coefficients' and 'Structure'
to 'Wave Digital Filter'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

HasPureDelayBranch — Make first branch a pure delay
false (default) | true

Flag to make the first allpass branch a delay, specified as a logical scalar. When this property is true,
the first branch is treated as a pure delay and the properties AllpassCoefficients1 and
WDFCoefficients1 do not apply.

This property is not tunable.

 dsp.IIRHalfbandDecimator

4-821

Dependencies

This property applies only when you set Specification to 'Coefficients'.

Delay — Length of delay
1 (default) | finite positive scalar

Length of the first branch delay, specified as a finite positive scalar. The value of this property
specifies the number of samples by which you can delay the input to the first branch.

This property is not tunable.

Dependencies

This property applies only when you set Specification to 'Coefficients' and
HasPureDelayBranch to 1.
Data Types: single | double

HasTrailingFirstOrderSection — Treat the last section of the second branch as first
order
false (default) | true

Option to treat the last section of the second branch as first order, specified as a logical scalar. When
this property is 1 and the coefficients of the second branch are in an N-by-2 matrix, the object ignores
the second element of the last row of the matrix. The last section of the second branch then becomes
a first-order section. When this property is set to 0, the last section of the second branch is a second-
order section. When the coefficients of the second branch are in an N-by-1 matrix, this property is
ignored.

This property is not tunable.

Dependencies

This property applies only when you set Specification to 'Coefficients'.

Usage

Syntax
ylow = iirhalfbanddecim(x)
[ylow,yhigh] = iirhalfbanddecim(x)

Description

ylow = iirhalfbanddecim(x) filters the input signal, x, using the IIR halfband filter,
iirhalfbanddecim, and downsamples the output by a factor of 2.

[ylow,yhigh] = iirhalfbanddecim(x) computes the ylow and yhigh, of the analysis filter
bank, iirhalfbanddecim for input x. A Ki-by-N input matrix is treated as N independent channels.
The System object generates two power-complementary output signals by adding and subtracting the
two polyphase branch outputs respectively. ylow and yhigh are of the same size (Ko-by-N) and data
type. Ko = Ki/2, where 2 is the decimation factor.

4 System Objects

4-822

Input Arguments

x — Data input
column vector | matrix

Data input, specified as a column vector or a matrix. The number of rows in the input signal must be
even since the decimation factor is always 2 for this object. If the input is a matrix, each column is
treated as an independent channel.
Data Types: single | double

Output Arguments

ylow — Lowpass subband of decimator output
column vector | matrix

Lowpass subband of decimator output, returned as a column vector or a matrix. The output, ylow is a
lowpass halfband filtered and downsampled version of the input x. Due to the halfband nature of the
filter, the downsampling factor is always 2.
Data Types: single | double

yhigh — Highpass subband of decimator output
column vector | matrix

Highpass subband of decimator output, returned as a column vector or a matrix. The output, yhigh is
a highpass halfband filtered and downsampled version of the input x. Due to the halfband nature of
the filter, the downsampling factor is always 2.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.IIRHalfbandDecimator
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
info Information about filter System object
cost Estimate cost of implementing filter System object
polyphase Polyphase decomposition of multirate filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

 dsp.IIRHalfbandDecimator

4-823

Frequency Response of Quasi-Linear Phase IIR Halfband Decimator

Create a minimum-order lowpass IIR halfband decimation filter for data sampled at 44.1 kHz. The
filter has a transition width of 4.1 kHz, and a stopband attenuation of 80 dB.

IIRHalfbandDecim = dsp.IIRHalfbandDecimator(...
 'DesignMethod', 'Quasi-linear phase');

Obtain the filter coefficients.

c = coeffs(IIRHalfbandDecim);

Plot the magnitude and phase response.

fvtool(IIRHalfbandDecim,'Analysis','freq')

Extract Low Frequency Subband from Speech

Use a halfband analysis filter bank and interpolation filter to extract the low frequency subband from
a speech signal.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

4 System Objects

4-824

https://www.mathworks.com/products/matlab-online.html

Set up the audio file reader, the analysis filter bank, the audio device writer, and the interpolation
filter. The sampling rate of the audio data is 22050 Hz. The halfband filter has an order of 21 and a
transition width of 2 kHz.

afr = dsp.AudioFileReader('speech_dft.mp3','SamplesPerFrame',1024);

filterspec = 'Filter order and transition width';
Order = 21;
TW = 2000;

IIRHalfbandDecim = dsp.IIRHalfbandDecimator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',afr.SampleRate);

IIRHalfbandInterp = dsp.IIRHalfbandInterpolator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',afr.SampleRate/2);

ap = audioDeviceWriter('SampleRate',afr.SampleRate);

View the magnitude response of the halfband filter.

fvtool(IIRHalfbandDecim)

Read the speech signal from the audio file in frames of 1024 samples. Filter the speech signal into
lowpass and highpass subbands with a halfband frequency of 5512.5 Hz. Reconstruct a lowpass
approximation of the speech signal by interpolating the lowpass subband. Play the filtered output.

 dsp.IIRHalfbandDecimator

4-825

while ~isDone(afr)
 audioframe = afr();
 xlo = IIRHalfbandDecim(audioframe);
 ylow = IIRHalfbandInterp(xlo);
 ap(ylow);
end

Wait until the audio file ends, and then close the input file and release the audio output resource.

release(afr);
release(ap);

Two-Channel Filter Bank

Use a halfband decimator and interpolator to implement a two-channel filter bank. This example uses
an audio file input and shows that the power spectrum of the filter bank output does not differ
significantly from the input.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

Set up the audio file reader and audio device writer. Construct the IIR halfband decimator and
interpolator. Finally, set up the spectrum analyzer to display the power spectra of the filter-bank input
and output.

AF = dsp.AudioFileReader('speech_dft.mp3','SamplesPerFrame',1024);
AP = audioDeviceWriter('SampleRate',AF.SampleRate);

filterspec = 'Filter order and transition width';
Order = 51;
TW = 2000;

IIRHalfbandDecim = dsp.IIRHalfbandDecimator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',AF.SampleRate);

IIRHalfbandInterp = dsp.IIRHalfbandInterpolator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',AF.SampleRate/2,...
 'FilterBankInputPort',true);

SpecAna = dsp.SpectrumAnalyzer('SampleRate',AF.SampleRate,...
 'PlotAsTwoSidedSpectrum',false,'ReducePlotRate',false,...
 'ShowLegend',true,...
 'ChannelNames',{'Input signal','Filtered output signal'});

Read the audio 1024 samples at a time. Filter the input to obtain the lowpass and highpass subband
signals decimated by a factor of two. This is the analysis filter bank. Use the halfband interpolator as
the synthesis filter bank. Display the running power spectrum of the audio input and the output of the
synthesis filter bank. Play the output.

while ~isDone(AF)
 audioInput = AF();

4 System Objects

4-826

 [xlo,xhigh] = IIRHalfbandDecim(audioInput);
 audioOutput = IIRHalfbandInterp(xlo,xhigh);
 spectrumInput = [audioInput audioOutput];
 SpecAna(spectrumInput);
 AP(audioOutput);
end

release(AF);
release(AP);
release(SpecAna);

Filter Input into Lowpass and Highpass Subbands

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Create a halfband decimator for data sampled at 44.1 kHz. Use a minimum-order design with a
transition width of 2 kHz and a stopband attenuation of 60 dB.

IIRHalfbanddecim = dsp.IIRHalfbandDecimator(...
 'Specification','Transition width and stopband attenuation',...
 'TransitionWidth',2000,'StopbandAttenuation',60,'SampleRate',44.1e3);

 dsp.IIRHalfbandDecimator

4-827

Filter a two-channel input into lowpass and highpass subbands.

x = randn(1024,2);
[ylow,yhigh] = IIRHalfbanddecim(x);

Algorithms
Polyphase Implementation with Halfband Filters

When you filter your signal, dsp.IIRHalfbandDecimator uses an efficient polyphase
implementation for halfband filters. You can use the polyphase implementation to move the
downsample operation before filtering. This change enables you to filter at the lower sampling rate.

IIR halfband filters are generally modeled using two parallel allpass filter branches.

H(z) = 0.5 * [A1(z2) + z−1A2(z2)]

Elliptic Design

The allpass filters for elliptic IIR halfband filter are given as

A1(z) = ∏
k = 1

K1 ak
(1) + z−1

1 + ak
(1)z−1

A2(z) = ∏
k = 1

K2 ak
(2) + z−1

1 + ak
(2)z−1

Quasi-Linear Phase Design

To achieve a near-linear phase response for IIR halfband filters, make one of the branches a pure
delay. In this design, the cost of the filter increases.

The allpass filters for the quasi-linear phase IIR halfband filter are

A1(z) = z−k

where k is the length of the delay.

A2(z) = ∏
K = 1

K2
(1)

ak + z−1

1 + akz−1 ∏K = 1

K2
(2)

ck + bkz−1 + z−2

1 + bkz−1 + ckz−2

where N is the order of the IIR halfband filter.

This figure represents filtering and downsampling the input by two.

4 System Objects

4-828

Using the multirate noble identity for downsampling, you can move the downsampling operation
before filtering. This change enables you to filter at the lower rate.

To implement the halfband decimator efficiently, dsp.IIRHalfbandDecimator replaces the delay
block and downsampling operator with a commutator switch.

Analysis Filter Bank

The transfer function of the complementary highpass filter branch of the analysis filter bank is given
by

G(z) = 0.5 * [A1(z2)− z−1A2(z2)]

Graphically, you can represent the analysis filter bank as follows.

dsp.IIRHalfbandDecimator generates two power-complementary output signals by adding and
subtracting the two polyphase branch outputs respectively.

To summarize, dsp.IIRHalfbandDecimator

• Decimates the input prior to filtering.
• Acts as an analysis filter bank.
• Has non-linear phase response and uses few coefficients with elliptic design method.

 dsp.IIRHalfbandDecimator

4-829

• Has near-linear phase response at the cost of additional coefficients with quasi-linear phase
design method. One of the branches in this design is a pure delay.

References
[1] Lang, M. Allpass Filter Design and Applications. IEEE Transactions on Signal Processing. Vol. 46,

No. 9, Sept 1998, pp. 2505–2514.

[2] Harris, F.J. Multirate Signal Processing for Communication Systems. Prentice Hall. 2004, pp. 208–
209.

[3] Regalia, Phillip A., Sanjit K. Mitra, and P. P. Vaidyanathan. "The Digital All-Pass Filter: A Versatile
Signal Processing Building Block." Proceedings of the IEEE. Vol. 76, Number 1, 1988, pp.
19-37.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object supports code generation for ARM Cortex-M and ARM Cortex-A processors.

See Also
Functions
freqz | fvtool | info | cost | polyphase

Objects
dsp.IIRHalfbandInterpolator | dsp.FIRHalfbandDecimator |
dsp.FIRHalfbandInterpolator

Blocks
FIR Halfband Decimator | IIR Halfband Decimator

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2015b

4 System Objects

4-830

dsp.IIRHalfbandInterpolator
Package: dsp

Interpolate by a factor of two using polyphase IIR

Description
The dsp.IIRHalfbandInterpolator System object performs efficient polyphase interpolation of
the input signal by a factor of two. To design the halfband filter, you can specify the object to use an
elliptic design or a quasi-linear phase design. The object uses these design methods to compute the
filter coefficients. To filter the inputs, the object uses a polyphase structure. The allpass filters in the
polyphase structure are in a minimum multiplier form.

Elliptic design introduces nonlinear phase and creates the filter using fewer coefficients than quasi
linear design. Quasi-linear phase design overcomes phase nonlinearity at the cost of additional
coefficients.

Alternatively, instead of designing the halfband filter using a design method, you can specify the filter
coefficients directly. When you choose this option, the allpass filters in the two branches of the
polyphase implementation can be in a minimum multiplier form or in a wave digital form.

You can also use dsp.IIRHalfbandInterpolator object to implement the synthesis portion of a
two-band filter bank to synthesize a signal from lowpass and highpass subbands.

To upsample and interpolate your data:

1 Create the dsp.IIRHalfbandInterpolator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
iirhalfbandinterp = dsp.IIRHalfbandInterpolator
iirhalfbandinterp = dsp.IIRHalfbandInterpolator(Name,Value)

Description

iirhalfbandinterp = dsp.IIRHalfbandInterpolator returns an IIR halfband interpolation
filter, iirhalfbandinterp, with the default settings. Under the default settings, the System object
upsamples and interpolates the input data using a halfband frequency of 22050 Hz, a transition width
of 4100 Hz, and a stopband attenuation of 80 dB.

iirhalfbandinterp = dsp.IIRHalfbandInterpolator(Name,Value) returns an IIR halfband
interpolator, with additional properties specified by one or more Name,Value pair arguments.
Example: iirhalfbandinterp =
dsp.IIRHalfbandInterpolator('Specification','Filter order and stopband

 dsp.IIRHalfbandInterpolator

4-831

attenuation') creates an IIR halfband interpolator object with filter order set to 9 and stopband
attenuation set to 80 dB.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Specification — Filter design parameters
'Transition width and stopband attenuation' (default) | 'Filter order and stopband
attenuation' | 'Filter order and transition width' | 'Coefficients'

Filter design parameters, specified as a character vector. When you set Specification to one of the
filter design options, you can specify the filter design parameters using the corresponding
FilterOrder, StopbandAttenuation, and TransitionWidth properties. Also, you can specify
the design method using DesignMethod. When you set Specification to 'Coefficients', you
can specify the coefficients directly.

FilterOrder — Order of the IIR halfband filter
9 (default) | positive scalar integer

Order of the IIR halfband filter, specified as a positive scalar integer. If you set DesignMethod to
'Elliptic', then FilterOrder must be an odd integer greater than one. If you set DesignMethod
to 'Quasi-linear phase', then FilterOrder must be a multiple of four.

Dependencies

This property applies when you set Specification to 'Filter order and stopband
attenuation' or 'Filter order and transition width'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandAttenuation — Minimum attenuation needed in stopband
80 (default) | positive real scalar

Minimum attenuation needed in the stopband of the IIR halfband filter, specified as a positive real
scalar. Units are in dB.

Dependencies

This property applies only when you set Specification to 'Filter order and stopband
attenuation' or 'Transition width and stopband attenuation'.
Data Types: single | double

TransitionWidth — Transition width
4100 (default) | positive real scalar

Transition width of the IIR halfband filter, specified as a positive real scalar. Units are in Hz. The
value of the transition width must be less than half the input sample rate.

4 System Objects

4-832

Dependencies

This property applies only when you set Specification to 'Transition width and stopband
attenuation' or 'Filter order and transition width'.
Data Types: single | double

DesignMethod — Design method
'Elliptic' (default) | 'Quasi-linear phase'

Design method for the IIR halfband filter, specified as 'Elliptic' or 'Quasi-linear phase'.
When the property is set to 'Quasi-linear phase', the first branch of the polyphase structure is a
pure delay, which results in an approximately linear phase response.

Dependencies

This property applies only when you set Specification to any accepted value except
'Coefficients'.

SampleRate — Input sample rate
44100 (default) | positive real scalar

Input sample rate, specified as a positive real scalar. Units are in Hz.

Dependencies

This property applies only when you set Specification to any accepted value except
'Coefficients'.
Data Types: single | double

FilterBankInputPort — Option to use object as synthesis filter bank
false (default) | true

Option to use object as synthesis filter bank, specified as a logical value. If this property is false,
dsp.IIRHalfbandInterpolator acts as an interpolator. If this property is true, then
dsp.IIRHalfbandInterpolator acts as a synthesis filter bank and the algorithm accepts two
inputs: the lowpass and highpass subbands.

Dependencies

This property applies only when you set Specification to any accepted value except
'Coefficients'.

Structure — Filter structure used in coefficient mode
'Minimum multiplier' (default) | 'Wave Digital Filter'

Internal allpass filter implementation structure, specified as 'Minimum multiplier' or 'Wave
Digital Filter'. Each structure uses a different coefficients set, independently stored in the
corresponding object property.

This property is not tunable.

Dependencies

This property applies only when you set 'Specification' to 'Coefficients'.

 dsp.IIRHalfbandInterpolator

4-833

AllpassCoefficients1 — Allpass polynomial filter coefficients of first branch
[0.1284563; 0.7906755] (default) | [0.1284563 0.1534; 0.7906755 0.6745]

Allpass polynomial filter coefficients of the first branch, specified as an N-by-1 or N-by-2 matrix. N is
the number of first-order or second-order allpass sections.

Tunable: Yes
Dependencies

This property applies only when you set Specification to 'Coefficients' and Structure to
'Minimum multiplier'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

AllpassCoefficients2 — Allpass polynomial filter coefficients of second branch
[0.4295667] (default) | [0.7906755 0.1534]

Allpass polynomial filter coefficients of the second branch, specified as an N-by-1 or N-by-2 matrix. N
is the number of first-order or second-order allpass sections.

Tunable: Yes
Dependencies

This property applies only when you set Specification to 'Coefficients' and Structure to
'Minimum multiplier'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WDFCoefficients1 — Allpass filter coefficients of first branch in Wave Digital Filter form
[0.1284563; 0.7906755] (default) | [0.1284563 0.1534; 0.7906755 0.6745]

Allpass filter coefficients of the first branch in Wave Digital Filter form, specified as an N-by-1 or N-
by-2 matrix. N is the number of first-order or second-order allpass sections. All elements must have
an absolute value less than or equal to 1.

This property is not tunable.
Dependencies

This property applies only when you set Specification to 'Coefficients' and Structure to
'Wave Digital Filter'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WDFCoefficients2 — Allpass filter coefficients of second branch in Wave Digital Filter form
[0.4295667] (default) | [0.7906755 0.1534]

Allpass filter coefficients of the second branch in Wave Digital Filter form, specified as an N-by-1 or
N-by-2 matrix. N is the number of first-order or second-order allpass sections. All elements must have
an absolute value less than or equal to 1.

This property is not tunable.
Dependencies

This property applies only when you set Specification to 'Coefficients' and Structure to
'Wave Digital Filter'.

4 System Objects

4-834

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

HasPureDelayBranch — Make the first branch a pure delay
false (default) | true

Flag to make the first allpass branch a delay, specified as a logical scalar. When this property is true,
the first branch is treated as a pure delay and the properties AllpassCoefficients1 and
WDFCoefficients1 do not apply.

This property is not tunable.

Dependencies

This property applies only when you set Specification to 'Coefficients'.

Delay — Length of the delay
1 (default) | finite positive scalar

Length of the first branch delay, specified as a finite positive scalar. The value of this property
specifies the number of samples by which you can delay the input to the first branch.

This property is not tunable.

Dependencies

This property is applicable only when you set 'Specification' to 'Coefficients' and
HasPureDelayBranch to 1.
Data Types: single | double

HasTrailingFirstOrderSection — Make the last section of the second branch as first
order
false (default) | true

Option to treat the last section of the second branch as first order, specified as a logical scalar. When
this property is 1 and the coefficients of the second branch are in an N-by-2 matrix, the object ignores
the second element of the last row of the matrix. The last section of the second branch then becomes
a first-order section. When this property is set to 0, the last section of the second branch is a second-
order section. When the coefficients of the second branch are in an N-by-1 matrix, this property is
ignored.

This property is not tunable.

Dependencies

This property applies only when you set Specification to 'Coefficients'.

Usage

Syntax
y = iirhalfbandinterp(x1)
y = iirhalfbandinterp(x1,x2)

 dsp.IIRHalfbandInterpolator

4-835

Description

y = iirhalfbandinterp(x1) upsamples by two and interpolates the input signal x1 using the IIR
halfband interpolator, iirhalfbandinterp.

y = iirhalfbandinterp(x1,x2) implements a halfband synthesis filter bank for the inputs x1
and x2. x1 is the lowpass output of a halfband analysis filter bank and x2 is the highpass output of a
halfband analysis filter bank. dsp.IIRHalfbandInterpolator implements a synthesis filter bank
only when the FilterBankInputPort property is true.

Input Arguments

x1 — Data input
column vector | matrix

Data input to the IIR halfband interpolator, specified as a column vector or a matrix. This signal is the
lowpass output of a halfband analysis filter bank. If the input signal is a matrix, each column of the
matrix is treated as an independent channel.
Data Types: single | double

x2 — Second data input
column vector | matrix

Second data input to the synthesis filter bank, specified as a column vector or a matrix. This signal is
the highpass output of a halfband analysis filter bank. If the input signal is a matrix, each column of
the matrix is treated as an independent channel.

The size, data type, and complexity of both the inputs must be the same.
Data Types: single | double

Output Arguments

y — Output of interpolator
column vector | matrix

Output of the interpolator, returned as a column vector or a matrix. The number of rows in the
interpolator output is twice the number of rows in the input signal.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.IIRHalfbandInterpolator
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
info Information about filter System object
cost Estimate cost of implementing filter System object

4 System Objects

4-836

polyphase Polyphase decomposition of multirate filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Frequency response of Quasi-linear Phase IIR Halfband Interpolator

Create a minimum order lowpass IIR half-band interpolation filter for data sampled at 44.1 kHz. The
filter has a transition width of 4.1 kHz, and a stopband attenuation of 80 dB.

IIRHalfbandInterp = dsp.IIRHalfbandInterpolator(...
 'DesignMethod', 'Quasi-linear phase');

Obtain filter coefficients

c = coeffs(IIRHalfbandInterp);

Plot the Magnitude and Phase response

fvtool(IIRHalfbandInterp,'Analysis','freq')

 dsp.IIRHalfbandInterpolator

4-837

Extract Low Frequency Subband from Speech

Use a halfband analysis filter bank and interpolation filter to extract the low frequency subband from
a speech signal.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

Set up the audio file reader, the analysis filter bank, the audio device writer, and the interpolation
filter. The sampling rate of the audio data is 22050 Hz. The halfband filter has an order of 21 and a
transition width of 2 kHz.

afr = dsp.AudioFileReader('speech_dft.mp3','SamplesPerFrame',1024);

filterspec = 'Filter order and transition width';
Order = 21;
TW = 2000;

IIRHalfbandDecim = dsp.IIRHalfbandDecimator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',afr.SampleRate);

IIRHalfbandInterp = dsp.IIRHalfbandInterpolator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',afr.SampleRate/2);

ap = audioDeviceWriter('SampleRate',afr.SampleRate);

View the magnitude response of the halfband filter.

fvtool(IIRHalfbandDecim)

4 System Objects

4-838

https://www.mathworks.com/products/matlab-online.html

Read the speech signal from the audio file in frames of 1024 samples. Filter the speech signal into
lowpass and highpass subbands with a halfband frequency of 5512.5 Hz. Reconstruct a lowpass
approximation of the speech signal by interpolating the lowpass subband. Play the filtered output.

while ~isDone(afr)
 audioframe = afr();
 xlo = IIRHalfbandDecim(audioframe);
 ylow = IIRHalfbandInterp(xlo);
 ap(ylow);
end

Wait until the audio file ends, and then close the input file and release the audio output resource.

release(afr);
release(ap);

Two-Channel Filter Bank

Use a halfband decimator and interpolator to implement a two-channel filter bank. This example uses
an audio file input and shows that the power spectrum of the filter bank output does not differ
significantly from the input.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

 dsp.IIRHalfbandInterpolator

4-839

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

Set up the audio file reader and audio device writer. Construct the IIR halfband decimator and
interpolator. Finally, set up the spectrum analyzer to display the power spectra of the filter-bank input
and output.

AF = dsp.AudioFileReader('speech_dft.mp3','SamplesPerFrame',1024);
AP = audioDeviceWriter('SampleRate',AF.SampleRate);

filterspec = 'Filter order and transition width';
Order = 51;
TW = 2000;

IIRHalfbandDecim = dsp.IIRHalfbandDecimator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',AF.SampleRate);

IIRHalfbandInterp = dsp.IIRHalfbandInterpolator(...
 'Specification',filterspec,'FilterOrder',Order,...
 'TransitionWidth',TW,'SampleRate',AF.SampleRate/2,...
 'FilterBankInputPort',true);

SpecAna = dsp.SpectrumAnalyzer('SampleRate',AF.SampleRate,...
 'PlotAsTwoSidedSpectrum',false,'ReducePlotRate',false,...
 'ShowLegend',true,...
 'ChannelNames',{'Input signal','Filtered output signal'});

Read the audio 1024 samples at a time. Filter the input to obtain the lowpass and highpass subband
signals decimated by a factor of two. This is the analysis filter bank. Use the halfband interpolator as
the synthesis filter bank. Display the running power spectrum of the audio input and the output of the
synthesis filter bank. Play the output.

while ~isDone(AF)
 audioInput = AF();
 [xlo,xhigh] = IIRHalfbandDecim(audioInput);
 audioOutput = IIRHalfbandInterp(xlo,xhigh);
 spectrumInput = [audioInput audioOutput];
 SpecAna(spectrumInput);
 AP(audioOutput);
end

release(AF);
release(AP);
release(SpecAna);

4 System Objects

4-840

Upsample and Interpolate Multichannel Input with IIR Halfband Interpolator

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Create a half-band interpolation filter for data sampled at 44.1 kHz. The filter order is 51 with a
transition width of 4.1 kHz. Use the filter to upsample and interpolate a multichannel input.

Fs = 44.1e3;
filterspec = 'Filter order and transition width';
Order = 51;
TW = 4.1e3;
iirhalfbandinterp = dsp.IIRHalfbandInterpolator(...
 'Specification',filterspec,...
 'FilterOrder',Order,...
 'TransitionWidth',TW,...
 'SampleRate',Fs);

x = randn(1024,4);
y = iirhalfbandinterp(x);

 dsp.IIRHalfbandInterpolator

4-841

Algorithms
Polyphase Implementation with Halfband Filters

When you filter your signal, dsp.IIRHalfbandInterpolator uses an efficient polyphase
implementation for halfband filters. You can use a polyphase implementation to move the upsampling
operation after filtering. This change enables you to filter at the lower sampling rate.

IIR halfband filters are generally modeled using two parallel allpass filter branches.

H(z) = 0.5 * [A1(z2) + z−1A2(z2)]

Elliptic Design

The allpass filters for elliptic IIR halfband filter are given as

A1(z) = ∏
k = 1

K1 ak
(1) + z−1

1 + ak
(1)z−1

A2(z) = ∏
k = 1

K2 ak
(2) + z−1

1 + ak
(2)z−1

Quasi-Linear Phase Design

A near-linear phase response for IIR halfband filters is achieved by making one of the branches a
pure delay. In this design, the cost of the filter increases.

The allpass filters for quasi-linear phase IIR halfband filter are

A1(z) = z−k

where, k is the length of the delay.

A2(z) = ∏
K = 1

K2
(1)

ak + z−1

1 + akz−1 ∏K = 1

K2
(2)

ck + bkz−1 + z−2

1 + bkz−1 + ckz−2

where N is the order of the IIR halfband filter.

Graphically, you can represent upsampling by two followed by filtering with the following figure

Using the multirate noble identity for upsampling, you can move the upsampling operation after
filtering. This enables you to filter at the lower rate.

4 System Objects

4-842

To efficiently implement the halfband interpolator, dsp.IIRHalfbandInterpolator replaces the
upsampling operator, delay block, and adder with a commutator switch. The commutator switch
operates at twice the input sample rate. This is shown in the following figure:

The commutator switch takes input samples from the two branches alternately, one sample at a time.
This doubles the sampling rate of the input signal.

Synthesis Filter Bank

Transfer function of the complementary high-pass filter branch of the synthesis filter bank is given by

G(z) = 0.5 * [A1(z2)− z−1A2(z2)]

Graphically, you can represent the synthesis filter bank as

dsp.IIRHalfbandInterpolator to implement the synthesis portion of a two-band filter bank to
synthesize a signal from lowpass and highpass subbands.

To summarize, dsp.IIRHalfbandInterpolator

• Filters the input before upsampling
• acts as a synthesis filter bank
• has non-linear phase response and uses few coefficients with elliptic design method

 dsp.IIRHalfbandInterpolator

4-843

• has near-linear phase response at the cost of additional coefficients with quasi-linear phase design
method. One of the branches in this design is a pure delay.

References
[1] Lang, M. Allpass Filter Design and Applications. IEEE Transactions on Signal Processing. Vol. 46,

No. 9, Sept 1998, pp. 2505–2514.

[2] Harris, F.J. Multirate Signal Processing for Communication Systems. Prentice Hall. 2004, pp. 208–
209.

[3] Regalia, Phillip A., Sanjit K. Mitra, and P. P. Vaidyanathan. "The Digital All-Pass Filter: A Versatile
Signal Processing Building Block." Proceedings of the IEEE. Vol. 76, Number 1, 1988, pp.
19-37.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object supports code generation for ARM Cortex-M and ARM Cortex-A processors.

See Also
Functions
freqz | fvtool | info | cost | polyphase

Objects
dsp.IIRHalfbandDecimator | dsp.FIRHalfbandDecimator |
dsp.FIRHalfbandInterpolator

Blocks
IIR Halfband Interpolator

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2015b

4 System Objects

4-844

dsp.Interpolator
Package: dsp

(To be removed) Linear or polyphase FIR interpolation

Note dsp.Interpolator will be removed in a future release. Use dsp.FIRInterpolator,
interp1 instead. For more information, see “Compatibility Considerations”.

Description
The dsp.Interpolator System object interpolates values between real-valued input samples using
linear or polyphase FIR interpolation. Specify which values to interpolate by providing a vector of
interpolation points. An interpolation point of 1 refers to the first sample in the input. To interpolate
the value halfway between the second and third sample in the input, specify an interpolation point of
2.5. Interpolation points that are not within the valid range are replaced with the closest value in the
valid range.

To interpolate a real-valued input signal:

1 Create the dsp.Interpolator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
interp = dsp.Interpolator
interp = dsp.Interpolator(Name,Value)

Description

interp = dsp.Interpolator creates an interpolation System object, interp, to interpolate
values between real-valued input samples using linear interpolation.

interp = dsp.Interpolator(Name,Value)creates an interpolation System object, interp, with
each specified property set to the specified value. Enclose each property name in single quotes.
Example: interp = dsp.Interpolator('InterpolationPointsSource','Input port')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 dsp.Interpolator

4-845

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InterpolationPointsSource — Source of interpolation points
'Property' (default) | 'Input port'

Method to specify the interpolation points, specified as one of the following:

• 'Property' — Specify the interpolation points through the “InterpolationPoints” on page 4-0
property.

• 'Input port' — Pass the interpolation points as an input to the System object algorithm.

InterpolationPoints — Interpolation points
[1.1;4.8;2.67;1.6;3.2] (default) | vector | matrix | N-D array

Interpolation points, specified as a vector, matrix, or an N-D array. The valid range of the values in the
interpolation vector is from 1 to the number of samples in each channel of the input. If you specify
interpolation points outside the valid range, the object clips the point to the nearest point in the valid
range. For example, if the input is [2;3.1;-2.1], the valid range of interpolation points is from 1 to
3. If you specify a [-1;1.5;2;2.5;3;3.5] vector of interpolation points, the interpolator object
clips -1 to 1 and 3.5 to 3. This clipping results in the interpolation points [1 1.5 2 2.5 3 3].

For details on the dimension of the interpolation points array and how that influences the dimension
of the output, see the tables in the “ipts” on page 4-0 input of the System object.

Tunable: Yes

Dependencies

This property applies only when you set the “InterpolationPointsSource” on page 4-0 property to
'Property'.

Method — Interpolation method
'Linear' (default) | 'FIR'

Interpolation method, specified as one of the following:

• 'Linear' –– The object interpolates data values by assuming that the data varies linearly
between samples taken at adjacent sample times.

• 'FIR' –– The object uses polyphase interpolation to replace filtering (convolution) at the
upsampled rate with a series of convolutions at the lower rate. If the input has insufficient low-
rate samples to perform FIR interpolation, the interpolator object performs linear interpolation.
For more details, see the “FilterHalfLength” on page 4-0 property.

FilterHalfLength — Half-length of interpolation filter
3 (default) | integer scalar greater than 0

For a filter half-length of P, the polyphase FIR subfilters have length 2P. FIR interpolation always
requires 2P low-rate samples for every interpolation point.

• If the interpolation point does not correspond to a low-rate sample, FIR interpolation requires P
low-rate samples below and P low-rate samples above the interpolation point.

• If the interpolation point corresponds to a low-rate sample, the 2P-sample requirement includes
the low-rate sample.

4 System Objects

4-846

• If the input has less than 2P neighboring low-rate samples, the interpolator object uses linear
interpolation.

For example, for an input [1 4 1 4 1 4 1 4], upsampling by a factor of 4 results in equally
spaced interpolation points, InterP = [1:0.25:8]. The points InterP(9:12) are [3.0 3.25
3.5 3.75]. If you set FilterHalfLength to 2, interpolating at these points uses the 4 low-rate
samples from the input with indices (2,3,4,5). If you set FilterHalfLength to 4, the interpolator
object uses linear interpolation, because the input does not have enough low-rate samples to perform
FIR interpolation.

The longer the FilterHalfLength property, the better the quality of the interpolation. However,
increasing the filter half-length increases computation time and requires more low-rate samples
below and above the interpolation point. In general, setting the FilterHalfLength property
between 4 and 6 provides a reasonably accurate interpolation.

Dependencies

This property applies only when you set the “Method” on page 4-0 property to 'FIR'.

InterpolationPointsPerSample — Upsampling factor
3 (default) | integer scalar greater than 0

Upsampling factor, specified as an integer scalar greater than 0. An upsampling factor of L inserts L –
1 zeros between low-rate samples. Interpolation results from filtering the upsampled sequence with a
lowpass anti-imaging filter. The interpolator object uses a polyphase FIR implementation with
InterpolationPointsPerSample subfilters of length 2P, where P is the value you specify in the
“FilterHalfLength” on page 4-0 property. For nL low-rate samples in the upsampled input, where
n=1,2,..., the interpolator object uses exactly one of the InterpolationPointsPerSample
subfilters to interpolate at the points nL+i/L, where i = 0, 1, 2, …, L – 1.

If you specify interpolation points that do not correspond to a polyphase subfilter, the object rounds
the point down to the nearest interpolation point associated with a polyphase subfilter. Suppose you
set the InterpolationPointsPerSample property to 4 and interpolate at the points [3 3.2 3.4
3.6 3.8]. The interpolator object uses the first polyphase subfilter for the points [3.0 3.2], the
second subfilter for the point 3.4, the third subfilter for the point 3.6, and the fourth subfilter for the
point 3.8.

Dependencies

This property applies only when you set the “Method” on page 4-0 property to 'FIR'.

Bandwidth — Normalized input bandwidth
0.5 (default) | real scalar greater than 0 and less than or equal to 1

Bandwidth to which the interpolated output samples must be constrained, specified as a real scalar
greater than 0 and less than or equal to 1. A value of 1 equals the Nyquist frequency, or half the
sampling frequency, Fs. Use this property to take advantage of the bandlimited frequency content of
the input. For example, if the input signal does not have frequency content above Fs/4, you can
specify a value of 0.5 for the Bandwidth property.

Dependencies

This property applies only when you set the “Method” on page 4-0 property to 'FIR'.

 dsp.Interpolator

4-847

Usage

Syntax
interpOut = interp(input)
interpOut = interp(input,ipts)

Description

interpOut = interp(input) outputs the interpolated sequence, interpOut, of the input vector
or matrix input, as specified in the “InterpolationPoints” on page 4-0 property. Each column of
input is treated as an independent channel of the input.

interpOut = interp(input,ipts) outputs the interpolated sequence as specified by ipts.

To specify the interpolation points, set the “InterpolationPointsSource” on page 4-0 property to
'Input port'.

t = 0:.0001:.0511;
x = sin(2*pi*20*t);
x1 = x(1:50:end);
ipts = 1:0.1:length(x1);
interp = dsp.Interpolator('InterpolationPointsSource','Input port');
interpOut = interp(x1',ipts');

Input Arguments

input — Data input
vector | matrix | N-D array

Input that is interpolated by the object, specified as a vector, matrix, or N-D array.
Example: t = 0:0.0001:0.0511; input = sin(2*pi*20*t);
Data Types: single | double

ipts — Interpolation points
vector | matrix | N-D array

Interpolation array IPts, specified as a vector, matrix, or N-D array. The interpolation array represents
the points in time at which to interpolate values of the input signal. An entry of 1 in IPts refers to the
first sample of the input, an entry of 2.5 refers to the sample halfway between the second and third
input sample, and so on. In most cases, when IPts is a vector, it can be of any length.

Valid values in the interpolation array IPts range from 1 to the number of samples in each channel of
the input. For instance, given a length-5 input vector D, all entries of IPts must range from 1 to 5. IPts
cannot contain entries such as 7 or –9, because D does not have a seventh or ninth entry.

The algorithm replaces any out-of-range values in IPts with the closest value in the valid range (from 1
to the number of input samples). Then it performs the interpolation using the clipped version of IPts.

Consider the following input data and interpolation points vector:

• D = [11 22 33 44]'

4 System Objects

4-848

• IPts = [10 2.6 -3]'

Because D has four samples, valid interpolation points range from 1 to 4. The algorithm clips
interpolation point 10 down to to 4 and the point –3 up to 1. The result is the clipped interpolation
vector IPtsClipped = [4 2.6 1]'.

Depending on the dimension of the input and the dimension of IPts, the algorithm applies IPts to the
input in one of the following ways:

• If IPts is an array, the object applies IPts across the first dimension of an N-D array, resulting in an
N-D array output.

• If IPts is a vector, the object applies IPts to each input vector (as if the input vector were a single
channel), resulting in a vector output with the same orientation as the input (row or column).

The following tables summarize how the object applies the interpolation array IPts to all the possible
types of inputs. The table also shows the resulting output dimensions.

This table describes the behavior when InterpolationPointsSource is set to 'Property'.

Input Dimensions Valid Dimensions of
Interpolation Array
IPts

How Object Applies
IPts to Input

Output Dimensions

M-by-N-by-K matrix P-by-1 column Applies IPts to the first
dimension of the input

P-by-N-by-K array

P-by-N-by-K matrix Applies each column
element of IPts to the
corresponding column
of the input matrix

P-by-N-by-K array

M-by-N matrix 1-by-N row Applies each column
element of IPts to the
corresponding column
of the input matrix

1-by-N row

P-by-1 column Applies IPts to each input
column

P-by-N matrix

P-by-N matrix Applies the columns of
IPts to the corresponding
columns of the input
matrix

M-by-1 column 1-by-P row

(the algorithm treats IPts
as a column)

Applies IPts to the input
column

P-by-1 column

P-by-1 column
1-by-N row

(not recommended)

1-by-N row Not applicable. Object
copies input vector.

1-by-N row, a copy of
the input vector

P-by-1 column P-by-N matrix, where
each row is a copy of
the input vector

P-by-N matrix

This table describes the behavior when InterpolationPointsSource is set to 'Input port'.

 dsp.Interpolator

4-849

Input Dimensions Valid Dimensions of
Interpolation Array
IPts

How Object Applies
IPts to Input

Output Dimensions

M-by-N-by-K matrix Column vector of length
P

Applies IPts to the first
dimension of the input

P-by-N-by-K array

P-by-N-by-K matrix Applies each column
element of IPts to the
corresponding column
of the input matrix

P-by-N-by-K array

M-by-N matrix 1-by-N row Applies each column
element of IPts to the
corresponding column
of the input matrix

1-by-N row

P-by-1 column Applies IPts to each input
column

P-by-N matrix

P-by-N matrix Applies the columns of
IPts to the corresponding
columns of the input
matrix

M-by-1 column 1-by-P row Applies IPts to the input
column

P-by-1 column
P-by-1 column

1-by-N row

(not recommended)

1-by-N row Not applicable. Object
copies input vector.

1-by-N row, a copy of
the input vector

P-by-1 column P-by-N matrix, where
each row is a copy of
the input vector

P-by-N matrix

Example: ipts = [1:10];
Data Types: single | double

Output Arguments

interpOut — Interpolated sequence
vector | matrix | N-D array

Interpolated sequence, returned as a vector, matrix, or N-D array. The dimension of the output
depends on the dimensions of the input and the interpolation points array. For more details on the
dimensions, see the tables in “ipts” on page 4-0 .
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

4 System Objects

4-850

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Interpolate a Sum of Sinusoids

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Interpolate a sum of sinusoids with FIR interpolation, and with 'Input port' as the source of
interpolation points.

Fs = 1000;
t = 0:(1/Fs):0.1-(1/Fs);
x = cos(2*pi*50*t)+0.5*sin(2*pi*100*t);
x1 = x(1:4:end);
I = 1:(1/4):length(x1);
interp = dsp.Interpolator('Method','FIR',...
'FilterHalfLength',3,'InterpolationPointsSource','Input Port');
y = interp(x1',I');
stem(I,y,'r');
hold on;
axis([0 25 -2 2]);
stem(x1,'b','linewidth',2);
legend('Interpolated Signal','Original',...
'Location','Northeast');

Algorithms
Linear Interpolation Mode

In the linear interpolation mode, the algorithm interpolates data values by assuming that the data
varies linearly between samples taken at adjacent sample times.

Suppose the input signal is D = [1 2 1.5 3 0.25]' . The left plot shows the samples in D and the
right plot shows the linearly interpolated values between the samples in D.

 dsp.Interpolator

4-851

When the interpolation points are out of range, the algorithm clips the invalid interpolation points.
Consider an input signal, D = [1 2 1.5 3 0.25]' , and an interpolation vector, IPts = [-4 2.7
4.3 10]'. The interpolated output is given by [1 1.65 2.175 0.25]'.

FIR Interpolation Mode

In the FIR interpolation mode, the algorithm interpolates data values using an FIR interpolation filter.
The FIR filter is implemented using a polyphase structure. A polyphase implementation splits the
lowpass FIR filter impulse response into a number of different subfilters.

Let L represent the number of interpolation points per sample, or the upsampling factor. Let P
represent the half length of the polyphase subfilters. Indexing from zero, if h(n) is the impulse
response of the FIR filter, the kth subfilter is:

hk(n) = h(k + nL) k = 0, 1, …, L− 1 n = 0, 1, …, 2P − 1

4 System Objects

4-852

The table describes the decomposition of an 18-coefficient FIR filter into 3 polyphase subfilters of
length 6, the defaults for the FIR interpolator object.

Coefficients Polyphase Subfilter
h(0),h(3),h(6), ..., h(15) h0(n)
h(1),h(4),h(7), ..., h(16) h1(n)
h(2),h(5),h(8), ..., h(17) h2(n)

An upsampling factor of L inserts L – 1 zeros between low-rate samples. Interpolation results from
filtering the upsampled sequence with a lowpass anti-imaging filter.

Compatibility Considerations
dsp.Interpolator System object will be removed
Warns starting in R2021b

dsp.Interpolator System object will be removed in a future release. Use
dsp.FIRInterpolator, interp1 instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the replacement features.

Discouraged Usage Replacement using dsp.FIRInterpolator
Linear interpolation

Set up the input signal.

n = 0:11;
x = sin(2*pi*n/length(n));

Create the dsp.Interpolator object and pass
the input signal to the object.

L = 10;
t = (n(1):1/L:n(end)+1-1/L)+1/L;
interpolator = dsp.Interpolator('InterpolationPoints',...
t');
y = interpolator(x');

If you are using a release prior to R2016b,
replace interpolator(x) with
step(interpolator,x) and
firInterpolator(x) with
step(firInterpolator,x).

Linear interpolation

Create a triangle interpolation filter. This filter
yields a linear interpolation template. Apply this
filter to the input signal.

hLin = triang(2*L-1);
firInterpolator = dsp.FIRInterpolator(L,hLin);
yf = firInterpolator(x');

Plot and compare the interpolated outputs.

scatter(t,y);
hold on;
scatter(t,yf,'+');
hold off;
legend('dsp.Interpolator','dsp.FIRInterpolator');

 dsp.Interpolator

4-853

Discouraged Usage Replacement using dsp.FIRInterpolator
FIR interpolation

Set up the input signal.

n = 1:60;
x = sin(10*pi*n/length(n))';

Create the dsp.Interpolator object and pass
the input signal to the object.

L = 5;
P = 6;
t = 1:1/L:length(x);
intr = dsp.Interpolator('Method','FIR',...
 'FilterHalfLength',P,...
 'InterpolationPoints', t',...
 'InterpolationPointsPerSample',L);
y_int = intr(x);

If you are using a release prior to R2016b,
replace intr(x) with step(intr,x) and
firintr(x) with step(firintr,x).

FIR interpolation

Determine FIR coefficients of
dsp.Interpolator to use with
dsp.FIRInterpolator.

FIRcoeffs = intfilt(L,P,0.5);
hFIR = [zeros(2*L-mod(length(FIRcoeffs),2*L),1); FIRcoeffs(:)];

Create an dsp.FIRInterpolator object and
pass the input signal to the object.

firintr = dsp.FIRInterpolator(L,hFIR);
y_firint = firintr(x);

Plot and compare the input and the interpolated
outputs.

i0 = floor(length(hFIR)/2); % Latency
tfir = (1:1/L:length(x)+1-1/L) - i0/L;

figure;
hold on;

scatter(n,x,50,'filled','Dk')
scatter(t,y_int,50,'red');
scatter(tfir,y_firint,50,'bx');

legend('Low rate input','dsp.Interpolator',...
'dsp.FIRInterpolator','Location','Northeast');

Discouraged Usage Replacement using interp1
Set up the input signal.

n = (1:60);
x = sin(10*pi*n/length(n))';

For uniformly spaced interpolation points, use
this t vector.

t = 1:1/10:60;

For non uniformly spaced interpolation points,
use this t vector instead.

t = sort(n(1)+(n(end)-n(1))*rand(1,500));

Create the dsp.Interpolator object and pass
the input signal to the object.

intr = dsp.Interpolator('Method','Linear','InterpolationPoints', t');
y_int = intr(x);

Pass the input signal to the interp1 function.

y_interp1 = interp1(n,x,t);

Plot and compare the input and the interpolated
outputs.

figure;
hold on;

scatter(1+(0:length(x)-1),x,50,'filled','Dk')
scatter(t,y_int,50,'red');
scatter(t,y_interp1,50,'blue','x');

legend('Low rate input','dsp.Interpolator',...
'interp1','Location','Northeast');

4 System Objects

4-854

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.FIRInterpolator | dsp.CICCompensationInterpolator | dsp.CICInterpolator |
dsp.FIRHalfbandInterpolator | dsp.IIRHalfbandInterpolator |
dsp.VariableFractionalDelay

Blocks
CIC Compensation Interpolator | CIC Interpolation | FIR Halfband Interpolator | IIR Halfband
Interpolator | Interpolation

Introduced in R2012a

 dsp.Interpolator

4-855

dsp.KalmanFilter
Package: dsp

(To be removed) Estimate system measurements and states using Kalman filter

Note dsp.KalmanFilter will be removed in a future release. Use the Kalman filter functionality in
Sensor Fusion and Tracking Toolbox™ instead.

Description
The dsp.KalmanFilter System object is an estimator used to recursively obtain a solution for
linear optimal filtering. This estimation is made without precise knowledge of the underlying dynamic
system. The Kalman filter implements the following linear discrete-time process with state, x, at the
kth time-step: x(k) = Ax(k− 1) + Bu(k− 1) + w(k− 1) (state equation). This measurement, z, is given
as: z(k) = Hx(k) + v(k) (measurement equation).

The Kalman filter algorithm computes the following two steps recursively:

• Prediction: Process parameters x (state) and P (state error covariance) are estimated using the
previous state.

• Correction: The state and error covariance are corrected using the current measurement.

To filter each channel of the input:

1 Create the dsp.KalmanFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
kalman = dsp.KalmanFilter
kalman = dsp.KalmanFilter(STMatrix, MMatrix, PNCovariance, MNCovariance,
CIMatrix)
kalman = dsp.KalmanFilter(Name,Value)

Description

kalman = dsp.KalmanFilter returns the Kalman filter System object, kalman, with default
values for the parameters.

kalman = dsp.KalmanFilter(STMatrix, MMatrix, PNCovariance, MNCovariance,
CIMatrix) returns a Kalman filter System object, kalman. The StateTransitionMatrix property
is set to STMatrix, the MeasurementMatrix property is set to MMatrix, the
ProcessNoiseCovariance property is set to PNCovariance, the

4 System Objects

4-856

MeasurementNoiseCovariance property is set to MNCovariance, and the ControlInputMatrix
property is set to CIMatrix.

kalman = dsp.KalmanFilter(Name,Value) returns an Kalman filter System object, kalman,
with each property set to the specified value. Enclose each property name in single quotes.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

StateTransitionMatrix — Model of state transition
1 (default) | scalar | square matrix

Specify A in the state equation that relates the state at the previous time step to the state at current
time step. A is a square matrix with each dimension equal to the number of states.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ControlInputMatrix — Model of relation between control input and states
1 (default) | column vector

Specify B in the state equation that relates the control input to the state. B is a column vector with a
number of rows equal to the number of states.

Dependencies

This property is activated only when the ControlInputPort property value is true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MeasurementMatrix — Model of relation between states and measurement output
1 (default) | row vector

Specify H in the measurement equation that relates the states to the measurements. H is a row
vector with a number of columns equal to the number of measurements.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProcessNoiseCovariance — Covariance of process noise
0.1 (default) | scalar | square matrix

Specify Q as a square matrix with each dimension equal to the number of states. Q is the covariance
of the white Gaussian process noise, w, in the state equation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MeasurementNoiseCovariance — Covariance of measurement noise
0.1 (default) | scalar | square matrix

 dsp.KalmanFilter

4-857

Specify R as a square matrix with each dimension equal to the number of states. R is the covariance
of the white Gaussian process noise, v, in the measurement equation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialStateEstimate — Initial value for states
0 (default) | scalar | column vector

Specify an initial estimate of the states of the model as a column vector with length equal to the
number of states.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialErrorCovarianceEstimate — Initial value for state error covariance
0.1 (default) | scalar | square matrix

Specify an initial estimate for covariance of the state error, as a square matrix with each dimension
equal to the number of states.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DisableCorrection — Disable port for filters
false (default) | true

Specify as a scalar logical value, disabling System object filters from performing the correction step
after the prediction step in the Kalman filter algorithm.

ControlInputPort — Presence of a control input
true (default) | false

Specify if the control input is present, using a scalar logical value. The default value is true.

Usage

Syntax
[zEst, xEst, MSE_Est, zPred, xPred, MSE_Pred] = kalman(z,u)

Description

[zEst, xEst, MSE_Est, zPred, xPred, MSE_Pred] = kalman(z,u) carries out the iterative
Kalman filter algorithm over measurements z and control inputs u. The columns in z and u are
treated as inputs to separate parallel filters, whose correction (or update) step can be disabled by the
DisableCorrection property. The values returned are estimated measurements zEst, estimated
states xEst, MSE of estimated states MSE_Est, predicted measurements zPred, predicted states
xPred, and MSE of predicted states MSE_Pred.

Input Arguments

z — Measurement input
vector | matrix

Measurement input, specified as a vector or a matrix.

4 System Objects

4-858

The ratio of the number of rows of the measurement input to the number of rows of the
MeasurementMatrix property must be equal to the ratio of the number of rows of the control input
to the number of columns of the ControlInputMatrix property.

The measurement signal can be a variable-size input. Once the object is locked, you can change the
size of each input channel, but the number of channels cannot change.
Data Types: single | double

u — Control input
vector | matrix

Control input, specified as a vector or a matrix.

The ratio of the number of rows of the control input to the number of columns of the
ControlInputMatrix property must be equal to the ratio of the number of rows of the
measurement input to the number of rows of the MeasurementMatrix property.

The control signal can be a variable-size input. Once the object is locked, you can change the size of
each input channel, but the number of channels cannot change.
Data Types: single | double

Output Arguments

zEst — Estimated measurements
vector | matrix

Estimated measurements, returned as a vector or matrix.
Data Types: single | double

xEst — Estimated state
vector | matrix

Estimated state, returned as a vector or matrix.
Data Types: single | double

MSE_Est — MSE of estimated states
scalar | column vector

Mean-squared error of estimated states, returned as a scalar or column vector. If the input is a row
vector, the MSE of the estimated states is a scalar.
Data Types: single | double

zPred — Predicted measurements
vector | matrix

Predicted measurements, returned as a vector or a matrix.
Data Types: single | double

xPred — Predicted states
vector | matrix

Predicted states, returned as a vector or a matrix.

 dsp.KalmanFilter

4-859

Data Types: single | double

MSE_Pred — MSE of predicted states
scalar | column vector

Mean-squared error of predicted states, returned as a scalar or a column vector. If the input is a row
vector, the MSE of the estimated states is a scalar.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Estimate Changing Scalar

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create the System objects for the changing scalar input, the Kalman filter, and the scope (for
plotting).

numSamples = 4000;
R = 0.02;
src = dsp.SignalSource;
src.Signal = [ones(numSamples/4,1);-3*ones(numSamples/4,1);...
 4*ones(numSamples/4,1); -0.5*ones(numSamples/4,1)];
tScope = timescope('NumInputPorts',3,...
 'TimeSpanSource','Property','TimeSpan',numSamples, ...
 'TimeUnits','Seconds','YLimits',[-5 5], ...
 'ShowLegend',true); % Create the Time Scope
kalman = dsp.KalmanFilter('ProcessNoiseCovariance', 0.0001,...
 'MeasurementNoiseCovariance',R,...
 'InitialStateEstimate',5,...
 'InitialErrorCovarianceEstimate',1,...
 'ControlInputPort',false); %Create Kalman filter

Add noise to the scalar, and pass the result to the Kalman filter. Stream the data, and plot the filtered
signal.

while(~isDone(src))
 trueVal = src();
 noisyVal = trueVal + sqrt(R)*randn;

4 System Objects

4-860

 estVal = kalman(noisyVal);
 tScope(noisyVal,trueVal,estVal);
end

Algorithms
This object implements the algorithm, inputs, and outputs described on the Kalman Filter block
reference page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.KalmanFilter System object will be removed
Warns starting in R2021b

dsp.KalmanFilter System object will be removed in a future release. Use the Kalman filter
functionality in the Sensor Fusion and Tracking Toolbox instead.

References
[1] Greg Welch and Gary Bishop, An Introduction to the Kalman Filter, Technical Report TR95 041.

University of North Carolina at Chapel Hill: Chapel Hill, NC., 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Blocks
Kalman Filter

Introduced in R2013b

 dsp.KalmanFilter

4-861

dsp.LDLFactor
Package: dsp

(To be removed) Factor square Hermitian positive definite matrices into components

Note dsp.LDLFactor will be removed in a future release. Use ldl instead. For more information,
see “Compatibility Considerations”.

Description
The LDLFactor object factors square Hermitian positive definite matrices into lower, upper, and
diagonal components. The object uses only the lower triangle of S.

To factor these matrices into lower, upper, and diagonal components:

1 Define and set up your LDL factor object. See “Construction” on page 4-862.
2 Call step to factor the matrices according to the properties of dsp.LDLFactor. The behavior of

step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
ldl = dsp.LDLFactor returns an LDL factor System object, ldl, that computes unit lower
triangular L and diagonal D such that S = LDL for square, symmetric/Hermitian, positive definite
input matrix S.

ldl = dsp.LDLFactor('PropertyName',PropertyValue,...) returns an LDL factor System
object, ldl, with each specified property set to the specified value.

Properties
Fixed-Point Properties

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Full precision, Same as input, Same as
product or Custom. The default is Full precision

CustomAccumulatorDataType

Accumulator word and fraction lengths

4 System Objects

4-862

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto. This property applies when you set the AccumulatorDataType property to Custom. The
default is numerictype([],32,30).

CustomIntermediateProductDataType

Intermediate product word and fraction lengths

Specify the intermediate product fixed-point type as a signed, scaled numerictype object. This
property applies when you set the IntermediateProductDataType property to Custom. The
default is numerictype(true,16,15).

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies when you set the OutputDataType property to Custom. The default is
numerictype([],16,15).

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies when you set the ProductDataType property to Custom. The default is
numerictype([],32,30).

IntermediateProductDataType

Intermediate product word and fraction lengths

Specify the intermediate product fixed-point data type as Same as input or Custom. The default is
Same as input.

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as input or Custom. The default is Same as
input.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as one of Wrap or Saturate. The default is Wrap.

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Full precision, Same as input or Custom. The
default is Full precision.

 dsp.LDLFactor

4-863

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as: Ceiling, Convergent, Floor, Nearest, Round, Simplest or
Zero. The default is Floor.

Methods
step Decompose matrix into components

Common to All System Objects
release Allow System object property value changes

Examples

Decompose a Matrix

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Decompose a square Hermitian positive definite matrix using LDL factor.

A = gallery('randcorr',5);
ldl = dsp.LDLFactor;
y = ldl(A)

y = 5×5
 1.0000 -0.3884 0.0296 -0.6152 -0.3903
-0.3884 0.8491 -0.6386 -0.4901 0.3137
 0.0296 -0.6386 0.6529 0.3611 0.5770
-0.6152 -0.4901 0.3611 0.3324 0.5660
-0.3903 0.3137 0.5770 0.5660 0.4403

Algorithms
This object implements the algorithm, inputs, and outputs described on the LDL Factorization block
reference page. The object properties correspond to the block parameters, except:
No object property that corresponds to the Non-positive definite input block parameter. The object
does not issue any alerts for nonpositive definite inputs. The output is not a valid factorization. A
partial factorization is in the upper left corner of the output.

Compatibility Considerations
dsp.LDLFactor System object will be removed
Warns starting in R2021b

dsp.LDLFactor System object will be removed in a future release. Use the ldl function instead.

Update Code

4 System Objects

4-864

This table shows how the System object is typically used and explains how to update existing code to
use the ldl function.

Discouraged Usage Recommended Replacement
The output of the object y is a composite matrix
with L as its lower triangular part, D as the
diagonal, and L' as its upper triangular part.

A = gallery('randcorr',5);
ldlObj = dsp.LDLFactor;
y = ldlObj(A)

y = 5×5
 1.0000 -0.3884 0.0296 -0.6152 -0.3903
-0.3884 0.8491 -0.6386 -0.4901 0.3137
 0.0296 -0.6386 0.6529 0.3611 0.5770
-0.6152 -0.4901 0.3611 0.3324 0.5660
-0.3903 0.3137 0.5770 0.5660 0.4403

If you are using a release prior to R2016b,
replace ldlObj(x) with step(ldlObj,x).

The function outputs the lower triangular matrix
L and the diagonal D separately.

[L,D,P] = ldl(A)

L = 5×5
 1.0000 0 0 0 0
 -0.3884 1.0000 0 0 0
 0.0296 -0.6386 1.0000 0 0
 -0.6152 -0.4901 0.3611 1.0000 0
 -0.3903 0.3137 0.5770 0.5660 1.0000

D = 5×5
 1.0000 0 0 0 0
 0 0.8491 0 0 0
 0 0 0.6529 0 0
 0 0 0 0.3324 0
 0 0 0 0 0.4403

P = 5×5
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
ldl

Introduced in R2012a

 dsp.LDLFactor

4-865

step
System object: dsp.LDLFactor
Package: dsp

Decompose matrix into components

Syntax
Y = step(ldl,S)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(ldl,S) decomposes the matrix S into lower, upper, and diagonal components. The output
Y is a composite matrix with the L as its lower triangular part and D as the diagonal and L'as its
upper triangular part. If S is not positive definite the output Y is not a valid factorization.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-866

dsp.LevinsonSolver
Package: dsp

(To be removed) Solve linear system of equations using Levinson-Durbin recursion

Note dsp.LevinsonSolver will be removed in a future release. Use levinson instead. For more
information, see “Compatibility Considerations”.

Description
The LevinsonSolver object solves linear systems of equations using Levinson-Durbin recursion.

To solve linear systems of equations using Levinson-Durbin recursion:

1 Define and set up your System object. See “Construction” on page 4-867.
2 Call step to solve the system of equations according to the properties of dsp.LevinsonSolver.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
levinson = dsp.LevinsonSolver returns a System object, levinson, that solves a Hermitian
Toeplitz system of equations using the Levinson-Durbin recursion.

levinson = dsp.LevinsonSolver('PropertyName',PropertyValue,...) returns a
Levinson-Durbin object, levinson, with each specified property set to the specified value.

Properties
AOutputPort

Enable polynomial coefficients output

Set this property to true to output the polynomial coefficients A. Both AOutputPort and
KOutputPort properties cannot be false at the same time. For scalar inputs, set the AOutputPort
property to true. The default is false.

KOutputPort

Enable reflection coefficients output

Set this property to true to output the reflection coefficients K. You cannot set both the
AOutputPort and KOutputPort properties to false at the same time. For scalar inputs, you must
set the KOutputPort property to false. The default is true.

 dsp.LevinsonSolver

4-867

PredictionErrorOutputPort

Enable prediction error output

Set this property to true to output the prediction error. The default is false.

ZerothLagZeroAction

Action when value of lag zero is zero

Specify the output for an input with the first coefficient as zero. Select Ignore or Use zeros. The
default is Use zeros.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor, Nearest, Round, Simplest, or
Zero. The default is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap, Saturate. The default is Wrap.

ACoefficientDataType

A coefficient word and fraction lengths

This constant property has a value of Custom.

CustomACoefficientDataType

A coefficient word and fraction lengths

Specify the A coefficient fixed-point type as a scaled numerictype object with a Signedness of
Auto. The default is numerictype([],16,15).

KCoefficientDataType

K coefficient word and fraction lengths

This constant property has a value of Custom.

CustomKCoefficientDataType

K coefficient word and fraction lengths

Specify the K coefficient fixed-point type as a scaled numerictype object with a Signedness of
Auto. The default is numerictype([],16,15).

PredictionErrorDataType

Prediction error power word and fraction lengths

4 System Objects

4-868

Specify the prediction error power fixed-point data type as Same as input or Custom. The default
is Same as input.

CustomPredictionErrorDataType

Prediction error power word and fraction lengths

Specify the prediction error power fixed-point type as a scaled numerictype object with a
Signedness of Auto. This property applies only when the PredictionErrorDataType property is
Custom. The default is numerictype([],16,15).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as input or Custom. The default is Custom

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies only when the ProductDataType property is Custom. The default is
numerictype([],32,30).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the Accumulator fixed-point data type as Same as input, Same as product, or Custom.
The default is Custom.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto. This property applies only when the AccumulatorDataType property is Custom. The default
is numerictype([],32,30).

Methods

step Reflection coefficients corresponding to columns of input

Common to All System Objects
release Allow System object property value changes

Examples

 dsp.LevinsonSolver

4-869

Compute Polynomial Coefficients

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Use the Levinson solver to compute polynomial coefficients from autocorrelation coefficients.

 lev = dsp.LevinsonSolver;
 lev.AOutputPort = true;
 lev.KOutputPort = false;
 x = (1:100)';
 a = xcorr(x,10);
% Consider the autocorrelation computed over nonnegative lags [0 10].
 c = lev(a(11:end)); % Compute polynomial coefficients

Algorithms
This object implements the algorithm, inputs, and outputs described on the Levinson-Durbin block
reference page. The object properties correspond to the block parameters, except:
Output(s) block parameter corresponds to the AOutputPort and the KOutputPort object
properties.

Compatibility Considerations
dsp.LevinsonSolver System object will be removed
Warns starting in R2021b

dsp.LevinsonSolver System object will be removed in a future release. Use the levinson
function instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the levinson function.

4 System Objects

4-870

Discouraged Usage Recommended Replacement
lev = dsp.LevinsonSolver;
lev.AOutputPort = true;
lev.KOutputPort = false;
x = (1:100)';

Autocorrelation is computed over the lags [-10
10].

a = xcorr(x,10);

Consider the autocorrelation computed over
nonnegative lags [0 10].

c = lev(a(11:end));

c = 10×1
 1.0000
 -0.9920
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0070

If you are using a release prior to R2016b,
replace lev(x) with step(lev,x).

Polynomial coefficients returned by the function
are in the form of a row vector.

cfn = levinson(a(11:end))

cfn = 1×10
1.0000 -0.9920 0.0001 0.0001 0.0001 0.0001...
 0.0001 0.0001 0.0001 0.0001 0.0070

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
levinson

Introduced in R2012a

 dsp.LevinsonSolver

4-871

step
System object: dsp.LevinsonSolver
Package: dsp

Reflection coefficients corresponding to columns of input

Syntax
K = step(levinson,X)
A = step(levinson,X)
[A, K] = step(levinson,X)
[..., P] = step(levinson,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

K = step(levinson,X) returns reflection coefficients K corresponding to the columns of input X. X
is typically a column or matrix of autocorrelation coefficients with lag 0 as the first element.

A = step(levinson,X) returns polynomial coefficients A when the AOutputPort property is true
and the KOutputPort property is false.

[A, K] = step(levinson,X) returns polynomial coefficients A and reflection coefficients K when
both the AOutputPort and KOutputPort properties are true.

[..., P] = step(levinson,X) also returns the error power P when the
PredictionErrorOutputPort property is true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-872

dsp.LMSFilter
Package: dsp

Compute output, error, and weights of LMS adaptive filter

Description
The dsp.LMSFilter System object implements an adaptive finite impulse response (FIR) filter that
converges an input signal to the desired signal using one of the following algorithms:

• LMS
• Normalized LMS
• Sign-Data LMS
• Sign-Error LMS
• Sign-Sign LMS

For more details on each of these methods, see “Algorithms” on page 4-913.

The filter adapts its weights until the error between the primary input signal and the desired signal is
minimal. The mean square of this error (MSE) is computed using the msesim function. The predicted
version of the MSE is determined using a Wiener filter in the msepred function. The maxstep
function computes the maximum adaptation step size, which controls the speed of convergence.

For an overview of the adaptive filter methodology, and the most common applications the adaptive
filters are used in, see “Overview of Adaptive Filters and Applications”.

To filter a signal using an adaptive FIR filter:

1 Create the dsp.LMSFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Under specific conditions, this System object also supports SIMD code generation. For details, see
“Code Generation” on page 4-914.

Creation

Syntax
lms = dsp.LMSFilter
lms = dsp.LMSFilter(L)
lms = dsp.LMSFilter(Name,Value)

 dsp.LMSFilter

4-873

Description

lms = dsp.LMSFilter returns an LMS filter object, lms, that computes the filtered output, filter
error, and the filter weights for a given input and a desired signal using the least mean squares (LMS)
algorithm.

lms = dsp.LMSFilter(L) returns an LMS filter object with the “Length” on page 4-0 property
set to L.

lms = dsp.LMSFilter(Name,Value) returns an LMS filter object with each specified property set
to the specified value. Enclose each property name in single quotes. You can use this syntax with the
previous input argument.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Method to calculate filter weights
'LMS' (default) | 'Normalized LMS' | 'Sign-Data LMS' | 'Sign-Error LMS' | 'Sign-Sign
LMS'

Method to calculate filter weights, specified as one of the following:

• 'LMS' –– Solves the Weiner-Hopf equation and finds the filter coefficients for an adaptive filter.
• 'Normalized LMS' –– Normalized variation of the LMS algorithm.
• 'Sign-Data LMS' –– Correction to the filter weights at each iteration depends on the sign of the

input x.
• 'Sign-Error LMS' –– Correction applied to the current filter weights for each successive

iteration depends on the sign of the error, err.
• 'Sign-Sign LMS' –– Correction applied to the current filter weights for each successive

iteration depends on both the sign of x and the sign of err.

For more details on the algorithms, see “Algorithms” on page 4-913.

Length — Length of FIR filter weights vector
32 (default) | positive integer

Length of the FIR filter weights vector, specified as a positive integer.
Example: 64
Example: 16
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StepSizeSource — Method to specify adaptation step size
'Property' (default) | 'Input port'

Method to specify the adaptation step size, specified as one of the following:

4 System Objects

4-874

• 'Property' –– The property “StepSize” on page 4-0 specifies the size of each adaptation
step.

• 'Input port' –– Specify the adaptation step size as one of the inputs to the object.

StepSize — Adaptation step size
0.1 (default) | non-negative scalar

Adaptation step size factor, specified as a non-negative scalar. For convergence of the normalized
LMS method, the step size must be greater than 0 and less than 2.

A small step size ensures a small steady state error between the output “y” on page 4-0 and the
desired signal “d” on page 4-0 . If the step size is small, the convergence speed of the filter
decreases. To improve the convergence speed, increase the step size. Note that if the step size is
large, the filter can become unstable. To compute the maximum step size the filter can accept without
becoming unstable, use the maxstep function.

Tunable: Yes

Dependencies

This property applies when you set “StepSizeSource” on page 4-0 to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LeakageFactor — Leakage factor used in leaky LMS method
1 (default) | [0 1]

Leakage factor used when implementing the leaky LMS method, specified as a scalar in the range [0
1]. When the value equals 1, there is no leakage in the adapting method. When the value is less than
1, the filter implements a leaky LMS method.
Example: 0.5

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialConditions — Initial conditions of filter weights
0 (default) | scalar | vector

Initial conditions of filter weights, specified as a scalar or a vector of length equal to the value of the
“Length” on page 4-0 property. When the input is real, the value of this property must be real.
Example: 0
Example: [1 3 1 2 7 8 9 0 2 2 8 2]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

AdaptInputPort — Flag to adapt filter weights
false (default) | true

Flag to adapt filter weights, specified as one of the following:

• false –– The object continuously updates the filter weights.

 dsp.LMSFilter

4-875

• true –– An adaptation control input is provided to the object when you call its algorithm. If the
value of this input is non-zero, the object continuously updates the filter weights. If the value of
this input is zero, the filter weights remain at their current value.

WeightsResetInputPort — Flag to reset filter weights
false (default) | true

Flag to reset filter weights, specified as one of the following:

• false –– The object does not reset weights.
• true –– A reset control input is provided to the object when you call its algorithm. This setting

enables the “WeightsResetCondition” on page 4-0 property. The object resets the filter weights
based on the values of the WeightsResetCondition property and the reset input provided to
the object algorithm.

WeightsResetCondition — Event to reset filter weights
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Event that triggers the reset of the filter weights, specified as one of the following. The object resets
the filter weights whenever a reset event is detected in its reset input.

• 'Non-zero' –– Triggers a reset operation at each sample, when the reset input is not zero.
• 'Rising edge' –– Triggers a reset operation when the reset input does one of the following:

• Rises from a negative value to either a positive value or zero.
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a

negative value to zero.

• 'Falling edge' –– Triggers a reset operation when the reset input does one of the following:

• Falls from a positive value to a negative value or zero.
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero.

4 System Objects

4-876

• 'Either edge' –– Triggers a reset operation when the reset input is a rising edge or a falling
edge.

The object resets the filter weights based on the value of this property and the reset input r provided
to the object algorithm.
Dependencies

This property applies when you set the “WeightsResetInputPort” on page 4-0 property to true.

WeightsOutput — Method to output adapted filter weights
'Last' (default) | 'None' | 'All'

Method to output adapted filter weights, specified as one of the following:

• 'Last' (default) — The object returns a column vector of weights corresponding to the last
sample of the data frame. The length of the weights vector is the value given by the “Length” on
page 4-0 property.

• 'All' — The object returns a FrameLength-by-Length matrix of weights. The matrix corresponds
to the full sample-by-sample history of weights for all FrameLength samples of the input values.
Each row in the matrix corresponds to a set of LMS filter weights calculated for the corresponding
input sample.

• 'None' — This setting disables the weights output.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Specify the rounding mode for fixed-point operations. For more details, see rounding mode.

OverflowAction — Overflow action for fixed-point operations
'Wrap' (default) | 'Saturate'

Overflow action for fixed-point operations, specified as one of the following:

• 'Wrap' –– The object wraps the result of its fixed-point operations.
• 'Saturate' –– The object saturates the result of its fixed-point operations.

For more details on overflow actions, see overflow mode for fixed-point operations.

StepSizeDataType — Step size word length and fraction length settings
'Same word length as first input' (default) | 'Custom'

 dsp.LMSFilter

4-877

Step size word length and fraction length settings, specified as one of the following:

• 'Same word length as first input' –– The object specifies the word length of step size to
be the same as that of the first input. The fraction length is computed to get the best possible
precision.

• 'Custom' –– The step size data type is specified as a custom numeric type through the
“CustomStepSizeDataType” on page 4-0 property.

For more information on the step size data type this object uses, see the “Fixed Point” on page 4-915
section.

CustomStepSizeDataType — Word and fraction lengths of step size
numerictype([],16,15) (default)

Word and fraction lengths of the step size, specified as an autosigned numeric type with a word
length of 16 and a fraction length of 15.
Example: numerictype([],32)
Dependencies

This property applies under the following conditions:

• “StepSizeSource” on page 4-0 property set to 'Property' and “StepSizeDataType” on page
4-0 set to 'Custom'.

• StepSizeSource property set to 'Input port'.

LeakageFactorDataType — Leakage factor word length and fraction length settings
'Same word length as first input' (default) | 'Custom'

Leakage factor word length and fraction length settings, specified as one of the following:

• 'Same word length as first input' –– The object specifies the word length of leakage
factor to be the same as that of the first input. The fraction length is computed to get the best
possible precision.

• 'Custom' –– The leakage factor data type is specified as a custom numeric type through the
“CustomLeakageFactorDataType” on page 4-0 property.

For more information on the leakage factor data type this object uses, see the “Fixed Point” on page
4-915 section.

CustomLeakageFactorDataType — Word and fraction lengths of the leakage factor
numerictype([],16,15) (default)

Word and fraction lengths of the leakage factor, specified as an autosigned numeric type with a word
length of 16 and a fraction length of 15.
Example: numerictype([],32)
Dependencies

This property applies when you set the “LeakageFactorDataType” on page 4-0 property to
'Custom'.

WeightsDataType — Weights word length and fraction length settings
'Same as first input' (default) | 'Custom'

4 System Objects

4-878

Weights word length and fraction length settings, specified as one of the following:

• 'Same as first input' –– The object specifies the data type of the filter weights to be the
same as that of the first input.

• 'Custom' –– The data type of filter weights is specified as a custom numeric type through the
“CustomWeightsDataType” on page 4-0 property.

For more information on the filter weights data type this object uses, see the “Fixed Point” on page 4-
915 section.

CustomWeightsDataType — Word and fraction lengths of filter weights
numerictype([],16,15) (default)

Word and fraction lengths of the filter weights, specified as an autosigned numeric type with a word
length of 16 and a fraction length of 15.
Example: numerictype([],32,20)

Dependencies

This property applies when you set the “WeightsDataType” on page 4-0 property to 'Custom'.

EnergyProductDataType — Energy product word length and fraction length settings
'Same as first input' (default) | 'Custom'

Energy product word length and fraction length settings, specified as one of the following:

• 'Same as first input' –– The object specifies the data type of the energy product to be the
same as that of the first input.

• 'Custom' –– The data type of the energy product is specified as a custom numeric type through
the “CustomEnergyProductDataType” on page 4-0 property.

For more information on the energy product data type this object uses, see the “Fixed Point” on page
4-915 section.

Dependencies

This property applies when you set the “Method” on page 4-0 property to 'Normalized LMS'.

CustomEnergyProductDataType — Word and fraction lengths of energy product
numerictype([],32,20) (default)

Word and fraction lengths of the energy product, specified as an autosigned numeric type with a word
length of 32 and a fraction length of 20.

Dependencies

This property applies when you set the “Method” on page 4-0 property to 'Normalized LMS'
and “EnergyProductDataType” on page 4-0 property to 'Custom'.

EnergyAccumulatorDataType — Energy accumulator word length and fraction length
settings
'Same as first input' (default) | 'Custom'

Energy accumulator word length and fraction length settings, specified as one of the following:

 dsp.LMSFilter

4-879

• 'Same as first input' –– The object specifies the data type of the energy accumulator to be
the same as that of the first input.

• 'Custom' –– The data type of the energy accumulator is specified as a custom numeric type
through the “CustomEnergyAccumulatorDataType” on page 4-0 property.

For more information on the energy accumulator data type this object uses, see the “Fixed Point” on
page 4-915 section.
Dependencies

This property applies when you set the “Method” on page 4-0 property to 'Normalized LMS'.

CustomEnergyAccumulatorDataType — Word and fraction lengths of energy accumulator
numerictype([],32,20) (default)

Word and fraction lengths of the energy accumulator, specified as an autosigned numeric type with a
word length of 32 and a fraction length of 20.
Dependencies

This property applies when you set the “Method” on page 4-0 property to 'Normalized LMS'
and “EnergyAccumulatorDataType” on page 4-0 property to 'Custom'.

ConvolutionProductDataType — Convolution product word length and fraction length
settings
'Same as first input' (default) | 'Custom'

Convolution product word length and fraction length settings, specified as one of the following:

• 'Same as first input' –– The object specifies the data type of the convolution product to be
the same as that of the first input.

• 'Custom' –– The data type of the convolution product is specified as a custom numeric type
through the “CustomConvolutionProductDataType” on page 4-0 property.

For more information on the convolution product data type this object uses, see the “Fixed Point” on
page 4-915 section.

CustomConvolutionProductDataType — Word and fraction lengths of convolution product
numerictype([],32,20) (default)

Word and fraction lengths of the convolution product, specified as an autosigned numeric type with a
word length of 32 and a fraction length of 20.
Dependencies

This property applies when you set the “ConvolutionProductDataType” on page 4-0 property to
'Custom'.

ConvolutionAccumulatorDataType — Convolution accumulator word length and fraction
length settings
'Same as first input' (default) | 'Custom'

Convolution accumulator word length and fraction length settings, specified as one of the following:

• 'Same as first input' –– The object specifies the data type of the convolution accumulator to
be the same as that of the first input.

4 System Objects

4-880

• 'Custom' –– The data type of the convolution accumulator is specified as a custom numeric type
through the “CustomConvolutionAccumulatorDataType” on page 4-0 property.

For more information on the convolution accumulator data type this object uses, see the “Fixed Point”
on page 4-915 section.

CustomConvolutionAccumulatorDataType — Word and fraction lengths of convolution
accumulator
numerictype([],32,20) (default)

Word and fraction lengths of the convolution accumulator, specified as an autosigned numeric type
with a word length of 32 and a fraction length of 20.

Dependencies

This property applies when you set the “ConvolutionAccumulatorDataType” on page 4-0 property
to 'Custom'.

StepSizeErrorProductDataType — Step size error product word length and fraction length
settings
'Same as first input' (default) | 'Custom'

Step size error product word length and fraction length settings, specified as one of the following:

• 'Same as first input' –– The object specifies the data type of the step size error product to
be the same as that of the first input.

• 'Custom' –– The data type of the step size error product is specified as a custom numeric type
through the “CustomStepSizeErrorProductDataType” on page 4-0 property.

For more information on the step size error product data type this object uses, see the “Fixed Point”
on page 4-915 section.

CustomStepSizeErrorProductDataType — Word and fraction lengths of step size error
product
numerictype([],32,20) (default)

Word and fraction lengths of the step size error product, specified as an autosigned numeric type
with a word length of 32 and a fraction length of 20.

Dependencies

This property applies when you set the “StepSizeErrorProductDataType” on page 4-0 property to
'Custom'.

WeightsUpdateProductDataType — Filter weights update product word length and fraction
length settings
'Same as first input' (default) | 'Custom'

Word and fraction length settings of the filter weights update product, specified as one of the
following:

• 'Same as first input' –– The object specifies the data type of the filter weights update
product to be the same as that of the first input.

• 'Custom' –– The data type of the filter weights update product is specified as a custom numeric
type through the “CustomWeightsUpdateProductDataType” on page 4-0 property.

 dsp.LMSFilter

4-881

For more information on the filter weights update product data type this object uses, see the “Fixed
Point” on page 4-915 section.

CustomWeightsUpdateProductDataType — Word and fraction lengths of filter weights
update product
numerictype([],32,20) (default)

Word and fraction lengths of the filter weights update product, specified as an autosigned numeric
type with a word length of 32 and a fraction length of 20.

Dependencies

This property applies when you set the “WeightsUpdateProductDataType” on page 4-0 property to
'Custom'.

QuotientDataType — Quotient word length and fraction length settings
'Same as first input' (default) | 'Custom'

Quotient word length and fraction length settings, specified as one of the following:

• 'Same as first input' –– The object specifies the quotient data type to be the same as that of
the first input.

• 'Custom' –– The quotient data type is specified as a custom numeric type through the
“CustomQuotientDataType” on page 4-0 property.

For more information on the quotient data type this object uses, see the “Fixed Point” on page 4-915
section.

Dependencies

This property applies when you set the “Method” on page 4-0 property to 'Normalized LMS'.

CustomQuotientDataType — Word and fraction lengths of quotient
numerictype([],32,20) (default)

Word and fraction lengths of the filter weights update product, specified as an autosigned numeric
type with a word length of 32 and a fraction length of 20.

Dependencies

This property applies when you set the “Method” on page 4-0 property to 'Normalized LMS'
and “QuotientDataType” on page 4-0 property to 'Custom'.

Usage

Syntax
[y,err,wts] = lms(x,d)
[y,err] = lms(x,d)
[___] = lms(x,d,mu)
[___] = lms(x,d,a)
[___] = lms(x,d,r)
[y,err,wts] = lms(x,d,mu,a,r)

4 System Objects

4-882

Description

[y,err,wts] = lms(x,d) filters the input signal, x, using d as the desired signal, and returns the
filtered output in y, the filter error in err, and the estimated filter weights in wts. The LMS filter
object estimates the filter weights needed to minimize the error between the output signal and the
desired signal.

[y,err] = lms(x,d) filters the input signal, x, using d as the desired signal, and returns the
filtered output in y and the filter error in err when the “WeightsOutput” on page 4-0 property is
set to 'None'.

[___] = lms(x,d,mu) filters the input signal, x, using d as the desired signal and mu as the step
size, when the “StepSizeSource” on page 4-0 property is set to 'Input port'. These inputs can
be used with either of the previous sets of outputs.

[___] = lms(x,d,a) filters the input signal, x, using d as the desired signal and a as the
adaptation control when the “AdaptInputPort” on page 4-0 property is set to true. When a is
nonzero, the System object continuously updates the filter weights. When a is zero, the filter weights
remain constant.

[___] = lms(x,d,r) filters the input signal, x, using d as the desired signal and r as a reset
signal when the “WeightsResetInputPort” on page 4-0 property is set to true. The
“WeightsResetCondition” on page 4-0 property can be used to set the reset trigger condition. If a
reset event occurs, the System object resets the filter weights to their initial values.

[y,err,wts] = lms(x,d,mu,a,r) filters the input signal, x, using d as the desired signal, mu as
the step size, a as the adaptation control, and r as the reset signal, and returns the filtered output in
y, the filter error in err, and the adapted filter weights in wts.

Input Arguments

x — Data input
scalar | column vector

The signal to be filtered by the LMS filter. The input, x, and the desired signal, d must have the same
size, data type, and complexity. If the input is fixed-point, the data type must be signed and must have
the same word length as the desired signal.

The input, x can be a variable-size signal. You can change the number of elements in the column
vector even when the object is locked. The System object locks when you call the object to run its
algorithm.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

d — Desired signal
scalar | column vector

The LMS filter adapts its filter weights, wts, to minimize the error, err, and converge the input
signal x to the desired signal d as closely as possible.

The input, x, and the desired signal, d, must have the same size, data type, and complexity. If the
desired signal is fixed-point, the data type must be signed and must have the same word length as the
data input.

 dsp.LMSFilter

4-883

The input, d can be a variable-size signal. You can change the number of elements in the column
vector even when the object is locked. The System object locks when you call the object to run its
algorithm.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

mu — Step size
nonnegative scalar

Adaptation step size factor, specified as a scalar, nonnegative numeric value. For convergence of the
normalized LMS method, the step size should be greater than 0 and less than 2. The data type of the
step size input must match the data type of x and d. If the data type is fixed-point, the data type must
be signed.

A small step size ensures a small steady state error between the output y and the desired signal d. If
the step size is small, the convergence speed of the filter decreases. To improve the convergence
speed, increase the step size. Note that if the step size is large, the filter can become unstable. To
compute the maximum step size the filter can accept without becoming unstable, use the maxstep
function.

Dependencies

This input is required when the “StepSizeSource” on page 4-0 property is set to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

a — Adaptation control
scalar

Adaptation control input that controls how the filter weights are updated. If the value of this input is
non-zero, the object continuously updates the filter weights. If the value of this input is zero, the filter
weights remain at their current value.

Dependencies

This input is required when the “AdaptInputPort” on page 4-0 property is set to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

r — Reset signal
scalar

Reset signal that resets the filter weights based on the values of the “WeightsResetCondition” on
page 4-0 property.

Dependencies

This input is required when the “WeightsResetInputPort” on page 4-0 property is set to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments

y — Filtered output
scalar | column vector

Filtered output, returned as a scalar or a column vector. The object adapts its filter weights to
converge the input signal x to match the desired signal d. The filter outputs the converged signal.

4 System Objects

4-884

Data Types: single | double | int8 | int16 | int32 | int64 | fi

err — Difference between output and desired signal
scalar | column vector

Difference between the output signal y and the desired signal d, returned as a scalar or a column
vector. The data type of err matches the data type of y. The objective of the adaptive filter is to
minimize this error. The object adapts its weights to converge towards optimal filter weights that
produce an output signal that matches closely with the desired signal. For more details on how err is
computed, see “Algorithms” on page 4-913.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

wts — Adaptive filter weights
scalar | column vector

Adaptive filter weights, returned as a scalar or a column vector of length specified by the value in
“Length” on page 4-0 .
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.LMSFilter
maxstep Maximum step size for LMS adaptive filter convergence
msepred Predicted mean squared error for LMS adaptive filter
msesim Estimated mean squared error for adaptive filters

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Predict Mean Squared Error for LMS Filter

The mean squared error (MSE) measures the average of the squares of the errors between the
desired signal and the primary signal input to the adaptive filter. Reducing this error converges the
primary input to the desired signal. Determine the predicted value of MSE and the simulated value of
MSE at each time instant using the msepred and msesim functions. Compare these MSE values with
each other and with respect to the minimum MSE and steady-state MSE values. In addition, compute
the sum of the squares of the coefficient errors given by the trace of the coefficient covariance
matrix.

 dsp.LMSFilter

4-885

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Initialization

Create a dsp.FIRFilter System object™ that represents the unknown system. Pass the signal, x, to
the FIR filter. The output of the unknown system is the desired signal, d, which is the sum of the
output of the unknown system (FIR filter) and an additive noise signal, n.

num = fir1(31,0.5);
fir = dsp.FIRFilter('Numerator',num);
iir = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
x = iir(sign(randn(2000,25)));
n = 0.1*randn(size(x));
d = fir(x) + n;

LMS Filter

Create a dsp.LMSFilter System object to create a filter that adapts to output the desired signal.
Set the length of the adaptive filter to 32 taps, step size to 0.008, and the decimation factor for
analysis and simulation to 5. The variable simmse represents the simulated MSE between the output
of the unknown system, d, and the output of the adaptive filter. The variable mse gives the
corresponding predicted value.

l = 32;
mu = 0.008;
m = 5;

lms = dsp.LMSFilter('Length',l,'StepSize',mu);
[mmse,emse,meanW,mse,traceK] = msepred(lms,x,d,m);
[simmse,meanWsim,Wsim,traceKsim] = msesim(lms,x,d,m);

Plot the MSE Results

Compare the values of simulated MSE, predicted MSE, minimum MSE, and the final MSE. The final
MSE value is given by the sum of minimum MSE and excess MSE.

nn = m:m:size(x,1);
semilogy(nn,simmse,[0 size(x,1)],[(emse+mmse)...
 (emse+mmse)],nn,mse,[0 size(x,1)],[mmse mmse])
title('Mean Squared Error Performance')
axis([0 size(x,1) 0.001 10])
legend('MSE (Sim.)','Final MSE','MSE','Min. MSE')
xlabel('Time Index')
ylabel('Squared Error Value')

4 System Objects

4-886

The predicted MSE follows the same trajectory as the simulated MSE. Both these trajectories
converge with the steady-state (final) MSE.

Plot the Coefficient Trajectories

meanWsim is the mean value of the simulated coefficients given by msesim. meanW is the mean value
of the predicted coefficients given by msepred.

Compare the simulated and predicted mean values of LMS filter coefficients 12,13,14, and 15.

plot(nn,meanWsim(:,12),'b',nn,meanW(:,12),'r',nn,...
meanWsim(:,13:15),'b',nn,meanW(:,13:15),'r')
PlotTitle ={'Average Coefficient Trajectories for';...
 'W(12), W(13), W(14), and W(15)'}

PlotTitle = 2x1 cell
 {'Average Coefficient Trajectories for'}
 {'W(12), W(13), W(14), and W(15)' }

title(PlotTitle)
legend('Simulation','Theory')
xlabel('Time Index')
ylabel('Coefficient Value')

 dsp.LMSFilter

4-887

In steady state, both the trajectories converge.

Sum of Squared Coefficient Errors

Compare the sum of the squared coefficient errors given by msepred and msesim. These values are
given by the trace of the coefficient covariance matrix.

semilogy(nn,traceKsim,nn,traceK,'r')
title('Sum-of-Squared Coefficient Errors')
axis([0 size(x,1) 0.0001 1])
legend('Simulation','Theory')
xlabel('Time Index')
ylabel('Squared Error Value')

4 System Objects

4-888

Compute Maximum Step of LMS Adaptive Filter

The maxstep function computes the maximum step size of the adaptive filter. This step size keeps the
filter stable at the maximum possible speed of convergence. Create the primary input signal, x, by
passing a signed random signal to an IIR filter. Signal x contains 50 frames of 2000 samples each
frame. Create an LMS filter with 32 taps and a step size of 0.1.

x = zeros(2000,50);
IIRFilter = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
for k = 1:size(x,2)
 x(:,k) = IIRFilter(sign(randn(size(x,1),1)));
end
mu = 0.1;
LMSFilter = dsp.LMSFilter('Length',32,...
 'StepSize',mu);

Compute the maximum adaptation step size and the maximum step size in mean-squared sense using
the maxstep function.

[mumax,mumaxmse] = maxstep(LMSFilter,x)

mumax = 0.0625

mumaxmse = 0.0536

 dsp.LMSFilter

4-889

System Identification of FIR Filter Using LMS Algorithm

System identification is the process of identifying the coefficients of an unknown system using an
adaptive filter. The general overview of the process is shown in “System Identification –– Using an
Adaptive Filter to Identify an Unknown System”. The main components involved are:

• The adaptive filter algorithm. In this example, set the Method property of dsp.LMSFilter to
'LMS' to choose the LMS adaptive filter algorithm.

• An unknown system or process to adapt to. In this example, the filter designed by fircband is the
unknown system.

• Appropriate input data to exercise the adaptation process. For the generic LMS model, these are
the desired signal d k and the input signal x k .

The objective of the adaptive filter is to minimize the error signal between the output of the adaptive
filter y k and the output of the unknown system (or the system to be identified) d k . Once the error
signal is minimized, the adapted filter resembles the unknown system. The coefficients of both the
filters match closely.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Unknown System

Create a dsp.FIRFilter object that represents the system to be identified. Use the fircband
function to design the filter coefficients. The designed filter is a lowpass filter constrained to 0.2
ripple in the stopband.

filt = dsp.FIRFilter;
filt.Numerator = fircband(12,[0 0.4 0.5 1],[1 1 0 0],[1 0.2],...
{'w' 'c'});

Pass the signal x to the FIR filter. The desired signal d is the sum of the output of the unknown
system (FIR filter) and an additive noise signal n.

x = 0.1*randn(250,1);
n = 0.01*randn(250,1);
d = filt(x) + n;

Adaptive Filter

With the unknown filter designed and the desired signal in place, create and apply the adaptive LMS
filter object to identify the unknown filter.

Preparing the adaptive filter object requires starting values for estimates of the filter coefficients and
the LMS step size (mu). You can start with some set of nonzero values as estimates for the filter
coefficients. This example uses zeros for the 13 initial filter weights. Set the InitialConditions
property of dsp.LMSFilter to the desired initial values of the filter weights. For the step size, 0.8 is
a good compromise between being large enough to converge well within 250 iterations (250 input
sample points) and small enough to create an accurate estimate of the unknown filter.

Create a dsp.LMSFilter object to represent an adaptive filter that uses the LMS adaptive
algorithm. Set the length of the adaptive filter to 13 taps and the step size to 0.8.

4 System Objects

4-890

mu = 0.8;
lms = dsp.LMSFilter(13,'StepSize',mu)

lms =
 dsp.LMSFilter with properties:

 Method: 'LMS'
 Length: 13
 StepSizeSource: 'Property'
 StepSize: 0.8000
 LeakageFactor: 1
 InitialConditions: 0
 AdaptInputPort: false
 WeightsResetInputPort: false
 WeightsOutput: 'Last'

 Show all properties

Pass the primary input signal x and the desired signal d to the LMS filter. Run the adaptive filter to
determine the unknown system. The output y of the adaptive filter is the signal converged to the
desired signal d thereby minimizing the error e between the two signals.

Plot the results. The output signal does not match the desired signal as expected, making the error
between the two nontrivial.

[y,e,w] = lms(x,d);
plot(1:250, [d,y,e])
title('System Identification of an FIR filter')
legend('Desired','Output','Error')
xlabel('Time index')
ylabel('Signal value')

 dsp.LMSFilter

4-891

Compare the Weights

The weights vector w represents the coefficients of the LMS filter that is adapted to resemble the
unknown system (FIR filter). To confirm the convergence, compare the numerator of the FIR filter
and the estimated weights of the adaptive filter.

The estimated filter weights do not closely match the actual filter weights, confirming the results
seen in the previous signal plot.

stem([(filt.Numerator).' w])
title('System Identification by Adaptive LMS Algorithm')
legend('Actual filter weights','Estimated filter weights',...
 'Location','NorthEast')

4 System Objects

4-892

Changing the Step Size

As an experiment, change the step size to 0.2. Repeating the example with mu = 0.2 results in the
following stem plot. The filters do not converge, and the estimated weights are not good
approxmations of the actual weights.

mu = 0.2;
lms = dsp.LMSFilter(13,'StepSize',mu);
[~,~,w] = lms(x,d);
stem([(filt.Numerator).' w])
title('System Identification by Adaptive LMS Algorithm')
legend('Actual filter weights','Estimated filter weights',...
 'Location','NorthEast')

 dsp.LMSFilter

4-893

Increase the Number of Data Samples

Increase the frame size of the desired signal. Even though this increases the computation involved,
the LMS algorithm now has more data that can be used for adaptation. With 1000 samples of signal
data and a step size of 0.2, the coefficients are aligned closer than before, indicating an improved
convergence.

release(filt);
x = 0.1*randn(1000,1);
n = 0.01*randn(1000,1);
d = filt(x) + n;
[y,e,w] = lms(x,d);
stem([(filt.Numerator).' w])
title('System Identification by Adaptive LMS Algorithm')
legend('Actual filter weights','Estimated filter weights',...
 'Location','NorthEast')

4 System Objects

4-894

Increase the number of data samples further by inputting the data through iterations. Run the
algorithm on 4000 samples of data, passed to the LMS algorithm in batches of 1000 samples over 4
iterations.

Compare the filter weights. The weights of the LMS filter match the weights of the FIR filter very
closely, indicating a good convergence.

release(filt);
n = 0.01*randn(1000,1);
for index = 1:4
 x = 0.1*randn(1000,1);
 d = filt(x) + n;
 [y,e,w] = lms(x,d);
end
stem([(filt.Numerator).' w])
title('System Identification by Adaptive LMS Algorithm')
legend('Actual filter weights','Estimated filter weights',...
 'Location','NorthEast')

 dsp.LMSFilter

4-895

The output signal matches the desired signal very closely, making the error between the two close to
zero.

plot(1:1000, [d,y,e])
title('System Identification of an FIR filter')
legend('Desired','Output','Error')
xlabel('Time index')
ylabel('Signal value')

4 System Objects

4-896

System Identification of FIR Filter Using Normalized LMS Algorithm

To improve the convergence performance of the LMS algorithm, the normalized variant (NLMS) uses
an adaptive step size based on the signal power. As the input signal power changes, the algorithm
calculates the input power and adjusts the step size to maintain an appropriate value. The step size
changes with time, and as a result, the normalized algorithm converges faster with fewer samples in
many cases. For input signals that change slowly over time, the normalized LMS algorithm can be a
more efficient LMS approach.

For an example using the LMS approach, see “System Identification of FIR Filter Using LMS
Algorithm”.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Unknown System

Create a dsp.FIRFilter object that represents the system to be identified. Use the fircband
function to design the filter coefficients. The designed filter is a lowpass filter constrained to 0.2
ripple in the stopband.

filt = dsp.FIRFilter;
filt.Numerator = fircband(12,[0 0.4 0.5 1],[1 1 0 0],[1 0.2],...
{'w' 'c'});

 dsp.LMSFilter

4-897

Pass the signal x to the FIR filter. The desired signal d is the sum of the output of the unknown
system (FIR filter) and an additive noise signal n.

x = 0.1*randn(1000,1);
n = 0.001*randn(1000,1);
d = filt(x) + n;

Adaptive Filter

To use the normalized LMS algorithm variation, set the Method property on the dsp.LMSFilter to
'Normalized LMS'. Set the length of the adaptive filter to 13 taps and the step size to 0.2.

mu = 0.2;
lms = dsp.LMSFilter(13,'StepSize',mu,'Method',...
 'Normalized LMS');

Pass the primary input signal x and the desired signal d to the LMS filter.

[y,e,w] = lms(x,d);

The output y of the adaptive filter is the signal converged to the desired signal d thereby minimizing
the error e between the two signals.

plot(1:1000, [d,y,e])
title('System Identification by Normalized LMS Algorithm')
legend('Desired','Output','Error')
xlabel('Time index')
ylabel('Signal value')

4 System Objects

4-898

Compare the Adapted Filter to the Unknown System

The weights vector w represents the coefficients of the LMS filter that is adapted to resemble the
unknown system (FIR filter). To confirm the convergence, compare the numerator of the FIR filter
and the estimated weights of the adaptive filter.

stem([(filt.Numerator).' w])
title('System Identification by Normalized LMS Algorithm')
legend('Actual filter weights','Estimated filter weights',...
 'Location','NorthEast')

Compare Convergence Performance Between LMS Algorithm and Normalized LMS Algorithm

An adaptive filter adapts its filter coefficients to match the coefficients of an unknown system. The
objective is to minimize the error signal between the output of the unknown system and the output of
the adaptive filter. When these two outputs converge and match closely for the same input, the
coefficients are said to match closely. The adaptive filter at this state resembles the unknown system.
This example compares the rate at which this convergence happens for the normalized LMS (NLMS)
algorithm and the LMS algorithm with no normalization.

Unknown System

Create a dsp.FIRFilter that represents the unknown system. Pass the signal x as an input to the
unknown system. The desired signal d is the sum of the output of the unknown system (FIR filter) and
an additive noise signal n.

 dsp.LMSFilter

4-899

filt = dsp.FIRFilter;
filt.Numerator = fircband(12,[0 0.4 0.5 1],[1 1 0 0],[1 0.2],...
{'w' 'c'});
x = 0.1*randn(1000,1);
n = 0.001*randn(1000,1);
d = filt(x) + n;

Adaptive Filter

Create two dsp.LMSFilter objects, with one set to the LMS algorithm, and the other set to the
normalized LMS algorithm. Choose an adaptation step size of 0.2 and set the length of the adaptive
filter to 13 taps.

mu = 0.2;
lms_nonnormalized = dsp.LMSFilter(13,'StepSize',mu,...
 'Method','LMS');
lms_normalized = dsp.LMSFilter(13,'StepSize',mu,...
 'Method','Normalized LMS');

Pass the primary input signal x and the desired signal d to both the variations of the LMS algorithm.
The variables e1 and e2 represent the error between the desired signal and the output of the
normalized and nonnormalized filters, respecitvely.

[~,e1,~] = lms_normalized(x,d);
[~,e2,~] = lms_nonnormalized(x,d);

Plot the error signals for both variations. The error signal for the NLMS variant converges to zero
much faster than the error signal for the LMS variant. The normalized version adapts in far fewer
iterations to a result almost as good as the nonnormalized version.

plot([e1,e2]);
title('Comparing the LMS and NLMS Conversion Performance');
legend('NLMS derived filter weights', ...
 'LMS derived filter weights','Location', 'NorthEast');
xlabel('Time index')
ylabel('Signal value')

4 System Objects

4-900

Cancel Noise Using LMS Filter

Cancel additive noise, n, added to an unknown system using an LMS adaptive filter. The LMS filter
adapts its coefficients until its transfer function matches the transfer function of the unknown system
as closely as possible. The difference between the output of the adaptive filter and the output of the
unknown system represents the error signal, e. Minimizing this error signal is the objective of the
adaptive filter.

The unknown system and the LMS filter process the same input signal, x, and produce outputs d and
y, respectively. If the coefficients of the adaptive filter match the coefficients of the unknown system,
the error, e, in effect represents the additive noise.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a dsp.FIRFilter System object to represent the unknown system. Create a
dsp.LMSFilter object and set the length to 11 taps and the step size to 0.05. Create a sine wave to
represent the noise added to the unknown system. View the signals in a time scope.

FrameSize = 100;
NIter = 10;
lmsfilt2 = dsp.LMSFilter('Length',11,'Method','Normalized LMS', ...
 'StepSize',0.05);
firfilt2 = dsp.FIRFilter('Numerator', fir1(10,[.5, .75]));

 dsp.LMSFilter

4-901

sinewave = dsp.SineWave('Frequency',0.01, ...
 'SampleRate',1,'SamplesPerFrame',FrameSize);
scope = timescope('TimeUnits','Seconds',...
 'YLimits',[-3 3],'BufferLength',2*FrameSize*NIter, ...
 'ShowLegend',true,'ChannelNames', ...
 {'Noisy signal', 'Error signal'});

Create a random input signal, x and pass the signal to the FIR filter. Add a sine wave to the output of
the FIR filter to generate the noisy signal, d. The signal, d is the output of the unknown system. Pass
the noisy signal and the primary input signal to the LMS filter. View the noisy signal and the error
signal in the time scope.

for k = 1:NIter
 x = randn(FrameSize,1);
 d = firfilt2(x) + sinewave();
 [y,e,w] = lmsfilt2(x,d);
 scope([d,e])
end
release(scope)

The error signal, e, is the sinusoidal noise added to the unknown system. Minimizing the error signal
minimizes the noise added to the system.

4 System Objects

4-902

Noise Cancellation Using Sign-Data LMS Algorithm

When the amount of computation required to derive an adaptive filter drives your development
process, the sign-data variant of the LMS (SDLMS) algorithm might be a very good choice, as
demonstrated in this example.

In the standard and normalized variations of the LMS adaptive filter, coefficients for the adapting
filter arise from the mean square error between the desired signal and the output signal from the
unknown system. The sign-data algorithm changes the mean square error calculation by using the
sign of the input data to change the filter coefficients.

When the error is positive, the new coefficients are the previous coefficients plus the error multiplied
by the step size µ. If the error is negative, the new coefficients are again the previous coefficients
minus the error multiplied by µ — note the sign change.

When the input is zero, the new coefficients are the same as the previous set.

In vector form, the sign-data LMS algorithm is:

w k + 1 = w k + μe k sgn x k ,

where

sgn x k =
1, x k > 0
0, x k = 0
−1, x k < 0

with vector w containing the weights applied to the filter coefficients and vector x containing the
input data. The vector e is the error between the desired signal and the filtered signal. The objective
of the SDLMS algorithm is to minimize this error. Step size is represented by μ.

With a smaller μ, the correction to the filter weights gets smaller for each sample, and the SDLMS
error falls more slowly. A larger μ changes the weights more for each step, so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely. To ensure a good
convergence rate and stability, select μ within the following practical bounds.

0 < μ < 1
N InputSignalPower ,

where N is the number of samples in the signal. Also, define μ as a power of two for efficient
computing.

Note: How you set the initial conditions of the sign-data algorithm profoundly influences the
effectiveness of the adaptation process. Because the algorithm essentially quantizes the input signal,
the algorithm can become unstable easily.

A series of large input values, coupled with the quantization process might result in the error growing
beyond all bounds. Restrain the tendency of the sign-data algorithm to get out of control by choosing
a small step size μ ≪ 1 and setting the initial conditions for the algorithm to nonzero positive and
negative values.

In this noise cancellation example, set the Method property of dsp.LMSFilter to 'Sign-Data
LMS'. This example requires two input data sets:

 dsp.LMSFilter

4-903

• Data containing a signal corrupted by noise. In the block diagram under “Noise or Interference
Cancellation –– Using an Adaptive Filter to Remove Noise from an Unknown System”, this is the
desired signal d k . The noise cancellation process removes the noise from the signal.

• Data containing random noise. In the block diagram under “Noise or Interference Cancellation ––
Using an Adaptive Filter to Remove Noise from an Unknown System”, this is x k . The signal x k
is correlated with the noise that corrupts the signal data. Without the correlation between the
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 elements.

signal = sin(2*pi*0.055*(0:1000-1)');

Now, add correlated white noise to signal. To ensure that the noise is correlated, pass the noise
through a lowpass FIR filter and then add the filtered noise to the signal.

noise = randn(1000,1);
filt = dsp.FIRFilter;
filt.Numerator = fir1(11,0.4);
fnoise = filt(noise);
d = signal + fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data algorithm.

To prepare the dsp.LMSFilter object for processing, set the initial conditions of the filter weights
and mu (StepSize). As noted earlier in this section, the values you set for coeffs and mu determine
whether the adaptive filter can remove the noise from the signal path.

In “System Identification of FIR Filter Using LMS Algorithm” on page 4-890, you constructed a
default filter that sets the filter coefficients to zeros. In most cases that approach does not work for
the sign-data algorithm. The closer you set your initial filter coefficients to the expected values, the
more likely it is that the algorithm remains well behaved and converges to a filter solution that
removes the noise effectively.

For this example, start with the coefficients used in the noise filter (filt.Numerator), and modify
them slightly so the algorithm has to adapt.

coeffs = (filt.Numerator).'-0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.

With the required input arguments for dsp.LMSFilter prepared, construct the LMS filter object,
run the adaptation, and view the results.

lms = dsp.LMSFilter(12,'Method','Sign-Data LMS',...
 'StepSize',mu,'InitialConditions',coeffs);
[~,e] = lms(noise,d);
L = 200;
plot(0:L-1,signal(1:L),0:L-1,e(1:L));
title('Noise Cancellation by the Sign-Data Algorithm');
legend('Actual signal','Result of noise cancellation',...
 'Location','NorthEast');
xlabel('Time index')
ylabel('Signal values')

4 System Objects

4-904

When dsp.LMSFilter runs, it uses far fewer multiplication operations than either of the standard
LMS algorithms. Also, performing the sign-data adaptation requires only multiplication by bit shifting
when the step size is a power of two.

Although the performance of the sign-data algorithm as shown in this plot is quite good, the sign-data
algorithm is much less stable than the standard LMS variations. In this noise cancellation example,
the processed signal is a very good match to the input signal, but the algorithm could very easily
grow without bound rather than achieve good performance.

Changing the weight initial conditions (InitialConditions) and mu (StepSize), or even the
lowpass filter you used to create the correlated noise, can cause noise cancellation to fail.

Noise Cancellation Using Sign-Error LMS Algorithm

In the standard and normalized variations of the LMS adaptive filter, the coefficients for the adapting
filter arise from calculating the mean square error between the desired signal and the output signal
from the unknown system, and applying the result to the current filter coefficients. The sign-error
LMS (SELMS) algorithm replaces the mean square error calculation by using the sign of the error to
modify the filter coefficients.

When the error is positive, the new coefficients are the previous coefficients plus the error multiplied
by the step size μ. If the error is negative, the new coefficients are the previous coefficients minus the
error multiplied by μ — note the sign change. When the input is zero, the new coefficients are the
same as the previous set.

 dsp.LMSFilter

4-905

In vector form, the sign-error LMS algorithm is:

w k + 1 = w k + μsgn e k x k ,

where

sgn e k =
1, e k > 0
0, e k = 0
−1, e k < 0

with vector w containing the weights applied to the filter coefficients and vector x containing the
input data. The vector e is the error between the desired signal and the filtered signal. The objective
of the SELMS algorithm is to minimize this error.

With a smaller μ, the correction to the filter weights gets smaller for each sample and the SELMS
error falls more slowly. A larger μ changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely. To ensure a good
convergence rate and stability, select μ within the following practical bounds.

0 < μ < 1
N InputSignalPower

where N is the number of samples in the signal. Also, define μ as a power of two for efficient
computation.

Note: How you set the initial conditions of the sign-error algorithm profoundly influences the
effectiveness of the adaptation process. Because the algorithm essentially quantizes the error signal,
the algorithm can become unstable easily.

A series of large error values, coupled with the quantization process might result in the error growing
beyond all bounds. Restrain the tendency of the sign-error algorithm to become unstable by choosing
a small step size μ ≪ 1 and setting the initial conditions for the algorithm to nonzero positive and
negative values.

In this noise cancellation example, set the Method property of dsp.LMSFilter to 'Sign-Error
LMS'. This example requires two input data sets:

• Data containing a signal corrupted by noise. In the block diagram under “Noise or Interference
Cancellation –– Using an Adaptive Filter to Remove Noise from an Unknown System”, this is the
desired signal d k . The noise cancellation process removes the noise from the signal.

• Data containing random noise. In the block diagram under “Noise or Interference Cancellation ––
Using an Adaptive Filter to Remove Noise from an Unknown System”, this is x k . The signal x k
is correlated with the noise that corrupts the signal data. Without the correlation between the
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 elements.

signal = sin(2*pi*0.055*(0:1000-1)');

Now, add correlated white noise to signal. To ensure that the noise is correlated, pass the noise
through a lowpass FIR filter and then add the filtered noise to the signal.

noise = randn(1000,1);
filt = dsp.FIRFilter;

4 System Objects

4-906

filt.Numerator = fir1(11,0.4);
fnoise = filt(noise);
d = signal + fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-error algorithm.

To prepare the dsp.LMSFilter object for processing, set the initial conditions of the filter weights
(InitialConditions) and mu (StepSize). As noted earlier in this section, the values you set for
coeffs and mu determine whether the adaptive filter can remove the noise from the signal path.

In “System Identification of FIR Filter Using LMS Algorithm” on page 4-890, you constructed a
default filter that sets the filter coefficients to zeros. In most cases that approach does not work for
the sign-error algorithm. The closer you set your initial filter coefficients to the expected values, the
more likely it is that the algorithm remains well behaved and converges to a filter solution that
removes the noise effectively.

For this example, start with the coefficients used in the noise filter (filt.Numerator) and modify
them slightly so the algorithm has to adapt.

coeffs = (filt.Numerator).'-0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.

With the required input arguments for dsp.LMSFilter prepared, run the adaptation and view the
results.

lms = dsp.LMSFilter(12,'Method','Sign-Error LMS',...
 'StepSize',mu,'InitialConditions',coeffs);
[~,e] = lms(noise,d);
L = 200;
plot(0:199,signal(1:200),0:199,e(1:200));
title('Noise cancellation performance by the sign-error LMS algorithm');
legend('Actual signal','Error after noise reduction',...
 'Location','NorthEast')
xlabel('Time index')
ylabel('Signal value')

 dsp.LMSFilter

4-907

When the sign-error LMS algorithm runs, it uses far fewer multiplication operations than either of the
standard LMS algorithms. Also, performing the sign-error adaptation requires only bit shifting
multiples when the step size is a power of two.

Although the performance of the sign-error algorithm as shown in this plot is quite good, the sign-
error algorithm is much less stable than the standard LMS variations. In this noise cancellation
example, the adapted signal is a very good match to the input signal, but the algorithm could very
easily become unstable rather than achieve good performance.

Changing the weight initial conditions (InitialConditions) and mu (StepSize), or even the
lowpass filter you used to create the correlated noise, can cause noise cancellation to fail and the
algorithm to become useless.

Noise Cancellation Using Sign-Sign LMS Algorithm

The sign-sign LMS algorithm (SSLMS) replaces the mean square error calculation by using the sign
of the input data to change the filter coefficients. When the error is positive, the new coefficients are
the previous coefficients plus the error multiplied by the step size μ. If the error is negative, the new
coefficients are the previous coefficients minus the error multiplied by μ — note the sign change.
When the input is zero, the new coefficients are the same as the previous set.

In essence, the algorithm quantizes both the error and the input by applying the sign operator to
them.

4 System Objects

4-908

In vector form, the sign-sign LMS algorithm is:

w k + 1 = w k + μsgn e k sgn x k ,

where

sgn z k =
1, z k > 0
0, z k = 0
−1, z k < 0

z k = e k sgn x k

Vector w contains the weights applied to the filter coefficients and vector x contains the input data.
The vector e is the error between the desired signal and the filtered signal. The objective of the
SSLMS algorithm is to minimize this error.

With a smaller μ, the correction to the filter weights gets smaller for each sample and the SSLMS
error falls more slowly. A larger μ changes the weights more for each step, so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely. To ensure a good
convergence rate and stability, select μ within the following practical bounds.

0 < μ < 1
N InputSignalPower

where N is the number of samples in the signal. Also, define μ as a power of two for efficient
computation

Note:

How you set the initial conditions of the sign-sign algorithm profoundly influences the effectiveness of
the adaptation process. Because the algorithm essentially quantizes the input signal and the error
signal, the algorithm can become unstable easily.

A series of large error values, coupled with the quantization process might result in the error growing
beyond all bounds. Restrain the tendency of the sign-sign algorithm to become unstable by choosing a
small step size μ ≪ 1 and setting the initial conditions for the algorithm to nonzero positive and
negative values.

In this noise cancellation example, set the Method property of dsp.LMSFilter to 'Sign-Sign
LMS'. This example requires two input data sets:

• Data containing a signal corrupted by noise. In the block diagram under “Noise or Interference
Cancellation –– Using an Adaptive Filter to Remove Noise from an Unknown System”, this is the
desired signal d k . The noise cancellation process removes the noise from the signal.

• Data containing random noise. In the block diagram under “Noise or Interference Cancellation ––
Using an Adaptive Filter to Remove Noise from an Unknown System”, this is x k . The signal x k
is correlated with the noise that corrupts the signal data. Without the correlation between the
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 elements.

signal = sin(2*pi*0.055*(0:1000-1)');

Now, add correlated white noise to signal. To ensure that the noise is correlated, pass the noise
through a lowpass FIR filter, then add the filtered noise to the signal.

 dsp.LMSFilter

4-909

noise = randn(1000,1);
filt = dsp.FIRFilter;
filt.Numerator = fir1(11,0.4);
fnoise = filt(noise);
d = signal + fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-sign algorithm.

To prepare the dsp.LMSFilter object for processing, set the initial conditions of the filter weights
(InitialConditions) and mu (StepSize). As noted earlier in this section, the values you set for
coeffs and mu determine whether the adaptive filter can remove the noise from the signal path. In
“System Identification of FIR Filter Using LMS Algorithm” on page 4-890, you constructed a default
filter that sets the filter coefficients to zeros. Usually that approach does not work for the sign-sign
algorithm.

The closer you set your initial filter coefficients to the expected values, the more likely it is that the
algorithm remains well behaved and converges to a filter solution that removes the noise effectively.
For this example, you start with the coefficients used in the noise filter (filt.Numerator), and
modify them slightly so the algorithm has to adapt.

coeffs = (filt.Numerator).' -0.01; % Set the filter initial conditions.
mu = 0.05;

With the required input arguments for dsp.LMSFilter prepared, run the adaptation and view the
results.

lms = dsp.LMSFilter(12,'Method','Sign-Sign LMS',...
 'StepSize',mu,'InitialConditions',coeffs);
[~,e] = lms(noise,d);
L = 200;
plot(0:199,signal(1:200),0:199,e(1:200));
title('Noise cancellation performance by the sign-sign LMS algorithm');
legend('Actual signal','Error after noise reduction',...
 'Location','NorthEast')
xlabel('Time index')
ylabel('Signal value')

4 System Objects

4-910

When dsp.LMSFilter runs, it uses far fewer multiplication operations than either of the standard
LMS algorithms. Also, performing the sign-sign adaptation requires only bit shifting multiples when
the step size is a power of two.

Although the performance of the sign-sign algorithm as shown in this plot is quite good, the sign-sign
algorithm is much less stable than the standard LMS variations. In this noise cancellation example,
the adapted signal is a very good match to the input signal, but the algorithm could very easily
become unstable rather than achieve good performance.

Changing the weight initial conditions (InitialConditions) and mu (StepSize), or even the
lowpass filter you used to create the correlated noise, can cause noise cancellation to fail and the
algorithm to become useless.

Access Full History of LMS Filter Weights

Note: This example runs only in R2017a or later. If you are using a release earlier than R2017a, the
object does not output a full sample-by-sample history of filter weights. If you are using a release
earlier than R2016b, replace each call to the function with the equivalent step syntax. For example,
myObject(x) becomes step(myObject,x).

Initialize the dsp.LMSFilter System object and set the WeightsOutput property to 'All'. This
setting enables the LMS filter to output a matrix of weights with dimensions [FrameLength
Length], corresponding to the full sample-by-sample history of weights for all FrameLength
samples of input values.

 dsp.LMSFilter

4-911

FrameSize = 15000;
lmsfilt3 = dsp.LMSFilter('Length',63,'Method','LMS', ...
 'StepSize',0.001,'LeakageFactor',0.99999, ...
 'WeightsOutput','All'); % full Weights history

w_actual = fir1(64,[0.5 0.75]);
firfilt3 = dsp.FIRFilter('Numerator',w_actual);
sinewave = dsp.SineWave('Frequency',0.01, ...
 'SampleRate',1,'SamplesPerFrame',FrameSize);

scope = timescope('TimeUnits','Seconds', ...
 'YLimits',[-0.25 0.75],'BufferLength',2*FrameSize, ...
 'ShowLegend',true,'ChannelNames', ...
 {'Coeff 33 Estimate','Coeff 34 Estimate','Coeff 35 Estimate', ...
 'Coeff 33 Actual','Coeff 34 Actual','Coeff 35 Actual'});

Run one frame and output the full adaptive weights history, w.

x = randn(FrameSize,1); % Input signal
d = firfilt3(x) + sinewave(); % Noise + Signal
[~,~,w] = lmsfilt3(x,d);

Each row in w is a set of weights estimated for the respective input sample. Each column in w gives
the complete history of a specific weight. Plot the actual weight and the entire history of the 33rd,
34th, and 35th weight. In the plot, you can see that the estimated weight output eventually converges
with the actual weight as the adaptive filter receives input samples and continues to adapt.

idxBeg = 33;
idxEnd = 35;
scope([w(:,idxBeg:idxEnd), repmat(w_actual(idxBeg:idxEnd),FrameSize,1)])

4 System Objects

4-912

Algorithms
The LMS filter algorithm is defined by the following equations.

y(n) = wT(n− 1)u(n)
e(n) = d(n)− y(n)

w(n) = αw(n− 1) + f (u(n), e(n), μ)

The various LMS adaptive filter algorithms available in this System object are defined as:

• LMS –– Solves the Weiner-Hopf equation and finds the filter coefficients for an adaptive filter.

f (u(n), e(n), μ) = μe(n)u*(n)
• Normalized LMS –– Normalized variation of the LMS algorithm.

f (u(n), e(n), μ) = μe(n) u∗(n)
ε + uH(n)u(n)

In Normalized LMS, to overcome potential numerical instability in the update of the weights, a
small positive constant, ε, has been added in the denominator. For double-precision floating-point
input, ε is 2.2204460492503131e-016. For single-precision floating-point input, ε is
1.192092896e-07. For fixed-point input, ε is 0.

• Sign-Data LMS –– Correction to the filter weights at each iteration depends on the sign of the
input u(n).

 dsp.LMSFilter

4-913

f (u(n), e(n), μ) = μe(n)sign(u(n))

where u(n) is real.
• Sign-Error LMS –– Correction applied to the current filter weights for each successive iteration

depends on the sign of the error, e(n).

f (u(n), e(n), μ) = μsign(e(n))u*(n)
• Sign-Sign LMS –– Correction applied to the current filter weights for each successive iteration

depends on both the sign of u(n) and the sign of e(n).

f (u(n), e(n), μ) = μsign(e(n))sign(u(n))

where u(n) is real.

The variables are as follows:

Variable Description
n The current time index
u(n) The vector of buffered input samples at step n
u*(n) The complex conjugate of the vector of buffered input samples at step n
w(n) The vector of filter weight estimates at step n
y(n) The filtered output at step n
e(n) The estimation error at step n
d(n) The desired response at step n
µ The adaptation step size
α The leakage factor (0 < α ≤ 1)
ε A constant that corrects any potential numerical instability that occurs

during the update of weights.

References
[1] Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons,

1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

The dsp.LMSFilter System object supports SIMD code generation using Intel AVX2 technology
under these conditions:

• Method is set to 'LMS' or 'Normalized LMS'.
• WeightsOutput is set to 'None' or 'Last'.

4 System Objects

4-914

• Input signal is real-valued.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The following diagrams show the data types used within the dsp.LMSFilter object for fixed-point
signals. The table summarizes the definitions of the variables used in the diagrams:

Variable Definition
u Input vector
W Vector of filter weights
µ Step size
e Error
Q Quotient, Q = μ ⋅ e

u′u
Product u'u Product data type in Energy calculation diagram
Accumulator u'u Accumulator data type in Energy calculation diagram
Product W'u Product data type in Convolution diagram
Accumulator W'u Accumulator data type in Convolution diagram
Product μ ⋅ e Product data type in Product of step size and error diagram
Product Q ⋅ u Product and accumulator data type in Weight update

diagram. 1

1The accumulator data type for this quantity is automatically set to be the same as the product data
type. The minimum, maximum, and overflow information for this accumulator is logged as part of the
product information. Autoscaling treats this product and accumulator as one data type.

 dsp.LMSFilter

4-915

4 System Objects

4-916

You can set the data type of the properties, weights, products, quotient, and accumulators in the
System object properties. Fixed-point inputs, outputs, and System object properties must have the
following characteristics:

• The input signal and the desired signal must have the same word length, but their fraction lengths
can differ.

• The step size and leakage factor must have the same word length, but their fraction lengths can
differ.

• The output signal and the error signal have the same word length and the same fraction length as
the desired signal.

• The quotient and the product output of the u'u, W'u, μ ⋅ e, and Q ⋅ u operations must have the
same word length, but their fraction lengths can differ.

• The accumulator data type of the u'u and W'u operations must have the same word length, but
their fraction lengths can differ.

The output of the multiplier is in the product output data type if at least one of the inputs to the
multiplier is real. If both of the inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details on the complex multiplication performed, see
“Multiplication Data Types”.

 dsp.LMSFilter

4-917

See Also
Functions
msepred | msesim | maxstep

Objects
dsp.BlockLMSFilter | dsp.FIRFilter | dsp.FilteredXLMSFilter |
dsp.FrequencyDomainAdaptiveFilter | dsp.AdaptiveLatticeFilter |
dsp.AffineProjectionFilter | dsp.FastTransversalFilter | dsp.RLSFilter

Blocks
LMS Filter | LMS Update

Topics
“Overview of Adaptive Filters and Applications”
“Signal Enhancement Using LMS and NLMS Algorithms”
“Variable-Size Signal Support DSP System Objects”

Introduced in R2012a

4 System Objects

4-918

dsp.LogicAnalyzer
Package: dsp

Visualize, measure, and analyze transitions and states over time

Description
The Logic Analyzer System object displays the transitions in time-domain signals. Using
dsp.LogicAnalyzer, you can:

• Debug and analyze models
• Trace and correlate 96 signals simultaneously
• Detect and analyze timing violations
• Trace system execution
• Detect signal changes using triggers

To display the transitions of signals in the Logic Analyzer:

1 Create the dsp.LogicAnalyzer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

 dsp.LogicAnalyzer

4-919

For more information about how to configure and customize the Logic Analyzer, see Logic Analyzer.

Creation

Syntax
scope = dsp.LogicAnalyzer
scope = dsp.LogicAnalyzer(Name,Value)

Description

scope = dsp.LogicAnalyzer creates a Logic Analyzer System object, scope.

scope = dsp.LogicAnalyzer(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in single quotes. For example, scope =
dsp.LogicAnalyzer('BackgroundColor','White','NumInputPorts',4).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

4 System Objects

4-920

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

BackgroundColor — Background color for display
'Black' (default) | 'White'

Background color of the display, specified as 'Black' or 'White'.

Tunable: Yes
Data Types: char | string

DisplayChannelColor — Color for channels in display
[0.0588 1 1] (default) | RGB triplet

Color for channels in the display, specified as an RGB triplet.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green,
and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6
0.7].

Tunable: Yes
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

DisplayChannelFontSize — Font size for channels in display
10 (default) | nonnegative scalar integer

Font size for channels in the display, in points, specified as a nonnegative integer.

Tunable: Yes
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

DisplayChannelFormat — Format for channels in display
'Automatic' (default) | 'Analog' | 'Digital'

Format for channels in the display, specified as one of the following:

• 'Automatic' — Displays floating-point signals in Analog format and integer and fixed-point
signals in Digital format. Boolean signals are displayed as zero or one.

• 'Analog' — Shows values as an analog plot.
• 'Digital' — Shows values as digital transitions.

Tunable: Yes
Data Types: char | string

DisplayChannelHeight — Channel height in display
12 (default) | positive real scalar

Channel height in the display, in pixels, specified as a positive real scalar in the range [8, 200].

Tunable: Yes

 dsp.LogicAnalyzer

4-921

Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

DisplayChannelRadix — Base used to display values
'Hexadecimal' (default) | 'Binary' | 'Octal' | 'Signed decimal' | 'Unsigned decimal'

This property applies only to fixed-point (fi) values.

Tunable: Yes
Data Types: char | string

DisplayChannelSpacing — Spacing between channels in display (pixels)
4 (default) | positive integer

Spacing between channels in the display, in pixels, specified as a positive scalar integer.

Tunable: Yes
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Name — Caption to display on scope window
'Logic Analyzer' (default) | character vector | string scalar

Caption to display on the scope window, specified as a character vector or string.

Tunable: Yes
Data Types: char | string

NumInputPorts — Number of input ports
1 (default) | integer between [1, 96]

Number of input ports, specified as a positive integer. Each signal coming through a separate input
becomes a separate channel in the scope. You must invoke the scope with the same number of inputs
as the value of this property.

Position — Scope window position
[left bottom width height] vector

Position of the scope window on your screen, in pixels, specified as a [left bottom width
height] vector. The default position depends on your screen resolution. By default, the scope
window appears in the center of your screen, with a width of 800 pixels and height of 600 pixels.

Tunable: Yes
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

SampleTime — Input sample time
1 (default) | scalar

Sample time of inputs in seconds, specified as a finite numeric scalar. The same sample time is used
for all inputs.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

TimeDisplayOffset — Time display offset
0 (default) | nonnegative scalar

4 System Objects

4-922

Time display offset in seconds, specified as a nonnegative scalar.

Tunable: Yes
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

TimeSpan — Time span
10 | positive scalar

Time span in seconds, specified as a positive scalar. The x-axis limits are calculated as follows:

• Minimum x-axis limit = min(TimeDisplayOffset)
• Maximum x-axis limit = max(TimeDisplayOffset) + TimeSpan

TimeDisplayOffset and TimeSpan are the values of their respective properties.

Tunable: Yes
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Usage

Syntax
scope(signal)
scope(signal1,signal2,...signalN)

Description

scope(signal) displays the signal signal in the Logic Analyzer scope.

scope(signal1,signal2,...signalN) displays multiple signals in the Logic Analyzer when you
set the NumInputPorts property to N. Each signal can have different data types and dimensions.

Input Arguments

signal — Input signal or signals to visualize
scalar | vector | matrix

Specify one or more input signals to visualize in the dsp.LogicAnalyzer. Signals can have different
data types and dimensions.

Integers are supported up to 64 bits and fixed-point signals are supported up to 128 bits.
Example: scope(signal1,signal2)
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical |
struct | table | cell

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 dsp.LogicAnalyzer

4-923

Specific to dsp.LogicAnalyzer
addCursor Add cursor to Logic Analyzer
addDivider Add divider to Logic Analyzer
addWave Add wave to Logic Analyzer
deleteCursor Delete Logic Analyzer cursor
deleteDisplayChannel Delete Logic Analyzer channel
getCursorInfo Return settings for Logic Analyzer cursor
getCursorTags Return all Logic Analyzer cursor tags
getDisplayChannelInfo Return settings for Logic Analyzer display channel
getDisplayChannelTags Return all Logic Analyzer display channel tags
modifyCursor Modify properties of Logic Analyzer cursor
modifyDisplayChannel Modify properties of Logic Analyzer display channel
moveDisplayChannel Move position of Logic Analyzer display channel

Specific to Scopes
show Display scope window
hide Hide scope window
isVisible Determine visibility of scope

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Display Simple Ramp Signals

Create a dsp.LogicAnalyzer object. Call the scope in a loop to display the signals.

scope = dsp.LogicAnalyzer('NumInputPorts',3);
for ii = 1:20
 scope(ii,10*ii,20*ii);
end

4 System Objects

4-924

Display Fixed-Point Signals

Create a dsp.LogicAnalyzer object with four channels. Call modifyDisplayChannel to set the
radix of each of the channels. Run the scope in a loop to display the waves.

scope = dsp.LogicAnalyzer('NumInputPorts',4,'DisplayChannelFormat','Digital');
scope.TimeSpan = 12;

modifyDisplayChannel(scope,1,'Name','Index','Radix','Unsigned decimal');
modifyDisplayChannel(scope,2,'Name','Fi_hex','Radix','Hexadecimal');
modifyDisplayChannel(scope,3,'Name','Fi_bin','Radix','Binary');
modifyDisplayChannel(scope,4,'Name','Fi_actual','Radix','Signed decimal');

for ii = 1:20
 fival = fi((ii-1)/16,0,4,4);
 scope(ii,fival,fival,fival);
end

 dsp.LogicAnalyzer

4-925

Display Vector, Complex, and Enumerated Signals

Define a WeekDaysInt class to hold an enumerated list of weekday values. Create and save the
following class definition file.

classdef WeekDaysInt < int32
 enumeration
 Monday(1), Tuesday(2), Wednesday(3), Thursday(4), Friday(5)
 end
end

Create a dsp.LogicAnalyzer object and configure the vector, complex, and enumerated data
signals.

scope = dsp.LogicAnalyzer('NumInputPorts',6);
waves = getDisplayChannelTags(scope);

modifyDisplayChannel(scope,waves{1},'InputChannel',1,'Name','Vector Digital');

4 System Objects

4-926

modifyDisplayChannel(scope,waves{2},'InputChannel',2,'Name','Vector Analog',...
 'Format','Analog','Height',80);
modifyDisplayChannel(scope,waves{3},'InputChannel',3,'Name','Complex Digital');
modifyDisplayChannel(scope,waves{4},'InputChannel',4,'Name','Complex Analog',...
 'Format','Analog','Height',80,'Color','Green');
modifyDisplayChannel(scope,waves{5},'InputChannel',5,'Name','Enum Digital');
modifyDisplayChannel(scope,waves{6},'InputChannel',6,'Name','Enum Analog',...
 'Format','Analog','Height',80);

Call the scope object in a loop to display the signals.

stop = 30;
for count = 1:stop
 sinValVec = sin(count/stop*2*pi);
 cosValVec = cos(count/stop*2*pi);
 cosValVecOffset = cos((count+10)/stop*2*pi);
 sinValReal = sin((count+2)/stop*2*pi);
 cosValImag = cos((count+2)/stop*2*pi);

 % Create a weekday enumerated value by wrapping the index
 day = WeekDaysInt(1+mod(count-1,5));

 scope(...
 [count (count-(stop/2))],... % digital vector
 [sinValVec cosValVec cosValVecOffset],... % analog vector
 complex((count-(stop/2)),count),... % digital complex
 complex(sinValReal, cosValImag),... % analog complex
 day,... % digital enum
 day... % analog enum
)
end

 dsp.LogicAnalyzer

4-927

Tips
To close the logic analyzer window and clear its associated data, use the MATLAB clear function.

See Also
Objects
dsp.DynamicFilterVisualizer

Objects
dsp.SpectrumAnalyzer | timescope | dsp.ArrayPlot

Blocks
Logic Analyzer

Topics
“Inspect and Measure Transitions Using the Logic Analyzer”

4 System Objects

4-928

Introduced in R2013a

 dsp.LogicAnalyzer

4-929

dsp.LowerTriangularSolver
Package: dsp

(To be removed) Solve lower-triangular matrix equation

Note dsp.LowerTriangularSolver will be removed in a future release. Use the mldivide
function or the \ operator instead. For more information, see “Compatibility Considerations”.

Description
The LowerTriangularSolver object solves LX = B for X when L is a square, lower-triangular
matrix with the same number of rows as B.

To solve LX = B for X:

1 Create the dsp.LowerTriangularSolver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
lowtriang = dsp.LowerTriangularSolver
lowtriang = dsp.LowerTriangularSolver(Name,Value)

Description

lowtriang = dsp.LowerTriangularSolver returns a linear system solver, lowtriang, used to
solve the linear system LX = B, where L is a lower (or unit-lower) triangular matrix.

lowtriang = dsp.LowerTriangularSolver(Name,Value) returns a linear system solver,
lowtriang, with each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

OverwriteDiagonal — Replace diagonal elements of input with ones
false (default) | true

4 System Objects

4-930

When you set this property to true, the linear system solver replaces the elements on the diagonal of
the input, L, with ones. This property is useful when matrix L is the result of another operation, such
as an LDL decomposition, that uses the diagonal elements to represent the D matrix.

RealDiagonalElements — Indicate that diagonal of complex input is real
false (default) | true

When you set this property to true, the linear system solver optimizes computation speed if the input
L is complex, but its diagonal elements are real. Set this property to either true or false.

Dependencies

This property applies only when you set the OverwriteDiagonal property to false.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method as Ceiling, Convergent, Floor, Nearest, Round, Simplest, or
Zero.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as Wrap or Saturate.

ProductDataType — Data type of product
Full precision (default) | Same as input | Custom

Specify the product data type as Full precision, Same as input, or Custom.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when you set the ProductDataType property to Custom.

AccumulatorDataType — Data type of accumulator
Full precision (default) | Same as first input | Same as product | Custom

Specify the accumulator data type as Full precision, Same as first input, Same as
product, or Custom.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the AccumulatorDataType property to Custom.

 dsp.LowerTriangularSolver

4-931

OutputDataType — Data type of output
Same as first input (default) | Custom

Specify the output data type as Same as first input or Custom.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
Dependencies

This property applies only when you set the OutputDataType property to Custom.

Usage

Syntax
X = lowtriang(L,B)

Description

X = lowtriang(L,B) computes the solution, X, of the matrix equation LX = B, where L is a square,
lower-triangular matrix with the same number of rows as the matrix B.

Input Arguments

L — Lower-triangular matrix
matrix

Lower-triangular square matrix of size M-by-M.

If the matrix is of fixed-point data type, it must be signed fixed point.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

B — Input B
vector | matrix

Input B in the equation LX = B, where B is an M-by-N matrix.

If the matrix is of fixed-point data type, it must be signed fixed point.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Output Arguments

X — Solution of the equation
vector | matrix

Solution of the LX = B equation, returned as an M-by-N output matrix. The object uses only the
elements in the lower triangle of input L and ignores the upper elements. When you set
OverwriteDiagonal to true, the object replaces the elements on the diagonal of the input, L, with
ones.

If the matrix is of fixed-point data type, it must be signed fixed point.

4 System Objects

4-932

Data Types: single | double | int8 | int16 | int32 | int64 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Solve a Lower Triangular Matrix

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

rng(1);
lowtriang = dsp.LowerTriangularSolver;
u = tril(rand(4,4));
b = rand(4,1);

Check that result is the solution to the linear equations.

x1 = u\b

x1 = 4×1

 1.0007
 -1.7557
 1.1148
 -0.3901

x = lowtriang(u,b)

x = 4×1

 1.0007
 -1.7557
 1.1148
 -0.3901

Algorithms
This object implements the algorithm, inputs, and outputs described on the Forward Substitution
block reference page. The object properties correspond to the block parameters.

 dsp.LowerTriangularSolver

4-933

Compatibility Considerations
dsp.LowerTriangularSolver System object will be removed
Warns starting in R2021b

dsp.LowerTriangularSolver System object will be removed in a future release. Use the
mldivide function or the \ operator instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the mldivide function or the \ operator.

Discouraged Usage Recommended Replacement
rng(1);
lowtriang = dsp.LowerTriangularSolver;
u = tril(rand(4,4));
b = rand(4,1);
x = lowtriang(u,b)

x = 4×1
 1.0007
 -1.7557
 1.1148
 -0.3901

If you are using a release prior to R2016b,
replace lowtriang(x) with
step(lowtriang,x).

x1 = u\b

x1 = 4×1
 1.0007
 -1.7557
 1.1148
 -0.3901

Alternatively, you can also use the mldivide
function.

x1 = mldivide(u,b)

x1 = 4×1
 1.0007
 -1.7557
 1.1148
 -0.3901

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
mldivide

Introduced in R2012a

4 System Objects

4-934

dsp.LowpassFilter
Package: dsp

FIR or IIR lowpass filter

Description
The dsp.LowpassFilter object independently filters each channel of the input over time using the
given design specifications. You can set the FilterType property of dsp.LowpassFilter to 'FIR'
or 'IIR' to implement the object as a FIR or IIR lowpass filter.

To filter each channel of your input:

1 Create the dsp.LowpassFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
LPF = dsp.LowpassFilter
LPF = dsp.LowpassFilter(Name,Value)

Description

LPF = dsp.LowpassFilter returns a minimum order FIR lowpass filter, LPF, with the default filter
settings. Calling the object with the default property settings filters the input data with a passband
frequency of 8 kHz, a stopband frequency of 12 kHz, a passband ripple of 0.1 dB, and a stopband
attenuation of 80 dB.

LPF = dsp.LowpassFilter(Name,Value) returns a lowpass filter, with additional properties
specified by one, or more Name,Value pair arguments. Name is the property name and Value is the
corresponding value. Name must appear inside single quotes (' '). You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input sample rate
44100 (default) | real positive scalar

 dsp.LowpassFilter

4-935

Input sample rate in Hz, specified as the comma-separated pair consisting of 'SampleRate' and a
real positive scalar.
Data Types: single | double

FilterType — Filter type
'FIR' (default) | 'IIR'

Filter type, specified as one of the following options:

• 'FIR' — The object designs an FIR lowpass filter.
• 'IIR' — The object designs an IIR lowpass (biquad) filter.

DesignForMinimumOrder — Minimum order filter design
true (default) | false

Minimum order filter design, specified as the comma-separated pair consisting of
'DesignForMinimumOrder' and a logical value. If this property is true, then
dsp.LowpassFilter designs filters with the minimum order that meets the passband frequency,
stopband frequency, passband ripple, and stopband attenuation specifications. Set these
specifications using the corresponding properties. If this property is false, then the object designs
filters with the order that you specify in the FilterOrder property. This filter design meets the
passband frequency, passband ripple, and stopband attenuation specifications that you set using the
respective properties.

FilterOrder — Order of the FIR or IIR filter
50 (default) | positive integer scalar

Order of the FIR or IIR filter, specified as the comma-separated pair consisting of 'FilterOrder'
and a positive integer scalar.

Dependencies

Specifying a filter order is only valid when the value of 'DesignForMinimumOrder' is false.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PassbandFrequency — Filter passband edge frequency
8000 (default) | real positive scalar

Filter passband edge frequency in Hz, specified as the comma-separated pair of
'PassbandFrequency' and a real positive scalar. The value of the passband edge frequency in Hz
must be less than half the SampleRate.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandFrequency — Filter stopband edge frequency
12000 (default) | real positive scalar

Filter stopband edge frequency in Hz, specified as the comma-separated pair consisting of
'StopbandFrequency' and a real positive scalar. The value of the stopband edge frequency in Hz
must be less than half the SampleRate.

Dependencies

You can specify the stopband edge frequency only when 'DesignForMinimumOrder' is true.

4 System Objects

4-936

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PassbandRipple — Maximum ripple of filter response in the passband
0.1 (default) | real positive scalar

Maximum ripple of filter response in the passband, in dB, specified as the comma-separated pair
consisting of 'PassbandRipple' and a real positive scalar. Maximum ripple of filter response
defaults to 0.1 dB.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StopbandAttenuation — Minimum attenuation in the stopband
80 (default) | real positive scalar

Minimum attenuation in the stopband in dB, specified as the comma-separated pair consisting of
'StopbandAttenuation' and a real positive scalar. Minimum attenuation in the stopband defaults
to 80 dB.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

RoundingMethod — Rounding method for output fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Rounding method for output fixed-point operations, specified as a character vector. For more
information on the rounding modes, see “Precision and Range”.

CoefficientsDataType — Word and fraction lengths of coefficients
numerictype(1,16) (default) | numerictype object

Word and fraction lengths of coefficients, specified as a numerictype object. The default,
numerictype(1,16) corresponds to a signed numeric type object with 16-bit coefficients and a
fraction length determined based on the coefficient values, to give the best possible precision.

This property is not tunable.

Word length of the output is same as the word length of the input. Fraction length of the output is
computed such that the entire dynamic range of the output can be represented without overflow. For
details on how the fraction length of the output is computed, see “Fixed-Point Precision Rules for
Avoiding Overflow in FIR Filters”.

Usage

Syntax
y = LPF(x)

Description

y = LPF(x) lowpass filters the input signal, x. y is a lowpass-filtered version of x.

 dsp.LowpassFilter

4-937

Input Arguments

x — Noisy data input
vector | matrix

Noisy data input, specified as a vector or a matrix. If the input signal is a matrix, each column of the
matrix is treated as an independent channel. The number of rows in the input signal denote the
channel length. This object accepts variable-size inputs. After the object is locked, you can change the
size of each input channel, but you cannot change the number of channels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix. The output has the same size, data type, and
complexity characteristics as the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.LowpassFilter
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
impz Impulse response of discrete-time filter System object
info Information about filter System object
coeffs Returns the filter System object coefficients in a structure
cost Estimate cost of implementing filter System object
grpdelay Group delay response of discrete-time filter System object
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)
measure Measure frequency response characteristics of filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

4 System Objects

4-938

Impulse and Frequency Response of FIR and IIR Lowpass Filters

Create a minimum-order FIR lowpass filter for data sampled at 44.1 kHz. Specify a passband
frequency of 8 kHz, a stopband frequency of 12 kHz, a passband ripple of 0.1 dB, and a stopband
attenuation of 80 dB.

Fs = 44.1e3;
filtertype = 'FIR';
Fpass = 8e3;
Fstop = 12e3;
Rp = 0.1;
Astop = 80;
FIRLPF = dsp.LowpassFilter('SampleRate',Fs, ...
 'FilterType',filtertype, ...
 'PassbandFrequency',Fpass, ...
 'StopbandFrequency',Fstop, ...
 'PassbandRipple',Rp, ...
 'StopbandAttenuation',Astop);

Design a minimum-order IIR lowpass filter with the same properties as the FIR lowpass filter. Change
the FilterType property of the cloned filter to IIR.

IIRLPF = clone(FIRLPF);
IIRLPF.FilterType = 'IIR';

Plot the impulse response of the FIR lowpass filter. The zeroth-order coefficient is delayed by 19
samples, which is equal to the group delay of the filter. The FIR lowpass filter is a causal FIR filter.

fvtool(FIRLPF,'Analysis','impulse')

 dsp.LowpassFilter

4-939

Plot the impulse response of the IIR lowpass filter.

fvtool(IIRLPF,'Analysis','impulse')

4 System Objects

4-940

Plot the magnitude and phase response of the FIR lowpass filter.

fvtool(FIRLPF,'Analysis','freq')

 dsp.LowpassFilter

4-941

Plot the magnitude and phase response of the IIR lowpass filter.

fvtool(IIRLPF,'Analysis','freq')

4 System Objects

4-942

Calculate the cost of implementing the FIR lowpass filter.

cost(FIRLPF)

ans = struct with fields:
 NumCoefficients: 39
 NumStates: 38
 MultiplicationsPerInputSample: 39
 AdditionsPerInputSample: 38

Calculate the cost of implementing the IIR lowpass filter. The IIR filter is more efficient to implement
than the FIR filter.

cost(IIRLPF)

ans = struct with fields:
 NumCoefficients: 18
 NumStates: 14
 MultiplicationsPerInputSample: 18
 AdditionsPerInputSample: 14

Calculate the group delay of the FIR lowpass filter.

grpdelay(FIRLPF)

 dsp.LowpassFilter

4-943

Calculate the group delay of the IIR lowpass filter. The FIR filter has a constant group delay (linear
phase), while its IIR counterpart does not.

grpdelay(IIRLPF)

4 System Objects

4-944

Filter White Gaussian Noise Signal With Lowpass Filter

Create a lowpass filter with default properties.

LPF = dsp.LowpassFilter;

Create a spectrum analyzer object.

hSA = dsp.SpectrumAnalyzer('SampleRate',44.1e3,...
 'PlotAsTwoSidedSpectrum',false,'ShowLegend',true,'YLimits',...
 [-150 30],...
 'Title',...
 'Input Signal and Output Signal of Lowpass Filter');
hSA.ChannelNames = {'Input','Output'};

Implement step on LPF to filter the white Gaussian noisy input signal. View the input and output
signals using the spectrum analyzer.

for k = 1:100
 Input = randn(1024,1);

 Output = step(LPF,Input);

 step(hSA,[Input,Output]);
end

 dsp.LowpassFilter

4-945

Filter White Gaussian Noise

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Set up the IIR lowpass filter. The sampling rate of the white Gaussian noise is 44,100 Hz. The
passband frequency of the filter is 8 kHz, the stopband frequency is 12 kHz, the passband ripple is
0.1 dB, and the stopband attenuation is 80 dB.

Fs = 44.1e3;
filtertype = 'IIR';
Fpass = 8e3;
Fstop = 12e3;
Rp = 0.1;
Astop = 80;
LPF = dsp.LowpassFilter('SampleRate',Fs,...
 'FilterType',filtertype,...
 'PassbandFrequency',Fpass,...
 'StopbandFrequency',Fstop,...
 'PassbandRipple',Rp,...
 'StopbandAttenuation',Astop);

View the magnitude response of the lowpass filter.

4 System Objects

4-946

fvtool(LPF)

Create a spectrum analyzer object.

hSA = dsp.SpectrumAnalyzer('SampleRate',44.1e3,...
 'PlotAsTwoSidedSpectrum',false,'ShowLegend',true,'YLimits',...
 [-150 30],...
 'Title',...
 'Input Signal and Output Signal of IIR Lowpass Filter');
hSA.ChannelNames = {'Input','Output'};

Filter the white Gaussian noisy input signal. View the input and output signals using the spectrum
analyzer.

for k = 1:100
 Input = randn(1024,1);

 Output = LPF(Input);

 hSA([Input,Output]);
end

 dsp.LowpassFilter

4-947

Measure Frequency Response Characteristics of Lowpass Filter

Measure the frequency response characteristics of a lowpass filter. Create a dsp.LowpassFilter
System object with default properties. Measure the frequency response characteristics of the filter.

LPF = dsp.LowpassFilter

LPF =
 dsp.LowpassFilter with properties:

 FilterType: 'FIR'
 DesignForMinimumOrder: true
 PassbandFrequency: 8000
 StopbandFrequency: 12000
 PassbandRipple: 0.1000
 StopbandAttenuation: 80
 SampleRate: 44100

 Show all properties

LPFMeas = measure(LPF)

4 System Objects

4-948

LPFMeas =
Sample Rate : 44.1 kHz
Passband Edge : 8 kHz
3-dB Point : 9.1311 kHz
6-dB Point : 9.5723 kHz
Stopband Edge : 12 kHz
Passband Ripple : 0.08289 dB
Stopband Atten. : 81.6141 dB
Transition Width : 4 kHz

Algorithms
FIR Lowpass Filter

When the FilterType property is set to 'FIR', the dsp.LowpassFilter object acts as a FIR
lowpass filter.

In this configuration, dsp.LowpassFilter is an alternative to using firceqrip and firgr with
dsp.FIRFilter. This object condenses the two-step process into one. For the minimum order
design, the object uses generalized Remez FIR filter design algorithm. For the specified order design,
the object uses the constrained equiripple FIR filter design algorithm. The designed filter is then
implemented as a linear phase Type-1 filter with a Direct form structure. You can use measure to
verify that the design meets the prescribed specifications.

IIR Lowpass Filter

When the FilterType property is set to 'IIR', the dsp.LowpassFilter object acts as an IIR
lowpass filter. In this configuration, the object uses the elliptic design method to compute the SOS
and scale values required to meet the filter design specifications. The object uses the SOS and scale
values to setup a Direct form I biquadratic IIR filter, which forms the basis of the IIR version of
the dsp.LowpassFilter System object. You can use measure to verify that the design meets the
prescribed specifications.

References
[1] Shpak, D.J., and A. Antoniou. "A generalized Remez method for the design of FIR digital filters."

IEEE Transactions on Circuits and Systems. Vol. 37, Issue 2, Feb. 1990, pp. 161–174.

[2] Selesnick, I.W., and C. S. Burrus. "Exchange algorithms that complement the Parks-McClellan
algorithm for linear-phase FIR filter design." IEEE Transactions on Circuits and Systems. Vol.
44, Issue 2, Feb. 1997, pp. 137–143.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 dsp.LowpassFilter

4-949

This object supports code generation for ARM Cortex-M and ARM Cortex-A processors. To learn more
about ARM Cortex code generation, see “Code Generation for ARM Cortex-M and ARM Cortex-A
Processors”.

This object also supports SIMD code generation using Intel AVX2 technology under these conditions:

• FilterType is set to 'FIR'.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Functions
freqz | fvtool | impz | info | coeffs | cost | grpdelay | generatehdl | measure

Objects
dsp.HighpassFilter

Topics
“Lowpass Filter Design in MATLAB”
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2015a

4 System Objects

4-950

dsp.LPCToAutocorrelation
Package: dsp

(Removed) Convert linear prediction coefficients to autocorrelation coefficients

Note dsp.LPCToAutocorrelation has been removed. Use poly2ac from Signal Processing
Toolbox™ instead. For more information, see “Compatibility Considerations”.

Description
The LPCToAutocorrelation System object converts linear prediction coefficients to
autocorrelation coefficients.

To convert LPC to autocorrelation coefficients:

1 Define and set up your LPC to autocorrelation object. See “Construction” on page 4-951.
2 Call step to convert LPC according to the properties of dsp.LPCToAutocorrelation. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
lpc2ac = dsp.LPCToAutocorrelation returns an LPC to autocorrelation System object, lpc2ac,
that converts linear prediction coefficients (LPC) to autocorrelation coefficients.

lpc2ac = dsp.LPCToAutocorrelation('PropertyName',PropertyValue,...) returns an
LPC to autocorrelation conversion object, lpc2ac, with each specified property set to the specified
value.

Properties
PredictionErrorInputPort

Enable prediction error power input

Choose how to select the prediction error power. When you set this property to true, you must
specify the prediction error power as a second input to the step method. When you set this property
to false, the object assumes that the prediction error power is 1. The default is false.

NonUnityFirstCoefficientAction

Action to take when first LPC coefficient is not 1

Specify the action that the object takes when the first coefficient of each channel of the LPC input is
not 1. Select Replace with 1 or Normalize. The default is Replace with 1.

 dsp.LPCToAutocorrelation

4-951

Methods
step Autocorrelation coefficients from LPC coefficients

Common to All System Objects
release Allow System object property value changes

Examples

Convert LPC To Autocorrelation Coefficients

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Convert the linear prediction coefficients to autocorrelation coefficients.

a = [1.0 -1.4978 1.4282 -1.3930 0.9076 -0.3855 0.0711].';
lpc2ac = dsp.LPCToAutocorrelation;
ac = lpc2ac(a);

Algorithms
This object implements the algorithm, inputs, and outputs described on the LPC/RC to
Autocorrelation block reference page. The object properties correspond to the block parameters,
except:
The object does not have a property that corresponds to the Type of Conversion block parameter.
The object's behavior corresponds to the block's behavior when you set the Type of Conversion
parameter to LPC to autocorrelation.

Compatibility Considerations
dsp.LPCToAutocorrelation System object has been removed
Errors starting in R2021a

dsp.LPCToAutocorrelation System object has been removed. Use poly2ac instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

4 System Objects

4-952

Discouraged Usage Recommended Replacement
a = [1.0 -1.4978 1.4282 -1.3930 ...
 0.9076 -0.3855 0.0711].';
lpcToAC = dsp.LPCToAutocorrelation
ACObj = lpcToAC(a)

or

a = [1.0 -1.4978 1.4282 -1.3930 ...
 0.9076 -0.3855 0.0711].';
lpcToAC = dsp.LPCToAutocorrelation(...
'PredictionErrorInputPort',true)
p = 0.2;
ACObj = lpcToAC(a,p)

In the first example, the default prediction error,
p is 1.

If you are using a release prior to R2016b,
replace lpcToAC(a) with step(lpcToAC,a)
and lpcToAC(a,p) with step(lpcToAC,a,p).

a = [1.0 -1.4978 1.4282 -1.3930 ...
 0.9076 -0.3855 0.0711].';
p = 1.0;
ACFn = poly2ac(a,p)

or

a = [1.0 -1.4978 1.4282 -1.3930 ...
 0.9076 -0.3855 0.0711].';
p = 0.2;
ACFn = poly2ac(a,p)

The poly2ac function expects prediction error as
the second input while the default instance of the
dsp.LPCToAutocorrelation System object
does not accept such an input. By default, the
object uses a prediction error of 1.0.

When you set the PredictionErrorInputPort
property to true, the object accepts the
prediction error as the second input.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
poly2ac

Introduced in R2012a

 dsp.LPCToAutocorrelation

4-953

step
System object: dsp.LPCToAutocorrelation
Package: dsp

Autocorrelation coefficients from LPC coefficients

Syntax
AC = step(lpc2ac,A)
AC = step(lpc2ac,A,P)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

AC = step(lpc2ac,A) converts the columns of the linear prediction coefficients, A, to
autocorrelation coefficients, AC. The object assumes a prediction error power of 1.

AC = step(lpc2ac,A,P) when you set the PredictionErrorInputPort property to true,
converts the columns of the linear prediction coefficients, A, to autocorrelation coefficients, AC. This
conversion uses P as the prediction error power. P must be a row vector with same number of
columns as A.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-954

dsp.LPCToCepstral
Package: dsp

(Removed) Convert linear prediction coefficients to cepstral coefficients

Note dsp.LPCToCepstral has been removed. For more information, see “Compatibility
Considerations”.

Description
The LPCToCepstral object converts linear prediction coefficients to cepstral coefficients.

To convert LPC to cepstral coefficients:

1 Define and set up your LPC to cepstral converter. See “Construction” on page 4-955.
2 Call step to convert LPC according to the properties of dsp.LPCToCepstral. The behavior of

step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
lpc2cc = dsp.LPCToCepstral returns an LPC to cepstral converter object, lpc2cc, that converts
linear prediction coefficients (LPCs) to cepstral coefficients (CCs).

lpc2cc = dsp.LPCToCepstral('PropertyName',PropertyValue,...) returns an LPC to
cepstral converter object, lpc2cc, with each specified property set to the specified value.

Properties
PredictionErrorInputPort

Enable prediction error power input

Choose how to set the prediction error power. When you set this property to true, you must specify
the prediction error as a second input to the step method. When you set this property to false, the
object assumes the prediction error power is 1. The default is false.

CepstrumLengthSource

Source of cepstrum length

Select how to specify the length of cepstral coefficients: Auto or Property. The default is Auto.
When this property is set to Auto, the length of each channel of the cepstral coefficients output is the
same as the length of each channel of the input LPC coefficients. The default is Property.

 dsp.LPCToCepstral

4-955

CepstrumLength

Number of output cepstral coefficients

Set the length of the output cepstral coefficients vector as a scalar numeric integer. This property
applies when you set the CepstrumLengthSource property to Property. The default is 10.

NonUnityFirstCoefficientAction

LPC coefficient nonunity action

Specify the action that the object takes when the first coefficient of each channel of the LPC input is
not 1. Select Replace with 1 or Normalize. The default is Replace with 1.

Methods

step Cepstral coefficients from columns of input LPC coefficients

Common to All System Objects
release Allow System object property value changes

Examples

Convert LPC To Cepstral Coefficients

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

levinson = dsp.LevinsonSolver;
levinson.AOutputPort = true; % Output polynomial coefficients
x = (1:100)';
% xcorr computes autocorrelation over both positive and negative lags.
a = xcorr(x,9);

Compute LPC coefficients.

lpc2cc = dsp.LPCToCepstral;
% Use autocorrelation computed over lags between [0 9].
A = levinson(a(10:end));

Convert LPC to CC.

CC = lpc2cc(A);

Algorithms
This object implements the algorithm, inputs, and outputs described on the LPC to/from Cepstral
Coefficients block reference page. The object properties correspond to the block parameters, except:

4 System Objects

4-956

The object does not have a property that corresponds to the Type of Conversion block parameter.
The object's behavior corresponds to the block's behavior when you set the Type of Conversion
parameter to LPCs to cepstral coefficients.

Compatibility Considerations
dsp.LPCToCepstral System object has been removed
Errors starting in R2021a

dsp.LPCToCepstral System object has been removed.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Introduced in R2012a

 dsp.LPCToCepstral

4-957

step
System object: dsp.LPCToCepstral
Package: dsp

Cepstral coefficients from columns of input LPC coefficients

Syntax
CC = step(lpc2cc,A)
CC = step(lpc2cc,A,P)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

CC = step(lpc2cc,A) computes the cepstral coefficients, CC, from the columns of input linear
prediction coefficients, A. The object assumes the prediction error power is 1.

CC = step(lpc2cc,A,P) when you set the PredictionErrorInputPort property to true,
computes the cepstral coefficients, CC, from the columns of input linear prediction coefficients, A.
This conversion uses P as the prediction error power.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-958

dsp.LPCToLSF
Package: dsp

(To be removed) Convert linear prediction coefficients to line spectral frequencies

Note dsp.LPCToLSF will be removed in a future release. Use poly2lsf from Signal Processing
Toolbox™ instead. For more information, see “Compatibility Considerations”.

Description
The LPCToLSF object converts linear prediction coefficients to line spectral frequencies.

To convert LPC to LSF:

1 Define and set up your LPC to LSF converter. See “Construction” on page 4-959.
2 Call step to convert LPC according to the properties of dsp.LPCToLSF. The behavior of step is

specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
lpc2lsf = dsp.LPCToLSF returns a System object, lpc2lsf, that converts linear prediction
coefficients (LPCs) to line spectral frequencies (LSFs).

lpc2lsf = dsp.LPCToLSF('PropertyName',PropertyValue,...) returns an LPC to LSF
System object, lpc2lsf, with each specified property set to the specified value.

Properties
NumCoarseGridPoints

Number of coarse subintervals used for finding roots (LSP values)

Specify the number of coarse subintervals, n, used for finding line spectral pairs (LSP) values as a
positive scalar integer. LSPs, which are the roots of two particular polynomials related to the input
LPC polynomial, always lie in the range (–1, 1). The System object finds these roots using the
Chebyshev polynomial root finding method. To compute LSF outputs, the object computes the arc
cosine of the LSPs, outputting values ranging from 0 to pi radians. The object divides the interval (–1,
1) into n subintervals and looks for roots in each subinterval. If you set n too small in relation to the
LPC polynomial order, the object can fail to find some of the roots. The default is 64. This property is
tunable.

NumBisects

Value of bisection refinement used for finding roots

 dsp.LPCToLSF

4-959

Specify the root bisection refinement value, k, used in the Chebyshev polynomial root finding method,
where each line spectral pair (LSP) output is within

1
(n ⋅ 2k)

of the actual LSP value. Here n is the value of the NumCoarseGridPoints property, and the object
searches a maximum of k ⋅ (n− 1) points for finding the roots. You must set the NumBisects property
value k, to a positive scalar integer. The default is 4. This property is tunable.

ExceptionOutputPort

Produces output with validity status of LSF output

Set this property to true to return a second output that indicates whether the computed LSF values
are valid. The output is a vector with a length equal to the number of channels. A logical value of 1
indicates valid output. A logical value of 0 indicates invalid output. The LSF outputs are invalid when
the object fails to find all the LSF values or when the input LPCs are unstable. The default is false.

OverwriteInvalidOutput

Enable overwriting invalid output with previous output

Specify the action that the System object should take for invalid LSF outputs. When you set this
property to true, the object overwrites the invalid output with the previous output. When you set this
property to false, the object does not take any action on invalid outputs and ignores the outputs.

FirstOutputValuesSource

Source of values for first output when output is invalid

Specify the source of values for the first output when the output is invalid as Auto or Property. This
property applies when you set the OverwriteInvalidOutput property to true. The default is
Auto. When you set this property to Auto, the object uses a default value for the first output. The
default value corresponds to the LSF representation of an allpass filter.

FirstOutputValues

Value of the first output

Specify a numeric vector of LSF values for overwriting an invalid first output. The length of this
vector must be one less than the length of the input LPC vector. For multichannel inputs, you can set
this property to a matrix with the same number of channels as the input, or one vector that is applied
to every channel. The default is an empty vector. This property applies when you set the
OverwriteInvalidOutput property to true and the FirstOutputValuesSource property to
Property.

NonUnityFirstCoefficientAction

Action to take when first LPC coefficient is not 1

Specify the action the object takes when the first coefficient of each channel of the LPC input is not 1
as Replace with 1 or Normalize. The default is Replace with 1.

4 System Objects

4-960

Methods
reset Reset values for overwriting invalid outputs to their initial values
step Convert LPC coefficients to line spectral frequencies

Common to All System Objects
release Allow System object property value changes

Examples

Convert LPC Coefficients To LSF Coefficients

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Convert LPC to LSF coefficients

a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082]';
lpc2lsf = dsp.LPCToLSF;
y = lpc2lsf(a);
display(y);

y = 5×1

 0.7842
 1.5605
 1.8776
 1.8984
 2.3593

Algorithms
This object implements the algorithm, inputs, and outputs described on the LPC to LSF/LSP
Conversion block reference page. The object properties correspond to the block parameters, except:
There is no object property that corresponds to the Output block parameter. The object only
supports LSF outputs in the range (0,∏)

Compatibility Considerations
dsp.LPCToLSF System object will be removed
Warns starting in R2019a

dsp.LPCToLSF System object will be removed in a future release. Use poly2lsf instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

 dsp.LPCToLSF

4-961

Discouraged Usage Recommended Replacement
a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082]';
lpc2lsf = dsp.LPCToLSF
lsfObj = lpc2lsf(a)

If you are using a release prior to R2016b,
replace lpc2lsf(a) with step(lpc2lsf,a).

a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082]';
lsfFn = poly2lsf(a)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
poly2lsf

Introduced in R2012a

4 System Objects

4-962

reset
Reset values for overwriting invalid outputs to their initial values

Syntax
reset(lpc2lsf)

Description
reset(lpc2lsf) resets the values for overwriting the invalid outputs to their initial values.

 reset

4-963

step
System object: dsp.LPCToLSF
Package: dsp

Convert LPC coefficients to line spectral frequencies

Syntax
LSF = step(lpc2lsf,A)
[..., STATUS] = step(lpc2lsf,A)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

LSF = step(lpc2lsf,A) converts the LPC coefficients, A , to line spectral frequencies, LSF, in the
range (0 pi). The System object operates along the columns of the input A.

[..., STATUS] = step(lpc2lsf,A) also returns the status flag, STATUS, indicating if the
current output is valid when the ExceptionOutputPort property is true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-964

dsp.LPCToLSP
Package: dsp

(Removed) Convert linear prediction coefficients to line spectral pairs

Note dsp.LPCToLSP has been removed. Use poly2lsf instead. For more information, see
“Compatibility Considerations”.

Description
The LPCToLSP object converts linear prediction coefficients to line spectral pairs.

To convert LPC to LSP:

1 Define and set up your LPC to LSP converter. See “Construction” on page 4-965.
2 Call step to convert LPC according to the properties of dsp.LPCToLSP. The behavior of step is

specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
lpc2lsp = dsp.LPCToLSP returns a System object, lpc2lsp, that converts linear prediction
coefficients (LPCs) to line spectral pairs (LSPs).

lpc2lsp = dsp.LPCToLSP('PropertyName',PropertyValue,...) returns an LPC to LSF
System object, lpc2lsp, with each specified property set to the specified value.

Properties
NumCoarseGridPoints

Number of coarse subintervals used for finding roots (LSP values)

Specify the number of coarse subintervals, n, used for finding line spectral pairs (LSP) values, as a
positive scalar integer. LSPs, which are the roots of two particular polynomials related to the input
LPC polynomial, always lie in the range (–1, 1). The System object finds these roots using the
Chebyshev polynomial root finding method. The object divides the interval (–1, 1) into n subintervals
and looks for roots in each subinterval. If n is set to too small a number in relation to the LPC
polynomial order, the object can fail to find some of the roots. The default is 64. This property is
tunable.

NumBisects

Value of bisection refinement used for finding roots

 dsp.LPCToLSP

4-965

Specify the root bisection refinement value, k, that the Chebyshev polynomial uses in the root finding
method. For each line spectral pair (LSP) the output is within

1
n ⋅ 2k

of the actual LSP value. Here n is the value of the NumCoarseGridPoints property and the object
searches a maximum of

k⋅(n‐1)

points for finding the roots. The NumBisects property value k, must be a positive scalar integer. The
default is 4. This property is tunable.

ExceptionOutputPort

Produces output with validity status of LSP output

Set this property to true to return a second output that indicates whether the computed LSP values
are valid. The object outputs a vector length equal to the number of channels. A logical value of 1
indicates the output is valid. A logical value of 0 indicates the output is invalid. The LSP outputs are
invalid when the object fails to find all the LSP values or when the input LPCs are unstable. The
default is false.

OverwriteInvalidOutput

Enable overwriting invalid output with previous output

Specify the action that the object takes for invalid LSP outputs. When you set this property to true,
the object overwrites the invalid output with the previous output. When you set this property to
false, the object takes no action on invalid outputs and ignores the outputs.

FirstOutputValuesSource

Source of values for first output when output is invalid

Specify the source of values for the first output when the output is invalid as Auto or Property. This
property applies only when you set the OverwriteInvalidOutput property to true. The default is
Auto. When this property is Auto, the object uses a default value for the first output. The default
value corresponds to the LSP representation of an allpass filter.

FirstOutputValues

Value of first output

Specify a numeric vector of LSP values for overwriting an invalid first output. The length of this
vector must be one less than the length of the input LPC vector. For multichannel inputs, set this
property can to a matrix with the same number of channels as the input or one vector that you apply
to every channel. The default is an empty vector. This property applies only when you set the
OverwriteInvalidOutput property to true and the FirstOutputValuesSource property to
Property.

NonUnityFirstCoefficientAction

First coefficient nonunity action

4 System Objects

4-966

Specify the action that the object takes when the first coefficient of each channel of the LPC input is
not equal to 1. Specify as one of Replace with 1 or Normalize. The default is Replace with 1.

Methods

reset Reset values for overwriting invalid outputs to their initial values
step Convert linear prediction coefficients to line spectral pairs

Common to All System Objects
release Allow System object property value changes

Examples

Convert LPC To LSP Coefficients

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Convert the linear prediction coefficients to line spectral pairs.

a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082]';
lpc2lsp = dsp.LPCToLSP;
y = lpc2lsp(a); % Convert to LSP coefficients

Algorithms
This object implements the algorithm, inputs, and outputs described on the LPC to LSF/LSP
Conversion block reference page. The object properties correspond to the block parameters, except:
No object property corresponds to the Output block parameter. The object only supports LSP
outputs.

Compatibility Considerations
dsp.LPCToLSP System object has been removed
Errors starting in R2021a

dsp.LPCToLSP System object has been removed. Use poly2lsf instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

 dsp.LPCToLSP

4-967

Discouraged Usage Recommended Replacement
a = [1.0000 0.6149 0.9899 0.0000 ...
 0.0031 -0.0082]';
lpc2lsp = dsp.LPCToLSP
lspObj = lpc2lsp(a)

If you are using a release prior to R2016b,
replace lpc2lsp(a) with step(lpc2lsp,a).

a = [1.0000 0.6149 0.9899 0.0000 ...
 0.0031 -0.0082]';
lspFn = cos(poly2lsf(a))

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
poly2lsf

Introduced in R2012a

4 System Objects

4-968

reset
Reset values for overwriting invalid outputs to their initial values

Syntax
reset(H)

Description
reset(H) resets the values for overwriting the invalid outputs to their initial values.

 reset

4-969

step
System object: dsp.LPCToLSP
Package: dsp

Convert linear prediction coefficients to line spectral pairs

Syntax
LSF = step(lpc2lsp,A)
[..., STATUS] = step(lpc2lsp,A)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

LSF = step(lpc2lsp,A) converts the LPC coefficients, A , to line spectral pairs normalized in the
range (–1 1), LSP. The object operates along the columns of the input A.

[..., STATUS] = step(lpc2lsp,A) also returns the status flag, STATUS, indicating if the
current output is valid when the ExceptionOutputPort property is true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-970

dsp.LPCToRC
Package: dsp

(Removed) Convert linear prediction coefficients to reflection coefficients

Note dsp.LPCToRC has been removed. Use poly2rc instead. For more information, see
“Compatibility Considerations”.

Description
The LPCToRC object converts linear prediction coefficients to reflection coefficients.

To convert LPC to reflection coefficients:

1 Define and set up your LPC to RC converter. See “Construction” on page 4-971.
2 Call step to convert LPC according to the properties of dsp.LPCToRC. The behavior of step is

specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
lpc2rc = dsp.LPCToRC returns an LPC to RC System object, lpc2rc, that converts linear
prediction coefficients (LPC) to reflection coefficients (RC).

lpc2rc = dsp.LPCToRC('PropertyName',PropertyValue,...) returns an LPC to RC
conversion object, lpc2rc, with each specified property set to the specified value.

Properties
PredictionErrorOutputPort

Enable normalized prediction error power output

Set this property to true to return the normalized error power as a vector with one element per
input channel. Each element varies between zero and one. The default is true.

ExceptionOutputPort

Produces output with stability status of filter represented by LPC coefficients

Set this property to true to return the stability status of the filter. A logical value of 1 indicate a
stable filter. A logical value of 0 indicate an unstable filter. The default is false.

 dsp.LPCToRC

4-971

NonUnityFirstCoefficientAction

Action to take when first LPC coefficient is not 1

Specify the action that the object takes when the first coefficient of each channel of the LPC input is
not 1. Select Replace with 1 or Normalize. The default is Replace with 1.

Methods

step Convert columns of linear prediction coefficients to reflection coefficients

Common to All System Objects
release Allow System object property value changes

Examples

Convert LPC Coefficients To RC Coefficients

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Convert the linear prediction coefficients to reflection coefficients:

load mtlb

levinson = dsp.LevinsonSolver;
levinson.AOutputPort = true;
levinson.KOutputPort = false;
lpc2rc = dsp.LPCToRC;

Compute autocorrelation for lags between [0:10].

a = xcorr(mtlb,10);
A = levinson(a(11:end)); % Compute LPC coefficients
[K, P] = lpc2rc(A); % Convert to RC

Algorithms
This object implements the algorithm, inputs, and outputs described on the LPC to/from RC block
reference page. The object properties correspond to the block parameters, except:

• There is no object property that corresponds to the Type of conversion block parameter. The
object always converts LPC to RC.

• The NonUnityFirstCoefficientAction object property corresponds to the If first input
value is not 1 block parameter. There is neither a Normalize and warn nor an Error option
for the object.

4 System Objects

4-972

Compatibility Considerations
dsp.LPCToRC System object has been removed
Errors starting in R2021a

dsp.LPCToRC System object has been removed. Use poly2rc instead.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
poly2rc

Introduced in R2012a

 dsp.LPCToRC

4-973

step
System object: dsp.LPCToRC
Package: dsp

Convert columns of linear prediction coefficients to reflection coefficients

Syntax
[K,P] = step(lpc2rc,A)
K = step(lpc2rc,A)
[..., S] = step(lpc2rc,A)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[K,P] = step(lpc2rc,A) converts the columns of linear prediction coefficients, A, to reflection
coefficients K and outputs the normalized prediction error power, P.

K = step(lpc2rc,A) when you set the PredictionErrorOutputPort property to false,
converts the columns of linear prediction coefficients, A, to reflection coefficients K.

[..., S] = step(lpc2rc,A) also outputs the LPC filter stability, S, when you set the
ExceptionOutputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-974

dsp.LSFToLPC
Package: dsp

(Removed) Convert line spectral frequencies to linear prediction coefficients

Note dsp.LSFToLPC has been removed. Use lsf2poly instead. For more information, see
“Compatibility Considerations”.

Description
The LSFToLPC object converts line spectral frequencies to linear prediction coefficients.

To convert LSF to LPC:

1 Define and set up your LSF to LPC converter. See “Construction” on page 4-975.
2 Call step to convert LSF according to the properties of dsp.LSFToLPC. The behavior of step is

specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
lsf2lpc = dsp.LSFToLPC returns an LSF to LPC System object, lsf2lpc, which converts line
spectral frequencies (LSFs) to linear prediction coefficients (LPCs).

Methods

step Convert input line spectral frequencies to linear prediction coefficients

Common to All System Objects
release Allow System object property value changes

Examples

Convert LSF Coefficients to LPC Coefficients

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

 a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082]'

 dsp.LSFToLPC

4-975

a = 6×1

 1.0000
 0.6149
 0.9899
 0
 0.0031
 -0.0082

 lpc2lsf = dsp.LPCToLSF;
 ylsf = lpc2lsf(a);
 lsf2lpc = dsp.LSFToLPC;
 ylpc = lsf2lpc(ylsf);

Check if values in ylpc are the same as in a.

 display(ylpc);

ylpc = 6×1

 1.0000
 0.6149
 0.9899
 0.0000
 0.0031
 -0.0082

Algorithms
This object implements the algorithm, inputs, and outputs described on the LSF/LSP to LPC
Conversion block reference page. The object properties correspond to the block parameters, except:
The object does not have a property that corresponds to the Input block parameter. The object's
behavior corresponds to the block's behavior when you set the Input parameter to LSF in range
(0 pi).

Compatibility Considerations
dsp.LSFToLPC System object has been removed
Errors starting in R2021a

dsp.LSFToLPC System object has been removed. Use lsf2poly instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

4 System Objects

4-976

Discouraged Usage Recommended Replacement
lsf = [0.7842 1.5605 1.8776 ...
1.8984 2.3593]';
lsf2lpc = dsp.LSFToLPC;
lpcObj = lsf2lpc(lsf)

The output, lpcObj is a column vector.

If you are using a release prior to R2016b,
replace lsf2lpc(lsf) with
step(lsf2lpc,lsf).

lsf = [0.7842 1.5605 1.8776 ...
1.8984 2.3593]';
lpcFn = lsf2poly(lsf)

The output, lpcFn is a row vector. To compare
lpcObj with lpcFn, transpose one of the vectors so
that both have the same dimensions.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
lsf2poly

Introduced in R2012a

 dsp.LSFToLPC

4-977

step
System object: dsp.LSFToLPC
Package: dsp

Convert input line spectral frequencies to linear prediction coefficients

Syntax
A = step(lsf2lpc,LSF)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

A = step(lsf2lpc,LSF) converts the input line spectral frequencies, (LSF), in the range (0,pi),
LSF , to linear prediction coefficients, A. The input can be a vector or a matrix, where each column of
the matrix is treated as a separate channel.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

4 System Objects

4-978

dsp.LSPToLPC
Package: dsp

(Removed) Convert line spectral pairs to linear prediction coefficients

Note dsp.LSPToLPC has been removed. For more information, see “Compatibility Considerations”.

Description
The LSPToLPC object converts line spectral pairs to linear prediction coefficients.

To convert LSP to LPC:

1 Define and set up your LSP to LPC converter. See “Construction” on page 4-979.
2 Call step to convert LSP according to the properties of dsp.LSPToLPC. The behavior of step is

specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = dsp.LSPToLPC returns an LSP to LPC System object, H, which converts line spectral pairs
(LSPs) to linear prediction coefficients (LPCs).

Methods

step Convert input line spectral pairs to linear prediction coefficients

Common to All System Objects
release Allow System object property value changes

Examples

Convert LSP To LPC Coefficients

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Convert line spectral pairs to linear prediction coefficients.

 dsp.LSPToLPC

4-979

ylsp = [0.7080 0.0103 -0.3021 -0.3218 -0.7093]';
lsp2lpc = dsp.LSPToLPC;
ylpc = lsp2lpc(ylsp)

ylpc = 6×1

 1.0000
 0.6149
 0.9898
 -0.0000
 0.0030
 -0.0081

Algorithms
This object implements the algorithm, inputs, and outputs described on the LSF/LSP to LPC
Conversion block reference page. The object properties correspond to the block parameters, except:
No object property corresponds to the Input block parameter. The object converts LSP in the range
(–1, 1) to LPC.

Compatibility Considerations
dsp.LSPToLPC System object has been removed
Errors starting in R2021a

dsp.LSPToLPC System object has been removed.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
lsf2poly

Introduced in R2012a

4 System Objects

4-980

step
System object: dsp.LSPToLPC
Package: dsp

Convert input line spectral pairs to linear prediction coefficients

Syntax
A = step(lsp2lpc,LSP)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

A = step(lsp2lpc,LSP) converts the input line spectral pairs in the range (–1,1), LSP, to linear
prediction coefficients, A. The input can be a vector or a matrix, where each column of the matrix is
treated as a separate channel.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

 step

4-981

dsp.LUFactor
Package: dsp

(To be removed) Factor square matrix into lower and upper triangular matrices

Note dsp.LUFactor will be removed in a future release. Use lu instead. For more information, see
“Compatibility Considerations”.

Description
The LUFactor object factors a square matrix into lower and upper triangular matrices.

To factor a square matrix into lower and upper triangular matrices:

1 Define and set up your System object. See “Construction” on page 4-982.
2 Call step to factor the square matrix according to the properties of dsp.LUFactor. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
lu = dsp.LUFactor returns an LUFactor System object, lu, which factors a row permutation of a
square input matrix A as Ap = L ⋅U, where L is the unit-lower triangular matrix, and U is the upper
triangular matrix. The row-pivoted matrix Ap contains the rows of A permuted as indicated by the
permutation index vector P. The equivalent MATLAB code is Ap = A(P,:).

lu = dsp.LUFactor('PropertyName',PropertyValue,...) returns an LUFactor object, lu,
with each specified property set to the specified value.

Properties
ExceptionOutputPort

Set to true to output singularity of input

Set this property to true to output the singularity of the input as logical data type values of true or
false. An output of true indicates that the current input is singular, and an output of false
indicates the current input is nonsingular.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

4 System Objects

4-982

Specify the rounding method as |Ceiling|Convergent|Floor|Nearest |Round | Simplest | Zero|.
The default is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default is Wrap.

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Full precision, Same as input or Custom. The
default is Full precision.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies when you set the ProductDataType property to Custom. The default is
numerictype([],32,30).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Full precision, Same as input, Same as
product or Custom. The default is Full precision.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto. This property applies when you set the AccumulatorDataType property to Custom. The
default is numerictype([],32,30).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as input or Custom. The default is Same as
input.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
This property applies when you set the “OutputDataType” on page 4-0 property to Custom. The
default is numerictype([],16,15).

 dsp.LUFactor

4-983

Methods

step Decompose matrix into lower and upper triangular matrices

Common to All System Objects
release Allow System object property value changes

Examples

Decompose a Square Matrix

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Decompose a square matrix into the lower and upper components.

lu = dsp.LUFactor;
x = rand(4)

x = 4×4

 0.8147 0.6324 0.9575 0.9572
 0.9058 0.0975 0.9649 0.4854
 0.1270 0.2785 0.1576 0.8003
 0.9134 0.5469 0.9706 0.1419

[LU, P] = lu(x);
L = tril(LU,-1)+diag(ones(size(LU,1),1));
U = triu(LU);
y = L*U

y = 4×4

 0.9134 0.5469 0.9706 0.1419
 0.9058 0.0975 0.9649 0.4854
 0.8147 0.6324 0.9575 0.9572
 0.1270 0.2785 0.1576 0.8003

Check back whether y equals the permuted x

xp = x(P,:)

xp = 4×4

 0.9134 0.5469 0.9706 0.1419
 0.9058 0.0975 0.9649 0.4854
 0.8147 0.6324 0.9575 0.9572

4 System Objects

4-984

 0.1270 0.2785 0.1576 0.8003

Algorithms
This object implements the algorithm, inputs, and outputs described on the LU Factorization block
reference page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.LUFactor System object will be removed
Warns starting in R2021b

dsp.LUFactor System object will be removed in a future release. Use the lu function instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the lu function.

Discouraged Usage Recommended Replacement
rng(1)
lu = dsp.LUFactor;
x = rand(4)

x = 4×4

 0.4170 0.1468 0.3968 0.2045
 0.7203 0.0923 0.5388 0.8781
 0.0001 0.1863 0.4192 0.0274
 0.3023 0.3456 0.6852 0.6705

[LU,P] = lu(x)

LU = 4×4
 0.7203 0.0923 0.5388 0.8781
 0.4197 0.3068 0.4591 0.3019
 0.0002 0.6070 0.1404 -0.1560
 0.5789 0.3041 -0.3900 -0.4566

P = 4×1
 2
 4
 3
 1

If you are using a release prior to R2016b,
replace lu(x) with step(lu,x).

[LUfn,Pfn] = lu(x)

LUfn = 4×4
 0.7203 0.0923 0.5388 0.8781
 0.4197 0.3068 0.4591 0.3019
 0.0002 0.6070 0.1404 -0.1560
 0.5789 0.3041 -0.3900 -0.4566

Pfn = 4×1
 2
 4
 3
 1

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 dsp.LUFactor

4-985

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
lu

Introduced in R2012a

4 System Objects

4-986

step
System object: dsp.LUFactor
Package: dsp

Decompose matrix into lower and upper triangular matrices

Syntax
[LU,P] = step(lu,A)
[LU,P,S] = step(lu,A)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[LU,P] = step(lu,A) decomposes the matrix A into lower and upper triangular matrices. The
output LU is a composite matrix with lower triangle elements from L and upper triangle elements
from U . The permutation vector P is the second output.

[LU,P,S] = step(lu,A) returns an additional output S indicating if the input is singular when the
ExceptionOutputPort property is set to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

 step

4-987

dsp.MatFileReader
Package: dsp

Read MAT file

Description
The dsp.MatFileReader System object reads V7.3 MAT files.

To read V7.3 MAT files:

1 Create the dsp.MatFileReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
mfr = dsp.MatFileReader
mfr = dsp.MatFileReader(fname,vname,framesize)
mfr = dsp.MatFileReader(___ ,Name,Value)

Description

mfr = dsp.MatFileReader returns a System object, mfr, to read a stream of scalar data from a
V7.3 MAT file.

mfr = dsp.MatFileReader(fname,vname,framesize) reads frames of MAT file data, using the
specified file name, variable name, and frame size.

mfr = dsp.MatFileReader(___ ,Name,Value) reads MAT file data with each specified property
set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filename — Name of MAT file
'Untitled.mat' (default) | character vector | string scalar

4 System Objects

4-988

Name of the MAT file from which to read, specified as a character vector or a string scalar. Specify
the full path for the file only if the file is not on the MATLAB path.

VariableName — Name of variable to read
'x' (default) | character vector | string scalar

Name of the variable to read from the MAT file, specified as a character vector or a string scalar.

SamplesPerFrame — Number of samples per output frame
1 (default) | scalar

Number of samples per output frame to read from the MAT file on each call to the object algorithm,
specified as a positive, integer-valued scalar.

Usage

Syntax
data = mfr()

Description

data = mfr() reads data from a specified variable stored in a MAT-file. The variable is assumed to
be N-dimensional and a MATLAB built-in data type. The data is read into MATLAB by reading along
the first dimension.

Output Arguments

data — Data read from MAT file
scalar | vector | matrix

Data read from the MAT file, returned as a scalar, vector, or a matrix. The data can be an N-
dimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.MatFileReader
isDone End-of-data status

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

 dsp.MatFileReader

4-989

Examples

Read MAT File

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Read a MAT file using the MatFileReader object.

filename = [tempname '.mat']; % Create variable name
originalData = rand(40,2);
save(filename,'originalData','-v7.3'); % Write to MAT file

mfr = dsp.MatFileReader(filename,'VariableName',...
 'originalData','SamplesPerFrame', 4);
while ~isDone(mfr) % Stream data into MATLAB
 finalData = mfr();
end

See Also
Objects
dsp.MatFileWriter

Topics
“Remove High-Frequency Noise from Gyroscope Data”
“Outlier Removal Techniques with Streaming ECG Signals”
“Measure Statistics of Streaming Signals”

Introduced in R2012b

4 System Objects

4-990

dsp.MatFileWriter
Package: dsp

Write MAT file

Description
The dsp.MatFileWriter System object writes data to a V7.3 MAT file.

To write data to a V7.3 MAT file:

1 Create the dsp.MatFileWriter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
mfw = dsp.MatFileWriter
mfw = dsp.MatFileWriter(fname,vname)
mfw = dsp.MatFileWriter(Name,Value)

Description

mfw = dsp.MatFileWriter returns a MAT file writer System object, mfw, that writes data to a
V7.3 MAT file.

mfw = dsp.MatFileWriter(fname,vname) returns a MAT file writer System object with the
Filename property set to fname and the VariableName property set to vname.

mfw = dsp.MatFileWriter(Name,Value) returns a MAT file writer System object with each
specified property set to the specified value. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filename — Name of MAT file to write
'Untitled.mat' (default) | character vector | string scalar

 dsp.MatFileWriter

4-991

Specify the name of a MAT file as a character vector or a string scalar. Specify the full path for the
file only if the file is not on the MATLAB path.

VariableName — Name of variable to write
'x' (default) | character vector | string scalar

Name of the variable to which to write, returned as a character vector or a string scalar. This variable
is stored in the MAT file. You cannot overwrite a variable that is already in an existing MAT file.

Usage

Syntax
mfw(data)

Description

mfw(data) writes one frame of data to the variable stored in the MAT file. The variable is assumed
to be N-dimensional and a MATLAB built-in data type. The data is written to the file by concatenating
along the first dimension.

Input Arguments

data — Data to be written to MAT file
scalar | vector | matrix

Data to be written to the MAT file, specified as a scalar, vector, or a matrix. The data can be an N-
dimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Write Data Into a MAT File

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

4 System Objects

4-992

First, create a variable name.

filename = [tempname '.mat'];

Next, write that variable to a MAT-file.

mfw = dsp.MatFileWriter(filename,'VariableName','originalData');
for i = 1:10
 originalData = rand(4,2);
 mfw(originalData);
end
release(mfw); % This will close the MAT file

Finally, load the variable back into MATLAB.

data = load(filename,'originalData');

Plot the data.

plot(data.originalData);

See Also
Objects
dsp.MatFileReader

 dsp.MatFileWriter

4-993

Introduced in R2012b

4 System Objects

4-994

dsp.MatrixViewer
Package: dsp

Visualize matrix data

Description
The dsp.MatrixViewer visualizes matrix data by mapping the matrix elements to a specified range of
colors.

To visualize matrix data in the Matrix Viewer:

1 Create the dsp.MatrixViewer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

 dsp.MatrixViewer

4-995

Zoom and Pan

To scale the plot axes, you can use the scroll button on your mouse to zoom in/out of the plot and
CTRL+Click and drag to pan around the plot. Additionally, you can use the buttons that appear when
you hover over the upper right corner of the plot window.

•
 — Autoscale the axes to fit the data.

•
 — Zoom in to the plot.

•
 — Pan around the axes.

Cursor Measurements

Activate cursor measurements by hovering over the matrix viewer and selecting the cursor button
.

4 System Objects

4-996

Two horizontal and two vertical cursors appear on the plot. A dialog box shows the difference
between the two intersection points. Hovering over an intersection point shows the value at that
intersection point. Move the cursors by clicking and dragging the cursor lines or the intersection
points to your desired location. Additionally, you can Alt+Click and drag the cursor dialog box to
move the cursors while keeping the distance between the cursor lines constant.

Creation

Syntax
scope = dsp.MatrixViewer
scope = dsp.MatrixViewer(Name,Value)

Description

scope = dsp.MatrixViewer creates a Matrix Viewer System object, scope.

scope = dsp.MatrixViewer(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in single quotes. For example, scope =
dsp.MatrixViewer("AxisOrigin","Lower left corner")

 dsp.MatrixViewer

4-997

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Matrix Information

XDataMode — x-axis numbering mode
"Offset and resolution" (default) | "Custom"

Specify the x-axis numbering mode.

• "Offset and resolution" – Compute the x-axis data points from the XResolution and XOffset
properties.

• "Custom" – Compute the x-axis data points using the CustomXData property.

Data Types: char | string

YDataMode — y-axis numbering mode
"Offset and resolution" (default) | "Span and resolution" | "Custom"

Specify the y-axis numbering mode:

• "Span and resolution" – Compute the y-axis data points from the YSpan and YResolution
properties.

• "Offset and resolution" – Compute the y-axis data points from the YResolution and YOffset
properties.

• "Custom" – Compute the y-axis data points using the CustomYData property.

Data Types: char | string

CustomXData — Custom data values for x-axis
[1 numberOfColumns] (default) | [min max] | monotonically increasing numeric vector

Specify custom values for the x-axis using a two-element numeric vector or a numeric vector with a
finite number of elements.

If you specify a two-element vector, the numbers are used as the min and max values of the x-axis. If
you specify a vector with more than two elements, the values must be monotonically increasing and
the scope uses the first and last values of the vector as the minimum and maximum values,
respectively. If you do not specify x-axis data limits, the scope uses the number of input columns as
the maximum x-axis value.
Example: [5 156]

Tunable: Yes

Dependency

To enable this property, you must set XDataMode to "Custom".

4 System Objects

4-998

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CustomYData — Custom data values for y-axis
[1 numberOfRows] (default) | [min max] | monotonically increasing numeric vector

Specify custom values for the y-axis using a two-element numeric vector or a numeric vector with a
finite number of elements.

If you specify a two-element vector, the numbers are used as the min and max values of the y-axis. If
you specify a vector with more than two elements, the values must be monotonically increasing and
the scope uses the first and last values of the vector as minimum and maximum values, respectively. If
you do not specify y-axis data limits, the scope uses the number of input rows as the maximum y-axis
value.
Example: [-130 10]

Tunable: Yes
Dependency

To enable this property, you must set YDataMode to "Custom".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

XOffset — Display offset of x-axis
0 (default) | scalar

Specify the offset to display on the x-axis as a scalar.

Tunable: Yes
Dependency

To enable this property, you must set XDataMode to "Offset and resolution".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

XResolution — Spacing of x-axis
1 (default) | scalar

Specify the spacing of values along the x-axis as a scalar.

Tunable: Yes
Dependency

To enable this property, you must set XDataMode to "Offset and resolution".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

YOffset — Display offset of y-axis
0 (default) | scalar

Specify the offset to display on the y-axis as a scalar.

Tunable: No
Dependency

To enable this property, you must set YDataMode to "Offset and resolution".

 dsp.MatrixViewer

4-999

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

YResolution — Spacing of y-axis
1 (default) | scalar

Specify the spacing of values along the y-axis as a scalar.

Tunable: No

Dependency

To enable this property, you must set YDataMode to "Offset and resolution" or "Span and
resolution".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

YSpan — Span of y-axis
100 (default) | positive scalar

Specify the span of values along the y-axis as a scalar.

Tunable: No

Dependency

To enable this property, you must set YDataMode to "Span and resolution".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Visualization

Name — Window name
"MatrixViewer" (default) | character vector | string scalar

Specify the name of the scope. This name appears as the title of the scope's figure window. To specify
the title of plot, use the Title property.
Data Types: char | string

AxisOrigin — Starting location of plot
"Upper left corner" (default) | "Lower left corner"

Specify the starting location of the plot. If you specify "Upper left corner", the plot starts in the
top left corner of the axes and continues down.
Data Types: char | string

Position — Scope window position in pixels
screen center (default) | [left bottom width height]

Specify, in pixels, the size and location of the scope window as a four-element vector of the form
[left bottom width height]. By default, the scope window appears in the center of your screen
with a width of 410 pixels and height of 300 pixels. The default values for this property may change
depending on your screen resolution.

Title — Display title
"" (default) | character vector | string scalar

4 System Objects

4-1000

Specify the title of the plot as a character vector or string. By default, there is no title.

Tunable: Yes
Data Types: char | string

XLabel — x-axis label
"" (default) | character vector | string

Specify the text for the scope to display below the x-axis. By default, the axes is unlabeled.

Tunable: Yes
Data Types: char | string

YLabel — y-axis label
"" (default) | character vector | string

Specify the text for the scope to display to the left of the y-axis. By default, the axes is unlabeled.

Tunable: Yes
Data Types: char | string

ColorBarLabel — Color bar label
"" (default) | character vector | string

Specify the text for the scope to display next to the color bar. By default, the color bar is unlabeled.

Tunable: Yes
Data Types: char | string

Colormap — Color scheme
"parula" (default) | colormap name | three-column matrix of RGB triplets

Color scheme for the colormap, specified as a predefined colormap name or a three-column matrix of
RGB triplets.

For a list of acceptable colormap names, see map.

To use a custom colormap, specify a three-column matrix of RGB triplets. You can create the RGB
matrix yourself, or you can call a predefined colormap function, such as colormap, to create the
matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

ColorLimits — Color bar limits
minimum and maximum matrix values (default) | two-element numeric vector [min max]

Specify the color bar limits as a two-element numeric vector [min max]. By default, limits are set as
the minimum and maximum values of the input matrix.
Example: [1 80]

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 dsp.MatrixViewer

4-1001

ColorBarLocation — Color bar location
"eastoutside" (default) | "northoutside" | "southoutside" | "westoutside"

Location of the color bar relative to the axes.

Tunable: Yes
Data Types: char | string

ShowColorBar — Color bar visibility
true (default) | false

Set this property to false to hide the color bar on the plot.

ShowGrid — Grid visibility
true (default) | false

Set this property to false to hide grid lines on the plot.

Tunable: Yes

ShowTicks — Axes tick visibility
true (default) | false

Set this property to false to hide the ticks on the x-axis and y-axis.

Usage

Syntax
scope(matrix)

Description

scope(matrix) displays the matrix by mapping matrix element values to a range of colors.

Input Arguments

matrix — Matrix to visualize
n-by-m numeric matrix

Specify an n-by-m numeric matrix to visualize.
Example: scope(rand(3,5))
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

4 System Objects

4-1002

Specific to dsp.MatrixViewer
setCursorDataLabels Customize data labels for cursor measurements

Specific to Scopes
show Display scope window
hide Hide scope window
isVisible Determine visibility of scope

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate Spectrogram with dsp.MatrixViewer

This example shows how to create a spectrogram of a quadratic chirp with the dsp.MatrixViewer
System object.

Set up the sample rate and a chirp signal.

Fs = 233e3;
frameSize = 20e3;
chirp = dsp.Chirp("SampleRate",Fs,"SamplesPerFrame",frameSize,...
 "InitialFrequency",11e3,"TargetFrequency",11e3+55e3,...
 "Type","Quadratic");

Create a dsp.MatrixViewer scope. Set the axis labels, select a colormap, and set the limits of the
colormap.

scope = dsp.MatrixViewer(...
 "ColorBarLabel","Power/Frequency (dB/Hz)",...
 "XLabel","Frequency (Hz)",...
 "YLabel","Time (secs)",...
 "Colormap","hsv",...
 "ColorLimits",[-100,-30]);

Visualize the spectrogram of the chirp signal in the scope.

for idx = 1:50
 y = chirp() + 0.05*randn(frameSize,1);
 [~,~,~,Ps] = spectrogram(y,128,120,128,1e3);
 val = 10*log10(abs(Ps)'+eps);
 scope(val);
end

 dsp.MatrixViewer

4-1003

See Also
timescope | dsp.SpectrumAnalyzer | dsp.LogicAnalyzer | dsp.DynamicFilterVisualizer

Introduced in R2019a

4 System Objects

4-1004

dsp.Maximum
Package: dsp

(Removed) Find maximum value of input or sequence of inputs

Note The dsp.Maximum System object™ has been removed. To compute the maximum, use the max
function. To compute the running maximum in MATLAB®, use the dsp.MovingMaximum object. For
more information, see “Compatibility Considerations”.

Description
The dsp.Maximum object finds the maximum values of an input or sequence of inputs.

To compute the maximum value of an input or sequence of inputs:

1 Create the dsp.Maximum object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
max = dsp.Maximum
max = dsp.Maximum(Name,Value)

Description

max = dsp.Maximum returns an object, max, that computes the value and index of the maximum
elements in an input or a sequence of inputs along the specified “Dimension” on page 4-0 .

max = dsp.Maximum(Name,Value) returns a maximum-finding object, max, with each specified
property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ValueOutputPort — Output maximum value
true (default) | false

 dsp.Maximum

4-1005

Set this property to true in order to output the maximum of the input.
Dependencies

This property applies only when you set the RunningMaximum property to false.

RunningMaximum — Calculate over single input or multiple inputs
false | true

When you set this property to true, the object computes the maximum value over successive calls to
the object algorithm. When you set this property to false, the object computes the maximum value
over the current input.

IndexOutputPort — Output index of maximum value
true (default) | false

Set this property to true to output the index of the maximum value of the input.
Dependencies

This property applies only when you set the RunningMaximum property to false.

ResetInputPort — Additional input to enable resetting of running maximum
false (default) | true

Set this property to true to enable resetting the running maximum. When you set this property to
true, you must specify a reset input to the object algorithm to reset the running maximum.
Dependencies

This property applies only when you set the RunningMaximum property to true.

ResetCondition — Condition that triggers resetting of running maximum
Non-zero (default) | Rising edge | Falling edge | Either edge

Specify the event that resets the running maximum.
Dependencies

This property applies only when you set the “ResetInputPort” on page 4-0 property to true.

IndexBase — Numbering base for index of maximum value
One (default) | Zero

Specify whether to start the index numbering from One or Zero when computing the index of the
maximum value.
Dependencies

This property applies only when you set the IndexOutputPort property to true.

Dimension — Dimension to operate along
Column (default) | All | Row | Custom

Specify how the maximum calculation is performed over the data.
Dependencies

This property applies when you set the RunningMaximum property to false.

4 System Objects

4-1006

CustomDimension — Numerical dimension to calculate over
1 (default) | positive integer

Specify the integer dimension of the input signal over which the object finds the maximum. The
custom dimension cannot exceed the number of dimensions in the input signal.

Dependencies

This property only applies when you set the “Dimension” on page 4-0 property to Custom.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method.

OverflowAction — Action to take when integer input is out-of-range
Wrap (default) | Saturate

Specify the overflow action.

ProductDataType — Data type of product
Same as input (default) | Custom

Specify the product fixed-point data type.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when you set the ProductDataType property to Custom.

AccumulatorDataType — Data type of accumulator
Same as product (default) | Same as input | Custom

Specify the accumulator fixed-point data type.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the AccumulatorDataType property to Custom.

 dsp.Maximum

4-1007

Usage

Syntax
[val,ind] = max(x)
val = max(x)
ind = max(x)
val = max(x,r)

Description

[val,ind] = max(x) returns the maximum value, val, and the index or position of the maximum
value, ind, along the specified Dimension of x.

val = max(x) returns the maximum value, val, of the input x. When the RunningMaximum
property is true, val corresponds to the maximum value over successive calls to the object
algorithm.

ind = max(x) returns the zero- or one-based index ind of the maximum value. To enable this type
of processing, set the IndexOutputPort property to true and the ValueOutputPort and
RunningMaximum properties to false.

val = max(x,r) resets the state of max based on the value of reset signal, r, and the
ResetCondition property. To enable this type of processing, set the RunningMaximum property to
true and the ResetInputPort property to true.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The maximum is determined along each channel. The object also accepts
variable-size inputs. Once the object is locked, you can change the size of each input channel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

r — Reset signal
scalar

Reset signal used to reset the running maximum, specified as a scalar value. The object resets the
running maximum if the reset signal satisfies the ResetCondition.

Dependencies

To enable this signal, set the RunningMaximum property to true and the ResetInputPort property
to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments

val — Maximum value of the input
scalar | vector

4 System Objects

4-1008

Maximum value of the input, returned as a scalar or a vector. The object determines the maximum
value of the input along each channel. If the input is a column vector, the output is a scalar. If the
input is a multichannel signal, the output signal is a 1-by-N vector, where N is the number of input
channels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

ind — Index of maximum
scalar | vector

Indices of the maximum values of the input, returned as a scalar or a vector. The object determines
the indices of the maximum values of the input along each channel. If the input is a column vector,
the output is a scalar. If the input is a multichannel signal, the output signal is a 1-by-N vector, where
N is the number of input channels.
Data Types: double | uint32

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Maximum and Running Maximum of Signal

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Find a maximum value and its index.

max1 = dsp.Maximum;
x = randn(100,1);
[y,I] = max1(x)

y = 3.5784
I = 9

Compute a running maximum.

 max2 = dsp.Maximum;
 max2.RunningMaximum = true;
 x = randn(100,1);

 dsp.Maximum

4-1009

 z = max2(x);
 plot(z)

z(i) is the maximum of all values in the vector x(1:i).

Algorithms
This object implements the algorithm, inputs, and outputs described on the Maximum block reference
page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.Maximum System object has been removed
Errors starting in R2021a

The dsp.Maximum System object has been removed. To compute the maximum, use the max function.
To compute the running maximum, use the dsp.MovingMaximum object.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

4 System Objects

4-1010

Discouraged Usage Recommended Replacement
Maximum

Max1 = dsp.Maximum;
x = randn(100,1);
y = Max1(x);

Running Maximum

Max2 = dsp.Maximum;
Max2.RunningMaximum = true;
x = randn(100,1);
y = Max2(x); % Running maximum

If you are using a release prior to R2016b,
replace Max1(x) with step(Max1,x) and
Max2(x) with step(Max2,x).

Maximum

x = randn(100,1);
y = max(x);

Running Maximum

mvgMax = dsp.MovingMaximum;
mvgMax.SpecifyWindowLength = false;
x = randn(100,1);
y = mvgMax(x);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
max

Objects
dsp.MovingMaximum

Blocks
Moving Maximum | Maximum

Introduced in R2012a

 dsp.Maximum

4-1011

dsp.Mean
Package: dsp

(Removed) Find mean value of input or sequence of inputs

Note The dsp.Mean System object™ has been removed. To compute the mean, use the mean
function. To compute the running mean in MATLAB®, use the dsp.MovingAverage object. For more
information, see “Compatibility Considerations”.

Description
The dsp.Mean object finds the mean of an input or sequence of inputs.

To compute the mean of an input or sequence of inputs:

1 Create the dsp.Mean object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
mn = dsp.Mean
mn = dsp.Mean(Name,Value)

Description

mn = dsp.Mean returns an object, mn, that computes the mean of an input or a sequence of inputs.

mn = dsp.Mean(Name,Value) returns a mean-finding object, mn, with each specified property set
to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

RunningMean — Calculate over single input or multiple inputs
false (default) | true

4 System Objects

4-1012

When you set this property to true, the object calculates the mean over successive calls to the
algorithm. When you set this property to false, the object computes the mean over the current
input.

ResetInputPort — Additional input to enable resetting of running mean
false (default) | true

Set this property to true to enable resetting of the running mean. When you set this property to
true, you must specify a reset input to the algorithm to reset the running mean.
Dependencies

This property applies only when you set the RunningMean property to true.

ResetCondition — Condition that triggers resetting of running mean
Non-zero (default) | Rising edge | Falling edge | Either edge

Specify the event that resets the running maximum.
Dependencies

This property applies only when you set the “ResetInputPort” on page 4-0 property to true.

Dimension — Dimension to operate along
Column (default) | All | Row | Custom

Specify how the mean calculation is performed over the data.
Dependencies

This property applies when you set the RunningMean property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | positive integer

Specify the integer dimension, indexed from one, of the input signal over which the object calculates
the mean. The value cannot exceed the number of dimensions in the input signal.
Dependencies

This property only applies when you set the “Dimension” on page 4-0 property to Custom.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method.

OverflowAction — Action to take when integer input is out of range
Wrap (default) | Saturate

Specify the overflow action.

AccumulatorDataType — Data type of accumulator
Same as input (default) | Custom

 dsp.Mean

4-1013

Specify the accumulator fixed-point data type.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.
Dependencies

This property applies only when you set the AccumulatorDataType property to Custom.

OutputDataType — Data type of output
Same as accumulator (default) | Same as input | Custom

Specify the output fixed-point data type.

CustomOutputDataType — Output word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
Dependencies

This property applies only when you set the “OutputDataType” on page 4-0 property to Custom.

Usage

Syntax
y = mn(x)
y = mn(x,r)

Description

y = mn(x) computes the mean of x. When you set the RunningMean property to true, y is the
mean calculated over successive calls to the algorithm.

y = mn(x,r) resets the computation of the running mean based on the value of the reset signal, r,
and the ResetCondition property. To enable this type of processing, set the RunningMean property
to true and the ResetInputPort property to true.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The mean is computed along each channel. The object also accepts variable-
size inputs. Once the object is locked, you can change the size of each input channel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

r — Reset signal
scalar

4 System Objects

4-1014

Reset signal used to reset the running mean, specified as a scalar value. The object resets the
running mean if the reset signal satisfies the ResetCondition.

Dependencies

To enable this signal, set the RunningMean property to true and the ResetInputPort property to
true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments

y — Mean
scalar | vector | matrix

Mean output of the input signal, returned as a scalar, vector, or a matrix. If RunningMean is set to:

• false –– The object computes the mean value of each input channel. If the input is a column
vector, the output is a scalar. If the input is a multichannel signal, the output signal is 1-by-N
vector, where N is the number of input channels.

• true –– The object computes the running mean of the signal. The size of the output signal
matches the size of the input signal.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Mean and Running Mean of Signal

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Mean

 dsp.Mean

4-1015

mean1 = dsp.Mean;
x = randn(100,1);
y = mean1(x);

Running Mean

mean2 = dsp.Mean;
mean2.RunningMean = true;
x = randn(100,1);
yrmean = mean2(x);

Algorithms
This object implements the algorithm, inputs, and outputs described on the Mean block reference
page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.Mean System object has been removed
Errors starting in R2021a

The dsp.Mean System object has been removed. To compute the mean, use the mean function. To
compute the running mean, use the dsp.MovingAverage object.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
Mean

Mean1 = dsp.Mean;
x = randn(100,1);
y = Mean1(x);

Running Mean

Mean2 = dsp.Mean;
Mean2.RunningMean = true;
x = randn(100,1);
% Running mean
y = Mean2(x);

If you are using a release prior to R2016b,
replace Mean1(x) with step(Mean1,x) and
Mean2(x) with step(Mean2,x).

Mean

x = randn(100,1);
y = mean(x);

Running Mean

mvgAvg = dsp.MovingAverage;
mvgAvg.SpecifyWindowLength = false;
x = randn(100,1);
y = mvgAvg(x);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

4 System Objects

4-1016

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
mean

Objects
dsp.MovingAverage

Blocks
Moving Average | Mean

Introduced in R2012a

 dsp.Mean

4-1017

dsp.Median
Package: dsp

(Removed) Median value of input

Note The dsp.Median System object™ has been removed. To compute the median, use the median
function. To compute the median in running mode (also known as moving median), use the
dsp.MedianFilter object. For more information, see “Compatibility Considerations”.

Description
The dsp.Median object computes the median value of the input. The object can compute the median
along each dimension (row or column) of the input or of the entire input.

To compute the median of the input:

1 Create the dsp.Median object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
med = dsp.Median
med = dsp.Median(Name,Value)

Description

med = dsp.Median returns a median System object, med, that computes the median along the
columns of the input using the quick sort sorting method.

med = dsp.Median(Name,Value) returns a median System object, med, with each property set to
the value you specify.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SortMethod — Sort method
Quick sort (default) | Insertion sort

4 System Objects

4-1018

Specify the method the object should use to sort the data before computing the median. You can
specify Quick sort or Insertion sort. The quick sort algorithm uses a recursive sort method
and is usually faster at sorting more than 32 elements. The insertion sort algorithm uses a
nonrecursive method and is usually faster at sorting less than 32 elements. If you are using the
Median object to generate code, you should use the insertion sort algorithm to prevent recursive
function calls in your generated code.

Dimension — Dimension to operate along
Column (default) | All | Row | Custom

Specify the dimension along which the object computes the median values.

CustomDimension — Numerical dimension to operate along
1 (default) | positive integer

Specify the dimension of the input signal (as a one-based value) over which the object computes the
median. The cannot exceed the number of dimensions in the input signal.
Dependencies

This property applies only when you set the “Dimension” on page 4-0 property to Custom.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action.

ProductDataType — Product word and fraction lengths
Same as input (default) | Custom

Specify the product data type.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product data type as a scaled numerictype object with a Signedness of Auto.
Dependencies

This property applies only when you set the ProductDataType property to Custom.

AccumulatorDataType — Accumulator word and fraction lengths
Same as product (default) | Same as input | Custom

Specify the accumulator data type.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

 dsp.Median

4-1019

Specify the fixed-point accumulator data type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the AccumulatorDataType property to Custom.

OutputDataType — Output word and fraction lengths
Same as accumulator (default) | Same as product | Same as input | Custom

Specify the output data type.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the data type of the output as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when you set the “OutputDataType” on page 4-0 property to Custom.

Usage

Syntax
y = med(x)

Description

y = med(x) computes the median value of the input x and returns the result in y.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The median is computed along each channel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

y — Median output
scalar | vector | matrix

Median output of the input signal, returned as a scalar, vector, or a matrix. The object computes the
median of the input along each channel. If the input is a column vector, the output is a scalar. If the
input is a multichannel signal, the output is a 1-by-N vector, where N is the number of input channels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

4 System Objects

4-1020

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute The Median

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Compute the median value of the input column using the dsp.Median object.

 med = dsp.Median;
 x = [7 -9 0 -1 2 0 3 5 -9]';
 y = med(x)

y = 0

Algorithms
This object implements the algorithm, inputs, and outputs described on the Median block reference
page. The object properties correspond to the block properties, except the Treat sample-based row
input as a column block parameter is not supported by the dsp.Median System object.

Compatibility Considerations
dsp.Median System object has been removed
Errors starting in R2021a

The dsp.Median System object has been removed. To compute the median, use the median function.
To compute the median in running mode (also known as moving median), use the
dsp.MedianFilter object.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

 dsp.Median

4-1021

Discouraged Usage Recommended Replacement
Med = dsp.Median;
x = randn(100,1);
y = Med(x);

If you are using a release prior to R2016b,
replace Med(x) with step(Med,x).

x = randn(100,1);
y = median(x);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
median

Objects
dsp.MedianFilter

Introduced in R2012a

4 System Objects

4-1022

dsp.MedianFilter
Package: dsp

Median filter

Description
The dsp.MedianFilter System object computes the moving median of the input signal along each
channel, independently over time. The object uses the sliding window method to compute the moving
median. In this method, a window of specified length is moved over each channel, sample by sample,
and the object computes the median of the data in the window. For more details, see “Algorithms” on
page 4-1027.

To compute the moving median of the input:

1 Create the dsp.MedianFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
medFilt = dsp.MedianFilter
medFilt = dsp.MedianFilter(Len)
medFilt = dsp.MedianFilter(Name,Value)

Description

medFilt = dsp.MedianFilter returns a median filter object, medFilt, using the default
properties.

medFilt = dsp.MedianFilter(Len) sets the WindowLength property to Len.

medFilt = dsp.MedianFilter(Name,Value) specifies the WindowLength property using a
Name,Value pair.

Example:

movMin = dsp.MedianFilter('WindowLength',5);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 dsp.MedianFilter

4-1023

For more information on changing property values, see System Design in MATLAB Using System
Objects.

WindowLength — Length of sliding window
5 (default) | positive scalar integer

Length of the sliding window in samples, specified as a positive scalar integer.

Usage

Syntax
y = medFilt(x)

Description

y = medFilt(x) computes the moving median of the input signal, x, using the sliding window
method.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The moving median is computed along each channel. The object accepts
multichannel inputs, that is, m-by-n size inputs, where m ≥ 1, and n > 1. m is the number of samples
in each frame (or channel), and n is the number of channels.

The object also accepts variable-size inputs. Once the object is locked, you can change the size of
each input channel, but you cannot change the number of channels.
Data Types: single | double

Output Arguments

y — Filtered signal
vector | matrix

Filtered signal, returned as a vector or a matrix. The size and data type of the output matches the
size and data type of the input.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm

4 System Objects

4-1024

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Remove High-Frequency Noise Using Median Filter

Filter high-frequency noise from a noisy sine wave signal using a median filter. Compare the
performance of the median filter with an averaging filter.

Initialization

Set up a dsp.MedianFilter object, medFilt, and a dsp.MovingAverage object, movavgWin.
These objects use the sliding window method with a window length of 7. Create a time scope for
viewing the output.

Fs = 1000;
medFilt = dsp.MedianFilter(7);
movavgWin = dsp.MovingAverage(7);
scope = timescope('SampleRate',Fs,...
 'TimeSpanSource','Property',...
 'TimeSpanOverrunAction','Scroll',...
 'TimeSpan',1,'ShowGrid',true,...
 'YLimits',[-3 3],...
 'LayoutDimensions',[3 1],...
 'NumInputPorts',3);
scope.ActiveDisplay = 1;
scope.Title = 'Signal + Noise';
scope.ActiveDisplay = 2;
scope.Title = 'Moving Average Output (Window Length = 7)';
scope.ActiveDisplay = 3;
scope.Title = 'Median Filter Output (Window Length = 7)';

FrameLength = 256;
count = 1;
sine = dsp.SineWave('SampleRate',Fs,'Frequency',10,...
 'SamplesPerFrame',FrameLength);

Filter the Noisy Sine Wave

Generate a noisy sine wave signal with a frequency of 10 Hz. Apply the median filter and the moving
average object to the signal. View the output on the time scope.

for i = 1:500
 hfn = 3 * (rand(FrameLength,1) < 0.02);
 x = sine() + 1e-2 * randn(FrameLength,1) + hfn;
 y1 = movavgWin(x);
 y2 = medFilt(x);
 scope(x,y1,y2);
end

 dsp.MedianFilter

4-1025

The median filter removes the high-frequency noise more effectively than the moving average object
does.

Remove High-Frequency Noise from Gyroscope Data

This example shows how to remove the high-frequency outliers from a streaming signal using the
dsp.MedianFilter System object?.

Use the dsp.MatFileReader System object to read the gyroscope MAT file. The gyroscope MAT file
contains 3 columns of data, with each column containing 7140 samples. The three columns represent
the X-axis, Y-axis, and Z-axis data from the gyroscope motion sensor. Choose a frame size of 714
samples so that each column of the data contains 10 frames. The dsp.MedianFilter System object
uses a window length of 10. Create a timescope object to view the filtered output.

reader = dsp.MatFileReader('SamplesPerFrame',714,...
 'Filename','LSM9DS1gyroData73.mat',...
 'VariableName','data');
medFilt = dsp.MedianFilter(10);
scope = timescope('NumInputPorts',1,...
 'SampleRate',119,...
 'YLimits',[-300 300],...
 'ChannelNames',{'Input','Filtered Output'},...
 'TimeSpanSource','Property',...
 'TimeSpan',60,'ShowLegend',true);

4 System Objects

4-1026

Filter the gyroscope data using the dsp.MedianFilter System object. View the filtered Z-axis data
in the time scope.

for i = 1:10
 gyroData = reader();
 filteredData = medFilt(gyroData);
 scope([gyroData(:,3),filteredData(:,3)]);
end

The original data contains several outliers. Zoom in on the data to confirm that the median filter
removes all the outliers.

Algorithms
Sliding Window Method

In the sliding window method, the output for each input sample is the median of the current sample
and the Len - 1 previous samples. Len is the length of the window in samples. To compute the first
Len - 1 outputs, when the window does not have enough data yet, the algorithm fills the window with
zeros. As an example, to compute the median value when the second input sample comes in, the
algorithm fills the window with Len - 2 zeros. The data vector, x, is then the two data samples
followed by Len - 2 zeros. This object performs median filtering on the input data over time.

Consider an example of computing the moving median of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. With each input sample that comes in, the
window of length 4 moves along the data.

 dsp.MedianFilter

4-1027

References
[1] Bodenham, Dean. “Adaptive Filtering and Change Detection for Streaming Data.” PH.D. Thesis.

Imperial College, London, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

4 System Objects

4-1028

This object supports C and C++ code generation.

See Also
Objects
dsp.MovingMaximum | dsp.MovingMinimum | dsp.MovingAverage | dsp.MovingRMS |
dsp.MovingVariance | dsp.MovingStandardDeviation

Blocks
Median Filter | Median | Moving Maximum | Moving Minimum | Moving Average | Moving RMS |
Moving Variance | Moving Standard Deviation

Topics
“What Are Moving Statistics?”
“Streaming Signal Statistics”
“Remove High-Frequency Noise from Gyroscope Data”

Introduced in R2016b

 dsp.MedianFilter

4-1029

dsp.Minimum
Package: dsp

(Removed) Find minimum values of input or sequence of inputs

Note The dsp.Minimum System object™ has been removed. To compute the minimum, use the min
function. To compute the running minimum in MATLAB®, use the dsp.MovingMinimum object. For
more information, see “Compatibility Considerations”.

Description
The dsp.Minimum object finds the minimum value of an input or sequence of inputs.

To compute the minimum value of an input or sequence of inputs:

1 Create the dsp.Minimum object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
min = dsp.Minimum
min = dsp.Minimum(Name,Value)

Description

min = dsp.Minimum returns an object, min, that computes the value and/or index of the minimum
elements in an input or a sequence of inputs over the specified Dimension.

min = dsp.Minimum(Name,Value) returns a minimum-finding object, min, with each specified
property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ValueOutputPort — Output minimum value
true (default) | false

4 System Objects

4-1030

Set this property to true in order to output the minimum value of the input. Set this property to
false in order to output the index of the minimum value of the input.

Dependencies

This property applies only when you set the RunningMinimum property to false.

RunningMinimum — Calculate over single input or multiple inputs
false (default) | true

When you set this property to true, the object computes the minimum value over successive calls to
the object algorithm. When you set this property to false, the object computes the minimum value
over the current input.

IndexOutputPort — Output index of minimum value
true (default) | false

Set this property to true to output the index of the minimum value of the input.

Dependencies

This property applies only when you set the RunningMinimum property to false.

ResetInputPort — Additional input to enable resetting of running minimum
false (default) | true

Set this property to true to enable resetting of the running minimum. When you set this property to
true, you must specify a reset input argument to the object to reset the running minimum. This
property applies only when you set the RunningMinimum property to true.

ResetCondition — Condition that triggers resetting of running minimum
Non-zero (default) | Rising edge | Falling edge | Either edge

Specify the event that resets the running minimum. This property applies only when you set the
“ResetInputPort” on page 4-0 property to true.

IndexBase — Numbering base for index of minimum value
One (default) | Zero

Specify the numbering used when computing the index of the minimum value as starting from either
One or Zero.

Dependencies

This property applies only when you set the IndexOutputPort property to true.

Dimension — Dimension to operate along
Column (default) | All | Row | Custom

Specify how the minimum calculation is performed over the data.

Dependencies

This property applies when you set the RunningMinimum property to false.

CustomDimension — Numerical dimension to calculate over
1 (default) | positive integer

 dsp.Minimum

4-1031

Specify the integer dimension of the input signal over which the object finds the minimum. The
cannot exceed the number of dimensions in the input signal.

Dependencies

This property only applies when you set the “Dimension” on page 4-0 property to Custom.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method.

OverflowAction — Action to take when integer input is out-of-range
Wrap (default) | Saturate

Specify the overflow action.

ProductDataType — Data type of product
Same as input (default) | Custom

Specify the product fixed-point data type.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when you set the AccumulatorDataType property to Custom.

AccumulatorDataType — Data type of accumulator
Same as product (default) | Same as input | Custom

Specify the accumulator fixed-point data type as one of | Same as product | Same as input |
Custom |.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the AccumulatorDataType property to Custom.

Usage

Syntax
[val,ind] = min(x)

4 System Objects

4-1032

val = min(x)
ind = min(x)
val = min(x,r)

Description

[val,ind] = min(x) returns the minimum value, val, and the index or position of the minimum
value, ind, along the specified Dimension of x.

val = min(x) returns the minimum value, val, of the input x. When the RunningMinimum
property is true, val corresponds to the minimum value over successive calls to the algorithm.

ind = min(x) returns the zero- or one-based index ind of the minimum value when the
IndexOutputPort property is true and the ValueOutputPort property is false. You must set the
RunningMinimum property to false to use this syntax.

val = min(x,r) resets the state of min based on the value of reset signal, r, and the
ResetCondition property. To enable this type of processing, set the RunningMinimum property to
true and the ResetInputPort property to true.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The minimum is determined along each channel. The object also accepts
variable-size inputs. Once the object is locked, you can change the size of each input channel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

r — Reset signal
scalar

Reset signal used to reset the running minimum, specified as a scalar value. The object resets the
running minimum if the reset signal satisfies the ResetCondition.
Dependencies

To enable this signal, set the RunningMinimum property to true and the ResetInputPort property
to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments

val — Minimum value of input
scalar | vector

Minimum value of the input, returned as a scalar or a vector. The object determines the minimum
value of the input along each channel. If the input is a column vector, the output is a scalar. If the
input is a multichannel signal, the output signal is a 1-by-N vector, where N is the number of input
channels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 dsp.Minimum

4-1033

ind — Index of minimum
scalar | vector

Indices of the minimum values of the input, returned as a scalar or a vector. The object determines
the indices of the minimum values of the input along each channel. If the input is a column vector, the
output is a scalar. If the input is a multichannel signal, the output signal is a 1-by-N vector, where N is
the number of input channels.
Data Types: double | uint32

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Minimum and Running Minimum of Signal

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Find a minimum value and its index.

 min1 = dsp.Minimum;
 x = randn(100,1);
 [y, I] = min1(x) %#ok

y = -2.9443
I = 35

Compute a running minimum.

 min2 = dsp.Minimum;
 min2.RunningMinimum = true;
 x = randn(100,1);
 y = min2(x);
 plot(y);

4 System Objects

4-1034

y(i) is the minimum of all values in the vector x(1:i).

Algorithms
This object implements the algorithm, inputs, and outputs described on the Minimum block reference
page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.Minimum System object has been removed
Errors starting in R2021a

The dsp.Minimum System object has been removed. To compute the minimum, use the min function.
To compute the running minimum, use the dsp.MovingMinimum object.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

 dsp.Minimum

4-1035

Discouraged Usage Recommended Replacement
Minimum

Min1 = dsp.Minimum;
x = randn(100,1);
y = Min1(x);

Running Minimum

Min2 = dsp.Minimum;
Min2.RunningMinimum = true;
x = randn(100,1);
y = Min2(x); % Running minimum

If you are using a release prior to R2016b,
replace Min1(x) with step(Min1,x) and
Min2(x) with step(Min2,x).

Minimum

x = randn(100,1);
y = min(x);

Running Minimum

mvgMin = dsp.MovingMinimum;
mvgMin.SpecifyWindowLength = false;
x = randn(100,1);
y = mvgMin(x);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
min

Objects
dsp.MovingMinimum

Blocks
Moving Minimum | Minimum

Introduced in R2012a

4 System Objects

4-1036

dsp.MovingAverage
Package: dsp

Moving average

Description
The dsp.MovingAverage System object computes the moving average of the input signal along each
channel, independently over time. The object uses either the sliding window method or the
exponential weighting method to compute the moving average. In the sliding window method, a
window of specified length is moved over the data, sample by sample, and the average is computed
over the data in the window. In the exponential weighting method, the object multiplies the data
samples with a set of weighting factors. The average is computed by summing the weighted data. For
more details on these methods, see “Algorithms” on page 4-1041.

To compute the moving average of the input:

1 Create the dsp.MovingAverage object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
movAvg = dsp.MovingAverage
movAvg = dsp.MovingAverage(Len)
movAvg = dsp.MovingAverage(Len,Overlap)
movAvg = dsp.MovingAverage(Name,Value)

Description

movAvg = dsp.MovingAverage returns a moving average object, movAvg, using the default
properties.

movAvg = dsp.MovingAverage(Len) sets the WindowLength property to Len.

movAvg = dsp.MovingAverage(Len,Overlap) sets the WindowLength property to Len and the
OverlapLength property to Overlap.

movAvg = dsp.MovingAverage(Name,Value) specifies additional properties using Name,Value
pairs. Unspecified properties have default values.
Example: movAvg = dsp.MovingAverage('Method','Exponential
weighting','ForgettingFactor',0.9);

 dsp.MovingAverage

4-1037

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Averaging method
'Sliding window' (default) | 'Exponential weighting'

Averaging method, specified as 'Sliding window' or 'Exponential weighting'.

• 'Sliding window' — A window of length specified by SpecifyWindowLength is moved over
the input data along each channel. For every sample the window moves by, the object computes
the average over the data in the window.

• 'Exponential weighting' — The object multiplies the samples with a set of weighting factors.
The magnitude of the weighting factors decreases exponentially as the age of the data increases,
never reaching zero. To compute the average, the algorithm sums the weighted data.

For more details on these methods, see “Algorithms” on page 4-1041.

SpecifyWindowLength — Specify window length
true (default) | false

Flag to specify a window length, specified as a scalar boolean.

• true — The length of the sliding window is equal to the value you specify in the WindowLength
property.

• false — The length of the sliding window is infinite. In this mode, the average is computed using
the current sample and all the past samples.

Dependencies

This property applies when you set Method to 'Sliding window'.

WindowLength — Length of the sliding window
4 (default) | positive scalar integer

Length of the sliding window in samples, specified as a positive scalar integer.
Dependencies

This property applies when you set Method to 'Sliding window' and SpecifyWindowLength to
true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OverlapLength — Overlap length between windows
WindowLength − 1 (default) | nonnegative integer

Overlap length between sliding windows, specified as a nonnegative integer. The value of overlap
length varies in the range [0, WindowLength − 1]. If not specified, the overlap length is
WindowLength − 1.

4 System Objects

4-1038

Dependencies

This property applies when you set Method to 'Sliding window' and SpecifyWindowLength to
true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ForgettingFactor — Exponential weighting factor
0.9 (default) | positive real scalar in the range (0,1]

Exponential weighting factor, specified as a positive real scalar in the range (0,1]. A forgetting factor
of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. A forgetting factor of
1.0 indicates infinite memory. All the past samples are given an equal weight.

Since this property is tunable, you can change its value even when the object is locked.

Tunable: Yes

Dependencies

This property applies when you set Method to 'Exponential weighting'.
Data Types: single | double

Usage

Syntax
y = movAvg(x)

Description

y = movAvg(x) computes the moving average of the input signal, x, using either the sliding window
method or exponential weighting method.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The moving average is computed along each channel. The object also accepts
variable-size inputs. Once the object is locked, you can change the size of each input channel, but you
cannot change the number of channels.
Data Types: single | double

Output Arguments

y — Moving average
vector | matrix

Moving average of the input signal, returned as a vector or a matrix.
Data Types: single | double

 dsp.MovingAverage

4-1039

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Moving Average of Noisy Ramp Signal

Compute the moving average of a noisy ramp signal using the dsp.MovingAverage object.

Initialization

Set up movavgWindow, movavgWindow_overlap, and movavgExp objects. movavgWindow uses the
sliding window method with a window length of 50 samples and a default overlap length of 49
samples, which is one sample less than the specified window length. movavgWindow_overlap uses a
window length of 50 samples and an overlap length of 45 samples. movavgExp uses the exponentially
weighting method with a forgetting factor of 0.95.

Create a time scope for viewing the output.

FrameLength = 1001;
Fs = 1000;
movavgWindow = dsp.MovingAverage(50);
movavgWindow_overlap = dsp.MovingAverage(50,45);
movavgExp = dsp.MovingAverage('Method','Exponential weighting',...
 'ForgettingFactor',0.95);
scope = timescope('SampleRate',[Fs, Fs, Fs/(50-45), Fs],...
 'TimeSpanOverrunAction','Scroll',...
 'ShowGrid',true,...
 'YLimits',[-0.5 1.5]);
title = 'Moving Average';
scope.Title = title;
scope.ChannelNames = {'Original Signal',...
 'Sliding window of 50 samples with default overlap',...
 'Sliding window of 50 samples with an overlap of 45 samples',...
 'Exponential weighting with forgetting factor of 0.95'};

Compute the Average

Generate a ramp signal with an amplitude of 1 and a time span of 2 seconds. Apply the sliding
window average and exponentially weighted average to the ramp. View the output in the time scope.

for i = 1:500
 t = (0:0.001:1)';
 unitstep = t>=0;

4 System Objects

4-1040

 ramp = t.*unitstep;
 x = ramp + 0.1 * randn(FrameLength,1);
 y1 = movavgWindow(x);
 y2 = movavgWindow_overlap(x);
 y3 = movavgExp(x);
 scope(x,y1,y2,y3);
end

Algorithms
Sliding Window Method

In the sliding window method, the output for each input sample is the average of the current sample
and the Len – 1 previous samples. Len is the length of the window in samples. To compute the first
Len – 1 outputs, when the window does not have enough data yet, the algorithm fills the window with
zeros. As an example, to compute the average when the second input sample comes in, the algorithm
fills the window with Len – 2 zeros. The data vector, x, is then the two data samples followed by Len –
2 zeros.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the moving average of the current sample and all the previous samples in the
channel.

For an example, see “Sliding Window Method and Exponential Weighting Method”.

 dsp.MovingAverage

4-1041

Exponential Weighting Method

In the exponential weighting method, the moving average is computed recursively using these
formulas:

wN, λ = λwN − 1, λ + 1

xN, λ = 1− 1
wN, λ

xN − 1, λ + 1
wN, λ

xN

• xN, λ — Moving average at the current sample
• xN — Current data input sample
• xN − 1, λ — Moving average at the previous sample
• λ — Forgetting factor
• wN, λ — Weighting factor applied to the current data sample
• 1− 1

wN, λ
xN − 1, λ — Effect of the previous data on the average

For the first sample, where N = 1, the algorithm chooses wN, λ = 1. For the next sample, the
weighting factor is updated and used to compute the average, as per the recursive equation. As the
age of the data increases, the magnitude of the weighting factor decreases exponentially and never
reaches zero. In other words, the recent data has more influence on the current average than the
older data.

The value of the forgetting factor determines the rate of change of the weighting factors. A forgetting
factor of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. A forgetting
factor of 1.0 indicates infinite memory. All the previous samples are given an equal weight.

For an example, see “Sliding Window Method and Exponential Weighting Method”.

References
[1] Bodenham, Dean. “Adaptive Filtering and Change Detection for Streaming Data.” PH.D. Thesis.

Imperial College, London, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.MovingRMS | dsp.MovingMaximum | dsp.MovingMinimum |
dsp.MovingStandardDeviation | dsp.MovingVariance | dsp.MedianFilter | powermeter

4 System Objects

4-1042

Blocks
Moving Average | Moving RMS | Moving Maximum | Moving Minimum | Moving Standard Deviation |
Moving Variance | Median Filter

Topics
“What Are Moving Statistics?”
“Sliding Window Method and Exponential Weighting Method”
“How Is a Moving Average Filter Different from an FIR Filter?”
“Measure Statistics of Streaming Signals”
“Streaming Signal Statistics”

Introduced in R2016b

 dsp.MovingAverage

4-1043

dsp.MovingMaximum
Package: dsp

Moving maximum

Description
The dsp.MovingMaximum System object determines the moving maximum of the input signal along
each channel, independently over time. The object uses the sliding window method to determine the
moving maximum. In this method, a window of specified length is moved over each channel, sample
by sample, and the object determines the maximum of the data in the window. For more details, see
“Algorithms” on page 4-1047.

To determine the moving maximum of the input:

1 Create the dsp.MovingMaximum object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
movMax = dsp.MovingMaximum
movMax = dsp.MovingMaximum(Len)
movMax = dsp.MovingMaximum(Name,Value)

Description

movMax = dsp.MovingMaximum returns a moving maximum object, movMax, using the default
properties.

movMax = dsp.MovingMaximum(Len) sets the WindowLength property to Len.

movMax = dsp.MovingMaximum(Name,Value) specifies additional properties using Name,Value
pairs. Unspecified properties have default values.
Example: movMax = dsp.MovingMaximum('SpecifyWindowLength',1,'WindowLength',10);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-1044

SpecifyWindowLength — Specify window length
true (default) | false

Flag to specify a window length, specified as a scalar boolean.

• true — The length of the sliding window is equal to the value you specify in the WindowLength
property.

• false — The length of the sliding window is infinite. In this mode, the object determines the
maximum of the current sample and all the past samples.

WindowLength — Length of the sliding window
4 (default) | positive scalar integer

Length of the sliding window in samples, specified as a positive scalar integer.

Dependencies

This property applies when you set SpecifyWindowLength to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
y = movMax(x)

Description

y = movMax(x) determines the moving maximum of the input signal, x, using the sliding window
method.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The moving maximum is determined along each channel. The object also
accepts variable-size inputs. Once the object is locked, you can change the size of each input channel,
but you cannot change the number of channels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments

y — Moving maximim output
vector | matrix

Moving maximum of the input signal, returned as a vector or a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 dsp.MovingMaximum

4-1045

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Moving Maximum of Sine Wave Signal

Compute the moving maximum of a sum of three sine waves with varying amplitude. Use a sliding
window of length 30.

Initialization

Set up an input signal that is a sum of three sine waves with frequencies at 2 Hz, 5 Hz, and 10 Hz.
The sampling frequency is 100 Hz. Create a dsp.MovingMaximum object with a window length of 30.
Create a time scope for viewing the output.

sin = dsp.SineWave('SampleRate',100,...
 'Frequency',[2 5 10],...
 'SamplesPerFrame',100);
movMax = dsp.MovingMaximum(30);
scope = timescope('SampleRate',100,...
 'TimeSpanOverrunAction','Scroll',...
 'TimeSpanSource','Property',...
 'TimeSpan',10,'ShowGrid',true,...
 'YLimits',[-4.5 4.5]);

Compute the Moving Maximum

Each sine wave component of the input signal has a different amplitude that varies with the iteration.
Use the movMax object to determine the maximum value of the current sample and the past 29
samples of the input signal.

for index = 1:100
 sin.Amplitude = rand(1,3);
 x = sum(sin(),2);
 xmax = movMax(x);
 scope([x,xmax])
end

4 System Objects

4-1046

Algorithms
Sliding Window Method

In the sliding window method, the output for each input sample is the maximum of the current
sample and the Len - 1 previous samples. Len is the length of the window in samples. When the
algorithm computes the first Len - 1 outputs, the length of the window is the length of the data that is
available.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the maximum of the current sample and all the previous samples in the channel.

Consider an example of computing the moving maximum of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. With each input sample that comes in, the
window of length 4 moves along the data.

 dsp.MovingMaximum

4-1047

References
[1] Bodenham, Dean. “Adaptive Filtering and Change Detection for Streaming Data.” PH.D. Thesis.

Imperial College, London, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 System Objects

4-1048

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.MovingMinimum | dsp.MovingAverage | dsp.MovingRMS |
dsp.MovingStandardDeviation | dsp.MovingVariance | dsp.MedianFilter | powermeter

Blocks
Moving Maximum | Moving Minimum | Moving Average | Moving RMS | Moving Standard Deviation |
Moving Variance | Median Filter

Topics
“Streaming Signal Statistics”
“What Are Moving Statistics?”

Introduced in R2016b

 dsp.MovingMaximum

4-1049

dsp.MovingMinimum
Package: dsp

Moving minimum

Description
The dsp.MovingMinimum System object determines the moving minimum of the input signal along
each channel, independently over time. The object uses the sliding window method to determine the
moving minimum. In this method, a window of specified length is moved over each channel, sample
by sample, and the object determines the minimum of the data in the window. For more details, see
“Algorithms” on page 4-1053.

To determine the moving minimum of the input:

1 Create the dsp.MovingMinimum object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
movMin = dsp.MovingMinimum
movMin = dsp.MovingMinimum(Len)
movMin = dsp.MovingMinimum(Name,Value)

Description

movMin = dsp.MovingMinimum returns a moving minimum object, movMin, using the default
properties.

movMin = dsp.MovingMinimum(Len) sets the WindowLength property to Len.

movMin = dsp.MovingMinimum(Name,Value) specifies additional properties using Name,Value
pairs. Unspecified properties have default values.
Example: movMin = dsp.MovingMinimum('SpecifyWindowLength',1,'WindowLength',10);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-1050

SpecifyWindowLength — Specify window length
true (default) | false

Flag to specify a window length, specified as a scalar boolean.

• true — The length of the sliding window is equal to the value you specify in the WindowLength
property.

• false — The length of the sliding window is infinite. In this mode, the object determines the
minimum of the current sample and all the past samples.

WindowLength — Length of the sliding window
4 (default) | positive scalar integer

Length of the sliding window in samples, specified as a positive scalar integer.

Dependencies

This property applies when you set SpecifyWindowLength to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
y = movMin(x)

Description

y = movMin(x) determines the moving minimum of the input signal, x, using the sliding window
method.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The moving minimum is determined along each channel. The object also
accepts variable-size inputs. Once the object is locked, you can change the size of each input channel,
but you cannot change the number of channels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments

y — Moving minimum output
vector | matrix

Moving minimum output, returned as a vector or a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 dsp.MovingMinimum

4-1051

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Moving Minimum of Sine Wave Signal

Compute the moving minimum of a sum of three sine waves with varying amplitude. Use a sliding
window of length 30.

Initialization

Set up an input signal that is a sum of three sine waves with frequencies at 2 Hz, 5 Hz, and 10 Hz.
The sampling frequency is 100 Hz. Create a dsp.MovingMinimum object with a window length of 30.
Create a time scope for viewing the output.

sin = dsp.SineWave('SampleRate',100,...
 'Frequency',[2 5 10],...
 'SamplesPerFrame',100);
movMin = dsp.MovingMinimum(30);
scope = timescope('SampleRate',100,...
 'TimeSpanSource','property','TimeSpan',10,...
 'TimeSpanOverrunAction','Scroll',...
 'ShowGrid',true,'YLimits',[-4.5 4.5]);

Compute the Moving Minimum

Each sine wave component of the input signal has a different amplitude that varies with the iteration.
Use the movMin object to determine the minimum value of the current sample and the past 29
samples of the input signal.

for index = 1:100
 sin.Amplitude = rand(1,3);
 x = sum(sin(),2);
 xmin = movMin(x);
 scope([x,xmin])
end
scope.AxesScaling = 'onceatstop';

4 System Objects

4-1052

Algorithms
Sliding Window Method

In the sliding window method, the output for each input sample is the minimum of the current sample
and the Len - 1 previous samples. Len is the length of the window in samples. When the algorithm
computes the first Len - 1 outputs, the length of the window is the length of the data that is available.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the minimum of the current sample and all the previous samples in the channel.

Consider an example of computing the moving minimum of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. With each input sample that comes in, the
window of length 4 moves along the data.

 dsp.MovingMinimum

4-1053

References
[1] Bodenham, Dean. “Adaptive Filtering and Change Detection for Streaming Data.” PH.D. Thesis.

Imperial College, London, 2012.

4 System Objects

4-1054

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.MovingMaximum | dsp.MovingAverage | dsp.MovingRMS |
dsp.MovingStandardDeviation | dsp.MovingVariance | dsp.MedianFilter

Blocks
Moving Minimum | Minimum | Moving Maximum | Moving Average | Moving RMS | Moving Standard
Deviation | Moving Variance | Median Filter

Topics
“Streaming Signal Statistics”
“What Are Moving Statistics?”

Introduced in R2016b

 dsp.MovingMinimum

4-1055

dsp.MovingRMS
Package: dsp

Moving root mean square

Description
The dsp.MovingRMS System object computes the moving root mean square (RMS) of the input signal
along each channel, independently over time. The object uses either the sliding window method or
the exponential weighting method to compute the moving RMS. In the sliding window method, a
window of specified length is moved over the data, sample by sample, and the RMS is computed over
the data in the window. In the exponential weighting method, the object squares the data samples,
multiplies them with a set of weighting factors, and sums the weighed data. The object then
computes the RMS by taking the square root of the sum. For more details on these methods, see
“Algorithms” on page 4-1060.

To compute the moving RMS of the input:

1 Create the dsp.MovingRMS object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
movRMS = dsp.MovingRMS
movRMS = dsp.MovingRMS(Len)
MovRMS = dsp.MovingRMS(Len,Overlap)
movRMS = dsp.MovingRMS(Name,Value)

Description

movRMS = dsp.MovingRMS returns a moving RMS object, movRMS, using the default properties.

movRMS = dsp.MovingRMS(Len) sets the WindowLength property to Len.

MovRMS = dsp.MovingRMS(Len,Overlap) sets the WindowLength property to Len and the
OverlapLength property to Overlap.

movRMS = dsp.MovingRMS(Name,Value) specifies additional properties using Name,Value pairs.
Unspecified properties have default values.
Example: movRMS = dsp.MovingRMS('Method','Exponential
weighting','ForgettingFactor',0.9);

4 System Objects

4-1056

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Moving RMS method
'Sliding window' (default) | 'Exponential weighting'

Moving RMS method, specified as 'Sliding window' or 'Exponential weighting'.

• 'Sliding window' — A window of length specified by SpecifyWindowLength is moved over
the input data along each channel. For every sample the window moves by, the object computes
the RMS over the data in the window.

• 'Exponential weighting' — The object multiplies the squares of the samples with a set of
weighting factors. The magnitude of the weighting factors decreases exponentially as the age of
the data increases, never reaching zero. To compute the RMS, the algorithm sums the weighted
data, and takes a square root of the sum.

For more details on these methods, see “Algorithms” on page 4-1060.

SpecifyWindowLength — Specify window length
true (default) | false

Flag to specify a window length, specified as a scalar Boolean.

• true — The length of the sliding window is equal to the value you specify in the WindowLength
property.

• false — The length of the sliding window is infinite. In this mode, the RMS is computed using the
current sample and all past samples.

Dependencies

This property applies when you set Method to 'Sliding window'.

WindowLength — Length of the sliding window
4 (default) | positive scalar integer

Length of the sliding window in samples, specified as a positive scalar integer.

Dependencies

This property applies when you set Method to 'Sliding window' and SpecifyWindowLength to
true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OverlapLength — Overlap length between windows
WindowLength − 1 (default) | nonnegative integer

 dsp.MovingRMS

4-1057

Overlap length between sliding windows, specified as a nonnegative integer. The value of overlap
length varies in the range [0, WindowLength − 1]. If not specified, the overlap length is
WindowLength − 1.

Dependencies

This property applies when you set Method to 'Sliding window' and SpecifyWindowLength to
true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ForgettingFactor — Exponential weighting factor
0.9 (default) | positive real scalar in the range (0,1]

Exponential weighting factor, specified as a positive real scalar in the range (0,1].

A forgetting factor of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. A
forgetting factor of 1.0 indicates infinite memory. All the past samples are given an equal weight.

Since this property is tunable, you can change its value even when the object is locked.

Tunable: Yes

Dependencies

This property applies when you set Method to 'Exponential weighting'.
Data Types: single | double

Usage

Syntax
y = movRMS(x)

Description

y = movRMS(x) computes the moving RMS of the input signal, x, using either the sliding window
method or exponential weighting method.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The moving RMS is computed along each channel. The object also accepts
variable-size inputs. Once the object is locked, you can change the size of each input channel, but you
cannot change the number of channels.
Data Types: single | double

Output Arguments

y — Moving RMS
vector | matrix

4 System Objects

4-1058

Moving RMS of the input signal, returned as a vector or a matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Moving RMS of Noisy Square Wave Signal

Compute the moving RMS of a noisy square wave signal with varying amplitude using the
dsp.MovingRMS object.

Initialization

Set up movrmsWin, movrmsWin_overlap, and movrmsExp objects. movrmsWin uses the sliding
window method with a window length of 20 samples and a default overlap length of 19 samples,
which is one sample less than the specified window length. movrmsWin_overlap uses a window
length of 20 samples and an overlap length of 15 samples. movrmsExp uses the exponentially
weighting method with a forgetting factor of 0.995.

Create a time scope for viewing the output.

FrameLength = 10;
Fs = 100;
movrmsWin = dsp.MovingRMS(20);
movrmsWin_overlap = dsp.MovingRMS(20,15);
movrmsExp = dsp.MovingRMS('Method','Exponential weighting',...
 'ForgettingFactor',0.995);
scope = timescope('SampleRate',[Fs,Fs,Fs/(20-15),Fs],...
 'TimeSpanOverrunAction','Scroll',...
 'TimeSpanSource','Property',...
 'TimeSpan',100,...
 'ShowGrid',true,...
 'YLimits',[-1.0 5.5]);
title = 'Moving RMS';
scope.Title = title;
scope.ChannelNames = {'Original Signal',...
 'Sliding window of 20 samples with default overlap',...
 'Sliding window of 20 samples with an overlap of 15 samples',...
 'Exponential weighting with forgetting factor of 0.995'};

 dsp.MovingRMS

4-1059

Compute the RMS

Generate a noisy square wave signal. Vary the amplitude of the square wave after a given number of
frames. Apply the sliding window method and the exponential weighting method to this signal. View
the output in the time scope.

count = 1;
Vect = [1/8 1/2 1 2 3 4];
for index = 1:length(Vect)
 V = Vect(index);
 for i = 1:160
 x = V + 0.1 * randn(FrameLength,1);
 y1 = movrmsWin(x);
 y2 = movrmsWin_overlap(x);
 y3 = movrmsExp(x);
 scope(x,y1,y2,y3);
 end
end

Algorithms
Sliding Window Method

In the sliding window method, the output for each input sample is the RMS of the current sample and
the Len – 1 previous samples. Len is the length of the window in samples. To compute the first Len – 1
outputs, when the window does not have enough data yet, the algorithm fills the window with zeros.

4 System Objects

4-1060

As an example, to compute the RMS when the second input sample comes in, the algorithm fills the
window with Len – 2 zeros. The data vector, x, is then the two data samples followed by Len – 2 zeros.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the moving RMS of the current sample and all the previous samples in the
channel.

Consider an example of computing the moving RMS of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. With each input sample that comes in, the
window of length 4 moves along the data.

 dsp.MovingRMS

4-1061

Exponential Weighting Method

In the exponential weighting method, the moving RMS is computed recursively using these formulas:

wN, λ = λwN − 1, λ + 1

x_rmsN, λ = 1− 1
wN, λ

x_rmsN − 1, λ + 1
wN, λ

x2
N

• x_rmsN, λ — Moving RMS at the current sample
• x2

N — Square of the current input data sample
• x_rmsN − 1, λ — Moving RMS at the previous sample
• λ — Forgetting factor
• wN, λ — Weighting factor applied to the current data sample
• 1− 1

wN, λ
x_rmsN − 1, λ — Effect of the previous data on the RMS

For the first sample, where N = 1, the algorithm chooses wN, λ = 1. For the next sample, the
weighting factor is updated and used to compute the RMS, as per the recursive equation. As the age
of the data increases, the magnitude of the weighting factor decreases exponentially and never
reaches zero. In other words, the recent data has more influence on the current RMS than the older
data.

The value of the forgetting factor determines the rate of change of the weighting factors. A forgetting
factor of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. A forgetting
factor of 1.0 indicates infinite memory. All the previous samples are given an equal weight.

Here is an example of computing the moving RMS using the exponential weighting method. The
forgetting factor is 0.9.

4 System Objects

4-1062

References
[1] Bodenham, Dean. “Adaptive Filtering and Change Detection for Streaming Data.” PH.D. Thesis.

Imperial College, London, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.MovingAverage | dsp.MovingMaximum | dsp.MovingMinimum |
dsp.MovingStandardDeviation | dsp.MovingVariance | dsp.MedianFilter

 dsp.MovingRMS

4-1063

Blocks
Moving RMS | RMS | Moving Average | Moving Maximum | Moving Minimum | Moving Standard
Deviation | Moving Variance | Median Filter

Topics
“What Are Moving Statistics?”
“Streaming Signal Statistics”
“Sliding Window Method and Exponential Weighting Method”
“Energy Detection in the Time Domain”

Introduced in R2016b

4 System Objects

4-1064

dsp.MovingStandardDeviation
Package: dsp

Moving standard deviation

Description
The dsp.MovingStandardDeviation System object computes the moving standard deviation of the
input signal along each channel, independently over time. The object uses either the sliding window
method or the exponential weighting method to compute the moving standard deviation. In the
sliding window method, a window of specified length is moved over the data, sample by sample, and
the object computes the standard deviation over the data in the window. In the exponential weighting
method, the object computes the exponentially weighted moving variance, and takes the square root.
For more details on these methods, see “Algorithms” on page 4-1069.

To compute the moving standard deviation of the input:

1 Create the dsp.MovingStandardDeviation object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
MovStd = dsp.MovingStandardDeviation
MovStd = dsp.MovingStandardDeviation(Len)
MovStd = dsp.MovingStandardDeviation(Len,Overlap)
MovStd = dsp.MovingStandardDeviation(Name,Value)

Description

MovStd = dsp.MovingStandardDeviation returns a moving standard deviation object, MovStd,
using the default properties.

MovStd = dsp.MovingStandardDeviation(Len) sets the WindowLength property to Len.

MovStd = dsp.MovingStandardDeviation(Len,Overlap) sets the WindowLength property to
Len and the OverlapLength property to Overlap.

MovStd = dsp.MovingStandardDeviation(Name,Value) specifies additional properties using
Name,Value pairs. Unspecified properties have default values.
Example: MovStd = dsp.MovingStandardDeviation('Method','Exponential
weighting','ForgettingFactor',0.999);

 dsp.MovingStandardDeviation

4-1065

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Moving standard deviation method
'Sliding window' (default) | 'Exponential weighting'

• 'Sliding window' — A window of length specified by SpecifyWindowLength is moved over
the input data along each channel. For every sample the window moves by, the object computes
the standard deviation over the data in the window.

• 'Exponential weighting' — The object computes the exponentially weighted moving
variance, and takes the square root.

For more details on these methods, see “Algorithms” on page 4-1069.

SpecifyWindowLength — Specify window length
true (default) | false

Flag to specify a window length, specified as a scalar boolean.

• true — The length of the sliding window is equal to the value you specify in the WindowLength
property.

• false — The length of the sliding window is infinite. In this mode, the standard deviation is
computed using the current sample and all the past samples.

Dependencies

This property applies when you set Method to 'Sliding window'.

WindowLength — Length of the sliding window
4 (default) | positive scalar integer

Length of the sliding window in samples, specified as a positive scalar integer.

Dependencies

This property applies when you set Method to 'Sliding window' and SpecifyWindowLength to
true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OverlapLength — Overlap length between windows
WindowLength − 1 (default) | nonnegative integer

Overlap length between sliding windows, specified as a nonnegative integer. The value of overlap
length varies in the range [0, WindowLength − 1]. If not specified, the overlap length is
WindowLength − 1.

4 System Objects

4-1066

Dependencies

This property applies when you set Method to 'Sliding window' and SpecifyWindowLength to
true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ForgettingFactor — Exponential weighting factor
0.9 (default) | positive real scalar in the range (0,1]

Exponential weighting factor, specified as a positive real scalar in the range (0,1].

Since this property is tunable, you can change its value even when the object is locked.

Tunable: Yes

Dependencies

This property applies when you set Method to 'Exponential weighting'.
Data Types: single | double

Usage

Syntax
y = movStd(x)

Description

y = movStd(x) computes the moving standard deviation of the input signal, x, using either the
sliding window method or exponential weighting method.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The moving standard deviation is computed along each channel. The object also
accepts variable-size inputs. Once the object is locked, you can change the size of each input channel,
but you cannot change the number of channels.
Data Types: single | double

Output Arguments

y — Moving standard deviation
vector | matrix

Moving standard deviation of the input signal, returned as a vector or a matrix.
Data Types: single | double

 dsp.MovingStandardDeviation

4-1067

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Moving Standard Deviation of Noisy Square Wave Signal

Compute the moving standard deviation of a noisy square wave signal with varying amplitude using
the dsp.MovingStandardDeviation object.

Initialization

Set up movstdWindow, movstdWindow_overlap, and movstdExp objects. movstdWindow uses the
sliding window method with a window length of 800 samples and a default overlap length of 799
samples, which is one sample less than the specified window length. movstdWindow_overlap uses a
window length of 800 samples and an overlap length of 700 samples. movstdExp uses the
exponentially weighting method with a forgetting factor of 0.999.

Create a time scope for viewing the output.

FrameLength = 100;
Fs = 100;
movstdWindow = dsp.MovingStandardDeviation(800);
movstdWindow_overlap = dsp.MovingStandardDeviation(800,700);
movstdExp = dsp.MovingStandardDeviation(...
 'Method','Exponential weighting',...
 'ForgettingFactor',0.999);
scope = timescope('SampleRate',[Fs,Fs,Fs/(800-700),Fs],...
 'TimeSpanOverrunAction','Scroll',...
 'TimeSpanSource','Property',...
 'TimeSpan',1000,...
 'ShowGrid',true,...
 'BufferLength',1e7,...
 'YLimits',[0 3e-2]);
title = 'Moving Standard Deviation';
scope.Title = title;
scope.ChannelNames = {'Original Signal',...
 'Sliding window of 800 samples with default overlap',...
 'Sliding window of 800 samples with an overlap of 700 samples',...
 'Exponential weighting with forgetting factor of 0.999'};

Compute the Standard Deviation

Generate a noisy square wave signal. Vary the amplitude of the square wave after a given number of
frames. Apply the sliding window method and the exponential weighting method to this signal. The

4 System Objects

4-1068

actual standard deviation is sqrt(np). The object uses this value while adding noise to the data.
Compare the actual standard deviation with the computed standard deviation in the time scope.

count = 1;
noisepower = 1e-4 * [1 2 3 4];
for index = 1:length(noisepower)
 np = noisepower(index);
 yexp = sqrt(np)*ones(FrameLength,1);
 for i = 1:250
 x = sqrt(np) * randn(FrameLength,1);
 y1 = movstdWindow(x);
 y2 = movstdWindow_overlap(x);
 y3 = movstdExp(x);
 scope(yexp,y1,y2,y3);
 end
end

Algorithms
Sliding Window Method

In the sliding window method, the output at the current sample is the standard deviation of the
current sample with respect to the data in the window. To compute the first Len – 1 outputs, when the
window does not have enough data yet, the algorithm fills the window with zeros. As an example, to
compute the standard deviation when the second input sample comes in, the algorithm fills the

 dsp.MovingStandardDeviation

4-1069

window with Len – 2 zeros. Len is the length of the window in samples. The data vector, x, is then the
two data samples followed by Len – 2 zeros.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the moving standard deviation of the current sample with respect to all the
previous samples in the channel.

Consider an example of computing the moving standard deviation of a streaming input data using the
sliding window method. The algorithm uses a window length of 4. With each input sample that comes
in, the window of length 4 moves along the data.

4 System Objects

4-1070

Exponential Weighting Method

In the exponential weighting method, the moving standard deviation is computed recursively using
these formulas:

sN, λ = 1
vN, λ

∑
k = 1

N
λN − k xk− xN, λ

2

vN, λ = 2λ(1− λN − 1)
(1− λ)(1 + λ)

• sN, λ — Moving standard deviation of the current data sample with respect to the rest of the data.
• xk− xN, λ

2 — Difference between each data sample and the average of the data, squared.
•
∑

k = 1

N
λN − k xk− xN, λ

2 — Difference between each data sample and the average of the data,

squared and multiplied with the forgetting factor. All the squared terms are added.
• 1

vN, λ
 — Weighting factor applied to the sum.

• λ — Forgetting factor.

As the age of the data increases, the magnitude of the weighting factor decreases exponentially and
never reaches zero. In other words, the recent data has more influence on the current standard
deviation than the older data.

The value of the forgetting factor determines the rate of change of the weighting factors. A forgetting
factor of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. A forgetting
factor of 1.0 indicates infinite memory. All previous samples are given an equal weight.

Consider an example of computing the moving standard deviation using the exponential weighting
method. The forgetting factor is 0.9.

 dsp.MovingStandardDeviation

4-1071

References
[1] Bodenham, Dean. “Adaptive Filtering and Change Detection for Streaming Data.” PH.D. Thesis.

Imperial College, London, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.MovingMaximum | dsp.MovingMinimum | dsp.MovingAverage | dsp.MovingRMS |
dsp.MovingVariance | dsp.MedianFilter

4 System Objects

4-1072

Blocks
Moving Standard Deviation | Standard Deviation | Moving Maximum | Moving Minimum | Moving
Average | Moving RMS | Moving Variance | Median Filter

Topics
“What Are Moving Statistics?”
“Sliding Window Method and Exponential Weighting Method”
“Streaming Signal Statistics”

Introduced in R2016b

 dsp.MovingStandardDeviation

4-1073

dsp.MovingVariance
Package: dsp

Moving variance

Description
The dsp.MovingVariance System object computes the moving variance of the input signal along
each channel, independently over time. The object uses either the sliding window method or the
exponential weighting method to compute the moving variance. In the sliding window method, a
window of specified length is moved over the data, sample by sample, and the variance is computed
over the data in the window. In the exponential weighting method, the object subtracts each sample
of the data from the average, squares the difference, and multiplies the squared result with a
weighting factor. The object then computes the variance by adding all the weighted data. For more
details on these methods, see “Algorithms” on page 4-1078.

To compute the moving variance of the input:

1 Create the dsp.MovingVariance object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
MovVar = dsp.MovingVariance
MovVar = dsp.MovingVariance(Len)
MovVar = dsp.MovingVariance(Len,Overlap)
MovVar = dsp.MovingVariance(Name,Value)

Description

MovVar = dsp.MovingVariance returns a moving variance object, MovVar, using the default
properties.

MovVar = dsp.MovingVariance(Len) sets the WindowLength property to Len.

MovVar = dsp.MovingVariance(Len,Overlap) sets the WindowLength property to Len and the
OverlapLength property to Overlap.

MovVar = dsp.MovingVariance(Name,Value) specifies additional properties using Name,Value
pairs. Unspecified properties have default values.
Example: MovVar = dsp.MovingVariance('Method','Exponential
weighting','ForgettingFactor',0.9);

4 System Objects

4-1074

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Method to compute the variance
'Sliding window' (default) | 'Exponential weighting'

• 'Sliding window' — A window of length specified by SpecifyWindowLength is moved over
the input data along each channel. For every sample the window moves by, the object computes
the variance over the data in the window.

• 'Exponential weighting' — The object subtracts each sample of the data from the average,
squares the difference, and multiplies the squared result with a weighting factor. The object then
computes the variance by adding all the weighted data. The magnitude of the weighting factors
decreases exponentially as the age of the data increases, never reaching zero.

For more details on these methods, see “Algorithms” on page 4-1078.

SpecifyWindowLength — Specify window length
true (default) | false

Flag to specify a window length, specified as a scalar Boolean.

• true — The length of the sliding window is equal to the value you specify in the WindowLength
property.

• false — The length of the sliding window is infinite. In this mode, the variance is computed using
the current sample and all past samples.

Dependencies

This property applies when you set Method to 'Sliding window'.

WindowLength — Length of the sliding window
4 (default) | positive scalar integer

Length of the sliding window in samples, specified as a positive scalar integer.

Dependencies

This property applies when you set Method to 'Sliding window' and SpecifyWindowLength to
true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OverlapLength — Overlap length between windows
WindowLength − 1 (default) | nonnegative integer

Overlap length between sliding windows, specified as a nonnegative integer. The value of overlap
length varies in the range [0, WindowLength − 1]. If not specified, the overlap length is set to
WindowLength − 1.

 dsp.MovingVariance

4-1075

Dependencies

This property applies when you set Method to 'Sliding window' and SpecifyWindowLength to
true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ForgettingFactor — Exponential weighting factor
0.9 (default) | positive real scalar in the range (0,1]

Exponential weighting factor, specified as a positive real scalar in the range (0,1].

A forgetting factor of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. A
forgetting factor of 1.0 indicates infinite memory. All the past samples are given an equal weight.

Since this property is tunable, you can change its value even when the object is locked.

Tunable: Yes

Dependencies

This property applies when you set Method to 'Exponential weighting'.
Data Types: single | double

Usage

Syntax
y = movVar(x)

Description

y = movVar(x) computes the moving variance of the input signal, x, using either the sliding
window method or exponential weighting method.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The moving variance is computed along each channel. The object also accepts
variable-size inputs. Once the object is locked, you can change the size of each input channel, but
cannot change the number of channels.
Data Types: single | double

Output Arguments

y — Moving variance
vector | matrix

Moving variance of the input signal, returned as a vector or a matrix.
Data Types: single | double

4 System Objects

4-1076

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Moving Variance of Noisy Square Wave Signal

Compute the moving variance of a noisy square wave signal with varying amplitude using the
dsp.MovingVariance object.

Initialization

Set up movvarWindow, movvarWindow_overlap, and movvarExp objects. movvarWindow uses the
sliding window method with a window length of 800 samples and a default overlap length of 799
samples, which is 1 sample less than the specified window length. movvarWindow_overlap uses a
window length of 800 samples and an overlap length of 700 samples. movvarExp uses the
exponentially weighting method with a forgetting factor of 0.999.

Create a time scope for viewing the output.

FrameLength = 100;
Fs = 100;
movvarWindow = dsp.MovingVariance(800);
movvarWindow_overlap = dsp.MovingVariance(800,700);
movvarExp = dsp.MovingVariance('Method','Exponential weighting',...
 'ForgettingFactor',0.999);
scope = timescope('SampleRate',[Fs,Fs,Fs/(800-700),Fs],...
 'TimeSpanOverrunAction','Scroll',...
 'TimeSpanSource','Property',...
 'TimeSpan',1000,...
 'ShowGrid',true,...
 'BufferLength',1e7,...
 'YLimits',[0 7e-4]);
title = 'Moving Variance';
scope.Title = title;
scope.ChannelNames = {'Original Signal',...
 'Sliding window of 800 samples with default overlap',...
 'Sliding window of 800 samples with an overlap of 700 samples',...
 'Exponential weighting with forgetting factor of 0.999'};

Compute the Variance

Generate a noisy square wave signal. Vary the amplitude of the square wave after a given number of
frames. Apply the sliding window method and the exponentially weighting method on this signal. The

 dsp.MovingVariance

4-1077

actual variance is np. This value is used while adding noise to the data. Compare the actual variance
with the computed variances on the time scope.

count = 1;
noisepower = 1e-4 * [1 2 3 4];
for index = 1:length(noisepower)
 np = noisepower(index);
 yexp = np*ones(FrameLength,1);
 for i = 1:250
 x = 1 + sqrt(np) * randn(FrameLength,1);
 y1 = movvarWindow(x);
 y2 = movvarWindow_overlap(x);
 y3 = movvarExp(x);
 scope(yexp,y1,y2,y3);
 end
end

Algorithms
Sliding Window Method

In the sliding window method, the output at the current sample is the variance of the current sample
with respect to the data in the window. To compute the first Len – 1 outputs, when the window does
not have enough data yet, the algorithm fills the window with zeros. As an example, to compute the
variance when the second input sample comes in, the algorithm fills the window with Len – 2 zeros.

4 System Objects

4-1078

Len is the length of the window in samples. The data vector, x, is then the two data samples followed
by Len – 2 zeros.

When you do not specify the window length, the algorithm chooses an infinite window length. In this
mode, the output is the moving variance of the current sample with respect to all previous samples in
the channel.

Consider an example of computing the moving variance of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. With each input sample that comes in, the
window of length 4 moves along the data.

 dsp.MovingVariance

4-1079

Exponential Weighting Method

In the exponential weighting method, the moving variance is computed recursively using these
formulas:

s2
N, λ = 1

vN, λ
∑

k = 1

N
λN − k xk− xN, λ

2

vN, λ = 2λ(1− λN − 1)
(1− λ)(1 + λ)

To compute the moving variance, the algorithm implements these equations recursively.

• s2
N, λ — Moving variance of the current data sample with respect to the rest of the data in the

channel.
• xN, λ — Moving average at the current sample. For details on computing the moving average, see

dsp.MovingAverage.
• xk− xN, λ

2 — Difference between each data sample and the average of the data, squared.
•
∑

k = 1

N
λN − k xk− xN, λ

2 — Difference between each data sample and the average of the data,

squared and multiplied with the forgetting factor. All the squared terms are added.
• 1

vN, λ
 — Weighting factor applied to the sum.

• λ — Forgetting factor you can specify through the ForgettingFactor property.

As the age of the data increases, the magnitude of the weighting factor decreases exponentially, and
never reaches zero. In other words, the recent data has more influence on the current variance, than
the older data.

The value of the forgetting factor determines the rate of change of the weighting factors. A forgetting
factor of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. A forgetting
factor of 1.0 indicates infinite memory. All the past samples are given an equal weight.

Consider an example of computing the moving variance using the exponential weighting method. The
forgetting factor is 0.9.

4 System Objects

4-1080

References
[1] Bodenham, Dean. “Adaptive Filtering and Change Detection for Streaming Data.” PH.D. Thesis.

Imperial College, London, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.MovingMaximum | dsp.MovingMinimum | dsp.MovingAverage | dsp.MovingRMS |
dsp.MovingStandardDeviation | dsp.MedianFilter

 dsp.MovingVariance

4-1081

Blocks
Moving Variance | Variance | Moving Maximum | Moving Minimum | Moving Average | Moving RMS |
Moving Standard Deviation | Median Filter

Topics
“What Are Moving Statistics?”
“Sliding Window Method and Exponential Weighting Method”
“Streaming Signal Statistics”

Introduced in R2016b

4 System Objects

4-1082

dsp.NCO
Package: dsp

Generate real or complex sinusoidal signals

Description
The numerically controlled oscillator, or NCO object generates real or complex sinusoidal signals. The
amplitude of the generated signal is always 1.

To generate real or complex sinusoidal signals:

1 Create the dsp.NCO object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
nco = dsp.NCO
nco = dsp.NCO(Name,Value)

Description

nco = dsp.NCO returns an NCO System object, nco, that generates a multichannel real or complex
sinusoidal signal, with independent frequency and phase in each output channel.

nco = dsp.NCO(Name,Value) returns an NCO System object, nco, with each specified property set
to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PhaseIncrementSource — Source of phase increment
'Input port' (default) | 'Property'

Specify the source of the phase increment as 'Property' or 'Input port'.

PhaseIncrement — Phase increment
100 (default) | scalar | vector

 dsp.NCO

4-1083

Specify the phase increment as an integer-valued scalar or vector.

Dependencies

This property applies only when you set the “PhaseIncrementSource” on page 4-0 property to
'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PhaseOffsetSource — Source of phase offset
'Property' (default) | 'Input port'

Specify the source of the phase offset as 'Property' or 'Input port'.

PhaseOffset — Phase offset
0 (default) | scalar | vector

Specify the phase offset as an integer-valued scalar or vector.

Dependencies

This property applies only when you set the “PhaseOffsetSource” on page 4-0 property to
'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Dither — Enable adding internal dithering to NCO algorithm
true (default) | false

Set this property to true to add internal dithering to the NCO algorithm. Dithering is added using
the PN Sequence Generator.

NumDitherBits — Number of dither bits
4 (default) | positive integer

Specify the number of dither bits as a positive integer.

Dependencies

This property applies only when you set the Dither property to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PhaseQuantization — Enable quantization of accumulated phase
true (default) | false

Set this property to true to enable quantization of the accumulated phase.

NumQuantizerAccumulatorBits — Number of quantizer accumulator bits
12 (default) | integer

Specify the number of quantizer accumulator bits as an integer scalar greater than 2 and less than
the accumulator word length (“CustomAccumulatorDataType” on page 4-0). This property
determines the number of entries in the lookup table of sine values.

Dependencies

This property applies only when you set the “PhaseQuantization” on page 4-0 property to true.

4 System Objects

4-1084

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PhaseQuantizationErrorOutputPort — Enable output of phase quantization error
false (default) | true

Set this property to true to output the phase quantization error.

Dependencies

This property applies only when you set the “PhaseQuantization” on page 4-0 property to true.

Waveform — Type of output signal
'Sine' (default) | 'Cosine' | 'Complex exponential' | 'Sine and cosine'

Specify the type of the output signal.

SamplesPerFrame — Number of output samples per frame
1 (default) | positive integer

Specify the number of samples per frame of the output signal. When the PhaseOffsetSource
property is 'Input port', and the “PhaseIncrementSource” on page 4-0 property is
'Property', the number of rows or frame size of the phase offset input determines the number of
samples per frame of the output signal. When you set both the “PhaseOffsetSource” on page 4-0
and “PhaseIncrementSource” on page 4-0 properties to 'Input port', the number of rows in
the inputs must be 1, and the samples per frame of the output signal is 1.

Dependencies

This property applies only when you set the “PhaseOffsetSource” on page 4-0 property to
'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

OutputDataType — Output data type
'Custom' (default) | 'double' | 'single'

Specify the output data type as 'double', 'single' or 'Custom'. When you select 'Custom', you
must also set the “CustomOutputDataType” on page 4-0 property.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default)

This constant property has a value 'Floor'.

OverflowAction — Overflow action for fixed-point operations
'Wrap' (default)

This constant property has a value 'Wrap'.

AccumulatorDataType — Accumulator word and fraction lengths
'Custom' (default)

This constant property has a value 'Custom'.

 dsp.NCO

4-1085

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],16) (default) | numerictype

Specify the accumulator fixed-point type as an unscaled numerictype object with a Signedness of
Auto.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,14) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when you set the “OutputDataType” on page 4-0 property to Custom.

Usage

Syntax
Y = nco()
Y = nco(phInc)
Y = nco(OFFSET)
Y = nco(phInc,OFFSET)
[Y,cosine] = nco(___)
[Y,qErr] = nco(___)

Description

Y = nco() returns a sinusoidal signal when the PhaseIncrementSource and the
PhaseOffsetSource properties are both set to 'Property'.

Y = nco(phInc) returns a sinusoidal signal, Y, generated by the NCO with the specified phase
increment, phInc.

Y = nco(OFFSET) returns a sinusoidal signal, Y, with phase offset, OFFSET, when the
PhaseOffsetSource property is set to 'Input port'.

Y = nco(phInc,OFFSET) returns a sinusoidal signal, Y, with phase increment, phInc, and phase
offset, OFFSET, when the PhaseIncrementSource and the PhaseOffsetSource properties are
both 'Input port'. phInc and OFFSET must both be row vectors of the same length, where the
length determines the number of channels in the output signal.

[Y,cosine] = nco(___) returns a sinusoidal signal, Y, and a cosinusoidal signal, cosine, when
the Waveform property is set to 'Sine and cosine'. This syntax can include any of the input
arguments in previous syntaxes.

[Y,qErr] = nco(___) returns a sinusoidal signal, Y, and output quantization error, qErr, when
the PhaseQuantization and the PhaseQuantizationErrorOutputPort properties are both
true.

Input Arguments

phInc — Phase increment
scalar | row vector

4 System Objects

4-1086

Phase increment, specified as a scalar or a row vector, where each element corresponds to a separate
channel.

When both PhaseIncrementSource and PhaseOffsetSource properties are set to 'Input
port', the two inputs, phInc and OFFSET must have the same number of channels.
Dependencies

This property applies only when the PhaseIncrementSource property is set to 'Input port'.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | fi

OFFSET — Phase offset
row vector | matrix

Phase offset, specified as a row vector or a matrix. The number of rows of OFFSET determines the
number of samples per frame of the output signal. The number of columns of OFFSET determines the
number of channels of the output signal.

When both PhaseIncrementSource and PhaseOffsetSource properties are set to 'Input
port', phInc and OFFSET must have the same number of channels.
Dependencies

This property applies only when the PhaseOffsetSource property is set to 'Input port'.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | fi

Output Arguments

Y — NCO output
vector | matrix

NCO output, returned as a vector or a matrix. The number of rows in the output signal is determined
by:

• SamplesPerFrame property –– When PhaseOffsetSource is set to 'Property'
• OFFSET input argument –– When PhaseOffsetSource is set to 'Input port'

The number of channels in the output signal is determined by the number of channels in the phase
offset and the phase increment signals, which must be equal.

The data type of the output is determined by the OutputDataType property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

cosine — Cosinusoidal signal
vector | matrix

Cosinusoidal signal, returned as a vector or a matrix. The cosine output signal has the same size
and data type as the sinusoidal signal, Y.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

qErr — Output quantization error
vector | matrix

 dsp.NCO

4-1087

Output quantization error, returned as a vector or a matrix. The qErr output signal has the same size
as the sinusoidal signal, Y.

Dependencies

This output is only available when both the PhaseQuantization and the
PhaseQuantizationErrorOutputPort properties are set to true.
Data Types: fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.NCO
info Characteristic information about generated signal

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Design NCO Source

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject() becomes step(myObject).

Design an NCO source according to given specifications.

df = 0.05; % Frequency resolution = 0.05 Hz
minSFDR = 96; % Spurious free dynamic range >= 96 dB
Ts = 1/8000; % Sample period = 1/8000 sec
dphi = pi/2; % Desired phase offset = pi/2;

Calculate number of accumulator bits required for the given frequency resolution.

Nacc = ceil(log2(1/(df*Ts)));

Actual frequency resolution achieved.

actdf = 1/(Ts*2^Nacc);

Calculate number of quantized accumulator bits required from the SFDR requirement

Nqacc = ceil((minSFDR-12)/6);

Calculate the phase offset

4 System Objects

4-1088

phOffset = 2^Nacc*dphi/(2*pi);

Design the NCO source.

nco = dsp.NCO('PhaseOffset', phOffset,...
 'NumDitherBits', 4, ...
 'NumQuantizerAccumulatorBits', Nqacc,...
 'SamplesPerFrame', 1/Ts, ...
 'CustomAccumulatorDataType', numerictype([],Nacc));
san = dsp.SpectrumAnalyzer('SampleRate', 1/Ts, ...
 'PlotAsTwoSidedSpectrum', false);

View the output of the NCO source on a spectrum analyzer. Change the output frequency in the
middle of the simulation from 510 Hz to 1520 Hz.

tic;
while toc < 10

 if toc < 5
 F0 = 510;
 else
 F0 = 1520;
 end
 % Calculate the phase increment
 phIncr = int32(round(F0*Ts*2^Nacc));
 y = nco(phIncr);
 san(y)
end

 dsp.NCO

4-1089

Obtain the Characteristic Information of the NCO Object

The characteristic information of the NCO object is defined by the following fields:

• NumPointsLUT — Number of data points in the lookup table.
• SineLUTSize — Quarter-wave sine lookup table size in bytes.
• TheoreticalSFDR — Theoretical spurious free dynamic range (SFDR) in dBc.
• FrequencyResolution — Frequency resolultion of the NCO.

To obtain the above characteristics for a specific NCO object, call the info function on the object.

nco = dsp.NCO

nco =
 dsp.NCO with properties:

 PhaseIncrementSource: 'Input port'
 PhaseOffsetSource: 'Property'
 PhaseOffset: 0
 Dither: true
 NumDitherBits: 4
 PhaseQuantization: true

4 System Objects

4-1090

 NumQuantizerAccumulatorBits: 12
 PhaseQuantizationErrorOutputPort: false
 Waveform: 'Sine'
 SamplesPerFrame: 1
 OutputDataType: 'Custom'

 Show all properties

info(nco)

ans = struct with fields:
 NumPointsLUT: 1025
 SineLUTSize: 2050
 TheoreticalSFDR: 84
 FrequencyResolution: 1.5259e-05

The fields and their corresponding values change depending on the settings of the object. For
instance, if the PhaseQuantization property is set to false, the TheoreticalSFDR field does not
appear.

nco.PhaseQuantization = false;
info(nco)

ans = struct with fields:
 NumPointsLUT: 16385
 SineLUTSize: 32770
 FrequencyResolution: 1.5259e-05

Algorithms
This object implements the algorithm, inputs, and outputs described on the NCO block reference
page. The object properties correspond to the block properties, except there is no object property
that corresponds to the Sample time block parameter. The objects assumes a sample time of one
second.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
info

Objects
dsp.SineWave

 dsp.NCO

4-1091

Introduced in R2012a

4 System Objects

4-1092

dsp.Normalizer
Package: dsp

(Removed) Vector normalization along specified dimension

Note The dsp.Normalizer System object™ has been removed. Use normalize or vecnorm
instead. For more information, see “Compatibility Considerations”.

Description
The dsp.Normalizer System object performs vector normalization along rows, columns, or
specified dimension.

To perform vector normalization:

1 Create the dsp.Normalizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
norm = dsp.Normalizer
norm = dsp.Normalizer(Name,Value)

Description

norm = dsp.Normalizer returns a normalization System object, norm, that normalizes the input
over each column by the squared 2-norm of the column plus a bias term of 1e-10 used to protect
against divide-by-zero.

norm = dsp.Normalizer(Name,Value) returns a normalization object, norm, with each property
set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Type of normalization to perform
Squared 2-norm (default) | 2-norm

 dsp.Normalizer

4-1093

Specify the type of normalization to perform as 2-norm or Squared 2-norm. The 2-norm mode
supports floating-point signals only. The Squared 2-norm supports both fixed-point and floating-
point signals.

Bias — Real number added in denominator to avoid division by zero
1e-10 (default) | positive real number

Specify the real number to add in the denominator to avoid division by zero.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Dimension — Dimension to operate along
Column (default) | Row | Custom

Specify whether to normalize along Column , Row, or Custom.

CustomDimension — Numerical dimension to operate along
1 (default) | positive integer

Specify the one-based value of the dimension over which to normalize. The value of this parameter
cannot exceed the number of dimensions in the input signal.

Dependencies

This property applies when “Dimension” on page 4-0 property is Custom.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method as one of Ceiling, Convergent, Floor , Nearest, Round, Simplest,
or Zero.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as one of Wrap or Saturate.

ProductDataType — Product word and fraction lengths
Same as input (default) | Custom

Specify the product fixed-point data type as one of Same as input or Custom.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,32) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies when you set the ProductDataType property to Custom.

4 System Objects

4-1094

AccumulatorDataType — Accumulator word and fraction lengths
Same as product (default) | Same as input | Custom

Specify the accumulator fixed-point data type as Same as product, Same as input, or Custom.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies when you set the AccumulatorDataType property to Custom.

OutputDataType — Output word and fraction lengths
Same as product (default) | Same as accumulator | Same as input | Custom

Specify the output fixed-point data type as Same as accumulator, Same as product , Same as
input, or Custom.

CustomOutputDataType — Output word and fraction lengths
numerictype([],32,32) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies when you set the “OutputDataType” on page 4-0 property to Custom.

Usage

Syntax
y = norm(x)

Description

y = norm(x) returns a normalized output y.

Input Arguments

x — Data input
vector | matrix

The input x must be floating-point for the 2-norm mode, and either fixed-point or floating-point for
the Squared 2-norm mode.

The object also accepts variable-size inputs. Once the object is locked, you can change the size of
each input channel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 dsp.Normalizer

4-1095

Output Arguments

y — Normalizer output
vector | matrix

Normalizer output, returned as a vector or a matrix. The size, data type, and complexity of the output
signal matches that of the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Normalize a Matrix

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

norm = dsp.Normalizer;
x = magic(3);
y = norm(x)

y = 3×3

 0.0899 0.0093 0.0674
 0.0337 0.0467 0.0787
 0.0449 0.0841 0.0225

Algorithms
This object implements the algorithm, inputs, and outputs described on the Normalization block
reference page. The object properties correspond to the block parameters, except:

• Treat sample-based row input as column — The block allows you to input a row vector and
normalize the row vector as a column vector. The normalization object always normalizes along
the value of the “Dimension” on page 4-0 property.

4 System Objects

4-1096

• The normalization object does not support the Minimum and Maximum options for data output.

Compatibility Considerations
dsp.Normalizer System object has been removed
Errors starting in R2021a

The dsp.Normalizer System object has been removed. Use normalize or vecnorm instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
2-Norm

x = magic(3);
normObj = dsp.Normalizer('Method','2-norm');
y = normObj(x);

Squared 2-Norm

normObj = dsp.Normalizer('Method','Squared 2-norm');
ySqObj = normObj(x);

If you are using a release prior to R2016b,
replace normObj(X) with step(normObj,X).

2-Norm

x = magic(3);
yfn = normalize(x,'norm');

or

yfn = x./vecnorm(x);

Squared 2-Norm

ySqFn = x./(vecnorm(x).^2);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
normalize | vecnorm

Introduced in R2012a

 dsp.Normalizer

4-1097

dsp.NotchPeakFilter
Package: dsp

Second-order tunable notching and peaking IIR filter

Description
The NotchPeakFilter object filters each channel of the input using IIR filter implementation.

To filter each channel of the input:

1 Create the dsp.NotchPeakFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
npFilter = dsp.NotchPeakFilter
npFilter = dsp.NotchPeakFilter('Specification','Quality factor and center
frequency')
npFilter = dsp.NotchPeakFilter('Specification','Coefficients')
npFilter = dsp.NotchPeakFilter(Name,Value)

Description

npFilter = dsp.NotchPeakFilter returns a second-order notching and peaking IIR filter that
independently filters each channel of the input over time, using a specified center frequency and 3 dB
bandwidth.

npFilter = dsp.NotchPeakFilter('Specification','Quality factor and center
frequency') specifies the quality factor (Q factor) of the notch or peak filter instead of the 3 dB
bandwidth.

npFilter = dsp.NotchPeakFilter('Specification','Coefficients') specifies the
coefficient values that affect bandwidth and center frequency directly, rather than specifying the
design parameters in Hz. This removes the trigonometry calculations involved when the properties
are tuned.

npFilter = dsp.NotchPeakFilter(Name,Value) returns a notch filter with each specified
property name set to the specified value. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

4 System Objects

4-1098

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Specification — Filter specification
'Bandwidth and center frequency' (default) | 'Quality factor and center frequency'
| 'Coefficients'

Set the specification as 'Bandwidth and center frequency', 'Quality factor and center
frequency', or 'Coefficients'.

Bandwidth — 3 dB bandwidth
2205 (default) | positive scalar

Specify the filter’s 3 dB bandwidth as a finite positive numeric scalar in Hz. The value must be a
scalar between 0 and half the sample rate.

Tunable: Yes

Dependencies

This property is applicable only if Specification is 'Bandwidth and center frequency'.
Data Types: single | double

CenterFrequency — Notch or peak center frequency
11025 (default) | positive scalar

Specify the filter’s center frequency (for both the notch and the peak) as a finite positive numeric
scalar in Hz. The value must be a scalar between 0 and half the sample rate.

Tunable: Yes

Dependencies

This property is applicable only if Specification is set to 'Bandwidth and center
frequency' or 'Quality factor and center frequency'.
Data Types: single | double

QualityFactor — Quality factor for notch or peak filter
5 (default) | positive scalar

Specify the quality factor (Q factor) for both the notch and the peak filters. The Q factor is defined as
the center frequency divided by the bandwidth. A higher Q factor corresponds to a narrower notch or
peak. The Q factor should be a scalar value greater than 0.

Tunable: Yes

Dependencies

This property is applicable only if Specification is set to 'Quality factor and center
frequency'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 dsp.NotchPeakFilter

4-1099

SampleRate — Sample rate of input
44100 (default) | positive scalar

Specify the sample rate of the input in Hz as a finite numeric scalar.
Data Types: single | double

BandwidthCoefficient — Bandwidth coefficient
0.72654 (default) | real scalar in the range [-1 1]

Specify the value that determines the filter’s 3 dB bandwidth as a finite numeric scalar in the range
[-1 1]. The value -1 corresponds to the maximum 3 dB bandwidth (SampleRate/4), and 1
corresponds to the minimum 3 dB bandwidth (0 Hz, an allpass filter).

Tunable: Yes
Dependencies

This property is only applicable if Specification is set to 'Coefficients'.
Data Types: single | double

CenterFrequencyCoefficient — Center frequency coefficient
0 (default) | real scalar in the range [-1 1]

Specify the coefficient that determines the filter’s center frequency as a finite numeric scalar in the
range [-1 1]. The value -1 corresponds to the minimum center frequency (0 Hz), and 1 corresponds
to the maximum center frequency (SampleRate/2 Hz). The default is 0, which corresponds to
SampleRate/4 Hz.

Tunable: Yes
Dependencies

This property is only applicable if Specification is set to 'Coefficients'.
Data Types: single | double

Usage

Syntax
Y = npFilter(x)
[Yn,Yp] = npFilter(x)

Description

Y = npFilter(x) filters each channel (column) of the input signal, x, to produce the notch filter
output, Y.

[Yn,Yp] = npFilter(x) filters each channel of the input signal, x, to produce the notch filter
output, Yn, and peak filter output, Yp.

Input Arguments

x — Input signal
vector | matrix

4 System Objects

4-1100

Input signal, specified as a vector or a matrix.
Data Types: single | double

Output Arguments

Yn — Notch filter output
vector | matrix

Notch filter output, returned as a vector or a matrix.
Data Types: single | double

Yp — Peak filter output
vector | matrix

Peak filter output, returned as a vector or a matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.NotchPeakFilter
getBandwidth Get 3 dB bandwidth
getCenterFrequency Get center frequency
getOctaveBandwidth Bandwidth in number of octaves
getQualityFactor Get quality factor
tf Transfer function

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Notch Filter

This example shows how to use dsp.NotchPeakFilter as a notch filter with center frequency of 5000
Hz and a 3 dB bandwidth of 500 Hz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

npFilter = dsp.NotchPeakFilter('CenterFrequency',5000,'Bandwidth',500);
sa = dsp.SpectrumAnalyzer('SampleRate',44100,...
 'PlotAsTwoSidedSpectrum',false,'SpectralAverages',50);

 dsp.NotchPeakFilter

4-1101

for i=1:5000
 y = npFilter(randn(1024,1));
 sa(y);
 if (i==2500)
 % Tune center frequency to 10000
 npFilter.CenterFrequency = 10000;
 end
end
release(npFilter)
release(sa)

Get 3 dB Bandwidth of Notch Peak Filter

Create a dsp.NotchPeakFilter object with the Specification property set to 'Quality
factor and center frequency'. The default quality factor Q is 5, and the center frequency Fc is
11,025 Hz.

np = dsp.NotchPeakFilter('Specification','Quality factor and center frequency')

np =
 dsp.NotchPeakFilter with properties:

 Specification: 'Quality factor and center frequency'

4 System Objects

4-1102

 QualityFactor: 5
 CenterFrequency: 11025
 SampleRate: 44100

Compute the 3 dB bandwidth of the notch peak filter using the getBandwidth function. The
bandwidth is computed as the ratio of the center frequency and the quality factor, Fc

Q .

getBandwidth(np)

ans = 2205

Visualize the filter response using fvtool.

fvtool(np)

Get Center Frequency of Notch Peak Filter

Create a dsp.NotchPeakFilter object with the Specification property set to
'Coefficients'.

np = dsp.NotchPeakFilter('Specification','Coefficients')

np =
 dsp.NotchPeakFilter with properties:

 dsp.NotchPeakFilter

4-1103

 Specification: 'Coefficients'
 BandwidthCoefficient: 0.7265
 CenterFrequencyCoefficient: 0
 SampleRate: 44100

Determine the center frequency of the notch peak filter using the getCenterFrequency function.
When the Specification is set to 'Coefficients', the center frequency is determined from the
CenterFrequencyCoefficient value and the sample rate.

getCenterFrequency(np)

ans = 11025

Visualize the filter response using fvtool.

fvtool(np)

Get Octave Bandwidth of Notch Peak Filter

Create a dsp.NotchPeakFilter object in the default configuration.

np = dsp.NotchPeakFilter

4 System Objects

4-1104

np =
 dsp.NotchPeakFilter with properties:

 Specification: 'Bandwidth and center frequency'
 Bandwidth: 2205
 CenterFrequency: 11025
 SampleRate: 44100

Determine the octave bandwidth of the filter using the getOctaveBandwidth function.

getOctaveBandwidth(np)

ans = 0.2881

Visualize the filter response using fvtool.

fvtool(np)

Compute Quality Factor of Notch Peak Filter

Create a dsp.NotchPeakFilter object in the default configuration, where the Specification
property is set to 'Bandwidth and center frequency'.

np = dsp.NotchPeakFilter

 dsp.NotchPeakFilter

4-1105

np =
 dsp.NotchPeakFilter with properties:

 Specification: 'Bandwidth and center frequency'
 Bandwidth: 2205
 CenterFrequency: 11025
 SampleRate: 44100

Determine the quality factor of the filter using the getQualityFactor function. The quality factor is
given by the ratio of the center frequency to the bandwidth.

getQualityFactor(np)

ans = 5

Visualize the filter response using fvtool.

fvtool(np)

Determine Transfer Function of Notch Peak Filter

Create a dsp.NotchPeakFilter System object™. Obtain the coefficients of the transfer function
corresponding to the notch and peak filters.

4 System Objects

4-1106

notchpeak = dsp.NotchPeakFilter;
[Bnotch,Anotch,Bpeak,Apeak] = tf(notchpeak)

Bnotch = 1×3

 0.8633 -0.0000 0.8633

Anotch = 1×3

 1.0000 -0.0000 0.7265

Bpeak = 1×3

 0.1367 0 -0.1367

Apeak = 1×3

 1.0000 -0.0000 0.7265

Bnotch and Anotch are the vectors of numerator and denominator coefficients for the equivalent
transfer function corresponding to the notch filter. Bpeak and Apeak are the vectors of numerator
and denominator coefficients for the equivalent transfer function corresponding to the peak filter.

Algorithms
The design equation for the peak filter is:

H(z) = (1− b) 1− z−2

1− 2bcosw0z−1 + (2b− 1)z−2

The design equation for the notch filter is:

H(z) = b
1− 2cosw0z−1 + z−2

1− 2bcosw0z−1 + (2b− 1)z−2

with

b = 1
1 + tan(Δw/2)

where ω0 = 2πf0/fs is the center frequency in radians/sample (f0 is the center frequency in Hz and fs is
the sampling frequency in Hz). Δω = 2πΔf/fs is the 3 dB bandwidth in radians/sample (Δf is the 3 dB
bandwidth in Hz). Note that the two filters are complementary:

 dsp.NotchPeakFilter

4-1107

Hnotch(z) + Hpeak(z) = 1
they can be written as:

Hpeak(z) = 1
2 1− A(z)

Hnotch(z) = 1
2 1 + A(z)

where A(z) is a 2nd order allpass filter.

A(z) =
a2 + a1z−1 + z−2

1 + a1z−1 + a2z−2

and
a1 = − 2bcosω0
a2 = 2b− 1

The filter is implemented as follows:

where

G3dB = a2 = 2b− 1

Gcf =
a1− a1a2
1− a22 = − cosw0

Notice that Gcf depends only on the center frequency, and G3dB depends only on the 3 dB bandwidth.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Upper Saddle River, NJ: Prentice-Hall,

1996.

4 System Objects

4-1108

See Also
Functions
iirnotch | iirpeak | getBandwidth | getCenterFrequency | getOctaveBandwidth |
getQualityFactor | tf

Objects
dsp.BiquadFilter

Blocks
Notch-Peak Filter

Introduced in R2014a

 dsp.NotchPeakFilter

4-1109

dsp.ParametricEQFilter
Package: dsp

(Removed) Tunable second-order parametric equalizer filter

Note The dsp.ParametricEQFilter object has been removed. Use the designParamEQ function
or the MultibandParametricEQ object from Audio Toolbox™ instead. For more information, see
“Compatibility Considerations”.

Description
The dsp.ParametricEQFilter object is a tunable, second-order parametric equalizer filter.

To apply the filter to each channel of the input:

1 Define and set up your equalizer filter. See “Construction” on page 4-1110.
2 Call step to filter each channel according to the properties of dsp.ParametricEQFilter. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = dsp.ParametricEQFilter returns a second-order parametric equalizer filter that
independently filters each channel of the input over time, using the default values for Bandwidth,
CenterFrequency, and PeakGaindB. The center frequency and bandwidth are specified in Hz
and are tunable. The peak gain (dip) is specified in dB and is also tunable. The bandwidth is
measured at the arithmetic mean between the peak gain in absolute power units and one.

H = dsp.ParametricEQFilter('Specification', 'Quality factor and center
frequency') specifies the quality factor (Q factor) of the filter. The Q factor is defined as the
center frequency/bandwidth. A higher Q factor corresponds to a narrower peak/dip. The Q factor
should be a scalar value greater than 0. The Q factor is tunable.

H = dsp.ParametricEQFilter('Specification', 'Coefficients') specifies the gain
values for the bandwidth and center frequency. This removes the trigonometry calculations involved
when the properties are tuned. The CenterFrequencyCoefficient should be a scalar between -1
and 1, with -1 corresponding to 0 Hz, and 1 corresponding to the Nyquist frequency. The
BandwidthCoefficient should be a scalar between -1 and 1, with -1 corresponding to the largest
bandwidth, and 1 corresponding to the smallest bandwidth. In this mode, the peak gain is specified in
linear units rather than dB.

H = dsp.ParametricEQFilter('Name', Value, ...) returns a parametric equalizer filter
with each specified property name set to the specified value. You can specify several name-value pair
arguments in any order as ('Name1',Value1,...,'NameN',ValueN).

4 System Objects

4-1110

Properties
Specification

Design parameters or coefficients that specify the filter

Choose one of the following Specification values. Use the corresponding tunable properties to
specify the filter:

• Bandwidth and center frequency — Use Bandwidth, CenterFrequency, and
PeakGaindB.

• Quality factor and center frequency — Use QualityFactor, CenterFrequency, and
PeakGaindB.

• Coefficients — Use BandwidthCoefficient, CenterFrequencyCoefficient, and
PeakGain.

The default value is Bandwidth and center frequency.

Using Coefficients specifies gain values for the bandwidth and center frequency. This approach
does not require the trigonometric calculations of the other two approaches where design parameters
are specified in Hz.

Bandwidth

bandwidth of filter

Specify the bandwidth of the filter as a finite positive numeric scalar that is less than half the sample
rate of the input signal, in Hz. This property is applicable if Specification is set to Bandwidth
and center frequency. The default is 2205 Hz. This property is tunable.

BandwidthCoefficient

Coefficient for bandwidth of filter

Specify the value that determines the filter's bandwidth as a finite numeric scalar in the range [-1
1]:

• -1 corresponds to the maximum bandwidth (SampleRate/4).
• 1 corresponds to the minimum bandwidth (0 Hz, that is, an allpass filter).

This property is only applicable if Specification is set to Coefficients. The default is 0.72654.
This property is tunable.

CenterFrequency

Center frequency of the filter

Specify the filter's center frequency as a finite positive numeric scalar that is less than half the
sample rate of the input signal, in Hz. This property is only applicable if Specification is set to
Bandwidth and center frequency or Quality factor and center frequency. The default
is 11025 Hz. This property is tunable.

CenterFrequencyCoefficient

Coefficient for center frequency of filter

 dsp.ParametricEQFilter

4-1111

Specify the value that determines the filter's center frequency as a finite numeric scalar between -1
and 1:

• -1 corresponds to the minimum center frequency (0 Hz).
• 1 corresponds to the maximum center frequency (SampleRate/2 Hz).

This property is only applicable if Specification is set to Coefficients. The default is 0, which
corresponds to SampleRate/4 Hz.

This property is tunable.

PeakGain

Peak or dip gain of the filter in linear units

Specify the filter’s peak or dip gain in linear units. A value greater than one boosts the signal. A value
less than one attenuates the signal. The default is 2 (6.0206 dB). This property is tunable.

PeakGaindB

Peak or dip gain of the filter in dB

Specify the filter’s peak or dip gain in dB. A positive value boosts the signal. A negative value
attenuates the signal. The default is 6.0206 dB. This property is tunable.

QualityFactor

Quality factor of the parametric EQ filter

Specify the Quality factor (Q factor) of the filter. The Q factor is defined as the center frequency
divided by the bandwidth. A higher Q factor corresponds to a narrower peak or dip. This property is
only applicable if Specification is set to Quality factor and center frequency. The
default value is 5. This property is tunable.

SampleRate

Input sample rate

Specify the sample rate of the input as a finite numeric scalar, in Hz. The default is 44100 Hz.

Methods
getBandwidth Convert quality factor or bandwidth coefficient to bandwidth in Hz
getCenterFrequency Convert center frequency coefficient to frequency in Hz
getOctaveBandwidth Measure bandwidth of parametric equalizer filter in octaves
getPeakGain Convert peak or notch gain from dB to absolute units
getPeakGaindB Convert peak or notch gain from absolute units to dB
getQualityFactor Convert bandwidth to quality factor
reset Reset states of ParametricEQFilter object
step Filter input with ParametricEQFilter object
tf Compute transfer function

4 System Objects

4-1112

Common to All System Objects
release Allow System object property value changes

Examples

Tune Equalizer Filter

Create a ParametricEQFilter object where the center frequency and bandwidth of the equalizer
filter are 5000 Hz and 500 Hz respectively. The sample rate for the filter is the default, 44,100 Hz.

h = dsp.ParametricEQFilter('CenterFrequency',5000,...
 'Bandwidth',500);

Create objects to estimate and display the transfer function of the filter.

htf = dsp.TransferFunctionEstimator('FrequencyRange','onesided',...
 'SpectralAverages',50);
hplot = dsp.ArrayPlot('PlotType','Line','YLimits',[-15 15],...
 'SampleIncrement',44100/1024);

Generate a random signal and filter the signal.

for i=1:1000
 x = randn(1024,1); % Random signal
 y = h(x); % Filter signal
 H = htf(x,y); % Estimate transfer function
 magdB = 20*log10(abs(H));% Convert to dB
 hplot(magdB); % Display transfer function

 if (i==1) % Pause to display initial transfer function
 pause;
 end
 if (i==500) % Tune filter
 h.CenterFrequency = 10000;
 h.Bandwidth = 2000;
 h.PeakGaindB = -10;
 end
 end

The software displays the initial transfer function estimate.

 dsp.ParametricEQFilter

4-1113

To continue, press any key.

At i=500, the filter is tuned. The center frequency, bandwidth, and peak gain of the filter now have
different values. The software displays the new transfer function.

Algorithm
The parametric equalizer is formed by a linear combination of a peak and a notch filter. See the
Algorithm section of dsp.NotchPeakFilter for details.

H(z) = Hnotch(z) + GHpeak(z)

Here is a graph of the two cases (boost and cut) of the magnitude squared of the transfer functions:

4 System Objects

4-1114

 dsp.ParametricEQFilter

4-1115

The transfer function can be written as:

H(z) =
(1 + Gγ

1 + γ)− 2(
cosω0
1 + γ)z−1 + (1− Gγ

1 + γ)z−2

1− 2(
cosω0
1 + γ)z−1 + (1− γ

1 + γ)z−2

where

γ = tan(Δω
2)

and

GB2 = 1 + G2

2

G is the parametric equalizer gain, and GB is the bandwidth gain, that is, the gain level at which the
bandwidth Δω is measured.

The dsp.NotchPeakFilter that does most of the work is implemented in a decoupled way so that
the center frequency can be tuned independently from the bandwidth. Note that the Q factor is
defined as center frequency/bandwidth.

4 System Objects

4-1116

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing Upper Saddle River, NJ: Prentice-Hall,
1996

Compatibility Considerations
dsp.ParametricEQFilter System object has been removed
Errors starting in R2021a

dsp.ParametricEQFilter System object has been removed. Use the designParamEQ function or
the MultibandParametricEQ object from Audio Toolbox instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
eq = dsp.ParametricEQFilter;

or

eq = dsp.ParametricEQFilter('Specification',...
'Quality factor and center frequency');

or

eq = dsp.ParametricEQFilter('Specification',...
'Bandwidth and center frequency');

Bandwidth is the ratio of the center frequency to
the quality factor.

%% Parameters
Fs = 44100;
Fo = 11025;
Bw = 2205;
G = 6.0206;
N = 2;
Wo = Fo/(Fs/2);
BW = Bw/(Fs/2);

%% Design
[B, A] = designParamEQ(N,G,Wo,BW, 'fos');
fos = dsp.FourthOrderSectionFilter(B.',A.');

Introduced in R2014a

 dsp.ParametricEQFilter

4-1117

getBandwidth
System object: dsp.ParametricEQFilter
Package: dsp

Convert quality factor or bandwidth coefficient to bandwidth in Hz

Compatibility

Note The dsp.ParametricEQFilter object will be removed in a future release. Existing instances
of the object continue to run. For new code, use the multibandParametricEQ object from Audio
Toolbox instead.

Syntax
BW = getBandwidth(H)

Description
BW = getBandwidth(H) returns the bandwidth of the parametric equalizer filter. The bandwidth is
measured halfway between 1 and the peak (or notch) gain of the filter. The gain is specified in
absolute power units (filter magnitude squared). If the Specification property is set to Quality
factor and center frequency, the bandwidth is determined from the quality factor of the filter.
If the Specification property is set to Coefficients, the bandwidth is determined from the
BandwidthCoefficient value and the sample rate of the filter.

4 System Objects

4-1118

getCenterFrequency
System object: dsp.ParametricEQFilter
Package: dsp

Convert center frequency coefficient to frequency in Hz

Compatibility

Note The dsp.ParametricEQFilter object will be removed in a future release. Existing instances
of the object continue to run. For new code, use the multibandParametricEQ object from Audio
Toolbox instead.

Syntax
CF = getCenterFrequency(H)

Description
CF = getCenterFrequency(H) returns the center frequency of the parametric equalizer filter. If
the Specification property is set to Coefficients, the center frequency is determined from the
CenterFrequencyCoefficient value and the sample rate of the filter.

 getCenterFrequency

4-1119

getOctaveBandwidth
System object: dsp.ParametricEQFilter
Package: dsp

Measure bandwidth of parametric equalizer filter in octaves

Compatibility

Note The dsp.ParametricEQFilter object will be removed in a future release. Existing instances
of the object continue to run. For new code, use the multibandParametricEQ object from Audio
Toolbox instead.

Syntax
N = getOctaveBandwidth(H)

Description
N = getOctaveBandwidth(H) returns the bandwidth of the parametric equalizer filter in octaves
instead of Hz.

4 System Objects

4-1120

getPeakGain
System object: dsp.ParametricEQFilter
Package: dsp

Convert peak or notch gain from dB to absolute units

Compatibility

Note The dsp.ParametricEQFilter object will be removed in a future release. Existing instances
of the object continue to run. For new code, use the multibandParametricEQ object from Audio
Toolbox instead.

Syntax
G = getPeakGain(H)

Description
G = getPeakGain(H) returns the peak or notch gain of the parametric equalizer filter in absolute
units.

 getPeakGain

4-1121

getPeakGaindB
System object: dsp.ParametricEQFilter
Package: dsp

Convert peak or notch gain from absolute units to dB

Compatibility

Note The dsp.ParametricEQFilter object will be removed in a future release. Existing instances
of the object continue to run. For new code, use the multibandParametricEQ object from Audio
Toolbox instead.

Syntax
G = getPeakGaindB(H)

Description
G = getPeakGaindB(H) returns the peak or notch gain of the parametric equalizer filter in dB.

4 System Objects

4-1122

getQualityFactor
System object: dsp.ParametricEQFilter
Package: dsp

Convert bandwidth to quality factor

Compatibility

Note The dsp.ParametricEQFilter object will be removed in a future release. Existing instances
of the object continue to run. For new code, use the multibandParametricEQ object from Audio
Toolbox instead.

Syntax
Q = getQualityFactor(H)

Description
Q = getQualityFactor(H) returns the quality factor (Q factor) for the parametric equalizer filter.
The Q factor is defined as the center frequency divided by the bandwidth.

 getQualityFactor

4-1123

reset
System object: dsp.ParametricEQFilter
Package: dsp

Reset states of ParametricEQFilter object

Compatibility

Note The dsp.ParametricEQFilter object will be removed in a future release. Existing instances
of the object continue to run. For new code, use the multibandParametricEQ object from Audio
Toolbox instead.

Syntax
reset(H)

Description
reset(H) resets the filter states of the ParametricEQFilter object,H, to the specified initial
conditions. After the step method applies the ParametricEQFilter object to nonzero input data,
the states can change. Invoking the step method again without first invoking the reset method can
produce different outputs for an identical input.

4 System Objects

4-1124

step
System object: dsp.ParametricEQFilter
Package: dsp

Filter input with ParametricEQFilter object

Compatibility

Note The dsp.ParametricEQFilter object will be removed in a future release. Existing instances
of the object continue to run. For new code, use the multibandParametricEQ object from Audio
Toolbox instead.

Syntax
Y = step(H, X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H, X) filters the real or complex input signal X using the specified filter to produce the
equalized filter output Y. The filter processes each channel of the input signal (each column of X)
independently over time.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

 step

4-1125

tf
System object: dsp.ParametricEQFilter
Package: dsp

Compute transfer function

Compatibility

Note The dsp.ParametricEQFilter object will be removed in a future release. Existing instances
of the object continue to run. For new code, use the multibandParametricEQ object from Audio
Toolbox instead.

Syntax
[B,A] = tf(H)

Description
[B,A] = tf(H) returns the vector of numerator coefficients B and the vector of denominator
coefficients A for the equivalent transfer function of the parametric equalizer filter.

4 System Objects

4-1126

dsp.PeakFinder
Package: dsp

(To be removed) Identify peak values in input signal

Note The dsp.PeakFinder System object™ will be removed in a future release. To determine the
local maxima, use the findpeaks function. To determine the local minima, use the islocalmin
function and find the signal values corresponding to the local minima indices that the function
determines. For more details, see “Compatibility Considerations”.

Description
The dsp.PeakFinder System object counts the number of peak values (maxima, minima, or both) in
each column of the real-valued input signal. To qualify as a peak, a point has to be larger (or smaller)
than both of its neighboring points. The end points are not considered as peak values. The object can
also output the indices and values of the peaks, and a binary array that indicates whether a peak is a
maxima or a minima.

To output the peak indices and peak values, set “PeakIndicesOutputPort” on page 4-0 and
“PeakValuesOutputPort” on page 4-0 to true, respectively. In addition, you can determine which
of the peak values is a maxima or a minima using the polarity matrix. The polarity matrix is a logical
array in which a 1 indicates a maxima, and a 0 indicates a minima. To view the polarity matrix, set
“PeakType” on page 4-0 to 'Maxima and Minima' and access the fourth output.

Use the “MaximumPeakCount” on page 4-0 property to specify how many peak values to look for
in each input signal. The object stops searching the input signal once this maximum number of peak
values has been found.

If you set “IgnoreSmallPeaks” on page 4-0 to true, the object no longer detects low amplitude
peaks and ignores noise within a threshold value that you define. In this mode, the current value is a
maximum if (current – previous) > threshold and (current – next) > threshold. The current value is a
minimum if (current – previous) < –threshold and (current – next) < –threshold.

To determine the peak values in an input signal:

1 Create the dsp.PeakFinder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
pkFind = dsp.PeakFinder
pkFind = dsp.PeakFinder(Name,Value)

 dsp.PeakFinder

4-1127

Description

pkFind = dsp.PeakFinder creates a peak finder System object that identifies the peak values
(maxima, minima, or both) in an input signal.

pkFind = dsp.PeakFinder(Name,Value) creates a peak finder System object with each specified
property set to the specified value. Enclose each property name in single quotes.
Example: delay = dsp.PeakFinder('PeakType','Maxima');

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PeakType — Type of peaks to identify
'Maxima and Minima' (default) | 'Maxima' | 'Minima'

Type of peaks to identify, specified as one of the following:

• 'Maxima' –– If “IgnoreSmallPeaks” on page 4-0 is set to true, the current value is identified
as a maximum if (current – previous) > threshold and (current – next) > threshold. Specify
threshold in “PeakThreshold” on page 4-0 property. If IgnoreSmallPeaks is set to false,
the current value must be larger than both its neighboring points.

• 'Minima' –– If IgnoreSmallPeaks is set to true, the current value is identified as a minimum if
(current – previous) < –threshold and (current – next) < –threshold. If IgnoreSmallPeaks is set
to false, the current value must be smaller than both its neighboring points.

• 'Maxima and Minima' –– The object identifies both the maxima and the minima points.

PeakIndicesOutputPort — Enable output of peak indices
false (default) | true

Enable output of the peak indices, specified as either:

• true –– The object returns the indices of the input signal peak values.
• false –– The object does not return the indices of the input signal peak values.

PeakValuesOutputPort — Enable output of peak values
false (default) | true

Enable output of the peak values, specified as either:

• true –– The object returns the peak values of the input signal.
• false –– The object does not return the peak values of the input signal.

MaximumPeakCount — Maximum number of peak values to identify
10 (default) | integer greater than or equal to 1

4 System Objects

4-1128

Maximum number of peak values to identify in each input signal, specified as an integer greater than
or equal to 1. The object stops searching the input signal for peaks once it identifies the maximum
number.
Example: 5
Example: 50

IgnoreSmallPeaks — Ignore peaks below a threshold
false (default) | true

Ignore peaks below a threshold, specified as either:

• false –– The object identifies the current value as a peak, if the current value is larger (or
smaller) than both of its neighboring points.

• true –– The object identifies the current value as a maximum if (current – previous) > threshold
and (current – next) > threshold. The object identifies the current value as a minimum if (current –
previous) < –threshold and (current – next) < –threshold.

PeakThreshold — Threshold below which peaks are ignored
0 (default) | positive real scalar | vector

Threshold below which peaks are ignored, specified as a real scalar greater than or equal to 0 or a
vector with all elements greater than or equal to 0. The length of the vector must be equal to the
number of channels.

This property identifies the current input value to be a maximum if (current input value – previous
input value) > threshold and (current input value – next input value) > threshold. The current value is
a minimum if (current input value – previous input value) < –threshold and (current input value – next
input value) < –threshold.
Example: 0.2
Example: [0.3 2.4]
Example: [3; 0.4]
Dependencies

This property applies only when you set IgnoreSmallPeaks to true.

Fixed-Point Properties

RoundingMethod — Rounding method
'Floor' (default)

Rounding method, specified as 'Floor', which is equivalent to truncation. The setting rounds the
result of a calculation to the closest representable number in the direction of negative infinity.

OverflowAction — Overflow action
'Wrap' (default) | 'Saturate'

The overflow action for fixed-point operations, specified as one of the following:

• 'Wrap' –– The object wraps the result of its fixed-point operations.
• 'Saturate' –– The object saturates the result of its fixed-point operations.

For more details on overflow actions, see overflow mode for fixed-point operations.

 dsp.PeakFinder

4-1129

Usage

Syntax
cnt = pkFind(input)
[cnt,idx] = pkFind(input)
[___ ,val] = pkFind(input)
[___ ,pol] = pkFind(input)

Description

cnt = pkFind(input) returns the number of peak values (minima, maxima, or both) in the input
signal. Each column of the input is treated as a separate channel.

[cnt,idx] = pkFind(input) returns the number of peak values, cnt, and peak indices, idx, in
the input signal.

To access the peak indices output, set the PeakIndicesOutputPort property to true.

pkFind = dsp.PeakFinder('PeakType','Maxima', ...
'PeakIndicesOutputPort',true);
...
[cnt,idx] = pkFind(input);

[___ ,val] = pkFind(input) returns the peak values val in the input signal.

To access the peak values output, set the PeakValuesOutputPort property to true.

pkFind = dsp.PeakFinder('PeakType','Maxima', ...
'PeakValuesOutputPort',true);
...
[cnt,idx,val] = pkFind(input);

[___ ,pol] = pkFind(input) returns the peak value polarity pol in input signal. The polarity is
1 for maxima and 0 for minima.

To access the polarity output, set the PeakType property to 'Maxima and Minima', and the
PeakIndicesOutputPort property to true.

pkFind = dsp.PeakFinder('PeakType','Maxima and Minima', ...
'PeakIndicesOutputPort',true);
...
[cnt,idx,val,pol] = pkFind(input);

Input Arguments

input — Data input
column vector of at least three rows | matrix with at least three rows

Data input whose peak values are detected by the object, specified as a vector or matrix containing at
least three rows.
Example: [9 6 10 3 5 5 0 12; 9 6 1 13 4 1 0 12]'
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

4 System Objects

4-1130

Output Arguments

cnt — Number of peak values
scalar | row vector

Number of peak values, returned as a scalar or a row vector of length equal to the number of
channels in the data input.
Example: [4 3]
Data Types: uint32

idx — Indices of the peak values
column vector | matrix

Indices of the peak values in the input signal, returned as a column vector or matrix. The size of the
peak indices output is the same as that of the input. All nonzero elements represent peak indices.
Example: [1 2 3 6 0 0 0 0 0 0; 2 3 6 0 0 0 0 0 0 0]'

Dependencies

To enable this output, set the PeakIndicesOutputPort property to true.
Data Types: uint32

val — Peak values
column vector | matrix

Peak values in the input signal, returned as a column vector or matrix.
Example: [6 10 3 0 0 0 0 0 0 0; 1 13 0 0 0 0 0 0 0 0]'

Dependencies

To access the peak values output, set the PeakValuesOutputPort property to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

pol — Peak value polarity
column vector | matrix

Peak value polarity in input signal, returned as a column vector or matrix of logical 1s and 0s. The
polarity is 1 for maxima and 0 for minima.
Example: [0 1 0 0 0 0 0 0 0 0; 0 1 0 0 0 0 0 0 0 0]'
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 dsp.PeakFinder

4-1131

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Determine Local Maxima and Minima

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Determine whether each value of an input signal is a local maximum or minimum.

pkFind = dsp.PeakFinder;
pkFind.PeakIndicesOutputPort = true;
pkFind.PeakValuesOutputPort = true;

x1 = [9 6 10 3 4 5 0 12]';

Find the peaks of each input [prev;cur;next]: {[9;6;10],[6;10;3],...}

[cnt1, idx1, val1, pol1] = pkFind(x1)

cnt1 = uint32
 5
idx1 = 10x1 uint32 column vector

 1
 2
 3
 5
 6
 0
 0
 0
 0
 0

val1 = 10×1

 6
 10
 3
 5
 0
 0
 0
 0
 0
 0
pol1 = 10x1 logical array

4 System Objects

4-1132

 0
 1
 0
 1
 0
 0
 0
 0
 0
 0

Compatibility Considerations
dsp.PeakFinder System object will be removed
Errors starting in R2021b

The dsp.PeakFinder System object will be removed in a future release. To determine the local
maxima, use the findpeaks function. To determine the local minima, use the islocalmin function
and find the signal values corresponding to the local minima indices that the function determines. For
more details, see the Update Code section.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
Find Local Maxima

x = [9 6 10 3 4 5 0 12]';
pf = dsp.PeakFinder('PeakType','Maxima', ...
 'PeakValuesOutputPort', true);
[cnt,val] = pf(x)

Find Local Minima

x = [9 6 10 3 4 5 0 12]';
pf = dsp.PeakFinder('PeakType','Minima', ...
 'PeakValuesOutputPort', true);
[cnt,val] = pf(x)

If you are using a release prior to R2016b,
replace pf(x) with step(pf,x).

Find Local Maxima

x = [9 6 10 3 4 5 0 12]';
val = findpeaks(x)
cnt = numel(val)

Find Local Minima

x = [9 6 10 3 4 5 0 12]';
tf = islocalmin(x);
val = x(tf)
cnt = sum(tf)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 dsp.PeakFinder

4-1133

See Also
Functions
findpeaks | islocalmin

Blocks
Peak Finder

Introduced in R2012a

4 System Objects

4-1134

dsp.PeakToPeak
Package: dsp

(To be removed) Peak-to-peak value

Note dsp.PeakToPeak will be removed in a future release. Use the peak2peak function instead.
For more information, see “Compatibility Considerations”.

Description
The dsp.PeakToPeak System object computes the peak-to-peak value of an input.

To obtain the peak-to-peak value:

1 Create the dsp.PeakToPeak object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ptp = dsp.PeakToPeak
ptp = dsp.PeakToPeak(Name,Value)

Description

ptp = dsp.PeakToPeak creates a peak-to-peak System object, ptp, that computes the difference
between the maximum and minimum value in an input or a sequence of inputs.

ptp = dsp.PeakToPeak(Name,Value) returns a peak-to-peak System object with each specified
property set to the specified value. Enclose each property name in single quotes. Unspecified
properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

RunningPeakToPeak — Calculation over successive calls to object algorithm
false (default) | true

 dsp.PeakToPeak

4-1135

Set this property to true to enable the calculation of the peak-to-peak difference over successive
calls to the algorithm.

Dimension — Dimension to operate along
'Column' (default) | 'All' | 'Row' | 'Custom'

Specify the dimension along which to calculate the peak-to-peak ratio as 'All', 'Row', 'Column',
or 'Custom'. If you set this property to 'Custom', specify the dimension using the
CustomDimension property.
Dependencies

This property applies when the RunningPeakToPeak property is false.

CustomDimension — Dimension to operate along
1 (default) | positive integer

Specify the dimension as a positive integer along which the peak-to-peak difference is computed. The
value of this property cannot exceed the number of dimensions in the input signal.
Dependencies

This property applies when the Dimension property is 'Custom'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ResetInputPort — Enables resetting in running peak-to-peak mode
false (default) | true

Set this property to true to enable resetting the running peak-to-peak. When the property is set to
true, a reset input must be specified to the call of object algorithm to reset the running peak-to-peak
difference.
Dependencies

This property applies when the RunningPeakToPeak property is true.

ResetCondition — Reset condition for running peak-to-peak mode
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Specify the event to reset the running peak-to-peak as one of 'Rising edge', 'Falling edge',
'Either edge', or 'Non-zero'.
Dependencies

This property applies when the ResetInputPort property is true.

Usage

Syntax
y = ptp(x)
y = ptp(x,r)

Description

y = ptp(x) computes the peak-to-peak value, y, of the floating-point input vector x.

4 System Objects

4-1136

y = ptp(x,r) computes the peak-to-peak value of the input elements over successive calls to the
object algorithm. The object optionally resets its state based on the reset input signal, r, and the
value of the ResetCondition property. To enable reset, set both the RunningPeakToPeak and the
ResetInputPort properties to true.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The peak-to-peak value is computed along each channel.
Data Types: single | double

r — Reset signal
scalar

Reset signal, specified as a scalar value. The reset signal resets the object state based on the reset
input signal and the value of the ResetCondition property.

Dependencies

To enable this signal, set both the RunningPeakToPeak and the ResetInputPort properties to
true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments

y — Peak-to-peak value
scalar | vector | matrix

Peak-to-peak value of the input signal, returned as a scalar, vector, or matrix. If RunningPeakToPeak
is set to:

• false –– The object computes the peak-to-peak value of each input channel. If the input is a
column vector, the output is a scalar. If the input is a multichannel signal, the output signal is a 1-
by-N vector, where N is the number of input channels.

• true –– The object computes the running peak-to-peak value of the signal. The size of the output
signal matches the size of the input signal.

When the RunningPeakToPeak property is true, y corresponds to the peak-to-peak value of the
input elements over successive calls to the object algorithm.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 dsp.PeakToPeak

4-1137

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Peak-to-Peak Value of Vector

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Determine the peak-to-peak value for a vector input.

in = (1:10)';
ptp = dsp.PeakToPeak;
y = ptp(in)

y = 9

Compatibility Considerations
dsp.PeakToPeak System object will be removed
Warns starting in R2021b

dsp.PeakToPeak System object will be removed in a future release. Use the peak2peak function
instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the peak2peak function.

4 System Objects

4-1138

Discouraged Usage Recommended Replacement
Peak-to-Peak Value of Vector Input

in = (1:10)';
ptp = dsp.PeakToPeak;
y = ptp(in)

y = 1×1

 9

Peak-to-Peak Value of Matrix Input

Setting the Dimension property of the object to
'All' computes the peak-to-peak values across
both dimensions.

in = magic(4);
ptp = dsp.PeakToPeak;
ptp.Dimension = 'All';
y = ptp(in)

y = 1×1

 15

If you are using a release prior to R2016b,
replace ptp(x) with step(ptp,x).

Peak-to-Peak Value of Vector Input

yfn = peak2peak(in)

yfn = 1×1

 9

Peak-to-Peak Value of Matrix Input

yfn = peak2peak(in,'all')

yfn = 1×1

 15

References
[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
peak2peak

Objects
dsp.PeakToRMS

Introduced in R2012a

 dsp.PeakToPeak

4-1139

dsp.PeakToRMS
Package: dsp

Peak-to-root-mean-square value of vector

Description
The dsp.PeakToRMS System object calculates the peak-to-root-mean-square ratio of a vector.

To compute the peak-to-root-mean-square ratio:

1 Create the dsp.PeakToRMS object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ptr = dsp.PeakToRMS
ptr = dsp.PeakToRMS(Name,Value)

Description

ptr = dsp.PeakToRMS creates a peak-to-root-mean-square System object, ptr, that returns the
ratio of the maximum magnitude (peak) to the root-mean-square (RMS) value in an input or a
sequence of inputs.

ptr = dsp.PeakToRMS(Name,Value) returns an peak-to-root-mean-square System object, ptr,
with each specified property set to the specified value. Enclose each property name in single quotes.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

RunningPeakToRMS — Calculation over successive calls to object algorithm
false (default) | true

Set this property to true to enable the calculation of the peak-to-RMS ratio over successive calls to
the object algorithm.

4 System Objects

4-1140

Dimension — Dimension to operate along
'Column' (default) | 'All' | 'Row' | 'Custom'

Specify the dimension along which to calculate the peak-to-RMS ratio as one of 'All', 'Row',
'Column', or 'Custom'. If you set this property to 'Custom', specify the dimension using the
CustomDimension property.

Dependencies

This property applies when the RunningPeakToRMS property is false.

CustomDimension — Numerical dimension to operate along
1 (default) | positive integer

Specify the dimension as a positive integer along which the peak-to-RMS ratio is computed. The value
of this property cannot exceed the number of dimensions in the input signal.

Dependencies

This property applies when the Dimension property is 'Custom'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DecibelScaledOutput — Report output in decibels (dB)
true (default) | false

Set this property to true to enable output in dB. Set this property to false to report output as a
ratio.

ResetInputPort — Enables resetting in running peak-to-RMS mode
false (default) | true

Set this property to true to enable resetting. When the property is set to true, a reset input must be
specified in the call of object algorithm to reset the running peak-to-RMS ratio.

Dependencies

This property applies when the RunningPeakToRMS property is true.

ResetCondition — Reset condition for running peak-to-RMS mode
'Non-zero' (default) | 'Rising edge' | 'Falling edge' | 'Either edge'

Specify the event to reset the running peak-to-RMS as 'Rising edge', 'Falling edge', 'Either
edge', or 'Non-zero'.

Dependencies

This property applies when the ResetInputPort property is true.

Usage

Syntax
y = ptr(x)
y = ptr(x,r)

 dsp.PeakToRMS

4-1141

Description

y = ptr(x) computes the peak-to-RMS ratio, y, of the floating-point input vector x.

y = ptr(x,r) computes the peak-to-RMS ratio of the input elements over successive calls to the
object algorithm. The object optionally resets its state based on the reset input signal, r, and the
value of the ResetCondition property. To enable reset, set both the RunningPeakToRMS and the
ResetInputPort properties to true.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The peak-to-RMS value is computed along each channel.
Data Types: single | double

r — Reset signal
scalar

Reset signal, specified as a scalar value. The reset signal resets the object state based on the reset
input signal and the value of the ResetCondition property.

Dependencies

To enable this signal, set both the RunningPeakToRMS and the ResetInputPort properties to
true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments

y — Peak-to-RMS value
scalar | vector | matrix

Peak-to-RMS value of the input signal, returned as a scalar, vector, or matrix. If RunningPeakToRMS
is set to:

• false –– The object computes the peak-to-RMS value of each input channel. If the input is a
column vector, the output is a scalar. If the input is a multichannel signal, the output signal is a 1-
by-N vector, where N is the number of input channels.

• true –– The object computes the running peak-to-RMS value of the signal. The size of the output
signal matches the size of the input signal.

When the RunningPeakToRMS property is true, y corresponds to the peak-to-RMS ratio of the input
elements over successive calls to the object algorithm.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

4 System Objects

4-1142

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Peak-to-RMS Ratio of Vector Input

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Determine the peak-to-RMS ratio of a vector input.

in = (1:10)';
ptr = dsp.PeakToRMS;
y = ptr(in)

y = 1.6116

Peak-to-RMS Ratio of Matrix Input

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Determine the peak-to-RMS ratio of a matrix input.

in = magic(4);
ptr = dsp.PeakToRMS;
ptr.Dimension = 'All';
y = ptr(in)

y = 1.6547

More About
Peak-magnitude-to-RMS Level

The peak-magnitude-to-RMS level is

X ∞

1
N ∑n = 1

N
Xn

2 ,

where the l-infinity norm and RMS values are computed along the specified dimension.

 dsp.PeakToRMS

4-1143

References
[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Introduced in R2012a

4 System Objects

4-1144

dsp.PhaseExtractor
Package: dsp

Extract the unwrapped phase of a complex input

Description
The dsp.PhaseExtractor System object extracts the unwrapped phase of a real or a complex
input.

To extract the unwrapped phase of a signal input:

1 Create the dsp.PhaseExtractor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
phase = dsp.PhaseExtractor
phase = dsp.PhaseExtractor(Name,Value)

Description

phase = dsp.PhaseExtractor returns a phase extractor System object that extracts the
unwrapped phase of an input signal.

phase = dsp.PhaseExtractor(Name,Value) returns a phase extractor System object with the
specified property name set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TreatFramesIndependently — Unwrap phase only within the frame
false (default) | true

Specify if the phase is to be unwrapped only within the frame, as a logical scalar.

When you set this property to:

 dsp.PhaseExtractor

4-1145

• false –– The object returns the unwrapped phase while ignoring boundaries between input
frames.

• true –– The object treats each frame of input data independently, and resets the initial cumulative
unwrapped phase value to zero each time a new input frame is received.

Usage

Syntax
p = phase(input)

Description

p = phase(input) extracts the unwrapped phase, p, of the input signal. Each column of the input
signal is treated as a separate channel. The System object unwraps the phase of each channel of the
input signal independently over time.

Input Arguments

input — Data input
vector | matrix

Data input, specified as a vector or a matrix. This object supports variable-size input signals. That is,
you can change the input frame size (number of rows) even after calling the algorithm. However, the
number of channels (number of columns) must remain constant.
Data Types: single | double

Output Arguments

p — Unwrapped phase
vector | matrix

Unwrapped phase of the input, returned as a vector or a matrix. The size and data type of the
unwrapped phase output match the size and data type of the input signal.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

4 System Objects

4-1146

Examples

Plot Unwrapped Phase Of a Sine Wave

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Create a dsp.SineWave System object™. Specify that the object generates an exponential output
with a complex exponent.

sine = dsp.SineWave('Frequency',10,...
 'ComplexOutput',true,'SamplesPerFrame',128);

Create a dsp.PhaseExtractor System object?. Specify that the object ignores frame boundaries
when returning the unwrapped phase.

phase = dsp.PhaseExtractor('TreatFramesIndependently',false);

Extract the unwrapped phase of a sine wave. Plot the phase versus time using a timescope System
object.

timeplot = timescope('PlotType','Line','SampleRate',1000,...
 'TimeSpanSource','Property','TimeSpan',1.5,'YLimits',[0 80],...
 'ShowGrid',true,...
 'YLabel','Unwrapped Phase (rad)');
for ii = 1:10
 sineOutput = sine();
 phaseOutput = phase(sineOutput);
 timeplot(phaseOutput)
end

 dsp.PhaseExtractor

4-1147

Plot Phase Response of Third-Order IIR Filter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a dsp.TransferFunctionEstimator System object™.

tfe = dsp.TransferFunctionEstimator('FrequencyRange','centered');

Create a dsp.PhaseExtractor System object™. Specify that the object must treat each frame of
data independently.

phase = dsp.PhaseExtractor('TreatFramesIndependently',true);

Create a dsp.IIRFilter System object™. Compute the transfer function of a third-order IIR filter.
Use the butter function to generate coefficients for the filter.

[b,a] = butter(3,.3);
iir = dsp.IIRFilter('Numerator',b,'Denominator',a);

Extract the phase response of the transfer function. Plot using a dsp.ArrayPlot System object™.

sampleRate = 1e3;
phaseplot = dsp.ArrayPlot('PlotType','Line','XOffset',-sampleRate/2,...
 'YLimits',[-15 0],...

4 System Objects

4-1148

 'YLabel','Phase Response (rad)',...
 'XLabel','Frequency (Hz)',...
 'Title','System Phase response');
for ii = 1:100
 % Generate input
 input = 0.05*randn(1000,1);
 % Pass through IIR filter
 filterOutput = iir(input);
 % Estimate transfer function
 transferFunction = tfe(input,filterOutput);
 % Plot transfer function phase
 phaseOutput = phase(transferFunction);
 phaseplot(phaseOutput);
end

Algorithms
Consider an input frame of length N:

x1
x2

⋮
xN

The object acts on this frame and produces this output:

 dsp.PhaseExtractor

4-1149

Φ1
Φ2

⋮
ΦN

where:

Φi = Φi− 1 + angle(xi− 1* xi)

Here, i runs from 1 to N. The angle function returns the phase angle in radians.

If the input signal consists of multiple frames:

• If you set TreatFramesIndependently to true, the object treats each frame independently.
Therefore, in each frame, the object calculates the phase using the preceding formula where:

• Φ0 is 0.
• x0 is 1.

• If you set TreatFramesIndependently to false, the object ignores boundaries between
frames. Therefore, in each frame, the step method calculates the phase using the preceding
formula where:

• Φ0 is the last unwrapped phase from the previous frame.
• x0 is the last sample from the previous frame.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Blocks
Phase Extractor

Introduced in R2014b

4 System Objects

4-1150

dsp.PhaseUnwrapper
Package: dsp

Unwrap signal phase

Description
The dsp.PhaseUnwrapper System object unwraps the phase of the input signal specified in radians.

To unwrap the signal phase input:

1 Create the dsp.PhaseUnwrapper object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
phUnwrap = dsp.PhaseUnwrapper
phUnwrap = dsp.PhaseUnwrapper(Name,Value)

Description

phUnwrap = dsp.PhaseUnwrapper returns a phase unwrapper System object that adds or
subtracts appropriate multiples of 2π to each input element to remove phase discontinuities
(unwrap).

phUnwrap = dsp.PhaseUnwrapper(Name,Value) returns a phase unwrapper System object with
each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InterFrameUnwrap — Enable unwrapping of phase discontinuities between successive
frames
true (default) | false

Set this property to false to unwrap phase discontinuities only within the frame. Set this property to
true to also unwrap phase discontinuities between successive frames.

 dsp.PhaseUnwrapper

4-1151

Tolerance — Jump size as true phase discontinuity
3.1416 (default) | real scalar

Specify the jump size that the phase unwrapper recognizes as a true phase discontinuity. The default
is set to π (rather than a smaller value) to avoid altering legitimate signal features. To increase the
phase wrapper sensitivity, set the Tolerance property to a value slightly less than π.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
output = phUnwrap(input)

Description

output = phUnwrap(input) unwraps the phase of the input signal. This is done by adding or
subtracting appropriate multiples of 2π to each input element to remove phase discontinuities
(unwrap). Each column of the input signal is treated as a separate channel.

Input Arguments

input — Data input
vector | matrix

Data input, specified as a vector or a matrix. The phase of the input signal should be in radians.
Data Types: single | double

Output Arguments

output — Unwrapped phase
vector | matrix

Unwrapped phase of the input, returned as a vector or a matrix. The size and data type of the
unwrapped phase output match the size and data type of the input signal.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

4 System Objects

4-1152

Examples

Unwrap input phase data

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

phUnwrap = dsp.PhaseUnwrapper;
p = [0 2/5 4/5 -4/5 -2/5 0 2/5 4/5 -4/5 -2/5 0 2/5 ...
 4/5 -4/5, -2/5]*pi;
y = phUnwrap(p');
figure,stem(p); hold

Current plot held

stem(y, 'r');
legend('Input (blue)','Unwrapped data (red)');
hold off;

Algorithms
This object implements the algorithm, inputs, and outputs described on the Unwrap block reference
page. The object properties correspond to the Simulink block parameters.

 dsp.PhaseUnwrapper

4-1153

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
unwrap

Introduced in R2012a

4 System Objects

4-1154

dsp.PulseMetrics
Package: dsp

(To be removed) Pulse metrics of bilevel waveforms

Note dsp.PulseMetrics will be removed in a future release. Use functions from “Pulse and
Transition Metrics” instead. Functions in this set include dutycycle, midcross, pulseperiod,
pulsesep, and pulsewidth among others. For more information, see “Compatibility
Considerations”.

Description
The dsp.PulseMetrics object computes rise times, fall times, pulse widths, and cycle metrics
including pulse period, pulse separation, and duty cycle for bilevel waveforms.

To obtain pulse metrics for a bilevel waveform:

1 Create the dsp.PulseMetrics object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
pm = dsp.PulseMetrics
pm = dsp.PulseMetrics(Name,Value)

Description

pm = dsp.PulseMetrics creates a pulse metrics System object, pm. The object computes the rise
time, fall time, and width of a pulse. dsp.PulseMetrics also computes cycle metrics such as pulse
separations, periods, and duty cycles. Because a pulse contains two transitions, the object contains a
superset of the capability defined in dsp.TransitionMetrics.

pm = dsp.PulseMetrics(Name,Value) returns a PulseMetrics System object, pm, with each
specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 dsp.PulseMetrics

4-1155

For more information on changing property values, see System Design in MATLAB Using System
Objects.

CycleOutputPort — Enable cycle metrics
false (default) | true

If CycleOutputPort is true, cycle metrics are reported for each pulse period.

MaximumRecordLength — Maximum samples to preserve
1000 (default) | positive integer

Maximum samples to preserve between calls to the algorithm. This property requires a positive
integer that specifies the maximum number of samples to save between calls to the algorithm. When
the number of samples to be saved exceeds this length, the oldest excess samples are discarded.

Tunable: Yes

Dependencies

This property applies when the RunningMetrics property is true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PercentReferenceLevels — Percent reference levels
[10 50 90] (default) | three-element row vector

Lower-, middle-, and upper-percent reference levels. This property contains a three-element numeric
row vector that contains the lower-, middle-, and upper-percent reference levels. These reference
levels are used as an offset between the lower and upper states of the waveform when computing the
duration of each transition.
Data Types: double

PercentStateLevelTolerance — Tolerance of state level
2 (default) | positive scalar

Tolerance of the state level (in percent). This property requires a scalar that specifies the maximum
deviation from either the low or high state before it is considered to be outside that state. The
tolerance is expressed as a percentage of the waveform amplitude.
Data Types: double

Polarity — Polarity of pulse to extract
'positive' (default) | 'negative'

Polarity of pulse to extract. This property specifies the type of pulse to extract by the polarity of the
leading transition. Valid values for this property are 'positive' or 'negative'.

PostshootOutputPort — Enable posttransition aberration metrics
false (default) | true

Enable posttransition aberration metrics. If this property is set to true, overshoot and undershoot
metrics are reported for a region defined immediately after each transition. The posttransition
aberration region is defined as the waveform interval that begins at the end of each transition and
whose duration is the value of PostshootSeekFactor times the computed transition duration. If a
complete subsequent transition is detected before the interval is over, the region is truncated at the

4 System Objects

4-1156

start of the subsequent transition. The metrics are computed for each transition that has a complete
posttransition aberration region.

PostshootSeekFactor — Postshoot seek factor
3 (default) | positive scalar

Corresponds to the duration of time to search for the overshoot and undershoot metrics immediately
following each transition. The duration is expressed as a factor of the duration of the transition.

Tunable: Yes

Dependencies

This property is enabled only when the PostshootOutputPort property is set to true.
Data Types: double

PreshootOutputPort — Enable pretransition aberration metrics
false (default) | true

Enable pretransition aberration metrics. If PreshootOutputPort is set to true, overshoot and
undershoot metrics are reported for a region defined immediately before each transition. The
pretransition aberration region is defined as the waveform interval that ends at the start of each
transition and whose duration is PreshootSeekFactor times the computed transition duration.

PreshootSeekFactor — Preshoot seek factor
3 (default) | positive scalar

Corresponds to the duration of time to search for the overshoot and undershoot metrics immediately
preceding each transition. The duration is expressed as a factor of the duration of the transition.

Tunable: Yes

Dependencies

This property is enabled only when the PreshootOutputPort property is set to true.
Data Types: double

RunningMetrics — Enable metrics
false (default) | true

Enable metrics over all calls to the algorithm. If RunningMetrics is set to false, metrics are
computed for each call to the algorithm independently. If RunningMetrics is set to true, metrics
are computed across subsequent calls to the algorithm. If there are not enough samples to compute
metrics associated with the last transition, posttransition aberration region, or settling seek duration
in the current record, the object defers reporting all transition, aberration, and settling metrics
associated with the last transition until a subsequent call to the algorithm is made with enough data
to compute all enabled metrics for that transition.

SampleRate — Sampling rate
1 (default) | positive scalar

Sampling rate of uniformly-sampled signal. Specify the sample rate in hertz as a positive scalar. This
property is used to construct the internal time values that correspond to the input sample values.
Time values start with zero.

 dsp.PulseMetrics

4-1157

Dependencies

This property applies when the TimeInputPort property is set to false.
Data Types: double

SettlingOutputPort — Enable settling metrics
false (default) | true

Enable settling metrics. If the SettlingOutputPort property is set to true, settling metrics are
reported for each transition. The region used to compute the settling metrics starts at the
midcrossing and lasts until the SettlingSeekDuration has elapsed. If an intervening transition
occurs, or the signal has not settled within the PercentStateLevelTolerance of the final level,
NaN is returned for each metric. If there are not enough samples after the last transition to complete
the SettlingSeekDuration, no metrics are reported for the last transition. The metrics are
reported for the transition the next time the object algorithm is called if the RunningMetrics
property is set to true.

SettlingSeekDuration — Duration of time
0.02 (default) | positive scalar

Duration of time over which to search for settling. This property value is a scalar that specifies the
amount of time to inspect from the mid-reference level crossing (in seconds). If the transition has not
yet settled, or a subsequent complete transition is detected within this duration, the object reports
NaN for all settling metrics.

Tunable: Yes
Dependencies

This property applies only when you set the SettlingOutputPort property to true.
Data Types: double

StateLevels — State levels
[0 2.3] (default) | two-element row vector

Low- and high-state levels. This property is a two-element numeric row vector that contains the low-
and high-state levels. These state levels correspond to the nominal logic low and high levels of the
pulse waveform.

Tunable: Yes
Data Types: double

StateLevelsSource — State-level computation
'Property' (default) | 'Auto'

Auto or manual state-level computation. If StateLevelsSource is set to 'Auto', the first record
sent to the object is sent to dsp.StateLevels with the default settings to determine the state levels
of the incoming waveform. If this property is set to 'Property', the object uses the values the user
specifies in the StateLevels property.

TimeInputPort — Specify sample instants
false (default) | true

Add input to specify sample instants. Set TimeInputPort to true to enable an additional real input
column vector to the object algorithm to specify the sample instants that correspond to the sample

4 System Objects

4-1158

values. If this property is false, the sample instants are built internally. The sample instants start at
zero and increment by the reciprocal of the SampleRate property for subsequent samples. The
sample instants continue to increment if the RunningMetrics property is set to true and no
intervening calls to the reset or release methods are encountered.

TransitionOutputPort — Enable transition metrics
false (default) | true

Enable transition metrics. If the TransitionOutputPort property is set to true, transition metrics
are reported for the initial and final transitions of each pulse.

Usage

Syntax
pulse = pm(x)
[pulse,cycle] = pm(x)
[pulse,transition] = pm(x)
[pulse,preshoot] = pm(x)
[pulse,postshoot] = pm(x)
[pulse,settling] = pm(x)
[pulse,cycle,transition,preshoot,postshoot,settling] = pm(x)
[___] = pm(x,T)

Description

pulse = pm(x) returns a structure array, pulse, whose fields contain real-valued column vectors.
The number of rows of each field corresponds to the number of complete pulses found in the real-
valued column vector input, x.

[pulse,cycle] = pm(x) returns a structure array, cycle, whose fields contain real-valued column
vectors when you set the CycleOutputPort property to true. The number of rows of each field
corresponds to the number of complete pulse periods found in the real-valued column vector input, x.

[pulse,transition] = pm(x) returns a structure array, transition, when you set the
TransitionOutputPort property to true. The fields of transition contain real-valued matrices
with two columns that correspond to the metrics of the first and second transitions. The number of
rows corresponds to the number of pulses found in the input waveform.

[pulse,preshoot] = pm(x) returns a structure array, preshoot, when you set the
PreshootOutputPort property to true. The fields of preshoot contain real-valued two-column
matrices whose row length corresponds to the number of transitions found in the input waveform.
The field names are identical to those of the postshoot structure array.

[pulse,postshoot] = pm(x) returns a structure, postshoot, when you set the
PostshootOutputPort property to true. The fields of postshoot contain real-valued two-column
matrices whose row length corresponds to the number of transitions found in the input waveform.

[pulse,settling] = pm(x) returns a structure array, settling, when you set the
SettlingOutputPort property to true. The fields of settling correspond to the settling metrics
for each transition. Each field is a column vector whose elements correspond to the individual settling
durations, levels, and instants.

 dsp.PulseMetrics

4-1159

[pulse,cycle,transition,preshoot,postshoot,settling] = pm(x) which returns the
pulse, cycle, transition, preshoot, postshoot, and settling structures when the
CycleOutputPort, PreshootOutputPort, PostshootPort, and SettlingOutputPort
properties are true. You may enable or disable any combination of output ports. However, the output
arguments are defined in the order shown here.

[___] = pm(x,T) calculates the above metrics with respect to a sampled signal, whose sample
values, x, and sample instants, T, are real-valued column vectors of the same length. The additional
input T applies only when you set the TimeInputPort property to true.

Input Arguments

x — Input signal
column vector

Input signal, specified as a real-valued column vector.
Data Types: double

T — Sampling instants
column vector

Sampling instants, specified as a real-valued column vector. Set TimeInputPort to true to enable
an additional real input column vector to the object algorithm to specify the sample instants that
correspond to the sample values. If TimeInputPort is false, the sample instants are built
internally. The sample instants start at zero and increment by the reciprocal of the SampleRate
property for subsequent samples. The sample instants continue to increment if the RunningMetrics
property is set to true and no intervening calls to the reset or release methods are encountered.

Dependencies

This input is applicable when you set the TimeInputPort property to true.
Data Types: double

Output Arguments

pulse — Complete pulses
structure

Complete pulses, returned as a structure whose fields contain real-valued column vectors. The
number of rows of each field corresponds to the number of complete pulses found in the real-valued
column vector input, x. Each pulse starts with a transition of the polarity specified by the Polarity
property and ends with a transition of the opposite polarity.

The pulse output contains the following fields:

• PositiveCross — Instants where the positive-going transitions cross the mid-reference level of
each pulse

• NegativeCross — Instants where the negative-going transitions cross the mid-reference level of
each pulse

• Width — Absolute difference between PositiveCross and NegativeCross of each pulse
• RiseTime — Duration between the linearly interpolated instants when the positive-going (rising)

transition of each pulse crosses the lower- and upper-reference levels

4 System Objects

4-1160

• FallTime — Duration between the linearly interpolated instants when the negative-going (falling)
transition of each pulse crosses the upper- and lower-reference levels

Data Types: struct

cycle — Complete pulse periods
structure

Complete pulse periods, returned as a structure whose fields contain real-valued column vectors. This
structure can only be returned when you set the CycleOutputPort property to true. The number
of rows of each field corresponds to the number of complete pulse periods found in the real-valued
column vector input, x. You need at least three consecutive alternating polarity transitions that start
and end with the same polarity as the value of the Polarity property if you want to compute cycle
metrics. If the last transition found in the input x does not match the polarity of the Polarity
property, the pulse separation, period, frequency, and duty cycle are not reported for the last pulse. If
the RunningMetrics property is set to true when this occurs, all pulse, cycle, transition, preshoot,
postshoot, and settling metrics associated with the last pulse are deferred until a subsequent call to
the algorithm detects the next transition.

The cycle output contains the following fields:

• Period — Duration between the first transition of the current pulse and the first transition of the
next pulse.

• Frequency — Reciprocal of the period.
• Separation — Durations between the mid-reference level crossings of the second transition of

each pulse and the first transition of the next pulse.
• Width — Durations between the mid-reference level crossings of the first and second transitions

of each pulse. This is equivalent to the width parameter of the pulse structure.
• DutyCycle — Ratio of the width to the period for each pulse.

Data Types: struct

transition — Transition metrics
structure

Transition metrics, returned as a structure array. This structure can only be returned when you set
the TransitionOutputPort property to true. The fields of transition contain real-valued
matrices with two columns, which correspond to the metrics of the first and second transitions. The
number of rows corresponds to the number of pulses found in the input waveform.

The transition output contains the following fields:

• Duration — Amount of time between the interpolated instants where the transition crosses the
lower- and upper-reference levels

• SlewRate — Ratio of absolute difference between the upper and lower reference levels to the
transition duration

• MiddleCross — Linearly interpolated instant in time where the transition first crosses the mid-
reference level

• LowerCross — Linearly interpolated instant where the signal crosses the lower-reference level
• UpperCross — Linearly interpolated instant where the signal crosses the upper-reference level

Data Types: struct

 dsp.PulseMetrics

4-1161

preshoot — Preshoot metrics
structure

Preshoot metrics, returned as a structure array. This structure can only be returned when you set the
PreshootOutputPort property to true. The fields of preshoot contain real-valued two-column
matrices whose row length corresponds to the number of transitions found in the input waveform.

The preshoot output contains the following fields:

• Overshoot — Overshoot of the region of interest expressed as a percentage of the waveform
amplitude

• Undershoot — Undershoot of the region of interest expressed as a percentage of the waveform
amplitude

• OvershootLevel — Level of the overshoot
• UndershootLevel — Level of the undershoot
• OvershootInstant — Instant that corresponds to the overshoot
• UndershootInstant — Instant that corresponds to the undershoot

Data Types: struct

postshoot — Postshoot metrics
structure

Postshoot metrics, returned as a structure array. This structure can only be returned when you set
the PostshootOutputPort property to true. The fields of postshoot contain real-valued two-
column matrices whose row length corresponds to the number of transitions found in the input
waveform.

The postshoot output contains the following fields:

• Overshoot — Overshoot of the region of interest expressed as a percentage of the waveform
amplitude

• Undershoot — Undershoot of the region of interest expressed as a percentage of the waveform
amplitude

• OvershootLevel — Level of the overshoot
• UndershootLevel — Level of the undershoot
• OvershootInstant — Instant that corresponds to the overshoot
• UndershootInstant — Instant that corresponds to the undershoot

Data Types: struct

settling — Settling metrics
structure

Settling metrics for each transition, returned as a structure array. This structure can only be returned
when you set the SettlingOutputPort property to true. The fields of settling correspond to the
settling metrics for each transition. Each field is a column vector whose elements correspond to the
individual settling durations, levels, and instants.

The settling output contains the following fields:

4 System Objects

4-1162

• Duration — Amount of time from when the signal crosses the mid-reference level to the time
where the signal enters and remains within the specified PercentStateLevelTolerance of the
waveform amplitude over the specified settling seek duration

• Instant — Instant in time where the signal enters and remains within the specified tolerance
• Level — Level of the waveform where it enters and remains within the specified tolerance

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.PulseMetrics
plot (To be removed) Plot pulse signal and metrics

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Width, Period, and Duty Cycle

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Determine the width, period, and duty cycle of a 5 V pulse sampled at 4 MHz.

 load('pulseex.mat','x','t');

Construct the dsp.PulseMetrics object. Set the TimeInputPort property to true to specify the
sampling instants as an input. Set the CycleOutputPort property to true to obtain metrics for
each pulse. Because the input is a 5 V pulse, set the StateLevels property to [0 5].

 pm = dsp.PulseMetrics('TimeInputPort',true, ...
 'CycleOutputPort', true, ...
 'StateLevels',[0 5])

pm =
 dsp.PulseMetrics with properties:

 Polarity: 'Positive'
 StateLevelsSource: 'Property'
 StateLevels: [0 5]
 PercentStateLevelTolerance: 2
 PercentReferenceLevels: [10 50 90]
 RunningMetrics: false

 dsp.PulseMetrics

4-1163

 TimeInputPort: true
 CycleOutputPort: true
 TransitionOutputPort: false
 PreshootOutputPort: false
 PostshootOutputPort: false
 SettlingOutputPort: false

Call the object to compute the cycle metrics and plot the result.

 [pulse,cycle] = pm(x,t);
 plot(pm)
 text(t(2),-0.5,['Duty Cycle: ',num2str(cycle.DutyCycle)]);

Compatibility Considerations
dsp.PulseMetrics System object will be removed
Warns starting in R2021b

dsp.PulseMetrics System object will be removed in a future release. Use functions from “Pulse
and Transition Metrics” instead. Functions in this set include dutycycle, midcross, pulseperiod,
pulsesep, and pulsewidth among others.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use these functions.

4 System Objects

4-1164

Discouraged Usage Recommended Replacement
load('clockex.mat','x','t');
pm = dsp.PulseMetrics('SampleRate',4e6,...
 'TransitionOutputPort',true,...
 'StateLevelsSource','Auto',...
 'CycleOutputPort', true);
[pulse, cycle, transition] = step(pm,x)

pulse =

 struct with fields:

 PositiveCross: [4×1 double]
 NegativeCross: [4×1 double]
 Width: [4×1 double]
 RiseTime: [4×1 double]
 FallTime: [4×1 double]

cycle =

 struct with fields:

 Period: [4×1 double]
 Frequency: [4×1 double]
 Separation: [4×1 double]
 Width: [4×1 double]
 DutyCycle: [4×1 double]

transition =

 struct with fields:

 Duration: [4×2 double]
 Polarity: [4×2 double]
 SlewRate: [4×2 double]
 MiddleCross: [4×2 double]
 LowerCross: [4×2 double]
 UpperCross: [4×2 double]

If you are using a release prior to R2016b,
replace pm(x) with step(pm,x).

MATLAB code using the replacement functions is
shown below.

Duty Cycle

Duty cycle is the ratio of the width to the period.

dutycycleObj = cycle.Width./cycle.Period

dutycycleObj =

 0.4999
 0.4999
 0.4994
 0.4997

Duty Cycle

dutycyclefn = dutycycle(x,t)

dutycyclefn =

 0.4999
 0.4999
 0.4994
 0.4997

 dsp.PulseMetrics

4-1165

Discouraged Usage Recommended Replacement
Middle Cross

middlecrossObj = transition.MiddleCross

middlecrossObj =

 1.0e-04 *

 0.0237 0.0487
 0.0737 0.0987
 0.1237 0.1487
 0.1737 0.1987

Middle Cross

middlecrossfn = midcross(x,t)

middlecrossfn =

 1.0e-04 *

 0.0237
 0.0487
 0.0737
 0.0987
 0.1237
 0.1487
 0.1737
 0.1987
 0.2237

Pulse Period

periodObj = cycle.Period

periodObj =

 1.0e-05 *

 0.4999
 0.5002
 0.5000
 0.5000

Pulse Period

periodfn = pulseperiod(x,t)

periodfn =

 1.0e-05 *

 0.4999
 0.5002
 0.5000
 0.5000

Pulse Separation

sepObj = cycle.Separation

sepObj =

 1.0e-05 *

 0.2500
 0.2502
 0.2503
 0.2501

Pulse Separation

sepfn = pulsesep(x,t)

sepfn =

 1.0e-05 *

 0.2500
 0.2502
 0.2503
 0.2501

Pulse Width

pulse.Width

pulse.Width
ans =
 1.0e-05 *

 0.2499
 0.2501
 0.2497
 0.2499

Pulse Width

widths = pulsewidth(x,t)

widths =

 1.0e-05 *

 0.2499
 0.2501
 0.2497
 0.2499

4 System Objects

4-1166

Discouraged Usage Recommended Replacement
Plot the pulse

plot(pm)

Plot the pulse

To plot the individual pulse metrics, call the
metrics functions without an output argument.

dutycycle(x,t)

midcross(x,t)

pulseperiod(x,t)

pulsesep(x,t)

pulsewidth(x,t)

References
[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003.

See Also
Functions
dutycycle | midcross | pulseperiod | pulsesep | pulsewidth

Topics
“Pulse and Transition Metrics”

Introduced in R2012a

 dsp.PulseMetrics

4-1167

dsp.RCToAutocorrelation
Package: dsp

(Removed) Convert reflection coefficients to autocorrelation coefficients

Note dsp.RCToAutocorrelation has been removed. Use rc2ac instead. For more information,
see “Compatibility Considerations”.

Description
The RCToAutocorrelation object converts reflection coefficients to autocorrelation coefficients.

To convert reflection coefficients to autocorrelation coefficients:

1 Define and set up your System object. See “Construction” on page 4-1168.
2 Call step to convert reflection coefficients according to the properties of

dsp.RCToAutocorrelation. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
rc2ac = dsp.RCToAutocorrelation returns an RCToAutocorrelation System object, rc2ac.
This object converts reflection coefficients to autocorrelation coefficients, assuming an error power of
1.

rc2ac = dsp.RCToAutocorrelation('PropertyName',PropertyValue,...) returns an
object, rc2ac, that converts reflection coefficients into autocorrelation coefficients, with each
specified property set to the specified value.

Properties
PredictionErrorInputPort

Enable prediction error power input

Choose how to select the prediction error power. When you set this property to true, you must
specify the prediction error power as a second input to the step method. When you set this property
to false, the object assumes a prediction error power of 1. The default is false.

Methods

step Convert columns of reflection coefficients to autocorrelation coefficients

4 System Objects

4-1168

Common to All System Objects
release Allow System object property value changes

Examples

Convert Reflection Coefficients to Autocorrelation Coefficients

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

k = [-0.8091 0.2525 -0.5044 0.4295 -0.2804 0.0711].';
rc2ac = dsp.RCToAutocorrelation;
ac = rc2ac(k);

Algorithms
This object implements the algorithm, inputs, and outputs described on the LPC/RC to
Autocorrelation block reference page. The object properties correspond to the block parameters,
except:

• There is no object property that corresponds to the Type of conversion block parameter.
• PredictionErrorInputPort is a pop-up menu choice on the block. Setting the

PredictionErrorInputPort object property to false corresponds to selecting Assume P = 1
in the pop-up menu. Setting PredictionErrorInputPort to true corresponds to selecting Via
input port from the pop-up menu.

Compatibility Considerations
dsp.RCToAutocorrelation System object has been removed
Errors starting in R2021a

dsp.RCToAutocorrelation System object has been removed. Use rc2ac instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
k = [-0.8091 0.2525 -0.5044 0.4295 ...
-0.2804 0.0711].';
rc2atc = dsp.RCToAutocorrelation;
acObj = rc2atc(k)

If you are using a release prior to R2016b,
replace rc2atc(k) with step(rc2atc,k).

k = [-0.8091 0.2525 -0.5044 0.4295 ...
-0.2804 0.0711].';
r0 = 5.5485;
acFn = rc2ac(k,r0)

 dsp.RCToAutocorrelation

4-1169

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
rc2ac

Introduced in R2012a

4 System Objects

4-1170

step
System object: dsp.RCToAutocorrelation
Package: dsp

Convert columns of reflection coefficients to autocorrelation coefficients

Syntax
AC = step(rc2ac,K)
AC = step(rc2ac,K,P)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

AC = step(rc2ac,K) converts the columns of the reflection coefficients, K, to autocorrelation
coefficients, AC.

AC = step(rc2ac,K,P) when you set the PredictionErrorInputPort property to true,
converts the columns of the reflection coefficients, K , to autocorrelation coefficients, AC, using P as
the prediction error power. P must be a row vector with same number of columns as in K.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

 step

4-1171

dsp.RCToLPC
Package: dsp

(Removed) Convert reflection coefficients to linear prediction coefficients

Note dsp.RCToLPC has been removed. Use rc2poly instead. For more information, see
“Compatibility Considerations”.

Description
The RCToLPC object converts reflection coefficients to linear prediction coefficients.

To convert reflection coefficients to LPC:

1 Define and set up your RC to LPC System object. See “Construction” on page 4-1172.
2 Call step to convert RC to LPC according to the properties of dsp.RCToLPC. The behavior of

step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
rc2lpc = dsp.RCToLPC returns an RC to LPC System object, rc2lpc, that converts reflection
coefficients (RC) to linear prediction coefficients (LPC).

rc2lpc = dsp.RCToLPC('PropertyName',PropertyValue,...) returns an RC to LPC
conversion object, rc2lpc, with each specified property set to the specified value.

Properties
PredictionErrorOutputPort

Enable normalized prediction error power output

Set this property to true to return the normalized error power as a vector with one element per
input channel. Each element varies between 0 and 1. The default is true.

ExceptionOutputPort

Produce output with stability status of filter represented by LPC coefficients

Set this property to true to return the stability of the filter. The output is a vector of a length equal to
the number of channels. A logical value of 1 indicates a stable filter. A logical value of 0 indicates an
unstable filter. The default is false.

4 System Objects

4-1172

Methods

step Convert columns of reflection coefficients to linear prediction coefficients

Common to All System Objects
release Allow System object property value changes

Examples

Convert RC to LPC Coefficients

Note This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Convert reflection coefficients to linear prediction coefficients.

levinson = dsp.LevinsonSolver;
rc2lpc = dsp.RCToLPC;
x = (1:100)';
a = xcorr(x,10);
% Use autocorrelation computed over lags [0 10]
k = levinson(a(11:end)); % Compute reflection coefficients
[A, P] = rc2lpc(k);

Algorithms
This object implements the algorithm, inputs, and outputs described on the LPC to/from RC block
reference page. The object properties correspond to the block parameters, except:
There is no object property that corresponds to the Type of conversion block parameter. The object
always converts LPC to RC.

Compatibility Considerations
dsp.RCToLPC System object has been removed
Errors starting in R2021a

dsp.RCToLPC System object has been removed. Use rc2poly instead.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

 dsp.RCToLPC

4-1173

Discouraged Usage Recommended Replacement
k = [-0.9851 0.0074 0.0074 0.0073 0.0073]';
rc2lpc = dsp.RCToLPC;
lpcObj = rc2lpc(k)

If you are using a release prior to R2016b,
replace rc2lpc(k) with step(rc2lpc,k).

k = [-0.9851 0.0074 0.0074 0.0073 0.0073]';
lpcFn = rc2poly(k)

The output lpcFn is a row vector, while the output
lpcObj is a column vector. To compare lpcFn with
lpcObj, transpose one of the vectors so that both
have the same dimensions.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
rc2poly

Introduced in R2012a

4 System Objects

4-1174

step
System object: dsp.RCToLPC
Package: dsp

Convert columns of reflection coefficients to linear prediction coefficients

Syntax
[A,P] = step(rc2lpc,K)
A = step(rc2lpc,K)
[..., S] = step(rc2lpc,K)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[A,P] = step(rc2lpc,K) converts the columns of the reflection coefficients, K, to linear
prediction coefficients, A, and outputs the normalized prediction error power, P.

A = step(rc2lpc,K) when the PredictionErrorOutputPort property is false, converts the
columns of the reflection coefficients, K, to linear prediction coefficients, A.

[..., S] = step(rc2lpc,K) also outputs the LPC filter stability, S, when the
ExceptionOutputPort property is true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

 step

4-1175

dsp.RLSFilter
Package: dsp

Compute output, error and coefficients using recursive least squares (RLS) algorithm

Description
The dsp.RLSFilter System object filters each channel of the input using RLS filter
implementations.

To filter each channel of the input:

1 Create the dsp.RLSFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
rlsFilt = dsp.RLSFilter
rlsFilt = dsp.RLSFilter(len)
rlsFilt = dsp.RLSFilter(Name,Value)

Description

rlsFilt = dsp.RLSFilter returns an adaptive RLS filter System object, rlsFilt. This System
object computes the filtered output, filter error, and the filter weights for a given input and desired
signal using the RLS algorithm.

rlsFilt = dsp.RLSFilter(len) returns an RLS filter System object, rlsFilt. This System
object has the Length property set to len.

rlsFilt = dsp.RLSFilter(Name,Value) returns an RLS filter System object with each specified
property set to the specified value. Enclose each property name in single quotes. Unspecified
properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-1176

Method — Method to calculate filter coefficients
Conventional RLS (default) | Householder RLS | Sliding-window RLS | Householder
sliding-window RLS | QR decomposition

You can specify the method used to calculate filter coefficients as Conventional RLS [1] [2],
Householder RLS [3] [4], Sliding-window RLS [5][1][2], Householder sliding-window RLS
[4], or QR decomposition [1] [2]. This property is nontunable.

Length — Length of filter coefficients vector
32 (default) | positive integer

Specify the length of the RLS filter coefficients vector as a scalar positive integer value. This property
is nontunable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SlidingWindowBlockLength — Width of sliding window
48 (default) | positive integer

Specify the width of the sliding window as a scalar positive integer value greater than or equal to the
Length property value. This property is nontunable.
Dependencies

This property applies only when the Method property is set to Sliding-window RLS or
Householder sliding-window RLS.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ForgettingFactor — RLS forgetting factor
1 (default) | positive scalar

Specify the RLS forgetting factor as a scalar positive numeric value less than or equal to 1. Setting
this property value to 1 denotes infinite memory, while adapting to find the new filter.

Tunable: Yes
Data Types: single | double

InitialCoefficients — Initial coefficients of filter
0 (default) | scalar | vector

Specify the initial values of the FIR adaptive filter coefficients as a scalar or a vector of length equal
to the Length property value.

Tunable: Yes
Data Types: single | double

InitialInverseCovariance — Initial inverse covariance
1000 (default) | scalar | square matrix

Specify the initial values of the inverse covariance matrix of the input signal. This property must be
either a scalar or a square matrix, with each dimension equal to the Length property value. If you set
a scalar value, the InverseCovariance property is initialized to a diagonal matrix with diagonal
elements equal to that scalar value.

Tunable: Yes

 dsp.RLSFilter

4-1177

Dependencies

This property applies only when the Method property is set to Conventional RLS or Sliding-
window RLS.
Data Types: single | double

InitialSquareRootInverseCovariance — Initial square root inverse covariance
sqrt(1000) (default) | scalar | square matrix

Specify the initial values of the square root inverse covariance matrix of the input signal. This
property must be either a scalar or a square matrix with each dimension equal to the Length
property value. If you set a scalar value, the SquareRootInverseCovariance property is initialized
to a diagonal matrix with diagonal elements equal to that scalar value.

Tunable: Yes

Dependencies

This property applies only when the Method property is set to Householder RLS or Householder
sliding-window RLS.
Data Types: single | double

InitialSquareRootCovariance — Initial square root covariance
sqrt(1/1000) (default) | scalar | square matrix

Specify the initial values of the square root covariance matrix of the input signal. This property must
be either a scalar or a square matrix with each dimension equal to the Length property value. If you
set a scalar value, the SquareRootCovariance property is initialized to a diagonal matrix with
diagonal elements equal to the scalar value.

Tunable: Yes

Dependencies

This property applies only when the Method property is set to QR-decomposition RLS.
Data Types: single | double

LockCoefficients — Lock coefficient updates
false (default) | true

Specify whether the filter coefficient values should be locked. When you set this property to true, the
filter coefficients are not updated and their values remain the same. The default value is false (filter
coefficients continuously updated).

Tunable: Yes

Usage

Syntax
y = rlsFilt(x,d)
[y,e] = rlsFilt(x,d)

4 System Objects

4-1178

Description

y = rlsFilt(x,d) recursively adapts the reference input, x, to match the desired signal, d, using
the System object, rlsFilt. The desired signal, d, is the signal desired plus some undesired noise.

[y,e] = rlsFilt(x,d) shows the output of the RLS filter along with the error, e, between the
reference input and the desired signal. The filters adapts its coefficients until the error e is
minimized. You can access these coefficients by accessing the Coefficients property of the object.
This can be done only after calling the object. For example, to access the optimized coefficients of the
rlsFilt filter, call rlsFilt.Coefficients after you pass the input and desired signal to the
object.

Input Arguments

x — Data input
scalar | column vector

The signal to be filtered by the RLS filter. The input, x, and the desired signal, d, must have the same
size and data type.

The input can be a variable-size signal. You can change the number of elements in the column vector
even when the object is locked. The System object locks when you call the object to run its algorithm.
Data Types: single | double
Complex Number Support: Yes

d — Desired signal
scalar | column vector

The RLS filter adapts its coefficients to minimize the error, e, and converge the input signal x to the
desired signal d as closely as possible.

The input, x, and the desired signal, d, must have the same size and data type.

The desired signal, d, can be a variable-size signal. You can change the number of elements in the
column vector even when the object is locked. The System object locks when you call the object to
run its algorithm.
Data Types: single | double
Complex Number Support: Yes

Output Arguments

y — Filtered output
scalar | column vector

Filtered output, returned as a scalar or a column vector. The object adapts its filter coefficients to
converge the input signal x to match the desired signal d. The filter outputs the converged signal.
Data Types: single | double

e — Difference between output and desired signal
scalar | column vector

Difference between the output signal y and the desired signal d, returned as a scalar or a column
vector. The objective of the RLS filter is to minimize this error. The object adapts its coefficients to

 dsp.RLSFilter

4-1179

converge toward optimal filter coefficients that produce an output signal that matches closely with
the desired signal. For more details on how e is computed, see “Algorithms” on page 4-1188. To
access the RLS filter coefficients, call rlsFilt.Coefficients after you pass the input and desired
signal to the object.
Data Types: single | double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.RLSFilter
msesim Estimated mean squared error for adaptive filters

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

System Identification of FIR Filter Using RLS Filter

Use a recursive least squares (RLS) filter to identify an unknown system modeled with a lowpass FIR
filter. Compare the frequency responses of the unknown and estimated systems.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Initialization

Create a dsp.FIRFilter object that represents the system to be identified. Pass the signal x to the
FIR filter. The output of the unknown system is the desired signal d, which is the sum of the output of
the unknown system (FIR filter) and an additive noise signal n.

filt = dsp.FIRFilter('Numerator',fir1(10,.25));
x = randn(1000,1);
n = 0.01*randn(1000,1);
d = filt(x) + n;

Adaptive Filter

Create a dsp.RLSFilter object to create an RLS filter. Set the length of the filter to 11 taps and the
forgetting factor to 0.98. Pass the primary input signal x and the desired signal d to the RLS filter.
The output y of the adaptive filter is the signal converged to the desired signal d thereby minimizing
the error e between the two signals.

4 System Objects

4-1180

rls = dsp.RLSFilter(11, 'ForgettingFactor', 0.98);
[y,e] = rls(x,d);
w = rls.Coefficients;

Plot the results

The output signal matches the desired signal, making the error between the two close to zero.

plot(1:1000, [d,y,e]);
title('System Identification of an FIR filter');
legend('Desired', 'Output', 'Error');
xlabel('time index');
ylabel('signal value');

Compare the weights

The weights vector w represents the coefficients of the RLS filter that is adapted to resemble the
unknown system (FIR filter). To confirm the convergence, compare the numerator of the FIR filter
and the estimated weights of the RLS filter.

The estimated filter weights closely match the actual filter weights, confirming the results seen in the
previous signal plot.

stem([filt.Numerator; w].');
legend('Actual','Estimated');
xlabel('coefficient #');
ylabel('coefficient value');

 dsp.RLSFilter

4-1181

Inverse System Identification Using RLS Algorithm

This example demonstrates the RLS adaptive algorithm using the inverse system identification model
shown here.

Cascading the adaptive filter with an unknown filter causes the adaptive filter to converge to a
solution that is the inverse of the unknown system.

If the transfer function of the unknown system and the adaptive filter are H(z) and G(z), respectively,
the error measured between the desired signal and the signal from the cascaded system reaches its

4 System Objects

4-1182

minimum when G(z)×H(z) = 1. For this relation to be true, G(z) must equal 1/H(z), the inverse of the
transfer function of the unknown system.

To demonstrate that this is true, create a signal s to input to the cascaded filter pair.

s = randn(3000,1);

In the cascaded filters case, the unknown filter results in a delay in the signal arriving at the
summation point after both filters. To prevent the adaptive filter from trying to adapt to a signal it has
not yet seen (equivalent to predicting the future), delay the desired signal by 12 samples, which is the
order of the unknown system.

Generally, you do not know the order of the system you are trying to identify. In that case, delay the
desired signal by number of samples equal to half the order of the adaptive filter. Delaying the input
requires prepending 12 zero-value samples to the input s.

delay = zeros(12,1);
d = [delay; s(1:2988)]; % Concatenate the delay and the signal.

You have to keep the desired signal vector d the same length as x, so adjust the signal element count
to allow for the delay samples.

Although not generally the case, for this example you know the order of the unknown filter, so add a
delay equal to the order of the unknown filter.

For the unknown system, use a lowpass, 12th-order FIR filter.

filt = dsp.FIRFilter;
filt.Numerator = fir1(12,0.55,'low');

Filtering s provides the input data signal for the adaptive algorithm function.

x = filt(s);

To use the RLS algorithm, create a dsp.RLSFilter object and set its Length, ForgettingFactor,
and InitialInverseCovariance properties.

For more information about the input conditions to prepare the RLS algorithm object, refer to
dsp.RLSFilter.

p0 = 2 * eye(13);
lambda = 0.99;
rls = dsp.RLSFilter(13,'ForgettingFactor',lambda,...
 'InitialInverseCovariance',p0);

This example seeks to develop an inverse solution, you need to be careful about which signal carries
the data and which is the desired signal.

Earlier examples of adaptive filters use the filtered noise as the desired signal. In this case, the
filtered noise (x) carries the unknown system's information. With Gaussian distribution and variance
of 1, the unfiltered noise d is the desired signal. The code to run this adaptive filter is:

[y,e] = rls(x,d);

where y returns the filtered output and e contains the error signal as the filter adapts to find the
inverse of the unknown system.

 dsp.RLSFilter

4-1183

Obtain the estimated coefficients of the RLS filter.

b = rls.Coefficients;

View the frequency response of the adapted RLS filter (inverse system, G(z)) using freqz. The
inverse system looks like a highpass filter with linear phase.

freqz(b,1)

View the frequency response of the unknown system, H(z). The response is that of a lowpass filter
with a cutoff frequency of 0.55.

freqz(filt.Numerator,1)

4 System Objects

4-1184

The result of the cascade of the unknown system and the adapted filter is a compensated system with
an extended cutoff frequency of 0.8.

overallCoeffs = conv(filt.Numerator,b);
freqz(overallCoeffs,1)

 dsp.RLSFilter

4-1185

Cancel Noise Using RLS Filter

Cancel additive noise n added to an unknown system using an RLS filter. The RLS filter adapts its
coefficients until its transfer function matches the transfer function of the unknown system as closely
as possible. The difference between the output of the adaptive filter and the output of the unknown
system is the error signal e, which represents the additive white noise. Minimizing this error signal is
the objective of the adaptive filter.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Initialization

Create a dsp.FIRFilter System object™ to represent the unknown system. Create a
dsp.RLSFilter object and set the length to 11 taps. Set the method to 'Householder RLS'.
Create a sine wave to represent the noise added to the unknown system. View the signals in a time
scope.

FrameSize = 100;
NIter = 10;

rls = dsp.RLSFilter('Length',11,...
 'Method','Householder RLS');
filt = dsp.FIRFilter('Numerator',...

4 System Objects

4-1186

 fir1(10,[.5,.75]));

sinewave = dsp.SineWave('Frequency',0.01,...
 'SampleRate',1,...
 'SamplesPerFrame',FrameSize);
scope = timescope('LayoutDimensions',[2 1],...
 'NumInputPorts',2, ...
 'TimeUnits','Seconds',...
 'YLimits',[-2.5 2.5], ...
 'BufferLength',2*FrameSize*NIter,...
 'ActiveDisplay',1,...
 'ShowLegend',true,...
 'ChannelNames',{'Noisy signal'},...
 'ActiveDisplay',2,...
 'ShowLegend',true,...
 'ChannelNames',{'Error signal'});

for k = 1:NIter
 x = randn(FrameSize,1);
 d = filt(x) + sinewave();
 [y,e] = rls(x,d);
 w = rls.Coefficients;
 scope(d,e)
end
release(scope)

 dsp.RLSFilter

4-1187

Algorithms
The dsp.RLSFilter System object, when Conventional RLS is selected, recursively computes the
least squares estimate (RLS) of the FIR filter weights. The System object estimates the filter weights
or coefficients, needed to convert the input signal into the desired signal. The input signal can be a
scalar or a column vector. The desired signal must have the same data type, complexity, and
dimensions as the input signal. The corresponding RLS filter is expressed in matrix form as P(n) :

k(n) = λ−1P(n− 1)u(n)
1 + λ−1uH(n)P(n− 1)u(n)

y(n) = wT(n− 1)u(n)
e(n) = d(n)− y(n)
w(n) = w(n− 1) + k*(n)e(n)

P(n) = λ−1P(n− 1)− λ−1k(n)uH(n)P(n− 1)

where λ-1 denotes the reciprocal of the exponential weighting factor. The variables are as follows:

Variable Description
n The current time index
u(n) The vector of buffered input samples at step n

4 System Objects

4-1188

Variable Description
P(n) The conjugate of the inverse correlation matrix at

step n
k(n) The gain vector at step n
k*(n) Complex conjugate of k
w(n) The vector of filter tap estimates at step n
y(n) The filtered output at step n
e(n) The estimation error at step n
d(n) The desired response at step n
λ The forgetting factor

u, w, and k are all column vectors.

References
[1] M Hayes, Statistical Digital Signal Processing and Modeling, New York: Wiley, 1996.

[2] S. Haykin, Adaptive Filter Theory, 4th Edition, Upper Saddle River, NJ: Prentice Hall, 2002 .

[3] A.A. Rontogiannis and S. Theodoridis, "Inverse factorization adaptive least-squares algorithms,"
Signal Processing, vol. 52, no. 1, pp. 35-47, July 1996.

[4] S.C. Douglas, "Numerically-robust O(N2) RLS algorithms using least-squares prewhitening," Proc.
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, vol. I, pp.
412-415, June 2000.

[5] A. H. Sayed, Fundamentals of Adaptive Filtering, Hoboken, NJ: John Wiley & Sons, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.FIRFilter | dsp.LMSFilter | dsp.AffineProjectionFilter

Topics
“Adaptive Noise Cancellation Using RLS Adaptive Filtering”

Introduced in R2013a

 dsp.RLSFilter

4-1189

dsp.RMS
Package: dsp

(Removed) Root mean square of vector elements

Note The dsp.RMS System object™ has been removed. To compute the RMS, use the rms function.
To compute the running RMS in MATLAB®, use the dsp.MovingRMS object. For more information,
see “Compatibility Considerations”.

Description
The dsp.RMS object computes the root mean square (RMS) value.

To compute the RMS value of your input:

1 Create the dsp.RMS object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
rms = dsp.RMS
rms = dsp.RMS(Name,Value)

Description

rms = dsp.RMS returns a System object, rms, that computes the root mean square (RMS) of an
input or a sequence of inputs over the specified Dimension.

rms = dsp.RMS(Name,Value) returns an RMS System object, rms, with each specified property
set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

RunningRMS — Enable calculating RMS over time
false (default) | true

4 System Objects

4-1190

Set this property to true to enable calculating the RMS over successive calls to the object algorithm.

ResetInputPort — Enable resetting in running RMS mode
false (default) | true

Set this property to true to enable resetting the running RMS. When the property is set to true, you
must specify a reset input to the object algorithm to reset the running RMS.
Dependencies

This property applies when you set the RunningRMS property to true.

ResetCondition — Reset condition for running RMS mode
Non-zero (default) | Rising edge | Falling edge | Either edge

Specify the event to reset the running RMS as one of Rising edge, Falling edge, Either edge,
or Non-zero. Non-zero resets the running RMS each time a nonzero sample is acquired. See
“Rising and Falling Edges” on page 4-1193 for definitions of rising and falling edges.
Dependencies

This property applies when you set the “ResetInputPort” on page 4-0 property to true.

Dimension — Dimension to compute RMS value along
Column (default) | All | Row | Custom

Specify the dimension along which to calculate the RMS as one of All, Row, Column, or Custom.
Specifying the Dimension property as All computes the RMS value over the entire input.
Dependencies

This property applies only when you set the RunningRMS property to false.

CustomDimension — Numerical dimension to operate along
1 (default) | positive integer

Specify the dimension (one-based scalar integer value) of the input signal, along which the RMS is
computed. The dimension cannot exceed the number of dimensions in the input signal.
Dependencies

This property applies when you set the “Dimension” on page 4-0 property to Custom.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
y = rms(x)
y = rms(x,r)

Description

y = rms(x) computes the root mean square (RMS) output, y, of input vector x. When the
RunningRMS property is true, y corresponds to the RMS of the input elements over successive calls to
the object algorithm.

 dsp.RMS

4-1191

y = rms(x,r) resets the running RMS state based on the value of r, the reset signal, and the
ResetCondition property. This computation is possible when you set both the RunningRMS and the
ResetInputPort properties to true.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The RMS is computed along each channel. The object also accepts variable-size
inputs. Once the object is locked, you can change the size of each input channel.
Data Types: single | double

r — Reset signal
scalar

Reset signal used to reset the running RMS, specified as a scalar value. The object resets the running
RMS if the reset signal satisfies the ResetCondition.

Dependencies

To enable this signal, set the RunningRMS property to true and the ResetInputPort property to
true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments

y — RMS output
scalar | vector | matrix

RMS output, returned as a scalar, vector or a matrix. If RunningRMS is set to:

• false –– The object computes the RMS value of each input channel. If the input is a column
vector, the output is a scalar. If the input is a multichannel signal, the output signal is a 1-by-N
vector, where N is the number of input channels.

• true –– The object computes the running RMS of the signal. The size of the output signal matches
the size of the input signal.

Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

4 System Objects

4-1192

reset Reset internal states of System object

Examples

RMS Value of Matrix Input

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Compute the RMS value of a matrix with the Dimension property set to 'All'.

in2 = magic(4);
rms2d = dsp.RMS;
rms2d.Dimension = 'All';
y_rms2 = rms2d(in2)

y_rms2 = 9.6695

The output is equivalent to reshaping the 4-by-4 matrix into a 16-by-1 or 1-by-16 vector and
computing the RMS value for the vector.

More About
Root Mean Square Level

The root-mean-square level of a vector, X, is

xRMS = 1
N ∑

n = 1

N
xn

2,

with the summation performed along the specified dimension.

Rising and Falling Edges

A rising edge:

• Rises from a negative value to a positive value or zero.
• Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative

value to zero.

 dsp.RMS

4-1193

A falling edge:

• Falls from a positive value to a negative value or zero.
• Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive

value to zero.

Algorithms
This object implements the algorithm, inputs, and outputs described on the RMS block reference
page. The object properties correspond to the Simulink block parameters, except:

• The Treat sample-based row input as a column block parameter is not supported by the
dsp.RMS object.

• The Reset Port block parameter corresponds to both the ResetCondition and the
ResetInputPort object properties.

Compatibility Considerations
dsp.RMS System object has been removed
Errors starting in R2021a

The dsp.RMS System object has been removed. To compute the RMS, use the rms function. To
compute the running RMS, use the dsp.MovingRMS object.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

4 System Objects

4-1194

Discouraged Usage Recommended Replacement
RMS

rm = dsp.RMS;
x = randn(100,1);
y = rm(x);

Running RMS

rm = dsp.RMS;
rm.RunningRMS = true;
x = randn(100,1);
% Running RMS
y = rm(x);

If you are using a release prior to R2016b,
replace rm(x) with step(rm,x).

RMS

x = randn(100,1);
y = rms(x);

Running RMS

mvgRMS = dsp.MovingRMS;
mvgRMS.SpecifyWindowLength = false;
x = randn(100,1);
y = mvgRMS(x);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
rms

Objects
dsp.MovingRMS | dsp.MovingStandardDeviation | dsp.MovingVariance

Blocks
Moving RMS | RMS | Moving Standard Deviation | Standard Deviation | Moving Variance | Variance

Introduced in R2012a

 dsp.RMS

4-1195

dsp.SampleRateConverter
Package: dsp

Multistage sample rate converter

Description
The SampleRateConverter System object converts the sample rate of an incoming signal.

To convert the sample rate of a signal:

1 Create the dsp.SampleRateConverter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
src = dsp.SampleRateConverter
src = dsp.SampleRateConverter(Name,Value)

Description

src = dsp.SampleRateConverter creates a multistage FIR sample rate converter System object,
src, that converts the sample rate of each channel of an input signal.

src = dsp.SampleRateConverter(Name,Value) returns a multistage FIR sample rate converter
System object, src, with properties and options specified by one or more Name,Value pair
arguments.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Bandwidth — Two-sided bandwidth of interest
40000 (default) | positive scalar

Specify the two-sided bandwidth of interest (after rate conversion) as a positive scalar expressed in
Hz. This property sets the two-sided bandwidth of the information-carrying portion of the signal that
you wish to retain.

4 System Objects

4-1196

InputSampleRate — Sample rate of input signal
192000 (default) | positive scalar

Specify the sample rate of the input signal as a positive scalar expressed in Hz. The input sample rate
must be greater than the bandwidth of interest.

OutputRateTolerance — Maximum allowed tolerance for output sample rate
0 (default) | positive scalar

Specify the maximum allowed tolerance for the sample rate of the output signal as a positive scalar
between 0 and 1.

The output rate tolerance allows for a simpler design in many cases. The actual output sample rate
varies but is within the specified range. For example, if OutputRateTolerance is specified as 0.01,
then the actual output sample rate is in the range given by OutputSampleRate ± 1%.

OutputSampleRate — Sample rate of output signal
44100 (default) | positive scalar

Specify the sample rate of the output signal as a positive scalar expressed in Hz. The output sample
rate must be greater than the bandwidth of interest.

StopbandAttenuation — Minimum dB attenuation for aliased components
80 (default) | positive scalar

Specify the stopband attenuation as a positive scalar expressed in dB. This property is the minimum
amount by which any aliasing involved in the process is attenuated.

Usage

Syntax
y = src(x)

Description

y = src(x) designs one or more multirate FIR filters and then uses the filters to convert the rate of
each channel (column) of the real or complex input signal x to the output sampling rate.

Input Arguments

x — Input signal
vector | matrix

Input signal, specified as a vector or a matrix. The row length of x must be a multiple of the overall
decimation factor. The decimation factor is determined from the getRateChangeFactors function.
Each column of x is treated as a separate channel.
Data Types: single | double

Output Arguments

y — Resampled signal
vector | matrix

 dsp.SampleRateConverter

4-1197

Resampled signal, returned as a vector or matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.SampleRateConverter
getActualOutputRate Get actual output rate
getFilters Obtain single-stage filters
getRateChangeFactors Get overall interpolation and decimation factors
visualizeFilterStages Visualize filter stages

Filter Analysis
cost Implementation cost of the sample rate converter
freqz Frequency response of the multirate multistage filter
info Display information about sample rate converter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Convert Sample Rate of Audio Signal

Convert the sample rate of an audio signal from 44.1 kHz (CD quality) to 96 kHz (DVD quality).

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Note: The dsp.AudioFileWriter System object™ is not supported in MATLAB Online.

fs1 = 44.1e3;
fs2 = 96e3;

SRC = dsp.SampleRateConverter('Bandwidth',40e3,...
 'InputSampleRate',fs1,'OutputSampleRate',fs2);

[L,M] = getRateChangeFactors(SRC);
FrameSize = 10*M;

AR = dsp.AudioFileReader('guitar10min.ogg', ...
 'SamplesPerFrame',FrameSize);
AW = dsp.AudioFileWriter('guitar10min_96k.wav', ...
 'SampleRate',fs2);

4 System Objects

4-1198

https://www.mathworks.com/products/matlab-online.html

Run the system for 15 s. Release all objects.

tic
while toc < 15
 x = AR();
 y = SRC(x);
 AW(y);
end

release(AR);
release(AW);
release(SRC);

Plot the input and output signals. Use a different set of axes for each signal. Shift the output to
compensate for the delay introduced by the filter.

t1 = 0:1/fs1:1/30-1/fs1;
t2 = 0:1/fs2:1/30-1/fs2;

delay = 114;

el1 = 1:length(t1)-delay;

el2 = 1:length(t2);
el2(1:delay) = [];

subplot(2,1,1)
plot(t1(1:length(el1)),x(el1,1))
hold on
plot(t1(1:length(el1)),x(el1,2))
title('Input')

subplot(2,1,2)
plot(t2(1:length(el2)),y(el2,1))
hold on
plot(t2(1:length(el2)),y(el2,2))
xlabel('Time (s)')
title('Output')

 dsp.SampleRateConverter

4-1199

Zoom in to see the difference in sample rates. Use a different set of axes for each channel.

figure

subplot(2,1,1)
plot(t1(1:length(el1)),x(el1,1),'o-')
hold on
plot(t2(1:length(el2)),y(el2,1),'d--')
xlim([0.01 0.0103])
title('First channel')

subplot(2,1,2)
plot(t1(1:length(el1)),x(el1,2),'o-')
hold on
plot(t2(1:length(el2)),y(el2,2),'d--')
xlim([0.01 0.0103])
xlabel('Time (s)')
title('Second channel')

4 System Objects

4-1200

Convert Sample Rate of Sinusoid

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a multistage sample rate converter with default properties. The converter converts from 192
kHz to 44.1 kHz in three stages.

src = dsp.SampleRateConverter;

Use src to convert the sample rate of a noisy sinusoid. The sinusoid has a frequency of 20 kHz and is
sampled for 0.1 s.

f = 20e3;

FsIn = src.InputSampleRate;
FsOut = src.OutputSampleRate;

t1 = (0:1/FsIn:0.1-1/FsIn)';

sIn = sin(2*pi*f*t1) + randn(size(t1));

Estimate the power spectral density of the input.

 dsp.SampleRateConverter

4-1201

hsa = dsp.SpectrumAnalyzer('SampleRate',FsIn,'YLimits',[-40 40]);
hsa(sIn)

Convert the sample rate of the signal. Estimate the power spectral density of the output.

sOut = src(sIn);

hsb = dsp.SpectrumAnalyzer('SampleRate',FsOut,'YLimits',[-40 40]);
hsb(sOut)

4 System Objects

4-1202

Tolerance Cost in Sample Rate Conversion

A signal output from an A/D converter is sampled at 98.304 MHz. The signal has a bandwidth of 20
MHz. Reduce the sample rate of the signal to 22 MHz, which is the bandwidth of 802.11 channels.
Make the conversion exactly and then redo it with an output rate tolerance of 1%.

SRC1 = dsp.SampleRateConverter('Bandwidth',20e6, ...
 'InputSampleRate',98.304e6,'OutputSampleRate',22e6, ...
 'OutputRateTolerance',0);
SRC2 = dsp.SampleRateConverter('Bandwidth',20e6, ...
 'InputSampleRate',98.304e6,'OutputSampleRate',22e6, ...
 'OutputRateTolerance',0.01);

Use the cost method to determine the cost of each sample rate conversion. The zero-tolerance
process requires more than 500 times as many coefficients as the 1% process.

c1 = cost(SRC1)

c1 = struct with fields:
 NumCoefficients: 84779
 NumStates: 133
 MultiplicationsPerInputSample: 27.0422

 dsp.SampleRateConverter

4-1203

 AdditionsPerInputSample: 26.0684

c2 = cost(SRC2)

c2 = struct with fields:
 NumCoefficients: 150
 NumStates: 127
 MultiplicationsPerInputSample: 22.6667
 AdditionsPerInputSample: 22.1111

Find the integer upsampling and downsampling factors used in each conversion.

[L1,M1] = getRateChangeFactors(SRC1)

L1 = 1375

M1 = 6144

[L2,M2] = getRateChangeFactors(SRC2)

L2 = 2

M2 = 9

Compute the actual sample rate of the output signal when the sample rate conversion has a tolerance
of 1%.

getActualOutputRate(SRC2)

ans = 2.1845e+07

Reset a Sample Rate Converter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a multistage sample rate converter with default properties, corresponding to the combined
three filter stages used to convert from 192 kHz to 44.1 kHz. Determine its overall decimation and
interpolation factors.

src = dsp.SampleRateConverter;

[L,M] = getRateChangeFactors(src);

Create a two-channel random signal. Specify a number of samples equal to the decimation factor. Call
the object twice on the signal.

x = randn(M,2);

y1 = src(x);
y2 = src(x);

no = all(y2==y1)

no = 1x2 logical array

4 System Objects

4-1204

 0 0

The output is different because the internal states of src have changed. Use reset to reset the
converter and call the converter again. Verify that the output is unchanged.

reset(src)

y3 = src(x);

yes = all(y3==y1)

yes = 1x2 logical array

 1 1

Frequency Response of Default Converter

Create a multistage sample rate converter with default properties, corresponding to the combined
three filter stages used to convert from 192 kHz to 44.1 kHz. Compute and display the frequency
response.

src = dsp.SampleRateConverter;
[H,f] = freqz(src);
plot(f,20*log10(abs(H)))

 dsp.SampleRateConverter

4-1205

Compute and display the frequency response over the range between 20 Hz and 44.1 kHz.

f = 20:10:44.1e3;
[H,f] = freqz(src,f);
plot(f,20*log10(abs(H)))

Single-Stage Filters

Create src, a multistage sample rate converter with default properties. src converts between 192
kHz and 44.1 kHz. Find the individual filters that are cascaded together to perform the conversion.

src = dsp.SampleRateConverter;
c = getFilters(src);

Visualize the frequency response of the decimator used in the first stage of the process.

m = c.Stage1;

[h,w] = freqz(m);
plot(w/pi,20*log10(abs(h)))
xlabel('\omega / \pi')
ylabel('Magnitude (dB)')

4 System Objects

4-1206

Default Multistage Sample Rate Converter

Create a multistage sample rate converter with default properties, corresponding to the combined
three filter stages used to convert from 192 kHz to 44.1 kHz.

src = dsp.SampleRateConverter

src =
 dsp.SampleRateConverter with properties:

 InputSampleRate: 192000
 OutputSampleRate: 44100
 OutputRateTolerance: 0
 Bandwidth: 40000
 StopbandAttenuation: 80

Display information about the design.

info(src)

ans =
 'Overall Interpolation Factor : 147
 Overall Decimation Factor : 640
 Number of Filters : 3

 dsp.SampleRateConverter

4-1207

 Multiplications per Input Sample: 27.667188
 Number of Coefficients : 8631
 Filters:
 Filter 1:
 dsp.FIRDecimator - Decimation Factor : 2
 Filter 2:
 dsp.FIRDecimator - Decimation Factor : 2
 Filter 3:
 dsp.FIRRateConverter - Interpolation Factor: 147
 - Decimation Factor : 160
 '

Output Sample Rate with Given Tolerance

Get the actual output sample rate for conversion between 192 kHz and 44.1 kHz when given a
tolerance of 1%.

src = dsp.SampleRateConverter;
src.OutputRateTolerance = 0.01;
FsOut = getActualOutputRate(src)

FsOut = 4.4308e+04

Default Resampling Factors

Create src, a multistage sample rate converter with default properties. src combines three filter
stages to convert from 192 kHz to 44.1 kHz. Determine its overall interpolation and decimation
factors.

src = dsp.SampleRateConverter;
[L,M] = getRateChangeFactors(src)

L = 147

M = 640

Sample Rate Converter Stages

Create a multistage sample rate converter with default properties, corresponding to the combined
three filter stages used to convert from 192 kHz to 44.1 kHz. Visualize the stages.

src = dsp.SampleRateConverter;
visualizeFilterStages(src)

4 System Objects

4-1208

Algorithms
• The general multistage sample rate converter performs a multistage decimation, a single-stage

sample rate conversion, and a multistage interpolation, in that order. Actual designs include at
most two of those steps.

• The procedure determines automatically the optimal number of decimation or interpolation
stages. In special cases, the decimation or the interpolation can be performed in a single stage.

• The algorithm always attempts to start by reducing the sample rate. This decreases the amount of
computation required. The decimation step is designed so that no intermediate sample rate goes
below the bandwidth of interest. This ensures that no information is filtered out.

• Each individual stage uses halfband or Nyquist filters to minimize the number of nonzero
coefficients.

• Transition-band aliasing is allowed because it decreases the implementation cost. The signal
within the bandwidth of interest is kept alias free up to the value specified by the
StopbandAttenuation property.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 dsp.SampleRateConverter

4-1209

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

The getRateChangeFactors function supports C and C++ code generation.

This object supports SIMD code generation using Intel AVX2 technology under these conditions:

• For upsampling, the ratio of output sample rate to input sample rate must be an integer.
• For downsampling, the ratio of input sample rate to output sample rate must be an integer.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

See Also
Functions
cost | freqz | getActualOutputRate | getFilters | info | visualizeFilterStages |
getRateChangeFactors

Objects
dsp.FarrowRateConverter

Topics
“Efficient Sample Rate Conversion Between Arbitrary Factors”
“Multirate Filtering in MATLAB and Simulink”
“Design of Decimators and Interpolators”
“Digital Up and Down Conversion for Family Radio Service”

Introduced in R2014b

4 System Objects

4-1210

dsp.ScalarQuantizerDecoder
Package: dsp

(To be removed) Convert each index value into quantized output value

Note dsp.ScalarQuantizerDecoder will be removed in a future release.

Description
The dsp.ScalarQuantizerDecoder object converts each index value into a quantized output
value. The specified codebook defines the set of all possible quantized output values or codewords.
Input index values less than 0 are set to 0 and index values greater N – 1 are set to N – 1. N is the
length of the codebook vector.

To convert an index value into a quantized output value:

1 Create the dsp.ScalarQuantizerDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
sqdec = dsp.ScalarQuantizerDecoder
sqdec = dsp.ScalarQuantizerDecoder(Name,Value)

Description

sqdec = dsp.ScalarQuantizerDecoder returns a scalar quantizer decoder System object,
sqdec, that transforms zero-based input index values into quantized output values.

sqdec = dsp.ScalarQuantizerDecoder(Name,Value) returns a scalar quantizer decoder
object, sqdec, with each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

CodebookSource — How to specify codebook values
'Property' (default) | 'Input port'

 dsp.ScalarQuantizerDecoder

4-1211

Specify how to determine the codebook values as 'Property' or 'Input port'.

Codebook — Codebook
1:10 (default) | vector

Specify the codebook as a vector of quantized output values that correspond to each index value.

Tunable: Yes

Dependencies

This property applies when you set CodebookSource to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputDataType — Data type of codebook and quantized output
'double' | 'single' | 'Custom' | 'Same as input'

Specify the data type of the codebook and quantized output values as 'Same as input', 'double',
'single', or 'Custom'.

Dependencies

This property applies when you set CodebookSource to 'Property'.

Fixed-Point Properties

CustomOutputDataType — Output word and fraction lengths
numerictype(true,16) (default) | numerictype

Specify the output fixed-point type as a signed or unsigned numerictype object.

Dependencies

This property applies only when you set the OutputDataType property to Custom.

Usage

Syntax
Q = sqdec(I)
Q = sqdec(I,C)

Description

Q = sqdec(I) returns the quantized output values Q corresponding to the input indices I.

Q = sqdec(I,C) uses input C as the codebook values when you set the CodebookSource property
to Input port. The data type of C can be double, single, or fixed-point. The output Q has the
same data type as the codebook input C.

Input Arguments

I — Input indices
vector | matrix

4 System Objects

4-1212

Input indices, specified as a vector or a matrix.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

C — Codebook values
vector

Codebook, specified as a vector of quantized output values that correspond to each index value.
Dependencies

This property applies when you set CodebookSource to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments

Q — Quantized output values
vector | matrix

Quantized output values, returned as a vector or a matrix of the same size as the input, I. When
codebook is specified as a property, the output data type is determined by the OutputDataType
property. When the codebook is specified as an input, the output data type is same as the data type of
the codebook input.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Quantize Signal

Note: If you are using R2016a or earlier, replace each call to the object with the equivalent step
syntax. For example, obj(x) becomes step(obj,x).

Given a codebook and index values as inputs, determine the corresponding output quantized values.

codebook = single([-2.1655 -1.3238 -0.7365 -0.2249 0.2726, ...
 0.7844 1.3610 2.1599]);
indices = uint8([1 3 5 7 6 4 2 0]);
sqdec = dsp.ScalarQuantizerDecoder;
sqdec.CodebookSource = 'Input port';
qout = sqdec(indices,codebook)

 dsp.ScalarQuantizerDecoder

4-1213

qout = 1x8 single row vector

 -1.3238 -0.2249 0.7844 2.1599 1.3610 0.2726 -0.7365 -2.1655

Algorithms
This object implements the algorithm, inputs, and outputs described on the Scalar Quantizer Decoder
block reference page. The object properties correspond to the block parameters, except there is no
object property that directly corresponds to the Action for out of range index value block
parameter. The object sets any index values less than 0 to 0 and any index values greater than or
equal to N to N – 1.

Compatibility Considerations
dsp.ScalarQuantizerDecoder System object will be removed
Warns starting in R2021b

dsp.ScalarQuantizerDecoder System object will be removed in a future release.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Introduced in R2012a

4 System Objects

4-1214

dsp.ScalarQuantizerEncoder
Package: dsp

(To be removed) Associate input value with index value of quantization region

Note dsp.ScalarQuantizerEncoder will be removed in a future release.

Description
The dsp.ScalarQuantizerEncoder object encodes each input value by associating that value with
the index value of the quantization region. Then, the object outputs the index of the associated
region.

To encode an input value by associating it with an index value of the quantization region:

1 Create the dsp.ScalarQuantizerEncoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
sqenc = dsp.ScalarQuantizerEncoder
sqenc = dsp.ScalarQuantizerEncoder(Name,Value)

Description

sqenc = dsp.ScalarQuantizerEncoder returns a scalar quantizer encoder System object,
sqenc. This object maps each input value to a quantization region by comparing the input value to
the user-specified boundary points.

sqenc = dsp.ScalarQuantizerEncoder(Name,Value) returns a scalar quantizer encoder
object, sqenc, with each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

BoundaryPointsSource — Source of boundary points
'Property' (default) | 'Input port'

 dsp.ScalarQuantizerEncoder

4-1215

Specify how to determine the boundary points and codebook values as 'Property' or 'Input
port'.

Partitioning — Quantizer is bounded or unbounded
'Bounded' (default) | 'Unbounded'

Specify the quantizer as 'Bounded' or 'Unbounded'.

BoundaryPoints — Boundary points of quantizer regions
1:10 (default) | vector

Specify the boundary points of quantizer regions as a vector. The vector values must be in ascending
order. Let [p0 p1 p2 p3 ... pN] denote the boundary points property in the quantizer. If the
quantizer is bounded, the object uses this property to specify [p0 p1 p2 p3 ... pN]. If the
quantizer is unbounded, the object uses this property to specify [p1 p2 p3 ... p(N-1)] and sets
p0 = -Inf and pN = +Inf.

Tunable: Yes

Dependencies

This property applies when you set the BoundaryPointsSource property to Property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SearchMethod — Find quantizer index by linear or binary search
'Linear' (default) | 'Binary'

Specify whether to find the appropriate quantizer index using a linear search or a binary search as
one of 'Linear' or 'Binary'. The computational cost of the linear search method is of the order P
and the computational cost of the binary search method is of the order

log2(P)

where P is the number of boundary points.

TiebreakerRule — Behavior when input equals boundary point
'Choose the lower index' (default) | 'Choose the higher index'

Specify whether the input value is assigned to the lower indexed region or higher indexed region
when the input value equals boundary point by selecting 'Choose the lower index' or 'Choose
the higher index'.

CodewordOutputPort — Enable output of codeword value
false (default) | true

Set this property to true to output the codeword values that correspond to each index value.

QuantizationErrorOutputPort — Enable output of quantization error
false (default) | true

Set this property to true to output the quantization error for each input value. The quantization
error is the difference between the input value and the quantized output value.

Codebook — Codebook
1.5:9.5 (default) | vector

4 System Objects

4-1216

Specify the codebook as a vector of quantized output values that correspond to each region. If the
Partitioning property is 'Bounded' and the boundary points vector has length N, you must set
this property to a vector of length N-1. If the Partitioning property is 'Unbounded' and the
boundary points vector has length N, you must set this property to a vector of length N+1.

Tunable: Yes

Dependencies

This property applies when you set the BoundaryPointsSource property to 'Property' and
either the CodewordOutputPort property or the QuantizationErrorOutputPort property is
true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ClippingStatusOutputPort — Enable output of clipping status
false (default) | true

Set this property to true to output the clipping status. The output is a 1 when an input value is
outside the range defined by the BoundaryPoints property. When the value is inside the range, the
exception output is a 0.

Dependencies

This property applies when you set the Partitioning property to 'Bounded'.

OutputIndexDataType — Data type of the index output
int32 (default) | int8 | int16 | uint8 | uint16 | uint32

Specify the data type of the index output from the object as: int8, uint8, int16, uint16, int32,
uint32.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Specify the rounding method.

OverflowAction — Overflow action for fixed-point operations
'Wrap' (default) | 'Saturate'

Specify the overflow action.

Usage

Syntax
index = sqenc(input)
[index] = sqenc(input,bpoints)
[index] = sqenc(input,bpoints,cBook)
[index,codeword] = sqenc(___)
[___ ,qerr] = sqenc(___)
[___ ,cStatus] = sqenc(___)

 dsp.ScalarQuantizerEncoder

4-1217

Description

index = sqenc(input) returns the index of the quantization region to which the input belongs.
The input data, boundary points, codebook values, quantized output values, and the quantization
error must have the same data type whenever they are present.

[index] = sqenc(input,bpoints) uses input bpoints as the boundary points when the
BoundaryPointsSource property is Input port.

[index] = sqenc(input,bpoints,cBook) uses input bpoints as the boundary points and input
cBook as the codebook when the BoundaryPointsSource property is 'Input port' and either
the CodewordOutputPort property or the QuantizationErrorOutputPort property is true.

[index,codeword] = sqenc(___) outputs the codeword values that corresponds to each index
value when the CodewordOutputPort property is true.

[___ ,qerr] = sqenc(___) outputs the quantization error qerr for each input value when the
QuantizationErrorOutputPort property is true.

[___ ,cStatus] = sqenc(___) also returns output cStatus as the clipping status output port
for each input value when the Partitioning property is 'Bounded' and the
ClippingStatusOutputPort property is true. If an input value is outside the range defined by the
BoundaryPoints property, cStatus is true. If an input value is inside the range, cStatus is
false.

Input Arguments

input — Input data
vector | matrix

Input data, specified as a vector or a matrix. If the input is fixed point, it must be signed fixed point
with power-of-two slope and zero bias.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

bpoints — Boundary points
vector

Boundary points of the quantizer regions, specified as a vector. The vector values must be in
ascending order. Let [p0 p1 p2 p3 ... pN] denote the boundary points in the quantizer. If the
quantizer is bounded, the object uses this input to specify [p0 p1 p2 p3 ... pN]. If the quantizer
is unbounded, the object uses this input to specify [p1 p2 p3 ... p(N-1)] and sets p0 = -Inf
and pN = +Inf.
Dependencies

This input applies when you set the BoundaryPointsSource property to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

cBook — Code book
vector

Codebook, specified as a vector of quantized output values that correspond to each region. If the
Partitioning property is 'Bounded' and the boundary points vector has length N, this input must
be a vector of length N-1. If the Partitioning property is 'Unbounded' and the boundary points
vector has length N, this input must be a vector of length N+1.

4 System Objects

4-1218

Dependencies

This input applies when you set the BoundaryPointsSource property is 'Input port' and either
the CodewordOutputPort property or the QuantizationErrorOutputPort property is true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments

index — Index of quantization region
vector | matrix

Index of the quantization region to which the input belongs, returned as a vector or a matrix of the
same size as the input.
Data Types: int32

codeword — Codeword values
vector | matrix

Codeword values that correspond to each index value, returned as a vector or a matrix of the same
size as the input.
Dependencies

This output is available when the CodewordOutputPort property is set to true.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

qerr — Quantization error
vector | matrix

Quantization error for each input value, returned as a vector or a matrix of the same size as the
input.
Dependencies

This output is available when the QuantizationErrorOutputPort property is set to true.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

cStatus — Clipping status
vector | matrix

Clipping status for each input value, returned as a vector or a matrix. If an input value is outside the
range defined by the BoundaryPoints property, cStatus is true. If an input value is inside the
range, cStatus is false.
Dependencies

This output is available when the Partitioning property is 'Bounded' and the
ClippingStatusOutputPort property is set to true.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

 dsp.ScalarQuantizerEncoder

4-1219

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Quantize Varying Fractional Inputs

Note: If you are using R2016a or earlier, replace each call to the object with the equivalent step
syntax. For example, obj(x) becomes step(obj,x).

Quantize the varying fractional inputs between zero and five to the closest integers, and then plot the
results.

sqenc = dsp.ScalarQuantizerEncoder;
sqenc.BoundaryPoints = [-.001 .499 1.499 ...
 2.499 3.499 4.499 5.001];
sqenc.CodewordOutputPort = true;
sqenc.Codebook = [0 1 2 3 4 5];
input = (0:0.02:5)';
[index, quantizedValue] = sqenc(input);
plot(1:length(input), [input quantizedValue]);

Algorithms
This object implements the algorithm, inputs, and outputs described on the Scalar Quantizer Encoder
block reference page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.ScalarQuantizerEncoder System object will be removed
Warns starting in R2021b

dsp.ScalarQuantizerEncoder System object will be removed in a future release.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

4 System Objects

4-1220

See Also

Introduced in R2012a

 dsp.ScalarQuantizerEncoder

4-1221

dsp.SignalSink
Package: dsp

Log simulation data in buffer

Description
The dsp.SignalSink System object logs MATLAB simulation data. This object accepts any numeric
data type.

To log MATLAB simulation data :

1 Create the dsp.SignalSink object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
ss = dsp.SignalSink
ss = dsp.SignalSink(Name,Value)

Description

ss = dsp.SignalSink returns a signal sink, ss, that logs 2-D input data in the object.

ss = dsp.SignalSink(Name,Value) returns a signal sink, ss, with each specified property set to
the specified value. Enclose each property name in single quotes. Unspecified properties have default
values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

BufferLength — Maximum number of input frames to log
inf (default) | positive integer

Specify the maximum number of frames to log. The object always preserves the most recent data in
the buffer. When you specify a buffer length that is greater than the input length, the object pads the
end of the logged data with zeros. To capture all input data without extra padding, set the
BufferLength property to inf.

4 System Objects

4-1222

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Decimation — Decimation factor
1 (default) | positive integer

Setting this property to any positive integer d causes the signal sink to write data at every dth
sample.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FrameHandlingMode — Output dimensionality for frame-based inputs
2-D array (concatenate) (default) | 3-D array (separate)

Set the dimension of the output array for frame-based inputs as 2-D array (concatenate) or 3-D
array (separate). Concatenation occurs along the first dimension for 2-D array
(concatenate).

Buffer — Logged data (read only)
matrix

This property is read-only.

The signal sink writes simulation data into a buffer. Specify the maximum length of the buffer with
the BufferLength property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Usage

Syntax
ss(x)

Description

ss(x) buffers the signal x. The buffer may be accessed at any time from the Buffer property of ss.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 dsp.SignalSink

4-1223

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Log Input Data

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

hlog = dsp.SignalSink;
 for i=1:10
 y = sin(i);
 hlog(y);
 end
log = hlog.Buffer;
display(log)

log = 10×1

 0.8415
 0.9093
 0.1411
 -0.7568
 -0.9589
 -0.2794
 0.6570
 0.9894
 0.4121
 -0.5440

Algorithms
This object implements the algorithm, inputs, and outputs described on the To Workspace block
reference page. The object properties correspond to the block properties, except the object always
generates fixed-point output for fixed-point input.

See Also
Objects
dsp.SignalSource

Introduced in R2012b

4 System Objects

4-1224

dsp.SignalSource
Package: dsp

Import variable from workspace

Description
The SignalSource object imports a variable from the MATLAB workspace.

To import a variable from the MATLAB workspace:

1 Create the dsp.SignalSource object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
src = dsp.SignalSource
src = dsp.SignalSource(signal,spf)
src = dsp.SignalSource(Name,Value)

Description

src = dsp.SignalSource returns a signal source System object, src, that outputs the variable,
specified by the Signal property, one sample or frame at a time.

src = dsp.SignalSource(signal,spf) returns a signal source object, src, with the Signal
property set to signal and the “SamplesPerFrame” on page 4-0 property set to spf.

src = dsp.SignalSource(Name,Value) returns a signal source object, src, with each specified
property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Signal — Variable or expression containing the signal
[1:10]' (default) | vector | matrix

 dsp.SignalSource

4-1225

Specify the name of the workspace variable from which to import the signal, or a valid expression
specifying the signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

SamplesPerFrame — Number of samples per output frame
1 (default) | positive scalar

Specify the number of samples to buffer into each output frame. This property must be 1 when you
specify a 3-D array in the Signal property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SignalEndAction — Action after final signal values are generated
'Set to zero' (default) | 'Hold final value' | 'Cyclic repetition'

Specify the output after all of the specified signal samples have been generated as one of 'Set to
zero', 'Hold final value', or 'Cyclic repetition'.

Usage

Syntax
Y = src()

Description

Y = src() outputs one sample or frame of data from each column of the imported signal. The
imported signal is the variable or expression you specify for the Signal property of the
SignalSource System object, src.

Output Arguments

Y — Output data
scalar | vector | matrix

One sample or one frame of data from each column of the imported signal, returned as a scalar,
vector, or matrix. The number of columns in the output signal matches the number of columns in the
imported signal, Signal. The number of rows in the output signal matches the value specified in the
SamplesPerFrame property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

4 System Objects

4-1226

Specific to dsp.SignalSource
isDone End-of-file status for signal reader object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create Signal Source

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject() becomes step(myObject).

Create a signal source to output one sample at a time.

src1 = dsp.SignalSource;
src1.Signal = randn(1024,1);
y1 = zeros(1024,1);
idx = 1;
while(~isDone(src1))
 y1(idx) = src1();
 idx = idx + 1;
end

Create a signal source to output vectors.

src2 = dsp.SignalSource(randn(1024,1),128);
y2 = src2(); % y2 is a 128-by-1 frame of samples

Algorithms
This object implements the algorithm, inputs, and outputs described on the Signal From Workspace
block reference page. The object properties correspond to the block parameters, except the System
object does not have properties that correspond to the Sample time or Warn when frame size
does not evenly divide input length block parameters.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 dsp.SignalSource

4-1227

See Also
Functions
isDone

Objects
dsp.SignalSink

Introduced in R2012b

4 System Objects

4-1228

dsp.SineWave
Package: dsp

Generate discrete sine wave

Description
The dsp.SineWave System object generates a real or complex, multichannel sinusoidal signal with
independent amplitude, frequency, and phase in each output channel.

For both real and complex sinusoids, the “Amplitude” on page 4-0 , “Frequency” on page 4-0 ,
and “PhaseOffset” on page 4-0 properties can be scalars or length-N vectors, where N is the
number of channels in the output. When you specify at least one of these properties as a length-N
vector, scalar values specified for the other properties are applied to each of the N channels.

To generate a discrete-time sinusoidal signal:

1 Create the dsp.SineWave object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
sine = dsp.SineWave
sine = dsp.SineWave(Name,Value)
sine = dsp.SineWave(amp,freq,phase,Name,Value)

Description

sine = dsp.SineWave creates a sine wave object that generates a real-valued sinusoid with an
amplitude of 1, a frequency of 100 Hz, and a phase offset of 0. By default, the sine wave object
generates only one sample.

sine = dsp.SineWave(Name,Value) creates a sine wave object with each specified property set
to the specified value. Enclose each property name in single quotes.
Example: sine = dsp.SineWave('Amplitude',2);

sine = dsp.SineWave(amp,freq,phase,Name,Value) creates a sine wave object with the
“Amplitude” on page 4-0 property set to amp, “Frequency” on page 4-0 property set to freq,
“PhaseOffset” on page 4-0 property set to phase, and anyother specified properties set to the
specified values.

 dsp.SineWave

4-1229

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Amplitude — Amplitude of sine wave
1 (default) | scalar | vector

Amplitude of the sine wave, specified as one of the following:

• scalar –– A scalar applies to all channels.
• vector –– A length-N vector contains the amplitudes of the sine waves in each of the N output

channels. The vector length must be the same as that specified for the “Frequency” on page 4-
0 and “PhaseOffset” on page 4-0 properties.

Tunable: Yes

Dependencies

This property is tunable only when you set “Method” on page 4-0 to either 'Trigonometric
function' or 'Differential'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Frequency — Frequency of sine wave
100 (default) | scalar | vector

Frequency of the sine wave in Hz, specified as one of the following:

• scalar –– A scalar applies to all channels.
• vector –– A length-N vector contains the frequencies of the sine waves in each of the N output

channels. The vector length must be the same as that specified for the “Amplitude” on page 4-
0 and “PhaseOffset” on page 4-0 properties.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PhaseOffset — Phase offset of sine wave
0 (default) | scalar | vector

Phase offset of the sine wave in radians, specified as one of the following:

• scalar –– A scalar applies to all channels.
• vector –– A length-N vector contains the phase offsets of the sine waves in each of the N output

channels. The vector length must be the same as that specified for the “Amplitude” on page 4-
0 and “Frequency” on page 4-0 properties.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ComplexOutput — Flag that indicates whether waveform is real or complex
false (default) | true

4 System Objects

4-1230

Flag that indicates whether the waveform is real or complex, specified as either:

• false –– The waveform output is real.
• true –– The waveform output is complex.

Method — Method used to generate sinusoids
'Trigonometric function' (default) | 'Table lookup' | 'Differential'

Method used to generate sinusoids, specified as one of the following:

• 'Trigonometric function' –– The object computes the sinusoid by sampling the continuous-
time function.

• 'Table lookup' –– The object precomputes the unique samples of every output sinusoid at the
start of the simulation, and recalls the samples from memory as needed.

• 'Differential' –– The object uses an incremental algorithm. This algorithm computes the
output samples based on the output values computed at the previous sample time and
precomputed update terms.

TableOptimization — Optimize table of sine values for speed or memory
'Speed' (default) | 'Memory'

Optimize table of sine values for speed or memory, specified as either:

• 'Speed' –– The table contains k elements, where k is the number of input samples in one full
period of the sine wave. The period of each sinusoid must be an integer multiple of 1/Fs, where Fs
is the value of the “SampleRate” on page 4-0 property value. That is, each element of the
“Frequency” on page 4-0 property must be of the form Fs/m, where m is an integer greater
than 1.

• 'Memory' –– The table contains k/4 elements.

Dependencies

This property applies only when you set the Method property to 'Table lookup'.

SampleRate — Sample rate of output signal
1000 (default) | positive scalar

Sample rate of output signal in Hz, specified as a positive scalar.
Example: 44100
Example: 22050

SamplesPerFrame — Number of samples per frame
1 (default) | positive integer

Number of consecutive samples from each sinusoid to buffer into the output frame, specified as a
positive integer.
Example: 1000
Example: 5000
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputDataType — Data type of the sine wave output
'double' (default) | 'single' | 'Custom'

 dsp.SineWave

4-1231

Data type of the sine wave output, specified as 'double', 'single', or 'Custom'.

Fixed-Point Properties

CustomOutputDataType — Output word and fraction lengths
numerictype([],16) (default) | numerictype([],32,30)

Output word and fraction lengths, specified as an autosigned numeric type with a word length of 16.
Example: numerictype([],32,30)
Example: numerictype([],16,15)

Dependencies

This property applies only when you set the “Method” on page 4-0 property to 'Table lookup'
and the “OutputDataType” on page 4-0 property to 'Custom'.

Usage

Syntax
sineOut = sine()

Description

sineOut = sine() creates the sine wave output, sineOut.

Output Arguments

sineOut — Sine wave output
vector | matrix

Sine wave output, returned as a vector or matrix. The “SamplesPerFrame” on page 4-0 property
determines the number of rows in the output matrix. If the “Frequency” on page 4-0 or the
“PhaseOffset” on page 4-0 property is a vector, the length of the vector determines the number of
columns (channels) in the output matrix. If the Frequency or the PhaseOffset properties is a
scalar, then the number of channels in the output matrix is 1.

The “OutputDataType” on page 4-0 property sets the data type of the output.
Data Types: single | double | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

4 System Objects

4-1232

reset Reset internal states of System object

Examples

Generate a Sine Wave Signal

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Generate a sine wave with an amplitude of 2, frequency of 10 Hz, and an initial phase of 0.

sine1 = dsp.SineWave(2,10);
sine1.SamplesPerFrame = 1000;
y = sine1();
plot(y)

Generate two sine waves offset by a phase of pi/2 radians.

sine2 = dsp.SineWave;
sine2.Frequency = 10;
sine2.PhaseOffset = [0 pi/2];
sine2.SamplesPerFrame = 1000;
y = sine2();
plot(y)

 dsp.SineWave

4-1233

Filter Frames of a Noisy Sine Wave Signal in MATLAB

This example shows how to lowpass filter a noisy signal in MATLAB® and visualize the original and
filtered signals using a spectrum analyzer. For a Simulink® version of this example, see “Filter
Frames of a Noisy Sine Wave Signal in Simulink”.

Specify Signal Source

The input signal is the sum of two sine waves with frequencies of 1 kHz and 10 kHz. The sampling
frequency is 44.1 kHz.

Sine1 = dsp.SineWave('Frequency',1e3,'SampleRate',44.1e3);
Sine2 = dsp.SineWave('Frequency',10e3,'SampleRate',44.1e3);

Create Lowpass Filter

The lowpass FIR filter, dsp.LowpassFilter, designs a minimum-order FIR lowpass filter using the
generalized Remez FIR filter design algorithm. Set the passband frequency to 5000 Hz and the
stopband frequency to 8000 Hz. The passband ripple is 0.1 dB and the stopband attenuation is 80 dB.

FIRLowPass = dsp.LowpassFilter('PassbandFrequency',5000,...
 'StopbandFrequency',8000);

4 System Objects

4-1234

Create Spectrum Analyzer

Set up the spectrum analyzer to compare the power spectra of the original and filtered signals. The
spectrum units are dBm.

SpecAna = dsp.SpectrumAnalyzer('PlotAsTwoSidedSpectrum',false,...
 'SampleRate',Sine1.SampleRate,...
 'NumInputPorts',2,...
 'ShowLegend',true, ...
 'YLimits',[-145,45]);

SpecAna.ChannelNames = {'Original noisy signal',...
 'Lowpass filtered signal'};

Specify Samples per Frame

This example uses frame-based processing, where data is processed one frame at a time. Each frame
of data contains sequential samples from an independent channel. Frame-based processing is
advantageous for many signal processing applications because you can process multiple samples at
once. By buffering your data into frames and processing multisample frames of data, you can improve
the computational time of your signal processing algorithms. Set the number of samples per frame to
4000.

Sine1.SamplesPerFrame = 4000;
Sine2.SamplesPerFrame = 4000;

Filter the Noisy Sine Wave Signal

Add zero-mean white Gaussian noise with a standard deviation of 0.1 to the sum of sine waves. Filter
the result using the FIR filter. While running the simulation, the spectrum analyzer shows that
frequencies above 8000 Hz in the source signal are attenuated. The resulting signal maintains the
peak at 1 kHz because it falls in the passband of the lowpass filter.

for i = 1 : 1000
 x = Sine1()+Sine2()+0.1.*randn(Sine1.SamplesPerFrame,1);
 y = FIRLowPass(x);
 SpecAna(x,y);
end
release(SpecAna)

 dsp.SineWave

4-1235

Bandpass Filtering of Sinusoids

Bandpass filter a discrete-time sine wave signal which consists of three sinusoids at frequencies, 1
kHz, 10 kHz, and 15 kHz.

Design an FIR Equiripple bandpass filter by first creating a bandpass filter design specifications
object, and then designing a filter using these specifications.

Design Bandpass Filter

Create a bandpass filter design specifications object using fdesign.bandpass.

bandpassSpecs = fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2', ...
 1/4,3/8,5/8,6/8,60,1,60);

List the available design methods for this object.

designmethods(bandpassSpecs)

Design Methods for class fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter

4 System Objects

4-1236

cheby1
cheby2
ellip
equiripple
kaiserwin

To design an Equiripple filter, pick 'equiripple'.

bpFilter = design(bandpassSpecs,'equiripple','Systemobject',true)

bpFilter =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [-0.0043 -3.0812e-15 0.0136 3.7820e-15 -0.0180 ...]
 InitialConditions: 0

 Show all properties

Visualize the frequency response of the designed filter.

fvtool(bpFilter,'Fs',44100)

Create Sinusoidal Signal

Create a signal that is a sum of three sinusoids with frequencies at 1 kHz, 10 kHz, and 15 kHz.
Initialize Spectrum Analyzer to view the original signal and the filtered signal.

 dsp.SineWave

4-1237

Sine1 = dsp.SineWave('Frequency',1e3,'SampleRate',44.1e3,'SamplesPerFrame',4000);
Sine2 = dsp.SineWave('Frequency',10e3,'SampleRate',44.1e3,'SamplesPerFrame',4000);
Sine3 = dsp.SineWave('Frequency',15e3,'SampleRate',44.1e3,'SamplesPerFrame',4000);

SpecAna = dsp.SpectrumAnalyzer('PlotAsTwoSidedSpectrum',false, ...
 'SampleRate',Sine1.SampleRate, ...
 'NumInputPorts',2,...
 'ShowLegend',true, ...
 'YLimits',[-240,45]);

SpecAna.ChannelNames = {'Original noisy signal','Bandpass filtered signal'};

Filter Sinusoidal Signal

Filter the sinusoidal signal using the bandpass filter that has been designed. View the original signal
and the filtered signal in the Spectrum Analyzer. The tone at 1 kHz is filtered out and attenuated. The
tone at 10 kHz is unaffected, and the tone at 15 kHz is mildly attenuated because it appears in the
transition band of the filter.

for i = 1 : 1000
 x = Sine1()+Sine2()+Sine3();
 y = bpFilter(x);
 SpecAna(x,y);
end
release(SpecAna)

4 System Objects

4-1238

More About
Sinusoid

A real-valued, discrete-time sinusoid is defined as:

y(n) = Asin(2πfn + ϕ)

where A is the amplitude, f is the frequency in Hz, and φ is the initial phase, or phase offset, in
radians.

A complex sinusoid is defined as:

y(n) = Ae j(2πfn + ϕ)

Algorithms
Trigonometric Function

The trigonometric function method computes the sinusoid in the ith channel, yi, by sampling the
continuous function

 dsp.SineWave

4-1239

yi = Aisin 2πf it + ϕi (real)

or

yi = Aie
j 2πfit + ϕi (complex)

with a period of Ts, where you specify Ts in the sample time.

At each sample time, the algorithm evaluates the sine function at the appropriate time value within
the first cycle of the sinusoid. By constraining trigonometric evaluations to the first cycle of each
sinusoid, the algorithm avoids the imprecision of computing the sine of very large numbers. This
constraint also eliminates the possibility of discontinuity during extended operations, when an
absolute time variable might overflow. This method therefore avoids the memory demands of the
table lookup method at the expense of many more floating-point operations.

Table Lookup

The table lookup method precomputes the unique samples of every output sinusoid at the start of the
simulation, and recalls the samples from memory as needed. Because a table of finite length can only
be constructed when all output sequences repeat, the method requires that the period of every
sinusoid in the output be evenly divisible by the sample period. That is, 1/(fiTs) = ki must be an
integer value for every channel i = 1, 2, ..., N.

When the algorithm optimizes the table of sine values for Speed, the table constructed for each
channel contains ki elements. When the optimization is for Memory, the table constructed for each
channel contains ki/4 elements.

For long output sequences, the table lookup method requires far fewer floating-point operations than
any of the other methods. However, the method can demand considerably more memory, especially
for high sample rates (long tables). This method is recommended for models that are intended to
emulate or generate code for DSP hardware, which need to be optimized for execution speed.

Note The lookup table for this object is constructed from double-precision floating-point values.
When you use the Table Lookup computation mode, the maximum amount of precision you can
achieve in your output is 53 bits. Setting the word length of the output data type to values greater
than 53 bits does not improve the precision of your output.

Differential

The differential method uses an incremental algorithm. This algorithm computes the output samples
based on the output values computed at the previous sample time (and precomputed update terms)
by making use of the following identities.

sin t + Ts = sin t cos Ts + cos t sin Ts
cos t + Ts = cos t cos Ts − sin t sin Ts

The update equations for the sinusoid in the ith channel, yi, can therefore be written in matrix form as

sin 2πf i t + Ts + ϕi
cos 2πf i t + Ts + ϕi

=
cos 2πf iTs sin 2πf iTs
−sin 2πf iTs cos 2πf iTs

sin 2πf it + ϕi
cos 2πf it + ϕi

where you specify Ts in the sample time. Since Ts is constant, the right-hand matrix is a constant and
can be computed once at the start of the simulation. The value of Aisin[2πfi(t+Ts)+ϕi] is then

4 System Objects

4-1240

computed from the values of sin(2πfit+ϕi) and cos(2πfit+ϕi) by a simple matrix multiplication at each
time step.

This mode offers reduced computational load, but is subject to drift over time due to cumulative
quantization error. Because the method is not contingent on an absolute time value, there is no
danger of discontinuity during extended operations, when an absolute time variable might overflow.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• This object has no tunable properties for code generation.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.Chirp | dsp.NCO | dsp.ColoredNoise

Topics
“Introduction to Streaming Signal Processing in MATLAB”
“Filter Frames of a Noisy Sine Wave Signal in MATLAB”
“Estimate the Power Spectrum in MATLAB”

Introduced in R2012a

 dsp.SineWave

4-1241

dsp.SOSFilter
Package: dsp

Second-order section biquadratic IIR filter structures

Description
The dsp.SOSFilter System object implements an IIR filter structure using second-order sections
(SOS).

To implement an IIR filter structure using SOS:

1 Create the dsp.SOSFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
sos = dsp.SOSFilter
sos = dsp.SOSFilter(num,den)
sos = dsp.SOSFilter(Name,Value)

Description

sos = dsp.SOSFilter returns a biquadratic IIR filter System object, sos, which independently
filters each channel (column) of the input over time using a specified biquadratic structure.

sos = dsp.SOSFilter(num,den) returns a biquadratic filter object with the Numerator property
set to num and the Denominator property set to den.

sos = dsp.SOSFilter(Name,Value) returns a biquadratic filter object with each property set to
the specified value. Enclose each property name in single quotes.
Example: sos = dsp.SOSFilter('CoefficientSource','Input port')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-1242

Structure — Filter structure
'Direct form II transposed' (default) | 'Direct form I' | 'Direct form I
transposed' | 'Direct form II'

Filter structure, specified as one of 'Direct form I', 'Direct form I transposed', 'Direct
form II', or 'Direct form II transposed'.

CoefficientSource — Source of filter coefficients
'Property' (default) | 'Input port'

Source of the filter coefficients, specified as one of the following:

• 'Property' –– The filter coefficients are specified through the Numerator, Denominator, and
ScaleValues properties.

• 'Input port' –– The numerator coefficients, denominator coefficients, and the scale values are
specified as inputs to the object while running the algorithm. For more details, see “Usage” on
page 4-1246.

Numerator — Numerator coefficients of filter
[0.0975 0.195 0.0975] (default) | N-by-3 matrix

Numerator coefficients of the filter, specified as an N-by-3 matrix, where N is the number of
biquadratic sections.

The size of this property cannot be modified once you have run the System object algorithm.
However, the coefficient values can change as the property is tunable.

Tunable: Yes
Dependencies

To enable this property, set the CoefficientSource property to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Denominator — Denominator coefficients of filter
[1 -0.9428 0.3333] (default) | N-by-3 matrix

Denominator coefficients of the filter, specified as an N-by-3 matrix, where N is the number of
biquadratic sections.

The leading denominator coefficient is always assumed to be 1. If any other value is specified in the
first column, the object ignores this value and treats it as 1.

The size of this property cannot be modified once you step through the algorithm. However, the
denominator values can be modified as the property is tunable.

Tunable: Yes
Dependencies

To enable this property, set CoefficientSource property to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

HasScaleValues — Specify if filter has scale values for each section
false (default) | true

 dsp.SOSFilter

4-1243

Specify if the filter has scale values for each section. When set to true, using the ScaleValues
property, you can specify the scale values to be applied before and after each section of the
biquadratic filter.

ScaleValues — Scale values for each biquad second-order section
[1 1] (default) | vector

Scale values to apply before and after each section of a biquadratic filter, specified as a vector. The
length of the ScaleValues vector must be N + 1, where N is the number of biqaudratic sections. If
you set this property to a scalar value, the scalar value is used as the gain value only before the first
filter section. The remaining gain values are set to 1. If you set this property to a vector of N + 1
values, each value is used for a separate section of the filter.

Tunable: Yes
Dependencies

This property applies only when you set the CoefficientSource property to 'Property' and
HasScaleValues property to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Rounding method for fixed-point operations, specified as one of the following:

• 'Floor'
• 'Ceiling'
• 'Convergent'
• 'Nearest'
• 'Round'
• 'Simplest'
• 'Zero'

For more details, see Rounding Modes.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Overflow action for fixed-point operations, specified as one of the following:

• 'Wrap' –– The object wraps the result of its fixed-point operations.
• 'Saturate' –– The object saturates the result of its fixed-point operations.

For more details on overflow actions, see Overflow Handling for fixed-point operations.

SectionInputDataType — Section input word- and fraction-length designations
'Same as input' (default) | numerictype object

Section input word- and fraction-length designations, specified as either 'Same as input' or a
numerictype object.

4 System Objects

4-1244

When specified as a numerictype object, the data type must be signed fixed point with a power-of-
two slope and zero bias.

Dependencies

This property applies only when you set the HasScaleValues property to true.

SectionOutputDataType — Section output word- and fraction-length designations
'Same as section input' (default) | numerictype object

Section output word- and fraction-length designations, specified as either 'Same as section
input' or a numerictype object.

When specified as a numerictype object, the data type must be signed fixed point with a power-of-
two slope and zero bias.

Dependencies

This property applies only when you set the HasScaleValues property to true.

NumeratorDataType — Numerator coefficients word- and fraction-length designations
'Same word length as input' (default) | numerictype object

Numerator coefficients word- and fraction-length designations, specified as either 'Same word
length as input' or as a numerictype object.

When specified as a numerictype object, the data type must be signed fixed point with a power-of-
two slope and zero bias. If not specified, the fraction length is determined based on the numerator
coefficient values to give the best possible precision.

Dependencies

This property applies only when you set the CoefficientSource property to 'Property'.

DenominatorDataType — Denominator coefficients word- and fraction-length designations
'Same word length as input' (default) | numerictype object

Denominator coefficients word- and fraction-length designations, specified as either 'Same word
length as input' or as a numerictype object.

When specified as a numerictype object, the data type must be signed fixed point with a power-of-
two slope and zero bias. If not specified, the fraction length is determined based on the denominator
coefficient values to give the best possible precision.

Dependencies

This property applies only when you set the CoefficientSource property to 'Property'.

ScaleValuesDataType — Scale values word- and fraction-length designations
'Same word length as input' (default) | numerictype object

Scale values word- and fraction-length designations, specified as either 'Same word length as
input' or as a numerictype object.

When specified as a numerictype object, the data type must be signed fixed point with a power-of-
two slope and zero bias. If not specified, the fraction length is determined based on the scale values
to give the best possible precision.

 dsp.SOSFilter

4-1245

Dependencies

This property applies only when you set the CoefficientSource property to 'Property' and
HasScaleValues property to true.

MultiplicandDataType — Multiplicand word- and fraction-length designations
'Same as output' (default) | numerictype object

Multiplicand word- and fraction-length designations, specified as either 'Same as output' or as a
numerictype object.

When specified as a numerictype object, the data type must be signed fixed point with a power-of-
two slope and zero bias.
Dependencies

This property applies only when you set the Structure property to 'Direct form I
transposed'.

StateDataType — State word- and fraction-length designations
'Full precision' (default) | numerictype object

State word- and fraction-length designations, specified as either 'Full precision' or as a
numerictype object.

When specified as a numerictype object, the data type must be signed fixed point with a power-of-
two slope and zero bias.
Dependencies

This property applies only when you set the Structure property to 'Direct form II'.

DenominatorAccumulatorDataType — Denominator accumulator word- and fraction-length
designations
numerictype(1,64,48) (default) | numerictype object

Denominator accumulator word- and fraction-length designations, specified as a numerictype
object.

OutputDataType — Output word- and fraction-length designations
'Full precision' (default) | numerictype object

Output word- and fraction-length designations, specified as either 'Full precision' or as a
numerictype object.

When specified as a numerictype object, the data type must be signed fixed point with a power-of-
two slope and zero bias.

Usage

Syntax
y = sos(x)
y = sos(x,num,den)
y = sos(x,num,den,g)

4 System Objects

4-1246

Description

y = sos(x) filters the input signal x and outputs the filtered values y. The sos filter object filters
each channel (column) of the input signal independently over successive calls to the algorithm.

This syntax is valid only when the CoefficientSource property is set to 'Property'.

y = sos(x,num,den) filters the input using num as the numerator coefficients and den as the
denominator coefficients of the sos filter.

This syntax is valid only when the CoefficientSource property is set to 'Input port' and
HasScaleValues property is set to false.

y = sos(x,num,den,g) specifies the scale values g of the sos filter.

This syntax is valid only when the CoefficientSource property is set to 'Input port' and
HasScaleValues property is set to true.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix.

This object also accepts variable-size inputs. Once you have run the System object algorithm, you can
change the size of each input channel, but you cannot change the number of channels.

If the input is fixed-point, it must be signed fixed point with a power-of-two slope and zero bias. When
the fraction length is not specified, the object determines the fraction length based on the input data
to give the best possible precision.

The data type of all inputs must be the same.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

num — Numerator coefficients
N-by-3 matrix

Numerator coefficients, specified as an N-by-3 matrix, where N is the number of biquadratic sections.

Once you step through the algorithm, the size of this input cannot be modified. However, the
numerator coefficient values can be modified as the input is tunable.

If num is fixed-point, it must be signed fixed point with a power-of-two slope and zero bias. When the
fraction length is not specified, the object determines the fraction length based on the numerator
coefficient values to give the best possible precision.

The data type of all inputs must be the same.

The size and complexity of the num and den inputs must be the same.

Tunable: Yes
Dependencies

This input applies only when you set the CoefficientSource property to 'Input port'.

 dsp.SOSFilter

4-1247

Data Types: single | double | int8 | int16 | int32 | int64 | fi

den — Denominator coefficients
N-by-3 matrix

Denominator coefficients of the filter, specified as an N-by-3 matrix, where N is the number of
biquadratic sections.

The leading denominator coefficient is always assumed to be 1. If any other value is specified in the
first column, the object ignores this value and treats it as 1.

The size of this input cannot be modified once you step through the algorithm. However, the
denominator values can be modified as the input is tunable.

If den is fixed-point, it must be signed fixed point with a power-of-two slope and zero bias. When the
fraction length is not specified, the object determines the fraction length based on the denominator
coefficient values to give the best possible precision.

The data type of all inputs must be the same.

The size and complexity of the num and den inputs must be the same.

Tunable: Yes
Dependencies

This input applies only when you set the CoefficientSource property to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

g — Scale values for each biquad second-order section
1-by-(N +1) vector

Scale values of the biquadratic filter, specified as a 1-by-(N+1) vector, where N is the number of
biquadratic filter sections.

If g is fixed-point, it must be signed fixed point with a power-of-two slope and zero bias. When the
fraction length is not specified, the object determines the fraction length based on the scale values to
give the best possible precision.

The data type of all inputs must be the same.

Tunable: Yes
Dependencies

This input applies only when you set the CoefficientSource property to 'Input port' and
HasScaleValues property to true.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Output Arguments

y — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix. The size and complexity of the output signal
matches that of the input signal.

4 System Objects

4-1248

The data type of the output is determined based on the value of the OutputDataType property. If set
to 'Full precision', the output data type is computed based on the signal flow diagrams shown
in the Fixed-Point Conversion on page 4-1254 section. If set to a custom numeric type, the output
data type is cast to the specified numeric type.
Data Types: single | double | int8 | int16 | int32 | int64 | fi
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.SOSFilter
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
impz Impulse response of discrete-time filter System object
info Information about filter System object
coeffs Returns the filter System object coefficients in a structure
cost Estimate cost of implementing filter System object
scale Scale second-order sections
scaleopts Create an options object for second-order section scaling
scalecheck Check scaling of biquadratic filter
cumsec Cumulative second-order section of the biquadratic filter
tf Convert discrete-time filter System object to transfer function
reorder Reorder second-order sections of biquadratic filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Remove High-Frequency Noise Using Biquad SOS Filter

Lowpass filter a noisy sinusoidal signal using the dsp.SOSFilter System object. Visualize the
original and filtered signals using a spectrum analyzer.

Input Signal

The input signal is a sinusoidal signal with two tones, one at 1 kHz and the other at 3 kHz. The
sampling frequency is 8 kHz.

f1 = 1000;
f2 = 3000;
Fs = 8000;
sine = dsp.SineWave('Frequency',[f1,f2],...

 dsp.SOSFilter

4-1249

 'SampleRate',Fs,...
 'SamplesPerFrame',1024);

Create Biquad SOS Filter

Design a 10th-order lowpass Butterworth IIR filter with a cutoff frequency of 2 kHz. The numerator
and denominator coefficients are extracted from the designed SOS matrix.

Fcutoff = 2000;
[z,p,k] = butter(10,Fcutoff/(Fs/2));
[s, g] = zp2sos(z,p,k);
num = s(:,1:3);
den = s(:,4:6);

sosFilter = dsp.SOSFilter(num,den,...
 'HasScaleValues',true,...
 'ScaleValues',g)

sosFilter =
 dsp.SOSFilter with properties:

 Structure: 'Direct form II transposed'
 CoefficientSource: 'Property'
 Numerator: [5x3 double]
 Denominator: [5x3 double]
 HasScaleValues: true
 ScaleValues: [0.0029 1 1 1 1 1]

 Show all properties

Visualize the frequency response of the designed SOS filter.

fvtool(sosFilter,'Fs',8000)

4 System Objects

4-1250

Streaming

Add zero-mean white Gaussian noise with a standard deviation of 0.1 to the sum of sine waves. Filter
the noisy sinusoidal signal with the designed SOS filter.

While running the simulation, the spectrum analyzer shows that the high-frequency tone above 2 kHz
in the source signal is attenuated. The resulting signal maintains the peak at 1 kHz because it falls in
the passband of the lowpass filter.

SA = dsp.SpectrumAnalyzer(...
 'PlotAsTwoSidedSpectrum',false, ...
 'SampleRate',Fs, ...
 'NumInputPorts',2,...
 'ShowLegend',true,...
 'YLimits',[-200 100],...
 'ChannelNames',{'Input signal','Filtered signal'});

 % Stream processing loop
for k = 1:100
 input = sum(sine(),2) + 0.1.*randn(sine.SamplesPerFrame,1);
 filteredOutput = sosFilter(input);
 SA(input,filteredOutput);
end

 dsp.SOSFilter

4-1251

Design a Time-Varying Lowpass IIR Filter

Design a lowpass biquadratic SOS filter with time-varying coefficients. Visualize the magnitude
response of the filter using a dynamic filter visualizer.

dfv = dsp.DynamicFilterVisualizer('YLimits',[-120 10])

dfv =
 DynamicFilterVisualizer with properties:

 FFTLength: 2048
 SampleRate: 44100
 FrequencyRange: [0 22050]
 XScale: 'Linear'
 MagnitudeDisplay: 'Magnitude (dB)'

 Visualization
 Name: 'Dynamic Filter Visualizer'
 Title: 'Magnitude Response'
 YLimits: [-120 10]
 ShowLegend: 0
 FilterNames: {''}
 UpperMask: Inf

4 System Objects

4-1252

 LowerMask: -Inf
 Position: [240 262 800 500]

Create a dsp.SOSFilter object.

sosfilt = dsp.SOSFilter

sosfilt =
 dsp.SOSFilter with properties:

 Structure: 'Direct form II transposed'
 CoefficientSource: 'Property'
 Numerator: [0.0975 0.1950 0.0975]
 Denominator: [1 -0.9428 0.3333]
 HasScaleValues: false

 Show all properties

Use the maxflat function to design a lowpass maximally flat filter. Set the numerator and
denominator order of the filter to 2 since the SOS filter is biquadratic. Vary the cutoff frequency in
0.001 increments and design the filter for each increment. Pass the computed coefficients to the SOS
filter. Visualize the time-varying magnitude response of the SOS filter using the
dsp.DynamicFilterVisualizer object.

for Wn = 0.1:0.001:0.6
 [b,a] = maxflat(2,2,Wn);
 sosfilt.Numerator = b;
 sosfilt.Denominator = a;
 dfv(sosfilt)
end

 dsp.SOSFilter

4-1253

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

These diagrams show the data types used in the dsp.SOSFilter object when the input is fixed-
point. For each filter structure the object supports, the data types shown in the diagrams can be set
through the respective fixed-point properties of the object.

4 System Objects

4-1254

Direct Form I

This diagram shows the data types for one section of the filter for fixed-point signals. The gain
operations b0, b1, b2, a1, and a2 operate in full precision.

 dsp.SOSFilter

4-1255

These diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you specify scale values to 1:

Direct Form I Transposed

This diagram shows the data types for one section of the filter for fixed-point signals. The dashed
casts are omitted when you set HasScaleValues to false. The gain operations b0, b1, b2, a1, and a2
operate in full precision.

4 System Objects

4-1256

These diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you specify scale values to 1:

 dsp.SOSFilter

4-1257

Direct Form II

This diagram shows the data types for one section of the filter for fixed-point signals. The dashed
casts are omitted when you set HasScaleValues to false. The gain operations b0, b1, b2, a1, and a2
operate in full precision.

4 System Objects

4-1258

These diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you set scale values to 1:

 dsp.SOSFilter

4-1259

Direct Form II Transposed

This diagram shows the data types for one section of the filter for fixed-point signals. The gain
operations b0, b1, b2, a1, and a2 operate in full precision. When you set HasScaleValues to false,
the data type at the section output is automatically determined by the object algorithm and is not
controlled by the value of the SectionOutputDataType property.

4 System Objects

4-1260

These diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you specify scale values to 1:

See Also
Functions
freqz | fvtool | impz | info | coeffs | cost | scale | scaleopts | scalecheck | cumsec | tf

 dsp.SOSFilter

4-1261

Objects
dsp.BiquadFilter

Blocks
Biquad Filter

Introduced in R2020a

4 System Objects

4-1262

dsp.SpectrumAnalyzer
Package: dsp

Display frequency spectrum of time-domain signals

Description
The Spectrum Analyzer System object displays the frequency spectrum of time-domain signals. This
scope supports variable-size input, which allows the input frame size to change. Frame size is the first
dimension of the input vector. The number of input channels must remain constant.

To display the spectra of signals in the Spectrum Analyzer:

1 Create the dsp.SpectrumAnalyzer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

 dsp.SpectrumAnalyzer

4-1263

Creation

Syntax
scope = dsp.SpectrumAnalyzer
scope = dsp.SpectrumAnalyzer(ports)
scope = dsp.SpectrumAnalyzer(Name,Value)

Description

scope = dsp.SpectrumAnalyzer creates a Spectrum Analyzer System object. This object displays
the frequency spectrum of real- and complex-valued floating- and fixed-point signals.

scope = dsp.SpectrumAnalyzer(ports) creates a Spectrum Analyzer object and sets the
NumInputPorts property to the value of ports.

scope = dsp.SpectrumAnalyzer(Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in single quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Frequently Used

NumInputPorts — Number of input ports
1 (default) | integer between [1, 96]

Number of input ports, specified as a positive integer. Each signal coming through a separate input
becomes a separate channel in the scope. You must invoke the scope with the same number of inputs
as the value of this property.

InputDomain — Domain of the input signal
"Time" (default) | "Frequency"

The domain of the input signal you want to visualize. If you visualize time-domain signals, the signal
is transformed to the frequency spectrum based on the algorithm specified by the Method parameter.

Scope Window Use

Open the Spectrum Settings. In the Main options section, set Input Domain.
Data Types: char | string

SpectrumType — Type of spectrum to show
"Power" (default) | "Power density" | "RMS"

Specify the spectrum type to display.

4 System Objects

4-1264

"Power" — Power spectrum

"Power density" — Power spectral density. The power spectral density is the magnitude squared
of the spectrum normalized to a bandwidth of 1 hertz.

"RMS" — Root mean square. The root-mean-square shows the square root of the mean square. This
option is useful when viewing the frequency of voltage or current signals.

Tunable: Yes
Scope Window Use

Open the Spectrum Settings. In the Main options section, set Type.
Data Types: char | string

ViewType — Viewer type
"Spectrum" (default) | "Spectrogram" | "Spectrum and spectrogram"

Specify the spectrum type as one of "Spectrum", "Spectrogram", or "Spectrum and
spectrogram".

• "Spectrum" — shows the power spectrum.
• "Spectrogram" — shows frequency content over time. Each line of the spectrogram is one

periodogram. Time scrolls from the bottom to the top of the display. The most recent spectrogram
update is at the bottom of the display.

• "Spectrum and Spectrogram" — shows a dual view of a spectrum and spectrogram.

Tunable: Yes
Scope Window Use

Open the Spectrum Settings. In the Main options section, set View.
Data Types: char | string

SampleRate — Sample rate of input
10000 (default) | finite scalar

Specify the sample rate, in hertz, of the input signals as a finite numeric scalar.
Scope Window Use

Open the Spectrum Settings. In the Main options section, set Sample rate (Hz).

Method — Spectrum estimation method
"Welch" (default) | "Filter Bank"

Specify the spectrum estimation method as Welch or Filter bank.
Dependency

To enable this property, set InputDomain to "Time".
Scope Window Use

Open the Spectrum Settings. In the Main options section, set Method.
Data Types: char | string

 dsp.SpectrumAnalyzer

4-1265

PlotAsTwoSidedSpectrum — Two-sided spectrum flag
true (default) | false

• true — Compute and plot two-sided spectral estimates. When the input signal is complex-valued,
you must set this property to true.

• false — Compute and plot one-sided spectral estimates. If you set this property to false, then
the input signal must be real-valued.

When this property is false, Spectrum Analyzer uses power-folding. The y-axis values are twice
the amplitude that they would be if this property were set to true, except at 0 and the Nyquist
frequency. A one-sided power spectral density (PSD) contains the total power of the signal in the
frequency interval from DC to half of the Nyquist rate. For more information, see pwelch.

Scope Window Use

Open the Spectrum Settings. In the Trace options section, select Two-sided spectrum.
Data Types: logical

FrequencyScale — Frequency scale
"Linear" (default) | "Log"

• "Log" — displays the frequencies on the x-axis on a logarithmic scale. To use the "Log" setting,
you must also set the PlotAsTwoSidedSpectrum property to false.

• "Linear" — displays the frequencies on the x-axis on a linear scale. To use the "Linear" setting,
you must also set the PlotAsTwoSidedSpectrum property to true.

Tunable: Yes

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Scale.
Data Types: char | string

Advanced

FrequencySpan — Frequency span mode
"Full" (default) | "Span and center frequency" | "Start and stop frequencies"

• "Full" - The Spectrum Analyzer computes and plots the spectrum over the entire “Nyquist
frequency interval” on page 4-1303.

• "Span and center frequency" - The Spectrum Analyzer computes and plots the spectrum
over the interval specified by the Span and CenterFrequency properties.

• "Start and stop frequencies" - The Spectrum Analyzer computes and plots the spectrum
over the interval specified by the StartFrequency and StopFrequency properties.

Tunable: Yes

Scope Window Use

Open the Spectrum Settings. In the Main options section, select Full frequency span for
"Full". Otherwise, clear the Full frequency span check box and choose between Span or FStart.
Data Types: char | string

4 System Objects

4-1266

Span — Frequency span to compute spectrum
10e3 (default) | real positive scalar

Specify the frequency span, in hertz, over which the Spectrum Analyzer computes and plots the
spectrum. The overall span, defined by this property and the CenterFrequency property, must fall
within the “Nyquist frequency interval” on page 4-1303.

Tunable: Yes

Dependency

To enable this property, set FrequencySpan to "Span and center frequency".

Scope Window Use

Open the Spectrum Settings. In the Main options section, clear the Full frequency span check
box and set Span.

StartFrequency — Start frequency to compute spectrum
-5e3 (default) | real scalar

Start of the frequency interval over which spectrum is computed, specified in hertz as a real scalar.
The overall span, which is defined by this property and StopFrequency, must fall within the “Nyquist
frequency interval” on page 4-1303.

Tunable: Yes

Dependency

To enable this property, set FrequencySpan to "Start and stop frequencies".

Scope Window Use

Open the Spectrum Settings. In the Main options section, clear the Full frequency span and
change Span to FStart. Set FStart (Hz).

StopFrequency — Stop frequency to compute spectrum
5e3 (default) | real scalar

End of the frequency interval over which spectrum is computed, specified in hertz as a real scalar.
The overall span, which is defined by this property and the StartFrequency property, must fall within
the Nyquist frequency interval on page 4-1303.

Tunable: Yes

Dependency

To enable this property, set FrequencySpan to "Start and stop frequencies".

Scope Window Use

Open the Spectrum Settings. In the Main options section, clear the Full frequency span and
change Span to FStart. Set FStop (Hz).

CenterFrequency — Center of frequency span
0 (default) | real scalar

 dsp.SpectrumAnalyzer

4-1267

Specify in hertz the center frequency of the span over which the Spectrum Analyzer computes and
plots the spectrum. The overall frequency span, defined by the Span and this property, must fall
within the “Nyquist frequency interval” on page 4-1303.

Tunable: Yes

Dependency

To enable this property, set FrequencySpan to "Span and center frequency".

Scope Window Use

Open the Spectrum Settings. In the Main, clear Full frequency span and set CF (Hz).

FrequencyResolutionMethod — Frequency resolution method
"RBW" (default) | "WindowLength" | "NumFrequencyBands"

Specify the frequency resolution method of the Spectrum Analyzer.

• "RBW" - the RBWSource and RBW properties control the frequency resolution (in Hz) of the
analyzer. The FFT length is the window length that results from achieving the specified RBW value
or 1024, whichever is larger.

• "WindowLength" - applies only when the Method property is set to "Welch". The WindowLength
property controls the frequency resolution. You can control the number of FFT points only when
the FrequencyResolutionMethod property is "WindowLength".

• "NumFrequencyBands" - applies only when the Method property is set to "Filter Bank". The
FFTLengthSource and FFTLength properties control the frequency resolution.

Tunable: Yes

Dependency

To enable this property, set InputDomain to "Time".

Scope Window Use

Open the Spectrum Settings. In the Main options section, set the frequency resolution method by
selecting the RBW (Hz) dropdown.
Data Types: char | string

RBWSource — Source of resolution bandwidth value
"Auto" (default) | "Property"

Specify the source of the resolution bandwidth (RBW) as either "Auto" or "Property".

• "Auto" — The Spectrum Analyzer adjusts the spectral estimation resolution to ensure that there
are 1024 RBW intervals over the defined frequency span.

• "Property" — Specify the resolution bandwidth directly using the RBW property.

Tunable: Yes

Dependency

To enable this property, set either:

4 System Objects

4-1268

• InputDomain to "Time" and FrequencyResolutionMethod to "RBW".
• InputDomain to "Frequency".

Scope Window Use

Open the Spectrum Settings. In the Main options section, set RBW (Hz).
Data Types: char | string

RBW — Resolution bandwidth
9.76 (default) | real positive scalar

RBW controls the spectral resolution of Spectrum Analyzer. Specify the resolution bandwidth in hertz
as a real positive scalar. You must specify a value to ensure that there are at least two RBW intervals
over the specified frequency span. Thus, the ratio of the overall span to RBW must be greater than
two:

span
RBW > 2

You can specify the overall span in different ways based on how you set the FrequencySpan property.

Dependency

To enable, set:

• RBWSource to "Property"

Scope Window Use

Open the Spectrum Settings. In the Main options section, set RBW (Hz).

WindowLength — Window length
1024 (default) | integer greater than 2

Control the frequency resolution by specifying the window length, in samples used to compute the
spectral estimates. The window length must be an integer scalar greater than 2.

Tunable: Yes

Dependencies

To enable this property, set:

• FrequencyResolutionMethod to "WindowLength", which controls the frequency resolution based
on your window length setting

• Method to "Welch"

Scope Window Use

Open the Spectrum Settings. Change the RBW (Hz) dropdown to Window length.

FFTLengthSource — Source of the FFT length
"Auto" (default) | "Property"

• "Auto" - sets the FFT length to the window length specified in the WindowLength property or
1024, whichever is larger.

 dsp.SpectrumAnalyzer

4-1269

• "Property" - number of FFT points using the FFTLength property. FFTLength must be greater
than WindowLength.

Tunable: Yes

Dependency

To enable this property, set FrequencyResolutionMethod to "WindowLength".

Scope Window Use

Open the Spectrum Settings. In the Main options section, next to the RBW (Hz) option, enter a
number or select Auto.
Data Types: char | string

FFTLength — Length of FFT
1024 (default) | positive integer

Specify the length of the FFT that the Spectrum Analyzer uses to compute spectral estimates.

If FrequencyResolutionMethod is "RBW", the FFT length is set as the window length required to
achieve the specified resolution bandwidth value or 1024, whichever is larger.

Tunable: Yes

Dependencies

To use this property, the following must be true:

• FrequencyResolutionMethod is set to "WindowLength" or "NumFrequencyBands"
• FFTLength is greater than or equal to the WindowLength.
• FFTLengthSource is set to "Property".

Scope Window Use

Open the Spectrum Settings. In the Main options section, next to the RBW (Hz) option, enter a
number or select Auto.

NumTapsPerBand — Number of filter taps per frequency band
12 (default) | positive even scalar

Specify the number of filter taps or coefficients for each frequency band. This number must be a
positive even integer. This value corresponds to the number of filter coefficients per polyphase
branch. The total number of filter coefficients is equal to NumTapsPerBand + FFTLength.

Dependency

To enable this property, set Method to "Filter Bank"

Scope Window Use

Open the Spectrum Settings. In the Main options section, set Taps per band.

FrequencyVectorSource — Source of frequency vector
"Auto" (default) | "Property"

4 System Objects

4-1270

• "Auto" — The frequency vector is calculated from the length of the input. See “Frequency
Vector” on page 4-1304.

• "Property" — Enter a custom vector as the frequency vector.

Dependency

To enable this property, set InputDomain to "Frequency".

Scope Window Use

Open the Spectrum Settings. In the Frequency input options section, set Frequency (Hz).
Data Types: char | string

FrequencyVector — Custom frequency vector
[-5000 5000] (default) | monotonically increasing vector

Set the frequency vector that determines the x-axis of the display. The vector must be monotonically
increasing and of the same size as the input frame size.

Dependency

To enable this property, set FrequencyVectorSource to "Property".

Scope Window Use

Open the Spectrum Settings. In the Frequency input options section, set Frequency (Hz).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OverlapPercent — Overlap percentage
0 (default) | real, scalar value

The percentage overlap between the previous and current buffered data segments, specified as a
real, scalar value. The overlap creates a window segment that is used to compute a spectral estimate.
The value must be greater than or equal to zero and less than 100.

Tunable: Yes

Scope Window Use

Open the Spectrum Settings. In the Window options section, set Overlap (%).

Window — Window function
"Hann" (default) | "Rectangular" | "Chebyshev" | "Flat Top" | "Hamming" | "Kaiser" |
"Blackman-Harris" | "Custom"

Specify a window function for the spectral estimator. The following table shows preset windows. For
more information, follow the link to the corresponding function reference in the Signal Processing
Toolbox documentation.

Window Option Corresponding Signal Processing Toolbox Function
"Rectangular" rectwin
"Chebyshev" chebwin
"Flat Top" flattopwin

 dsp.SpectrumAnalyzer

4-1271

Window Option Corresponding Signal Processing Toolbox Function
"Hamming" hamming
"Hann" hann
"Kaiser" kaiser
"Blackman-Harris" blackmanharris

To set your own spectral estimation window, set this property to "Custom" and specify a custom
window function in the CustomWindow property.

Tunable: Yes

Scope Window Use

Open the Spectrum Settings. In the Window options section, set Window.
Data Types: char | string

CustomWindow — Custom window function
"hann" (default) | character array | string scalar

Specify a custom window function as a character array or string. The custom window function name
must be on the MATLAB path. This property is useful if you want to customize the window using
additional properties available with the Signal Processing Toolbox version of the window function.

Tunable: Yes

Example

Define and use a custom window function.

function w = my_hann(L)
 w = hann(L, 'periodic')
end

scope.Window = 'Custom';
scope.CustomWindow = 'my_hann'

Dependency

To use this property, set Window to "Custom".

Scope Window Use

Open the Spectrum Settings. In the Window options section, in the Window option box, enter a
custom window function name.
Data Types: char | string

SidelobeAttenuation — Sidelobe attenuation of window
60 (default) | real positive scalar

The window sidelobe attenuation, in decibels (dB). The value must be greater than or equal to 45.

Tunable: Yes

4 System Objects

4-1272

Dependency

To enable this property, set Window to "Chebyshev" or "Kaiser".
Scope Window Use

Open the Spectrum Settings. In the Window options section, set Attenuation (dB).

InputUnits — Units of frequency input
"dBm" (default) | "dBV" | "dBW" | "Vrms" | "Watts"

Select the units of the frequency-domain input. This property allows the Spectrum Analyzer to scale
frequency data if you choose a different display unit with the “Units” on page 2-0 property.
Dependency

This option is only available when InputDomain is set to Frequency.
Scope Window Use

Open the Spectrum Settings. In the Frequency input options section, set Input units.
Data Types: char | string

SpectrumUnits — Units of the spectrum
"Auto" (default) | "dBm" | "dBFS" | "dBV" | "dBW" | "Vrms" | "Watts"

Specify the units in which the Spectrum Analyzer displays power values.

Tunable: Yes
Dependency

The available spectrum units depend on the value of SpectrumType.

InputDomain SpectrumType Allowed SpectrumUnits
Time Power or Power density "dBFS", "dBm", "dBW", "Watts"

RMS "Vrms", "dBV"
Frequency ― "dBm", "dBV", "dBW", "Vrms",

"Watts",

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Units.
Data Types: char | string

FullScaleSource — Source of full scale
"Auto" (default) | "Property"

Specify the source of the dBFS scaling factor as either "Auto" or "Property".

• "Auto" - The Spectrum Analyzer adjusts the scaling factor based on the input data.
• "Property" - Specify the full-scale scaling factor using the FullScale property.

Dependency

To enable this property, set SpectrumUnits to "dBFS".

 dsp.SpectrumAnalyzer

4-1273

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Full scale to Auto or enter a
number.
Data Types: char | string

FullScale — Full scale
1 (default) | positive scalar

Specify a real positive scalar for the dBFS full scale.

Tunable: Yes
Dependency

To enable this option set:

• SpectrumUnits to "dBFS"
• FullScaleSource to "Property"

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Full scale to Auto or enter a
number.

AveragingMethod — Smoothing method
"Running" (default) | "Exponential"

Specify the smoothing method as:

• Running — Running average of the last n samples. Use the SpectralAverages property to
specify n.

• Exponential — Weighted average of samples. Use the ForgettingFactor property to specify
the weighted forgetting factor.

For more information about the averaging methods, see “Averaging Method” on page 2-1253.
Dependency

To enable this property, set ViewType to "Spectrum" or "Spectrum and spectrogram".
Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Averaging method.
Data Types: char | string

SpectralAverages — Number of spectral averages
1 (default) | positive integer

The Spectrum Analyzer computes the current power spectrum estimate by computing a running
average of the last N power spectrum estimates. This property defines N.

Tunable: Yes
Dependency

To enable this property, set ViewType to "Spectrum".

4 System Objects

4-1274

Dependency

This property applies only when the AveragingMethod is "Running".

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Averages.

ForgettingFactor — Weighting forgetting factor
0.9 (default) | scalar in the range (0,1]

Specify the exponential weighting as a scalar value greater than 0 and less than or equal to 1.

Dependency

This property applies only when the AveragingMethod is "Exponential".

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Forgetting factor.

ReferenceLoad — Reference load
1 (default) | real positive scalar

The load the scope uses as a reference to compute power levels.

Tunable: Yes

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Reference load.

FrequencyOffset — Frequency offset
0 (default) | scalar | vector

• Scalar — Apply the same frequency offset to all channels, specified in hertz as a character vector.
• Vector — apply a specific frequency offset for each channel, specify a vector of frequencies. The

vector length must be equal to number of input channels.

The frequency-axis values are offset by the values specified in this property. The overall span must
fall within the “Nyquist frequency interval” on page 4-1303. You can control the overall span in
different ways based on how you set the FrequencySpan property.

Tunable: Yes

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Offset (Hz).

Spectrogram

SpectrogramChannel — Channel for which spectrogram is plotted
1 (default) | positive scalar integer

Specify the channel for which the spectrogram is plotted, as a real, positive scalar integer in the
range [1 N], where N is the number of input channels.

Tunable: Yes

 dsp.SpectrumAnalyzer

4-1275

Dependency

To enable this property, set ViewType to "Spectrogram" or "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. In the Spectrogram options section, select a Channel.

TimeResolutionSource — Source of the time resolution value
"Auto" (default) | "Property"

Specify the source for the time resolution of each spectrogram line as either "Auto" or "Property".
The TimeResolution property shows the time resolution for the different frequency resolution
methods and time resolution properties.

Tunable: Yes

Dependency

To enable this property, set ViewType to "Spectrogram" or "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. In the Spectrogram options section, set Time res (s).
Data Types: char | string

TimeResolution — Time resolution
0.001 (default) | positive scalar

Specify the time resolution of each spectrogram line as a positive scalar, expressed in seconds.

The time resolution value is determined based on frequency resolution method, the RBW setting, and
the time resolution setting.

Method Frequency
Resolution
Method

Frequenc
y
Resoluti
on
Setting

Time
Resolution
Setting

Resulting Time Resolution
in Seconds

Welch or Filter
Bank

RBW (Hz) Auto Auto 1/RBW

Welch or Filter
Bank

RBW (Hz) Auto Manually
entered

Time Resolution

Welch or Filter
Bank

RBW (Hz) Manually
entered

Auto 1/RBW

4 System Objects

4-1276

Method Frequency
Resolution
Method

Frequenc
y
Resoluti
on
Setting

Time
Resolution
Setting

Resulting Time Resolution
in Seconds

Welch or Filter
Bank

RBW (Hz) Manually
entered

Manually
entered

Must be equal to or greater
than the minimum attainable
time resolution, 1/RBW.
Several spectral estimates
are combined into one
spectrogram line to obtain
the desired time resolution.
Interpolation is used to
obtain time resolution values
that are not integer multiples
of 1/RBW.

Welch Window length — Auto 1/RBW
Welch Window length — Manually

entered
Must be equal to or greater
than the minimum attainable
time resolution. Several
spectral estimates are
combined into one
spectrogram line to obtain
the desired time resolution.
Interpolation is used to
obtain time resolution values
that are not integer multiples
of 1/RBW.

Filter Bank Number of
frequency
bands

— Auto 1/RBW

Filter Bank Number of
frequency
bands

— Manually
entered

Must be equal to or greater
than the minimum attainable
time resolution, 1/RBW.

Tunable: Yes

Dependency

To enable this property, set:

• ViewType to "Spectrogram" or "Spectrum and spectrogram"
• TimeResolutionSource to "Property.

Scope Window Use

Open the Spectrum Settings. In the Spectrogram options section, in the Time res (s) box, enter
a number.

TimeSpanSource — Source of time span value
"Auto" (default) | "Property"

 dsp.SpectrumAnalyzer

4-1277

Specify the source for the time span of the spectrogram as either "Auto" or "Property". If you set
this property to "Auto", the spectrogram displays 100 spectrogram lines at any given time. If you set
this property to "Property", the spectrogram uses the time duration you specify in seconds in the
TimeSpan property.

Tunable: Yes

Dependency

To enable this property, set ViewType to "Spectrogram" or "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. In the Spectrogram options section, set Time span (s).
Data Types: char | string

TimeSpan — Time span
0.1 (default) | positive scalar

Specify the time span of the spectrogram display in seconds. You must set the time span to be at least
twice as large as the duration of the number of samples required for a spectral update.

Tunable: Yes

Dependency

To enable this property, set:

• ViewType to "Spectrogram" or "Spectrum and spectrogram".
• TimeSpanSource to "Property".

Scope Window Use

Open the Spectrum Settings. In the Spectrogram options section, in the Time span (s) box,
enter a number.

Measurements

MeasurementChannel — Channel for which measurements are obtained
1 (default) | positive integer

Channel for which the measurements are obtained, specified as a real, positive integer greater than 0
and less than or equal to 100. The maximum number you can specify is the number of channels
(columns) in the input signal.

Tunable: Yes

Scope Window Use

Click on Tools > Measurements and open the Trace Selection settings.
Data Types: double

SpectralMask — Spectral mask lines
SpectralMaskSpecification object

4 System Objects

4-1278

Specify whether to display upper and lower spectral mask lines on a spectrum plot. This property
uses properties from a SpectralMaskSpecification object to enable and configure the spectral
masks.

Tunable: Yes

Scope Window Use

Open the Spectral Mask pane and modify the Settings options.

PeakFinder — Peak finder measurement
PeakFinderSpecification object

Enable peak finder to compute and display the largest calculated peak values. The PeakFinder
property uses the PeakFinderSpecification properties.

The PeakFinderSpecification properties are:

• MinHeight –– Level above which peaks are detected, specified as a scalar value.

Default: -Inf
• NumPeaks –– Maximum number of peaks to show, specified as a positive integer scalar less than

100.

Default: 3
• MinDistance –– Minimum number of samples between adjacent peaks, specified as a positive

real scalar.

Default: 1
• Threshold –– Minimum height difference between peak and its neighboring samples, specified as

a nonnegative real scalar.

Default: 0
• LabelFormat –– Coordinates to display next to the calculated peak value, specified as a character

vector or a string scalar. Valid values are "X", "Y", or "X + Y".

Default: "X + Y"
• Enable –– Set this property to true to enable peak finder measurements. Valid values are true

or false.

Default: false

All PeakFinderSpecification properties are tunable.

Tunable: Yes

Scope Window Use

Open the Peak Finder pane () and modify the Settings options.

CursorMeasurements — Cursor measurements
CursorMeasurementsSpecification object

 dsp.SpectrumAnalyzer

4-1279

Enable cursor measurements to display screen or waveform cursors. The CursorMeasurements
property uses the CursorMeasurementsSpecification properties.

The CursorMeasurementsSpecification properties are:

• Type –– Type of the display cursors, specified as either "Screen cursors" or "Waveform
cursors".

Default: "Waveform cursors"
• ShowHorizontal –– Set this property to true to show the horizontal screen cursors. This

property applies when you set the Type property to "Screen cursors".

Default: true
• ShowVertical –– Set this property to true to show the vertical screen cursors. This property

applies when you set the Type property to "Screen cursors".

Default: true
• Cursor1TraceSource –– Specify the waveform cursor 1 source as a positive real scalar. This

property applies when you set the Type property to "Waveform cursors".

Default: 1
• Cursor2TraceSource –– Specify the waveform cursor 2 source as a positive real scalar. This

property applies when you set the Type property to "Waveform cursors".

Default: 1
• LockSpacing –– Lock spacing between cursors, specified as a logical scalar.

Default: false
• SnapToData –– Snap cursors to data, specified as a logical scalar.

Default: true
• XLocation –– x-coordinates of the cursors, specified as a real vector of length equal to 2.

Default: [-2500 2500]
• YLocation –– y-coordinates of the cursors, specified as a real vector of length equal to 2. This

property applies when you set the Type property to "Screen cursors".

Default: [-55 5]
• Enable –– Set this property to true to enable cursor measurements. Valid values are true or

false.

Default: false

All CursorMeasurementsSpecification properties are tunable.

Scope Window Use

Open the Cursor Measurements pane () and modify the Settings options.

ChannelMeasurements — Channel measurements
ChannelMeasurementsSpecification object

4 System Objects

4-1280

Enable channel measurements to compute and display the occupied bandwidth or adjacent channel
power ratio. The ChannelMeasurements property uses the
ChannelMeasurementsSpecification properties.

The ChannelMeasurementsSpecification properties are:

• Algorithm –– Type of measurement data to display, specified as either "Occupied BW" or
"ACPR".

Default: "Occupied BW"
• FrequencySpan –– Frequency span mode, specified as either "Span and center frequency"

or "Start and stop frequencies"

Default: "Span and center frequency"
• Span –– Frequency span over which the channel measurements are computed, specified as a real,

positive scalar in Hz. This property applies when you set the FrequencySpan property to "Span
and center frequency".

Default: 2000 Hz
• CenterFrequency –– Center frequency of the span over which the channel measurements are

computed, specified as a real scalar in Hz. This property applies when you set the
FrequencySpan property to "Span and center frequency".

Default: 0 Hz
• StartFrequency –– Start frequency over which the channel measurements are computed,
specified as a real scalar in Hz. This property applies when you set the FrequencySpan property
to "Start and stop frequencies".

Default: -1000 Hz
• StopFrequency –– Stop frequency over which the channel measurements are computed,
specified as a real scalar in Hz. This property applies when you set the FrequencySpan property
to "Start and stop frequencies".

Default: 1000 Hz
• PercentOccupiedBW –– Percent of power over which to compute the occupied bandwidth,
specified as a positive real scalar. This property applies when you set the Algorithm property to
"Occupied BW".

Default: 99
• NumOffsets –– Number of adjacent channel pairs, specified as a real, positive integer. This

property applies when you set the Algorithm property to "ACPR".

Default: 2
• AdjacentBW –– Adjacent channel bandwidth, specified as a real, positive scalar. This property

applies when you set the Algorithm property to "ACPR".

Default: 1000
• FilterShape –– Filter shape for both main and adjacent channels, specified as "None",

"Gaussian", or "RRC". This property applies when you set the Algorithm property to "ACPR".

Default: "None"

 dsp.SpectrumAnalyzer

4-1281

• FilterCoeff –– Channel filter coefficient, specified as a real scalar between 0 and 1. This
property applies when you set the Algorithm property to "ACPR" and the FilterShape
property to either "Gaussian" or "RRC".

Default: 0.5
• ACPROffsets –– Frequency of the adjacent channel relative to the center frequency of the main

channel, specified as a real vector of length equal to the number of offset pairs specified in
NumOffsets. This property applies when you set the Algorithm property to "ACPR".

Default: [2000 3500]
• Enable –– Set this property to true to enable channel measurements. Valid values are true or

false.

Default: false

All ChannelMeasurementsSpecification properties are tunable.

Scope Window Use

Open the Channel Measurements pane () and modify the Measurement and Channel Settings
options.

DistortionMeasurements — Distortion measurements
DistortionMeasurementsSpecification object

Enable distortion measurements to compute and display the harmonic distortion and intermodulation
distortion. The DistortionMeasurements property uses the
DistortionMeasurementsSpecification properties.

The DistortionMeasurementsSpecification properties are:

• Algorithm –– Type of measurement data to display, specified as either "Harmonic" or
"Intermodulation".

Default: "Harmonic"
• NumHarmonics –– Number of harmonics to measure, specified as a real, positive integer. This

property applies when you set the Algorithm to "Harmonic".

Default: 6
• Enable –– Set this property to true to enable distortion measurements.

Default: false

All DistortionMeasurementsSpecification properties are tunable.

Scope Window Use

Open the Distortion Measurements pane () and modify the Distortion and Harmonics options.

CCDFMeasurements — CCDF measurements
CCDFMeasurementsSpecification object

4 System Objects

4-1282

Enable CCDF measurements to display the probability of the input signal's instantaneous power
being a certain amount of dB above the signal's average power. The CCDFMeasurements property
uses the CCDFMeasurementsSpecification properties.

The CCDFMeasurementsSpecification properties are:

• PlotGaussianReference –– Set this property to true to plot a reference CCDF curve. The
reference CCDF curve represents the power of a complex white Gaussian noise, calculated as a
chi-squared distribution.

Default: false
• Enable –– Set this property to true to enable CCDF measurements. Valid values are true or

false.

Default: false

All CCDFMeasurementsSpecification properties are tunable.

Scope Window Use

Open the CCDF Measurements pane () and enable the Plot Gaussian reference option.

Visualization

Name — Window name
"Spectrum Analyzer" (default) | character vector | string scalar

Title of the scope window.

Tunable: Yes
Data Types: char | string

Position — Window position
screen center (default) | [left bottom width height]

Spectrum Analyzer window position in pixels, specified by the size and location of the scope window
as a four-element double vector of the form [left bottom width height]. You can place the scope
window in a specific position on your screen by modifying the values to this property.

By default, the window appears in the center of your screen with a width of 800 pixels and height of
450 pixels. The exact center coordinates depend on your screen resolution.

Tunable: Yes

PlotType — Plot type for normal traces
"Line" (default) | "Stem"

Specify the type of plot to use for displaying normal traces as either "Line" or "Stem". Normal
traces are traces that display free-running spectral estimates.

Tunable: Yes

Dependencies

To enable this property, set:

 dsp.SpectrumAnalyzer

4-1283

• ViewType to "Spectrum" or "Spectrum and spectrogram"
• PlotNormalTrace to true

Scope Window Use

Open the Style properties and set Plot type.
Data Types: char | string

PlotNormalTrace — Normal trace flag
true (default) | false

Set this property to false to remove the display of the normal traces. These traces display the free-
running spectral estimates. Even when the traces are removed from the display, the Spectrum
Analyzer continues its spectral computations.

Tunable: Yes

Dependency

To enable this property, set ViewType to "Spectrum" or "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. In the Trace options section, select Normal trace.
Data Types: logical

PlotMaxHoldTrace — Max-hold trace flag
false (default) | true

To compute and plot the maximum-hold spectrum of each input channel, set this property to true.
The maximum-hold spectrum at each frequency bin is computed by keeping the maximum value of all
the power spectrum estimates. When you toggle this property, the Spectrum Analyzer resets its
maximum-hold computations.

Tunable: Yes

Dependency

To enable this property, set ViewType to "Spectrum" or "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. In the Trace options section, select Max-hold trace.
Data Types: logical

PlotMinHoldTrace — Min-hold trace flag
false (default) | true

To compute and plot the minimum-hold spectrum of each input channel, set this property to true.
The minimum-hold spectrum at each frequency bin is computed by keeping the minimum value of all
the power spectrum estimates. When you toggle this property, the Spectrum Analyzer resets its
minimum-hold computations.

Tunable: Yes

4 System Objects

4-1284

Dependency

To enable this property, set ViewType to "Spectrum" or "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. In the Trace options section, select Min-hold trace.
Data Types: logical

ReducePlotRate — Improve performance with reduced plot rate
true (default) | false

The simulation speed is faster when this property is set to true.

• true — the scope logs data for later use and updates the display at fixed intervals of time. Data
occurring between these fixed intervals might not be plotted.

• false — the scope updates every time it computes the power spectrum. Use the false setting
when you do not want to miss any spectral updates at the expense of slower simulation speed.

Tunable: Yes

Scope Window Use

Select Playback > Reduce plot rate to improve performance.

Title — Display title
'' (default) | character vector | string scalar

Specify the display title as a character vector or string.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. Set Title.
Data Types: char | string

YLabel — Y-axis label
'' (default) | character vector | string scalar

Specify the text for the scope to display to the left of the y-axis.

Regardless of this property, Spectrum Analyzer always displays power units as one of the
SpectrumUnits values.

Tunable: Yes

Dependency

To enable this property, set ViewType to "Spectrum" or "Spectrum and spectrogram".

Scope Window Use

Open the Configuration Properties. Set Y-label.
Data Types: char | string

 dsp.SpectrumAnalyzer

4-1285

ShowLegend — Show legend
false (default) | true

To show a legend with the input names, set this property to true.

From the legend, you can control which signals are visible. This control is equivalent to changing the
visibility in the Style dialog box. In the scope legend, click a signal name to hide the signal in the
scope. To show the signal, click the signal name again. To show only one signal, right-click the signal
name. To show all signals, press Esc.

Note The legend only shows the first 20 signals. Any additional signals cannot be viewed or
controlled from the legend.

Tunable: Yes
Scope Window Use

Open the Configuration Properties. On the Display tab, select Show legend.
Data Types: logical

ChannelNames — Channel names
empty cell (default) | cell array of character vectors

Specify the input channel names as a cell array of character vectors. The names appear in the legend,
Style dialog box, and Measurements panels. If you do not specify names, the channels are labeled
as Channel 1, Channel 2, etc.

Tunable: Yes
Dependency

To see channel names, set ShowLegend to true.
Scope Window Use

On the legend, double-click the channel name.
Data Types: char

ShowGrid — Grid visibility
true (default) | false

Set this property to true to show gridlines on the plot.

Tunable: Yes
Scope Window Use

Open the Configuration Properties. On the Display tab, set Show grid.
Data Types: logical

YLimits — Y-axis limits
[-80, 20] (default) | [ymin ymax]

Specify the y-axis limits as a two-element numeric vector, [ymin ymax].

4 System Objects

4-1286

Example: scope.YLimits = [-10,20]

Tunable: Yes

Dependencies

• To enable this property, set the ViewType property to "Spectrum" or "Spectrum and
spectrogram".

• The units directly depend upon the SpectrumUnits property.

Scope Window Use

Open the Configuration Properties. Set Y-limits (maximum) and Y-limits (minimum).

ColorLimits — Scale spectrogram color limits
[-80, 20] (default) | [colorMin colorMax]

Control the color limits of the spectrogram using a two-element numeric vector, [colorMin
colorMax].
Example: scope.ColorLimits = [-10,20]

Dependencies

• To enable this property, set the ViewType property to "Spectrogram" or "Spectrum and
spectrogram".

• The units directly depend upon the SpectrumUnits property.

Scope Window Use

Open the Configuration Properties. Set Color-limits (minimum) and Color-limits (maximum).

AxesScaling — Axes scaling mode
"Auto" (default) | "Manual" | "OnceAtStop" | "Updates"

Specify when the scope automatically scales the axes. Valid values are:

• "Auto" — The scope scales the axes as-needed to fit the data, both during and after simulation.
• "Manual" — The scope does not scale the axes automatically.
• "OnceAtStop" — The scope scales the axes when the simulation stops.
• "Updates" — The scope scales the axes once after 10 updates.

Scope Window Use

Select Tools > Axes Scaling.
Data Types: char | string

AxesLayout — Orientation of the spectrum and spectrogram
"Vertical" (default) | "Horizontal"

Specify the layout type as "Horizontal" or "Vertical". A vertical layout stacks the spectrum
above the spectrogram. A horizontal layout puts the two views side-by-side.

Tunable: Yes

 dsp.SpectrumAnalyzer

4-1287

Dependency

To enable this property, set ViewType to "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. Set Axes layout.
Data Types: char | string

Usage

Syntax
scope(signal)
scope(signal1,signal2,...,signalN)

Description

scope(signal) updates the spectrum of the signal in the spectrum analyzer.

scope(signal1,signal2,...,signalN) displays multiple signals in the spectrum analyzer. The
signals must have the same frame length, but can vary in number of channels. You must set the
NumInputPorts property to enable multiple input signals.

Input Arguments

signal — Input signal or signals to visualize
scalar | vector | matrix

Specify one or more input signals to visualize in the dsp.SpectrumAnalyzer. Signals can have a
different number of channels, but must have the same frame length.
Example: scope(signal1, signal2)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.SpectrumAnalyzer
generateScript Generate MATLAB script to create scope with current settings
getMeasurementsData Get the current measurement data displayed on the spectrum analyzer
getSpectralMaskStatus Get test results of current spectral mask
getSpectrumData Save spectrum data shown in spectrum analyzer
isNewDataReady Check spectrum analyzer for new data

4 System Objects

4-1288

Specific to Scopes
show Display scope window
hide Hide scope window
isVisible Determine visibility of scope

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

If you want to restart the simulation from the beginning, call reset to clear the scope window
displays. Do not call reset after calling release.

Examples

Spectrum Analyzer for One-Sided Power Spectrum

View a one-sided power spectrum made from the sum of fixed real sine waves with different
amplitudes and frequencies.

Fs = 100e6; % Sampling frequency
fSz = 5000; % Frame size

sin1 = dsp.SineWave(1e0, 5e6,0,'SamplesPerFrame',fSz,'SampleRate',Fs);
sin2 = dsp.SineWave(1e-1,15e6,0,'SamplesPerFrame',fSz,'SampleRate',Fs);
sin3 = dsp.SineWave(1e-2,25e6,0,'SamplesPerFrame',fSz,'SampleRate',Fs);
sin4 = dsp.SineWave(1e-3,35e6,0,'SamplesPerFrame',fSz,'SampleRate',Fs);
sin5 = dsp.SineWave(1e-4,45e6,0,'SamplesPerFrame',fSz,'SampleRate',Fs);

scope = dsp.SpectrumAnalyzer;
scope.SampleRate = Fs;
scope.SpectralAverages = 1;
scope.PlotAsTwoSidedSpectrum = false;
scope.RBWSource = 'Auto';
scope.PowerUnits = 'dBW';
for idx = 1:1e2
 y1 = sin1();
 y2 = sin2();
 y3 = sin3();
 y4 = sin4();
 y5 = sin5();
 scope(y1+y2+y3+y4+y5+0.0001*randn(fSz,1));
end

 dsp.SpectrumAnalyzer

4-1289

Run the release method to let property values and input characteristics change. The scope
automatically scales the axes.

release(scope)

4 System Objects

4-1290

Run the clear function to close the Spectrum Analyzer window.

clear('scope');

Spectrogram of Chirp Signal

This example shows the spectrogram for a chirp signal with added random noise.

Fs = 233e3;
frameSize = 20e3;
chirp = dsp.Chirp('SampleRate',Fs,...
 'SamplesPerFrame',frameSize,...
 'InitialFrequency',11e3,...
 'TargetFrequency',11e3+55e3);

scope = dsp.SpectrumAnalyzer('SampleRate',Fs);
scope.ViewType = 'Spectrogram';
scope.RBWSource = 'Property';
scope.RBW = 500;
scope.TimeSpanSource = 'Property';
scope.TimeSpan = 2;
scope.PlotAsTwoSidedSpectrum = false;

 dsp.SpectrumAnalyzer

4-1291

for idx = 1:50
 y = chirp()+ 0.05*randn(frameSize,1);
 scope(y);
end

release(scope)

Spectrum Analyzer For Two-Sided Power Spectrum

View a two-sided power spectrum of a sine wave with noise on the Spectrum Analyzer.

sin = dsp.SineWave('Frequency',100,'SampleRate',1000);
sin.SamplesPerFrame = 1000;
scope = dsp.SpectrumAnalyzer('SampleRate',sin.SampleRate);
for ii = 1:250
 x = sin() + 0.05*randn(1000,1);
 scope(x);
end

4 System Objects

4-1292

Run the release method to change property values and input characteristics. The scope
automatically scales the axes. It updates the display one more time if any data is in the internal
buffer.

release(scope);

 dsp.SpectrumAnalyzer

4-1293

Run the MATLAB clear function to close the Spectrum Analyzer window.

clear('scope');

Display Frequency Input from Spectral Estimation

Use the Spectrum Analyzer to display frequency input from spectral estimates of sinusoids embedded
in white Gaussian noise.

Initialization

Initialize two dsp.SpectrumEstimator objects to display. Set one object to use the Welch-based
spectral estimation technique with a Hann window, set the other object use a filter bank estimation.
Specify a noisy sine wave input signal with four sinusoids at 0.16, 0.2, 0.205, and 0.25 cycles/sample.
View the spectral estimate using a third object, a spectrum analyzer, set to process frequency input.

FrameSize = 420;
Fs = 1;
Frequency = [0.16 0.2 0.205 0.25];
sinegen = dsp.SineWave('SampleRate',Fs,'SamplesPerFrame',FrameSize,...
 'Frequency',Frequency,'Amplitude',[2e-5 1 0.05 0.5]);
NoiseVar = 1e-10;

4 System Objects

4-1294

numAvgs = 8;

hannEstimator = dsp.SpectrumEstimator('PowerUnits','dBm',...
 'Window','Hann','FrequencyRange','onesided',...
 'SpectralAverages',numAvgs,'SampleRate',Fs);

filterBankEstimator = dsp.SpectrumEstimator('PowerUnits','dBm',...
 'Method','Filter bank','FrequencyRange','onesided',...
 'SpectralAverages',numAvgs,'SampleRate',Fs);

spectrumPlotter = dsp.SpectrumAnalyzer('InputDomain','Frequency',...
 'SampleRate',Fs,...
 'SpectrumUnits','dBm','YLimits',[-120,40],...
 'PlotAsTwoSidedSpectrum',false,...
 'ChannelNames',{'Hann window','Filter bank'},'ShowLegend',true);

Streaming

Stream the input. Compare the spectral estimates in the spectrum analyzer.

for i = 1:1000
 x = sum(sinegen(),2) + sqrt(NoiseVar)*randn(FrameSize,1);
 Pse_hann = hannEstimator(x);
 Pfb = filterBankEstimator(x);
 spectrumPlotter([Pse_hann,Pfb])
end

 dsp.SpectrumAnalyzer

4-1295

Obtain Measurement Data Programmatically for dsp.SpectrumAnalyzer System object

Compute and display the power spectrum of a noisy sinusoidal input signal using the
dsp.SpectrumAnalyzer System object™. Measure the peaks, cursor placements, adjacent channel
power ratio, distortion, and CCDF values in the spectrum by enabling the following properties:

• PeakFinder
• CursorMeasurements
• ChannelMeasurements
• DistortionMeasurements
• CCDFMeasurements

Initialization

The input sine wave has two frequencies: 1000 Hz and 5000 Hz. Create two dsp.SineWave System
objects to generate these two frequencies. Create a dsp.SpectrumAnalyzer System object to
compute and display the power spectrum.

Fs = 44100;
Sineobject1 = dsp.SineWave('SamplesPerFrame',1024,'PhaseOffset',10,...
 'SampleRate',Fs,'Frequency',1000);

4 System Objects

4-1296

Sineobject2 = dsp.SineWave('SamplesPerFrame',1024,...
 'SampleRate',Fs,'Frequency',5000);
SA = dsp.SpectrumAnalyzer('SampleRate',Fs,'Method','Filter bank',...
 'SpectrumType','Power','PlotAsTwoSidedSpectrum',false,...
 'ChannelNames',{'Power spectrum of the input'},'YLimits',[-120 40],'ShowLegend',true);

Enable Measurements Data

To obtain the measurements, set the Enable property of the measurements to true.

SA.CursorMeasurements.Enable = true;
SA.ChannelMeasurements.Enable = true;
SA.PeakFinder.Enable = true;
SA.DistortionMeasurements.Enable = true;

Use getMeasurementsData

Stream in the noisy sine wave input signal and estimate the power spectrum of the signal using the
spectrum analyzer. Measure the characteristics of the spectrum. Use the getMeasurementsData
function to obtain these measurements programmatically. The isNewDataReady function indicates
when there is new spectrum data. The measured data is stored in the variable data.

data = [];
for Iter = 1:1000
 Sinewave1 = Sineobject1();
 Sinewave2 = Sineobject2();
 Input = Sinewave1 + Sinewave2;
 NoisyInput = Input + 0.001*randn(1024,1);
 SA(NoisyInput);
 if SA.isNewDataReady
 data = [data;getMeasurementsData(SA)];
 end
end

 dsp.SpectrumAnalyzer

4-1297

The right side of the spectrum analyzer shows the enabled measurement panes. The values shown in
these panes match with the values shown in the last time step of the data variable. You can access
the individual fields of data to obtain the various measurements programmatically.

Compare Peak Values

Peak values are obtained by the PeakFinder property. Verify that the peak values obtained in the
last time step of data match the values shown on the spectrum analyzer plot.

peakvalues = data.PeakFinder(end).Value

peakvalues = 3×1

 26.9850
 24.1735
 -52.3506

frequencieskHz = data.PeakFinder(end).Frequency/1000

frequencieskHz = 3×1

 4.9957
 0.9905

4 System Objects

4-1298

 7.8166

Tips
• To close the scope window and clear its associated data, use the MATLAB clear function.
• To hide or show the scope window, use the hide and show functions.
• Use the MATLAB mcc function to compile code containing a Spectrum Analyzer.

You cannot open Spectrum Analyzer configuration dialog boxes if you have more than one
compiled component in your application.

Algorithms
Spectrum Estimation — Welch's Method

When you choose the Welch method, the power spectrum estimate is averaged modified
periodograms.

Given the signal input, x, the Spectrum Analyzer does the following:

1 Multiplies x by the given window and scales the result by the window power. The Spectrum
Analyzer uses the RBW or the Window Length setting in the Spectrum Settings pane to
determine the data window length.

2 Computes the FFT of the signal, Y, and takes the square magnitude using Z = Y.*conj(Y).
3 Computes the current power spectrum estimate by taking the moving average of the last N

number of Z's, and scales the answer by the sample rate. For details on the moving average
methods, see “Averaging Method” on page 4-1307.

Spectrum Analyzer requires that a minimum number of samples to compute a spectral estimate. This
number of input samples required to compute one spectral update is shown as Samples/update in
the Main options pane. This value is directly related to resolution bandwidth, RBW, by the following
equation, or to the window length, by the equation shown in step 2.

Nsamples =
1−

Op
100 × NENBW × Fs

RBW

The normalized effective noise bandwidth, NENBW, is a factor that depends on the windowing
method. Spectrum Analyzer shows the value of NENBW in the Window Options pane of the
Spectrum Settings pane. Overlap percentage, Op, is the value of the Overlap % parameter in the
Window Options pane of the Spectrum Settings pane. Fs is the sample rate of the input signal.
Spectrum Analyzer shows sample rate in the Main Options pane of the Spectrum Settings pane.

1 When in RBW (Hz) mode, the window length required to compute one spectral update, Nwindow,
is directly related to the resolution bandwidth and normalized effective noise bandwidth:

Nwindow =
NENBW × Fs

RBW

When in Window Length mode, the window length is used as specified.

 dsp.SpectrumAnalyzer

4-1299

2 The number of input samples required to compute one spectral update, Nsamples, is directly
related to the window length and the amount of overlap by the following equation.

Nsamples = 1−
Op
100 Nwindow

When you increase the overlap percentage, fewer new input samples are needed to compute a
new spectral update. For example, if the window length is 100, then the number of input samples
required to compute one spectral update is given as shown in the following table.

Op Nsamples

0% 100
50% 50
80% 20

3 The normalized effective noise bandwidth, NENBW, is a window parameter determined by the
window length, Nwindow, and the type of window used. If w(n) denotes the vector of Nwindow
window coefficients, then NENBW is given by the following equation.

NENBW = Nwindow ×
∑

n = 1

Nwindow
w2(n)

∑
n = 1

Nwindow
w(n)

2

4 When in RBW (Hz) mode, you can set the resolution bandwidth using the value of the RBW
(Hz) parameter on the Main options pane of the Spectrum Settings pane. You must specify a
value to ensure that there are at least two RBW intervals over the specified frequency span. The
ratio of the overall span to RBW must be greater than two:

span
RBW > 2

By default, the RBW (Hz) parameter on the Main options pane is set to Auto. In this case, the
Spectrum Analyzer determines the appropriate value to ensure that there are 1024 RBW
intervals over the specified frequency span. When you set RBW (Hz) to Auto, RBW is calculated
as:

RBWauto = span
1024

5 When in Window Length mode, you specify Nwindow and the resulting RBW is:

NENBW × Fs
Nwindow

Sometimes, the number of input samples provided are not sufficient to achieve the resolution
bandwidth that you specify. When this situation occurs, Spectrum Analyzer displays a message:

4 System Objects

4-1300

Spectrum Analyzer removes this message and displays a spectral estimate when enough data has
been input.

Note The number of FFT points (Nfft) is independent of the window length (Nwindow). You can set them
to different values if Nfft is greater than or equal to Nwindow.

Spectrum Estimation — Filter Bank

When you choose the Filter Bank method, the Spectrum Analyzer uses an analysis filter bank to
estimate the power spectrum.

The filter bank splits the broadband input signal, x(n), of sample rate fs, into multiple narrow band
signals, y0(m), y1(m), … , yM-1(m), of sample rate fs/M.

The variable M represents the number of frequency bands in the filter bank. When the frequency
resolution method is set to NumFrequencyBands, M is equal to the value you specify for the number
of frequency bands. When the frequency resolution method is set to RBW, M is equal to the number of
data points that are needed to achieve the specified RBW value or 1024, whichever is larger. The
number of taps per frequency band specifies the number of filter coefficients for each frequency band
of the filter bank. The total number of filter coefficients is equal to number of taps per band times the
number of frequency bands, M. For more information on the analysis filter bank and how it is
implemented, see the “More About” on page 4-218 and the “Algorithm” on page 4-220 sections in
dsp.Channelizer.

After the broadband input signal is split into multiple narrow bands, the Spectrum Analyzer computes
the power in each narrow band using the following equation. Each Zi value becomes the estimate of
the power over that narrow frequency band.

Zi = 1
L ∑m = 0

L− 1
yi[m] 2

L is length of the narrow band signal, yi(m), and i = 1, 2, …, M−1.

The power values in all the narrow bands (denoted by the Zi) form the Z vector.

Z = [Z0, Z1, Z2,⋯, ZM − 1]

The current Z vector is averaged with the previous Z vectors using one of the two moving average
methods: Running or Exponential weighting. The output of the averaging operation forms the
spectral estimate vector. For details on the two averaging methods, see “Averaging Method” on page
4-1307.

 dsp.SpectrumAnalyzer

4-1301

The Spectrum Analyzer uses the RBW (Hz) or the Number of frequency band property in the
Spectrum Settings pane to determine the input frame length.

Spectrum Analyzer requires a minimum number of samples to compute a spectral estimate. This
number of input samples required to compute one spectral update is shown as Samples/update in
the Main options pane. This value is directly related to resolution bandwidth, RBW, by the following
equation.

Nsamples =
Fs

RBW

Fs is the sample rate of the input signal. Spectrum Analyzer shows sample rate in the Main Options
pane of the Spectrum Settings pane.

1 When in RBW (Hz) mode, you can set the resolution bandwidth using the value of the RBW
(Hz) parameter on the Main options pane of the Spectrum Settings pane. You must specify a
value to ensure that there are at least two RBW intervals over the specified frequency span. The
ratio of the overall span to RBW must be greater than two:

span
RBW > 2

By default, the RBW parameter on the Main options pane is set to Auto. In this case, the
Spectrum Analyzer determines the appropriate value to ensure that there are 1024 RBW
intervals over the specified frequency span. Thus, when you set RBW to Auto, it is calculated by
the following equation.RBWauto = span

1024
2 When in Number of frequency bands mode, you specify the input frame size. When the number

of frequency bands is Auto, the resulting RBW is:

RBW =
Fs

Input Frame Size

When the number of frequency bands is manually specified, the resulting RBW is:

RBW =
Fs

FFTLength

4 System Objects

4-1302

Sometimes, the number of input samples provided are not sufficient to achieve the resolution
bandwidth that you specify. When this situation occurs, Spectrum Analyzer displays a message:

Spectrum Analyzer removes this message and displays a spectral estimate when enough data has
been input.

Nyquist frequency interval

When the PlotAsTwoSidedSpectrum property is set to true, the interval is
−SampleRate

2 , SampleRate
2 + FrequencyOf f set hertz.

When the PlotAsTwoSidedSpectrum property is set to false, the interval is
0, SampleRate

2 + FrequencyOf f set hertz.

Periodogram and Spectrogram

Spectrum Analyzer calculates and plots the power spectrum, power spectrum density, and RMS
computed by the modified Periodogram estimator. For more information about the Periodogram
method, see periodogram.

Power Spectral Density — The power spectral density (PSD) is given by the following equation.

PSD f = 1
P ∑p = 1

P ∑
n = 1

NFFT
xp n e− j2πf (n− 1)T

2

Fs × ∑
n = 1

Nwindow
w2 n

In this equation, x[n] is the discrete input signal. On every input signal frame, Spectrum Analyzer
generates as many overlapping windows as possible, with each window denoted as x(p)[n], and
computes their periodograms. Spectrum Analyzer displays a running average of the P most current
periodograms.

Power Spectrum — The power spectrum is the product of the power spectral density and the
resolution bandwidth, as given by the following equation.

Pspectrum f = PSD f × RBW = PSD f ×
Fs × NENBW

Nwindow
= 1

P ∑p = 1

P ∑
n = 1

NFFT
xp n e− j2πf (n− 1)T

2

∑
n = 1

Nwindow
w n

2

 dsp.SpectrumAnalyzer

4-1303

Spectrogram — You can plot any power as a spectrogram. Each line of the spectrogram is one
periodogram. The time resolution of each line is 1/RBW, which is the minimum attainable resolution.
Achieving the resolution you want may require combining several periodograms. You then use
interpolation to calculate noninteger values of 1/RBW. In the spectrogram display, time scrolls from
top to bottom, so the most recent data is shown at the top of the display. The offset shows the time
value at which the center of the most current spectrogram line occurred.

Frequency Vector

When set to Auto, the frequency vector for frequency-domain input is calculated by the software.

When the PlotAsTwoSidedSpectrum property is set to true, the frequency vector is:

−SampleRate
2 , SampleRate

2

When the PlotAsTwoSidedSpectrum property is set to false, the frequency vector is:

0, SampleRate
2

Occupied BW

The Occupied BW is calculated as follows.

1 Calculate the total power in the measured frequency range.
2 Determine the lower frequency value. Starting at the lowest frequency in the range and moving

upward, the power distributed in each frequency is summed until this result is

100− OccupiedBW%
2

of the total power.
3 Determine the upper frequency value. Starting at the highest frequency in the range and moving

downward, the power distributed in each frequency is summed until the result reaches

100− OccupiedBW%
2

of the total power.
4 The bandwidth between the lower and upper power frequency values is the occupied bandwidth.
5 The frequency halfway between the lower and upper frequency values is the center frequency.

Distortion Measurements

The Distortion Measurements are computed as follows.

1 Spectral content is estimated by finding peaks in the spectrum. When the algorithm detects a
peak, it records the width of the peak and clears all monotonically decreasing values. That is, the
algorithm treats all these values as if they belong to the peak. Using this method, all spectral
content centered at DC (0 Hz) is removed from the spectrum and the amount of bandwidth
cleared (W0) is recorded.

2 The fundamental power (P1) is determined from the remaining maximum value of the displayed
spectrum. A local estimate (Fe1) of the fundamental frequency is made by computing the central

4 System Objects

4-1304

moment of the power near the peak. The bandwidth of the fundamental power content (W1) is
recorded. Then, the power from the fundamental is removed as in step 1.

3 The power and width of the higher-order harmonics (P2, W2, P3, W3, etc.) are determined in
succession by examining the frequencies closest to the appropriate multiple of the local estimate
(Fe1). Any spectral content that decreases monotonically about the harmonic frequency is
removed from the spectrum first before proceeding to the next harmonic.

4 Once the DC, fundamental, and harmonic content is removed from the spectrum, the power of
the remaining spectrum is examined for its sum (Premaining), peak value (Pmaxspur), and median
value (Pestnoise).

5 The sum of all the removed bandwidth is computed as Wsum = W0 + W1 + W2 +...+ Wn.

The sum of powers of the second and higher-order harmonics are computed as Pharmonic = P2 + P3
+ P4 +...+ Pn.

6 The sum of the noise power is estimated as:

Pnoise = (Premaining ⋅ dF + Pest . noise ⋅Wsum)/RBW

Where dF is the absolute difference between frequency bins, and RBW is the resolution
bandwidth of the window.

7 The metrics for SNR, THD, SINAD, and SFDR are then computed from the estimates.

THD = 10 ⋅ log10
Pharmonic

P1

SINAD = 10 ⋅ log10
P1

Pharmonic + Pnoise

SNR = 10 ⋅ log10
P1

Pnoise

SFDR = 10 ⋅ log10
P1

max Pmaxspur, max P2, P3, ..., Pn

Harmonic Measurements

1 The harmonic distortion measurements use the spectrum trace shown in the display as the input
to the measurements. The default Hann window setting of the Spectrum Analyzer may exhibit
leakage that can completely mask the noise floor of the measured signal.

 dsp.SpectrumAnalyzer

4-1305

The harmonic measurements attempt to correct for leakage by ignoring all frequency content
that decreases monotonically away from the maximum of harmonic peaks. If the window leakage
covers more than 70% of the frequency bandwidth in your spectrum, you may see a blank
reading (–) reported for SNR and SINAD. If your application can tolerate the increased
equivalent noise bandwidth (ENBW), consider using a Kaiser window with a high attenuation (up
to 330 dB) to minimize spectral leakage.

4 System Objects

4-1306

2 The DC component is ignored.
3 After windowing, the width of each harmonic component masks the noise power in the

neighborhood of the fundamental frequency and harmonics. To estimate the noise power in each
region, Spectrum Analyzer computes the median noise level in the nonharmonic areas of the
spectrum. It then extrapolates that value into each region.

4 Nth order intermodulation products occur at A*F1 + B*F2,

where F1 and F2 are the sinusoid input frequencies and |A| + |B| = N. A and B are integer
values.

5 For intermodulation measurements, the third-order intercept (TOI) point is computed as follows,
where P is power in decibels of the measured power referenced to 1 milliwatt (dBm):

• TOIlower = PF1 + (PF2 - P(2F1-F2))/2
• TOIupper = PF2 + (PF1 - P(2F2-F1))/2
• TOI = + (TOIlower + TOIupper)/2

Averaging Method

The moving average is calculated using one of the two methods:

• Running — For each frame of input, average the last N-scaled Z vectors, which are computed by
the algorithm. The variable N is the value you specify for the number of spectral averages. If the
algorithm does not have enough Z vectors, the algorithm uses zeros to fill the empty elements.

 dsp.SpectrumAnalyzer

4-1307

• Exponential — The moving average algorithm using the exponential weighting method updates
the weights and computes the moving average recursively for each Z vector that comes in by
using the following recursive equations:

wN = λwN − 1 + 1

zN = 1− 1
wN

zN − 1 + 1
wN

zN

• λ — Forgetting factor
• wN — Weighting factor applied to the current Z vector
• zN — Current Z vector
• zN − 1 — Moving average until the previous Z vector
• 1− 1

wN
zN − 1 — Effect of the previous Z vectors on the average

• zN — Moving average including the current Z vector

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports MEX code generation by treating the calls to the object as extrinsic. Does not support
code generation for standalone applications.

4 System Objects

4-1308

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
timescope | dsp.ArrayPlot | dsp.LogicAnalyzer | dsp.DynamicFilterVisualizer |
powermeter

Blocks
Spectrum Analyzer

Topics
“Estimate the Power Spectrum in MATLAB”
“Spectral Analysis”

Introduced in R2012b

 dsp.SpectrumAnalyzer

4-1309

dsp.SpectrumEstimator
Package: dsp

Estimate power spectrum or power density spectrum

Description
The dsp.SpectrumEstimator System object computes the power spectrum or the power density
spectrum of a signal using the Welch algorithm or the filter bank approach.

When you choose the Welch method, the object computes the averaged modified periodograms to
compute the spectral estimate. When you choose the filter bank approach, an analysis filter bank
splits the broadband input signal into multiple narrow subbands. The object computes the power in
each narrow frequency band, and the computed value is the spectral estimate over the respective
frequency band. For signals with relatively small FFT lengths, the filter bank approach produces a
spectral estimate with a higher resolution, a more accurate noise floor, and peaks more precise than
the Welch method, with low or no spectral leakage. These advantages come at the expense of
increased computation and slower tracking.

The spectrum can be expressed in watts or in decibels. This object can also estimate the max-hold
and min-hold spectra of the signal.

To estimate the power density spectrum:

1 Create the dsp.SpectrumEstimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
SE = dsp.SpectrumEstimator
SE = dsp.SpectrumEstimator(Name,Value)

Description

SE = dsp.SpectrumEstimator returns a System object, SE, that computes the frequency power
spectrum or the power density spectrum of real or complex signals. This System object uses the
Welch’s averaged modified periodogram method or the filter bank-based spectral estimation method.

SE = dsp.SpectrumEstimator(Name,Value) returns a dsp.SpectrumEstimator System
object with each specified property name set to the specified value. Unspecified properties have
default values.

4 System Objects

4-1310

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SpectrumType — Spectrum type
'Power' (default) | 'Power density'

Spectrum type, specified as either 'Power' or 'Power density'. When the spectrum type is
'Power', the power density spectrum is scaled by the equivalent noise bandwidth of the window (in
Hz).

Tunable: Yes

FFTLengthSource — Source of FFT length value
'Auto' (default) | 'Property'

Source of the FFT length value, specified as either 'Auto' or 'Property'. If you set this property
to 'Auto', the spectrum estimator sets the FFT length to the input frame size. If you set this
property to 'Property', then you specify the number of FFT points using the FFTLength property.

FFTLength — FFT length
128 (default) | positive integer

Specify the length of the FFT that the spectrum estimator uses to compute spectral estimates as a
positive integer.

Dependencies

This property applies when you set the FFTLengthSource property to 'Property'.
Data Types: double

Method — Welch or filter bank
'Welch' (default) | 'Filter bank'

Specify the spectral estimation method:

• 'Welch' — The object uses Welch's averaged modified periodograms method.
• 'Filter bank' — An analysis filter bank splits the broadband input signal into multiple narrow

subbands. The object computes the power in each narrow frequency band, and the computed
value is the spectral estimate over the respective frequency band.

Window — Window function
'Hann' (default) | 'Rectangular' | 'Chebyshev' | 'Flat Top' | 'Hamming' | 'Kaiser'

Specify a window function for the spectral estimator as one of 'Rectangular', 'Chebyshev',
'Flat Top', 'Hamming', 'Hann', or 'Kaiser'.

 dsp.SpectrumEstimator

4-1311

Dependencies

This property applies when you set Method to 'Welch'.

NumTapsPerBand — Number of filter taps per frequency band
12 (default) | positive integer

Specify the number of filter coefficients, or taps, for each frequency band. This value corresponds to
the number of filter coefficients per polyphase branch. The total number of filter coefficients is given
by NumTapsPerBand × FFTLength.

Dependencies

This property applies when you set Method to 'Filter bank'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FrequencyRange — Frequency range of the spectrum estimate
'twosided' (default) | 'onesided' | 'centered'

Specify the frequency range of the spectrum estimator as one of 'twosided', 'onesided', or
'centered'.

If you set the FrequencyRange to 'onesided', then the spectrum estimator computes the one-
sided spectrum of a real input signal. When the FFT length, NFFT, is even, the spectrum estimate has
length (NFFT/2) + 1 and is computed over the frequency range [0, SampleRate/2], where
SampleRate is the sample rate of the input signal. When NFFT is odd, the spectrum estimate has
length (NFFT + 1)/2 and is computed over the frequency range [0, SampleRate/2).

If you set the FrequencyRange to 'twosided', then the spectrum estimator computes the two-
sided spectrum of a complex or real input signal. The length of the spectrum estimate is equal to the
FFT length. The spectrum estimate is computed over the frequency range [0, SampleRate), where
SampleRate is the sample rate of the input signal.

If you set the FrequencyRange to 'centered', then the spectrum estimator computes the centered
two-sided spectrum of a complex or real input signal. The length of the spectrum estimate is equal to
the FFT length. The spectrum estimate is computed over the frequency range (-SampleRate/2,
SampleRate/2] when the FFT length is even and (-SampleRate/2, SampleRate/2) when the
FFT length is odd.

PowerUnits — Power units
'Watts' (default) | 'dBW' | 'dBm'

Specify the units used to measure power as one of 'Watts', 'dBW', or 'dBm'.

AveragingMethod — Averaging method
'Running' (default) | 'Exponential'

Specify the averaging method as 'Running' or 'Exponential'. In the running averaging method,
the object computes an equally weighted average of a specified number of spectrum estimates
defined by the SpectralAverages property. In the exponential method, the object computes the
average over samples weighted by an exponentially decaying forgetting factor.

SpectralAverages — Number of spectral averages
8 (default) | positive integer

4 System Objects

4-1312

Number of spectral averages, specified as a positive integer. The spectrum estimator computes the
current power spectrum or power density spectrum estimate by averaging the last N estimates. N is
the number of spectral averages defined in the SpectralAverages property.
Dependencies

This property applies when you set AveragingMethod to 'Running'.
Data Types: double

ForgettingFactor — Forgetting factor
0.9 (default) | scalar in the range (0,1]

Specify the exponential weighting forgetting factor as a scalar value greater than zero and smaller
than or equal to one.

Tunable: Yes
Dependencies

This property applies when you set AveragingMethod to 'Exponential'.
Data Types: single | double

ReferenceLoad — Reference load
1 (default) | positive scalar

Specify the load that the spectrum estimator uses as a reference to compute power values as a real,
positive scalar in ohms.
Data Types: single | double

SidelobeAttenuation — Side lobe attenuation of window
60 dB (default) | positive scalar

Specify the side lobe attenuation of the window as a real, positive scalar, in decibels (dB).
Dependencies

This property applies when you set Method to 'Welch' and Window to 'Chebyshev' or 'Kaiser'.
Data Types: double

OutputMaxHoldSpectrum — Output max-hold spectrum
false (default) | true

Set this property to true so that the spectrum estimator computes and outputs the max-hold
spectrum of each input channel. The max-hold spectrum is computed by keeping, at each frequency
bin, the maximum value of all the power spectrum estimates.

OutputMinHoldSpectrum — Output min-hold spectrum
false (default) | true

Set this property to true so that the spectrum estimator computes and outputs the min-hold
spectrum of each input channel. The min-hold spectrum is computed by keeping, at each frequency
bin, the minimum value of all the power spectrum estimates.

SampleRate — Sample rate of input
1 (default) | scalar

 dsp.SpectrumEstimator

4-1313

Sample rate of the input in Hz, specified as a finite numeric scalar. The sample rate is the rate at
which the signal is sampled in time.
Data Types: single | double

Usage

Syntax
pxx = SE(x)
[pxx,pmax] = SE(x)
[pxx,pmin] = SE(x)
[pxx,pmax,pmin] = SE(x)

Description

pxx = SE(x) computes the power spectrum or power-density spectrum, pxx, of the input signal, x.
The System object treats the columns of x as independent channels.

[pxx,pmax] = SE(x) also computes the max-hold frequency spectrum, pmax, of x. To determine
the max-hold spectrum, the method keeps the maximum of all the power spectrum estimates
computed at each frequency bin. Set OutputMaxHoldSpectrum to true to obtain the max-hold
spectrum.

[pxx,pmin] = SE(x) also computes the min-hold frequency spectrum, pmin, of x. To determine
the min-hold spectrum, the method keeps the minimum of all the power spectrum estimates
computed at each frequency bin. Set OutputMinHoldSpectrum to true to obtain the min-hold
spectrum.

[pxx,pmax,pmin] = SE(x) computes the power spectrum or power-density spectrum, the max-
hold spectrum, and the min-hold spectrum of x. Set OutputMaxHoldSpectrum and
OutputMinHoldSpectrum to true to obtain the max-hold and min-hold spectra.

Input Arguments

x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. The row length of x is the frame size or channel length.
Each column of x is treated as a separate channel. The column length of x is the number of channels.
Data Types: single | double

Output Arguments

pxx — Power or power-density spectrum estimate
vector | matrix

Power or power-density spectrum estimate, returned as a vector or matrix of the same data type and
complexity as the input signal, x.

When FFTLengthSource is set to:

• 'Auto' –– The size of pxx is same as the size of the input signal, x.

4 System Objects

4-1314

• 'Property' –– The size of pxx is the same as the specified FFT length.

By default, the unit of pxx is 'Watts'. You can also specify the spectrum to be in 'dBm' or 'dBW'
through the PowerUnits property.
Data Types: single | double

pmax — Max-hold spectrum estimate
vector | matrix

Max-hold spectrum estimate, returned as a vector or matrix of the same size, data type, and
complexity as the output signal, pxx.
Data Types: single | double

pmin — Min-hold spectrum estimate
vector | matrix

Min-hold spectrum estimate, returned as a vector or matrix of the same size, data type, and
complexity as the output signal, pxx.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.SpectrumEstimator
getFrequencyVector Vector of frequencies at which estimation is done
getRBW Resolution bandwidth of spectrum

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Power Spectrum of Multichannel Sinusoidal Signal

Compute the power spectrum of a multichannel sinusoidal signal using the
dsp.SpectrumEstimator System object™. You can get the vector of frequencies at which the
spectrum is estimated using the getFrequencyVector function. To compute the resolution
bandwidth of the estimate (RBW), use the getRBW function.

Generate a three-channel sinusoid sampled at 1 kHz. Specify sinusoidal frequencies of 100, 200, and
300 Hz. The second and third channels have their phases offset from the first by and ,
respectively.

 dsp.SpectrumEstimator

4-1315

sineSignal = dsp.SineWave('SamplesPerFrame',1000,'SampleRate',1000, ...
 'Frequency',[100 200 300],'PhaseOffset',[0 pi/2 pi/4]);

Estimate and plot the one-sided spectrum of the signal. Use the dsp.SpectrumEstimator object for
the computation and the dsp.ArrayPlot for the plotting.

estimator = dsp.SpectrumEstimator('FrequencyRange','onesided');
plotter = dsp.ArrayPlot('PlotType','Line','YLimits',[0 0.75], ...
 'YLabel','Power Spectrum (watts)','XLabel','Frequency (Hz)');

Step through to obtain the data streams and display the spectra of the three channels.

y = sineSignal();
pxx = estimator(y);
plotter(pxx)

Get the vector of frequencies at which the spectrum is estimated in Hz, using the
getFrequencyVector function.

f = getFrequencyVector(estimator);

Compute the resolution bandwidth (RBW) of the estimate using the getRBW function.

rbw = getRBW(estimator)

rbw =

4 System Objects

4-1316

 0.0015

The resolution bandwidth of the signal power spectrum is 0.0015 Hz. This frequency is the smallest
frequency that can be resolved on the spectrum.

Spectral Estimation Using Filter Bank

Compare spectral estimates of sinusoids embedded in white Gaussian noise using a Hann window-
based Welch method and filter bank method.

Initialization

Initialize two dsp.SpectrumEstimator objects. Specify one estimator to use the Welch-based
spectral estimation technique with a Hann window. Specify the other estimator to use an analysis
filter bank to perform the spectral estimation. Specify a noisy sine wave input signal with 4 sinusoids
at 0.16, 0.2, 0.205, and 0.25 cycles/sample. View the spectral estimate using an array plot.

FrameSize = 420;
Fs = 1;
sinegen = dsp.SineWave('SampleRate',Fs,...
 'SamplesPerFrame',FrameSize,...
 'Frequency',[0.16 0.2 0.205 0.25],...
 'Amplitude',[2e-5 1 0.05 0.5]);
NoiseVar = 1e-10;
numAvgs = 8;

hannEstimator = dsp.SpectrumEstimator('PowerUnits','dBm',...
 'Window','Hann','FrequencyRange','onesided',...
 'SpectralAverages',numAvgs,'SampleRate',Fs);

filterBankEstimator = dsp.SpectrumEstimator('PowerUnits','dBm',...
 'Method','Filter bank','FrequencyRange','onesided',...
 'SpectralAverages',numAvgs,'SampleRate',Fs);

spectrumPlotter = dsp.ArrayPlot(...
 'PlotType','Line','SampleIncrement',Fs/FrameSize,...
 'YLimits',[-250,50],'YLabel','dBm',...
 'ShowLegend',true,'ChannelNames',{'Hann window','Filter bank'});

Streaming

Stream the input. Compare the spectral estimates computed using the Hann window and the analysis
filter bank

for i = 1:1000
 x = sum(sinegen(),2) + sqrt(NoiseVar)*randn(FrameSize,1);
 Pse_hann = hannEstimator(x);
 Pfb = filterBankEstimator(x);
 spectrumPlotter([Pse_hann,Pfb])
end

 dsp.SpectrumEstimator

4-1317

The Hann window misses the peak at 0.205 cycles/sample. In addition, the window has a significant
spectral leakage that makes the peak at 0.16 cycles/sample hard to distinguish, and the noise floor is
not correct.

The filter bank estimate has a very good resolution with no spectral leakage.

Power and Max-Hold Spectra of Noisy Sine Wave

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Generate a sine wave.

sineWave = dsp.SineWave('Frequency',100,...
 'SampleRate',1000, ...
 'SamplesPerFrame',1000);

Use the spectrum estimator to compute the power spectrum and the max-hold spectrum of the sine
wave. Use the Array Plot to display the spectra.

SE = dsp.SpectrumEstimator(...
 'SampleRate',sineWave.SampleRate,...
 'SpectrumType','Power','PowerUnits','dBm', ...
 'FrequencyRange','centered',...

4 System Objects

4-1318

 'OutputMaxHoldSpectrum',true);
plotter = dsp.ArrayPlot('PlotType','Line',...
 'XOffset',-500, ...
 'YLimits',[-60 30],...
 'Title','Power Spectrum of 100 Hz Sine Wave', ...
 'YLabel','Power Spectrum (dBm)',...
 'XLabel','Frequency (Hz)');

Add random noise to the sine wave. Stream in the data, and plot the power spectrum of the signal.

for ii = 1:10
 x = sineWave() + 0.05*randn(1000,1);
 [Pxx,Pmax] = SE(x);
 plotter([Pxx Pmax])
end

Algorithms
Welch's Method of Averaged Modified Periodograms

When you choose the Welch method, the power spectrum estimate is averaged modified
periodograms.

Given the signal input, x:

1 Multiply x by the window and scale the result by the window power.

 dsp.SpectrumEstimator

4-1319

2 Compute the FFT of the signal, Y, and take the square magnitude using Z = Y.*conj(Y).
3 Compute the current power spectrum estimate by taking the moving average of the last N

number of Z's, and scaling the answer by the sample rate. For details on the moving average
methods, see “Averaging Method” on page 4-1321.

Filter Bank

The filter-bank-based spectrum estimator uses an analysis filter bank to estimate the power spectrum.
The filter bank splits a broadband input signal, x(n), of sample rate fs into multiple narrow band
signals, y0(m), y1(m), … , yM-1(m), of sample rate fs/M.

The variable M represents the number of frequency bands in the filter bank. When you specify FFT
length, M equals the FFT length. When you do not specify FFT length, M is equal to the number of
rows in the input signal. The number of taps per frequency band sets the number of filter coefficients
for each frequency band of the filter bank. The total number of filter coefficients is equal to number of
taps per band times the number of frequency bands M. For more information on the analysis filter
bank and how it is implemented, see the “More About” on page 4-218 and the “Algorithm” on page 4-
220 sections in dsp.Channelizer.

After the broadband input signal is split into multiple narrow bands, the spectrum estimator
computes the power in each narrow band using the following equation. Each Zi value becomes the
estimate of the power over that narrow frequency band.

Zi = 1
L ∑m = 0

L− 1
yi[m] 2

L is length of the narrow band signal yi(m), where i = 1, 2, …, M−1.

The power values in all the narrow bands (denoted by Zi) form the Z vector.

Z = [Z0, Z1, Z2,⋯, ZM − 1]

The filter bank estimator algorithm averages the current Z vector with the previous Z vectors using
one of the two moving average methods: running or exponential weighting. The output of the
averaging operation forms the spectral estimate vector. For details on the two averaging methods,
see “Averaging Method” on page 4-1321.

4 System Objects

4-1320

Averaging Method

The moving average is calculated using one of the two methods:

• Running — For each frame of input, average the last N-scaled Z vectors, which are computed by
the algorithm. The variable N is the value you specify for the number of spectral averages. If the
algorithm does not have enough Z vectors, the algorithm uses zeros to fill the empty elements.

• Exponential — The moving average algorithm using the exponential weighting method updates
the weights and computes the moving average recursively for each Z vector that comes in by
using the following recursive equations:

wN = λwN − 1 + 1

zN = 1− 1
wN

zN − 1 + 1
wN

zN

• λ — Forgetting factor
• wN — Weighting factor applied to the current Z vector
• zN — Current Z vector
• zN − 1 — Moving average until the previous Z vector
• 1− 1

wN
zN − 1 — Effect of the previous Z vectors on the average

• zN — Moving average including the current Z vector

 dsp.SpectrumEstimator

4-1321

References
[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling. Hoboken, NJ: John Wiley &

Sons, 1996

[2] Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ:
Prentice Hall, 1999

[3] Stoica, Petre and Randolph L. Moses. Spectral Analysis of Signals. Upper Saddle River, NJ:
Prentice Hall, 2005

[4] Welch, P. D. “The use of fast Fourier transforms for the estimation of power spectra: A method
based on time averaging over short modified periodograms,” IEEE Transactions on Audio and
Electroacoustics, Vol. 15, 1967, pp. 70–73.

[5] Harris, F.J. Multirate Signal Processing for Communication Systems. Prentice Hall. 2004, pp. 208–
209.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Functions
getFrequencyVector | getRBW

Objects
dsp.SpectrumAnalyzer | dsp.TransferFunctionEstimator |
dsp.CrossSpectrumEstimator | powermeter

Blocks
Spectrum Estimator

Topics
“Estimate the Power Spectrum in MATLAB”
“High Resolution Spectral Analysis in MATLAB”

Introduced in R2013b

4 System Objects

4-1322

dsp.StandardDeviation
Package: dsp

(Removed) Standard deviation of input or sequence of inputs

Note The dsp.StandardDeviation System object™ has been removed. To compute the standard
deviation, use the std function. To compute the running standard deviation in MATLAB®, use the
dsp.MovingStandardDeviation object. For more information, see “Compatibility Considerations”.

Description
The dsp.StandardDeviation object computes the standard deviation for an input or sequence of
inputs.

To compute the standard deviation for an input or sequence of inputs:

1 Create the dsp.StandardDeviation object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
std = dsp.StandardDeviation
std = dsp.StandardDeviation(Name,Value)

Description

std = dsp.StandardDeviation returns a standard deviation System object, std, that computes
the standard deviation for the columns of input.

std = dsp.StandardDeviation(Name,Value) returns a standard deviation System object, std,
with each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

RunningStandardDeviation — Enable calculating standard deviation over time
true (default) | false

 dsp.StandardDeviation

4-1323

Set this property to true to enable the calculation of standard deviation over successive calls to the
object algorithm.

ResetInputPort — Enable resetting in running standard deviation mode
false (default) | true

Set this property to true to enable resetting for the running standard deviation. When the property
is set to true, you must specify a reset input to the object to reset the running standard deviation.

Dependencies

This property applies only when you set the RunningStandardDeviation property to true.

ResetCondition — Reset condition for running standard deviation mode
Non-zero (default) | Rising edge | Falling edge | Either edge

Specify event to reset the running standard deviation.

Dependencies

This property applies only when you set the “ResetInputPort” on page 4-0 property to true.

Dimension — Dimension to operate along
Column (default) | All | Row | Custom

Specify how the standard deviation calculation is performed over the data.

Dependencies

This property applies only when you set the RunningStandardDeviation property to false.

CustomDimension — Numerical dimension to operate along
1 (default) | positive integer

Specify the dimension (one-based value) of the input signal, over which the object computes the
standard deviation. The custom dimension cannot exceed the number of dimensions for the input
signal.

Dependencies

This property applies when you set the “Dimension” on page 4-0 property to Custom.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
y = std(x)
y = std(x,r)

Description

y = std(x) computes the standard deviation, y, of input x. The object computes the standard
deviation over successive calls to the algorithm when the RunningStandardDeviation property is
true.

4 System Objects

4-1324

y = std(x,r) resets its state based on the value of reset signal r and the ResetCondition
property. You can use this option only when the RunningStandardDeviation property is true.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The standard deviation is computed along each channel. The object also
accepts variable-size inputs. Once the object is locked, you can change the size of each input channel.
Data Types: single | double

r — Reset signal
scalar

Reset signal used to reset the running standard deviation, specified as a scalar value. The object
resets the running standard deviation if the reset signal satisfies the ResetCondition.

Dependencies

To enable this signal, set the RunningStandardDeviation property to true and the
ResetInputPort property to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments

y — Standard deviation output
scalar | vector | matrix

Standard deviation output, returned as a scalar, vector or a matrix. If RunningStandardDeviation
is set to:

• false –– The object computes the standard deviation value of each input channel. If the input is a
column vector, the output is a scalar. If the input is a multichannel signal, the output signal is a 1-
by-N vector, where N is the number of input channels.

• true –– The object computes the running standard deviation of the signal. The size of the output
signal matches the size of the input signal.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

 dsp.StandardDeviation

4-1325

Examples

Running Standard Deviation

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Compute the running standard deviation of a signal using dsp.StandardDeviation object. To
activate this mode, set the RunningStandardDeviation property to true.

 std2 = dsp.StandardDeviation;
 std2.RunningStandardDeviation = true;
 x = randn(100,1);
 y = std2(x);

y(i) is the standard deviation of the ith input sample with respect to all the past input samples.

Algorithms
This object implements the algorithm, inputs, and outputs described on the Standard Deviation block
reference page. The object properties correspond to the block parameters, except the Reset port
block parameter corresponds to the ResetInputPort and ResetCondition object properties.

Compatibility Considerations
dsp.StandardDeviation System object has been removed
Errors starting in R2021a

The dsp.StandardDeviation System object has been removed. To compute the standard deviation,
use the std function. To compute the running standard deviation, use the
dsp.MovingStandardDeviation object.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

4 System Objects

4-1326

Discouraged Usage Recommended Replacement
Standard Deviation

stdDev = dsp.StandardDeviation;
x = randn(100,1);
y = stdDev(x);

Running Standard Deviation

stdDev = dsp.StandardDeviation;
stdDev.RunningStandardDeviation = true;
x = randn(100,1);
% Running std
y = stdDev(x);

If you are using a release prior to R2016b,
replace stdDev(x) with step(stdDev,x).

Standard Deviation

x = randn(100,1);
y = std(x);

Running Standard Deviation

mvgStd = dsp.MovingStandardDeviation;
mvgStd.SpecifyWindowLength = false;
x = randn(100,1);
y = mvgStd(x);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
std

Objects
dsp.MovingStandardDeviation | dsp.MovingRMS | dsp.MovingVariance

Blocks
Moving Standard Deviation | Standard Deviation | Moving RMS | RMS | Moving Variance | Variance

Introduced in R2012a

 dsp.StandardDeviation

4-1327

dsp.StateLevels
Package: dsp

(To be removed) State-level estimation for bilevel rectangular waveform

Note dsp.StateLevels will be removed in a future release. Use statelevels instead. For more
information, see “Compatibility Considerations”.

Description
The dsp.StateLevels object estimates the state levels of a bilevel rectangular waveform.

To estimate the state levels of a bilevel waveform:

1 Create the dsp.StateLevels object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
sl = dsp.StateLevels
sl = dsp.StateLevels(Name,Value)

Description

sl = dsp.StateLevels creates a state-level estimation System object, sl, that estimates state
levels in a bilevel rectangular waveform using the histogram method with 100 bins.

sl = dsp.StateLevels(Name,Value) returns a StateLevels System object, sl, with each
specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

HistogramBounds — Minimum and maximum levels of histogram
[0 5] (default) | two-element row vector

4 System Objects

4-1328

Minimum and maximum levels of the histogram. Specify the range of the histogram as a two-element
real-valued row vector. Signal values outside the range defined by this property are ignored.
Dependencies

This property applies when you set the Method property to 'Histogram mode' or 'Histogram
mean', and either RunningStateLevels is true, or the HistogramBoundsSource property is set
to 'Property'.
Data Types: double

HistogramBoundsSource — Source of histogram bounds
'Auto' (default) | 'Property'

Source of histogram bounds. Specify how to determine the histogram bounds as one of 'Auto' or
'Property'. When you set this property to 'Auto', the histogram bounds are determined by the
minimum and maximum input values. When you set this property to 'Property', the histogram
bounds are determined by the value of the HistogramBounds property.
Dependencies

This property applies when you set the Method property to 'Histogram mode' or 'Histogram
mean', and the RunningStateLevels property is false.

HistogramNumBins — Number of bins in histogram
100 (default) | positive integer

Number of bins in the histogram. Specify the number of bins in the histogram.
Dependencies

This property applies when you set the Method property to 'Histogram mode' or 'Histogram
mean'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

HistogramOutputPort — Enable histogram output
false (default) | true

Enable histogram output. Set this property to true to output the histogram used in the computation
of the state levels.
Dependencies

This property applies when you set the Method property to 'Histogram mode' or 'Histogram
mean'.

Method — Algorithm used to compute state levels
'Histogram mode' (default) | 'Histogram mean' | 'Peak to peak'

Algorithm used to compute state levels. Specify the method used to compute state levels as one of
'Histogram mean', 'Histogram mode', or 'Peak to peak'.

RunningStateLevels — Calculation over successive calls
false (default) | true

Calculation over successive calls to the algorithm. Set this property to true to enable computation of
the state levels over successive calls to the algorithm. Otherwise, the object computes the state levels

 dsp.StateLevels

4-1329

of only the current input. When you set the RunningStateLevels property to false and you are
using a histogram to compute your state levels, you must set the HistogramBoundsSource property
to 'Property'.

Usage

Syntax
levels = sl(x)
[levels,histogram] = sl(x)

Description

levels = sl(x) returns a two-element row vector, levels, containing the estimated state levels
for the input, x.

[levels,histogram] = sl(x) returns a double-precision column vector, histogram, containing
the histogram of the sample values in x. You can obtain this output only when you set the Method
property to either 'Histogram mean' or 'Histogram mode', and you set the
HistogramOutputPort property to true.

Input Arguments

x — Input
column vector

Input data, specified as a real-valued column vector.
Data Types: double

Output Arguments

levels — State levels
two-element row vector

State levels, returned as a two-element row vector.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.StateLevels
plot (To be removed) Plot signal, state levels, and histogram

Common to All System Objects
step Run System object algorithm

4 System Objects

4-1330

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

State Levels of 2.3 V Underdamped Noisy Clock

Compute and plot the state levels of a 2.3 V underdamped noisy clock. Load the clock data in the
variable, x, and the sampling instants in the variable t.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

load('clockex.mat','x','t');

Estimate the state levels.

sl = dsp.StateLevels;
levels = sl(x);

Plot the clock data along with the estimated state levels and histograms.

plot(sl)

More About
State

A state is a particular level, which can be associated with an upper and lower state boundary. States
are ordered from the most negative to the most positive. In a bilevel waveform, the most negative
state is the low state. The most positive state is the high state.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
low state. To provide a useful tolerance region, the scalar is typically a small number such as 2/100 or
3/100. In general, the α% tolerance region for the low state is defined as

S1 ± α
100(S2− S1)

where S1 is the low-state level and S2 is the high-state level. Replace the first term in the equation
with S2 to obtain the α% tolerance region for the high state.

This figure shows the lower and upper 2% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The estimated state levels are indicated by a dashed red line.

 dsp.StateLevels

4-1331

Algorithms
The dsp.StateLevels System object uses the histogram method to estimate the states of a bilevel
waveform. The histogram method is described in [1]. To summarize the method:

1 Determine the maximum and minimum amplitudes and amplitude range of the data.
2 For the specified number of histogram bins, determine the bin width as the ratio of the amplitude

range to the number of bins.
3 Sort the data values into the histogram bins.
4 Identify the lowest-indexed histogram bin, ilow, and highest-indexed histogram bin, ihigh, with

nonzero counts.
5 Divide the histogram into two subhistograms. The lower-histogram bins are ilow ≤ i ≤ 1/2(ihigh —

ilow).

The upper-histogram bins are ilow + 1/2(ihigh – ilow) ≤ i ≤ ihigh.
6 Compute the state levels by determining the mode or mean of the lower and upper histograms.

Compatibility Considerations
dsp.StateLevels System object will be removed
Warns starting in R2021b

dsp.StateLevels System object will be removed in a future release. Use the statelevels
function instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the statelevels function.

4 System Objects

4-1332

Discouraged Usage Recommended Replacement
load('clockex.mat', 'x', 't');
slevel = dsp.StateLevels;
levelsObj = step(slevel,x)

levelsObj =

0.0027 2.3068

Plot state levels and the corresponding
histogram

figure;
plot(slevel)

If you are using a release prior to R2016b,
replace slevel(x) with step(slevel,x).

levelsfn = statelevels(x)

levelsfn =

0.0027 2.3068

Plot state levels and the corresponding
histogram

figure;
statelevels(x)

References
[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003, pp. 15–

17.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
statelevels

Introduced in R2012a

 dsp.StateLevels

4-1333

dsp.SubbandAnalysisFilter
Package: dsp

Decompose signal into high-frequency and low-frequency subbands

Description
The dsp.SubbandAnalysisFilter object decomposes a signal into high-frequency and low-
frequency subbands, each with half the bandwidth of the input.

To decompose a signal into high-frequency and low-frequency subbands:

1 Create the dsp.SubbandAnalysisFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
subAna = dsp.SubbandAnalysisFilter
subAna = dsp.SubbandAnalysisFilter(lpc,hpc)
subAna = dsp.SubbandAnalysisFilter(Name,Value)

Description

subAna = dsp.SubbandAnalysisFilter returns a two-channel subband analysis filter, subAna,
that decomposes the input signal into a high-frequency subband and a low-frequency subband, each
with half the bandwidth of the input.

subAna = dsp.SubbandAnalysisFilter(lpc,hpc) returns a two-channel subband analysis
filter, subAna, with the “LowpassCoefficients” on page 4-0 property set to lpc and the
HighpassCoefficients property set to lpc.

subAna = dsp.SubbandAnalysisFilter(Name,Value) returns a two-channel subband analysis
filter, subAna, with each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-1334

LowpassCoefficients — Lowpass FIR filter coefficients
[0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327] (default) | row vector

Specify a vector of lowpass FIR filter coefficients, in descending powers of z. For the lowpass filter,
use a half-band filter that passes the frequency band stopped by the filter specified in the
HighpassCoefficients property. The default values of this property specify a filter based on a
third-order Daubechies wavelet.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

HighpassCoefficients — Highpass FIR filter coefficient
[-0.3327 0.8069 -0.4599 -0.1350 0.0854 0.0352] (default) | row vector

Specify a vector of highpass FIR filter coefficients, in descending powers of z. For the highpass filter,
use a half-band filter that passes the frequency band stopped by the filter specified in the
“LowpassCoefficients” on page 4-0 property. The default values of this property specify a filter
based on a third-order Daubechies wavelet.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

FullPrecisionOverride — Full precision override for fixed-point arithmetic
true (default) | false

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects”.
Data Types: logical

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method.

Dependencies

This property applies only if the object is not in full precision mode.

OverflowAction — Action to take when integer input is out of range
Wrap (default) | Saturate

Specify the overflow action as Wrap or Saturate.

Dependencies

This property applies only if the object is not in full precision mode.

CoefficientsDataType — Data type of the coefficients
Same word length as input (default) | Custom

 dsp.SubbandAnalysisFilter

4-1335

Specify the FIR filter coefficients fixed-point data type as Same word length as input or
Custom.

CustomCoefficientsDataType — Coefficients word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the FIR filter coefficients fixed-point type as a numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the CoefficientsDataType property to Custom.

ProductDataType — Data type of product
Full precision (default) | Same as input | Custom

Specify the product data type as one of Full precision | Same as input | Custom.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when you set the ProductDataType property to Custom.

AccumulatorDataType — Data type of accumulator
Full precision (default) | Same as input | Same as product | Custom

Specify the accumulator data type as Full precision, Same as input, Same as product, or
Custom.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the AccumulatorDataType property to Custom.

OutputDataType — Data type of output
Same as accumulator (default) | Same as product | Same as input | Custom

Specify the output data type as Same as accumulator, Same as product, Same as input, or
Custom.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,14) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when you set the “OutputDataType” on page 4-0 property to Custom.

4 System Objects

4-1336

Usage

Syntax
[hi,lo] = subAna(x)

Description

[hi,lo] = subAna(x) decomposes the input signal, x, into a high-frequency subband, hi, and a
low-frequency subband, lo.

Input Arguments

x — Data input
column vector | matrix

Data input, specified as a column vector or a matrix. The number of rows in the input must be an
even number.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Output Arguments

hi — High-frequency subband
column vector | matrix

High-frequency subband, returned as a column vector or a matrix. The number of rows in this output
is half the number of input rows.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

lo — Low-frequency subband
column vector | matrix

Low-frequency subband, returned as a column vector or a matrix. The number of rows in this output
is half the number of input rows.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

 dsp.SubbandAnalysisFilter

4-1337

Decompose and Reconstruct a Signal

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Decompose a signal into low frequency and high frequency subbands using the subband analysis
filter. Reconstruct the signal using the subband synthesis filter.

load dspwlets; % load the filter coefficients lod, hid, lor and hir
subAna = dsp.SubbandAnalysisFilter(lod, hid);
subSynth = dsp.SubbandSynthesisFilter(lor, hir);
u = randn(128,1);

[hi, lo] = subAna(u); % Two channel analysis
y = subSynth(hi, lo); % Two channel synthesis

Plot difference between original and reconstructed signals with filter latency compensated.

plot(u(1:end-7)-y(8:end));

Algorithms
This object implements the algorithm, inputs, and outputs described on the Two-Channel Analysis
Subband Filter block reference page. The object properties correspond to the block parameters,
except:

4 System Objects

4-1338

• The SubbandAnalysisFilter object does not have a property that corresponds to the Input
processing parameter of the Two-Channel Analysis Subband Filter block. The object assumes the
input is frame based and always maintains the input frame rate.

• The Rate options block parameter is not supported by the dsp.SubbandAnalysisFilter
object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.SubbandSynthesisFilter | dsp.DyadicAnalysisFilterBank

Introduced in R2012a

 dsp.SubbandAnalysisFilter

4-1339

dsp.SubbandSynthesisFilter
Package: dsp

Reconstruct signal from high-frequency and low-frequency subbands

Description
The dsp.SubbandSynthesisFilter System object reconstructs a signal from high-frequency and
low-frequency subbands.

To reconstruct a signal from high-frequency and low-frequency subbands:

1 Create the dsp.SubbandSynthesisFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
subSyn = dsp.SubbandSynthesisFilter
subSyn = dsp.SubbandSynthesisFilter(lpc,hpc)
subSyn = dsp.SubbandSynthesisFilter(Name,Value)

Description

subSyn = dsp.SubbandSynthesisFilter returns a two-channel subband synthesis filter,
subSyn, that reconstructs a signal from its high-frequency subband and low-frequency subband.
Each subband contains half the bandwidth of the original signal.

subSyn = dsp.SubbandSynthesisFilter(lpc,hpc) returns a two-channel subband synthesis
filter, subSyn. The object has the “LowpassCoefficients” on page 4-0 property set to lpc and the
HighpassCoefficients property set to hpc.

subSyn = dsp.SubbandSynthesisFilter(Name,Value) returns a two-channel subband
synthesis filter, subSyn, with each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

4 System Objects

4-1340

LowpassCoefficients — Lowpass FIR filter coefficients
[0.3327 0.8069 0.4599 -0.1350 -0.0854 0.0352] (default) | row vector

Specify a vector of lowpass FIR filter coefficients, in descending powers of z. For the lowpass filter,
use a half-band filter that passes the frequency band stopped by the filter specified in the
HighpassCoefficients property. The default values of this property specify a filter based on a
third-order Daubechies wavelet.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

HighpassCoefficients — Highpass FIR filter coefficients
[0.0352 0.0854 -0.1350 -0.4599 0.8069 -0.3327] (default) | row vector

Specify a vector of highpass FIR filter coefficients, in descending powers of z. For the highpass filter,
use a half-band filter that passes the frequency band stopped by the filter specified in the
LowpassCoefficients property. The default values of this property specify a filter based on a third-
order Daubechies wavelet.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

FullPrecisionOverride — Full precision override for fixed-point arithmetic
true (default) | false

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects”.

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method.
Dependencies

This property applies only if the object is not in full precision mode.

OverflowAction — Action to take when integer input is out of range
Wrap (default) | Saturate

Specify the overflow action as Wrap or Saturate.
Dependencies

This property applies only if the object is not in full precision mode.

CoefficientsDataType — Data type of the coefficients
Same word length as input (default) | Custom

Specify the FIR filter coefficients fixed-point data type as Same word length as input or
Custom.

 dsp.SubbandSynthesisFilter

4-1341

CustomCoefficientsDataType — Coefficient word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the FIR filter coefficients fixed-point type as a numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the CoefficientsDataType property to Custom.

ProductDataType — Data type of product
Full precision (default) | Same as input | Custom

Specify the product data type as Full precision, Same as input, or Custom.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when you set the ProductDataType property to Custom.

AccumulatorDataType — Data type of accumulator
Full precision (default) | Same as input | Same as product | Custom

Specify the accumulator data type as Full precision, Same as input, Same as product, or
Custom.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the AccumulatorDataType property to Custom.

OutputDataType — Data type of output
Same as accumulator (default) | Same as product | Same as input | Custom

Specify the output data type as Same as accumulator, Same as product, Same as input, or
Custom.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,14) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when you set the OutputDataType property to Custom.

4 System Objects

4-1342

Usage

Syntax
y = subSyn(hi,lo)

Description

y = subSyn(hi,lo) reconstructs a signal from a high-frequency subband, hi, and a low-frequency
subband, lo.

Input Arguments

hi — High-frequency subband
vector | matrix

High-frequency subband, specified as a column vector or a matrix. Both inputs must have the same
size and data type.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

lo — Low-frequency subband
vector | matrix

Low-frequency subband, specified as a column vector or a matrix. Both inputs must have the same
size and data type.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Output Arguments

y — Synthesized output
vector | matrix

Synthesized output, reconstructed as a vector or a matrix. The number of rows in the output is the
sum of the number of rows of the input signals.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

 dsp.SubbandSynthesisFilter

4-1343

Decompose and Reconstruct a Signal

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Decompose a signal into low frequency and high frequency subbands using the subband analysis
filter. Reconstruct the signal using the subband synthesis filter.

load dspwlets; % load the filter coefficients lod, hid, lor and hir
subAna = dsp.SubbandAnalysisFilter(lod, hid);
subSynth = dsp.SubbandSynthesisFilter(lor, hir);
u = randn(128,1);

[hi, lo] = subAna(u); % Two channel analysis
y = subSynth(hi, lo); % Two channel synthesis

Plot difference between original and reconstructed signals with filter latency compensated.

plot(u(1:end-7)-y(8:end));

Algorithms
This object implements the algorithm, inputs, and outputs described on the Two-Channel Synthesis
Subband Filter block reference page. The object properties correspond to the block parameters,
except:

4 System Objects

4-1344

• The SubbandSynthesisFilter object does not have a property that corresponds to the Input
processing parameter of the Two-Channel Synthesis Subband Filter block. The object only
performs sample-based processing and always maintains the input frame rate.

• The Rate options block parameter is not supported by the SubbandSynthesisFilter object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.SubbandAnalysisFilter | dsp.DyadicSynthesisFilterBank

Introduced in R2012a

 dsp.SubbandSynthesisFilter

4-1345

dsp.TimeScope
Package: dsp

(To be removed) Time domain signal display and measurement

Description

Note dsp.TimeScope is not recommended. Use timescope instead. For more information, see
“Compatibility Considerations” on page 4-1356

The dsp.TimeScope System object displays time-domain signals. You can use the scope to measure
signal values, find peaks, display bilevel measurements and statistics.

To see time-domain signals in the scope:

1 Create the dsp.TimeScope object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Oscilloscope features:

• Triggers — Set triggers to sync repeating signals and pause the display when events occur.
• Cursor Measurements — Measure signal values using vertical and horizontal cursors.
• Signal Statistics — Display the maximum, minimum, peak-to-peak difference, mean, median, and

RMS values of a selected signal.
• Peak Finder — Find maxima, showing the x-axis values at which they occur.
• Bilevel Measurements — Measure transitions, overshoots, undershoots, and cycles.

For information on measurements and triggers, see “Configure Time Scope Block”.

Scope display features:

• Multiple signals — Plot multiple signals on the same y-axis (display) using multiple input ports.
• Multiple y-axes (displays) — Display multiple y-axes. All the y-axes have a common time range on

the x-axis.
• Modify parameters — Modify scope parameter values before and during a simulation.
• Axis autoscaling — Autoscaling during or at the end of a simulation. Margins are drawn at the top

and bottom of the axes.

Creation

Syntax
scope = dsp.TimeScope

4 System Objects

4-1346

scope = dsp.TimeScope(numInputs,sampleRate)
scope = dsp.TimeScope(___ ,Name,Value)

Description

scope = dsp.TimeScope returns a Time Scope System object, scope. This object displays real-
and complex-valued floating and fixed-point signals in the time domain.

scope = dsp.TimeScope(numInputs,sampleRate) creates a Time Scope and sets the
NumInputPorts property to numInputs and the SampleRate property to sampleRate.

scope = dsp.TimeScope(___ ,Name,Value) sets properties specified as Name,Value pairs.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Frequently Used

NumInputPorts — Number of input ports
1 (default) | integer between [1, 96]

Number of input ports, specified as a positive integer. Each signal coming through a separate input
becomes a separate channel in the scope. You must invoke the scope with the same number of inputs
as the value of this property.

SampleRate — Sample rate of inputs
1 (default) | scalar | vector

Specify the sample rate, in hertz, of the input signals.

You can specify a scalar or a numeric vector with length equal to the value of NumInputPorts. The
inverse of the sample rate determines the spacing between points on the time axis in the displayed
signal. When you set SampleRate to a scalar value and NumInputPorts is greater than 1, the object
uses the same sample rate for all inputs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeSpan — Time span
10 (default) | positive scalar

Specify the time span, in seconds, as a positive, numeric scalar value. The time-axis limits are
calculated as follows.

• Minimum time-axis limit = min(TimeDisplayOffset)
• Maximum time-axis limit = max(TimeDisplayOffset) + TimeSpan

Tunable: Yes

 dsp.TimeScope

4-1347

Dependencies

To use this property, set FrameBasedProcessing to false, or set FrameBasedProcessing to true
and TimeSpanSource to 'Property'.

Scope Window Use

Open the Configuration Properties. On the Time tab, set Time Span.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeSpanOverrunAction — Wrap or scroll when TimeSpan is overrun
'Wrap' (default) | 'Scroll'

Specify how the scope displays new data beyond the visible time span.

• Wrap — In this mode, the scope displays new data until the data reaches the maximum time-axis
limit. When the data reaches the maximum time-axis limit of the scope window, the scope clears
the display. The scope then updates the time offset value and begins displaying subsequent data
points starting from the minimum time-axis limit.

• Scroll — In this mode, the scope scrolls old data to the left to make room for new data on the
right side of the scope display. This mode is graphically intensive and can affect run-time
performance. However, it is beneficial for debugging and monitoring time-varying signals.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. On the Time tab, set Time Span overrun action.
Data Types: char | string

TimeSpanSource — Source of time span
'Property' (default) | 'Auto'

Specify the source of the time span for frame-based input signals as:

• 'Property' – The object derives the x-axis limits from the TimeDisplayOffset and TimeSpan
properties.

• 'Auto' – The time-axis limits are derived from the TimeDisplayOffset and SampleRate
properties and the FrameSize (number of rows in each input signal). The limits are calculated as:

• Minimum time-axis limit = min(TimeDisplayOffset)
• Maximum time-axis limit = max(TimeDisplayOffset) + max(1/

SampleRate.*FrameSize)

Tunable: Yes

Dependencies

To use this property, set FrameBasedProcessing to true.

Scope Window Use

Open the Configuration Properties. On the Time tab, set Time Span.
Data Types: char | string

4 System Objects

4-1348

AxesScaling — Axes scaling mode
"OnceAtStop" (default) | "Auto" | "Manual" | "Updates"

Specify when the scope scales the axes. Valid values are:

• "Auto" — The scope scales the axes as needed to fit the data, both during and after simulation.
• "Manual" — The scope does not scale the axes automatically.
• "OnceAtStop" — The scope scales the axes when the simulation stops.
• "Updates" — The scope scales the axes once and only once after 10 updates.

Scope Window Use

Select Tools > Axes Scaling.
Data Types: char | string

Advanced

Name — Window name
'Time Scope' (default) | character vector | string scalar

Specify the name of the scope as a character vector or string scalar. This name appears as the title of
the scope's figure window. To specify a title of a scope plot, use the Title property.

Tunable: Yes
Data Types: char | string

Position — Window position
screen center (default) | [left bottom width height]

Scope window position in pixels, specified by the size and location of the scope window as a 4-
element vector of the form [left bottom width height]. You can place the scope window in a
specific position on your screen by modifying the values to this property.

By default, the window appears in the center of your screen with a width of 410 pixels and height of
300 pixels. The exact position value depends on your screen resolution.

Tunable: Yes

ReduceUpdates — Reduce updates to improve performance
true (default) | false

• true — The scope logs data for later use and updates the window periodically.
• false — The scope updates every time the scope is called.

The simulation speed is faster when this property is set to true.

Tunable: Yes
Scope Window Use

Select Simulation > Reduce Updates to Improve Performance.

LayoutDimensions — Display layout grid dimensions
[1,1] (default) | [numberOfRows, numberOfColumns]

 dsp.TimeScope

4-1349

Specify the layout grid dimensions as a 2-element vector: [numberOfRows,numberOfColumns]. You
can use up to 16 rows and 16 columns.
Example: scope.LayoutDimensions = [2,4]

Tunable: Yes

Scope Window Use

Select View > Layout.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PlotType — Control the type of plot
'Line' (default) | 'Stairs'

Specify the type of plot to use.

• Line — Line graph, similar to the line or plot function.
• Stairs — Stair-step graph, similar to the stairs function. Stair-step graphs are useful for

drawing time history graphs of digitally sampled data.

Tunable: Yes

Scope Window Use

Open the Style properties. Set Plot type.
Data Types: char | string

BufferLength — Length of buffer used for each input signal
5000 (default) | scalar

Specify the size of the buffer that the scope holds in its memory cache. Memory is limited by available
memory on your system. If your signal has M rows of data and N data points in each row, M x N is the
number of data points per time step. Multiply this result by the number of time steps for your model
to obtain the required buffer length. For example, if you have 10 rows of data with each row having
100 data points and your run will be 10 time steps, you should enter 10,000 (10 x 100 x 10) as the
buffer length.

Scope Window Use

Open the Data History Properties. Set Buffer length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FrameBasedProcessing — Process input in frames
true (default) | false

• true — Enable frame-based processing.
• false — Enable sample-based processing.

Scope Window Use

Open the Configuration Properties. On the Main tab, set Input processing.

TimeUnits — Units of time axis
'Metric' (default) | 'Seconds' | 'None'

4 System Objects

4-1350

Specify the units used to describe the time axis. You can select one of the following options:

• Metric — In this mode, the scope converts the times on the time axis to the most appropriate
measurement units. These units include milliseconds, microseconds, nanoseconds, minutes, days,
etc. The scope chooses the appropriate measurement units based on the minimum time-axis limit
and the maximum time-axis limit of the scope window.

• Seconds — In this mode, the scope always displays the units on the time axis as seconds.
• None — In this mode, the scope does not display any units on the time axis. The scope only shows

the word Time on the time axis.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. On the Time tab, set Time units.
Data Types: char | string

TimeDisplayOffset — Offset x-axis limits
0 (default) | scalar | vector

Specify, in seconds, how far to move the data on x-axis. The signal value does not change, only the
displayed x-axis.

If you specify this property as a scalar, then that value is the time display offset for all channels.

If you specify a vector, each vector element is the time offset for the corresponding channel. For
vectors with length less than the number of input channels, the time display offsets for the remaining
channels are set to 0. If a vector has a length greater than the number of input channels, the extra
vector elements are ignored.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. On the Time tab, set Time display offset.

TimeAxisLabels — Time-axis labels
'All' (default) | 'Bottom | 'None'

Specify how time-axis labels should appear in the scope displays as:

• 'All' — Time-axis labels appear in all displays.
• 'Bottom' — Time-axis labels appear in the bottom display of each column.
• 'None' — No labels appear in any display.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. On the Time tab, set Time-axis labels.
Data Types: char | string

MaximizeAxes — Maximize axes control
"Auto" (default) | "On" | "Off"

 dsp.TimeScope

4-1351

Specify whether to display the scope in maximized-axes mode. In this mode, the axes are expanded to
fit into the entire display. To conserve space, labels do not appear in each display. Instead, tick-mark
values appear on top of the plotted data. You can select one of the following options:

• "Auto" — The axes appear maximized in all displays only if the Title and YLabel properties are
empty for every display. If you enter any value in any display for either of these properties, the
axes are not maximized.

• "On" — The axes appear maximized in all displays. Any values entered into the Title and
YLabel properties are hidden.

• "Off" — None of the axes appear maximized.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. On the Main tab, set Maximize axes.
Data Types: char | string

Display

ActiveDisplay — Active display for setting properties
1 (default) | integer

Specify the active display, by integer display number, to get and set relevant properties. The number
of a display corresponds to its column-wise placement index. Set this property to control which
display has its axes colors, line properties, marker properties, and visibility changed.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. On the Display tab, set Active Display.

Title — Display title
'' (default) | character vector | string scalar

Specify the display title as a character vector or string.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. Set Title.
Data Types: char | string

ShowLegend — Show legend
false (default) | true

To show a legend with the input names, set this property to true.

From the legend, you can control which signals are visible. This control is equivalent to changing the
visibility in the Style dialog box. In the scope legend, click a signal name to hide the signal in the
scope. To show the signal, click the signal name again. To show only one signal, right-click the signal
name. To show all signals, press Esc.

4 System Objects

4-1352

Note The legend only shows the first 20 signals. Any additional signals cannot be viewed or
controlled from the legend.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. On the Display tab, select Show legend.
Data Types: logical

ShowTimeAxisLabel — Show legend on display
true (default) | false

When you set this property to true, the scope displays the time-axis label. When you set this
property to false, the scope does not display the time-axis label, but still displays tick marks and
other time-axis items. This property applies only if the TimeAxisLabels property is All or Bottom.

Tunable: Yes

Dependency

To control which display's axis is labeled, use the ActiveDisplay property.

Scope Window Use

Open the Configuration Properties. On the Time tab, set Show time-axis label.

ChannelNames — Channel names
empty cell (default) | cell array of character vectors

Specify the input channel names as a cell array of character vectors. The names appear in the legend,
Style dialog box, and Measurements panels. If you do not specify names, the channels are labeled
as Channel 1, Channel 2, etc.

Tunable: Yes

Dependency

To see channel names, set ShowLegend to true.

Scope Window Use

On the legend, double-click the channel name.
Data Types: char

ShowGrid — Grid visibility
false (default) | true

Set this property to true to show gridlines on the plot.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. On the Display tab, set Show grid.

 dsp.TimeScope

4-1353

PlotAsMagnitudePhase — Plot signal as magnitude and phase
false (default) | true

When you set this property to true, the scope plots the magnitude and phase of the input signal on
two separate axes within the same active display. When you set this property to false, the scope
plots the real and imaginary parts of the input signal on two separate axes within the same active
display.

This property is useful for complex-valued input signals. Turning on this property affects the phase
for real-valued input signals. When the amplitude of the input signal is nonnegative, the phase is 0
degrees. When the amplitude of the input signal is negative, the phase is 180 degrees.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. On the Display tab, select Plot signals as magnitude and
phase.

YLimits — y-axis limits
[-10,10] (default) | [ymin, ymax]

Specify the y-axis limits as a two-element numeric vector, [ymin, ymax].

If PlotAsMagnitudePhase is false, the default is [-10,10]. If PlotAsMagnitudePhase is true,
the default is [0,10].

Tunable: Yes

Dependencies

When PlotAsMagnitudePhase is true, this property specifies the y-axis limits of only the
magnitude plot. The y-axis limits of the phase plot are always [-180,180].

Scope Window Use

Open the Configuration Properties. On the Display tab, set Y-limits (Minimum) and Y-limits
(Maximum).

YLabel — y-axis label
"Amplitude" (default) | character vector | string scalar

Specify the text for the scope to display to the left of the y-axis.

Tunable: Yes

Dependencies

This property applies only when PlotAsMagnitudePhase is false. When
PlotAsMagnitudePhase is true, the two y-axis labels are read-only values. The y-axis labels are set
to "Magnitude" and "Phase" for the magnitude plot and the phase plot, respectively.

Scope Window Use

Open the Configuration Properties. On the Display tab, set Y-Label.
Data Types: char | string

4 System Objects

4-1354

Usage

Syntax
scope(signal)
scope(signal,signal2,...,signalN)

Description

scope(signal) displays the signal, signal, in the time scope display.

scope(signal,signal2,...,signalN) displays the signals signal, signal2,...,signalN in the
time scope display when you set the NumInputPorts property to N. In this case, signal1,
signal2,...,signalN can have different data types and dimensions.

Input Arguments

signal — Input signal or signals to visualize
scalar | vector | matrix

Specify one or more input signals to visualize in the dsp.TimeScope. Signals can have different data
types and dimensions.
Example: scope(signal1,signal2)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Scopes
show Display scope window
hide Hide scope window
isVisible Determine visibility of scope

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

If you want to restart the simulation from the beginning, call reset to clear the scope window
displays. Do not call reset after calling release.

Examples

 dsp.TimeScope

4-1355

Display Simple Sine Wave Input Signal

Create dsp.SineWave and dsp.TimeScope objects. Run the scope to display the signal

sine = dsp.SineWave('Frequency',100,'SampleRate',1000);
sine.SamplesPerFrame = 10;
scope = dsp.TimeScope('SampleRate',sine.SampleRate,'TimeSpan',0.1);
for ii = 1:10
 x = sine();
 scope(x);
end

Run the release method to allow changes to property values and input characteristics. The scope
automatically scales the axes.

release(scope)

Tips
• To close the scope window and clear its associated data, use the MATLAB clear function.
• To hide or show the scope window, use the hide and show functions.
• Use the MATLAB mcc function to compile code containing a scope.

You cannot open scope configuration dialogs if you have more than one compiled component in
your application.

Compatibility Considerations
dsp.TimeScope will be removed
Warns starting in R2021a

dsp.TimeScope will be removed in a future release. Use timescope instead.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports MEX code generation by treating the calls to the object as extrinsic. Does not support
code generation for standalone applications.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.DynamicFilterVisualizer

Objects
timescope | dsp.ArrayPlot | dsp.SpectrumAnalyzer

4 System Objects

4-1356

Blocks
Time Scope

Topics
“Display Time-Domain Data”

Introduced in R2011a

 dsp.TimeScope

4-1357

timescope
Display time-domain signals

Description
The timescope object displays signals in the time domain.

Scope features:

• “Data Cursors” — Measure signal values using vertical and horizontal cursors.
• “Signal Statistics” — Display the maximum, minimum, peak-to-peak difference, mean, median, and

RMS values of a selected signal.
• “Peak Finder” — Find maxima, showing the x-axis values at which they occur.
• “Bilevel Measurements” — Measure transitions, overshoots, undershoots, and cycles.
• “Triggers” — Set triggers to sync repeating signals and pause the display when events occur.

Use “Object Functions” on page 4-1365 to show, hide, and determine visibility of the scope window.

4 System Objects

4-1358

Creation

Syntax
scope = timescope
scope = timescope(Name,Value)

Description

scope = timescope returns a timescope object, scope. This object displays real- and complex-
valued floating and fixed-point signals in the time domain.

scope = timescope(Name,Value) returns a timescope object with properties set to the
specified value. Specify properties and their values in quotes, separated by commas. You can specify
name-value pair arguments in any order.

Properties
Most properties can be changed from the timescope UI.

Frequently Used

SampleRate — Sample rate of inputs
1 (default) | finite numeric scalar | vector

Sampling rate of the input signal, in hertz, specified as a finite numeric scalar or vector of scalars.

The inverse of the sample rate determines the x-axis (time axis) spacing between points in the
displayed signal. When the value of NumInputPorts is greater than 1 and the sample rate is scalar,
the object uses the same sample rate for all inputs. To specify different sample rates for each input,
use a vector.

You can only set this property when creating the object or after calling release.

Scope Window Use

On the Scope tab, click Settings. Under Data and Axes, set Sample Rate.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeSpanSource — Source of time span
'auto' (default) | 'property'

Source of the time span for frame-based input signals, specified as one of the following:

• 'property' – The object derives the x-axis limits from the TimeDisplayOffset and TimeSpan
properties.

• 'auto' – The x-axis limits are derived from the TimeDisplayOffset property, SampleRate
property, and the number of rows in each input signal (FrameSize in the equations below). The
limits are calculated as:

• Minimum time-axis limit = TimeDisplayOffset
• Maximum time-axis limit = TimeDisplayOffset + max(1/SampleRate.*FrameSize)

 timescope

4-1359

Dependency

When you set the TimeSpan property, TimeSpanSource is automatically set to 'property'.
Scope Window Use

On the Scope tab, click Settings. Under Data and Axes, set Time Span.
Data Types: char | string

TimeSpan — Time span
10 (default) | positive scalar

Time span, in seconds, specified as a positive, numeric scalar value. The time-axis limits are
calculated as:

• Minimum time-axis limit = TimeDisplayOffset
• Maximum time-axis limit = TimeDisplayOffset + TimeSpan

Dependencies

To enable this property, set TimeSpanSource to 'property'.
Scope Window Use

On the Scope tab, click Settings. Under Data and Axes, edit Time Span.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeSpanOverrunAction — Data overrun behavior
'scroll' (default) | 'wrap'

Specify how the scope displays new data beyond the visible time span as either:

• 'scroll' — In this mode, the scope scrolls old data to the left to make room for new data on the
right of the scope display. This mode is beneficial for debugging and monitoring time-varying
signals.

• 'wrap' — In this mode, the scope adds data to the left of the plot after overrunning the right of
the plot.

Scope Window Use

On the Scope tab, click Settings. Under Data and Axes, set Overrun Action.
Data Types: char | string

PlotType — Type of plot
'line' (default) | 'stairs'

Type of plot, specified as either:

• 'line' — Line graph, similar to the line or plot function.
• 'stairs' — Stair-step graph, similar to the stairs function. Stair-step graphs are useful for

drawing time history graphs of digitally sampled data.

Scope Window Use

On the Scope tab, click Settings. Under Data and Axes, set Plot Type.

4 System Objects

4-1360

Data Types: char | string

AxesScaling — Axes scaling mode
'onceatstop' (default) | 'auto' | 'manual' | 'updates'

When this property is set to:

• 'onceatstop' –– The limits are updated once at the end of the simulation (when release is
called).

• 'auto' –– The scope attempts to always keep the data in the display while minimizing the number
of updates to the axes limits.

• 'manual' –– The scope takes no action unless specified by the user.
• 'updates' –– The scope scales the axes once and only once after 100 updates to the

visualization.

You can set this property only when creating the object.
Data Types: char | string

Advanced

LayoutDimensions — Display layout grid dimensions
[1,1] (default) | [numberOfRows, numberOfColumns]

Specify the layout grid dimensions as a two-element vector: [numberOfRows,numberOfColumns].
The grid can have a maximum of 4 rows and 4 columns.

If you create a grid of multiple axes, to modify the settings of individual axes, use the
ActiveDisplay.
Example: scope.LayoutDimensions = [2,4]

Scope Window Use

On the Scope tab, click Display Grid () and select a specific number of rows and columns from
the grid.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeUnits — Units of x-axis
'seconds' (default) | 'none' | 'metric'

Specify the units used to describe the x-axis (time axis). You can select one of the following options:

• 'seconds' —The scope always displays the units on the x-axis as seconds. The scope shows the
word Time(s) on the x-axis.

• 'none' — The scope does not display any units on the x-axis. The scope only shows the word
Time on the x-axis.

• 'metric' — The scope displays the units on the x-axis as Time (s) changing the units to day,
weeks, months, or years as you plot more data points.

Scope Window Use

On the Scope tab, click Settings. Under Data and Axes, set Time Units.

 timescope

4-1361

Data Types: char | string

TimeDisplayOffset — Offset x-axis limits
0 (default) | scalar | vector

Specify, in seconds, how far to move the data on the x-axis. The signal value does not change, only the
limits displayed on the x-axis change.

If you specify this property as a scalar, then that value is the time display offset for all channels. If you
specify this property as a vector, each input channel can be a different time display offset
Scope Window Use

On the Scope tab, click Settings. Under Data and Axes, set Time Offset.

TimeAxisLabels — Time-axis labels
'all' (default) | 'bottom | 'none'

Time-axis labels, specified as:

• 'all' — Time-axis labels appear in all displays.
• 'bottom — Time-axis labels appear in the bottom display of each column.
• 'none' — No labels appear in any display.

Scope Window Use

On the Scope tab, click Settings. Under Data and Axes, set Time Labels.
Data Types: char | string

MaximizeAxes — Maximize axes control
'auto' (default) | 'on' | 'off'

Specify whether to display the scope in the maximized-axes mode. In this mode, the axes are
expanded to fit into the entire display. To conserve space, labels do not appear in each display.
Instead, the tick-marks and their values appear on top of the plotted data. You can select one of the
following options:

• 'auto' — The axes appear maximized in all displays only if the Title and YLabel properties are
empty for every display. If you enter any value in any display for either of these properties, the
axes are not maximized.

• 'on' — The axes appear maximized in all displays. Any values entered into the Title and
YLabel properties are hidden.

• 'off' — None of the axes appear maximized.

Scope Window Use

On the scope window, click on to maximize axes, hiding all labels and insetting the axes values.
Data Types: char | string

BufferLength — Buffer length
50000 (default) | positive integer

Specify the length of the buffer used for each input signal as a positive integer.

4 System Objects

4-1362

You can set this property only when creating the object.

Scope Window Use

On the Scope tab, click Settings. Under Data and Axes, set Buffer Length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Visualization

Name — Window name
'Time Scope' (default) | character vector | string scalar

Specify the name of the scope as a character vector or string scalar. This name appears as the title of
the scope's figure window. To specify a title of a scope plot, use the Title property.
Data Types: char | string

Position — Window position
screen center (default) | [left bottom width height]

Scope window position in pixels, specified by the size and location of the scope window as a four-
element vector of the form [left bottom width height]. You can place the scope window in a
specific position on your screen by modifying the values of this property.

By default, the window appears in the center of your screen with a width of 800 pixels and height of
500 pixels. The exact values of the position depend on your screen resolution.

ChannelNames — Channel names
{''} (default) | cell array of character vectors

Specify the input channel names as a cell array of character vectors. The channel names appear in
the legend, and on the Measurements tab under Select Channel. If you do not specify names, the
channels are labeled as Channel 1, Channel 2, etc.

Dependency

To enable this property, set ShowLegend to true.
Data Types: char

ActiveDisplay — Active display for setting properties
1 (default) | integer

Active display used to set properties, specified by the integer display number. The number of a
display corresponds to the display's row-wise placement index. Setting this property controls which
display is used for the following properties: YLimits, YLabel, ShowLegend, ShowGrid, Title, and
PlotAsMagnitudePhase.

Scope Window Use

On the Scope tab, click Settings. Under Display and Labels, set Active Display.

Title — Display title
'' (default) | character vector | string scalar

Specify the display title as a character vector or a string scalar.

 timescope

4-1363

Dependency

When you set this property, ActiveDisplay controls the display that is updated.

Scope Window Use

On the Scope tab, click Settings. Under Display and Labels, set Title.
Data Types: char | string

YLabel — y-axis label
'Amplitude' (default) | character vector | string scalar

Specify the text for the scope to display to the left of the y-axis.

Dependencies

This property applies only when PlotAsMagnitudePhase is false. When
PlotAsMagnitudePhase is true, the two y-axis labels are read-only values "Magnitude" and
"Phase", for the magnitude plot and the phase plot, respectively.

When you set this property, ActiveDisplay controls the display that is updated.

Scope Window Use

On the Scope tab, click Settings. Under Display and Labels, set YLabel.
Data Types: char | string

YLimits — y-axis limits
[-10,10] (default) | [ymin, ymax]

Specify the y-axis limits as a two-element numeric vector, [ymin, ymax].

• If PlotAsMagnitudePhase is false, the default is [-10,10].
• If PlotAsMagnitudePhase is true, the default is [0,10]. This property specifies the y-axis

limits of only the magnitude plot. The y-axis limits of the phase plot are always [-180,180]

Dependency

When you set this property, ActiveDisplay controls the display that is updated.

Scope Window Use

On the Scope tab, click Settings. Under Display and Labels, set Y-Axis Limits.

ShowLegend — Show legend
false (default) | true

To show a legend with the input names, set this property to true.

From the legend, you can control which signals are visible. In the scope legend, click a signal name to
hide the signal in the scope. To show the signal, click the signal name again.

Scope Window Use

On the Scope tab, click Settings. Under Display and Labels, select Show Legend.
Data Types: logical

4 System Objects

4-1364

ShowGrid — Grid visibility
true (default) | false

Set this property to true to show grid lines on the plot.
Scope Window Use

On the Scope tab, click Settings. Under Display and Labels, select Show Grid.

PlotAsMagnitudePhase — Plot signal as magnitude and phase
false (default) | true

Plot signal as magnitude and phased, specified as either:

• true – The scope plots the magnitude and phase of the input signal on two separate axes within
the same active display.

• false – The scope plots the real and imaginary parts of the input signal on two separate axes
within the same active display.

This property is useful for complex-valued input signals. Turning on this property affects the phase
for real-valued input signals. When the amplitude of the input signal is nonnegative, the phase is 0
degrees. When the amplitude of the input signal is negative, the phase is 180 degrees.
Scope Window Use

On the Scope tab, click Settings. Under Display and Labels, select Magnitude Phase Plot.

Object Functions
To use an object function, specify the object as the first input argument.
hide Hide scope window
show Display scope window
isVisible Determine visibility of scope
generateScript Generate MATLAB script to create scope with current settings
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

If you want to restart the simulation from the beginning, call reset to clear the scope window
displays. Do not call reset after calling release.

Examples

View Sine Wave on Time Scope

Create a time-domain sinusoidal signal. Display the signal by calling the time scope object.

Create a sinusoidal signal with two tones, one at 0.3 kHz and the other at 3 kHz.

t = (0:1000)'/8e3;
xin = sin(2*pi*0.3e3*t)+sin(2*pi*3e3*t);

Create a timescope object and view the sinusoidal signal by calling the time scope object scope.

 timescope

4-1365

scope = timescope('SampleRate', 8e3,...
 'TimeSpanSource', 'property', ...
 'TimeSpan', 0.1);
scope(xin)

Run release to allow changes to property values and input characteristics. The scope automatically
scales the axes.

release(scope);

4 System Objects

4-1366

Hide the scope window.

if(isVisible(scope))
 hide(scope)
end

Show the scope window.

if(~isVisible(scope))
 show(scope)
end

 timescope

4-1367

Use Bilevel Measurements Panel with Clock Input Signal

Create and Display Clock Input Signal

Load the clock data, x and t. Find the sample time, ts.

load clockex
ts = t(2)-t(1);

Create a timescope object and call the object to display the signal. To autoscale the axes and enable
changes to property values and input characteristics, call release.

scope = timescope('SampleRate',1/ts,'TimeSpanSource','Auto');
scope(x);
release(scope);

4 System Objects

4-1368

Use Bilevel Measurements Panel to Find Settling Time

1. From the Measurements tab, select Aberrations.

 timescope

4-1369

Initially, the Time Scope does not display the Settling Time measurement. This absence occurs
because the default value of the Settle Seek parameter is longer than the entire simulation duration.

2. In the Bilevel Settings > Settle Seek box, enter 2e-6 and press Enter.

4 System Objects

4-1370

Time Scope now displays a rising edge Settling Time value of 118.392 ns.

This settling time value is actually the statistical average of the settling times for all five rising edges.
To show the settling time for only one rising edge, you can zoom in on that transition.

3. Hover over the upper right corner of the scope axes, and click the zoom button.

4. Click and drag to zoom in on one of the transitions.

 timescope

4-1371

Time Scope updates the rising edge Settling Time value to reflect the new time window.

Visualize Multiple Inputs with Different Sample Rates

This example shows how to visualize multiple inputs with different sample rates and plot the signals
on multiple axes.

Generate three different sine waves and plot them on the timescope.

freq = 1/500;
t = (0:100)'/freq;
t2 = (0:0.5:100)'/freq;
xin1 = sin(1/2*t);
xin2 = sin(1/4*t2);
xin = sin(1/2*t2)+sin(1/4*t2);

scope = timescope('SampleRate', [freq freq/2 freq], ...
 'TimeSpanSource', 'property', ...
 'TimeSpan', 0.1,...
 'LayoutDimensions',[2,1]);
scope(xin, xin1, xin2)

release(scope)

4 System Objects

4-1372

Use Multiple Axes on Scope

This example show how to add titles, set y-axis limits, and modify properties when you have multiple
axes on your timescope object.

Use the timescope to visualize three sine waves with two different sample rates.

freq = 1;
t = (0:100)'/freq;
t2 = (0:0.5:100)'/freq;
xin1 = sin(1/2*t);
xin2 = sin(1/4*t2);
xin = sin(1/2*t2)+sin(1/4*t2);

scope = timescope('SampleRate', [freq freq/2 freq], ...
 'TimeSpanSource', 'property', ...
 'TimeSpan', 100);
scope(xin, xin1, xin2)

 timescope

4-1373

Change the layout to add a second axis. The second and third inputs automatically move to the new
second axis.

scope.LayoutDimensions = [2,1];

4 System Objects

4-1374

Modify the settings for the first axis by specifying the ActiveDisplay property to 1, then changing
some properties for that axis.

scope.ActiveDisplay = 1;
scope.ShowGrid = false;
scope.Title = "Sine Wave 1";
scope.YLimits = [-2,2];

Repeat this process to modify the second axis.

scope.ActiveDisplay = 2;
scope.Title = "Sine Waves 2 & 3";
scope.YLimits = [-1,1];
release(scope)

 timescope

4-1375

View Sine Wave Input Signals at Different Sample Rates and Offsets

Create a dsp.SineWave with a 1000 Hz sampling frequency. Create a dsp.FIRDecimator object to
decimate the sine wave by 2. Create a timescope object with two input ports.

Fs = 1000; % Sampling frequency
sine = dsp.SineWave('Frequency',50,...
 'SampleRate',Fs, ...
 'SamplesPerFrame',100);
decimate = dsp.FIRDecimator; % To decimate sine by 2
scope = timescope('SampleRate',[Fs Fs/2], ...
 'TimeDisplayOffset',[0 38/Fs], ...
 'TimeSpanSource','Property',...
 'TimeSpan',0.25, ...
 'YLimits',[-1 1], ...
 'ShowLegend', true);

Call the dsp.SineWave object to create a sine wave signal. Use the dsp.FIRDecimator object to
create a second signal that equals the original signal, but decimated by a factor of 2. Display the
signals by calling the timescope object.

for ii = 1:2
 xsine = sine();
 xdec = decimate(xsine);

4 System Objects

4-1376

 scope(xsine,xdec)
end
release(scope)

Close the Time Scope window and clear the variables.

clear scope Fs sine decimate ii xsine xdec

Display Complex-Valued Input Signal

Create a vector representing a complex-valued sinusoidal signal, and create a timescope object. Call
the scope to display the signal.

fs = 1000;
t = (0:1/fs:10)';
CxSine = cos(2*pi*0.2*t) + 1i*sin(2*pi*0.2*t);
CxSineSum = cumsum(CxSine);
scope = timescope('SampleRate',fs,'TimeSpanSource','Auto','ShowLegend',1);
scope(CxSineSum);
release(scope)

 timescope

4-1377

By default, when the input is a complex-valued signal, Time Scope plots the real and imaginary
portions on the same axes. These real and imaginary portions appear as different-colored lines on the
same axes within the same active display.

Change the PlotAsMagnitudePhase property to true and call release.

scope.PlotAsMagnitudePhase = true;
scope(CxSineSum);
release(scope)

4 System Objects

4-1378

Time Scope now plots the magnitude and phase of the input signal on two separate axes within the
same active display. The top axes display magnitude and the bottom axes display the phase, in
degrees.

Display Input Signal of Changing Size

This example shows how the timescope object visualizes inputs that change dimensions halfway
through.

Create a vector that represents a two-channel constant signal. Create another vector that represents
a three-channel constant signal. Create a timescope object. Call the scope with two inputs to display
the signal.

fs = 10;
sigdim2 = [ones(5*fs,1) 1+ones(5*fs,1)]; % 2-dim 0-5 s
sigdim3 = [2+ones(5*fs,1) 3+ones(5*fs,1) 4+ones(5*fs,1)]; % 3-dim 5-10 s
scope = timescope('SampleRate',fs,'TimeSpanSource','Property');
scope.PlotType = 'Stairs';
scope.TimeSpanOverrunAction = 'Scroll';
scope.TimeDisplayOffset = [0 5];
scope([sigdim2; sigdim3(:,1:2)], sigdim3(:,3));

 timescope

4-1379

In this example, the size of the input signal to the Time Scope changes as the simulation progresses.
When the simulation time is less than 5 seconds, Time Scope plots only the two-channel signal,
sigdim2. After 5 seconds, Time Scope also plots the three-channel signal, sigdim3.

Run the release method to enable changes to property values and input characteristics. The scope
automatically scales the axes.

release(scope)

4 System Objects

4-1380

Find Heart Rate Using Peak Finder Panel with ECG Input Signal

Use Peak Finder panel of the Time Scope to measure a heart rate.

Create and Display ECG Signal

Create the electrocardiogram (ECG) signal. The custom ecg function helps generate the heartbeat
signal.

function x = ecg(L)
a0 = [0, 1, 40, 1, 0, -34, 118, -99, 0, 2, 21, 2, 0, 0, 0];
d0 = [0, 27, 59, 91, 131, 141, 163, 185, 195, 275, 307, 339, 357, 390, 440];
a = a0 / max(a0);
d = round(d0 * L / d0(15));
d(15) = L;
for i = 1:14
 m = d(i) : d(i+1) - 1;
 slope = (a(i+1) - a(i)) / (d(i+1) - d(i));
 x(m+1) = a(i) + slope * (m - d(i));
end

x1 = 3.5*ecg(2700).';
y1 = sgolayfilt(kron(ones(1,13),x1),0,21);

 timescope

4-1381

n = (1:30000)';
del = round(2700*rand(1));
mhb = y1(n + del);
ts = 0.00025;

Create a timescope object and call the object to display the signal. To autoscale the axes and enable
changes to property values and input characteristics, call release.

scope = timescope('SampleRate',1/ts);
scope(mhb);
release(scope)

Find Heart Rate

Use the Peak Finder measurements to measure the time between heart beats.

1 On the Measurements tab, select Peak Finder.
2 For the Num Peaks property, enter 10.

In the Peaks pane at the bottom of the window, the Time Scope displays a list of ten peak amplitude
values and the times at which they occur.

4 System Objects

4-1382

The list of peak values shows a constant time difference of 0.675 second between each heartbeat.
Based on the following equation, the heart rate of this ECG signal is about 89 beats per minute.

Close the Time Scope window and remove the variables you created from the workspace.

clear scope x1 y1 n del mhb ts

Tips
• To close the scope window and clear its associated data, use the MATLAB clear function.
• To hide or show the scope window, use the hide and show functions.
• Use the MATLAB mcc function to compile code containing a scope. You cannot open scope
configuration dialogs if you have more than one compiled component in your application.

See Also
Topics
“Configure Time Scope MATLAB Object”

Introduced in R2020a

 timescope

4-1383

dsp.TransferFunctionEstimator
Package: dsp

Estimate transfer function

Description
The dsp.TransferFunctionEstimator System object computes the transfer function of a system,
using the Welch's averaged periodogram method.

To implement the transfer function estimation object:

1 Create the dsp.TransferFunctionEstimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
tfe = dsp.TransferFunctionEstimator
tfe = dsp.TransferFunctionEstimator(Name,Value)

Description

tfe = dsp.TransferFunctionEstimator returns a transfer function estimator object, that
computes the transfer function of real or complex signals. This System object uses the periodogram
method and Welch’s averaged, modified periodogram method.

tfe = dsp.TransferFunctionEstimator(Name,Value) returns a transfer function estimator
object with each specified property set to the specified value. Unspecified properties have default
values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

FFTLengthSource — Source of FFT length value
'Auto' (default) | 'Property'

4 System Objects

4-1384

Specify the source of the FFT length value as either 'Auto' or 'Property'. If you set this property
to 'Auto', the transfer function estimator sets the FFT length to the input frame size. If you set this
property to 'Property', then specify the number of FFT points using the FFTLength property.

FFTLength — FFT Length
128 (default) | positive integer

Specify the length of the FFT that the transfer function estimator uses to compute spectral estimates
as a positive, integer scalar.

Dependencies

This property applies when you set the FFTLengthSource property to 'Property'.
Data Types: double

Window — Window function
'Hann' (default) | 'Rectangular' | 'Chebyshev' | 'Flat Top' | 'Hamming' | 'Kaiser'

Specify a window function for the transfer function estimator as one of 'Rectangular',
'Chebyshev', 'Flat Top', 'Hamming', 'Hann', or 'Kaiser'.

SidelobeAttenuation — Side lobe attenuation of window
60 (default) | positive scalar

Specify the side lobe attenuation of the window as a real, positive scalar, in decibels (dB).

Dependencies

This property applies when you set the Window property to 'Chebyshev' or 'Kaiser'.
Data Types: double

FrequencyRange — Frequency range of the transfer function estimate
'Twosided' (default) | 'onesided' | 'centered'

Specify the frequency range of the transfer function estimator as one of 'twosided', 'onesided',
or 'centered'.

If you set the FrequencyRange to 'onesided', the transfer function estimator computes the one-
sided transfer function of real input signals, x and y. If the FFT length, NFFT, is even, the length of
the transfer function estimate is NFFT/2+1 and is computed over the interval [0, SampleRate/2].
If NFFT is odd, the length of the transfer function estimate is equal to (NFFT+1)/2, and the interval
is [0, SampleRate/2].

If FrequencyRange is set to 'twosided', the transfer function estimator computes the two-sided
transfer function of complex or real input signals, x and y. The length of the transfer function
estimate is equal to NFFT and is computed over [0, SampleRate].

If you set the FrequencyRange to 'centered', the transfer function estimator computes the
centered two-sided transfer function of complex or real input signals, x and y. The length of the
transfer function estimate is equal to NFFT and it is computed over [-SampleRate/2,
SampleRate/2] for even lengths, and [-SampleRate/2, SampleRate/2] for odd lengths.

AveragingMethod — Averaging method
'Running' (default) | 'Exponential'

 dsp.TransferFunctionEstimator

4-1385

Specify the averaging method as 'Running' or 'Exponential'. In the running averaging method,
the object computes an equally weighted average of a specified number of spectrum estimates
defined by the SpectralAverages property. In the exponential method, the object computes the
average over samples weighted by an exponentially decaying forgetting factor.

SpectralAverages — Number of spectral averages
8 (default) | positive integer

Specify the number of spectral averages as a positive, integer scalar. The transfer function estimator
computes the current estimate by averaging the last N estimates, where N is the number of spectral
averages defined in the SpectralAverages property.

Dependencies

This property applies when you set AveragingMethod to 'Running'.
Data Types: double

ForgettingFactor — Forgetting factor
0.9 (default) | scalar in the range (0,1]

Specify the exponential weighting forgetting factor as a scalar value greater than zero and smaller
than or equal to one.

Tunable: Yes

Dependencies

This property applies when you set AveragingMethod to 'Exponential'.
Data Types: single | double

OutputCoherence — Magnitude squared coherence estimate
false (default) | true

Specify true to compute and output the magnitude squared coherence estimate using Welch’s
averaged, modified periodogram method. The magnitude squared coherence estimate has values
between 0 and 1 that indicate the correspondence at each frequency between two input signals. If
you specify false, the magnitude squared coherence estimate is not computed.

Usage

Syntax
tfeEst = tfe(x,y)
[tfeEst,cxy] = tfe(x,y)

Description

tfeEst = tfe(x,y) computes the transfer function estimate, tfeEst, of the system with input x
and output y using Welch's averaged periodogram method.

[tfeEst,cxy] = tfe(x,y) also computes the magnitude squared coherence estimate, cxy, of the
system.

4 System Objects

4-1386

Input Arguments

x — First data input
vector | matrix

First data input, specified as a vector or a matrix. x and y must have the same size and data type.
Data Types: single | double

y — Second data input
vector | matrix

Second data input, specified as a vector or a matrix. x and y must have the same size and data type.
Data Types: single | double

Output Arguments

tfeEst — Transfer function estimate
vector | matrix

Transfer function estimate of the system for which x and y are the input and output signals,
respectively.

The estimate, tfeEst, is equal to pxy./pxx, where pxy is the cross-power spectral density of x and
y, and pxx is the power spectral density of x.

The transfer function estimate has the same size and data type as the input.
Data Types: single | double

cxy — Coherence estimate
vector | matrix

Magnitude squared coherence estimate of the system, returned as a vector or a matrix.

The coherence estimate, cxy, is equal to (abs(pxy).^2)./(pxx.*pyy), where pxy is the cross
power spectral density of x and y, pxx is the power spectral density of x, and pyy is the power
spectral density of y. For coherence to be estimated, the OutputCoherence property must be set to
true.

The coherence estimate has the same size and data type as the input.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.TransferFunctionEstimator
getFrequencyVector Vector of frequencies at which estimation is done
getRBW Resolution bandwidth of spectrum

 dsp.TransferFunctionEstimator

4-1387

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Estimate Transfer Function of a System Represented by an Order-64 FIR Filter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Generate a sine wave. Use the dsp.TransferFunctionEstimator System object™ to estimate the
system transfer function and the dsp.ArrayPlot System object to display it.

sin = dsp.SineWave('Frequency',100,'SampleRate',1000);
sin.SamplesPerFrame = 1000;
tfe = dsp.TransferFunctionEstimator('FrequencyRange','centered');
aplot = dsp.ArrayPlot('PlotType','Line','XOffset',-500,'YLimits',...
 [-120 5],'YLabel','Frequency Response (dB)',...
 'XLabel','Frequency (Hz)',...
 'Title','System Transfer Function');

Create an FIR Filter System object of order 64 and (normalized) cutoff frequency of 1/4. Add random
noise to the sine wave. Step through the System objects to obtain the data streams, and plot the log
of the magnitude of the transfer function.

firFilt = dsp.FIRFilter('Numerator',fir1(64,1/4));
for ii = 1:100
x = sin() + 0.05*randn(1000,1);
y = firFilt(x);
Txy = tfe(x,y);
aplot(20*log10(abs(Txy)))
end

4 System Objects

4-1388

Algorithms
Welch's Method of Averaged Modified Periodograms

Give two signal inputs, x and y:

1 Multiply the inputs by the window and scale the result by the window power.
2 Take FFT of the signals, X and Y.
3 Compute the current power spectral density estimates, Pxx, Pyy, and the current cross power

spectral density estimate, Pyx, by taking the moving average of last N number of Z1, Z2, and Z3
vectors, respectively:

• Z1 = X.*conj(X)
• Z2 = Y.*conj(Y)
• Z3 = Y.*conj(X)

For details on the moving average methods, see “Averaging Method” on page 4-1321.

The transfer function estimate is calculated by dividing Pyx by Pxx.

The magnitude squared coherence, Cxy, is defined by the following equation:

Cxy =
abs Pxy . ^2

P .xx * Pyy

 dsp.TransferFunctionEstimator

4-1389

References
[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling. Hoboken, NJ: John Wiley &

Sons, 1996

[2] Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ:
Prentice Hall, 1999

[3] Stoica, Petre and Randolph L. Moses. Spectral Analysis of Signals. Englewood Cliffs, NJ: Prentice
Hall, 2005

[4] Welch, P. D. ``The use of fast Fourier transforms for the estimation of power spectra: A method
based on time averaging over short modified periodograms,'' IEEE Transactions on Audio and
Electroacoustics, Vol. 15, pp. 70–73, 1967.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Objects
dsp.SpectrumAnalyzer | dsp.SpectrumEstimator | dsp.CrossSpectrumEstimator

Introduced in R2013b

4 System Objects

4-1390

dsp.TransitionMetrics
Package: dsp

(To be removed) Transition metrics of bilevel waveforms

Note dsp.TransitionMetrics will be removed in a future release. Use functions from “Pulse and
Transition Metrics” instead. Functions in this set include falltime, overshoot, risetime,
settlingtime, slewrate, and undershoot among others.

Description
The dsp.TransitionMetrics object extracts information such as duration, slew rate, and
reference-level crossings for each transition found in the bilevel waveform. The
dsp.TransitionMetrics object can additionally return preshoot, postshoot and settling metrics for
the regions immediately before and after each transition.

To obtain transition metrics for a bilevel waveform:

1 Create the dsp.TransitionMetrics object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
tm = dsp.TransitionMetrics
tm = dsp.TransitionMetrics(Name,Value)

Description

tm = dsp.TransitionMetrics creates a transition metrics System object, tm. The object
computes the rise time, fall time, and width of a pulse. TransitionMetrics additionally computes
cycle metrics such as pulse separations, periods, and duty cycles.

tm = dsp.TransitionMetrics(Name,Value) returns a TransitionMetrics System object, tm,
with each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 dsp.TransitionMetrics

4-1391

For more information on changing property values, see System Design in MATLAB Using System
Objects.

MaximumRecordLength — Maximum samples to preserve
1000 (default) | positive integer

Maximum samples to preserve between calls to the algorithm. This property requires a positive
integer that specifies the maximum number of samples to save between calls to the algorithm. When
the number of samples to be saved exceeds this length, the oldest excess samples are discarded.

Dependencies

This property applies when RunningMetrics is true and is tunable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PercentReferenceLevels — Reference levels
[10 50 90] (default) | three-element row vector

Lower-, middle-, and upper-percent reference levels. This property contains a three-element numeric
row vector of the lower-, middle-, and upper-percent reference levels. These reference levels are used
as an offset between the low and high states of the waveform when computing the duration of each
transition.
Data Types: double

PercentStateLevelTolerance — Tolerance of state level
2 (default) | positive scalar

Tolerance of the state level (in percent). This property requires a scalar that specifies the maximum
deviation from either the low or high state before it is considered to be outside that state. The
tolerance is expressed as a percentage of the waveform amplitude.
Data Types: double

PostshootOutputPort — Enable posttransition aberration metrics
false (default) | true

Enable posttransition aberration metrics. If this property is set to true, overshoot and undershoot
metrics are reported for a region defined immediately after each transition. The posttransition
aberration region is defined as the waveform interval that begins at the end of each transition and
whose duration is the value of PostshootSeekFactor times the computed transition duration. If a
complete subsequent transition is detected before the interval is over, the region is truncated at the
start of the subsequent transition. The metrics are computed for each transition that has a complete
posttransition aberration region.

PostshootSeekFactor — Postshoot seek factor
3 (default) | positive scalar

Corresponds to the duration of time to search for the overshoot and undershoot metrics immediately
following each transition. The duration is expressed as a factor of the duration of the transition.

Tunable: Yes

4 System Objects

4-1392

Dependencies

This property is enabled only when the PostshootOutputPort property is set to true and is
tunable.
Data Types: double

PreshootOutputPort — Enable pretransition aberration metrics
false (default) | true

Enable pretransition aberration metrics. If the PreshootOutputPort property is set to true,
overshoot and undershoot metrics are reported for a region defined immediately before each
transition. The pretransition aberration region is defined as the waveform interval that ends at the
start of each transition and whose duration is PreshootSeekFactor times the computed transition
duration.

PreshootSeekFactor — Preshoot seek factor
3 (default) | positive scalar

Corresponds to the duration of time to search for the overshoot and undershoot metrics immediately
preceding each transition. The duration is expressed as a factor of the duration of the transition.

Tunable: Yes

Dependencies

This property is enabled only when the PreshootOutputPort property is set to true and is tunable.
Data Types: double

RunningMetrics — Enable metrics over calls
false (default) | true

Enable metrics over all calls to the algorithm. If RunningMetrics is set to false, metrics are
computed for each call to the algorithm independently. If RunningMetrics is set to true, metrics
are computed across subsequent calls to the algorithm. If there are not enough samples to compute
metrics associated with the last transition, posttransition aberration region, or settling seek duration
in the current record, the object defers reporting all transition, aberration, and settling metrics
associated with the last transition until a subsequent call to the algorithm is made with enough data
to compute all enabled metrics for that transition.

SampleRate — Sampling rate
1 (default) | positive scalar

Sampling rate of uniformly sampled signal. Specify the sample rate in hertz as a positive scalar. This
property is used to construct the internal time values that correspond to the input sample values.
Time values start with zero.

Dependencies

This property applies when the TimeInputPort property is set to false.
Data Types: double

SettlingOutputPort — Enable settling metrics
false (default) | true

 dsp.TransitionMetrics

4-1393

Enable settling metrics. If SettlingOutputPort is set to true, settling metrics are reported for
each transition. The region used to compute the settling metrics starts at the midcrossing and lasts
until the SettlingSeekDuration has elapsed. If an intervening transition occurs, or the signal has
not settled within the PercentStateLevelTolerance of the final level, NaN is returned for each
metric. If there are not enough samples after the last transition to complete the
SettlingSeekDuration, no metrics are reported for the last transition. The metrics are reported
for the transition the next time the algorithm is called if the RunningMetrics property is set to
true.

SettlingSeekDuration — Settling seek duration
0.02 (default) | positive scalar

Duration of time over which to search for settling. This property is a scalar that specifies the amount
of time to inspect from the mid-reference level crossing (in seconds). If the transition has not yet
settled, or a subsequent complete transition is detected within this duration, the
TransitionMetrics object reports NaN for all settling metrics.

Tunable: Yes

Dependencies

This property applies only when you set the SettlingOutputPort property to true.
Data Types: double

StateLevels — State levels
[0 2.3] (default) | two-element row vector

Low- and high-state levels. This property is a two-element numeric row vector that contains the low
and high state levels respectively. These state levels correspond to the nominal logic low and high
levels of the pulse waveform.

Tunable: Yes
Data Types: double

StateLevelsSource — State level source
'Property' (default) | 'Auto'

Auto or manual state level computation. If the StateLevelsSource property is set to 'Auto', the
first record sent to the algorithm uses the dsp.StateLevels object with the default settings to
determine the state levels of the incoming waveform. If this property is set to 'Property', the
object uses the values the user specifies in the StateLevels property.

TimeInputPort — Time input
false (default) | true

Add input to specify sample instants. Set TimeInputPort to true to enable an additional real input
column vector to the algorithm to specify the sample instants that correspond to the sample values. If
this property is false, the sample instants are built internally. The sample instants start at zero and
increment by the reciprocal of the SampleRate property for subsequent samples. The sample
instants continue to increment if the RunningMetrics property is set to true and no intervening
calls to the reset or release methods are encountered.

4 System Objects

4-1394

Usage

Syntax
pulse = tm(x)
[pulse,cycle] = tm(x)
[pulse,transition] = tm(x)
[pulse,preshoot] = tm(x)
[pulse,postshoot] = tm(x)
[pulse,settling] = tm(x)
[pulse,cycle,transition,preshoot,postshoot,settling] = tm(x)
[___] = tm(x,T)

Description

pulse = tm(x) returns a structure array, pulse, whose fields contain real-valued column vectors.
The number of rows of each field corresponds to the number of complete pulses found in the real-
valued column vector input, x.

[pulse,cycle] = tm(x) returns a structure array, cycle, when you set the CycleOutputPort
property to true. The fields of cycle contain real-valued column vectors. The number of rows of
each field corresponds to the number of complete pulse periods found in the real-valued column
vector input, x.

[pulse,transition] = tm(x) returns a structure array, transition, when you set the
TransitionOutputPort property to true. The fields of transition contain real-valued matrices
with two columns, which correspond to the metrics of the first and second transitions. The number of
rows corresponds to the number of pulses found in the input waveform.

[pulse,preshoot] = tm(x) returns a structure array, preshoot, when you set the
PreshootOutputPort property to true. The fields of preshoot contain real-valued two-column
matrices whose row length corresponds to the number of transitions found in the input waveform.
The field names are identical to those of the postshoot structure.

[pulse,postshoot] = tm(x) returns a structure array, postshoot, when you set the
PostshootOutputPort property to true. The fields of postshoot contain real-valued two-column
matrices whose row length corresponds to the number of transitions found in the input waveform.

[pulse,settling] = tm(x) returns a structure, settling, when you set the
SettlingOutputPort property to true. The fields of settling correspond to the settling metrics
for each transition. Each field is a column vector whose elements correspond to the individual settling
durations, levels, and instants.

[pulse,cycle,transition,preshoot,postshoot,settling] = tm(x) which returns the
pulse, cycle, transition, preshoot, postshoot, and settling structure arrays when the
CycleOutputPort, PreshootOutputPort, PostshootPort, and SettlingOutputPort
properties are true. You may enable or disable any combination of output ports. However, the output
arguments are defined in the order shown here.

[___] = tm(x,T) performs the above metrics with respect to a sampled signal, whose sample
values, x, and sample instants, T, are real-valued column vectors of the same length. The additional
input T applies only when you set the TimeInputPort property to true.

 dsp.TransitionMetrics

4-1395

Input Arguments

x — Input signal
column vector

Input signal, specified as a real-valued column vector.
Data Types: double

T — Sampling instants
column vector

Sampling instants, specified as a real-valued column vector. Set TimeInputPort to true to enable
an additional real input column vector to the object algorithm to specify the sample instants that
correspond to the sample values. If this property is false, the sample instants are built internally.
The sample instants start at zero and increment by the reciprocal of the SampleRate property for
subsequent samples. The sample instants continue to increment if the RunningMetrics property is
set to true and no intervening calls to the reset or release methods are encountered.
Dependencies

This input is applicable when you set the TimeInputPort property to true.
Data Types: double

Output Arguments

pulse — Complete pulses
structure

Complete pulses, returned as a structure whose fields contain real-valued column vectors. The
number of rows of each field corresponds to the number of complete pulses found in the real-valued
column vector input, x. Each pulse starts with a transition of the polarity specified by the Polarity
property and ends with a transition of the opposite polarity.

The pulse output contains the following fields:

• PositiveCross — Instants where the positive-going transitions cross the mid-reference level of
each pulse

• NegativeCross — Instants where the negative-going transitions cross the mid-reference level of
each pulse

• Width — Absolute difference between PositiveCross and NegativeCross of each pulse
• RiseTime — Duration between the linearly-interpolated instants when the positive-going (rising)

transition of each pulse crosses the lower- and upper-reference levels
• FallTime — Duration between the linearly-interpolated instants when the negative-going (falling)

transition of each pulse crosses the upper- and lower-reference levels

Data Types: struct

cycle — Complete pulse periods
structure

Complete pulse periods, returned when you set the CycleOutputPort property to true. The pulse
periods are returned as a structure whose fields contain real-valued column vectors. The number of
rows of each field corresponds to the number of complete pulse periods found in the real-valued

4 System Objects

4-1396

column vector input, x. You need at least three consecutive alternating polarity transitions that start
and end with the same polarity as the value of the Polarity property if you want to compute cycle
metrics. If the last transition found in the input x does not match the polarity of the Polarity
property, the pulse separation, period, frequency, and duty cycle are not reported for the last pulse. If
the RunningMetrics property is set to true when this occurs, all pulse, cycle, transition, preshoot,
postshoot, and settling metrics associated with the last pulse are deferred until a subsequent call to
the algorithm detects the next transition.

The cycle output contains the following fields:

• Period — Duration between the first transition of the current pulse and the first transition of the
next pulse.

• Frequency — Reciprocal of the period.
• Separation — Durations between the mid-reference level crossings of the first and second

transitions of each pulse.
• Width — Durations between the mid-reference level crossings of the first and second transitions

of each pulse. This is equivalent to the width parameter of the pulse structure.
• DutyCycle — Ratio of the width to the period for each pulse.

Data Types: struct

transition — Transition metrics
structure

Transition metrics, returned as a structure array, when you set the TransitionOutputPort
property to true. The fields of transition contain real-valued matrices with two columns which
correspond to the metrics of the first and second transitions. The number of rows corresponds to the
number of pulses found in the input waveform.

The transition output contains the following fields:

• Duration — Amount of time between the interpolated instants where the transition crosses the
lower- and upper-reference levels

• SlewRate — Ratio of absolute difference between the upper and lower reference levels to the
transition duration

• MiddleCross — Linearly interpolated instant where the transition first crosses the mid-reference
level

• LowerCross — Linearly interpolated instant where the signal crosses the lower-reference level
• UpperCross — Linearly interpolated instant where the signal crosses the upper-reference level

Data Types: struct

preshoot — Preshoot metrics
structure

Preshoot metrics, returned as a structure array, when you set the PreshootOutputPort property to
true. The fields of preshoot contain real-valued two-column matrices whose row length
corresponds to the number of transitions found in the input waveform.

The preshoot output contains the following fields:

 dsp.TransitionMetrics

4-1397

• Overshoot — Overshoot of the region of interest expressed as a percentage of the waveform
amplitude

• Undershoot — Undershoot of the region of interest expressed as a percentage of the waveform
amplitude

• OvershootLevel — Level of the overshoot
• UndershootLevel — Level of the undershoot
• OvershootInstant — Instant that corresponds to the overshoot
• UndershootInstant — Instant that corresponds to the undershoot

Data Types: struct

postshoot — Postshoot metrics
structure

Postshoot metrics, returned as a structure array, when you set the PostshootOutputPort property
to true. The fields of postshoot contain real-valued two-column matrices whose row length
corresponds to the number of transitions found in the input waveform.

The postshoot output contains the following fields:

• Overshoot — Overshoot of the region of interest expressed as a percentage of the waveform
amplitude

• Undershoot — Undershoot of the region of interest expressed as a percentage of the waveform
amplitude

• OvershootLevel — Level of the overshoot
• UndershootLevel — Level of the undershoot
• OvershootInstant — Instant that corresponds to the overshoot
• UndershootInstant — Instant that corresponds to the undershoot

Data Types: struct

settling — Settling metrics
structure

Settling metrics for each transition, returned as a structure array, when you set the
SettlingOutputPort property to true. The fields of settling correspond to the settling metrics
for each transition. Each field is a column vector whose elements correspond to the individual settling
durations, levels, and instants.

The settling output contains the following fields:

• Duration — Amount of time from when the signal crosses the mid-reference level to the time
where the signal enters and remains within the specified PercentStateLevelTolerance of the
waveform amplitude over the specified settling seek duration

• Instant — Instant in time where the signal enters and remains within the specified tolerance.
• Level — Level of the waveform where it enters and remains within the specified tolerance.

Data Types: struct

4 System Objects

4-1398

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.TransitionMetrics
plot (To be removed) Plot pulse signal and metrics

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Transition and Preshoot Information of a 2.3 V Step Waveform

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Compute transition and preshoot information of a 2.3 V step waveform sampled at 4 MHz. Load the
data.

load('transitionex.mat','x');

Construct the dsp.TransitionMetrics object. Set the SampleRate property to 4 MHz and the
StateLevelsSource property to 'Auto' to estimate the state levels from the data. Set the
PreshootOutputPort property to true to output pretransition aberration metrics when you call
the object.

tm = dsp.TransitionMetrics('SampleRate',4e6, ...
 'StateLevelsSource','Auto', ...
 'PreshootOutputPort',true)

tm =
 dsp.TransitionMetrics with properties:

 StateLevelsSource: 'Auto'
 StateLevels: [0 2.3000]
 PercentStateLevelTolerance: 2
 PercentReferenceLevels: [10 50 90]
 RunningMetrics: false
 TimeInputPort: false
 SampleRate: 4000000
 PreshootOutputPort: true
 PreshootSeekFactor: 3
 PostshootOutputPort: false
 SettlingOutputPort: false

Call the object to compute the transition and preshoot information. Plot the result.

 dsp.TransitionMetrics

4-1399

[transition,preshoot] = tm(x)

transition = struct with fields:
 Duration: 1.7800e-07
 Polarity: 1
 SlewRate: 1.0310e+07
 MiddleCross: 5.1250e-06
 LowerCross: 5.0360e-06
 UpperCross: 5.2140e-06

preshoot = struct with fields:
 Overshoot: 4.8050
 Undershoot: 6.1798
 OvershootLevel: 0.1020
 UndershootLevel: -0.1500
 OvershootInstant: 4.7500e-06
 UndershootInstant: 5.0000e-06

plot(tm)

Compatibility Considerations
dsp.TransitionMetrics System object will be removed
Warns starting in R2021b

dsp.TransitionMetrics System object will be removed in a future release. Use functions from
“Pulse and Transition Metrics” instead. Functions in this set include falltime, overshoot,
risetime, settlingtime, slewrate, and undershoot among others.

References
[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003.

See Also
Functions
falltime | overshoot | risetime | settlingtime | slewrate | undershoot

Introduced in R2012a

4 System Objects

4-1400

dsp.UDPReceiver
Package: dsp

Receive UDP packets from the network

Description
The dsp.UDPReceiver System object receives UDP packets over a UDP network from a remote IP
address specified in the “RemoteIPAddress” on page 4-0 property. The object then saves the data
to its internal buffer. The amount of data (number of elements) received in each UDP packet can vary.
The maximum number of bytes the object can receive without losing data is set by the
“ReceiveBufferSize” on page 4-0 property. The “MaximumMessageLength” on page 4-0
property specifies the maximum number of samples each data packet can contain. The “LocalIPPort”
on page 4-0 on which the object receives the data is tunable in generated code but not tunable
during simulation. For an example, see “Tune the UDP Port Number in MATLAB” on page 4-1404.

To receive UDP packets from the network:

1 Create the dsp.UDPReceiver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
udpr = dsp.UDPReceiver
udpr = dsp.UDPReceiver(Name,Value)

Description

udpr = dsp.UDPReceiver returns a UDP receiver object that receives UDP packets from a
specified port.

udpr = dsp.UDPReceiver(Name,Value) returns a UDP receiver object with each specified
property set to the specified value. Enclose each property name in single quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 dsp.UDPReceiver

4-1401

LocalIPPort — Local port on which to receive data
25000 (default) | [1, 65535]

Port on which to receive the data, specified as a scalar in the range [1, 65535]. This property is
tunable in generated code but not tunable during simulation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RemoteIPAddress — Address from which to accept data
'0.0.0.0' (default) | character vector containing a valid IP address | string scalar

Address from which to accept data, specified as a character vector or a string scalar containing a
valid IP address. Entering a specific IP address blocks UDP packets from other addresses. The
default, '0.0.0.0', indicates that the data can be accepted from any remote IP address.
Data Types: char

ReceiveBufferSize — Size of internal buffer
8192 bytes (default) | [1, 67108864]

Size of the internal buffer that receives UDP packets, specified in bytes as a scalar in the range [1,
67108864]. If the number of bytes received exceeds this value, the buffer overflows and the contents
are truncated.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaximumMessageLength — Maximum size of output message
255 (default) | [1, 65507]

Maximum length of the output message, specified in samples as a positive scalar in the range [1,
65507]. Set this property to a value equal to or greater than the data size of the UDP packet. If you
receive more samples than specified in this property, the excess data is truncated.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MessageDataType — Data type of the message
'uint8' (default) | 'double' | 'single' | 'int8' | 'int16' | 'uint16' | 'int32' | 'uint32' |
'logical'

Data type of the vector elements in the message output, specified as a MATLAB built-in data type.

Match the data type with the data input used to create the UDP packets.
Data Types: char

IsMessageComplex — Complexity of message
false (default) | true

Complexity of the message, specified as either true or false.

Set this property to true if the received message is complex. Set the property to false if the
received message is real.
Data Types: logical

4 System Objects

4-1402

Usage

Syntax
dataR = udpr()

Description

dataR = udpr() receives one UDP packet from the network.

Output Arguments

dataR — Data received
scalar | vector

Data received from the network, returned as one packet. The “MaximumMessageLength” on page 4-
0 property specifies the maximum number of bytes each data packet can contain. Length of the
data received is the number of bytes received from the network.

The data is received as complex data if the IsMessageComplex property is set to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Byte Transmission Using UDP

Send and receive UDP packets using the dsp.UDPSender and dsp.UDPReceiver System objects.
Calculate the number of bytes successfully transmitted.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Set the RemoteIPPort of UDP sender and the LocalIPPort of the UDP receiver to 31000. Set the
length of the data vector to 128 samples, which is less than the value of the
MaximumMessageLength property of the receiver. To prevent the loss of packets, call the setup
method on the receiver object before the first call to the object algorithm.

udpr = dsp.UDPReceiver('LocalIPPort',31000);
udps = dsp.UDPSender('RemoteIPPort',31000);

 dsp.UDPReceiver

4-1403

setup(udpr);

bytesSent = 0;
bytesReceived = 0;
dataLength = 128;

In each loop of iteration, send and receive a packet of data. At the end of the loop, use the fprintf
function to print the number of bytes sent by the sender and the number of bytes received by the
receiver.

for k = 1:20
 dataSent = uint8(255*rand(1,dataLength));
 bytesSent = bytesSent + dataLength;
 udps(dataSent);
 dataReceived = udpr();
 bytesReceived = bytesReceived + length(dataReceived);
end

release(udps);
release(udpr);

fprintf('Bytes sent: %d\n', bytesSent);

Bytes sent: 2560

fprintf('Bytes received: %d\n', bytesReceived);

Bytes received: 2560

Tune the UDP Port Number in MATLAB

The local IP port number of the dsp.UDPReceiver object and the remote IP port number of the
dsp.UDPSender object are tunable in the generated code. Generate a MEX file from the receiver
function which contains the algorithm to receive sine wave data over a UDP network. Change the
remote IP port number of the UDP receiver without regenerating the MEX file. Verify the number of
bytes sent and received over the network.

Note: This example runs only in R2017a or later.

The input to the receiver function is the local IP port number of the dsp.UDPReceiver System
object™. The output of this function is the number of bytes received from the UDP network.

type receiver

function [bytesReceived] = receiver(portnumber)

persistent udpRx

if isempty(udpRx)
 udpRx = dsp.UDPReceiver('MessageDataType','double');
end

udpRx.LocalIPPort = portnumber;

4 System Objects

4-1404

dataReceived = udpRx();
bytesReceived = length(dataReceived);

The dsp.UDPSender object with remoteIPPort number set to 65000 sends the data over the UDP
network. The dsp.UDPReceiver object with LocalIPPort number set to 65000 receives the data
from the UDP network. The data is a sine wave containing 250 samples per frame.

portnumber = 65000;
udpSend = dsp.UDPSender('RemoteIPPort',portnumber);
sine = dsp.SineWave('SamplesPerFrame',250);

bytesSent = 0;
bytesReceived = 0;
dataLength = 250;

for i = 1:10
dataSent = sine();
bytesSent = bytesSent + dataLength;
udpSend(dataSent);
bytesReceived = bytesReceived + receiver(portnumber);
end
fprintf('Number of bytes sent: %d', bytesSent);

Number of bytes sent: 2500

fprintf('Number of bytes received: %d', bytesReceived);

Number of bytes received: 2250

The data is sent and received successfully over the UDP network. The initial data is dropped due to
overhead.

Generate a MEX file from the receiver.m function.

codegen receiver -args {65000}

Code generation successful.

Release the sender and change the RemotePort number to 25000. The LocalIPPort number of the
receiver continues to be 65000. Since the port numbers are different, the data is not transmitted
successfully.

release(udpSend)
portnumberTwo = 25000;
udpSend.RemoteIPPort = portnumberTwo;
bytesReceived = 0;
bytesSent = 0;
for i = 1:10
dataSent = sine();
bytesSent = bytesSent + dataLength;
udpSend(dataSent);
bytesReceived = bytesReceived + receiver_mex(portnumber);
end
fprintf('Number of bytes sent: %d', bytesSent);

Number of bytes sent: 2500

fprintf('Number of bytes received: %d', bytesReceived);

 dsp.UDPReceiver

4-1405

Number of bytes received: 0

Clear the MEX file and change the local IP port number of the receiver to 25000. Clearing the MEX
enables the receiver port number to change without having to regenerate the MEX. The port numbers
of the sender and receiver match. Verify if the data is transmitted successfully.

clear mex %#ok
bytesReceived = 0;
bytesSent = 0;
for i = 1:10
dataSent = sine();
bytesSent = bytesSent + dataLength;
udpSend(dataSent);
bytesReceived = bytesReceived + receiver_mex(portnumberTwo);
end
fprintf('Number of bytes sent: %d', bytesSent);

Number of bytes sent: 2500

fprintf('Number of bytes received: %d', bytesReceived);

Number of bytes received: 2250

The data is transmitted successfully over the UDP network. The initial data is dropped due to
overhead.

Transmit Complex Data over UDP Network

Compute the STFT of a sine wave and transmit the complex STFT data over a UDP network. At the
receiver side, compute the ISTFT of the received data. Visualize the data sent and the data received
using a time scope.

The dsp.UDPSender object can send complex data. In order to enable the dsp.UDPReceiver object
to receive complex data, set the IsMessageComplex property to true.

udps = dsp.UDPSender('RemoteIPPort',31000);
udpr = dsp.UDPReceiver('LocalIPPort',31000,...
 'IsMessageComplex',true,...
 'MessageDataType','double');

setup(udpr);

bytesSent = 0;
bytesReceived = 0;
dataLength = 128;

Initialize the dsp.STFT and dsp.ISTFT System objects with a periodic hann window of length 120
samples and an overlap length of 60 samples. Set the FFT length to 128.

winLen = 120;
overlapLen = 60;

frameLen = winLen-overlapLen;
stf = dsp.STFT(...
 'Window',hann(winLen,'periodic'),...

4 System Objects

4-1406

 'OverlapLength',overlapLen,'FFTLength',128);
istf = dsp.ISTFT(...
 'Window',hann(winLen,'periodic'),...
 'OverlapLength',overlapLen,...
 'WeightedOverlapAdd',0);

The input is a sinusoidal signal with a frequency of 100 Hz, a sample rate of 1000 Hz, and with 60
samples per each signal frame.

sine = dsp.SineWave(...
 'SamplesPerFrame',winLen-overlapLen,...
 'Frequency',100);

Initialize a timescope object with a sample rate of 1000 Hz and a time span of 0.09. The Delay
object corrects the overlap length while comparing the input with the reconstructed output signal.

ts = timescope('SampleRate',1000,...
 'ShowLegend',true,...
 'YLimits',[-1 1],...
 'TimeSpanSource','Property',...
 'TimeSpan',.09,...
 'ChannelNames',{'Input','Reconstructed'});
dly = dsp.Delay('Length',overlapLen);

Transmit complex STFT data of the sine wave over the UDP network. Compute the ISTFT of the
received data. Compare the input, x, to the reconstructed output, y. Due to the latency introduced by
the objects, the reconstructed output is shifted in time compared to the input. Therefore, to compare,
take the norm of the difference between the reconstructed output, y, and the previous input, xprev.

Visualize the signals using a time scope. You can see that the reconstructed signal overlaps very
closely with the input signal.

n = zeros(1,1e3);
xprev = 0;
for k = 1:1e3
 x = sine();
 X = stf(x);
 bytesSent = bytesSent + length(X);
 udps(X);
 dataReceived = udpr();
 if (~isempty(dataReceived))
 y = istf(dataReceived);
 end
 n(1,k) = norm(y-xprev);
 xprev = x;
 bytesReceived = bytesReceived + length(dataReceived);
 ts([dly(x),y]);
end

 dsp.UDPReceiver

4-1407

The norm of the difference is very small, indicating that the output signal is a perfectly reconstructed
version of the input signal.

max(abs(n))

ans = 4.0270e-14

Release the UDP objects.

release(udps);
release(udpr);

Some of the packets sent can be lost during transmission due to the lossy nature of the UDP protocol.
To check for loss, compare the bytes sent to the bytes received.

fprintf('Bytes sent: %d\n', bytesSent);

Bytes sent: 128000

fprintf('Bytes received: %d\n', bytesReceived);

Bytes received: 128000

4 System Objects

4-1408

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated from this
object and all the relevant files in a compressed zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another development environment where MATLAB is not
installed. For more details, see “How To Run a Generated Executable Outside MATLAB”.

• The LocalIPPort property is tunable in generated code but not tunable during simulation.

See Also
Objects
dsp.UDPSender

Blocks
UDP Receive | UDP Send

Topics
“How To Run a Generated Executable Outside MATLAB”
“Variable-Size Signal Support DSP System Objects”

Introduced in R2012a

 dsp.UDPReceiver

4-1409

dsp.UDPSender
Package: dsp

Send UDP packets to network

Description
The UDPSender object sends UDP packets to the network.

To send UDP packets to the network:

1 Create the dsp.UDPSender object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
udps = dsp.UDPSender
udps = dsp.UDPSender(Name,Value)

Description

udps = dsp.UDPSender returns a UDP sender object, udps, that sends UDP packets to a specified
port.

udps = dsp.UDPSender(Name,Value) returns a UDP sender object, udps, with each property set
to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

RemoteIPAddress — Remote address to which to send data
'127.0.0.1' (default) | character vector containing a valid IP address | string scalar

Specify the remote (that is, host) IP address to which the data is sent. The default is '127.0.0.1',
which is the local host.
Data Types: char

4 System Objects

4-1410

RemoteIPPort — Remote port to which to send data
25000 (default) | integer in the range [1, 65535]

Specify the port at the remote IP address to which the data is sent. This property is tunable in
generated code but not tunable during simulation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LocalIPPortSource — Source of local IP port
Auto (default) | Property

Specify how to determine the local IP port on the host as Auto or Property. If you specify Auto, the
object selects the port dynamically from the available ports. If you specify Property, the object uses
the source specified in the LocalIPPort property.

LocalIPPort — Local port from which to send data
25000 (default) | integer in the range [1, 65535]

Specify the port from which to send data.

Dependencies

This property applies when you set the LocalIPPortSource property to Property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SendBufferSize — Size of internal buffer
8192 bytes (default) | integer in the range [1, 67108864]

Size of the internal buffer that sends UDP packets, specified in bytes as an integer in the range [1,
67108864].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
y = udps(Packet)

Description

y = udps(Packet) sends one UDP packet, Packet, to the network.

Input Arguments

Packet — Data sent
scalar | vector

The object sends one UDP packet to the network per call.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

 dsp.UDPSender

4-1411

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Byte Transmission Using UDP

Send and receive UDP packets using the dsp.UDPSender and dsp.UDPReceiver System objects.
Calculate the number of bytes successfully transmitted.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Set the RemoteIPPort of UDP sender and the LocalIPPort of the UDP receiver to 31000. Set the
length of the data vector to 128 samples, which is less than the value of the
MaximumMessageLength property of the receiver. To prevent the loss of packets, call the setup
method on the receiver object before the first call to the object algorithm.

udpr = dsp.UDPReceiver('LocalIPPort',31000);
udps = dsp.UDPSender('RemoteIPPort',31000);

setup(udpr);

bytesSent = 0;
bytesReceived = 0;
dataLength = 128;

In each loop of iteration, send and receive a packet of data. At the end of the loop, use the fprintf
function to print the number of bytes sent by the sender and the number of bytes received by the
receiver.

for k = 1:20
 dataSent = uint8(255*rand(1,dataLength));
 bytesSent = bytesSent + dataLength;
 udps(dataSent);
 dataReceived = udpr();
 bytesReceived = bytesReceived + length(dataReceived);
end

release(udps);
release(udpr);

fprintf('Bytes sent: %d\n', bytesSent);

4 System Objects

4-1412

Bytes sent: 2560

fprintf('Bytes received: %d\n', bytesReceived);

Bytes received: 2560

Tune the UDP Port Number in MATLAB

The local IP port number of the dsp.UDPReceiver object and the remote IP port number of the
dsp.UDPSender object are tunable in the generated code. Generate a MEX file from the receiver
function which contains the algorithm to receive sine wave data over a UDP network. Change the
remote IP port number of the UDP receiver without regenerating the MEX file. Verify the number of
bytes sent and received over the network.

Note: This example runs only in R2017a or later.

The input to the receiver function is the local IP port number of the dsp.UDPReceiver System
object™. The output of this function is the number of bytes received from the UDP network.

type receiver

function [bytesReceived] = receiver(portnumber)

persistent udpRx

if isempty(udpRx)
 udpRx = dsp.UDPReceiver('MessageDataType','double');
end

udpRx.LocalIPPort = portnumber;
dataReceived = udpRx();
bytesReceived = length(dataReceived);

The dsp.UDPSender object with remoteIPPort number set to 65000 sends the data over the UDP
network. The dsp.UDPReceiver object with LocalIPPort number set to 65000 receives the data
from the UDP network. The data is a sine wave containing 250 samples per frame.

portnumber = 65000;
udpSend = dsp.UDPSender('RemoteIPPort',portnumber);
sine = dsp.SineWave('SamplesPerFrame',250);

bytesSent = 0;
bytesReceived = 0;
dataLength = 250;

for i = 1:10
dataSent = sine();
bytesSent = bytesSent + dataLength;
udpSend(dataSent);
bytesReceived = bytesReceived + receiver(portnumber);
end
fprintf('Number of bytes sent: %d', bytesSent);

Number of bytes sent: 2500

fprintf('Number of bytes received: %d', bytesReceived);

 dsp.UDPSender

4-1413

Number of bytes received: 2250

The data is sent and received successfully over the UDP network. The initial data is dropped due to
overhead.

Generate a MEX file from the receiver.m function.

codegen receiver -args {65000}

Code generation successful.

Release the sender and change the RemotePort number to 25000. The LocalIPPort number of the
receiver continues to be 65000. Since the port numbers are different, the data is not transmitted
successfully.

release(udpSend)
portnumberTwo = 25000;
udpSend.RemoteIPPort = portnumberTwo;
bytesReceived = 0;
bytesSent = 0;
for i = 1:10
dataSent = sine();
bytesSent = bytesSent + dataLength;
udpSend(dataSent);
bytesReceived = bytesReceived + receiver_mex(portnumber);
end
fprintf('Number of bytes sent: %d', bytesSent);

Number of bytes sent: 2500

fprintf('Number of bytes received: %d', bytesReceived);

Number of bytes received: 0

Clear the MEX file and change the local IP port number of the receiver to 25000. Clearing the MEX
enables the receiver port number to change without having to regenerate the MEX. The port numbers
of the sender and receiver match. Verify if the data is transmitted successfully.

clear mex %#ok
bytesReceived = 0;
bytesSent = 0;
for i = 1:10
dataSent = sine();
bytesSent = bytesSent + dataLength;
udpSend(dataSent);
bytesReceived = bytesReceived + receiver_mex(portnumberTwo);
end
fprintf('Number of bytes sent: %d', bytesSent);

Number of bytes sent: 2500

fprintf('Number of bytes received: %d', bytesReceived);

Number of bytes received: 2250

The data is transmitted successfully over the UDP network. The initial data is dropped due to
overhead.

4 System Objects

4-1414

Transmit Complex Data over UDP Network

Compute the STFT of a sine wave and transmit the complex STFT data over a UDP network. At the
receiver side, compute the ISTFT of the received data. Visualize the data sent and the data received
using a time scope.

The dsp.UDPSender object can send complex data. In order to enable the dsp.UDPReceiver object
to receive complex data, set the IsMessageComplex property to true.

udps = dsp.UDPSender('RemoteIPPort',31000);
udpr = dsp.UDPReceiver('LocalIPPort',31000,...
 'IsMessageComplex',true,...
 'MessageDataType','double');

setup(udpr);

bytesSent = 0;
bytesReceived = 0;
dataLength = 128;

Initialize the dsp.STFT and dsp.ISTFT System objects with a periodic hann window of length 120
samples and an overlap length of 60 samples. Set the FFT length to 128.

winLen = 120;
overlapLen = 60;

frameLen = winLen-overlapLen;
stf = dsp.STFT(...
 'Window',hann(winLen,'periodic'),...
 'OverlapLength',overlapLen,'FFTLength',128);
istf = dsp.ISTFT(...
 'Window',hann(winLen,'periodic'),...
 'OverlapLength',overlapLen,...
 'WeightedOverlapAdd',0);

The input is a sinusoidal signal with a frequency of 100 Hz, a sample rate of 1000 Hz, and with 60
samples per each signal frame.

sine = dsp.SineWave(...
 'SamplesPerFrame',winLen-overlapLen,...
 'Frequency',100);

Initialize a timescope object with a sample rate of 1000 Hz and a time span of 0.09. The Delay
object corrects the overlap length while comparing the input with the reconstructed output signal.

ts = timescope('SampleRate',1000,...
 'ShowLegend',true,...
 'YLimits',[-1 1],...
 'TimeSpanSource','Property',...
 'TimeSpan',.09,...
 'ChannelNames',{'Input','Reconstructed'});
dly = dsp.Delay('Length',overlapLen);

Transmit complex STFT data of the sine wave over the UDP network. Compute the ISTFT of the
received data. Compare the input, x, to the reconstructed output, y. Due to the latency introduced by
the objects, the reconstructed output is shifted in time compared to the input. Therefore, to compare,
take the norm of the difference between the reconstructed output, y, and the previous input, xprev.

 dsp.UDPSender

4-1415

Visualize the signals using a time scope. You can see that the reconstructed signal overlaps very
closely with the input signal.

n = zeros(1,1e3);
xprev = 0;
for k = 1:1e3
 x = sine();
 X = stf(x);
 bytesSent = bytesSent + length(X);
 udps(X);
 dataReceived = udpr();
 if (~isempty(dataReceived))
 y = istf(dataReceived);
 end
 n(1,k) = norm(y-xprev);
 xprev = x;
 bytesReceived = bytesReceived + length(dataReceived);
 ts([dly(x),y]);
end

The norm of the difference is very small, indicating that the output signal is a perfectly reconstructed
version of the input signal.

max(abs(n))

ans = 4.0270e-14

4 System Objects

4-1416

Release the UDP objects.

release(udps);
release(udpr);

Some of the packets sent can be lost during transmission due to the lossy nature of the UDP protocol.
To check for loss, compare the bytes sent to the bytes received.

fprintf('Bytes sent: %d\n', bytesSent);

Bytes sent: 128000

fprintf('Bytes received: %d\n', bytesReceived);

Bytes received: 128000

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated from this
object and all the relevant files in a compressed zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another development environment where MATLAB is not
installed. For more details, see “How To Run a Generated Executable Outside MATLAB”.

The RemoteIPPort property is tunable in generated code but not tunable during simulation.

See Also
Objects
dsp.UDPReceiver

Blocks
UDP Send | UDP Receive

Introduced in R2012a

 dsp.UDPSender

4-1417

dsp.UniformDecoder
Package: dsp

(To be removed) Decode integer input into floating-point output

Note dsp.UniformDecoder will be removed in a future release. Use udecode instead. For more
information, see “Compatibility Considerations”.

Description
The dsp.UniformDecoder System object decodes integer input into floating-point output. The
decoder adheres to the definition for uniform decoding specified in ITU-T Recommendation G.701.

To decode an integer input into a floating-point output:

1 Create the dsp.UniformDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ud = dsp.UniformDecoder
ud = dsp.UniformDecoder(peakvalue,numbits)
ud = dsp.UniformDecoder(___ ,Name,Value)

Description

ud = dsp.UniformDecoder returns a uniform decoder, ud, that performs the inverse operation of
the dsp.UniformEncoder object, reconstructing quantized floating-point values from encoded
integer input.

ud = dsp.UniformDecoder(peakvalue,numbits) returns a uniform decoder, ud, with the
PeakValue property set to peakvalue and the NumBits property set to numbits.

ud = dsp.UniformDecoder(___ ,Name,Value) returns a uniform decoder, ud, with the
PeakValue property set to peakvalue, NumBits property set to numbits, and other properties set
to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

4 System Objects

4-1418

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PeakValue — Largest amplitude represented in encoded input
1 (default) | nonnegative scalar

Specify the largest amplitude represented in the encoded input as a nonnegative numeric scalar. To
correctly decode values encoded with the dsp.UniformEncoder object, set the PeakValue
property in both objects to the same value. For more information on setting this property, see the
PeakValue property description on the dsp.UniformEncoder page.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumBits — Number of input bits used to encode data
3 (default) | integer in the range [2, 32]

Specify the number of bits used to encode the input data as an integer value between 2 and 32. The
value of this property can be less than the total number of bits supplied by the input data type. To
correctly decode values encoded with the dsp.UniformEncoder object, set the NumBits property in
both objects to the same value. For more information on setting this property, see the NumBits
property description on the dsp.UniformEncoder page.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OverflowAction — Action to take when integer input is out of range
'Saturate' (default) | 'Wrap'

Specify the behavior of the uniform decoder when the integer input is out of range as 'Saturate' or
'Wrap'. The value of the NumBits property specifies the representable range of the input.

OutputDataType — Output data type
'double' (default) | 'single'

Data type of the output, specified as 'single' or 'double'.

Usage

Syntax
Y = ud(X)

Description

Y = ud(X) reconstructs quantized floating-point output Y from the encoded integer input X.

Input Arguments

X — Encoded integer input
vector | matrix

Encoded integer input, specified as a vector or a matrix.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

 dsp.UniformDecoder

4-1419

Output Arguments

Y — Decoded output
vector | matrix

Decoded floating-point output, returned as a vector or a matrix. The data type of the output is
determined by the OutputDataType property.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Decode Sequence

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

ue = dsp.UniformEncoder('PeakValue',2,'NumBits',4,...
 'OutputDataType','Signed integer');
x = (0:0.25:2)'; % Create an input sequence
ud = dsp.UniformDecoder('PeakValue',2,'NumBits',4);
x_encoded = ue(x);

Check that the last element has been saturated.

x_decoded = ud(x_encoded);

Algorithms
This object implements the algorithm, inputs, and outputs described on the Uniform Decoder block
reference page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.UniformDecoder System object will be removed
Warns starting in R2021b

4 System Objects

4-1420

dsp.UniformDecoder System object will be removed in a future release. Use the udecode function
instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the udecode function.

Discouraged Usage Recommended Replacement
Encode a sequence

ue = dsp.UniformEncoder('PeakValue',2,'NumBits',4,...
 'OutputDataType','Signed integer');
x = (0:0.25:2)';
x_encoded = ue(x);

Decode the encoded sequence

ud = dsp.UniformDecoder('PeakValue',2,'NumBits',4);
x_decoded = ud(x_encoded);

If you are using a release prior to R2016b,
replace ud(x) with step(ud,x) and ue(x) with
step(ue,x).

Encode a sequence

% Number of bits is 4, and peak value is 2.
x_encodedFn = uencode(x,4,2,'signed');

Decode the encoded sequence

x_decodedFn = udecode(x_encodedFn,4,2);

See Also
udecode

Introduced in R2012a

 dsp.UniformDecoder

4-1421

dsp.UniformEncoder
Package: dsp

(To be removed) Quantize and encode floating-point input into integer output

Note dsp.UniformEncoder will be removed in a future release. Use uencode instead. For more
information, see “Compatibility Considerations”.

Description
The dsp.UniformEncoder System object quantizes floating-point input, using the precision you
specify in the NumBits property, and encodes the quantized input into integer output. The operations
of the uniform encoder adhere to the definition for uniform encoding specified in ITU-T
Recommendation G.701.

To quantize and encode a floating-point input into an integer output:

1 Create the dsp.UniformEncoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ue = dsp.UniformEncoder
ue = dsp.UniformEncoder(peakvalue,numbits)
ue = dsp.UniformEncoder(___ ,Name,Value)

Description

ue = dsp.UniformEncoder returns a uniform encoder, ue, that quantizes floating-point input
samples and encodes them as integers using 2N-level quantization, where N is an integer.

ue = dsp.UniformEncoder(peakvalue,numbits) returns a uniform encoder, ue, with the
PeakValue property set to peakvalue and the NumBits property set to numbits.

ue = dsp.UniformEncoder(___ ,Name,Value) returns a uniform encoder, ue, with the
PeakValue property set to peakvalue, the NumBits property set to numbits, and other specified
properties set to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

4 System Objects

4-1422

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PeakValue — Largest input amplitude to be encoded
1 (default) | nonnegative scalar

Specify the largest input amplitude to be encoded, as a nonnegative numeric scalar. If the real or
imaginary input are outside of the interval [–P, (1 – 2(1 – B))P], where P is the peak value and B is the
value of the NumBits property, the uniform encoder saturates (independently for complex inputs) at
those limits.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumBits — Number of bits needed to represent output
8 (default) | integer in the range [2, 32]

Specify the number of bits needed to represent the integer output as an integer value between 2 and
32. The number of levels at which the uniform encoder quantizes the floating-point input is 2B, where
B is the number of bits.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputDataType — Data type of output
'Unsigned integer' (default) | 'Signed integer'

Specify the data type of the output as 'Unsigned integer' or 'Signed integer'. Unsigned
outputs are uint8, uint16, or uint32, and signed outputs are int8, int16, or int32. The
quantized inputs are linearly (uniformly) mapped to the intermediate integers in the interval [0, 2(B –
 1)] when you set this property to 'Unsigned integer', and in the interval [–2(B – 1), 2(B – 1) – 1] when
you set this property to 'Signed integer'. The variable B in both expressions corresponds to the
value of the NumBits property.

Usage

Syntax
Y = ue(X)

Description

Y = ue(X) quantizes and encodes the input X to output Y.

Input Arguments

X — Data input
vector | matrix

Data input, specified as a vector or a matrix. The input X can be real or complex and double-, or
single-precision values.
Data Types: single | double

 dsp.UniformEncoder

4-1423

Output Arguments

Y — Encoded data
vector | matrix

Quantized and encoded output, returned as a vector or a matrix.

The uniform encoder chooses the output data type according to the table.

Number of Bits Unsigned Integer Signed Integer
2 to 8 uint8 int8
9 to 16 uint16 int16
17 to 32 uint32 int32

The row in the table corresponds to the value of the NumBits property, and the column in the table
corresponds to the value of the OutputDataType property.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Encode Number Sequence

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

ue = dsp.UniformEncoder;
ue.PeakValue = 2;
ue.NumBits = 4;
ue.OutputDataType = 'Signed integer';
x = (-1:0.01:1)'; % Create an input sequence
x_encoded = ue(x);
plot(x, x_encoded,'.')
xlabel('Input')

4 System Objects

4-1424

ylabel('Encoded Output')
grid

Algorithms
This object implements the algorithm, inputs, and outputs described on the Uniform Encoder block
reference page. The object properties correspond to the block parameters.

Compatibility Considerations
dsp.UniformEncoder System object will be removed
Warns starting in R2021b

dsp.UniformEncoder System object will be removed in a future release. Use the uencode function
instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the uencode function.

Discouraged Usage Recommended Replacement
Encode a sequence

ue = dsp.UniformEncoder('PeakValue',2,'NumBits',4,...
 'OutputDataType','Signed integer');
x = (0:0.25:2)';
x_encoded = ue(x);

Decode the encoded sequence

ud = dsp.UniformDecoder('PeakValue',2,'NumBits',4);
x_decoded = ud(x_encoded);

If you are using a release prior to R2016b,
replace ud(x) with step(ud,x) and ue(x) with
step(ue,x).

Encode a sequence

% Number of bits is 4, and peak value is 2.
x_encodedFn = uencode(x,4,2,'signed');

Decode the encoded sequence

x_decodedFn = udecode(x_encodedFn,4,2);

See Also
uencode

Introduced in R2012a

 dsp.UniformEncoder

4-1425

dsp.UpperTriangularSolver
Package: dsp

(To be removed) Solve upper-triangular matrix equation

Note dsp.UpperTriangularSolver will be removed in a future release. Use the mldivide
function or the \ operator instead. For more information, see “Compatibility Considerations”.

Description
The UpperTriangularSolver object solves UX = B for X when U is a square, upper-triangular
matrix with the same number of rows as B.

To solve UX = B:

1 Create the dsp.UpperTriangularSolver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
uptriang = dsp.UpperTriangularSolver
uptriang = dsp.UpperTriangularSolver(Name,Value)

Description

uptriang = dsp.UpperTriangularSolver returns a linear system solver, uptriang, used to
solve UX = B where U is an upper (or unit-upper) triangular matrix.

uptriang = dsp.UpperTriangularSolver(Name,Value) returns a linear system solver,
uptriang, with each specified property set to the specified value. Enclose each property name in
single quotes. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

OverwriteDiagonal — Replace diagonal elements of input with ones
false (default) | true

4 System Objects

4-1426

When you set this property to true, the linear system solver replaces the elements on the diagonal of
the input, U, with ones. This property is useful when matrix U is the result of another operation, such
as an LDL decomposition, that uses the diagonal elements to represent the D matrix.

RealDiagonalElements — Indicate that diagonal of complex input is real
false (default) | true

When you set this property to true, the linear system solver optimizes computation speed if the input
U is complex, but its diagonal elements are real. Set this property to either true or false.

Dependencies

This property applies only when you set the OverwriteDiagonal property to false.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method as Ceiling, Convergent, Floor, Nearest, Round, Simplest, or
Zero.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as Wrap or Saturate.

ProductDataType — Data type of product
Full precision (default) | Same as input | Custom

Specify the product data type as Full precision, Same as input, or Custom.

CustomProductDataType — Product word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property applies only when you set the ProductDataType property to Custom.

AccumulatorDataType — Data type of accumulator
Full precision (default) | Same as first input | Same as product | Custom

Specify the accumulator data type as Full precision, Same as first input, Same as
product, or Custom.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,30) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies only when you set the AccumulatorDataType property to Custom.

 dsp.UpperTriangularSolver

4-1427

OutputDataType — Data type of output
Same as first input (default) | Custom

Specify the output data type as Same as first input or Custom.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.
Dependencies

This property applies only when you set the “OutputDataType” on page 4-0 property to Custom.

Usage

Syntax
X = uptriang(U,B)

Description

X = uptriang(U,B) computes the solution, X, of the matrix equation UX = B, where U is a square,
upper-triangular matrix with the same number of rows as the matrix B.

Input Arguments

U — Upper-triangular matrix
matrix

Upper-triangular square matrix of size M-by-M.

If the matrix is of fixed-point data type, it must be signed fixed point.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

B — Input B
vector | matrix

Input B in the equation UX = B, where B is an M-by-N matrix.

If the matrix is of fixed-point data type, it must be signed fixed point.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Output Arguments

X — Solution of equation
vector | matrix

Solution of the UX = B equation, returned as an M-by-N output matrix. The object uses only the
elements in the upper triangle of input U and ignores the lower elements. When you set
OverwriteDiagonal to true, the object replaces the elements on the diagonal of the input, U, with
ones.

If the matrix is of fixed-point data type, it must be signed fixed point.

4 System Objects

4-1428

Data Types: single | double | int8 | int16 | int32 | int64 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Solve an Upper Triangular Matrix

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

rng(1)
uptriang = dsp.UpperTriangularSolver;
u = triu(rand(4,4));
b = rand(4,1);

Check that result is the solution to the linear equations.

x1 = u\b

x1 = 4×1

 0.0632
 1.3991
 0.3156
 0.2955

x = uptriang(u,b)

x = 4×1
 0.0632
 1.3991
 0.3156
 0.2955

Algorithms
This object implements the algorithm, inputs, and outputs described on the Backward Substitution
block reference page. The object properties correspond to the block parameters.

 dsp.UpperTriangularSolver

4-1429

Compatibility Considerations
dsp.UpperTriangularSolver System object will be removed
Warns starting in R2021b

dsp.UpperTriangularSolver System object will be removed in a future release. Use the
mldivide function or the \ operator instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the mldivide function or the \ operator.

Discouraged Usage Recommended Replacement
rng(1);
uptriang = dsp.UpperTriangularSolver;
u = triu(rand(4,4));
b = rand(4,1);
x = uptriang(u,b)

x = 4×1
 0.0632
 1.3991
 0.3156
 0.2955

If you are using a release prior to R2016b,
replace uptriang(x) with step(uptriang,x).

x1 = u\b

x = 4×1
 0.0632
 1.3991
 0.3156
 0.2955

Alternatively, you can also use the mldivide
function.

x1 = mldivide(u,b)

x = 4×1
 0.0632
 1.3991
 0.3156
 0.2955

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
mldivide

Introduced in R2012a

4 System Objects

4-1430

dsp.VariableBandwidthFIRFilter
Package: dsp

Variable bandwidth FIR filter

Description
The dsp.VariableBandwidthFIRFilter object filters each channel of the input using FIR filter
implementations. It does so while having the capability of tuning the bandwidth.

To filter each channel of the input:

1 Create the dsp.VariableBandwidthFIRFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
vbw = dsp.VariableBandwidthFIRFilter
vbw = dsp.VariableBandwidthFIRFilter(Name,Value)

Description

vbw = dsp.VariableBandwidthFIRFilter returns a System object, vbw, which independently
filters each channel of the input over successive calls to the object. The filter’s cutoff frequency may
be tuned during the filtering operation. The variable bandwidth FIR filter is designed using the
window method.

vbw = dsp.VariableBandwidthFIRFilter(Name,Value) returns a variable bandwidth FIR
filter System object, vbw, with each property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input sample rate
44100 (default) | positive scalar

Input sample rate, specified as a positive scalar in Hz. This property is non-tunable.

 dsp.VariableBandwidthFIRFilter

4-1431

Data Types: double | single

FilterType — Filter type
'Lowpass' (default) | 'Highpass' | 'Bandpass' | 'Bandstop'

Specify the type of the filter as one of 'Lowpass' | 'Highpass' | 'Bandpass' | 'Bandstop'.
This property is non-tunable.

FilterOrder — FIR filter order
30 (default) | positive integer

Specify the order of the FIR filter as a positive integer scalar. This property is non-tunable.
Data Types: double | single

Window — Window function
'Hann' (default) | 'Hamming' | 'Chebyshev' | 'Kaiser'

Specify the window function used to design the FIR filter as one of 'Hann' | 'Hamming' |
'Chebyshev' | 'Kaiser'. This property is non-tunable.

KaiserWindowParameter — Kaiser window parameter
0.5 (default) | real scalar

Specify the Kaiser window parameter as a real scalar. This property is non-tunable.

Dependencies

This property applies when you set the 'Window' property to 'Kaiser'.
Data Types: double | single

CutoffFrequency — Filter cutoff frequency
512 (default) | positive scalar

Specify the filter cutoff frequency in Hz as a real, positive scalar, smaller than the SampleRate/2.

Tunable: Yes

Dependencies

This property applies if you set the FilterType property to 'Lowpass' or 'Highpass'.
Data Types: double | single

CenterFrequency — Filter center frequency
11025 (default) | positive scalar

Specify the filter center frequency in Hz as a real, positive scalar, smaller than SampleRate/2.

Tunable: Yes

Dependencies

This property applies when you set the FilterType property to 'Bandpass' or 'Bandstop'.
Data Types: double | single

4 System Objects

4-1432

Bandwidth — Filter bandwidth
7680 (default) | positive scalar

Specify the filter bandwidth in Hertz as a real, positive scalar, smaller than SampleRate/2.

Tunable: Yes
Dependencies

This property applies if you set the FilterType property to 'Bandpass' or 'Bandstop'.
Data Types: double | single

SidelobeAttenuation — Chebyshev window sidelobe attenuation
60 (default) | positive scalar

Specify the Chebyshev window attenuation as a real, positive scalar in decibels (dB). This property is
non-tunable.
Dependencies

This property applies if you set the Window property to 'Chebyshev'.
Data Types: double | single

Usage

Syntax
y = vbw(x)

Description

y = vbw(x) filters the input signal x using the variable bandwidth FIR filter to produce the output
y. The variable bandwidth FIR filter object operates on each channel, which means the object filters
every column of the input signal independently over successive calls to the algorithm.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. This object also accepts variable-size inputs. Once the
object is locked, you can change the size of each input channel, but you cannot change the number of
channels.
Data Types: double | single

Output Arguments

y — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix. The size, data type, and complexity of the output
signal matches that of the input signal.
Data Types: double | single

 dsp.VariableBandwidthFIRFilter

4-1433

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.VariableBandwidthFIRFilter
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
impz Impulse response of discrete-time filter System object
info Information about filter System object
coeffs Returns the filter System object coefficients in a structure
cost Estimate cost of implementing filter System object
grpdelay Group delay response of discrete-time filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Filtering Through a Variable Bandwidth Bandpass FIR Filter

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

This example shows you how to tune the center frequency and the bandwidth of the FIR filter.

Fs = 44100; % Input sample rate
% Define a bandpass variable bandwidth FIR filter:
vbw = dsp.VariableBandwidthFIRFilter('FilterType','Bandpass',...
 'FilterOrder',100,...
 'SampleRate',Fs,...
 'CenterFrequency',1e4,...
 'Bandwidth',4e3);
tfe = dsp.TransferFunctionEstimator('FrequencyRange','onesided');
aplot = dsp.ArrayPlot('PlotType','Line',...
 'XOffset',0,...
 'YLimits',[-120 5], ...
 'SampleIncrement', 44100/1024,...
 'YLabel','Frequency Response (dB)',...
 'XLabel','Frequency (Hz)',...
 'Title','System Transfer Function');
FrameLength = 1024;
sine = dsp.SineWave('SamplesPerFrame',FrameLength);
for i=1:500
 % Generate input
 x = sine() + randn(FrameLength,1);
 % Pass input through the filter
 y = vbw(x);

4 System Objects

4-1434

 % Transfer function estimation
 h = tfe(x,y);
 % Plot transfer function
 aplot(20*log10(abs(h)))
 % Tune bandwidth and center frequency of the FIR filter
 if (i==250)
 vbw.CenterFrequency = 5000;
 vbw.Bandwidth = 2000;
 end
end

Algorithms
FIR Transformations

All transformations assume a lowpass filter of length 2N+1.

Lowpass to Lowpass

Consider an ideal lowpass brickwall filter with normalized cutoff frequency ωc1. By taking the inverse
Discrete Fourier Transform of the ideal frequency response, and clipping the resulting sequence to
length 2N+1, the impulse response is:

 dsp.VariableBandwidthFIRFilter

4-1435

f orn = 0

hLP(n) =
ωc
π . w(0)

f or 1 ≤ |n| ≤ N

hLP(n) =
sin(ωcn)

πn . w(n)

where w(n) is the window vector. The lowpass filter coefficients are tuned to a new cutoff frequency
ωc2 as follows:

f or n = 0

hLP(n) =
ωc2
π . ω(0)

f or 1 ≤ n ≤ N

hLP(n) =
sin(ωc2n)

πn . ω(n)

There is no need to recompute the window every time you tune the cutoff frequency.

Lowpass to Highpass

Assuming a lowpass filter with normalized 6–dB cutoff frequency ωc, a highpass filter with the same
cutoff frequency can be obtained by taking the complementary of the lowpass frequency response:
HHP(ejω) = 1 — HLP(ejω)

Taking the inverse discrete Fourier transform of the above response, we get the following highpass
filter coefficients:

f or n = 0
hhp(n) = 1− hLP(n)
f or 1 ≤ n ≤ N
hhp(n) = − hLP(n)

Lowpass to Bandpass

A bandpass filtered centered at frequency ω0 can be obtained by shifting the lowpass response:

HBP(ejω) = HLP(ej(ω–ω0)) + HLP(ej(ω–ω0))

The bandwidth of the resulting bandpass filter is 2ωc, as measured between the two cutoff
frequencies of the bandpass filter. The equivalent bandpass filter coefficients are then:

hBP(n) = (e jω0n + e− jω0n)hLP(n)
which can be written as:
hBP(n) = 2cos(ω0n)hLP(n)

Lowpass to Bandstop

We can transform a lowpass filter to a bandstop filter by combining the highpass and bandpass
transformations. That is, first make the filter bandpass by shifting the lowpass response, and then
invert in to get a bandstop response centered at ω0.

4 System Objects

4-1436

HBS(ejω) = 1 – (HLP(ej(ω–ω0)) + HLP(ej(ω+ω0)))

This yields the following coefficients:

f or n = 0
hBS(n) = 1− 2cos(ω0n)hLP(n)
f or 1 ≤ n ≤ N
hBS(n) = − 2cos(ω0n)hLP(n)

Generalized Transformation

The transformations highlighted above can be combined to transform a lowpass filter to a lowpass,
highpass, bandpass or bandstop filter with arbitrary cutoffs.

For example, to transform a lowpass filter with cutoff ωc1 to a highpass with cutoff ωc2, you first apply
the lowpass-to-lowpass transformation to get a lowpass filter with cutoff ωc2, and then apply the
lowpass-to-highpass transformation to get the highpass with cutoff ωc2.

To get a bandpass filter with center frequency ω0 and bandwidth β, we first apply the lowpass-to-
lowpass transformation to go from a lowpass with cutoff ωc to a lowpass with cutoff β/2, and then
apply the lowpass-to-bandpass transformation to get the desired bandpass filter. The same approach
can be applied to a bandstop filter.

References
[1] Jarske, P.,Y. Neuvo, and S. K. Mitra, "A simple approach to the design of linear phase FIR digital

filters with variable characteristics." Signal Processing. Vol. 14, Issue 4, June 1988, pp.
313-326.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This object also supports SIMD code generation using Intel AVX2 technology when the input signal
has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code.

See Also
Functions
freqz | fvtool | impz | info | coeffs | cost | grpdelay

Objects
dsp.BiquadFilter | dsp.IIRFilter | dsp.FIRFilter | dsp.AllpoleFilter |
dsp.VariableBandwidthIIRFilter

 dsp.VariableBandwidthFIRFilter

4-1437

Blocks
Variable Bandwidth FIR Filter | Variable Bandwidth IIR Filter

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2014a

4 System Objects

4-1438

dsp.VariableBandwidthIIRFilter
Package: dsp

Variable bandwidth IIR filter

Description
The dsp.VariableBandwidthIIRFilter object filters each channel of the input using IIR filter
implementations. It does so while having the capability of tuning the bandwidth.

To filter each channel of the input:

1 Create the dsp.VariableBandwidthIIRFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
vbwIIR = dsp.VariableBandwidthIIRFilter
vbwIIR = dsp.VariableBandwidthIIRFilter(Name,Value)

Description

vbwIIR = dsp.VariableBandwidthIIRFilter returns a System object, vbwIIR, which
independently filters each channel of the input over successive calls to the algorithm. This System
object uses a specified IIR filter implementation. The filter’s passband frequency may be tuned during
the filtering operation. The variable bandwidth IIR filter is designed using the elliptical method. The
filter is tuned using IIR spectral transformations based on allpass filters.

vbwIIR = dsp.VariableBandwidthIIRFilter(Name,Value) returns a variable bandwidth IIR
filter System object, vbwIIR, with each property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input sample rate
44100 (default) | positive scalar

 dsp.VariableBandwidthIIRFilter

4-1439

Specify the sampling rate of the input in Hertz as a finite numeric scalar. This property is non-
tunable.
Data Types: double | single

FilterType — Filter type
'Lowpass' (default) | 'Highpass' | 'Bandpass' | 'Bandstop'

Specify the type of the filter as one of 'Lowpass' | 'Highpass' | 'Bandpass' | 'Bandstop'.
This property is non-tunable.

FilterOrder — IIR filter order
8 (default) | positive integer

Specify the order of the IIR filter as a positive integer scalar. This property is non-tunable.
Data Types: double | single

PassbandFrequency — Filter passband frequency
512 (default) | positive scalar

Specify the filter passband frequency in Hz as a real, positive scalar, smaller than the
SampleRate/2.

Tunable: Yes
Dependencies

This property applies when you set the FilterType property to 'Lowpass' or 'Highpass'.
Data Types: double | single

CenterFrequency — Filter center frequency
11025 (default) | positive scalar

Specify the filter center frequency in Hz as a real, positive scalar, smaller than SampleRate/2.

Tunable: Yes
Dependencies

This property applies when you set the FilterType property to 'Bandpass' or 'Bandstop'.
Data Types: double | single

Bandwidth — Filter bandwidth
7680 (default) | positive scalar

Specify the filter bandwidth in Hertz as a real, positive scalar, smaller than SampleRate/2.

Tunable: Yes
Dependencies

This property applies when you set the FilterType property to 'Bandpass' or 'Bandstop'.
Data Types: double | single

PassbandRipple — Filter passband ripple
1 (default) | positive scalar

4 System Objects

4-1440

Specify the filter passband ripple as a real, positive scalar in decibels (dB). This property is non-
tunable.
Data Types: double | single

StopbandAttenuation — Filter Stopband attenuation
60 (default) | positive scalar

Specify the filter stopband attenuation as a real, positive scalar in decibels (dB). This property is non-
tunable.
Data Types: double | single

Usage

Syntax
y = vbwIIR(x)

Description

y = vbwIIR(x) filters the real or complex input signal x using a variable bandwidth IIR filter to
produce the output y. The variable bandwidth IIR filter object operates on each channel, which
means the object filters every column of the input signal independently over successive calls to the
algorithm.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. This object also accepts variable-size inputs. Once the
object is locked, you can change the size of each input channel, but you cannot change the number of
channels.
Data Types: double | single

Output Arguments

y — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix. The size, data type, and complexity of the output
signal matches that of the input signal.
Data Types: double | single

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 dsp.VariableBandwidthIIRFilter

4-1441

Specific to dsp.VariableBandwidthIIRFilter
freqz Frequency response of discrete-time filter System object
fvtool Visualize frequency response of DSP filters
impz Impulse response of discrete-time filter System object
info Information about filter System object
coeffs Returns the filter System object coefficients in a structure
cost Estimate cost of implementing filter System object
grpdelay Group delay response of discrete-time filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Filtering Through a Variable Bandwidth Bandpass IIR Filter

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

This examples shows you how to tune the center frequency and bandwidth of the IIR filter.

 Fs = 44100; % Input sample rate
 % Define a bandpass variable bandwidth IIR filter:
 vbwiir = dsp.VariableBandwidthIIRFilter('FilterType','Bandpass',...
 'FilterOrder',8,...
 'SampleRate',Fs,...
 'CenterFrequency',1e4,...
 'Bandwidth',4e3);
 tfe = dsp.TransferFunctionEstimator('FrequencyRange','onesided');
 aplot = dsp.ArrayPlot('PlotType','Line',...
 'XOffset',0,...
 'YLimits',[-120 5], ...
 'SampleIncrement', 44100/1024,...
 'YLabel','Frequency Response (dB)',...
 'XLabel','Frequency (Hz)',...
 'Title','System Transfer Function');
 FrameLength = 1024;
 sine = dsp.SineWave('SamplesPerFrame',FrameLength);
 for i = 1:500
 % Generate input
 x = sine() + randn(FrameLength,1);
 % Pass input through the filter
 y = vbwiir(x);
 % Transfer function estimation
 h = tfe(x,y);
 % plot transfer function
 aplot(20*log10(abs(h)))
 % Tune bandwidth and center frequency of the IIR filter
 if (i==250)
 vbwiir.CenterFrequency = 5000;

4 System Objects

4-1442

 vbwiir.Bandwidth = 2000;
 end
 end

Algorithms
This filter covers frequency transformations. A lowpass IIR prototype is designed, using the elliptical
method by specifying its order, passband frequency, passband ripple and stopband attenuation. The
passband ripple and stopband attenuation are equal to the values of the PassbandRipple and
StopbandAttenuation properties. The prototype passband frequency is set to 0.5. If the
FilterType property is 'Lowpass' or 'Highpass', the prototype’s order is equal to the value of
FilterOrder. If the FilterType property is 'Bandpass' or 'Bandstop', the prototype filter
order is equal to FilterOrder/2. The prototype is a Direct Form II Transposed cascade of second-
order sections (Biquad filter). The prototype is transformed into the desired filter using the
algorithms used in “Digital Frequency Transformations”. Each prototype SOS section is transformed
separately. When FilterType is 'Lowpass' or 'Highpass', the resulting filter remains a Direct
Form II Transposed cascade of second order sections. If the FilterType is 'Bandpass' or
'Bandstop', the resulting filter is a cascade of Direct Form II Transposed cascade of fourth order
sections.

References
[1] A. G. Constantinides. “Spectral transformations for digital filters”, Proc. Inst. Elect. Eng. Vol. 117,

No. 8, 1970, pp. 1585-1590.

 dsp.VariableBandwidthIIRFilter

4-1443

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
freqz | fvtool | impz | info | coeffs | cost | grpdelay

Objects
dsp.BiquadFilter | dsp.IIRFilter | dsp.FIRFilter | dsp.AllpoleFilter |
dsp.VariableBandwidthFIRFilter

Blocks
Variable Bandwidth IIR Filter | Variable Bandwidth FIR Filter

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2014a

4 System Objects

4-1444

dsp.VariableFractionalDelay
Package: dsp

Delay input by time-varying fractional number of sample periods

Description

Note The DirectFeedthrough property has been removed. Delete all instances of this property in
your MATLAB code. For more details, see “Compatibility Considerations” on page 4-1465.

The dsp.VariableFractionalDelay System object delays the input signal by a specified number
of fractional samples along each channel of the input. The object can also concurrently compute
multiple delayed versions (taps) of the same signal. For an example, see “Signal Delay Using Multitap
Fractional Delay” on page 4-1457.

The object interpolates the input signal to obtain new samples at noninteger sampling intervals. You
can set the “InterpolationMethod” on page 4-0 property to 'Linear', 'FIR', or 'Farrow'. The
object supports time-varying delay values. That is, the delay value can vary with in a frame from
sample to sample. You can also specify the maximum value of the delay by using the “MaximumDelay”
on page 4-0 property. Delay values greater than the maximum are clipped to the maximum.

To delay the input by a time-varying fractional number of sample periods:

1 Create the dsp.VariableFractionalDelay object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
vfd = dsp.VariableFractionalDelay
vfd = dsp.VariableFractionalDelay(Name,Value)

Description

vfd = dsp.VariableFractionalDelay creates a variable fractional delay System object that
delays a discrete-time input by a time-varying fractional number of sample periods, as specified by
the second input.

vfd = dsp.VariableFractionalDelay(Name,Value) creates a variable fractional delay System
object with each specified property set to the specified value. Enclose each property name in single
quotes.
Example: dsp.VariableFractionalDelay('MaximumDelay',50);

 dsp.VariableFractionalDelay

4-1445

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InterpolationMethod — Method of interpolation
'Linear' (default) | 'FIR' | 'Farrow'

Method of interpolation, specified as one of the following. Using this method, the object interpolates
the signal to obtain new samples at noninteger sampling intervals.

• 'Linear' –– The object uses linear interpolation.
• 'FIR' –– The object implements a polyphase FIR interpolation filter to interpolate values.
• 'Farrow' –– The object uses the LaGrange method to interpolate values.

For more details on these methods, see “Algorithms” on page 4-1463.

FilterHalfLength — Half-length of FIR interpolation filter
4 (default) | positive integer in the range [1 65535]

Half-length of FIR interpolation filter, specified as a positive integer in the range [1 65535].

For periodic signals, a larger value of this property, which indicates a higher order filter, yields a
better estimate of the delayed output sample. A property value of 4 to 6, which corresponds to a 7th-
order to 11th-order filter, is usually adequate.

Dependencies

This property applies only when you set the “InterpolationMethod” on page 4-0 property to
'FIR'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

FilterLength — Length of Farrow filter
4 (default) | integer greater than or equal to 2

Length of the FIR filter implemented using the Farrow structure, specified as an integer greater than
or equal to 2. If the length equals 2, the filter performs linear interpolation. The filter length value
determines the order of the polynomial used for lagrange interpolation.
Example: 4
Example: 10

Dependencies

This property applies only when you set the “InterpolationMethod” on page 4-0 property to
'Farrow'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

4 System Objects

4-1446

InterpolationPointsPerSample — Number of interpolation points per input sample
10 (default) | positive integer in the range [2, 65,535]

Number of interpolation points per input sample at which a unique FIR interpolation filter is
computed, specified as a positive integer in the range [2 65535].
Example: 20
Example: 5

Dependencies

This property applies only when you set the “InterpolationMethod” on page 4-0 property to
'FIR'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Bandwidth — Normalized input bandwidth
1 (default) | real scalar in the range (0 1]

Normalized input bandwidth at which to constrain the interpolated output samples, specified as a real
scalar in the range (0 1]. A value of 1 equals the Nyquist frequency, or half the sampling frequency,
Fs. Use this property to take advantage of the bandlimited frequency content of the input. For
example, if the input signal does not have frequency content above Fs/4, you can specify a value of
0.5.
Example: 0.5
Example: 0.8

Dependencies

This property applies only when you set the “InterpolationMethod” on page 4-0 property to
'FIR'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

InitialConditions — Initial values in the memory
0 (default) | scalar | 1-by-N-by-D array | 1-by-N-by-(D+L) array

Initial values in the memory of the object, specified as a scalar or an array. The dimensions of this
property can vary depending on whether you want fixed or time-varying initial conditions. The object
treats each of the N input columns as a frame containing M sequential time samples from an
independent channel.

For an M-by-N input matrix, U, you can set the InitialConditions property as follows :

• To specify fixed initial conditions, specify InitialConditions as a scalar value. The object
initializes every sample of every channel in memory using the value you specify.

• The dimensions you specify for time-varying initial conditions depend on the value of the
“InterpolationMethod” on page 4-0 property.

• When InterpolationMethod is set to 'Linear', specify InitialConditions as a 1-by-N-
by-D, where D is the value of the “MaximumDelay” on page 4-0 property.

• When InterpolationMethod is set to 'FIR' or 'Farrow', specify InitialConditions as
a 1-by-N-by-(D+L) array, where D is the value of the MaximumDelay property. For FIR

 dsp.VariableFractionalDelay

4-1447

interpolation, L is the value of the FilterHalfLength property. For Farrow interpolation, L
equals the floor of half the value of the FilterLength property:
floor(FilterLength/2).

Example: 1
Example: randn(1,3,104)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaximumDelay — Maximum delay
100 (default) | integer in the range [0 65535]

Maximum delay that the object can produce for any sample, specified as an integer in the range [0
65535]. The object clips input delay values greater than MaximumDelay to that maximum value.
Example: 100
Example: 10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FIRSmallDelayAction — Action to take for small input delay values when object uses FIR
interpolation method
'Clip to the minimum value necessary for centered kernel' (default) | 'Switch to
linear interpolation if kernel cannot be centered'

Action taken for small input delay values when the object uses the FIR interpolation method.

Dependencies

This property applies only when you set the InterpolationMethod property to 'FIR'.

FarrowSmallDelayAction — Action to take for small input delay values when object uses
Farrow interpolation method
'Clip to the minimum value necessary for centered kernel' (default) | 'Use off-
centered kernel'

Action taken for small input delay values when the object uses the farrow interpolation method.

Dependencies

This property applies only when you set the InterpolationMethod property to 'Farrow'.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
'Zero' (default) | 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest'

Rounding mode for fixed-point operations, specified as one of the following:

• 'Zero'
• 'Ceiling'
• 'Convergent'
• 'Floor'
• 'Nearest'

4 System Objects

4-1448

• 'Round'
• 'Simplest'

For more details, see rounding mode.

OverflowAction — Overflow action for fixed-point operations
'Wrap' (default) | 'Saturate'

Overflow action for fixed-point operations, specified as one of the following:

• 'Wrap' –– The object wraps the result of its fixed-point operations.
• 'Saturate' –– The object saturates the result of its fixed-point operations.

For more details on overflow actions, see overflow mode for fixed-point operations.

CoefficientsDataType — Data type of the coefficients
'Same word length as input' (default) | 'Custom'

Data type of the coefficients in this object, specified as one of the following:

• 'Same word length as input' –– The object specifies the coefficients word length to be the
same as that of the input. The fraction length is computed to get the best possible precision.

• 'Custom' –– The coefficients data type is specified as a custom numeric type through the
“CustomCoefficientsDataType” on page 4-0 property.

For more information on the coefficients data type this object uses, see the “Fixed Point” on page 4-
1466 section.

CustomCoefficientsDataType — Coefficient word and fraction lengths
numerictype([],32) (default)

Coefficient word and fraction lengths, specified as an autosigned numeric type with a word length of
32.
Example: numerictype([],16)
Dependencies

This property applies only when you set “CoefficientsDataType” on page 4-0 to 'Custom'.

ProductPolynomialValueDataType — Data type of the product polynomial value
'Same as first input' (default) | 'Custom'

Data type of the product polynomial value, specified as one of the following:

• 'Same as first input' –– The object specifies the product polynomial value data type to be
the same as that of the data input.

• 'Custom' –– The product polynomial value data type is specified as a custom numeric type
through the “CustomProductPolynomialValueDataType” on page 4-0 property.

For more information on the product polynomial value data type this object uses, see the “Fixed
Point” on page 4-1466 section.
Dependencies

This property applies when you set “InterpolationMethod” on page 4-0 to 'Farrow'.

 dsp.VariableFractionalDelay

4-1449

CustomProductPolynomialValueDataType — Word and fraction lengths of product
polynomial value
numerictype([],32,10) (default)

Word and fraction lengths of the product polynomial value, specified as an autosigned numeric type
with a word length of 32 and a fraction length of 10.
Example: numerictype([],30,5)
Dependencies

This property applies only when you set “InterpolationMethod” on page 4-0 to 'Farrow' and
“ProductPolynomialValueDataType” on page 4-0 to 'Custom'.

AccumulatorPolynomialValueDataType — Data type of the accumulator polynomial value
'Same as first input' (default) | 'Custom'

Data type of the accumulator polynomial value, specified as one of the following:

• 'Same as first input' –– The object specifies the accumulator polynomial value data type to
be the same as that of the data input.

• 'Custom' –– The accumulator polynomial value data type is specified as a custom numeric type
through the “CustomAccumulatorPolynomialValueDataType” on page 4-0 property.

For more information on the accumulator polynomial value data type that this object uses, see the
“Fixed Point” on page 4-1466 section.
Dependencies

This property applies when you set “InterpolationMethod” on page 4-0 to 'Farrow'.

CustomAccumulatorPolynomialValueDataType — Word and fraction lengths of
accumulator polynomial value
numerictype([],32,10) (default)

Word and fraction lengths of the accumulator polynomial value, specified as an autosigned numeric
type with a word length of 32 and a fraction length of 10.
Example: numerictype([],30,5)
Dependencies

This property applies only when you set “InterpolationMethod” on page 4-0 to 'Farrow' and
“AccumulatorPolynomialValueDataType” on page 4-0 to 'Custom'.

MultiplicandPolynomialValueDataType — Data type of multiplicand polynomial value
'Same as first input' (default) | 'Custom'

Data type of multiplicand polynomial value, specified as one of the following:

• 'Same as first input' –– The object specifies the multiplicand polynomial value data type to
be the same as that of the data input.

• 'Custom' –– The multiplicand polynomial value data type is specified as a custom numeric type
through the “CustomMultiplicandPolynomialValueDataType” on page 4-0 property.

For more information on the multiplicand polynomial value data type that this object uses, see the
“Fixed Point” on page 4-1466 section.

4 System Objects

4-1450

Dependencies

This property applies when you set “InterpolationMethod” on page 4-0 to 'Farrow'.

CustomMultiplicandPolynomialValueDataType — Word and fraction lengths of
multiplicand polynomial value
numerictype([],32,10) (default)

Word and fraction lengths of the multiplicand polynomial value, specified as an autosigned numeric
type with a word length of 32 and a fraction length of 10.
Example: numerictype([],30,5)

Dependencies

This property applies only when you set “InterpolationMethod” on page 4-0 to 'Farrow' and
“MultiplicandPolynomialValueDataType” on page 4-0 to 'Custom'.

ProductDataType — Data type of product output
'Same as first input' (default) | 'Custom'

Data type of the product output in this object, specified as one of the following:

• 'Same as first input' –– The object specifies the product output data type to be the same as
that of the data input.

• 'Custom' –– The product output data type is specified as a custom numeric type through the
“CustomProductDataType” on page 4-0 property.

For more information on the product output data type, see “Multiplication Data Types” and the “Fixed
Point” on page 4-1466 section.

CustomProductDataType — Word and fraction lengths of product data type
numerictype([],32,10) (default)

Word and fraction lengths of the product data type, specified as an autosigned numeric type with a
word length of 32 and a fraction length of 10.
Example: numerictype([],30,5)

Dependencies

This property applies only when you set “ProductDataType” on page 4-0 to 'Custom'.

AccumulatorDataType — Data type of accumulation operation
'Same as product' (default) | 'Same as first input' | 'Custom'

Data type of an accumulation operation in this object, specified as one of the following:

• 'Same as product' –– The object specifies the accumulator data type to be the same as that of
the product output data type.

• 'Same as first input' –– The object specifies the accumulator data type to be the same as
that of the data input.

• 'Custom' –– The accumulator data type is specified as a custom numeric type through the
“CustomAccumulatorDataType” on page 4-0 property.

 dsp.VariableFractionalDelay

4-1451

For more information on the accumulator data type this object uses, see the “Fixed Point” on page 4-
1466.

CustomAccumulatorDataType — Word and fraction lengths of accumulator data type
numerictype([],32,10) (default)

Word and fraction lengths of the accumulator data type, specified as an autosigned numeric type with
a word length of 32 and a fraction length of 10.
Example: numerictype([],30,5)

Dependencies

This property applies only when you set “AccumulatorDataType” on page 4-0 to 'Custom'.

OutputDataType — Data type of object output
'Same as accumulator' (default) | 'Same as first input' | 'Custom'

Data type of the object output, specified as one of the following:

• 'Same as accumulator' –– The object specifies the output data type to be the same as that of
the accumulator output data type.

• 'Same as first input' –– The object specifies the output data type to be the same as that of
the data input.

• 'Custom' –– The output data type is specified as a custom numeric type through the
“CustomOutputDataType” on page 4-0 property.

For more information on the output data type this object uses, see the “Fixed Point” on page 4-1466
section.

CustomOutputDataType — Word and fraction lengths of output data type
numerictype([],32,10) (default)

Word and fraction lengths of the output data type, specified as an autosigned numeric type with a
word length of 32 and a fraction length of 10.
Example: numerictype([],30,5)

Dependencies

This property applies only when you set “OutputDataType” on page 4-0 to 'Custom'.

Usage

Syntax
vfdOut = vfd(input,d)

Description

vfdOut = vfd(input,d) delays the input to the variable fractional delay System object by d
samples. d must be less than or equal to the value you specify in the “MaximumDelay” on page 4-
0 property of the object.

4 System Objects

4-1452

Delay values greater than the specified maximum delay are clipped appropriately. Each column of the
input is treated as an independent channel.

Input Arguments

input — Data input
vector | matrix

Data input, specified as a vector or matrix. The data input must have the same data type as the delay
input.

This object supports variable-size input signal. That is, you can change the input frame size (number
of rows) even after calling the algorithm. However, the number of channels must remain constant. For
an example, see “Variable-Size Signal Support for Input and Delay Signals” on page 4-1462.
Example: [1 2 3 4;5 1 4 2;2 6 2 3;1 2 3 2;3 4 5 6;1 2 3 1]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

d — Delay input
scalar | vector | matrix | N-D array

Delay input, specified as a scalar, vector, matrix, or N-D array. The delay can be an integer or a
fractional value. When the delay input is a fractional value, the object interpolates the signal to obtain
new samples at noninteger sampling intervals. The delay input must have the same data type as the
data input.

This object supports variable-size delay signal. That is, you can change one or both of the dimensions
of the delay signal after calling the algorithm. However, the object must make sure that the resulting
number of output channels remains constant. For an example, see “Variable-Size Signal Support for
Input and Delay Signals” on page 4-1462.

The table shows the effect of the dimension of the delay input on the data input.

Data Input Delay Input Output Effect of Delay Input
on Data Input

N-by-1 (one channel
with frame size equal to
N)

scalar N-by-1 One delay value applied
to the input channel

N-by-1 (one channel
with frame size equal to
N)

N-by-1 N-by-1 Delay value varies
within the frame from
sample to sample

N-by-1 (one channel
with frame size equal to
N)

1-by-P N-by-P P taps per channel.
Each column in the
output is a delayed
version of the input. The
delay value is specified
by the corresponding
element in the delay
input vector.

 dsp.VariableFractionalDelay

4-1453

Data Input Delay Input Output Effect of Delay Input
on Data Input

N-by-1 (one channel
with frame size equal to
N)

N-by-P N-by-P P taps per channel. In
addition, delay varies
within each frame from
sample to sample.

N-by-L (L channels with
frame size equal to N)

scalar N-by-L One delay value applied
to all input channels

N-by-L (L channels with
frame size equal to N)

1-by-L N-by-L Unique delay value for
each input channel

N-by-L (L channels with
frame size equal to N)

N-by-1 N-by-L Delay value varies
within the frame from
sample to sample. Same
set of delay values for
all channels.

N-by-L (L channels with
frame size equal to N)

N-by-L N-by-L Delay value varies
within the frame from
sample to sample.
Different delay values
for each input channel.

N-by-L (L channels with
frame size equal to N)

1-by-1-by-P N-by-L-by-P L channels. P taps per
channel. Same delay for
all channels.

N-by-L (L channels with
frame size equal to N)

1-by-L-by-P N-by-L-by-P L channels. P taps per
channel. Delay varies
across channels.

N-by-L (L channels with
frame size equal to N)

N-by-1-by-P N-by-L-by-P L channels. P taps per
channel. Delay varies
within the frame from
sample to sample. Same
set of delay values for
each channel.

N-by-L (L channels with
frame size equal to N)

N-by-L-by-P N-by-L-by-P L channels. P taps per
channel. Delay varies
within the frame from
sample to sample.
Different set of delay
values for each channel.

Example: [2 3 4 5]
Example: [2.5]
Example: [5.6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

4 System Objects

4-1454

Output Arguments

vfdOut — Delayed output
vector | matrix

Delayed output, returned as a vector or matrix. The size, data type, and complexity of the output
match the size, data type, and complexity of the data input.

The table shows how the data input and delay input dimensions affect the output dimensions:

Data Input Delay Input Output Effect of Delay Input
on Data Input

N-by-1 (one channel
with frame size equal to
N)

scalar N-by-1 One delay value applied
to the input channel

N-by-1 (one channel
with frame size equal to
N)

N-by-1 N-by-1 Delay value varies
within the frame from
sample to sample

N-by-1 (one channel
with frame size equal to
N)

1-by-P N-by-P P taps per channel.
Each column in the
output is a delayed
version of the input. The
delay value is specified
by the corresponding
element in the delay
input vector.

N-by-1 (one channel
with frame size equal to
N)

N-by-P N-by-P P taps per channel. In
addition, delay varies
within each frame from
sample to sample.

N-by-L (L channels with
frame size equal to N)

scalar N-by-L One delay value applied
to all input channels

N-by-L (L channels with
frame size equal to N)

1-by-L N-by-L Unique delay value for
each input channel

N-by-L (L channels with
frame size equal to N)

N-by-1 N-by-L Delay value varies
within the frame from
sample to sample. Same
set of delay values for
all channels.

N-by-L (L channels with
frame size equal to N)

N-by-L N-by-L Delay value varies
within the frame from
sample to sample.
Different delay values
for each input channel.

N-by-L (L channels with
frame size equal to N)

1-by-1-by-P N-by-L-by-P L channels. P taps per
channel. Same tap for
all channels.

 dsp.VariableFractionalDelay

4-1455

Data Input Delay Input Output Effect of Delay Input
on Data Input

N-by-L (L channels with
frame size equal to N)

1-by-L-by-P N-by-L-by-P L channels. P taps per
channel. Taps vary
across channels.

N-by-L (L channels with
frame size equal to N)

N-by-1-by-P N-by-L-by-P L channels. P taps per
channel. Delay varies
within the frame from
sample to sample. Same
set of delay values for
each channel.

N-by-L (L channels with
frame size equal to N)

N-by-L-by-P N-by-L-by-P L channels. P taps per
channel. Delay varies
within the frame from
sample to sample.
Different set of delay
values for each channel.

Example: [0 0 0 0;0 0 0 0;1 0 0 0;5 2 0 0;2 1 3 0;1 6 4 4]
Example: [0 0 0 0;0 0 0 0;0.5 1.0 1.5 2.0;3 1.5 3.5 3.0;3.5 3.5 3.0 2.5;1.5 4.0 2.5 2.5]
Example: [0 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0;0.4 0.8 1.2 1.6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsp.VariableFractionalDelay
info Characteristic information about valid delay range
generatehdl Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Signal Delay using Variable Fractional Delay

Delay a signal by a varying fractional number of sample periods.

4 System Objects

4-1456

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

sr = dsp.SignalSource;
vfd = dsp.VariableFractionalDelay;
sink = dsp.SignalSink;

for ii = 1:10
 delayedsig = vfd(sr(), ii/10);
 sink(delayedsig);
end

sigd = sink.Buffer;

The output sigd corresponds to the values of the delayed signal that are sampled at fixed-time
intervals. To plot the time instants at which the amplitudes of signal samples are constant, treat the
signals as the sampling instants.

stem(sr.Signal,1:10,'b')
hold on;
stem(sigd.',1:10,'r');
legend('Original signal', ...
 'Variable fractional delayed signal', ...
 'Location','best')

 dsp.VariableFractionalDelay

4-1457

Signal Delay Using Multitap Fractional Delay

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Delay the input signal using the dsp.VariableFractionalDelay object. Each delay value is
unique and can vary from sample to sample within a frame, and can vary across channels. You can
compute multiple delayed versions of the same input signal concurrently by passing a delay input
with the appropriate dimension.

Consider the input to be a random signal with one channel and a frame size of 10. Apply a delay of
4.8 and 8.2 samples concurrently.

vfd = dsp.VariableFractionalDelay

vfd =
 dsp.VariableFractionalDelay with properties:

 InterpolationMethod: 'Linear'
 InitialConditions: 0
 MaximumDelay: 100

 Show all properties

in = randn(10,1)

in = 10×1

 0.5377
 1.8339
 -2.2588
 0.8622
 0.3188
 -1.3077
 -0.4336
 0.3426
 3.5784
 2.7694

delayVec = [4.8 8.2];
outcase1 = vfd(in,delayVec)

outcase1 = 10×2

 0 0
 0 0
 0 0
 0 0
 0.1075 0
 0.7969 0
 1.0153 0
 -1.6346 0
 0.7535 0.4301
 -0.0065 1.5746

4 System Objects

4-1458

Each channel in the output is delayed by 4.8 and 8.2 samples, respectively. The object uses the
'Linear' interpolation method to compute the delayed value. For more details, see 'Algorithms' in the
dsp.VariableFractionalDelay object page.

For the same delay vector, if the input has 2 channels, each element of the delay vector is applied on
the corresponding channel in the input.

release(vfd);
in = randn(10,2)

in = 10×2

 -1.3499 0.6715
 3.0349 -1.2075
 0.7254 0.7172
 -0.0631 1.6302
 0.7147 0.4889
 -0.2050 1.0347
 -0.1241 0.7269
 1.4897 -0.3034
 1.4090 0.2939
 1.4172 -0.7873

outcase2 = vfd(in,delayVec)

outcase2 = 10×2

 0 0
 0 0
 0 0
 0 0
 -0.2700 0
 -0.4729 0
 2.5730 0
 0.5677 0
 0.0925 0.5372
 0.5308 -0.8317

To compute multiple delayed versions of the two-dimensional input signal, pass the delay vector as a
three-dimensional array. The third dimension contains the taps or delays to apply on the signal. If you
pass a non-singleton third dimension (1-by-1-by-P), where P represents the number of taps, the same
tap is applied across all the channels. Pass the delays [4.8 8.2] in the third dimension.

clear delayVec;
delayVec(1,1,1) = 4.8;
delayVec(1,1,2) = 8.2;
whos delayVec

 Name Size Bytes Class Attributes

 delayVec 1x1x2 16 double

delayVec is a 1-by-1-by-2 array. Pass the two-dimensional input to the
dsp.VariableFractionalDelay object with this delay vector.

release(vfd);
outcase3 = vfd(in,delayVec)

 dsp.VariableFractionalDelay

4-1459

outcase3 =
outcase3(:,:,1) =

 0 0
 0 0
 0 0
 0 0
 -0.2700 0.1343
 -0.4729 0.2957
 2.5730 -0.8225
 0.5677 0.8998
 0.0925 1.4020
 0.5308 0.5981

outcase3(:,:,2) =

 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 -1.0799 0.5372
 2.1580 -0.8317

whos outcase3

 Name Size Bytes Class Attributes

 outcase3 10x2x2 320 double

outcase3(:,:,1) represents the input signal delayed by 4.8 samples. outcase3(:,:,2)
represents the input signal delayed by 8.2 samples. The same delay is applied across all the channels.

In addition, if you pass a non-singleton second dimension (1-by-L-by-P), where L is the number of
input channels, taps vary across channels. Apply the delay vectors [2.3 3.5] and [4.4 5.6] to compute
the two delayed versions of the input signal.

clear delayVec;
delayVec(1,1,1) = 2.3;
delayVec(1,2,1) = 3.5;
delayVec(1,1,2) = 4.4;
delayVec(1,2,2) = 5.6;
whos delayVec

 Name Size Bytes Class Attributes

 delayVec 1x2x2 32 double

release(vfd);
outcase4 = vfd(in,delayVec)

outcase4 =
outcase4(:,:,1) =

4 System Objects

4-1460

 0 0
 0 0
 -0.9449 0
 1.7195 0.3357
 1.4183 -0.2680
 0.1735 -0.2451
 0.4814 1.1737
 0.0709 1.0596
 -0.1484 0.7618
 1.0055 0.8808

outcase4(:,:,2) =

 0 0
 0 0
 0 0
 0 0
 -0.8099 0
 1.2810 0.2686
 1.6492 -0.0801
 0.2523 -0.4376
 0.4036 1.0824
 0.1629 1.1737

whos outcase4

 Name Size Bytes Class Attributes

 outcase4 10x2x2 320 double

outcase4(:,:,1) contains the input signal delayed by the vector [2.3 3.5]. outcase4(:,:,2)
contains the input signal delayed by the vector [4.4 5.6].

To vary the delay within a frame from sample to sample, the first dimension of the delay vector (N-
by-1-by-P or N-by-L-by-P) must equal the frame size of the input (N-by-L). Pass a delay vector of size
10-by-1-by-2.

clear delayVec;
delayVec(:,1,1) = 3.1:0.1:4;
delayVec(:,1,2) = 0.1:0.1:1;
whos delayVec

 Name Size Bytes Class Attributes

 delayVec 10x1x2 160 double

release(vfd);
outcase5 = vfd(in,delayVec)

outcase5 =
outcase5(:,:,1) =

 0 0
 0 0
 0 0
 -0.8099 0.4029

 dsp.VariableFractionalDelay

4-1461

 0.8425 -0.2680
 2.1111 -0.4376
 0.4889 0.9911
 0.0925 1.4020
 0.6228 0.5435
 -0.2050 1.0347

outcase5(:,:,2) =

 -1.2149 0.6043
 2.1580 -0.8317
 1.4183 0.1398
 0.2523 1.2650
 0.3258 1.0596
 0.3469 0.7072
 -0.1807 0.9424
 0.1986 0.5208
 1.4816 -0.2437
 1.4090 0.2939

Delay varies across each element in a channel. Same set of delay values apply across all channels.
delayVec(:,1,1) applies to the first delayed signal and delayVec(:,1,2) applies to the second
delayed signal.

Variable-Size Signal Support for Input and Delay Signals

dsp.VariableFractionalDelay System object supports variable-size input and delay signals. That
is, you can change the dimension of the input signal and the delay signal even after calling the
algorithm. You can change the dimensions of one or both the signals simultaneously. Together, they
must make sure that the number of output channels (number of columns) remains constant.

Variable-Size Support for Input Signal

The number of samples in each frame of the input signal can change. However, the number of input
channels must remain constant.

Create a dsp.VariableFractionalDelay object. Pass an input signal of size [256 1] and a delay of
1.4 to the object algorithm. In subsequent calls to the algorithm, change the input frame size to 128,
512, and 64, respectively

vfd = dsp.VariableFractionalDelay;
vfd(randn(256,1),1.4);
vfd(randn(128,1),1.4);
vfd(randn(512,1),1.4);
vfd(randn(64,1),1.4);

The output frame size (number of rows) changes according to the input frame size. The number of
output channels in each of these cases is 1.

To change the number of input channels, release the object.

release(vfd);

4 System Objects

4-1462

Call the algorithm with a two-channel input and vary the input frame size in subsequent calls.

vfd(randn(256,2),1.4);
vfd(randn(128,2),1.4);

Variable-Size Support for Delay Signal

In addition to the input, the delay signal can also vary. That is, you can change one or both of the
dimensions of the delay signal after calling the algorithm. However, the object must make sure that
the resulting number of output channels remains constant. The delay signal can be a scalar, vector,
matrix, or an N-D array.

release(vfd);
vfd(randn(512,2),randn(512,2));
vfd(randn(128,2),[1.4 1.7]);
vfd(randn(256,2),randn(256,1));
vfd(randn(128,2),1.4);

In each of these cases, the number of output channels is 2. To apply different delays on the input
signal, release the object.

release(vfd);
vfd(randn(256,1),randn(256,7));
vfd(randn(512,1),randn(512,7));
vfd(randn(100,1),randn(100,7));
vfd(randn(100,1),randn(1,7));

The output in each of these cases is [256 7], [512 7], [100 7], and [100 7], respectively.

Algorithms
When you specify a fractional delay value, the algorithm uses a linear, FIR, or Farrow interpolation
method to interpolate signal values at noninteger sample intervals.

Linear Interpolation Mode

For noninteger delays, at each sample time, the linear interpolation method uses the two samples in
memory nearest to the specified delay to compute a value for the sample at that time.

For a vector data input, the output vector, y, is computed using the following relation:

vi = floor(v)
vf = v-vi
y(i) = U(i-vi-1)*vf + U(i-vi)*(1-vf)

where,

• i –– Index of the current sample
• v –– Fractional delay
• vi –– Integer part of the delay
• vf –– Fractional part of the delay
• U –– Input data vector
• y –– Output data vector

 dsp.VariableFractionalDelay

4-1463

• U(i-vi), U(i-vi-1) –– Two samples in memory nearest to the specified delay
• i-vi –– Distance, in samples, between the current index and the nearest point in the interpolation

line.

The variable fractional delay stores the Dmax+1 most recent samples received at the input for each
channel, where Dmax is the maximum delay specified. U represents the stored samples.

FIR Interpolation Mode

In the FIR interpolation mode, the variable fractional delay stores the Dmax+P+1 most recent
samples received at the input for each channel, where P is the specified interpolation filter half-
length.

In this mode, the object provides a discrete set of fractional delays:

v + i
L , v ≥ P − 1, i = 0, 1, ..., L− 1

If v is less than P – 1, the behavior depends on the FIR small delay value action setting. You can
specify the object's behavior when the input delay value is too small to center the kernel (less than
P-1), by setting the FIR small delay value action setting:

• Clip to the minimum value necessary for centered kernel –– The FIR interpolation
method remains in use. The small input delay values are clipped to the smallest value necessary to
center the kernel.

• Switch to linear interpolation if kernel cannot be centered –– Fractional delays
are computed using linear interpolation when the input delay value is less than P-1.

In the FIR interpolation mode, the algorithm implements a polyphase structure to compute a value for
each sample at the specified delay. Each arm of the structure corresponds to a different delay value.
The output computed for each sample corresponds to the output of the arm with a delay value
nearest to the specified input delay. Therefore, only a discrete set of delays is actually possible. The
number of coefficients in each of the L filter arms of the polyphase structure is 2P. In most cases,
using values of P between 4 and 6 provides you with reasonably accurate interpolation values.

The designMultirateFIR function designs the FIR interpolation filter.

For example, when you set the following values:

• Interpolation filter half-length (P) to 4
• Interpolation points per input sample to 10
• Normalized input bandwidth to 1
• Stopband attenuation to 80 dB

The filter coefficients are given by:

b = designMultirateFIR(10,1,4,80);

The algorithm then implements this filter as a polyphase structure.

Increasing the filter half length (P) increases the accuracy of the interpolation, but also increases the
number of computations performed per input sample. The amount of memory needed to store the
filter coefficients increases too. Increasing the interpolation points per sample (L) increases the

4 System Objects

4-1464

number of representable discrete delay points, but also increases the simulation's memory
requirements. The computational load per sample is not affected.

The normalized input bandwidth from 0 to 1 allows you to take advantage of the bandlimited
frequency content of the input. For example, if you know that the input signal does not have
frequency content above Fs/4, you can specify 0.5 normalized bandwidth to constrain the frequency
content of the output to that range.

Note You can consider each of the L interpolation filters to correspond to one output phase of an
upsample-by-L FIR filter. Therefore, the normalized input value improves the stopband in critical
regions and relaxes the stopband requirements in frequency regions without signal energy.

Farrow Interpolation Mode

In Farrow interpolation mode, the algorithm uses the LaGrange method to interpolate values.

The order of the polynomial used for the interpolation is based on the number of data points used in
the Lagrange interpolation. This value is specified in the FilterLength property.

To specify the behavior when the input delay value is too small to center the kernel (less than N2 – 1),
use the Farrow small delay action setting.

• Clip to the minimum value necessary for centered kernel –– The algorithm clips
small input delay values to the smallest value necessary to keep the kernel centered. This option
yields more accurate interpolation values.

• Use off-centered kernel –– The fractional delays are computed using a Farrow filter with an
off-centered kernel. The results for input delay values less than N2 – 1 are less accurate than the
results achieved by keeping the kernel centered.

When the length of the farrow filter is 2, the filter performs linear interpolation.

Compatibility Considerations
Removal of DirectFeedthrough Property
Errors starting in R2018a

The DirectFeedthrough property has been removed in R2018a. Trying to modify this property
causes an error. Make sure you remove all references to this property from your MATLAB code. The
dsp.VariableFractionalDelay object now operates in direct feedthrough mode by default.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 dsp.VariableFractionalDelay

4-1465

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This object supports HDL code generation with the Filter Design HDL Coder product. For workflows
and limitations, see “Generate HDL Code for Filter System Objects” (Filter Design HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

The diagrams in the following sections show the data types used within the
dsp.VariableFractionalDelay object for fixed-point signals.

Although you can specify most of these data types, the following data types are computed internally
by the object and cannot be directly specified on the object interface.

Data Type Word Length Fraction Length
vf data type Same word length as the

coefficients
Same as the word length

HoldInteger data type Same word length as the input
delay value

0 bits

Integer data type 32 bits 0 bits

Note When the input is fixed point, all internal data types are signed fixed point.

Linear Interpolation Mode

The following diagram shows the fixed-point data types used by the Linear interpolation mode of the
variable fractional delay algorithm.

FIR Interpolation Mode

The following diagram illustrates how the variable fractional delay object selects the arm of the
polyphase filter structure that most closely matches the fractional delay value (vf).

The following diagram shows the fixed-point data types used by the variable fractional delay
algorithm in the FIR interpolation mode.

4 System Objects

4-1466

You can set the coefficient, product output, accumulator, and output data types in the object. This
diagram shows that input data is stored in the input buffer with the same data type and scaling as the
input. The object stores filtered data and any initial conditions in the output buffer using the output
data type and scaling that you set.

When at least one of the inputs to the multiplier is real, the output of the multiplier is in the product
output data type. When both inputs to the multiplier are complex, the result of the multiplication is in
the accumulator data type. For details on the complex multiplication, see “Multiplication Data Types”.

Farrow Interpolation Mode

The following diagram shows the fixed-point data types used by the Farrow interpolation mode when:

• Farrow filter length is set to 4
• Farrow small delay action is set to 'Clip to the minimum value necessary for

centered kernel'

 dsp.VariableFractionalDelay

4-1467

The following diagram shows the fixed-point data types used by the Farrow interpolation mode when:

• Farrow filter length is set to 4
• Farrow small delay action is set to 'Use off-centered kernel'

4 System Objects

4-1468

Diff is computed from the integer part of the delay value (vi) and the farrow filter length (N)
according to the following equation:

Dif f = vi−
N − 1

2
Dif f ≥ 0 Dif f = 0
Dif f < 0 Dif f = − Dif f

The following diagram shows the fixed-point data types used by the FIR direct form filter.

 dsp.VariableFractionalDelay

4-1469

See Also
Functions
info | generatehdl | designFracDelayFIR

Objects
dsp.VariableIntegerDelay | dsp.Delay

Blocks
Variable Fractional Delay

Topics
“Fractional Delay Filters Using Farrow Structures”
“Variable-Size Signal Support DSP System Objects”
“System Objects Supported by Fixed-Point Converter App”

Introduced in R2012a

4 System Objects

4-1470

dsp.VariableIntegerDelay
Package: dsp

Delay input by time-varying integer number of sample periods

Description
The dsp.VariableIntegerDelay System object delays input by time-varying integer number of
sample periods.

To delay the input by a time-varying integer number of sample periods:

1 Create the dsp.VariableIntegerDelay object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
vid = dsp.VariableIntegerDelay
vid = dsp.VariableIntegerDelay(Name,Value)

Description

vid = dsp.VariableIntegerDelay returns a variable integer delay System object, vid, that
delays discrete-time input by a time-varying integer number of sample periods.

vid = dsp.VariableIntegerDelay(Name,Value) returns a variable integer delay System object
with each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

MaximumDelay — Maximum delay
100 (default) | positive integer scalar

Specify the maximum delay the object can produce for any sample. The object clips input delay values
greater than the MaximumDelay to the MaximumDelay.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 dsp.VariableIntegerDelay

4-1471

InitialConditions — Initial values in memory
0 (default) | scalar | 1-by-N-by-D array

Specify the values with which the object's memory is initialized. The dimensions of this property can
vary depending on whether you want fixed or time-varying initial conditions.

For an M-by-N frame-based input matrix U, you can set the InitialConditions property as
follows:

• To specify fixed initial conditions, set the InitialConditions property to a scalar value. The
object initializes every sample of every channel in memory using the value you specify.

• To specify different time-varying initial conditions for each channel, set the InitialConditions
property to an array of size 1-by-N-by-D, where D is the value of the MaximumDelay property.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
vidOut = vid(input,d)

Description

vidOut = vid(input,d) delays the input by d samples, where d should be less than or equal to
the value specified in the MaximumDelay property and greater than or equal to 0. Delay values
outside this range are clipped appropriately and non-integer delays are rounded to the nearest
integer values. Each column of the input is treated as an independent channel

Input Arguments

input — Data input
vector | matrix

Data input, specified as a vector or matrix.

This object supports variable-size input signal. That is, you can change the input frame size (number
of rows) even after calling the algorithm. However, the number of channels (number of columns) must
remain constant.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

d — Delay input
scalar | vector | matrix

Delay input, specified as a scalar, vector, or matrix. The delay is an integer value.

For an M-by-1 or a 1-by-N data input vector, the delay can be a:

• Scalar
• Vector –– The length and the orientation of the delay vector match the length and the orientation

of the data input.

4 System Objects

4-1472

For an M-by-N matrix data input, the delay can be a:

• Column vector –– The length of the vector is M.
• Row vector –– The length of the vector is N.
• Matrix –– Delay must be an M-by-N matrix.

The dimensions of the delay signal can change according to the supported dimensions listed in the
table. The table also shows how delay signal is applied to the input signal.

Data Input Delay Input Output Effect of Delay Input
on Data Input

M-by-1 (one channel
with frame size equal to
M)

scalar M-by-1 One delay value applied
to the input channel

M-by-1 (one channel
with frame size equal to
M)

M-by-1 M-by-1 Delay value varies
within the frame from
sample to sample

1-by-N (N channels with
frame size equal to 1)

scalar 1-by-N One delay value applied
to all the N channels

1-by-N (N channels with
frame size equal to 1)

1-by-N 1-by-N Unique delay value for
each input channel

M-by-N (N channels
with frame size equal to
M)

scalar M-by-N One delay value applied
to all input channels

M-by-N (N channels
with frame size equal to
M)

1-by-N M-by-N Unique delay value for
each input channel

M-by-N (N channels
with frame size equal to
M)

M-by-1 M-by-N Delay value varies
within the frame from
sample to sample. Same
set of delay values for
all channels.

M-by-N (N channels
with frame size equal to
M)

M-by-N M-by-N Unique delay value for
each element in the
matrix

Example: [2 3 4 5]
Example: [2;3;4;5]
Example: [5]
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output Arguments

vidOut — Delayed output
vector | matrix

Delayed output, returned as a vector or matrix. The size, data type, and complexity of the output
match the size, data type, and complexity of the data input, “input” on page 4-0 .

 dsp.VariableIntegerDelay

4-1473

The table shows how the data input and delay input dimensions affect the output dimensions:

Data Input Delay Input Output Effect of Delay Input
on Data Input

M-by-1 (one channel
with frame size equal to
M)

scalar M-by-1 One delay value applied
to the input channel

M-by-1 (one channel
with frame size equal to
M)

M-by-1 M-by-1 Delay value varies
within the frame from
sample to sample

1-by-N (N channels with
frame size equal to 1)

scalar 1-by-N One delay value applied
to all the N channels

1-by-N (N channels with
frame size equal to 1)

1-by-N 1-by-N Unique delay value for
each input channel

M-by-N (N channels
with frame size equal to
M)

scalar M-by-N One delay value applied
to all input channels

M-by-N (N channels
with frame size equal to
M)

1-by-N M-by-N Unique delay value for
each input channel

M-by-N (N channels
with frame size equal to
M)

M-by-1 M-by-N Delay value varies
within the frame from
sample to sample. Same
set of delay values for
all channels.

M-by-N (N channels
with frame size equal to
M)

M-by-N M-by-N Unique delay value for
each element in the
matrix

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

4 System Objects

4-1474

Delay a Signal with VariableIntegerDelay Object

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Delay a signal by a varying number of integer sample periods.

vid = dsp.VariableIntegerDelay;

yout = zeros(100,1);
x = (1:100).';

for k=1:10
 range = (k-1)*10+1:k*10;
 yout(range) = vid(x(range),k);
end

stem(x,'b')
hold on;
stem(yout,'r')
legend('Original Signal', 'Variable Integer Delayed Signal')

Algorithms
This object implements the algorithm, inputs, and outputs described on the Variable Integer Delay
block reference page.

 dsp.VariableIntegerDelay

4-1475

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.VariableFractionalDelay | dsp.Delay

Blocks
Variable Integer Delay

Introduced in R2012a

4 System Objects

4-1476

dsp.Variance
Package: dsp

(Removed) Variance of input or sequence of inputs

Note The dsp.Variance System object™ has been removed. To compute the variance, use the var
function. To compute the running variance, use the dsp.MovingVariance object. For more
information, see “Compatibility Considerations”.

Description
The Variance object computes variance for an input or sequence of inputs.

To compute the variance of an input or sequence of inputs:

1 Create the dsp.Variance object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
var = dsp.Variance
var = dsp.Variance(Name,Value)

Description

var = dsp.Variance returns a variance System object, var, that computes the variance of an
input or a sequence of inputs over the specified Dimension.

var = dsp.Variance(Name,Value) returns a variance System object, var, with each specified
property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

RunningVariance — Enable calculation over time
false (default) | true

 dsp.Variance

4-1477

Set this property to true to enable variance calculation over successive calls to the object algorithm.

ResetInputPort — Enable reset input port
false (default) | true

Set this property to true to enable reset input port. When you set the property to true, specify a
reset input for the step method. The running variance resets anytime the variance object achieves the
condition you specify for the ResetCondition property.

Dependencies

This property applies when you set the RunningVariance property to true.

ResetCondition — Reset condition for running variance mode
Non-zero (default) | Rising edge | Falling edge | Either edge

Specify which event resets the running variance as one of | Rising edge | Falling edge | Either
edge | Non-zero |.

Dependencies

This property applies when you set the “ResetInputPort” on page 4-0 property to true.

Dimension — Dimension to operate along
Column (default) | All | Row | Custom

Specify how the object performs the variance calculation over the data as one of | All | Row | Column
| Custom |.

Dependencies

This property applies when you set the RunningVariance property to false.

CustomDimension — Numerical dimension to operate along
1 (default) | positive integer

Specify the input signal dimension (one-based value) the object uses to compute variance. The cannot
exceed the number of dimensions in the input signal.

Dependencies

This property applies when you set the “Dimension” on page 4-0 property to Custom.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method as one of | Ceiling | Convergent | Floor | Nearest | Round |
Simplest | Zero |.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as one of | Wrap | Saturate |.

4 System Objects

4-1478

InputSquaredProductDataType — Input-squared product word and fraction lengths
Same as input (default) | Custom

Specify the input-squared product fixed-point data type as one of | Same as input | Custom |.

CustomInputSquaredProductDataType — Input-squared product word and fraction lengths
numerictype([],32,15) (default) | numerictype

Specify the input-squared product fixed-point type as a scaled numerictype object with a
Signedness of Auto.
Dependencies

This property applies when you set the InputSquaredProductDataType property to Custom.

InputSumSquaredProductDataType — Input-sum-squared product word and fraction
lengths
Same as input-squared product (default) | Custom

Specify the input-sum-squared product fixed-point data type as one of | Same as input-squared
product | Custom |.

CustomInputSumSquaredProductDataType — Input-sum-squared product word and fraction
lengths
numerictype([],32,23) (default) | numerictype

Specify the input-sum-squared product fixed-point type as a scaled numerictype object with a
Signedness of Auto.
Dependencies

This property applies when you set the InputSumSquaredProductDataType property to Custom.

AccumulatorDataType — Accumulator word and fraction lengths
Same as input-squared product (default) | Same as input | Custom

Specify the accumulator fixed-point data type as one of | Same as input-squared product |
Same as input | Custom |.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],32,0) (default) | numerictype

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.
Dependencies

This property applies when you set the AccumulatorDataType property to Custom.

OutputDataType — Output word and fraction lengths
Same as input-squared product (default) | Same as input | Custom

Specify the output fixed-point data type as one of | Same as input-squared product | Same as
input | Custom |.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,0) (default) | numerictype

 dsp.Variance

4-1479

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto.

Dependencies

This property only applies when the “OutputDataType” on page 4-0 property to Custom.

Usage

Syntax
y = var(x)
y = var(x,r)

Description

y = var(x) computes the variance, y, of input x over successive calls to the object algorithm, when
the RunningVariance property is true.

y = var(x,r) resets its state based on the value of reset signal r , the ResetInputPort property
and the ResetCondition property. This option applies when the RunningVariance property is
true and the ResetInputPort property is set to true.

Input Arguments

x — Data input
vector | matrix

Data input, specified as a vector or a matrix. If x is a matrix, each column is treated as an
independent channel. The variance is computed along each channel. The object also accepts variable-
size inputs. Once the object is locked, you can change the size of each input channel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

r — Reset signal
scalar

Reset signal used to reset the running variance, specified as a scalar value. The object resets the
running variance if the reset signal satisfies the ResetCondition.

Dependencies

To enable this signal, set the RunningVariance property to true and the ResetInputPort
property to true.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Output Arguments

y — Variance output
scalar | vector | matrix

Variance output, returned as a scalar, vector or a matrix. If RunningVariance is set to:

4 System Objects

4-1480

• false –– The object computes the variance value of each input channel. If the input is a column
vector, the output is a scalar. If the input is a multichannel signal, the output signal is 1-by-N
vector, where N is the number of input channels.

• true –– The object computes the running variance of the signal. The size of the output signal
matches the size of the input signal.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Running Variance

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Compute the running variance of the signal. That is, compute the variance of each sample in the input
signal with respect to all the previous samples.

var = dsp.Variance;
var.RunningVariance = true;
input = randn(100,1);
variance = var(input);

Algorithms
This object implements the algorithm, inputs, and outputs described on the Variance block reference
page. The object properties correspond to the block parameters, except:

• Reset port block parameter corresponds to both the ResetCondition and the
ResetInputPort object properties.

Compatibility Considerations
dsp.Variance System object has been removed
Errors starting in R2021a

The dsp.Variance System object has been removed. To compute the variance, use the var function.
To compute the running variance, use the dsp.MovingVariance object.

 dsp.Variance

4-1481

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the equivalent function.

Discouraged Usage Recommended Replacement
Variance

variance = dsp.Variance;
x = randn(100,1);
y = variance(x);

Running Variance

variance = dsp.Variance;
variance.RunningVariance = true;
x = randn(100,1);
y = variance(x);

If you are using a release prior to R2016b,
replace variance(x) with step(variance,x).

Variance

x = randn(100,1);
y = var(x);

Running Variance

mvgVar = dsp.MovingVariance;
mvgVar.SpecifyWindowLength = false;
x = randn(100,1);
y = mvgVar(x);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
var

Objects
dsp.MovingVariance | dsp.MovingStandardDeviation | dsp.MovingRMS

Blocks
Moving Variance | Variance | Moving Standard Deviation | Standard Deviation | Moving RMS | RMS

Introduced in R2012a

4 System Objects

4-1482

dsp.VectorQuantizerDecoder
Package: dsp

(To be removed) Vector quantizer codeword for given index value

Note dsp.VectorQuantizerDecoder will be removed in a future release.

Description
The VectorQuantizerDecoder object associates each input index value with a codeword, a column
vector of quantized output values defined in the Codebook property. Each column of the Codebook
property is a codeword. When you input multiple index values into this object, the object outputs a
matrix of quantized output vectors. This matrix is created by horizontally concatenating the codeword
vectors that correspond to each index value.

You can select to enter the code book values via the Codebook property or as an input to the object.

To obtain the vector quantizer codeword for a given index value:

1 Create the dsp.VectorQuantizerDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
vqdec = dsp.VectorQuantizerDecoder
vqdec = dsp.VectorQuantizerDecoder(Name,Value)

Description

vqdec = dsp.VectorQuantizerDecoder creates a vector quantizer decoder System object,
vqdec, that returns a vector quantizer codeword corresponding to a given, zero-based index value.

vqdec = dsp.VectorQuantizerDecoder(Name,Value) returns a vector quantizer decoder,
vqdec, with each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 dsp.VectorQuantizerDecoder

4-1483

CodebookSource — Source of codebook values
Property (default) | Input port

Specify the codebook source as Property or Input port. When you select Property, the object
reads the codebook from the Codebook property. When you select Input port, the object reads the
codebook from the input argument C.

Codebook — Matrix of codewords
[1.5 13.3 136.4 6.8; 2.5 14.3 137.4 7.8; 3.5 15.3 138.4 8.8] (default) | matrix

Specify quantized output values as a k-by-N matrix, where k≥1 and N ≥ 1. Each column of the
codebook matrix is a codeword, and each codeword corresponds to an index value. The default is:

1.5 13.3 136.4 6.8
2.5 14.3 137.4 7.8
3.5 15.3 138.4 8.8

The index values are zero based; therefore, the first codeword vector corresponds to an index value
of 0, the second codeword vector corresponds to an index value of 1, and so on.

Tunable: Yes

Dependencies

This property applies when you set the CodebookSource property to Property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputDataType — Data type of codebook and quantized output
double (default) | Same as input | single | Custom

Specify the data type of the codebook and quantized output values as: Same as input, double,
single, or Custom. If this property is set to Custom, the data type is specified by the
CustomOutputDataType property.

Dependencies

This property applies only when you set CodebookSource to Property.

Fixed-Point Properties

CustomOutputDataType — Output word and fraction lengths
numerictype(true,16) (default) | numerictype

Specify the output fixed-point type as a signed or unsigned numerictype object.

Dependencies

This property applies only when you set the OutputDataType property to Custom.

Usage

Syntax
Q = vqdec(I)

4 System Objects

4-1484

Q = vqdec(I,C)

Description

Q = vqdec(I) returns the quantized output values Q corresponding to the input indices I.

Q = vqdec(I,C) uses input C as the codebook values when the CodebookSource property is
Input port.

Input Arguments

I — Indices
scalar | row vector

Input indices, specified as a scalar or a row vector.

The input to this object is a vector of index values, where 0 ≤ index < N and N is the number of
columns of the codebook matrix. The object sets any index values less than 0 to 0 and any index
values greater than or equal to N to N – 1.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

C — Codebook values
scalar | vector | matrix

Codebook values, specified as a scalar, vector, or matrix.

Dependencies

This input is enabled only when the CodebookSource property is set to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

Q — Quantized output values
scalar | vector | matrix

Quantized output values, returned as a scalar, vector, or matrix. Each column of Q is a codeword
whose index in the codebook matches the element specified in the I matrix.

The codebook is zero based. The first codeword vector corresponds to an index value of 0, the second
codeword vector corresponds to an index value of 1, and so on.

For example, if the codebook is

1.5 13.3 136.4 6.8
2.5 14.3 137.4 7.8
3.5 15.3 138.4 8.8

and the I vector is [1 0 3 2 1 0], the output Q matrix is

13.3 1.5 6.8 136.4 13.3 1.5
14.3 2.5 7.8 137.4 14.3 2.5
15.3 3.5 8.8 138.4 15.3 3.5

 dsp.VectorQuantizerDecoder

4-1485

If the CodebookSource is set to 'Property', the data type of Q is determined by the
OutputDataType property.

If the CodebookSource is set to 'Input port', the output Q has the same data type as the
codebook input C.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Determine Vector Quantizer Codeword

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Given index values as an input, determine the corresponding vector quantized codewords for a
specified codebook.

vqdec = dsp.VectorQuantizerDecoder;
vqdec.Codebook = [1 10 100;2 20 200;3 30 300];
indices = uint8([1 0 2 0]);
qout = vqdec(indices)

qout = 3×4

 10 1 100 1
 20 2 200 2
 30 3 300 3

Algorithms
This object implements the algorithm, inputs, and outputs described on the Vector Quantizer Decoder
block reference page. The object properties correspond to the block parameters, except:

• There is no object property that directly corresponds to the Action for out of range index value
block parameter. The object sets any index values less than 0 to 0 and any index values greater
than or equal to N to N-1.

4 System Objects

4-1486

Compatibility Considerations
dsp.VectorQuantizerDecoder System object will be removed
Warns starting in R2021b

dsp.VectorQuantizerDecoder System object will be removed in a future release.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Introduced in R2012a

 dsp.VectorQuantizerDecoder

4-1487

dsp.VectorQuantizerEncoder
Package: dsp

(To be removed) Vector quantization encoding

Note dsp.VectorQuantizerEncoder will be removed in a future release.

Description
The VectorQuantizerEncoder object performs vector quantization encoding. The object finds the
nearest codeword by computing a distortion based on Euclidean or weighted Euclidean distance.

To perform vector quantization encoding:

1 Create the dsp.VectorQuantizerEncoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
vqenc = dsp.VectorQuantizerEncoder
vqenc = dsp.VectorQuantizerEncoder(Name,Value)

Description

vqenc = dsp.VectorQuantizerEncoder returns a vector quantizer encoder System object,
vqenc. This object finds a zero-based index of the nearest codeword for each given input column
vector.

vqenc = dsp.VectorQuantizerEncoder(Name,Value) returns a vector quantizer encoder
System object, vqenc, with each specified property set to the specified value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

CodebookSource — Source of codebook values
Property (default) | Input port

4 System Objects

4-1488

Specify how to determine the codebook values as Property or Input port.

Codebook — Matrix of codewords
[1.5 13.3 136.4 6.8; 2.5 14.3 137.4 7.8; 3.5 15.3 138.4 8.8] (default) | matrix

Specify the codebook to which the input column vector or matrix is compared, as a k-by-N matrix.
Each column of the codebook matrix is a codeword, and each codeword corresponds to an index
value. The codeword vectors must have the same number of rows as the input. The first codeword
vector corresponds to an index value of 0, the second codeword vector corresponds to an index value
of 1, and so on. The default is:

1.5 13.3 136.4 6.8
2.5 14.3 137.4 7.8
3.5 15.3 138.4 8.8

Tunable: Yes

Dependencies

This property applies when you set the CodebookSource property to Property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DistortionMeasure — Distortion calculation method
Squared error (default) | Weighted squared error

Specify how to calculate the distortion as Squared error or Weighted squared error. If you set
this property to Squared error, the object calculates the distortion by evaluating the Euclidean
distance between the input column vector and each codeword in the codebook. If you set this
property to Weighted squared error, the object calculates the distortion by evaluating a
weighted Euclidean distance using a weighting factor to emphasize or deemphasize certain input
values.

WeightsSource — Source of weighting factor
Property (default) | Input port

Specify how to determine weighting factor as Property or Input port.

Dependencies

This property applies when you set the DistortionMeasure property to Weighted squared
error.

Weights — Weighting factor
[1 1 1] (default) | vector

Specify the weighting factor as a vector of length equal to the number of rows of the input.

Tunable: Yes

Dependencies

This property applies when you set the DistortionMeasure property to Weighted squared
error and WeightsSource property is Property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 dsp.VectorQuantizerEncoder

4-1489

TiebreakerRule — Behavior when input column vector is equidistant from two codewords
Choose the lower index (default) | Choose the higher index

Specify whether to represent the input column vector by the lower index valued codeword or higher
indexed valued codeword when an input column vector is equidistant from two codewords. You can
set this property to Choose the lower index or Choose the higher index.

CodewordOutputPort — Enable output of codeword value
false (default) | true

Set this property to true to output the codeword vectors nearest to the input column vectors.

QuantizationErrorOutputPort — Enable output of quantization error
false (default) | true

Set this property to true to output the quantization error value that results when the object
represents the input column vector by the nearest codeword.

OutputIndexDataType — Data type of index output
int32 (default) | int8 | uint8 | int16 | uint16 | uint32

Specify the data type of the index output as: int8, uint8, int16, uint16, int32, uint32.

Fixed-Point Properties

RoundingMethod — Rounding method for fixed-point operations
Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding method as Ceiling, Convergent, Floor, Nearest, Round, Simplest or
Zero.

OverflowAction — Overflow action for fixed-point operations
Wrap (default) | Saturate

Specify the overflow action as Wrap or Saturate.

ProductDataType — Source of product word and fraction lengths
Same as input (default) | Custom

Specify the product fixed-point data type as Same as input or Custom.

CustomProductDataType — Product word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.
Dependencies

This property applies when you set the ProductDataType property to Custom.

AccumulatorDataType — Source of accumulator word and fraction lengths
Same as product (default) | Same as input | Custom

Specify the accumulator fixed-point data type as Same as product, Same as input, or Custom.

CustomAccumulatorDataType — Accumulator word and fraction lengths
numerictype([],16,15) (default) | numerictype

4 System Objects

4-1490

Specify the accumulator fixed-point type as a scaled numerictype object with a Signedness of
Auto.

Dependencies

This property applies when you set the AccumulatorDataType property to Custom.

Usage

Syntax
Index = vqenc(Input)
Index = vqenc(Input,Codebook)
Index = vqenc(___ ,Weights)
[Index,Codeword] = vqenc(___)
[Index,Qerr] = vqenc(___)

Description

Index = vqenc(Input) returns Index, a scalar or column vector representing the quantization
region(s) to which Input belongs.

Index = vqenc(Input,Codebook) uses the codebook given in input Codebook, a k-by-N matrix
with N codewords each of length k. This option is available when the CodebookSource property is
Input port.

Index = vqenc(___ ,Weights) uses the input vector Weights to emphasize or de-emphasize
certain input values when calculating the distortion measure. Weights must be a vector of length
equal to the number of rows of Input. This option is available when the DistortionMeasure
property is Weighted squared error and the WeightsSource property is Input port.

[Index,Codeword] = vqenc(___) outputs the Codeword values that correspond to each index
value when the CodewordOutputPort property is true. This syntax can be used with any of the
previous input syntaxes.

[Index,Qerr] = vqenc(___) outputs the quantization error Qerr for each input value when the
QuantizationErrorOutputPort property is true.

Input Arguments

Input — Data input
column vector | matrix

Data input, specified as a column vector of size k-by-1 or a matrix of size k-by-M, where k is the
length of each codeword in the codebook.

The number of rows in the data input, the length of the Weights vector, and the length of the
codeword vector must all be the same value. All inputs to the object must have the same data type.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Codebook — Codebook values
column vector | matrix

 dsp.VectorQuantizerEncoder

4-1491

Codebook values, specified as a column vector of size k-by-1 or a matrix of size k-by-N, where k is the
length of each codeword and N is the number of codewords.

The length of the codeword vector, the number of rows in the data input, and the length of the
Weights vector must all be the same value. All inputs to the object must have the same data type.
Dependencies

This input applies when the CodebookSource property is Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Weights — Measure of emphasis
vector

The object uses the Weights vector to emphasize or de-emphasize certain input values when
calculating the distortion measure.

The length of the Weights vector must equal the number of rows in the data input and the length of
the codeword. All inputs to the object must have the same data type.
Dependencies

This input applies when the DistortionMeasure property is Weighted squared error and the
WeightsSource property is Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Output Arguments

Index — Indices of nearest codeword vectors
scalar | row vector

Indices of the nearest codeword vectors, returned as a scalar or a row vector. The object compares
each input column vector to the codeword vectors in the codebook matrix. Each column of this
codebook matrix is a codeword. The object finds the codeword vector nearest to the input column
vector and returns its zero-based index. When the input is a matrix, the indices of the nearest
codeword vectors are horizontally concatenated.

The object finds the nearest codeword by calculating the distortion using the method specified in
DistortionMeasure property.
Data Types: int32

Codeword — Codeword
column vector | matrix

Codeword values that correspond to each index value, returned as a column vector or a matrix. When
the input is a matrix, the corresponding codeword vectors are horizontally concatenated into a
matrix.
Dependencies

This output is enabled when the CodewordOutputPort property is set to true.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Qerr — Quantization error
scalar | row vector

4 System Objects

4-1492

Quantization error, returned as a scalar or a row vector. The quantization error results when the
object represents the input column vector by its nearest codeword. When the input is a matrix, the
quantization error values are horizontally concatenated.

Dependencies

This output is enabled when the QuantizationErrorOutputPort property is set to true.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Find Indices of Nearest Codewords

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Find the indices of nearest codewords based on Euclidean distances.

vqenc = dsp.VectorQuantizerEncoder(...
 'Codebook', [-1 -1 1 1;1 -1 -1 1], ...
 'CodewordOutputPort', true, ...
 'QuantizationErrorOutputPort', true, ...
 'OutputIndexDataType', 'uint8');

Generate an input signal with some additive noise

x = sign(rand(2,40)-0.5) + 0.1*randn(2,40);
[ind, cw, err] = vqenc(x);
plot(cw(1,:), cw(2,:), 'rO', x(1,:), x(2,:), 'g.');
legend('Quantized', 'Inputs', 'location', 'best');

Algorithms
This object implements the algorithm, inputs, and outputs described on the Vector Quantizer Encoder
block reference page. The object properties correspond to the block parameters.

 dsp.VectorQuantizerEncoder

4-1493

Compatibility Considerations
dsp.VectorQuantizerEncoder System object will be removed
Warns starting in R2021b

dsp.VectorQuantizerEncoder System object will be removed in a future release.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Introduced in R2012a

4 System Objects

4-1494

dsp.Window
Package: dsp

(To be removed) Apply window to input signal

Note dsp.Window will be removed in a future release. Use the window function instead. For more
information, see “Compatibility Considerations”.

Description
The Window object applies a window to an input signal.

To apply a window to an input signal:

1 Create the dsp.Window object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
win = dsp.Window
win = dsp.Window(WINDOW)
win = dsp.Window(WINDOW,Name,Value)

Description

win = dsp.Window returns a window object, win, that applies a Hamming window with symmetric
sampling.

win = dsp.Window(WINDOW) returns a window object with the WindowFunction property set to
WINDOW.

win = dsp.Window(WINDOW,Name,Value) returns a window object with the WindowFunction
property set to WINDOW and with other specified properties set to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 dsp.Window

4-1495

WindowFunction — Type of window
'Hamming' (default) | 'Bartlett' | 'Blackman' | 'Boxcar' | 'Chebyshev' | 'Hann' |
'Hanning' | 'Kaiser' | 'Taylor' | 'Triang'

Specify the type of window to apply. If you run this object in simulation, this property is tunable.
When you generate code from a function or script that contains this object and run the generated
code, this property is not tunable.

Tunable: Yes

WeightsOutputPort — Enable output of window weights
false (default) | true

Set this property to true to output the window weights. The weights are an M-by-1 vector with M
equal to the first dimension of the input.

StopbandAttenuation — Level of stopband attenuation in decibels
50 (default) | nonnegative scalar

Specify the level of stopband attenuation in decibels, specified as a nonnegative scalar.

Tunable: Yes
Dependencies

This property only applies when the WindowFunction property is 'Chebyshev'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Beta — Kaiser window parameter
10 (default) | scalar

Specify the Kaiser window parameter as a real number. Increasing the absolute value of Beta widens
the mainlobe and decreases the amplitude of the window sidelobes in the window's frequency
magnitude response.

Tunable: Yes
Dependencies

This property only applies when WindowFunction property is 'Kaiser'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumConstantSidelobes — Number of constant sidelobes
4 (default) | positive integer

Specify the number of constant sidelobes as an integer greater than zero.

Tunable: Yes
Dependencies

This property only applies when WindowFunction property is 'Taylor'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaximumSidelobeLevel — Maximum sidelobe level relative to mainlobe
–30 (default) | nonpositive scalar

4 System Objects

4-1496

Specify, in decibels, the maximum sidelobe level relative to the mainlobe as a real number less than
or equal to zero. The default is –30, which produces sidelobes with peaks 30 dB down from the
mainlobe peak.

Tunable: Yes

Dependencies

This property only applies when WindowFunction property is 'Taylor'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Sampling — Window sampling for generalized-cosine windows
'Symmetric' (default) | 'Periodic'

Specify the window sampling for generalized-cosine windows as 'Symmetric' or 'Periodic'. If
you run this object in simulation, this property is tunable. When you generate code from a function or
script that contains this object, and run the generated code, this property is not tunable.

Tunable: Yes

Dependencies

This property only applies when WindowFunction property is 'Blackman', 'Hamming', 'Hann', or
'Hanning'.

Fixed-Point Properties

FullPrecisionOverride — Full precision override for fixed-point arithmetic
true (default) | false

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects”.

RoundingMethod — Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'

Specify the rounding method.

Dependencies

This property applies only if the object is not in full precision mode.

OverflowAction — Overflow action for fixed-point operations
'Wrap' (default) | 'Saturate'

Specify the overflow action.

Dependencies

This property applies only if the object is not in full precision mode.

 dsp.Window

4-1497

WindowDataType — Window word and fraction lengths
'Same word length as input' (default) | 'Custom'

Specify the window fixed-point data type.

CustomWindowDataType — Window word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the window fixed-point type as a numerictype object with a Signedness of Auto.
Dependencies

This property applies when you set the WindowDataType property to 'Custom'.

ProductDataType — Product word and fraction lengths
'Full precision' (default) | 'Same as input' | 'Custom'

Specify the product fixed-point data type as one of 'Full precision', 'Same as input', or
'Custom'.

CustomProductDataType — Product word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the product fixed-point type as a scaled numerictype object with a Signedness of Auto.
Dependencies

This property applies when you set the ProductDataType property to 'Custom'.

OutputDataType — Output data type
'Same as product' (default) | 'Same as input' | 'Custom'

Specify the output fixed-point data type as one of 'Same as product', 'Same as input',
'Custom'.

CustomOutputDataType — Output word and fraction lengths
numerictype([],16,15) (default) | numerictype

Specify the output fixed-point type as a numerictype object with a Signedness of Auto.
Dependencies

This property applies when you set the OutputDataType property to Custom.

Usage

Syntax
Y = win(X)
[Y,W] = win(X)

Description

Y = win(X) generates the windowed output, Y, of the input, X, using the specified window.

[Y,W] = win(X) returns the window values W when the WeightsOutputPort property is true.

4 System Objects

4-1498

Input Arguments

X — Data input
vector | matrix

Data input, specified as a vector or a matrix.

This object supports only frame-based processing. To see the effect of the window, the data must have
a frame size of at least 2 in each channel.

When the input is fixed-point, it must be signed fixed point with power-of-two slope and zero bias.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Output Arguments

Y — Windowed output
vector | matrix

Windowed output, returned as vector or a matrix.

When the input is an integer, the word length and fraction length of the output, Y is calculated using
the following:

YWL = 2XWL
YFL = XWL + XFL− 1

where,

• YWL –– Output word length.
• YFL –– Output fraction length.
• XWL –– Input word length.
• XFL –– Input fraction length. In case of signed integers, this value is 0.

Data Types: single | double | int8 | int16 | int32 | int64 | fi

W — Window values
column vector

Window values, returned as a column vector. The number of elements in the column vector is equal to
the frame size (number of rows) of the input signal.

When the input is an integer, the word length and fraction length of the output, W is calculated using
the following:

WWL = XWL
WFL = YFL− XFL

where,

• WWL –– Window word length.
• WFL –– Window fraction length.
• YFL –– Output fraction length.

 dsp.Window

4-1499

• XFL –– Input fraction length. In case of signed integers, this value is 0.

Dependencies

This output appears only when the WeightsOutputPort property is set to true.
Data Types: single | double | int8 | int16 | int32 | int64 | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Apply Hamming Window

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

win = dsp.Window(...
 'WindowFunction','Hamming', ...
 'WeightsOutputPort',true);
x = rand(64,1);
[y,w] = win(x);

View the window's time and frequency domain responses.

wvtool(w)

Algorithms
This object implements the algorithm, inputs, and outputs described on the Window Function block
reference page. The object properties correspond to the block parameters, except:

• Operation — The dsp.Window object does not support the Generate window option.
• Operation — The Generate and apply window option on the block corresponds to the

WeightsOutputPort property set to true on the dsp.Window object.
• The dsp.Window object only supports frame-based processing.

Compatibility Considerations
dsp.Window System object will be removed
Warns starting in R2021b

4 System Objects

4-1500

dsp.Window System object will be removed in a future release. Use the window function instead.

Update Code

This table shows how the System object is typically used and explains how to update existing code to
use the window function.

Discouraged Usage Recommended Replacement
Hamming window

N = 64;
win = dsp.Window(...
 'WindowFunction','Hamming', ...
 'WeightsOutputPort',true);
x = rand(N,1);
[y,w] = win(x);

The object designs the window and applies to the
input data. y stores the windowed data.

Visualize the window using WVTool.

wvtool(w)

If you are using a release prior to R2016b,
replace win(x) with step(win,x).

Hamming window

wfn = window(@hamming,N);
isequal(w,wfn)

ans = 1×1

 1

wvtool(wfn)

Apply the window to the data.

yfn = wfn.*x;
isequal(y,yfn)

ans = 1×1

 1

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• This object has no tunable properties for code generation.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
window | wvtool

Objects
dsp.FFT

Introduced in R2012a

 dsp.Window

4-1501

dsp.ZeroCrossingDetector
Package: dsp

Detect zero crossings

Description
The dsp.ZeroCrossingDetector System object counts the number of times the signal crosses
zero, or changes sign. To detect if a signal in a given channel crosses zero, the object looks for the
following conditions, where, xi-l is the current signal value and xi-1 is the previous signal value:

• xi < 0 and xi-1 > 0
• xi > 0 and xi-1 < 0
• For some positive integer L, xi < 0, xi-l = 0, and xi-L-1 > 0, where 0 ≤ l ≤ L.
• For some positive integer L, xi > 0, xi-l = 0, and xi-L-1 < 0, where 0 ≤ l ≤ L.

For the first input value, xi-1 and xi-2 are zero.

To count the number of times a signal crosses zero or changes sign:

1 Create the dsp.ZeroCrossingDetector object.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
zcd = dsp.ZeroCrossingDetector

Description

zcd = dsp.ZeroCrossingDetector returns a zero crossing detection object that calculates the
number of times the signal crosses zero.

Usage

Syntax
zcdOut = zcd(input)

Description

zcdOut = zcd(input) calculates the number of zero crossings of the input. Each column of the
input is treated as an independent channel.

4 System Objects

4-1502

Input Arguments

input — Data input
vector | matrix

Data input whose zero crossings are counted by the object, specified as a vector or a matrix.
Example: rand(20,1)-0.3
Example: rand(20,2)-0.3
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments

zcdOut — Number of zero crossings
scalar | row vector

Number of zero crossings in the data input, returned as one of the following:

• scalar –– When the data input is a column vector, the scalar output is the number of zero crossings
in the data input..

• row vector –– When the data input is a matrix, each element in the row vector output is the
number of zero crossings in the corresponding column of the data input.

Example: 10
Example: [9,6]
Data Types: uint32

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Determine Number of Zero Crossings

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Find the number of zero crossings in electrocardiogram data.

 dsp.ZeroCrossingDetector

4-1503

EcgData = ecg(500)';
zcd = dsp.ZeroCrossingDetector;
numZeroCross = zcd(EcgData)

numZeroCross = uint32
 4

plot(1:500,EcgData,'b',[0 500],[0 0],'r','linewidth',2)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.PhaseExtractor

Introduced in R2012a

4 System Objects

4-1504

dsp.ZoomFFT
Package: dsp

High-resolution FFT of a portion of a spectrum

Description
The dsp.ZoomFFT System object computes the fast Fourier Transform (FFT) of a signal over a
portion of frequencies in the Nyquist interval. By setting an appropriate decimation factor D, and
sampling rate Fs, you can choose the bandwidth of frequencies to analyze BW, where BW = Fs/D. You
can also select a specific range of frequencies to analyze in the Nyquist interval by choosing the
center frequency of the desired band.

The resolution of a signal is the ratio of Fs and the FFT length (L). Using zoom FFT, you can retain
the same resolution you would achieve with a full-size FFT on your original signal by computing a
small FFT on a shorter signal. The shorter signal comes from decimating the original signal. The
savings come from being able to compute a much shorter FFT while achieving the same resolution.
For a decimation factor of D, the new sampling rate, Fsd, is Fs/D, and the new frame size (and FFT
length) is Ld = L/D. The resolution of the decimated signal is Fsd/Ld = Fs/L. To achieve a higher
resolution of the shorter band, use the original FFT length, L, instead of the decimated FFT length,
Ld.

To compute the FFT of a portion of the spectrum:

1 Create the dsp.ZoomFFT object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
zfft = dsp.ZoomFFT
zfft = dsp.ZoomFFT(d)
zfft = dsp.ZoomFFT(d,Fc)
zfft = dsp.ZoomFFT(d,Fc,Fs)
zfft = dsp.ZoomFFT(Name,Value)

Description

zfft = dsp.ZoomFFT creates a zoom FFT System object, zfft, that performs an FFT on a portion
of the input signal's frequency range. The object determines the frequency range over which to
perform the FFT using the specified center frequency and decimation factor values.

zfft = dsp.ZoomFFT(d) creates a zoom FFT object with the “DecimationFactor” on page 4-0
property set to d.

 dsp.ZoomFFT

4-1505

zfft = dsp.ZoomFFT(d,Fc) creates a zoom FFT object with the “DecimationFactor” on page 4-
0 property set to d, and the “CenterFrequency” on page 4-0 property set to Fc.

zfft = dsp.ZoomFFT(d,Fc,Fs) creates a zoom FFT object with the “DecimationFactor” on page
4-0 property set to d, the “CenterFrequency” on page 4-0 property set to Fc, and the
“SampleRate” on page 4-0 property set to Fs.

zfft = dsp.ZoomFFT(Name,Value) creates a zoom FFT object with each specified property set to
the specified value. Enclose each property name in single quotes. You can use this syntax with any
previous input argument combinations.
Example: zfft = dsp.ZoomFFT(2,2e3,48e3,'FFTLength',64);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

DecimationFactor — Decimation factor
2 (default) | positive integer

Decimation factor, specified as a positive integer. This value specifies the factor by which the object
reduces the bandwidth of the input signal. The number of rows in the input signal must be a multiple
of the decimation factor.
Example: 4
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CenterFrequency — Center frequency
0 (default) | real scalar

Center frequency of the desired band in Hz, specified as a real scalar in the range (– SampleRate/2,
SampleRate/2).
Example: 0.5
Example: 10

Tunable: Yes
Data Types: single | double

FFTLength — FFT length
[] (default) | positive integer

FFT length, specified as a positive integer. The FFT length must be greater than or equal to the ratio
of the frame size (number of input rows) and the decimation factor, L/D. The default, [], specifies an
FFT length that equals the ratio, L/D.
Example: 24

4 System Objects

4-1506

Example: 52
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Input sample rate
44100 (default) | positive real scalar

Input sample rate in Hz, specified as positive real scalar.
Example: 44100
Example: 48000
Data Types: single | double

Usage

Syntax
zfftOut = zfft(input)

Description

zfftOut = zfft(input) computes the zoom FFT of the input. Each column of the input is treated
as an independent channel. The object computes the FFT of each channel of the input signal
independently over time.

Input Arguments

input — Data input
vector | matrix

Data input whose zoom FFT the object computes, specified as a vector or a matrix. The number of
input rows must be a multiple of the decimation factor.

This object supports variable-size input signals, as long as the input frame size is a multiple of the
decimation factor. That is, you can change the input frame size (number of rows) even after calling
the algorithm. However, the number of channels (number of columns) must remain constant.
Example: randn(22,2)
Data Types: single | double

Output Arguments

zfftOut — Zoom FFT output
vector | matrix

Zoom FFT output, returned as a vector or matrix. If the FFT length is set to auto, the output frame
size equals the input frame size divided by the decimation factor. If the object specifies the FFT
length, the output frame size equals the specified FFT length. The output data type matches the input
data type.
Example: randn(11,2)
Data Types: single | double

 dsp.ZoomFFT

4-1507

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute FFT of a Subband Using Zoom FFT

Compute FFT of the [1500 Hz 2500 Hz] subband using zoom FFT for a signal sampled at 48 kHz.

Initialization

Set the center frequency to 2 kHz and the bandwidth of interest to 1 kHz. The bandwidth is centered
at the center frequency. The decimation factor is the ratio of the input sample rate, 48 kHz, and the
bandwidth of interest, 1 kHz. Choose an FFT length of 64. Set the input frame size to be the
decimation factor times the FFT length. Create a dsp.ZoomFFT object with the specified decimation
factor, center frequency, sample rate, and FFT length.

Fs = 48e3;
CF = 2e3;
BW = 1e3;
D = Fs/BW;
fftlen = 64;
L = D * fftlen;
zfft = dsp.ZoomFFT(D,CF,Fs,'FFTLength',fftlen);

Frequencies

The FFT is computed over frequencies starting at 1500 Hz and spaced by Hz apart,
which is the resolution or the minimum frequency that can be discriminated. The number of
frequencies at which the zoom FFT is computed equals the FFT length.

Fsd = Fs/D;
F = CF + (Fsd/fftlen)*(0:fftlen-1)-Fsd/2;

Initialize the Scope

Create an array plot to show the frequencies in F.

ap = dsp.ArrayPlot('XDataMode','Custom','CustomXData',F,...
 'YLabel','z .* conj(z)','XLabel','Frequency (Hz)','YLimits',[0 1.1e3],...
 'Title',sprintf('Decimation Factor = %d. Center Frequency = %d Hz. Resolution = %f Hz',D, CF,(Fs/D)/fftlen));

4 System Objects

4-1508

Sine Wave Generator

Create a sine wave with frequencies at 1625 Hz, 2000 Hz, and 2125 Hz.

tones = [1625 2000 2125];
sine = dsp.SineWave('SampleRate',Fs,'Frequency',tones,'SamplesPerFrame',L);

Streaming

Pass a noisy sine wave with a sample rate of 48 kHz. Compute the zoom FFT of this sine wave in the
subband [1500 Hz 2500 Hz]. Rearrange the Fourier transform by shifting the zero-frequency
component to the center of the array. View the tones at 1625 Hz, 2000 Hz, and 2125 Hz in the array
plot.

for i = 1:1000
 x = sum(sine(),2)+1e-1*randn(L,1);
 z = zfft(x);
 z = fftshift(z);
 ap(z.*conj(z));
end

Compute Zoom FFT of Variable-Size Inputs

The dsp.ZoomFFT object accepts variable-size inputs as long as the input is a multiple of the
decimation factor. The number of input channels cannot change.

 dsp.ZoomFFT

4-1509

Create a dsp.ZoomFFT object with a decimation factor of 4, center frequency of 2 kHz, and an input
sample rate of 48 kHz. Pass a random input with 4*64 rows and 2 columns. Vary the number of rows
to 4*128 and 4*32. The resulting FFT lengths are 64, 128, and 32, respectively. The size of the
outputs is [64 2], [128 2], and [32 2], respectively.

zfft = dsp.ZoomFFT(4,2e3,48e3);
y1 = zfft(randn(4*64,2));
y2 = zfft(randn(4*128,2));
y3 = zfft(randn(4*32,2));

Set the FFT length as 256 and pass variable-size inputs. The size of all the outputs is [256 2].

release(zfft);
zfft.FFTLength = 256;
y4 = zfft(randn(4*64,2));
y5 = zfft(randn(4*128,2));
y6 = zfft(randn(4*32,2));

Algorithms
The zoom FFT algorithm leverages bandpass filtering before computing the FFT of the signal. The
concept of bandpass filtering is that suppose you are interested in the band [F1, F2] of the original
input signal, sampled at the rate Fs Hz. If you pass this signal through a complex (one-sided)
bandpass filter centered at Fc = (F1+F2)/2, with the bandwidth BW = F2 – F1, and then downsample
the signal by a factor of D = floor(Fs/BW), the desired band comes down to the baseband.

4 System Objects

4-1510

If Fc cannot be expressed in the form of k×Fs/D, where k is an integer, then the shifted, decimated
spectrum is not centered at DC. In this case, the center frequency gets translated to Fd.

Fd = Fc− (Fs/D) × f loor((D × Fc + Fs/2)/Fs)

The complex bandpass filter is obtained by first designing a lowpass filter prototype and then
multiplying the lowpass coefficients with a complex exponential. This algorithm uses a multirate,
multistage FIR filter as the lowpass filter prototype. To obtain the bandpass filter, the coefficients of
each stage are frequency shifted. The decimation factor is the cumulative decimation factor of each
stage. The complex bandpass filter followed by the decimator are implemented using an efficient
polyphase structure. For more details on the design of the complex bandpass filter from the multirate
multistage FIR filter prototype, see “Zoom FFT” and “Complex Bandpass Filter Design”.

References
[1] Harris, F.J. Multirate Signal Processing for Communication Systems. Prentice Hall, 2004, pp. 208–

209.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.FFT | dsp.HDLFFT | dsp.IFFT | dsp.HDLIFFT

Blocks
Zoom FFT | FFT | FFT HDL Optimized | Magnitude FFT | Short-Time FFT

Topics
“Zoom FFT”
“Complex Bandpass Filter Design”

 dsp.ZoomFFT

4-1511

Introduced in R2017b

4 System Objects

4-1512

SpectrumAnalyzerConfiguration
Configure Spectrum Analyzer block

Description
The spbscopes.SpectrumAnalyzerConfiguration object contains the scope configuration
information for the Spectrum Analyzer block.

Creation
MyScopeConfiguration = get_param(gcbh,'ScopeConfiguration') constructs a new
Spectrum Analyzer Configuration object. You must first select the block in the model or give the full
path to the block.

Properties
Frequently Used

NumInputPorts — Number of input ports
"1" (default) | character vector | string scalar

Number of input ports on a scope block, specified by a character vector or string scalar. Maximum
number of input ports is 96.
Data Types: char | string

InputDomain — Domain of the input signal
"Time" (default) | "Frequency"

The domain of the input signal you want to visualize. If you visualize time-domain signals, the signal
is transformed to the frequency spectrum based on the algorithm specified by the Method parameter.
Scope Window Use

Open the Spectrum Settings. In the Main options section, set Input Domain.
Data Types: char | string

SpectrumType — Type of spectrum to show
"Power" (default) | "Power density" | "RMS"

Specify the spectrum type to display.

"Power" — Power spectrum

"Power density" — Power spectral density. The power spectral density is the magnitude squared
of the spectrum normalized to a bandwidth of 1 hertz.

"RMS" — Root mean square. The root-mean-square shows the square root of the mean square. This
option is useful when viewing the frequency of voltage or current signals.

 SpectrumAnalyzerConfiguration

4-1513

Tunable: Yes

Scope Window Use

Open the Spectrum Settings. In the Main options section, set Type.
Data Types: char | string

ViewType — Viewer type
"Spectrum" (default) | "Spectrogram" | "Spectrum and spectrogram"

Specify the spectrum type as one of "Spectrum", "Spectrogram", or "Spectrum and
spectrogram".

• "Spectrum" — shows the power spectrum.
• "Spectrogram" — shows frequency content over time. Each line of the spectrogram is one

periodogram. Time scrolls from the bottom to the top of the display. The most recent spectrogram
update is at the bottom of the display.

• "Spectrum and Spectrogram" — shows a dual view of a spectrum and spectrogram.

Tunable: Yes

Scope Window Use

Open the Spectrum Settings. In the Main options section, set View.
Data Types: char | string

SampleRateSource — Source of input sample rate
"Inherited" (default) | "Property"

Specify the source of the input sample rate as:

• "Inherited" — Spectrum Analyzer inherits the input sample rate from the model.
• "Property" — Specify the sample rate input directly using the SampleRate property.

Data Types: char | string

SampleRate — Sample rate of input
"10e3" (default) | character vector | string scalar

Specify the sample rate of the input signals in hertz as a character vector or string scalar.

Dependency

To enable this property, set SampleRateSource to "Property".
Data Types: char | string

Method — Spectrum estimation method
"Welch" (default) | "Filter Bank"

Specify the spectrum estimation method as Welch or Filter bank.

Dependency

To enable this property, set InputDomain to "Time".

4 System Objects

4-1514

Scope Window Use

Open the Spectrum Settings. In the Main options section, set Method.
Data Types: char | string

PlotAsTwoSidedSpectrum — Two-sided spectrum flag
true (default) | false

• true — Compute and plot two-sided spectral estimates. When the input signal is complex-valued,
you must set this property to true.

• false — Compute and plot one-sided spectral estimates. If you set this property to false, then
the input signal must be real-valued.

When this property is false, Spectrum Analyzer uses power-folding. The y-axis values are twice
the amplitude that they would be if this property were set to true, except at 0 and the Nyquist
frequency. A one-sided power spectral density (PSD) contains the total power of the signal in the
frequency interval from DC to half of the Nyquist rate. For more information, see pwelch.

Scope Window Use

Open the Spectrum Settings. In the Trace options section, select Two-sided spectrum.
Data Types: logical

FrequencyScale — Frequency scale
"Linear" (default) | "Log"

• "Log" — displays the frequencies on the x-axis on a logarithmic scale. To use the "Log" setting,
you must also set the PlotAsTwoSidedSpectrum property to false.

• "Linear" — displays the frequencies on the x-axis on a linear scale. To use the "Linear" setting,
you must also set the PlotAsTwoSidedSpectrum property to true.

Tunable: Yes

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Scale.
Data Types: char | string

Advanced

FrequencySpan — Frequency span mode
"Full" (default) | "Span and center frequency" | "Start and stop frequencies"

• "Full" - The Spectrum Analyzer computes and plots the spectrum over the entire “Nyquist
frequency interval” on page 4-1303.

• "Span and center frequency" - The Spectrum Analyzer computes and plots the spectrum
over the interval specified by the Span and CenterFrequency properties.

• "Start and stop frequencies" - The Spectrum Analyzer computes and plots the spectrum
over the interval specified by the StartFrequency and StopFrequency properties.

Tunable: Yes

 SpectrumAnalyzerConfiguration

4-1515

Scope Window Use

Open the Spectrum Settings. In the Main options section, select Full frequency span for
"Full". Otherwise, clear the Full frequency span check box and choose between Span or FStart.
Data Types: char | string

Span — Frequency span to compute spectrum
"10e3" (default) | character vector of a real positive scalar | string scalar of a real positive scalar

Specify (as a character vector or string scalar) the frequency span, in hertz, over which the Spectrum
Analyzer computes and plots the spectrum. The overall span, defined by this property and the
CenterFrequency property, must fall within the “Nyquist frequency interval” on page 2-1249.

Dependency

To enable this property, set FrequencySpan to "Span and center frequency".
Data Types: char | string

CenterFrequency — Center of frequency span
"0" (default) | character vector of a real scalar | string scalar of a real scalar

Specify (as a character vector or string scalar) the frequency center, in hertz, over which the
Spectrum Analyzer computes and plots the spectrum. The overall frequency span, defined by the
Span and this property, must fall within the “Nyquist frequency interval” on page 2-1249.

Dependency

To enable this property, set FrequencySpan to "Span and center frequency".
Data Types: char | string

StartFrequency — Start frequency to compute spectrum
"-5e3" (default) | character vector of a real scalar | string scalar of a real scalar

Start of the frequency interval over which spectrum is computed, specified in hertz as a character
vector or string scalar of a real scalar. The overall span, which is defined by this property and
StopFrequency, must fall within the “Nyquist frequency interval” on page 2-1249.

Dependency

To enable this property, set FrequencySpan to "Start and stop frequencies".
Data Types: char | string

StopFrequency — Stop frequency to compute spectrum
"5e3" (default) | character vector of a real scalar | string scalar of a real scalar

End of the frequency interval over which spectrum is computed, specified in hertz as a character
vector or string scalar of a real scalar. The overall span, which is defined by this property and the
StartFrequency property, must fall within the Nyquist frequency interval on page 2-1249.

Dependency

To enable this property, set FrequencySpan to "Start and stop frequencies".

4 System Objects

4-1516

Scope Window Use

Open the Spectrum Settings. In the Main options section, clear the Full frequency span and
change Span to FStart. Set FStop (Hz).
Data Types: char | string

FrequencyResolutionMethod — Frequency resolution method
"RBW" (default) | "WindowLength" | "NumFrequencyBands"

Specify the frequency resolution method of the Spectrum Analyzer.

• "RBW" - the RBWSource and RBW properties control the frequency resolution (in Hz) of the
analyzer. The FFT length is the window length that results from achieving the specified RBW value
or 1024, whichever is larger.

• "WindowLength" - applies only when the Method property is set to "Welch". The WindowLength
property controls the frequency resolution. You can control the number of FFT points only when
the FrequencyResolutionMethod property is "WindowLength".

• "NumFrequencyBands" - applies only when the Method property is set to "Filter Bank". The
FFTLengthSource and FFTLength properties control the frequency resolution.

Tunable: Yes
Dependency

To enable this property, set InputDomain to "Time".
Scope Window Use

Open the Spectrum Settings. In the Main options section, set the frequency resolution method by
selecting the RBW (Hz) dropdown.
Data Types: char | string

RBWSource — Source of resolution bandwidth value
"Auto" (default) | "Property" | "InputPort"

Specify the source of the resolution bandwidth (RBW) as "Auto", "Property", or "InputPort".

• "Auto" — The Spectrum Analyzer adjusts the spectral estimation resolution to ensure that there
are 1024 RBW intervals over the defined frequency span.

• "Property" — Specify the resolution bandwidth directly using the RBW property.
• "InputPort" — An input port is added to the Spectrum Analyzer block to read the RBW. This

option is only applicable to frequency input.

Dependencies

To enable this property, set:

• InputDomain to "Time" and FrequencyResolutionMethod to "RBW".
• InputDomain to "Frequency".

Data Types: char | string

RBW — Resolution bandwidth
"9.76" (default) | character vector | string scalar

 SpectrumAnalyzerConfiguration

4-1517

RBW controls the spectral resolution of the Spectrum Analyzer. Specify the resolution bandwidth in
hertz as a character vector or string scalar. You must specify a value to ensure that there are at least
two RBW intervals over the specified frequency span. Thus, the ratio of the overall span to RBW must
be greater than two:

span
RBW > 2

You can specify the overall span in different ways based on how you set the FrequencySpan property.

Dependency

To enable, set:

• RBWSource to "Property"

Data Types: char | string

WindowLength — Window length
"1024" (default) | character vector of an integer greater than 2 | string scalar of an integer greater
than 2

Control the frequency resolution by specifying the window length in samples used to compute the
spectral estimates. The window length must be an integer scalar greater than 2, specified as a
character vector or string scalar.

Dependencies

To enable this property, set:

• FrequencyResolutionMethod to "WindowLength", which controls the frequency resolution based
on your window length setting.

• Method to "Welch".

Data Types: char | string

FFTLengthSource — Source of the FFT length
"Auto" (default) | "Property"

• "Auto" - sets the FFT length to the window length specified in the WindowLength property or
1024, whichever is larger.

• "Property" - number of FFT points using the FFTLength property. FFTLength must be greater
than WindowLength.

Tunable: Yes

Dependency

To enable this property, set FrequencyResolutionMethod to "WindowLength".

Scope Window Use

Open the Spectrum Settings. In the Main options section, next to the RBW (Hz) option, enter a
number or select Auto.
Data Types: char | string

4 System Objects

4-1518

FFTLength — Length of FFT
"1024" (default) | character vector | string scalar

Specify the length of the FFT that the Spectrum Analyzer uses to compute spectral estimates.

If FrequencyResolutionMethod is "RBW", the FFT length is set as the window length required to
achieve the specified resolution bandwidth value or 1024, whichever is larger.

Dependencies

To use this property, the following must be true:

• FFTLength value is greater than or equal to the WindowLength.
• FrequencyResolutionMethod is set to "WindowLength" or "NumFrequencyBands"
• FFTLengthSource is set to "Property".

Data Types: char | string

NumTapsPerBand — Number of filter taps per frequency band
"12" (default) | character vector of even integer | string scalar of even integer

Specify the number of filter taps or coefficients for each frequency band as a character vector or a
string scalar. This number must be a positive even integer. This value corresponds to the number of
filter coefficients per polyphase branch. The total number of filter coefficients is equal to
NumTapsPerBand + FFTLength.

Dependency

To enable this property, set Method to "Filter Bank".
Data Types: char | string

FrequencyVectorSource — Source of frequency vector
"Auto" (default) | "Property" | "InputPort"

• "Auto" — The frequency vector is calculated from the length of the input. See “Frequency
Vector” on page 2-1250.

• "Property" — Enter a custom vector as the frequency vector.
• "InputPort" — An input port appears on the block to read the frequency vector input.

Dependency

To enable this property, set InputDomain to "Frequency".
Data Types: char | string

FrequencyVector — Custom frequency vector
[-5000 5000] (default) | monotonically increasing vector

Set the frequency vector that determines the x-axis of the display. The vector must be monotonically
increasing and of the same size as the input frame size.

Dependency

To enable this property, set FrequencyVectorSource to "Property".

 SpectrumAnalyzerConfiguration

4-1519

Scope Window Use

Open the Spectrum Settings. In the Frequency input options section, set Frequency (Hz).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InputUnits — Units of frequency input
"dBm" (default) | "dBV" | "dBW" | "Vrms" | "Watts"

Select the units of the frequency-domain input. This property allows the Spectrum Analyzer to scale
frequency data if you choose a different display unit with the “Units” on page 2-0 property.

Dependency

This option is only available when InputDomain is set to Frequency.

Scope Window Use

Open the Spectrum Settings. In the Frequency input options section, set Input units.
Data Types: char | string

OverlapPercent — Overlap percentage
"0" (default) | character vector of a real scalar | string scalar of a real scalar

The percentage overlap between the previous and current buffered data segments, specified as a
character vector or string scalar of a real scalar. The overlap creates a window segment that is used
to compute a spectral estimate. The value must be greater than or equal to zero and less than 100.
Data Types: char | string

Window — Window function
"Hann" (default) | "Rectangular" | "Chebyshev" | "Flat Top" | "Hamming" | "Kaiser" |
"Blackman-Harris" | "Custom"

Specify a window function for the spectral estimator. The following table shows preset windows. For
more information, follow the link to the corresponding function reference in the Signal Processing
Toolbox documentation.

Window Option Corresponding Signal Processing Toolbox Function
"Rectangular" rectwin
"Chebyshev" chebwin
"Flat Top" flattopwin
"Hamming" hamming
"Hann" hann
"Kaiser" kaiser
"Blackman-Harris" blackmanharris

To set your own spectral estimation window, set this property to "Custom" and specify a custom
window function in the CustomWindow property.

Tunable: Yes

4 System Objects

4-1520

Scope Window Use

Open the Spectrum Settings. In the Window options section, set Window.
Data Types: char | string

CustomWindow — Custom window function
"hann" (default) | character array | string scalar

Specify a custom window function as a character array or string. The custom window function name
must be on the MATLAB path. This property is useful if you want to customize the window using
additional properties available with the Signal Processing Toolbox version of the window function.

Tunable: Yes

Example

Define and use a custom window function.

function w = my_hann(L)
 w = hann(L, 'periodic')
end

scope.Window = 'Custom';
scope.CustomWindow = 'my_hann'

Dependency

To use this property, set Window to "Custom".

Scope Window Use

Open the Spectrum Settings. In the Window options section, in the Window option box, enter a
custom window function name.
Data Types: char | string

SidelobeAttenuation — Sidelobe attenuation of window
"60" (default) | character vector of real positive scalar | string scalar of real positive scalar

The window sidelobe attenuation, in decibels (dB). The value must be greater than or equal to 45.

Dependency

To enable this property, set Window to "Chebyshev" or "Kaiser".

Scope Window Use

Open the Spectrum Settings. In the Window options section, set Attenuation (dB).
Data Types: char | string

SpectrumUnits — Units of the spectrum
"Auto" (default) | "dBm" | "dBFS" | "dBV" | "dBW" | "Vrms" | "Watts"

Specify the units in which the Spectrum Analyzer displays power values.

Tunable: Yes

 SpectrumAnalyzerConfiguration

4-1521

Dependency

The available spectrum units depend on the value of SpectrumType.

InputDomain SpectrumType Allowed SpectrumUnits
Time Power or Power density "dBFS", "dBm", "dBW", "Watts"

RMS "Vrms", "dBV"
Frequency ― "dBm", "dBV", "dBW", "Vrms",

"Watts",

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Units.
Data Types: char | string

FullScaleSource — Source of full scale
"Auto" (default) | "Property"

Specify the source of the dBFS scaling factor as either "Auto" or "Property".

• "Auto" - The Spectrum Analyzer adjusts the scaling factor based on the input data.
• "Property" - Specify the full-scale scaling factor using the FullScale property.

Dependency

To enable this property, set SpectrumUnits to "dBFS".

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Full scale to Auto or enter a
number.
Data Types: char | string

FullScale — Full scale
"1" (default) | character vector of a positive scalar | string scalar of a positive scalar

Specify a character vector or string scalar of a real positive scalar for the dBFS full scale.

Dependency

To enable this option set:

• SpectrumUnits to "dBFS"
• FullScaleSource to "Property"

Data Types: char | string

AveragingMethod — Smoothing method
"Running" (default) | "Exponential"

Specify the smoothing method as:

• Running — Running average of the last n samples. Use the SpectralAverages property to
specify n.

4 System Objects

4-1522

• Exponential — Weighted average of samples. Use the ForgettingFactor property to specify
the weighted forgetting factor.

For more information about the averaging methods, see “Averaging Method” on page 2-1253.

Dependency

To enable this property, set ViewType to "Spectrum" or "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Averaging method.
Data Types: char | string

SpectralAverages — Number of spectral averages
"1" (default) | character vector | string scalar

Specify the number of spectral averages as a character vector or string scalar. The Spectrum
Analyzer computes the current power spectrum estimate by computing a running average of the last
N power spectrum estimates. This property defines N.

Dependency

To enable this property, set AveragingMethod to "Running".

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Averages.
Data Types: char | string

ForgettingFactor — Weighting forgetting factor
"0.9" (default) | string scalar of scalar in the range (0,1] | character vector of scalar in the range
(0,1]

Specify the exponential weighting as a scalar value greater than 0 and less than or equal to 1,
specified as a string scalar or character vector.

Dependency

To enable this property, set AveragingMethod to "Exponential".

Scope Window Use

Open the Spectrum Settings. In the Trace options section, set Forgetting factor.
Data Types: char | string

ReferenceLoad — Reference load
"1" (default) | character vector of a real positive scalar | string scalar of a real positive scalar

Specify the load the scope uses as a reference to compute power levels.
Data Types: char | string

FrequencyOffset — Frequency offset
"0" (default) | numeric scalar character vector | numeric vector character vector | numeric scalar
string scalar | numeric vector string scalar

 SpectrumAnalyzerConfiguration

4-1523

• Numeric scalar (specified as a character vector or string scalar) — Apply the same frequency
offset to all channels, specified in hertz as a character vector.

• Numeric vector (specified as a character vector or string scalar) — Apply a specific frequency
offset for each channel, specify a vector of frequencies. The vector length must be equal to
number of input channels.

The frequency-axis values are offset by the values specified in this property. The overall span must
fall within the “Nyquist frequency interval” on page 2-1249. You can control the overall span in
different ways based on how you set the FrequencySpan property.

Data Types: char | string

TreatMby1SignalsAsOneChannel — Treat unoriented sample-based input signal as a
column vector
true (default) | false

Set this property to true to treat M-by-1 and unoriented sample-based inputs as a column vector, or
one channel. Set this property to false to treat M-by-1 and unoriented sample-based inputs as a 1-
by-M row vector.
Data Types: logical

Spectrogram

SpectrogramChannel — Channel for which spectrogram is plotted
"1" (default) | character vector of a positive scalar integer | string scalar of a positive scalar integer

Specify the channel for which the spectrogram is plotted, as a character vector or string scalar of a
real, positive scalar integer in the range [1 N], where N is the number of input channels.

Dependency

To enable this property, set ViewType to "Spectrogram" or "Spectrum and spectrogram".
Data Types: char | string

TimeResolutionSource — Source of the time resolution value
"Auto" (default) | "Property"

Specify the source for the time resolution of each spectrogram line as either "Auto" or "Property".
The TimeResolution property shows the time resolution for the different frequency resolution
methods and time resolution properties.

Tunable: Yes

Dependency

To enable this property, set ViewType to "Spectrogram" or "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. In the Spectrogram options section, set Time res (s).
Data Types: char | string

TimeResolution — Time resolution
"1e-3" (default) | character vector of a positive scalar | string scalar of a positive scalar

4 System Objects

4-1524

Specify the time resolution of each spectrogram line as a character vector or string scalar of a
positive scalar, expressed in seconds.

The time resolution value is determined based on frequency resolution method, the RBW setting, and
the time resolution setting.

Method Frequency
Resolution
Method

Frequenc
y
Resoluti
on
Setting

Time
Resolution
Setting

Resulting Time Resolution
in Seconds

Welch or Filter
Bank

RBW (Hz) Auto Auto 1/RBW

Welch or Filter
Bank

RBW (Hz) Auto Manually
entered

Time Resolution

Welch or Filter
Bank

RBW (Hz) Manually
entered

Auto 1/RBW

Welch or Filter
Bank

RBW (Hz) Manually
entered

Manually
entered

Must be equal to or greater
than the minimum attainable
time resolution, 1/RBW.
Several spectral estimates
are combined into one
spectrogram line to obtain
the desired time resolution.
Interpolation is used to
obtain time resolution values
that are not integer multiples
of 1/RBW.

Welch Window length — Auto 1/RBW
Welch Window length — Manually

entered
Must be equal to or greater
than the minimum attainable
time resolution. Several
spectral estimates are
combined into one
spectrogram line to obtain
the desired time resolution.
Interpolation is used to
obtain time resolution values
that are not integer multiples
of 1/RBW.

Filter Bank Number of
frequency
bands

— Auto 1/RBW

Filter Bank Number of
frequency
bands

— Manually
entered

Must be equal to or greater
than the minimum attainable
time resolution, 1/RBW.

Dependency

To enable this property, set:

 SpectrumAnalyzerConfiguration

4-1525

• ViewType to "Spectrogram" or "Spectrum and spectrogram"
• TimeResolutionSource to "Property.

Data Types: char | string

TimeSpanSource — Source of time span value
"Auto" (default) | "Property"

Specify the source for the time span of the spectrogram as either "Auto" or "Property". If you set
this property to "Auto", the spectrogram displays 100 spectrogram lines at any given time. If you set
this property to "Property", the spectrogram uses the time duration you specify in seconds in the
TimeSpan property.

Tunable: Yes

Dependency

To enable this property, set ViewType to "Spectrogram" or "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. In the Spectrogram options section, set Time span (s).
Data Types: char | string

TimeSpan — Time span
"0.1" (default) | character vector of a positive scalar | string scalar of a positive scalar

Specify the time span of the spectrogram display in seconds. You must set the time span to be at least
twice as large as the duration of the number of samples required for a spectral update.

Dependency

To enable this property, set:

• ViewType to "Spectrogram" or "Spectrum and spectrogram".
• TimeSpanSource to "Property".

Data Types: char | string

Measurements

MeasurementChannel — Channel for which measurements are obtained
"1" (default) | character vector | string scalar

Channel over which the measurements are obtained, specified as a character vector or a string scalar
which evaluates to a positive integer greater than 0 and less than or equal to 100. The maximum
number you can specify is the number of channels (columns) in the input signal.

Tunable: Yes
Data Types: char | string

SpectralMask — Spectral mask lines
SpectralMaskSpecification object

4 System Objects

4-1526

Specify whether to display upper and lower spectral mask lines on a spectrum plot. This property
uses properties from a SpectralMaskSpecification object to enable and configure the spectral
masks.

Tunable: Yes

Scope Window Use

Open the Spectral Mask pane and modify the Settings options.

PeakFinder — Peak finder measurement
PeakFinderSpecification object

Enable peak finder to compute and display the largest calculated peak values. The PeakFinder
property uses the PeakFinderSpecification properties.

The PeakFinderSpecification properties are:

• MinHeight –– Level above which peaks are detected, specified as a scalar value.

Default: -Inf
• NumPeaks –– Maximum number of peaks to show, specified as a positive integer scalar less than

100.

Default: 3
• MinDistance –– Minimum number of samples between adjacent peaks, specified as a positive

real scalar.

Default: 1
• Threshold –– Minimum height difference between peak and its neighboring samples, specified as

a nonnegative real scalar.

Default: 0
• LabelFormat –– Coordinates to display next to the calculated peak value, specified as a character

vector or a string scalar. Valid values are "X", "Y", or "X + Y".

Default: "X + Y"
• Enable –– Set this property to true to enable peak finder measurements. Valid values are true

or false.

Default: false

All PeakFinderSpecification properties are tunable.

Tunable: Yes

Scope Window Use

Open the Peak Finder pane () and modify the Settings options.

CursorMeasurements — Cursor measurements
CursorMeasurementsSpecification object

 SpectrumAnalyzerConfiguration

4-1527

Enable cursor measurements to display screen or waveform cursors. The CursorMeasurements
property uses the CursorMeasurementsSpecification properties.

The CursorMeasurementsSpecification properties are:

• Type –– Type of the display cursors, specified as either "Screen cursors" or "Waveform
cursors".

Default: "Waveform cursors"
• ShowHorizontal –– Set this property to true to show the horizontal screen cursors. This

property applies when you set the Type property to "Screen cursors".

Default: true
• ShowVertical –– Set this property to true to show the vertical screen cursors. This property

applies when you set the Type property to "Screen cursors".

Default: true
• Cursor1TraceSource –– Specify the waveform cursor 1 source as a positive real scalar. This

property applies when you set the Type property to "Waveform cursors".

Default: 1
• Cursor2TraceSource –– Specify the waveform cursor 2 source as a positive real scalar. This

property applies when you set the Type property to "Waveform cursors".

Default: 1
• LockSpacing –– Lock spacing between cursors, specified as a logical scalar.

Default: false
• SnapToData –– Snap cursors to data, specified as a logical scalar.

Default: true
• XLocation –– x-coordinates of the cursors, specified as a real vector of length equal to 2.

Default: [-2500 2500]
• YLocation –– y-coordinates of the cursors, specified as a real vector of length equal to 2. This

property applies when you set the Type property to "Screen cursors".

Default: [-55 5]
• Enable –– Set this property to true to enable cursor measurements. Valid values are true or

false.

Default: false

All CursorMeasurementsSpecification properties are tunable.

Scope Window Use

Open the Cursor Measurements pane () and modify the Settings options.

ChannelMeasurements — Channel measurements
ChannelMeasurementsSpecification object

4 System Objects

4-1528

Enable channel measurements to compute and display the occupied bandwidth or adjacent channel
power ratio. The ChannelMeasurements property uses the
ChannelMeasurementsSpecification properties.

The ChannelMeasurementsSpecification properties are:

• Algorithm –– Type of measurement data to display, specified as either "Occupied BW" or
"ACPR".

Default: "Occupied BW"
• FrequencySpan –– Frequency span mode, specified as either "Span and center frequency"

or "Start and stop frequencies"

Default: "Span and center frequency"
• Span –– Frequency span over which the channel measurements are computed, specified as a real,

positive scalar in Hz. This property applies when you set the FrequencySpan property to "Span
and center frequency".

Default: 2000 Hz
• CenterFrequency –– Center frequency of the span over which the channel measurements are

computed, specified as a real scalar in Hz. This property applies when you set the
FrequencySpan property to "Span and center frequency".

Default: 0 Hz
• StartFrequency –– Start frequency over which the channel measurements are computed,
specified as a real scalar in Hz. This property applies when you set the FrequencySpan property
to "Start and stop frequencies".

Default: -1000 Hz
• StopFrequency –– Stop frequency over which the channel measurements are computed,
specified as a real scalar in Hz. This property applies when you set the FrequencySpan property
to "Start and stop frequencies".

Default: 1000 Hz
• PercentOccupiedBW –– Percent of power over which to compute the occupied bandwidth,
specified as a positive real scalar. This property applies when you set the Algorithm property to
"Occupied BW".

Default: 99
• NumOffsets –– Number of adjacent channel pairs, specified as a real, positive integer. This

property applies when you set the Algorithm property to "ACPR".

Default: 2
• AdjacentBW –– Adjacent channel bandwidth, specified as a real, positive scalar. This property

applies when you set the Algorithm property to "ACPR".

Default: 1000
• FilterShape –– Filter shape for both main and adjacent channels, specified as "None",

"Gaussian", or "RRC". This property applies when you set the Algorithm property to "ACPR".

Default: "None"

 SpectrumAnalyzerConfiguration

4-1529

• FilterCoeff –– Channel filter coefficient, specified as a real scalar between 0 and 1. This
property applies when you set the Algorithm property to "ACPR" and the FilterShape
property to either "Gaussian" or "RRC".

Default: 0.5
• ACPROffsets –– Frequency of the adjacent channel relative to the center frequency of the main

channel, specified as a real vector of length equal to the number of offset pairs specified in
NumOffsets. This property applies when you set the Algorithm property to "ACPR".

Default: [2000 3500]
• Enable –– Set this property to true to enable channel measurements. Valid values are true or

false.

Default: false

All ChannelMeasurementsSpecification properties are tunable.

Scope Window Use

Open the Channel Measurements pane () and modify the Measurement and Channel Settings
options.

DistortionMeasurements — Distortion measurements
DistortionMeasurementsSpecification object

Enable distortion measurements to compute and display the harmonic distortion and intermodulation
distortion. The DistortionMeasurements property uses the
DistortionMeasurementsSpecification properties.

The DistortionMeasurementsSpecification properties are:

• Algorithm –– Type of measurement data to display, specified as either "Harmonic" or
"Intermodulation".

Default: "Harmonic"
• NumHarmonics –– Number of harmonics to measure, specified as a real, positive integer. This

property applies when you set the Algorithm to "Harmonic".

Default: 6
• Enable –– Set this property to true to enable distortion measurements.

Default: false

All DistortionMeasurementsSpecification properties are tunable.

Scope Window Use

Open the Distortion Measurements pane () and modify the Distortion and Harmonics options.

CCDFMeasurements — CCDF measurements
CCDFMeasurementsSpecification object

4 System Objects

4-1530

Enable CCDF measurements to display the probability of the input signal's instantaneous power
being a certain amount of dB above the signal's average power. The CCDFMeasurements property
uses the CCDFMeasurementsSpecification properties.

The CCDFMeasurementsSpecification properties are:

• PlotGaussianReference –– Set this property to true to plot a reference CCDF curve. The
reference CCDF curve represents the power of a complex white Gaussian noise, calculated as a
chi-squared distribution.

Default: false
• Enable –– Set this property to true to enable CCDF measurements. Valid values are true or

false.

Default: false

All CCDFMeasurementsSpecification properties are tunable.

Scope Window Use

Open the CCDF Measurements pane () and enable the Plot Gaussian reference option.

Visualization

Name — Window name
"Spectrum Analyzer" (default) | character vector | string scalar

Title of the scope window.

Tunable: Yes
Data Types: char | string

Position — Window position
screen center (default) | [left bottom width height]

Spectrum Analyzer window position in pixels, specified by the size and location of the scope window
as a four-element double vector of the form [left bottom width height]. You can place the scope
window in a specific position on your screen by modifying the values to this property.

By default, the window appears in the center of your screen with a width of 800 pixels and height of
450 pixels. The exact center coordinates depend on your screen resolution.

Tunable: Yes

PlotType — Plot type for normal traces
"Line" (default) | "Stem"

Specify the type of plot to use for displaying normal traces as either "Line" or "Stem". Normal
traces are traces that display free-running spectral estimates.

Tunable: Yes

Dependencies

To enable this property, set:

 SpectrumAnalyzerConfiguration

4-1531

• ViewType to "Spectrum" or "Spectrum and spectrogram"
• PlotNormalTrace to true

Scope Window Use

Open the Style properties and set Plot type.
Data Types: char | string

PlotNormalTrace — Normal trace flag
true (default) | false

Set this property to false to remove the display of the normal traces. These traces display the free-
running spectral estimates. Even when the traces are removed from the display, the Spectrum
Analyzer continues its spectral computations.

Tunable: Yes

Dependency

To enable this property, set ViewType to "Spectrum" or "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. In the Trace options section, select Normal trace.
Data Types: logical

PlotMaxHoldTrace — Max-hold trace flag
false (default) | true

To compute and plot the maximum-hold spectrum of each input channel, set this property to true.
The maximum-hold spectrum at each frequency bin is computed by keeping the maximum value of all
the power spectrum estimates. When you toggle this property, the Spectrum Analyzer resets its
maximum-hold computations.

Tunable: Yes

Dependency

To enable this property, set ViewType to "Spectrum" or "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. In the Trace options section, select Max-hold trace.
Data Types: logical

PlotMinHoldTrace — Min-hold trace flag
false (default) | true

To compute and plot the minimum-hold spectrum of each input channel, set this property to true.
The minimum-hold spectrum at each frequency bin is computed by keeping the minimum value of all
the power spectrum estimates. When you toggle this property, the Spectrum Analyzer resets its
minimum-hold computations.

Tunable: Yes

4 System Objects

4-1532

Dependency

To enable this property, set ViewType to "Spectrum" or "Spectrum and spectrogram".
Scope Window Use

Open the Spectrum Settings. In the Trace options section, select Min-hold trace.
Data Types: logical

ReducePlotRate — Improve performance with reduced plot rate
true (default) | false

The simulation speed is faster when this property is set to true.

• true — the scope logs data for later use and updates the display at fixed intervals of time. Data
occurring between these fixed intervals might not be plotted.

• false — the scope updates every time it computes the power spectrum. Use the false setting
when you do not want to miss any spectral updates at the expense of slower simulation speed.

Data Types: logical

Title — Display title
'' (default) | character vector | string scalar

Specify the display title as a character vector or string.

Tunable: Yes
Scope Window Use

Open the Configuration Properties. Set Title.
Data Types: char | string

YLabel — Y-axis label
'' (default) | character vector | string scalar

Specify the text for the scope to display to the left of the y-axis.

Regardless of this property, Spectrum Analyzer always displays power units as one of the
SpectrumUnits values.

Tunable: Yes
Dependency

To enable this property, set ViewType to "Spectrum" or "Spectrum and spectrogram".
Scope Window Use

Open the Configuration Properties. Set Y-label.
Data Types: char | string

ShowLegend — Show legend
false (default) | true

To show a legend with the input names, set this property to true.

 SpectrumAnalyzerConfiguration

4-1533

From the legend, you can control which signals are visible. This control is equivalent to changing the
visibility in the Style dialog box. In the scope legend, click a signal name to hide the signal in the
scope. To show the signal, click the signal name again. To show only one signal, right-click the signal
name. To show all signals, press Esc.

Note The legend only shows the first 20 signals. Any additional signals cannot be viewed or
controlled from the legend.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. On the Display tab, select Show legend.
Data Types: logical

ChannelNames — Channel names
empty cell (default) | cell array of character vectors

Specify the input channel names as a cell array of character vectors. The names appear in the legend,
Style dialog box, and Measurements panels. If you do not specify names, the channels are labeled
as Channel 1, Channel 2, etc.

Tunable: Yes

Dependency

To see channel names, set ShowLegend to true.

Scope Window Use

On the legend, double-click the channel name.
Data Types: char

ShowGrid — Grid visibility
true (default) | false

Set this property to true to show gridlines on the plot.

Tunable: Yes

Scope Window Use

Open the Configuration Properties. On the Display tab, set Show grid.
Data Types: logical

YLimits — Y-axis limits
[-80, 20] (default) | [ymin ymax]

Specify the y-axis limits as a two-element numeric vector, [ymin ymax].
Example: scope.YLimits = [-10,20]

Tunable: Yes

4 System Objects

4-1534

Dependencies

• To enable this property, set the ViewType property to "Spectrum" or "Spectrum and
spectrogram".

• The units directly depend upon the SpectrumUnits property.

Scope Window Use

Open the Configuration Properties. Set Y-limits (maximum) and Y-limits (minimum).

ColorLimits — Scale spectrogram color limits
[-80, 20] (default) | [colorMin colorMax]

Control the color limits of the spectrogram using a two-element numeric vector, [colorMin
colorMax].
Example: scope.ColorLimits = [-10,20]
Dependencies

• To enable this property, set the ViewType property to "Spectrogram" or "Spectrum and
spectrogram".

• The units directly depend upon the SpectrumUnits property.

Scope Window Use

Open the Configuration Properties. Set Color-limits (minimum) and Color-limits (maximum).

AxesScaling — Axes scaling mode
"Auto" (default) | "Manual" | "OnceAtStop" | "Updates"

Specify when the scope automatically scales the axes. Valid values are:

• "Auto" — The scope scales the axes as-needed to fit the data, both during and after simulation.
• "Manual" — The scope does not scale the axes automatically.
• "OnceAtStop" — The scope scales the axes when the simulation stops.
• "Updates" — The scope scales the axes once after 10 updates.

Scope Window Use

Select Tools > Axes Scaling.
Data Types: char | string

AxesScalingNumUpdates — Number of updates before scaling
"10" (default) | integer character vector | integer string scalar

Set this property to delay auto scaling the y-axis.
Dependency

To enable this property, set AxesScaling to "Updates".
Scope Window Use

Open the Axes Scaling dialog box and set Number of updates.
Data Types: char | string

 SpectrumAnalyzerConfiguration

4-1535

AxesLayout — Orientation of the spectrum and spectrogram
"Vertical" (default) | "Horizontal"

Specify the layout type as "Horizontal" or "Vertical". A vertical layout stacks the spectrum
above the spectrogram. A horizontal layout puts the two views side-by-side.

Tunable: Yes

Dependency

To enable this property, set ViewType to "Spectrum and spectrogram".

Scope Window Use

Open the Spectrum Settings. Set Axes layout.
Data Types: char | string

OpenAtSimulationStart — Open scope when starting simulation
true (default) | false

Set this property to true to open the scope when the simulation starts. Set this property to false to
prevent the scope from opening at the start of simulation.

Scope Window Use

Select File > Open at Start of Simulation.
Data Types: logical

Visible — Visibility of the Spectrum Analyzer
false | true

Set this property to true to show the spectrum analyzer window, or false to hide the spectrum
analyzer window.

Examples

Construct a Spectrum Analyzer Configuration Object

Create a new Simulink® model with a randomly-generated name.

sysname=char(randi(26,1,7)+96);
new_system(sysname);

Add a new Spectrum Analyzer block to the model.

add_block('built-in/SpectrumAnalyzer',[sysname,'/SpectrumAnalyzer'])

Call the get_param function to retrieve the default Spectrum Analyzer block configuration
properties.

config = get_param([sysname,'/SpectrumAnalyzer'],'ScopeConfiguration')

config =
 SpectrumAnalyzerConfiguration with properties:

4 System Objects

4-1536

 NumInputPorts: '1'
 InputDomain: 'Time'
 SpectrumType: 'Power'
 ViewType: 'Spectrum'
 SampleRateSource: 'Inherited'
 Method: 'Welch'
 PlotAsTwoSidedSpectrum: 1
 FrequencyScale: 'Linear'

 Advanced
 FrequencySpan: 'Full'
 FrequencyResolutionMethod: 'RBW'
 RBWSource: 'Auto'
 OverlapPercent: '0'
 Window: 'Hann'
 SpectrumUnits: 'dBm'
 AveragingMethod: 'Running'
 SpectralAverages: '1'
 ReferenceLoad: '1'
 FrequencyOffset: '0'
 TreatMby1SignalsAsOneChannel: 1

 Spectrogram
 No properties.

 Measurements
 MeasurementChannel: '1'
 SpectralMask: [1x1 SpectralMaskSpecification]
 PeakFinder: [1x1 PeakFinderSpecification]
 CursorMeasurements: [1x1 CursorMeasurementsSpecification]
 ChannelMeasurements: [1x1 ChannelMeasurementsSpecification]
 DistortionMeasurements: [1x1 DistortionMeasurementsSpecification]
 CCDFMeasurements: [1x1 CCDFMeasurementsSpecification]

 Visualization
 Name: 'SpectrumAnalyzer'
 Position: [240 287 800 450]
 PlotType: 'Line'
 PlotNormalTrace: 1
 PlotMaxHoldTrace: 0
 PlotMinHoldTrace: 0
 ReducePlotRate: 1
 Title: ''
 YLabel: ''
 ShowLegend: 0
 ChannelNames: {''}
 ShowGrid: 1
 YLimits: [-80 20]
 AxesScaling: 'Auto'
 OpenAtSimulationStart: 1
 Visible: 0

 SpectrumAnalyzerConfiguration

4-1537

Obtain Measurements Data Programmatically for Spectrum Analyzer Block

Compute and display the power spectrum of a noisy sinusoidal input signal using the Spectrum
Analyzer block. Measure the peaks, cursor placements, adjacent channel power ratio, distortion, and
CCDF values in the spectrum by enabling these block configuration properties:

• PeakFinder
• CursorMeasurements
• ChannelMeasurements
• DistortionMeasurements
• CCDFMeasurements

Open and Inspect the Model

Filter a streaming noisy sinusoidal input signal using a Lowpass Filter block. The input signal consists
of two sinusoidal tones: 1 kHz and 15 kHz. The noise is white Gaussian noise with zero mean and a
variance of 0.05. The sampling frequency is 44.1 kHz. Open the model and inspect the various block
settings.

model = 'spectrumanalyzer_measurements.slx';
open_system(model)

4 System Objects

4-1538

Access the configuration properties of the Spectrum Analyzer block using the get_param function.

sablock = 'spectrumanalyzer_measurements/Spectrum Analyzer';
cfg = get_param(sablock,'ScopeConfiguration');

Enable Measurements Data

To obtain the measurements, set the Enable property of the measurements to true.

cfg.CursorMeasurements.Enable = true;
cfg.ChannelMeasurements.Enable = true;
cfg.PeakFinder.Enable = true;
cfg.DistortionMeasurements.Enable = true;

Simulate the Model

Run the model. The Spectrum Analyzer block compares the original spectrum with the filtered
spectrum.

sim(model)

 SpectrumAnalyzerConfiguration

4-1539

The right side of the spectrum analyzer shows the enabled measurement panes.

Using getMeasurementsData

Use the getMeasurementsData function to obtain these measurements programmatically.

data = getMeasurementsData(cfg)

data =

 1x5 table

 SimulationTime PeakFinder CursorMeasurements ChannelMeasurements DistortionMeasurements
 ______________ __________ __________________ ___________________ ______________________

 {[0.9985]} 1x1 struct 1x1 struct 1x1 struct 1x1 struct

The values shown in measurement panes match the values shown in data. You can access the
individual fields of data to obtain the various measurements programmatically.

4 System Objects

4-1540

Compare Peak Values

As an example, compare the peak values. Verify that the peak values obtained by data.PeakFinder
match with the values seen in the Spectrum Analyzer window.

peakvalues = data.PeakFinder.Value
frequencieskHz = data.PeakFinder.Frequency/1000

peakvalues =

 26.8984
 26.2419
 -3.3507

frequencieskHz =

 15.0015
 1.0049
 6.0293

Save and Close the Model

save_system(model);
close_system(model);

See Also
Functions
getMeasurementsData | getSpectrumData

Objects
dsp.SpectrumAnalyzer

Blocks
Spectrum Analyzer

Topics
“Obtain Measurements Data Programmatically for Spectrum Analyzer Block”
“Control Scope Blocks Programmatically” (Simulink)

Introduced in R2013a

 SpectrumAnalyzerConfiguration

4-1541

SpectralMaskSpecification
Display upper and lower spectral mask lines on the Spectrum Analyzer

Description
Masks are overlaid on the spectrum. If the mask is green, the signal is passing the mask limits. If the
mask is red, the signal is failing the mask limits.

You can check the status of the spectral mask from the scope toolbar, the command-line, or event
listeners:

• To modify the spectral mask and see the spectral mask status, in the scope toolbar, select the
spectral mask button, . In the Spectral Mask pane that opens, you can modify the masks and
see details about what percentage of the time the mask is succeeding, which mask is failing, how
many times the mask failed, and which channels are causing the failure.

• To get the current status of the spectral masks, call the function getSpectralMaskStatus.
• To perform an action every time the mask fails, use the MaskTestFailed event. To trigger a

function when the mask fails, create a listener to the MaskTestFailed event and define a
callback function to trigger. For more details about using events, see “Events”.

Creation

Syntax
mask = SpectralMaskSpecification()
mask = SpectralMaskSpecification(Name,Value)

Description

mask = SpectralMaskSpecification() creates a spectral mask object mask.

mask = SpectralMaskSpecification(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example, mask =
SpectralMaskSpecification("EnabledMasks","Lower").

Properties
All properties are tunable.

EnabledMasks — Spectral mask to enable
"None" (default) | "Lower" | "Upper" | "Upper and lower"

Specify which spectral masks to enable, specified as a character vector or string.
Data Types: char | string

4 System Objects

4-1542

UpperMask — Limit for upper spectral mask
Inf (default) | scalar | two-column matrix

Limit for upper spectral mask, specified as a scalar or two-column matrix.

If UpperMask is a scalar, the upper limit mask uses the power value of the scalar for all frequency
values applicable to the Spectrum Analyzer.

If UpperMask is a matrix, the first column contains the frequency values (Hz), which correspond to
the x-axis values. The second column contains the power values, which correspond to the associated
y-axis values.
Dependency

To apply offsets to the power and frequency values, use the ReferenceLevel and
MaskFrequencyOffset property values, respectively.

LowerMask — Limit for lower spectral mask
-Inf (default) | scalar | two-column matrix

Limit for the lower spectral mask, specified as a scalar or two-column matrix.

If LowerMask is a scalar, the lower limit mask uses the power value of the scalar for all frequency
values applicable to the Spectrum Analyzer.

If LowerMask is a matrix, the first column contains the frequency values (Hz), which correspond to
the x-axis values. The second column contains the power values, which correspond to the associated
y-axis values.
Dependency

To apply offsets to the power and frequency values, use the ReferenceLevel and
MaskFrequencyOffset property values, respectively.

ReferenceLevel — Reference level for mask power values
"Custom" (default) | "Spectrum peak"

Reference level for mask power values, specified as either "Custom" or "Spectrum peak".

When ReferenceLevel is "Custom", the CustomReferenceLevel property value is used as the
reference to the power values, in dBr, in the UpperMask and LowerMask properties.

When ReferenceLevel is "Spectrum peak", the peak value of the current spectrum of the
SelectedChannel is used.

CustomReferenceLevel — Custom reference level
0 (default) | real numeric scalar

Custom reference level, specified as a real numeric scalar, in the same units as the power units. The
reference level is the value to which the power values in the UpperMask and LowerMask properties
are referenced.

This property applies when ReferenceLevel is set to "Custom". This property uses the same units
as the PowerUnits property of the Spectrum Analyzer.

SelectedChannel — Input channel to use as mask level
1 (default) | integer

 SpectralMaskSpecification

4-1543

Input channel with peak spectrum to use as the mask reference level, specified as an integer. This
property applies when ReferenceLevel is set to "Spectrum peak".

MaskFrequencyOffset — Frequency offset
0 (default) | finite numeric scalar

Frequency offset, specified as a finite, numeric scalar. Frequency offset is the amount of offset to
apply to frequency values in the UpperMask and LowerMask properties.

Object Functions
getSpectralMaskStatus Get test results of current spectral mask

Examples

Spectral Mask with dsp.SpectrumAnalyzer

This example shows how to create and use a spectral mask with the dsp.SpectrumAnalyzer object.

Create an upper spectral mask, set the reference level matrix, and add it to a Spectrum Analyzer
object.

mask = SpectralMaskSpecification();
mask.EnabledMasks = 'Upper';
mask.UpperMask = [...
 0 -17; ...
 90 -17; ...
 90 30; ...
 110 30; ...
 110 -17; ...
 500 -17];

scope = dsp.SpectrumAnalyzer('PlotAsTwoSidedSpectrum',false,...
 'ShowLegend',true);
scope.SpectralMask = mask;
scope.SpectralMask

ans =
 SpectralMaskSpecification with properties:

 EnabledMasks: 'Upper'
 UpperMask: [6x2 double]
 LowerMask: -Inf
 ReferenceLevel: 'Custom'
 CustomReferenceLevel: 0
 MaskFrequencyOffset: 0

 Events for class SpectralMaskSpecification: MaskTestFailed

Run the spectrum analyzer using a sine wave spectrum. In the Spectral Mask panel, you can see how
the spectrum succeeded or failed to stay within your spectral mask.

sine = dsp.SineWave('Frequency',[98 100],'SampleRate',1000);
sine.SamplesPerFrame = 1024;
scope.SampleRate = sine.SampleRate;

4 System Objects

4-1544

for i=1:100
 scope(sine() + 0.05*randn(1024,2));
end
release(scope)

Spectral Mask in Spectrum Analyzer Block

This example shows how to create a new model based on the dsp_basic_filter template, add a
spectral mask to its Spectrum Analyzer block, and run the model.

Masks are overlaid on the spectrum. If the mask is green, the signal is passing. If the mask is red, the
signal is failing. The Spectral Mask panel shows what percentage of the time the mask is
succeeding, which mask is failing, how many times the mask(s) failed, and which channels are
causing the failure.

 [~,mdl] = fileparts(tempname);
 open_system(new_system(mdl,'FromTemplate','dsp_basic_filter'));
 saBlock = find_system(mdl,'BlockType','SpectrumAnalyzer');

 scopeConfig = get_param(saBlock{1},'ScopeConfiguration');
 upperMask = [0 50; 1200 50; 1200 -10; 24000 -10];

 SpectralMaskSpecification

4-1545

 scopeConfig.SpectralMask.UpperMask = upperMask;
 scopeConfig.SpectralMask.LowerMask = -100;
 scopeConfig.SpectralMask.EnabledMasks = 'Upper and lower';

 sim(mdl,'StopTime','20');

4 System Objects

4-1546

Get Spectral Mask Status

This example shows how to add a spectral mask to an existing dsp.SpectrumAnalyzer System
object scope and get the status with getSpectralMaskStatus.

sine = dsp.SineWave('Frequency',[98 100],'SampleRate',1000);
sine.SamplesPerFrame = 1024;
scope = dsp.SpectrumAnalyzer('SampleRate',sine.SampleRate, ...
 'PlotAsTwoSidedSpectrum',false,'ShowLegend',true);
hide(scope);

scope.SpectralMask.EnabledMasks = 'Upper and lower';
upperMask = [0 -10; 90 -10; 90 30; 110 30; 110 -10; 500 -10];

 SpectralMaskSpecification

4-1547

set(scope.SpectralMask,'UpperMask',upperMask,'LowerMask',-55);

for i=1:100
 scope(sine() + 0.05*randn(1024,2));
end

res = getSpectralMaskStatus(scope)

res =

 struct with fields:

 IsCurrentlyPassing: 0
 NumPassedTests: 1
 NumTotalTests: 33
 SuccessRate: 3.0303
 FailingMasks: 'Lower'
 FailingChannels: [1 2]
 SimulationTime: 101.3760

In the Spectrum Analyzer, you can see the same information in the Spectral Mask panel.

show(scope);
release(scope);

4 System Objects

4-1548

See Also
Topics
“Spectral Masks”

Introduced in R2016b

 SpectralMaskSpecification

4-1549

ArrayPlotConfiguration
(Not recommended) Control Array Plot block appearance and behavior from MATLAB

Note ArrayPlotConfiguation is not recommended. Use get_param and set_param to modify
the Array Plot block properties. For more information, see “Compatibility Considerations”.

Description
Use the Array Plot Configuration object to control the appearance and behavior of an Array Plot
block. Create a configuration object with get_param, and then change property values using the
object with dot notation.

You can also modify the Array Plot block properties using get_param and set_param.

Creation
MyScopeConfiguration = get_param(gcbh,'ScopeConfiguration') creates a new Array
Plot Configuration object. If you do not provide the full path to the block, you must first select the
block in the model.

Properties
Plot Configuration

NumInputPorts — Number of input ports
'1' (default) | character vector

Number of input ports on a scope block, specified as a character vector. The maximum number of
input ports is 96.

XDataMode — Source of the x-data spacing
'Sample increment and X-offset' (default) | 'Custom'

Specify whether to use the SampleIncrement and XOffset property values to determine spacing,
or specify your own custom spacing. If you specify 'Custom', you also must specify the
CustomXData property values.

You can set this property only before simulation.
Data Types: char | string

SampleIncrement — x-axis spacing
'1' (default) | character vector

The spacing between samples along the x-axis, specified as a finite scalar in a character vector. The
input signal is only y-axis data. x-axis data is set automatically based on the XOffset and
SampleIncrement properties.

4 System Objects

4-1550

Example: When XOffset is 0 and SampleIncrement is 1, the x-axis values are set to 0, 1, 2, 3, 4,
… .
Example: When XOffset is -1 and SampleIncrement is 0.25, the x-axis values are set to -1, -0.75,
-0.5, -0.25, 0, … .

Dependency

To use this property, set XDataMode to 'Sample increment and X-offset'.

XOffset — Display offset of x-axis
'0' (default) | character vector

Display offset of x-axis, specified as a numeric scalar in a character vector. x-axis data is set
automatically based on both the SampleIncrement and XOffset values. The x-offset represents the
first value on the x-axis.
Example: When XOffset is 0 and SampleIncrement is 1, the x-axis values are set to 0, 1, 2, 3, 4,
… .
Example: When XOffset is -1 and SampleIncrement is 0.25, the x-axis values are set to -1, -0.75,
-0.5, -0.25, 0, … .

Dependency

To use this property, set XDataMode to 'Sample increment and X-offset'.

CustomXData — x-data values
'[]' (default) | character vector

Specify the desired x-data values as a numeric vector in a character vector. The row or column vector
must be equal to the frame length of the inputs. If you use the default (empty vector) value, the x-data
is uniformly spaced and set to (0:L–1), where L is the frame length.
Example: scopeConfiguration.XDataMode = 'Custom';
scopeConfiguration.CustomXData = 'logspace(0,log10(44100/2),1024)'

Dependency

To use this property, set XDataMode to 'Custom'.

XScale — Scale of x-axis
"Linear" (default) | "Log"

Specify whether the scale of the x-axis is "Linear" or "Log". If XOffset is a negative value, you
cannot set this property to "Log".

Scope Window Use

Open the Plot tab, click Settings, and set XScale.
Data Types: char | string

YScale — Scale of y-axis
"Linear" (default) | "Log"

Specify whether the scale of the y-axis is "Linear" or "Log".

 ArrayPlotConfiguration

4-1551

Scope Window Use

Open the Plot tab, click Settings, and set YScale.
Data Types: char | string

Visualization

PlotType — Control type of plot
"Stem" (default) | "Line" | "Stairs"

Specify the type of plot to use for all the input signals displayed in the scope window:

• "Stem" – The scope displays the input signal as circles with vertical lines extending down to the
x-axis at each of the sampled values.

• "Line" – The scope displays the input signal as lines connecting each of the sampled values.
• "Stairs" – The scope displays the input signal as a stair-step graph. A stair-step graph is made

up of only horizontal lines and vertical lines. Each horizontal line represents the signal value for a
discrete sample period and is connected to two vertical lines. Each vertical line represents a
change in values occurring at a sample. Stair-step graphs are useful for drawing time history
graphs of digitally sampled data.

Scope Window Use

Open the Settings and set Plot Type.

AxesScaling — Axes scaling mode
"OnceAtStop" (default) | "Auto" | "Manual" | "Updates"

Specify when the scope scales the axes. Valid values are:

• "Auto" — The scope scales the axes as needed to fit the data, both during and after simulation.
• "Manual" — The scope does not scale the axes automatically.
• "OnceAtStop" — The scope scales the axes when the simulation stops.
• "Updates" — The scope scales the axes once and only once after a specified number of updates.

To specify the number of updates, use the AxesScalingNumUpdates property.

AxesScalingNumUpdates — Number of updates before scaling
"10" (default) | integer character vector | integer string scalar

Set this property to delay auto scaling the y-axis.
Dependency

To enable this property, set AxesScaling to "Updates".

Name — Window name
'Array Plot' (default) | character vector | string scalar

Specify the name of the scope. This name appears as the title of the scope's figure window. To specify
a title of a scope plot, use the Title property.
Data Types: char | string

Position — Scope window position and size in pixels
screen center (default) | [left bottom width height]

4 System Objects

4-1552

Specify, in pixels, the size and location of the scope window as a four-element vector of the form
[left bottom width height]. By default, the scope window appears in the center of your screen
with a width of 800 pixels and height of 450 pixels. The default values for this property may change
depending on your screen resolution.

MaximizeAxes — Maximize axes control
"Auto" (default) | "On" | "Off"

Specify whether to display the scope in maximized-axes mode. In this mode, the axes are expanded to
fit into the entire display. To conserve space, labels do not appear in each display. Instead, tick-mark
values appear on top of the plotted data. You can select one of the following options:

• "Auto" — The axes appear maximized in all displays only if the Title and YLabel properties are
empty for every display. If you enter any value in any display for either of these properties, the
axes are not maximized.

• "On" — The axes appear maximized in all displays. Any values entered into the Title and
YLabel properties are hidden.

• "Off" — None of the axes appear maximized.

Scope Window Use

Hover over the array plot to see the maximize axes button .
Data Types: char | string

Title — Display title
'' (default) | character vector | string scalar

Specify the display title as a character vector or string.

Scope Window Use

Open the Plot tab, click Settings, and set Title.
Data Types: char | string

PlotAsMagnitudePhase — Plot signal as magnitude and phase
false (default) | true

• true – The scope plots the magnitude and phase of the input signal on two separate axes within
the same active display.

• false – The scope plots the real and imaginary parts of the input signal on two separate axes
within the same active display.

This property is useful for complex-valued input signals. Turning on this property affects the phase
for real-valued input signals. When the amplitude of the input signal is nonnegative, the phase is 0
degrees. When the amplitude of the input signal is negative, the phase is 180 degrees.

Scope Window Use

On the Plot tab, select the Magnitude Phase button.

XLabel — x-axis label
"" (default) | character vector | string scalar

 ArrayPlotConfiguration

4-1553

Specify the text for the scope to display below the x-axis.

Scope Window Use

Open the Plot tab, click Settings, and set XLabel.
Data Types: char | string

YLabel — y-axis label
"Amplitude" (default) | character vector | string scalar

Specify the text for the scope to display to the left of the y-axis.

Dependencies

This property applies only when PlotAsMagnitudePhase is false. When
PlotAsMagnitudePhase is true, the two y-axis labels are read-only values "Magnitude" and
"Phase", for the magnitude plot and the phase plot, respectively.

Scope Window Use

Open the Plot tab, click Settings, and set YLabel.
Data Types: char | string

YLimits — y-axis limits
[-10,10] (default) | [ymin, ymax]

Specify the y-axis limits as a two-element numeric vector, [ymin, ymax].

If PlotAsMagnitudePhase is false, the default is [-10,10]. If PlotAsMagnitudePhase is true,
the default is [0,10].

Dependencies

When PlotAsMagnitudePhase is true, this property specifies the y-axis limits of only the
magnitude plot. The y-axis limits of the phase plot are always [-180,180].

Scope Window Use

Open the Plot tab, click Settings, and set Y-Axis Limits as a two-element numeric vector.

ShowGrid — Display grid
true (default) | false

Set this property to true to show grid lines on the plot.

Scope Window Use

Open the Plot tab, click Settings, and select Grid.

ShowLegend — Show legend
false (default) | true

To show a legend with the input names, set this property to true.

From the legend, you can control which signals are visible. This control is equivalent to changing the
visibility in the Style dialog box. In the scope legend, click a signal name to hide the signal in the

4 System Objects

4-1554

scope. To show the signal, click the signal name again. To show only one signal, right-click the signal
name. To show all signals, press Esc.

Note The legend only shows the first 20 signals. Any additional signals cannot be viewed or
controlled from the legend.

Scope Window Use

On the Plot tab, click Legend.
Data Types: logical

ChannelNames — Channel names
empty cell (default) | cell array of character vectors

Specify the input channel names as a cell array of character vectors. The names appear in the legend,
Settings, and Measurements panels. If you do not specify names, the channels are labeled as
Channel 1, Channel 2, etc.

Dependency

To see channel names, set ShowLegend to true.
Data Types: char

OpenAtSimulationStart — Open scope when starting simulation
true (default) | false

Set this property to true to open the scope when the simulation starts. Set this property to false to
prevent the scope from opening at the start of simulation.

Scope Window Use

Select File > Open at Start of Simulation.
Data Types: logical

Examples
Change the Array Plot Block Title and Scaling From the Command Line

Modify an Array Plot block with a configuration object.

Create a new Simulink model with a randomly-generated name.

sysname='ArrayPlotExample';
new_system(sysname);

Add a new Array Plot block to the model.

add_block('built-in/ArrayPlot',[sysname,'/ArrayPlot'])

Call the get_param function to retrieve the default Array Plot block configuration properties.

scopeConfig = get_param([sysname,'/ArrayPlot'],'ScopeConfiguration')

 ArrayPlotConfiguration

4-1555

scopeConfig =
 ArrayPlotConfiguration with properties:

 NumInputPorts: '1'
 XDataMode: 'Sample increment and X-offset'
 SampleIncrement: '1'
 XOffset: '0'
 CustomXData: '[]'
 XScale: 'Linear'
 YScale: 'Linear'
 PlotType: 'Stem'
 AxesScaling: 'OnceAtStop'
 AxesScalingNumUpdates: '100'
 Name: 'ArrayPlot'
 Position: [240 262 800 500]
 MaximizeAxes: 'Auto'
 PlotAsMagnitudePhase: 0
 Title: ''
 XLabel: ''
 YLabel: 'Amplitude'
 YLimits: [-10 10]
 ShowGrid: 1
 ShowLegend: 0
 ChannelNames: {''}
 OpenAtSimulationStart: 1
 Visible: 0

Modify the Array Plot title and axes scaling.

scopeConfig.Title = 'My Array Plot';
scopeConfig.AxesScaling = 'Manual'

scopeConfig =
 ArrayPlotConfiguration with properties:

 NumInputPorts: '1'
 XDataMode: 'Sample increment and X-offset'
 SampleIncrement: '1'
 XOffset: '0'
 CustomXData: '[]'
 XScale: 'Linear'
 YScale: 'Linear'
 PlotType: 'Stem'
 AxesScaling: 'OnceAtStop'
 AxesScalingNumUpdates: '100'
 Name: 'ArrayPlot'
 Position: [240 262 800 500]
 MaximizeAxes: 'Auto'
 PlotAsMagnitudePhase: 0
 Title: ''
 XLabel: ''
 YLabel: 'Amplitude'
 YLimits: [-10 10]
 ShowGrid: 1
 ShowLegend: 0
 ChannelNames: {''}
 OpenAtSimulationStart: 1

4 System Objects

4-1556

 Visible: 0

Compatibility Considerations
ArrayPlotConfiguation is not recommended
Not recommended starting in R2021a

The ArrayPlotConfiguation object is not recommended. To view and modify the Array Plot block
properties from the command-line, use get_param and set_param. For example, to change the
number of input ports, use these commands.

modelname='ArrayPlotExample';
new_system(modelname);
add_block('built-in/ArrayPlot',[sysname,'/ArrayPlot'])
set_param([modelname,'/ArrayPlot'],'NumInputPorts','4')

See Also
Array Plot

Topics
“Control Scope Blocks Programmatically” (Simulink)

Introduced in R2013a

 ArrayPlotConfiguration

4-1557

dsp.DynamicFilterVisualizer
Display time-varying magnitude response of digital filters

Description
The dsp.DynamicFilterVisualizer object displays the magnitude response of time-varying
digital filters or time-varying filter coefficients. The input to this object can be a filter coefficients
vector or a filter System object.

Using the dynamic filter visualizer, you can configure the plot settings, measure the signal statistics,
find the peak values, place the data cursors, and so on from the interface of the visualizer. For details,
see “Configure Array Plot”.

Creation

Syntax
dfv = dsp.DynamicFilterVisualizer
dfv = dsp.DynamicFilterVisualizer(nfft)
dfv = dsp.DynamicFilterVisualizer(nfft,Fs)
dfv = dsp.DynamicFilterVisualizer(nfft,Fs,range)
dfv = dsp.DynamicFilterVisualizer(Name,Value)

Description

dfv = dsp.DynamicFilterVisualizer returns a dynamic filter visualizer object, dfv, that
displays the magnitude response of digital filters or filter coefficients.

dfv = dsp.DynamicFilterVisualizer(nfft) returns a dynamic filter visualizer with the
FFTLength property set to nfft.

dfv = dsp.DynamicFilterVisualizer(nfft,Fs) returns a dynamic filter visualizer with the
FFTLength property set to nfft and the SampleRate property set to Fs.

dfv = dsp.DynamicFilterVisualizer(nfft,Fs,range) returns a dynamic filter visualizer
with the FFTLength property set to nfft, the SampleRate property set to Fs, and the
FrequencyRange property set to range.

dfv = dsp.DynamicFilterVisualizer(Name,Value) returns a dynamic filter visualizer with
each specified property set to the specified value. You can specify name-value pair arguments in any
order.

Properties
FFTLength — FFT length
2048 (default) | positive integer

4 System Objects

4-1558

FFT length that the dynamic filter visualizer uses to compute spectral estimates, specified as a
positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Sampling rate of input
44100 (default) | positive scalar

Sampling rate of the input signal, specified as a real positive scalar in Hz.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FrequencyRange — Range of frequency axis
[20 20e3] (default) | two-element numeric vector

Range of the frequency axis, specified as a two-element numeric vector that is monotonically
increasing and of the form [fmin, fmax]. The upper limit must be less than or equal to Fs/2, where Fs
is the value specified in SampleRate.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

XScale — x-axis scale
'Log' (default) | 'Linear'

X-axis scale, specified as either 'Linear' or 'Log'.

Tunable: Yes

MagnitudeDisplay — y-axis units
'Magnitude (dB)' (default) | 'Magnitude'|'Magnitude squared'

Y-axis units, specified as one of the following:

• 'Magnitude'
• 'Magnitude (dB)'
• 'Magnitude squared'

Tunable: Yes

Visualization

Name — Caption to display on Dynamic Filter Visualizer window
'Dynamic Filter Visualizer' (default) | character vector | string scalar

Caption to display on the Dynamic Filter Visualizer window, specified as a character vector or a string
scalar.
Example: 'Dynamic Filter Visualizer'
Example: "Dynamic Filter Visualizer"

Tunable: Yes

Title — Display title
'' (default) | character vector | string scalar

 dsp.DynamicFilterVisualizer

4-1559

Display title, specified as a character vector or a string scalar.
Example: 'Magnitude Response'
Example: "Magnitude Response"

Tunable: Yes

YLimits — y-axis limits
[-25 25] (default) | two-element numeric vector

Y-axis limits, specified as a two-element numeric vector with the second element greater than the first
element and of the form [ymin, ymax].

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ShowLegend — Show or hide legend
false (default) | true

When this property is set to false, no legend is displayed. When this property is set to true, a
legend with automatic string labels for each input filter is displayed.

Tunable: Yes
Data Types: logical

FilterNames — Names for input filters
{''} (default) | cell array of character vectors

Set this property to a cell array of character vectors to label the input filters in the legend. The
default is an empty cell array. When this property is set to an empty cell array, the filters are named
by default names, such as Filter 1, Filter 2, and so on.

Tunable: Yes

UpperMask — Upper limit mask
Inf (default) | two-column matrix

Upper limit spectral mask, specified as a two-column matrix. The first column represents the
frequency values (Hz), and the second column represents the magnitude spectrum of the upper limit
mask.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LowerMask — Lower limit mask
-Inf (default) | two-column matrix

Lower limit spectral mask, specified as a two-column matrix. The first column represents the
frequency values (Hz), and the second column represents the magnitude spectrum of the lower limit
mask.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Position — Scope window position in pixels
[880 495 800 450] (default) | four-element double vector

4 System Objects

4-1560

Scope window position in pixels, specified as a four-element double vector of the form [left bottom
width height]. The default value of this property is dependent on the screen resolution, and is such
that the window is positioned in the center of the screen, with a width and height of 410 and 300
pixels, respectively.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
dfv(filt)
dfv(B,A)

Description

dfv(filt) displays the time-varying magnitude response of the object filter, filt, in the Dynamic
Filter Visualizer figure, as long as filt has a valid freqz() implementation.

dfv(B,A) displays the magnitude response for the digital filters with numerator and denominator
polynomial coefficients stored in B1 and A1, B2 and A2, ..., and BN and AN, respectively.

Input Arguments

filt — Input filter
filter System object

Input filter System object with a valid freqz() implementation.

B — Numerator polynomial coefficients
row vector

Numerator polynomial coefficients, specified as a row vector.
Data Types: single | double

A — Denominator polynomial coefficients
scalar | row vector

Denominator polynomial coefficients, specified as a:

• scalar –– The filter is an FIR filter.
• row vector –– The filter is an IIR filter.

Data Types: single | double

Object Functions

Specific to dsp.DynamicFilterVisualizer
step Display time-varying magnitude response

 dsp.DynamicFilterVisualizer

4-1561

Specific to Scopes
show Display scope window
hide Hide scope window

Examples

Plot Time-Varying Magnitude Response of FIR Filter

Design an FIR filter with time-varying magnitude response. Plot this varying response on a dynamic
filter visualizer.

Create a dsp.DynamicFilterVisualizer object.

dfv = dsp.DynamicFilterVisualizer('YLimits',[-120 10])

dfv =
 DynamicFilterVisualizer with properties:

 FFTLength: 2048
 SampleRate: 44100
 FrequencyRange: [0 22050]
 XScale: 'Linear'
 MagnitudeDisplay: 'Magnitude (dB)'

 Visualization
 Name: 'Dynamic Filter Visualizer'
 Title: 'Magnitude Response'
 YLimits: [-120 10]
 ShowLegend: 0
 FilterNames: {''}
 UpperMask: Inf
 LowerMask: -Inf
 Position: [240 262 800 500]

Vary the cutoff frequency of the FIR filter, k, from 0.1 to 0.5 in increments of 0.001. View the
varying magnitude response using the dynamic filter visualizer.

for k = 0.1:0.001:0.5
 b = fir1(90,k);
 dfv(b,1);
end

4 System Objects

4-1562

Plot Time-Varying Magnitude Response of Variable Bandwidth FIR Filter

Visualize the varying magnitude response of the variable bandwidth FIR filter using the dyamic filter
visualizer.

Create a dsp.DynamicFilterVisualizer object.

dfv = dsp.DynamicFilterVisualizer('YLimits',[-160 10])

dfv =
 DynamicFilterVisualizer with properties:

 FFTLength: 2048
 SampleRate: 44100
 FrequencyRange: [0 22050]
 XScale: 'Linear'
 MagnitudeDisplay: 'Magnitude (dB)'

 Visualization
 Name: 'Dynamic Filter Visualizer'
 Title: 'Magnitude Response'
 YLimits: [-160 10]
 ShowLegend: 0
 FilterNames: {''}

 dsp.DynamicFilterVisualizer

4-1563

 UpperMask: Inf
 LowerMask: -Inf
 Position: [240 262 800 500]

Design a bandpass variable bandwidth FIR filter with a center frequency of 5 kHz and a bandwidth of
4 kHz.

Fs = 44100;
vbw = dsp.VariableBandwidthFIRFilter('FilterType','Bandpass',...
 'FilterOrder',100,...
 'SampleRate',Fs,...
 'CenterFrequency',5e3,...
 'Bandwidth',4e3);

Vary the center frequency of the filter. Visualize the varying magnitude response of the filter using
the dsp.DynamicFilterVisualizer object.

for idx = 1:100
 dfv(vbw);
 vbw.CenterFrequency = vbw.CenterFrequency + 20;
end

4 System Objects

4-1564

See Also
Functions
show | hide | step

Objects
timescope | dsp.ArrayPlot | dsp.LogicAnalyzer | dsp.SpectrumAnalyzer

Topics
“Configure Array Plot”
“System Identification Using RLS Adaptive Filtering”

Introduced in R2018b

 dsp.DynamicFilterVisualizer

4-1565

dsp.FourthOrderSectionFilter
Implement cascade of fourth-order section filter

Description
The dsp.FourthOrderSectionFilter implements a cascade of fourth order section filters.

Creation
Syntax
fos = dsp.FourthOrderSectionFilter
fos = dsp.FourthOrderSectionFilter(num,den)
fos = dsp.FourthOrderSectionFilter(Name,Value)

Description

fos = dsp.FourthOrderSectionFilter returns a FourthOrderSectionFilter object, fos,
that implements a cascade of fourth order filter sections.

fos = dsp.FourthOrderSectionFilter(num,den) returns a FourthOrderSectionFilter
object with the Numerator property set to num and the Denominator property set to den.

fos = dsp.FourthOrderSectionFilter(Name,Value) returns a
FourthOrderSectionFilter object with each specified property name set to the specified value.
You can specify additional name-value pair arguments in any order.
Example: fos = dsp.FourthOrderSectionFilter('Numerator',num,'Denominator',den)

Properties
num — Numerator coefficients of filter
[1 0.1 0.2 0.3 0.4] (default) | row vector | matrix

Numerator coefficients of the filter, specified as an L-by-5 matrix, where L is the number of filter
sections. The size of this property cannot change when the object is locked. However, the values can
be modified.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

den — Denominator coefficients of filter
[1 0.1 0.2 0.3 0.4] (default) | row vector | matrix

Denominator coefficients of the filter, specified as an L-by-5 matrix or an L-by-4 matrix, where L is the
number of filter sections. The leading denominator coefficients are assumed to be 1 always. If the
denominator is of size L-by-4, one(s) are appended to make the size L-by-5. If the denominator is of
size L-by-5, the first column values are ignored and appended with 1s. The size of this property
cannot change when the object is locked. However, the values can be modified.

4 System Objects

4-1566

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

Usage

Syntax
y = fos(x)

Description

y = fos(x) filters the input signal using the specified fourth-order section filter to produce the
filtered output, y.

Input Arguments

x — Input signal
vector | matrix

Input signal, specified as a vector or a matrix.

The input can be a variable-sized signal, that is, the frame size of each channel (number of rows) can
change even after the object is locked. However, the number of channels (number of columns) cannot
change.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments

y — Filtered output
vector | matrix

Filtered output, returned as a vector or a matrix. The output has the same size, data type, and
complexity as the input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions

Specific to dsp.FourthOrderSectionFilter
fvtool Visualize frequency response of DSP filters
freqz Frequency response of discrete-time filter System object
impz Impulse response of discrete-time filter System object
info Information about filter System object
coeffs Returns the filter System object coefficients in a structure
cost Estimate cost of implementing filter System object
grpdelay Group delay response of discrete-time filter System object

Common to All Objects
step Run System object algorithm

 dsp.FourthOrderSectionFilter

4-1567

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object
clone Create duplicate System object
isLocked Determine if System object is in use

Examples

Filter Noisy Signal Using Fourth-Order Section (FOS) Filter

Filter a noisy sinusoidal signal using the dsp.FourthOrderSectionFilter object. Visualize the
original and filtered signals using a spectrum analyzer.

Input Signal

The input signal is the sum of two sine waves with frequencies 100 Hz and 350 Hz. The sampling
frequency is 1000 Hz.

frameSize = 1024;
fs = 1000;
SINE1 = dsp.SineWave(5,100,'SamplesPerFrame',1024,'SampleRate',fs);
SINE2 = dsp.SineWave(2,350,pi/2,'SamplesPerFrame',1024,...
 'SampleRate',fs);
x = SINE1() + SINE2();

Fourth-Order Section (FOS) Filter Coefficients

The numerator and denominator coefficients for the FOS filter are obtained using designParamEq
which is part of Audio Toolbox:

%N = [2,4];
%gain = [5,10];
%centerFreq = [0.025,0.75];
%bandwidth = [0.025,0.35];
%mode = 'fos';
%[num,den] = designParamEQ(N,gain,centerFreq,bandwidth,mode);

num = [1.0223 -1.9368 0.9205 0 0
 1.5171 2.3980 1.4317 0.6416 0.2752];

den = [-1.9368 0.9428 0 0
 2.0136 1.9224 1.0260 0.3016];

Initialize Filter and Spectrum Analyzer

Construct the FOS IIR filter using the num and den coefficients. Construct a spectrum analyzer to
visualize the original sinusoidal signal and the filtered signal.

fos = dsp.FourthOrderSectionFilter('Numerator',num,...
 'Denominator',den);
scope = dsp.SpectrumAnalyzer(...
 'SampleRate',fs,...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','Linear',...
 'FrequencyResolutionMethod','WindowLength',...

4 System Objects

4-1568

 'WindowLength',frameSize,...
 'Title','Original and Filtered Signals',...
 'ShowLegend',true,...
 'ChannelNames',{'Original Signal','Filtered Signal'});

Filter the input signal, and visualize the original and filtered spectrums.

y = fos(x);
scope([x,y]);
release(scope);

Lowpass Fourth-Order Section (FOS) Filter

Design a lowpass fourth-order section (FOS) filter using the fdesign function. Using this filter, filter
a noisy sinusoidal signal with two tones, one at 3 kHz, and the other at 12 kHz.

Design a fifth-order filter using the elliptic method in the 'df2tsos' structure. Use L-infinity norm
scaling in the frequency domain. Specify the passband frequency to be 0.15pi rad/sample and the
stopband frequency to be 0.25pi rad/sample. Specify 1 dB of allowable passband ripple and a
stopband attenuation of 60 dB.

Fp = 0.15;
Fst = 0.25;

 dsp.FourthOrderSectionFilter

4-1569

Ap = 1;
Ast = 60;

The filter coefficients are scaled using an fdopts.sosscaling object. The scaling object is defined
to have no numerator constraints, and the ScaleValueConstraint is set to 'unit', specifying the
scaling to be unity scaling.

fdo = fdopts.sosscaling;
fdo.NumeratorConstraint='none';
fdo.ScaleValueConstraint='unit';

f = fdesign.lowpass('Fp,Fst,Ap,Ast',Fp,Fst,Ap,Ast);
hFilter = design(f,'ellip','SystemObject',true,...
 'FilterStructure','df2tsos','SOSScaleNorm','Linf',...
 'SOSScaleOpts',fdo);

Visualize the lowpass frequency response of the designed filter using fvtool.

fvtool(hFilter)

Extract the SOS matrix (second-order section representation) of the filter.

sosV = hFilter.SOSMatrix;

Extract the numerator and denominator coefficients from the SOS Matrix.

num = zeros(size(sosV,1),5);
den = zeros(size(sosV,1),5);

4 System Objects

4-1570

for i = 1:size(sosV,1)
 [num0,den0] = iirlp2bp(sosV(i,1:3),sosV(i,4:6),Fp,[0.25,0.75]);
 num(i,1:length(num0)) = num0;
 den(i,1:length(num0)) = den0;
end

Create a fourth-order section filter using the extracted numerator and denominator coefficients.

fos = dsp.FourthOrderSectionFilter(num,den);

Visualize the frequency response of the fourth-order section filter using fvtool.

fvtool(fos);

The input is a sum of two sine waves with frequencies 3 kHz and 12 kHz, respectively. The input
sample rate is 44.1 kHz, and the frame size is set to 1024 samples.

fs = 44100;
FrameLength = 1024;

SINE1 = dsp.SineWave('SamplesPerFrame',FrameLength,'SampleRate',fs,'Frequency',3000);
SINE2 = dsp.SineWave('SamplesPerFrame',FrameLength,'SampleRate',fs,'Frequency',12000);

Initialize a spectrum analyzer to visualize the signal spectra.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',fs,...

 dsp.FourthOrderSectionFilter

4-1571

 'PlotAsTwoSidedSpectrum',false,...
 'Method','Filter bank',...
 'Title','Original and Filtered Signals',...
 'ShowLegend',true,...
 'YLimits',[-180 50],...
 'ChannelNames',{'Original Signal','Filtered Signal'});

Filter the noisy input signal with the fourth-order section filter. Visualize the spectrum of the original
signal and the filtered signal using the spectrum analyzer.

for index = 1:1000
 x = SINE1() + SINE2()+ 0.001*randn(FrameLength,1);
 y = fos(x);
 scope([x,y]);
end

See Also
Objects
dsp.BiquadFilter

Introduced in R2019a

4 System Objects

4-1572

dsp.ISTFT
Inverse short-time FFT

Description
The dsp.ISTFT object computes the inverse short-time Fourier transform (ISTFT) of the frequency-
domain input signal and returns the time-domain output. The object accepts frames of Fourier-
transformed data, converts these frames into the time domain using the IFFT operation, and performs
overlap-add to reconstruct the data. The output of the object is the reconstructed signal normalized
by a factor that depends on the hop length and sum(window). For more details, see “Algorithms” on
page 4-1581.

Creation

Syntax
istf = dsp.ISTFT
istf = dsp.ISTFT(window)
istf = dsp.ISTFT(window,overlap)
istf = dsp.ISTFT(window,overlap,isconjsym)
istf = dsp.ISTFT(window,overlap,isconjsym,woa)
istf = dsp.ISTFT(Name,Value)

Description

istf = dsp.ISTFT returns an object, istf, that implements inverse short-time FFT. The object
processes the data independently across each input channel over time.

istf = dsp.ISTFT(window) returns an inverse short-time FFT object with the Window property
set to window.

istf = dsp.ISTFT(window,overlap) returns an inverse short-time FFT object with the Window
property set to window and the OverlapLength property set to overlap.

istf = dsp.ISTFT(window,overlap,isconjsym) returns an inverse short-time FFT object with
the Window property set to window, OverlapLength property set to overlap, and the
ConjugateSymmetricInput property set to isconjsym.

istf = dsp.ISTFT(window,overlap,isconjsym,woa) returns an inverse short-time FFT object
with the Window property set to window, with the OverlapLength property set to overlap, the
ConjugateSymmetricInput property set to isconjsym, and the WeightedOverlapAdd property set
to woa.

istf = dsp.ISTFT(Name,Value) returns an inverse short-time FFT object with each specified
property name set to the specified value. You can specify additional name-value pair arguments in any
order.

 dsp.ISTFT

4-1573

Properties
Window — Synthesis window
sqrt(hann(512,'periodic')) (default) | vector

Synthesis window, specified as a vector of real elements.

Tunable: Yes
Data Types: single | double

OverlapLength — Overlap length
256 (default) | positive integer

Number of samples by which consecutive windows overlap, specified as a positive integer. The
windows overlap to reduce the artifacts at the data boundaries.

Hop length is the difference between the window length and the overlap length.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ConjugateSymmetricInput — Input is conjugate symmetric
true (default) | false

Set this property to true if the input is conjugate symmetric, which yields real-valued outputs. The
FFT of a real-valued signal is conjugate symmetric, and setting this property to true optimizes the
IFFT computation method. Setting this property to false for conjugate symmetric inputs results in
complex output values with small imaginary parts. Setting this property to true for non-conjugate
symmetric inputs results in invalid outputs.
Data Types: logical

WeightedOverlapAdd — Apply weighted overlap-add
true (default) | false

Set this property to true to apply weighted overlap-add. In weighted overlap-add, the IFFT output is
multiplied by the window before overlap-add. Set this property to false to skip multiplication by the
window.
Data Types: logical

FrequencyRange — Frequency range
'twosided' (default) | 'onesided'

4 System Objects

4-1574

Specify the frequency range as 'onesided' or 'twosided'. If you set the FrequencyRange
property to:

• 'twosided' –– The inverse short-time FFT is computed for a two-sided short-time FFT. The FFT
length used is equal to the input frame length.

• 'onesided' –– The one-sided inverse short-time FFT is computed for a one-sided short-time FFT.
If the input frame length is odd, the FFT length used is (frame length − 1) × 2. If the input frame
length is even, the FFT length used is (frame length × 2) − 1.

Usage

Syntax
y = istft(x)

Description

y = istft(x) applies inverse short-time FFT on the input x, and returns the time-domain output y.

Input Arguments

x — Input signal
vector | matrix

Frequency-domain input signal, specified as a vector or a matrix. If the input is a matrix, the object
treats each column as an independent channel. The FFT length is equal to the number of rows of x.
The FFT length, hence the number of input rows must be greater than or equal to the window length.
Data Types: single | double

Output Arguments

y — ISTFT output
vector | matrix

Inverse short-time FFT output, returned as a vector or a matrix. The output frame length (number of
rows in y) is equal to WL − OL, where WL is the window length and OL is the overlap length.

The output is complex with small imaginary parts when the input x is conjugate symmetric and the
ConjugateSymmetricInput property is set to false. The data type of the output matches the data
type of the input signal.
Data Types: single | double

Object Functions
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
clone Create duplicate System object
isLocked Determine if System object is in use

 dsp.ISTFT

4-1575

Examples

Short-Time Spectral Attenuation

Short-time spectral attenuation is achieved by applying a time-varying attenuation to the short-time
spectrum of a noisy signal. The gain of the attenuation is determined by the estimate of the noise
power in each subband of the spectrum. This gain, when applied to the noisy spectrum, attenuates
the subbands with higher noise power and lifters the subbands with lesser noise power.

Here are the steps involved in performing the short-time spectral attenuation:

1 Analyze the noisy input signal by computing the short-time Fourier transform (STFT).
2 Multiply each subband of the transformed signal with a real positive gain less than 1.
3 Synthesize the denoised subbands by taking the inverse short-time Fourier transform (ISTFT).

The resconstructed signal is the denoised input signal.

Use the dsp.STFT and dsp.ISTFT objects to compute the short-time and the inverse short-time
Fourier transforms, respectively.

Noisy Input Signal

The input is an audio signal sampled at the 22,050 Hz. The dsp.AudioFileReader object reads this
signal in frames of 512 samples. The audio signal is corrupted by white Gaussian noise that has a
standard deviation of 0.05. Use the audioDeviceWriter object to play the noisy audio signal to
your computer's audio device.

FrameLength = 512;
afr = dsp.AudioFileReader('speech_dft.wav',...
 'SamplesPerFrame',FrameLength);
adw = audioDeviceWriter('SampleRate',afr.SampleRate);

noiseStd = 0.05;
while ~isDone(afr)
 cleanAudio = afr();
 noisyAudio = cleanAudio + noiseStd * randn(FrameLength,1);
 adw(noisyAudio);
end
reset(afr)

Initialize Short-Time and Inverse Short-Time Fourier Transform Objects

Initialize the dsp.STFT and dsp.ISTFT objects. Set the window length equal to the input frame
length and the hop length to 16. The overlap length is the difference between the window length and
the hop length, OL = WL – HL. Set the FFT length to 1024.

WindowLength = FrameLength;
HopLength = 16;
numHopsPerFrame = FrameLength / 16;
FFTLength = 1024;

The window used to compute the STFT and ISTFT is a periodic hamming window with length 512.
The ConjugateSymmetricInput flag of the istf object is set to true, indicating that the output of
the istf object is a conjugate-symmetric signal.

4 System Objects

4-1576

win = hamming(WindowLength,'periodic');
stf = dsp.STFT(win,WindowLength-HopLength,FFTLength);
istf = dsp.ISTFT(win,WindowLength-HopLength,1,0);

Gain Estimator

The next step is to define the gain estimator parameters. This gain is applied to the noisy spectrum to
attenuate the subbands with higher noise power and lifter the subbands with lesser noise power.

dec = 16;
alpha = 15;
stftNorm = (sum(win.*win) / dec).^2;

Spectral Attenuation

Feed the audio signal to stf one hop-length at a time. Apply the estimated gain to the transformed
signal. Reconstruct the denoised version of the original speech signal by performing an inverse
Fourier transform on the individual frequency bands. Play the denoised audio signal to the computer's
audio device.

while ~isDone(afr)
 cleanAudio = afr();
 noisyAudio = cleanAudio + noiseStd * randn(FrameLength,1);
 y = zeros(FrameLength,1); % y holds the denoised audio frame

 % Feed audio to stft one hop-length at a time
 for index = 1:numHopsPerFrame
 X = stf(noisyAudio((index-1)*HopLength+1:index*HopLength));
 % Gain estimator
 Z = abs(X).^2 / (noiseStd^2 * alpha) / stftNorm;
 Z(Z<=1) = 1;
 Z = 1 - 1./Z;
 Z = sign(Z) .* sqrt(abs(Z));
 X = X .* Z;
 % Convert back to time-domain
 y((index-1)*HopLength+1:index*HopLength) = istf(X);
 end
 % Listen to denoised audio:
 adw(y);
end

Perfect Reconstruction

Perfect reconstruction is when the output of dsp.ISTFT matches the input to dsp.STFT. Perfect
reconstruction is obtained if the analysis window, g n , obeys the constant overlap-add (COLA)
property at hop-size R.

∑
m = − ∞

∞
g n−mR = 1, ∀n ∈ Ζ g ∈ COLA R

A signal is perfectly reconstructed if the output of the dsp.ISTFT object matches the input to the
dsp.STFT object.

iscola Function

The iscola function checks that the specified window and overlap satisfy the COLA constraint to
ensure that the inverse short-time Fourier transform (ISTFT) results in perfect reconstruction for

 dsp.ISTFT

4-1577

non-modified spectra. The function returns a logical true if the combination of input parameters is
COLA-compliant and a logical false if not. The method argument of the function is set to 'ola' or
'wola' depending on whether the inversion method uses weighted overlap-add (WOLA).

Check if hann() window of length 120 samples and an overlap length of 60 samples is COLA
compliant.

winLen = 120;
overlapLen = 60;
win = hann(winLen,'periodic');
tf = iscola(win,overlapLen,'ola')

tf = logical
 1

Initialization

Initialize the dsp.STFT and dsp.ISTFT System objects with this hann window that is COLA
compliant. Set the FFT length to equal the window length.

frameLen = winLen-overlapLen;
stf = dsp.STFT('Window',win,'OverlapLength',overlapLen,'FFTLength',winLen);
istf = dsp.ISTFT('Window',win,'OverlapLength',overlapLen,'WeightedOverlapAdd',0);

Reconstruct Data

Compute the STFT of a random signal. Set the length of the input signal to equal the hop length
(window length – overlap length). Since the window is COLA compliant, the ISTFT of this non-
modified spectra perfectly reconstructs the original time-domain signal.

To confirm, compare the input, x to the reconstructed output, y. Due to the latency introduced by the
objects, the reconstructed output is shifted in time compared to the input. Therefore, to compare,
take the norm of the difference between the reconstructed output, y and the previous input, xprev.
The norm is very small, indicating that the output signal is a perfectly reconstructed version of the
input signal.

n = zeros(1,100);
xprev = 0;
for i = 1:100
 x = randn(frameLen,1);
 X = stf(x);
 y = istf(X);
 n(1,i) = norm(y-xprev);
 xprev = x;
end
max(abs(n))

ans = 1.8077e-13

ISTFT with Weighted Overlap-Add (WOLA)

In WOLA, a second window called the synthesis window, f n , is applied after the IFFT operation and
before overlap-add. The synthesis and analysis windows are typically identical and are usually
obtained by taking the square root of windows satisfying COLA (thereby ensuring perfect
reconstruction).

4 System Objects

4-1578

iscola Function

Check if sqrt(hann()) window of length 120 samples and an overlap length of 60 samples is WOLA
compliant. Set the method argument of the iscola function to 'wola'. The output of the iscola
function is 1 indicating that this window is WOLA compliant.

winWOLA = sqrt(hann(winLen,'periodic'));
tfWOLA = iscola(winWOLA,overlapLen,'wola')

tfWOLA = logical
 1

Reconstruct Data with WOLA

Release the dsp.STFT and dsp.ISTFT System objects and set the window to
sqrt(hann(winLen,'periodic')) window. To use weighted overlap-add on the ISTFT side, set
the 'WeightedOverlapAdd' to true.

release(stf);
release(istf);
stf.Window = winWOLA;
istf.Window = winWOLA;
istf.WeightedOverlapAdd = true;

n = zeros(1,100);
xprev = 0;
for i = 1:100
 x = randn(frameLen,1);
 X = stf(x);
 y = istf(X);
 n(1,i) = norm(y-xprev);
 xprev = x;
end
max(abs(n))

ans = 3.7930e-15

The norm of the difference between the input signal and the reconstructed signal is very small
indicating that the signal has been reconstructed perfectly.

More About
Inverse Short-Time Fourier Transform (ISTFT)

The inverse short-time Fourier transform of a discrete frequency-domain signal is computed by taking
the IFFT of the input frequency subbands, overlap-adding the inverted signals, and normalizing the
output to reconstruct the data.

The object accepts frames of Fourier-transformed data. These segments are converted into the time-
domain using the IFFT operation. The inverted segments are overlapped so that the artifacts at the
boundary are reduced. To reconstruct the data, the overlapped signals are added and normalized by a
factor that is a ratio of the hop length and sum(window).

The ISTFT is given by

 dsp.ISTFT

4-1579

y(n) = 1
2π ∫

−π

π

∑
m = −∞

∞
Ym(ω)e jωndω

= ∑
m = −∞

∞ 1
2π ∫

−π

π
Ym(ω)e jωndω

= ∑
m = −∞

∞
ym(n)

where,

• y(n) –– Reconstructed signal at time n.
• Ym(ω) –– Frequency-domain input.

ISTFT with Weighted Overlap-Add (WOLA)

In WOLA, a second window (usually called the synthesis window) is applied after the IFFT operation
and before overlap-add. WOLA is used to suppress discontinuities at frame boundaries caused by
nonlinear processing of the STFT.

The analysis window (on the STFT side) and the synthesis window (on the ISTFT side) are typically
identical, and are usually obtained by taking the square root of windows satisfying the constant
overlap-add (COLA) property, thereby ensuring perfect reconstruction. For details on the COLA
property, see the More About on page 4-1592 section in dsp.STFT page.

The inverse FFT of frequency-domain input Ym(ω) produces the output ym(n), where n = 0 to N − 1,

and is given by ym(n) = 1
2π ∫

−π

π
Ym(ω)e jωndω .

The synthesis window, f(n), applied to ym(n) yields the weighted output frame:

ym
f (n) = ym(n) . f (n), ∀n = 0, ..., N − 1.

Translate the mth output frame to time mR:

ym
f (n) = ym

f (n−mR) .

Add the translated signal to the accumulated output signal, y(n):

y(n) = y(n− 1) + ym
f (n) .

To obtain perfect reconstruction in the absence of spectral modifications, then the following condition
must be true:

y(n) = ∑
m = −∞

∞
x(n)g(n−mR)f (n−mR)

= x(n) ∑
m = −∞

∞
g(n−mR)f (n−mR),

= x(n),

4 System Objects

4-1580

which is true if and only if

∑
m

g(n−mR)f (n−mR) = 1, ∀n ∈ ℤ .

where,

• g(n) –– Analysis window on the STFT side.
• f(n) –– Synthesis window on the ISTFT side.

Algorithms
Here is a sketch of how the algorithm is implemented without weighted overlap-add (WOLA):

The frequency-domain input is inverted using IFFT, and then overlap-add is performed. Note that
each run of the algorithm generates R new output time-domain samples, where R is the hop length.
The hop length is defined as WL − OL, where WL is the window length and OL is the overlap length.
The normalization stage multiplies the output by R/sum(win), where win is the window vector
specified in the Window property.

Here is a sketch of how the algorithm is implemented with Weighted Overlap-Add (WOLA):

In WOLA, a second window (usually called the synthesis window) is applied after the IFFT operation
and before overlap-add. WOLA is used to suppress discontinuities at frame boundaries caused by
nonlinear processing of the STFT. For more details, see More About on page 4-1579.

 dsp.ISTFT

4-1581

Here is an illustration of how the input frequency subbands look when inverted with IFFT and
overlap-added together to reconstruct a time-domain signal.

4 System Objects

4-1582

 dsp.ISTFT

4-1583

The analysis window (on the STFT side) and the synthesis window (on the ISTFT side) are typically
identical. To ensure perfect reconstruction, the windows are usually obtained by taking the square
root of windows satisfying the constant overlap-add (COLA) property. For details on the COLA
property and how perfect reconstruction is defined, see the More About on page 4-1592 in dsp.STFT
page.

References
[1] Allen, J.B., and L. R. Rabiner. "A Unified Approach to Short-Time Fourier Analysis and Synthesis,''

Proceedings of the IEEE, Vol. 65, pp. 1558–1564, Nov. 1977.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When the FFT length, which is determined by the number of rows in the input signal, is not a power
of two, the executable generated from this object relies on prebuilt dynamic library files (.dll files)
included with MATLAB. Use the packNGo function to package the code generated from this object
and all the relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and
rebuild your project in another development environment where MATLAB is not installed. For more
details, see “How To Run a Generated Executable Outside MATLAB”.

This limitation does not apply when the FFT length is a power of two.

See Also
Objects
dsp.STFT

Blocks
Inverse Short-Time FFT

Introduced in R2019a

4 System Objects

4-1584

dsp.STFT
Short-time FFT

Description
The dsp.STFT object computes the short-time Fourier transform (STFT) of the time-domain input
signal. The object accepts frames of time-domain data, buffers them to the desired window length and
overlap length, multiplies the samples by the window, and then performs FFT on the buffered
windows. For more details, see “Algorithms” on page 4-1593.

Use the STFT to analyze the frequency content of a signal that varies with time.

Creation

Syntax
stf = dsp.STFT
stf = dsp.STFT(window)
stf = dsp.STFT(window,overlap)
stf = dsp.STFT(window,overlap,nfft)
stf = dsp.STFT(Name,Value)

Description

stf = dsp.STFT returns an object, stf, that implements the short-time FFT. The object processes
the data independently across each input channel over time.

stf = dsp.STFT(window) returns a short-time FFT object with the Window property set to
window.

stf = dsp.STFT(window,overlap) returns a short-time FFT object with the Window property set
to window and the OverlapLength property set to overlap.

stf = dsp.STFT(window,overlap,nfft) returns a short-time FFT object with the Window
property set to window, the OverlapLength property set to overlap, and the FFTLength property
set to nfft.

stf = dsp.STFT(Name,Value) returns a short-time FFT object with each specified property name
set to the specified value. You can specify additional name-value pair arguments in any order.

Properties
Window — Analysis window
sqrt(hann(512,'periodic')) (default) | vector

Analysis window, specified as a vector of real elements.

 dsp.STFT

4-1585

The object buffers the input into overlapping window segments using the specified window length
and overlap length, and then multiplies each overlapped segment by the window.

Tunable: Yes
Data Types: single | double

OverlapLength — Overlap length
256 (default) | positive integer

Number of samples by which consecutive windows overlap, specified as a positive integer. The
window overlap reduces the artifacts at the data boundaries.

4 System Objects

4-1586

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FFTLength — FFT length
512 (default) | positive integer

FFT length, specified as a positive integer. This property determines the length of the STFT output
(number of rows). The FFT length must be greater than or equal to the window length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FrequencyRange — Frequency range
'twosided' (default) | 'onesided'

Frequency range over which the short-time FFT is computed, specified as:

• 'twosided' ––The short-time FFT is computed for complex or real inputs signals. The length of
the short-time FFT is equal to the value you specify in the FFTLength property.

• 'onesided' –– The one-sided short-time FFT is computed for real input signals only. When the
FFT length is even, the short-time FFT length is FFTLength/2+1. If FFT length is odd, the length
of the short-time FFT is equal to (FFTLength+1)/2.

Usage

Syntax
y = stf(x)

Description

y = stf(x) applies short-time FFT on the input x and returns the frequency-domain output y.

Input Arguments

x — Input signal
vector | matrix

Time-domain input signal, specified as a vector or a matrix. If the input is a matrix, the object treats
each column as an independent channel. The frame size (number of rows in x) must be equal to or
less than the hop length (window length − overlap length).

The input can be a variable-sized signal. That is, the frame size of the signal can change in between
calls to the object algorithm without calling the release function. The number of channels must
remain the same.

 dsp.STFT

4-1587

If the FrequencyRange property is set to 'onesided', the input must be real. If the
FrequencyRange property is set to 'twosided', the input can be real or complex.
Data Types: single | double

Output Arguments

y — STFT output
vector | matrix

Short-time FFT output, returned as a vector or a matrix.

If there are enough samples (equal to hop length) to form an STFT output, y is an FFTLength-by-N
matrix, where N is the number of input channels. If there are not enough samples to form an STFT
output, y is empty.

The data type of the output matches that of the input signal.
Data Types: single | double

Object Functions
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
clone Create duplicate System object
isLocked Determine if System object is in use
getFrequencyVector Get the vector of frequencies at which the short-time FFT is computed

Examples

Short-Time Spectral Attenuation

Short-time spectral attenuation is achieved by applying a time-varying attenuation to the short-time
spectrum of a noisy signal. The gain of the attenuation is determined by the estimate of the noise
power in each subband of the spectrum. This gain, when applied to the noisy spectrum, attenuates
the subbands with higher noise power and lifters the subbands with lesser noise power.

Here are the steps involved in performing the short-time spectral attenuation:

1 Analyze the noisy input signal by computing the short-time Fourier transform (STFT).
2 Multiply each subband of the transformed signal with a real positive gain less than 1.
3 Synthesize the denoised subbands by taking the inverse short-time Fourier transform (ISTFT).

The resconstructed signal is the denoised input signal.

Use the dsp.STFT and dsp.ISTFT objects to compute the short-time and the inverse short-time
Fourier transforms, respectively.

Noisy Input Signal

The input is an audio signal sampled at the 22,050 Hz. The dsp.AudioFileReader object reads this
signal in frames of 512 samples. The audio signal is corrupted by white Gaussian noise that has a

4 System Objects

4-1588

standard deviation of 0.05. Use the audioDeviceWriter object to play the noisy audio signal to
your computer's audio device.

FrameLength = 512;
afr = dsp.AudioFileReader('speech_dft.wav',...
 'SamplesPerFrame',FrameLength);
adw = audioDeviceWriter('SampleRate',afr.SampleRate);

noiseStd = 0.05;
while ~isDone(afr)
 cleanAudio = afr();
 noisyAudio = cleanAudio + noiseStd * randn(FrameLength,1);
 adw(noisyAudio);
end
reset(afr)

Initialize Short-Time and Inverse Short-Time Fourier Transform Objects

Initialize the dsp.STFT and dsp.ISTFT objects. Set the window length equal to the input frame
length and the hop length to 16. The overlap length is the difference between the window length and
the hop length, OL = WL – HL. Set the FFT length to 1024.

WindowLength = FrameLength;
HopLength = 16;
numHopsPerFrame = FrameLength / 16;
FFTLength = 1024;

The window used to compute the STFT and ISTFT is a periodic hamming window with length 512.
The ConjugateSymmetricInput flag of the istf object is set to true, indicating that the output of
the istf object is a conjugate-symmetric signal.

win = hamming(WindowLength,'periodic');
stf = dsp.STFT(win,WindowLength-HopLength,FFTLength);
istf = dsp.ISTFT(win,WindowLength-HopLength,1,0);

Gain Estimator

The next step is to define the gain estimator parameters. This gain is applied to the noisy spectrum to
attenuate the subbands with higher noise power and lifter the subbands with lesser noise power.

dec = 16;
alpha = 15;
stftNorm = (sum(win.*win) / dec).^2;

Spectral Attenuation

Feed the audio signal to stf one hop-length at a time. Apply the estimated gain to the transformed
signal. Reconstruct the denoised version of the original speech signal by performing an inverse
Fourier transform on the individual frequency bands. Play the denoised audio signal to the computer's
audio device.

while ~isDone(afr)
 cleanAudio = afr();
 noisyAudio = cleanAudio + noiseStd * randn(FrameLength,1);
 y = zeros(FrameLength,1); % y holds the denoised audio frame

 % Feed audio to stft one hop-length at a time
 for index = 1:numHopsPerFrame

 dsp.STFT

4-1589

 X = stf(noisyAudio((index-1)*HopLength+1:index*HopLength));
 % Gain estimator
 Z = abs(X).^2 / (noiseStd^2 * alpha) / stftNorm;
 Z(Z<=1) = 1;
 Z = 1 - 1./Z;
 Z = sign(Z) .* sqrt(abs(Z));
 X = X .* Z;
 % Convert back to time-domain
 y((index-1)*HopLength+1:index*HopLength) = istf(X);
 end
 % Listen to denoised audio:
 adw(y);
end

Perfect Reconstruction

Perfect reconstruction is when the output of dsp.ISTFT matches the input to dsp.STFT. Perfect
reconstruction is obtained if the analysis window, g n , obeys the constant overlap-add (COLA)
property at hop-size R.

∑
m = − ∞

∞
g n−mR = 1, ∀n ∈ Ζ g ∈ COLA R

A signal is perfectly reconstructed if the output of the dsp.ISTFT object matches the input to the
dsp.STFT object.

iscola Function

The iscola function checks that the specified window and overlap satisfy the COLA constraint to
ensure that the inverse short-time Fourier transform (ISTFT) results in perfect reconstruction for
non-modified spectra. The function returns a logical true if the combination of input parameters is
COLA-compliant and a logical false if not. The method argument of the function is set to 'ola' or
'wola' depending on whether the inversion method uses weighted overlap-add (WOLA).

Check if hann() window of length 120 samples and an overlap length of 60 samples is COLA
compliant.

winLen = 120;
overlapLen = 60;
win = hann(winLen,'periodic');
tf = iscola(win,overlapLen,'ola')

tf = logical
 1

Initialization

Initialize the dsp.STFT and dsp.ISTFT System objects with this hann window that is COLA
compliant. Set the FFT length to equal the window length.

frameLen = winLen-overlapLen;
stf = dsp.STFT('Window',win,'OverlapLength',overlapLen,'FFTLength',winLen);
istf = dsp.ISTFT('Window',win,'OverlapLength',overlapLen,'WeightedOverlapAdd',0);

4 System Objects

4-1590

Reconstruct Data

Compute the STFT of a random signal. Set the length of the input signal to equal the hop length
(window length – overlap length). Since the window is COLA compliant, the ISTFT of this non-
modified spectra perfectly reconstructs the original time-domain signal.

To confirm, compare the input, x to the reconstructed output, y. Due to the latency introduced by the
objects, the reconstructed output is shifted in time compared to the input. Therefore, to compare,
take the norm of the difference between the reconstructed output, y and the previous input, xprev.
The norm is very small, indicating that the output signal is a perfectly reconstructed version of the
input signal.

n = zeros(1,100);
xprev = 0;
for i = 1:100
 x = randn(frameLen,1);
 X = stf(x);
 y = istf(X);
 n(1,i) = norm(y-xprev);
 xprev = x;
end
max(abs(n))

ans = 1.8077e-13

ISTFT with Weighted Overlap-Add (WOLA)

In WOLA, a second window called the synthesis window, f n , is applied after the IFFT operation and
before overlap-add. The synthesis and analysis windows are typically identical and are usually
obtained by taking the square root of windows satisfying COLA (thereby ensuring perfect
reconstruction).

iscola Function

Check if sqrt(hann()) window of length 120 samples and an overlap length of 60 samples is WOLA
compliant. Set the method argument of the iscola function to 'wola'. The output of the iscola
function is 1 indicating that this window is WOLA compliant.

winWOLA = sqrt(hann(winLen,'periodic'));
tfWOLA = iscola(winWOLA,overlapLen,'wola')

tfWOLA = logical
 1

Reconstruct Data with WOLA

Release the dsp.STFT and dsp.ISTFT System objects and set the window to
sqrt(hann(winLen,'periodic')) window. To use weighted overlap-add on the ISTFT side, set
the 'WeightedOverlapAdd' to true.

release(stf);
release(istf);
stf.Window = winWOLA;
istf.Window = winWOLA;
istf.WeightedOverlapAdd = true;

 dsp.STFT

4-1591

n = zeros(1,100);
xprev = 0;
for i = 1:100
 x = randn(frameLen,1);
 X = stf(x);
 y = istf(X);
 n(1,i) = norm(y-xprev);
 xprev = x;
end
max(abs(n))

ans = 3.7930e-15

The norm of the difference between the input signal and the reconstructed signal is very small
indicating that the signal has been reconstructed perfectly.

More About
Short-Time Fourier Transform

The short-time Fourier transform of a discrete time-domain signal is computed by taking the Fourier
transform of short windowed segments of the time-domain data.

The discrete-time domain signal to be transformed is broken up into short segments. These segments
usually overlap each other so that the artifacts at the boundaries are reduced. Each segment is
Fourier transformed, and the complex result is added to a matrix, which records the magnitude and
phase for each point in time and frequency.

The STFT is given by

Xm(ω) = ∑
n = −∞

∞
x(n)g(n−mR)e‐jωn

where,

• x(n) –– Input signal at time n.
• g(n) –– Length M window function.
• Xm(ω) –– DTFT of windowed data centered about time mR.
• R –– Hop size, in samples, between successive DTFTs.

If the window g(n) has the constant overlap-add (COLA) property at hop-size R, that is, if

∑
m = −∞

∞
g(n−mR) = 1, ∀n ∈ Z (g ∈ COLA(R)),

then the sum of the successive DTFTs over time equals the DTFT of the whole signal X(ω):

4 System Objects

4-1592

∑
m = −∞

∞
Xm(ω) ≜ ∑

m = −∞

∞
∑

n = −∞

∞
x(n)g(n−mR)e‐jωn,

= ∑
n = −∞

∞
x(n)e‐jωn ⋅ ∑

m = −∞

∞
g(n−mR),

= ∑
n = −∞

∞
x(n)e‐jωn ⋅ 1,

≜ DTFTω(x) = X(ω).

Taking the inverse short-time Fourier transform of this DTFT reconstructs the original time-domain
signal.

The magnitude squared of the STFT yields the spectrogram representation of the Power Spectral
Density of the function.

Algorithms
Here is a sketch of how the algorithm is implemented:

The time-domain input signal is buffered based on a user-specified window length (WL) and overlap
length (OL). The hop size, R, is defined as R = WL – OL. Buffered windows are multiplied by a user-
specified window of length WL. The STFT output is the FFT of this product. The number of time-
domain samples required to form a new FFT output is R.

Here is an illustration of how a random signal looks like in the original time-domain, after multiplying
with the overlapping windows, and after applying FFT on the multiplied windows:

 dsp.STFT

4-1593

4 System Objects

4-1594

References
[1] Allen, J.B., and L. R. Rabiner. "A Unified Approach to Short-Time Fourier Analysis and Synthesis,''

Proceedings of the IEEE, Vol. 65, pp. 1558–1564, Nov. 1977.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dsp.ISTFT

Blocks
Short-Time FFT

Introduced in R2019a

 dsp.STFT

4-1595

Functions

5

addCursor
Package: dsp

Add cursor to Logic Analyzer

Syntax
cursorTag = addCursor(scope)
cursorTag = addCursor(scope,Name,Value)

Description
cursorTag = addCursor(scope) adds in a cursor to the display. A tag value is returned, which
can be used to modify and delete the cursor.

cursorTag = addCursor(scope,Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in single quotes.

Examples

Modify Logic Analyzer Cursors Programmatically

This example shows how to use functions to create, manipulate, and delete cursors in a
dsp.LogicAnalyzer object.

Create Logic Analyzer and Signals

scope = dsp.LogicAnalyzer('NumInputPorts',3);
for ii = 1:20
 scope(ii,10*ii,20*ii);
end

5 Functions

5-2

Add Cursor

Add a cursor at 15 seconds and show the cursor information.

cursor = addCursor(scope,'Location',15,'Color','Cyan');
getCursorInfo(scope,cursor)

ans = struct with fields:
 Location: 15
 Color: [0 1 1]
 Locked: 0
 Tag: 'C2'

Modify Cursor

Change the cursor color to magenta.

hide(scope)
modifyCursor(scope,cursor,'Color','Magenta')
show(scope)

 addCursor

5-3

Remove Cursor

Delete the yellow cursor at 0 seconds.

hide(scope)
tags = getCursorTags(scope);
deleteCursor(scope,tags{1});
show(scope)

5 Functions

5-4

Input Arguments
scope — The Logic Analyzer object to which you want to add a cursor
dsp.LogicAnalyzer object
Example: addCursor(scope) adds a cursor with the default characteristics.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Location',2,'Color','Blue' specifies that a cursor should be moved to the 2-second
mark and colored blue.

Color — Color of the cursor
'Yellow' (default) | character vector | three element numeric vector | string scalar

Color of the cursor, specified as a [R G B] number value, color name, or color short name:

 addCursor

5-5

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Example: 'Color','blue'
Example: 'Color',[0,0,1]
Data Types: char | string | double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

Location — Location of the cursor
0 (default) | numeric scalar

Specify as a numeric scalar value, in seconds, the cursor location.
Example: 'Location',1
Data Types: double

Locked — Locked status of the cursor
false (default) | true

Locked status of the cursor, specified as false or true.

• true — the cursor location cannot be changed. Logic Analyzer denotes the locked cursor by
assigning a default color of gray. This color cannot be changed.

• false — the cursor location can be changed. Logic Analyzer denotes the unlocked cursor by
assigning a default color of yellow.

Example: 'Locked',true

See Also
dsp.LogicAnalyzer | deleteCursor | getCursorTags | getCursorInfo | modifyCursor

Introduced in R2013a

5 Functions

5-6

addDivider
Package: dsp

Add divider to Logic Analyzer

Syntax
dividerTag = addDivider(scope)
dividerTag = addDivider(scope,Name,Value)

Description
dividerTag = addDivider(scope) adds a divider to the display. A tag value is returned, which
can be used to modify and delete the divider.

dividerTag = addDivider(scope,Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in single quotes.

Examples

Manipulate Logic Analyzer Programatically

Use functions to construct and manipulate a dsp.LogicAnalyzer System object.

Display Waves on Logic Analyzer scope.

scope = dsp.LogicAnalyzer('NumInputPorts',2);

stop = 30;
for count = 1:stop
 sinValVec = sin(count/stop*2*pi);
 cosValVec = cos(count/stop*2*pi);
 cosValVecOffset = cos((count+10)/stop*2*pi);

 scope([count (count-(stop/2))],[sinValVec cosValVec cosValVecOffset])
end

 addDivider

5-7

Reorganize Display

hide(scope)
digitalDividerTag = addDivider(scope,'Name','Digital','Height',20);
analogDividerTag = addDivider(scope,'Name','Analog','Height',40);

tags = getDisplayChannelTags(scope);

modifyDisplayChannel(scope,tags{1},'InputChannel',1,...
 'Name','Ramp Digital','Height',40);
modifyDisplayChannel(scope,tags{2},'InputChannel',2,...
 'Name','Waves Analog','Format','Analog','Height',80);

moveDisplayChannel(scope,digitalDividerTag,'DisplayChannel',1)
moveDisplayChannel(scope,tags{2},'DisplayChannel',length(tags))

show(scope)

5 Functions

5-8

Duplicate Wave and Check Information

hide(scope)
addWave(scope,'InputChannel',2,'Name','Waves Digital','Format','Digital',...
 'Height',30,'DisplayChannel',3);
show(scope)

 addDivider

5-9

Remove Dividers

hide(scope)
deleteDisplayChannel(scope,digitalDividerTag)
deleteDisplayChannel(scope,analogDividerTag)
show(scope)

5 Functions

5-10

Clear variables
clear analogDividerTag cosValVec cosValVecOffset count digitalDividerTag duplicateWave scope sinValVec stop tags

Input Arguments
scope — Logic Analyzer object
dsp.LogicAnalyzer object

dsp.LogicAnalyzer object to which you want to add a divider.
Example: addDivider(scope) adds a divider with the default characteristics.

Divider Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DisplayChannel',2,'Name','MyDivider' specifies that a divider should be added to
display channel 2 and named “MyDivider”.

 addDivider

5-11

DisplayChannel — Channel on the display that shows this divider
NumInputPorts (default) | scalar numeric value in the range (1,NumInputPorts)

Specify as a scalar numeric value the display channel that shows this divider. By default, the divider
is added to the end of the display.
Example: 'DisplayChannel',2
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Height — Height of the divider
0 (default) | scalar integer

Specify, in pixels, the height of the divider as a scalar integer in the range 8-200. If you choose 0, the
value of the DisplayChannelHeight property in the Logic Analyzer is used.
Example: 'Height',2
Data Types: double

Name — The name or label for the divider
'' (default) | character vector | string scalar

Specify the name that you would like to set for the new divider.
Example: 'Name','MyDivider'
Data Types: char | string

Output Arguments
dividerTag — tag for new divider
random character vector

A tag for the newly added divider. Use the tag name to modify and delete the divider.

See Also
dsp.LogicAnalyzer | addCursor | addWave

Introduced in R2013a

5 Functions

5-12

addWave
Package: dsp

Add wave to Logic Analyzer

Syntax
waveTag = addWave(scope)
waveTag = addWave(scope,Name,Value)

Description
waveTag = addWave(scope) adds a wave to the display. A tag value is returned, which can be used
to modify and delete the wave.

waveTag = addWave(scope,Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in single quotes.

Examples

Manipulate Logic Analyzer Programatically

Use functions to construct and manipulate a dsp.LogicAnalyzer System object.

Display Waves on Logic Analyzer scope.

scope = dsp.LogicAnalyzer('NumInputPorts',2);

stop = 30;
for count = 1:stop
 sinValVec = sin(count/stop*2*pi);
 cosValVec = cos(count/stop*2*pi);
 cosValVecOffset = cos((count+10)/stop*2*pi);

 scope([count (count-(stop/2))],[sinValVec cosValVec cosValVecOffset])
end

 addWave

5-13

Reorganize Display

hide(scope)
digitalDividerTag = addDivider(scope,'Name','Digital','Height',20);
analogDividerTag = addDivider(scope,'Name','Analog','Height',40);

tags = getDisplayChannelTags(scope);

modifyDisplayChannel(scope,tags{1},'InputChannel',1,...
 'Name','Ramp Digital','Height',40);
modifyDisplayChannel(scope,tags{2},'InputChannel',2,...
 'Name','Waves Analog','Format','Analog','Height',80);

moveDisplayChannel(scope,digitalDividerTag,'DisplayChannel',1)
moveDisplayChannel(scope,tags{2},'DisplayChannel',length(tags))

show(scope)

5 Functions

5-14

Duplicate Wave and Check Information

hide(scope)
addWave(scope,'InputChannel',2,'Name','Waves Digital','Format','Digital',...
 'Height',30,'DisplayChannel',3);
show(scope)

 addWave

5-15

Remove Dividers

hide(scope)
deleteDisplayChannel(scope,digitalDividerTag)
deleteDisplayChannel(scope,analogDividerTag)
show(scope)

5 Functions

5-16

Clear variables

clear analogDividerTag cosValVec cosValVecOffset count digitalDividerTag duplicateWave scope sinValVec stop tags

Input Arguments
scope — The Logic Analyzer object to which you want to add a wave
dsp.LogicAnalyzer object
Example: 'addWave(scope)' adds a wave with the default characteristics.

Wave Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'InputChannel',2,'Color','Blue' specifies that a wave should be added to input
channel 1 and colored blue.

 addWave

5-17

Color — Color of the wave
'Default' (default) | character vector | three element numeric vector | string scalar

Color of the wave, specified as an [R G B] value or one of the following:

• 'Black'
• 'Blue'
• 'Cyan'
• 'Default'
• 'Green'
• 'Magenta'
• 'Red'
• 'White'
• 'Yellow'

When you choose 'Default', the value of the DisplayChannelColor property in the Logic
Analyzer is used.
Example: 'Color','Blue'
Example: 'Color',[0,0,1]
Data Types: char | string | double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

DisplayChannel — Channel on the display that shows this wave
NumInputPorts (default) | scalar numeric value in the range (1,NumInputPorts)

Specify as a scalar numeric value the display channel that shows this wave. By default, the wave is
added to the end of the display.
Example: 'DisplayChannel',2
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

FontSize — Font size for values in the wave
0 (default) | scalar nonnegative integer

Specify as a scalar nonnegative integer the font size in points. When you choose 0, the value of the
DisplayChannelFontSize property in the Logic Analyzer is used.
Example: 'FontSize',8
Data Types: double

Format — Display format for the wave
'Default' (default) | 'Analog' | 'Digital'

When you choose 'Default', the value of the DisplayChannelFormat property in the Logic
Analyzer is used.
Example: 'Format','Digital'
Data Types: char | string

5 Functions

5-18

Height — Height of the wave
0 (default) | scalar integer

Specify as a scalar integer the height of the wave in the display in units of 16 pixels. When you
choose 0, the value of the DisplayChannelHeight property in the Logic Analyzer is used.
Example: 'Height',2
Data Types: double

InputChannel — Input channel that corresponds to this wave
1 (default) | scalar integer in the range (1,NumInputPorts)

This property specifies the input channel whose data is used for this wave. By default, it will connect
the first input to this wave.
Example: 'InputChannel',2
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Name — Name or label for the wave
'' (default) | character vector | string scalar

Specify the name that you would like to set for the new wave.
Example: 'Name','MyWave'
Data Types: char | string

Radix — Radix for the wave
'Default' (default) | 'Binary' | 'Hexadecimal' | 'Octal' | 'Signed decimal' | 'Unsigned
decimal'

When the input signals are of class double, single, or logical, you should not set this property. When
you choose 'Default', the value of the DisplayChannelRadix property in the Logic Analyzer is
used.
Data Types: char | string

Output Arguments
waveTag — tag for new wave
random character vector

A tag for the newly added wave. Use the tag name to modify and delete the wave.

See Also
dsp.LogicAnalyzer | addCursor | addDivider | deleteDisplayChannel |
modifyDisplayChannel | moveDisplayChannel

Introduced in R2013a

 addWave

5-19

allpass2wdf
Allpass to Wave Digital Filter coefficient transformation

Syntax
w = allpass2wdf(a)
W = allpass2wdf(A)

Description
w = allpass2wdf(a) accepts a vector of real allpass polynomial filter coefficients a, and returns
the transformed coefficient w. w can be used with allpass filter objects such as dsp.AllpassFilter,
and dsp.CoupledAllpassFilter, with Structure set to 'Wave Digital Filter'.

W = allpass2wdf(A) accepts the cell array of allpass polynomial coefficient vectors A. Each cell of
A holds the coefficients of a section of a cascade allpass filter. W is also a cell array, and each cell of W
contains the transformed version of the coefficients in the corresponding cell of A. W can be used
with allpass filter objects such as dsp.AllpassFilter and dsp.CoupledAllpassFilter, with
structure set to 'Wave Digital Filter'.

Examples

Convert Allpass coefficients to Wave Digital Filter Coefficients

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject(x) becomes step(myObject,x).

Create a second order allpass filter with coefficients a = [0 0.5]. Convert these coefficients into wave
digital filter form using allpass2wdf. Assign the transformed coefficients to an allpass filter using
the wave digital filter structure. Pass a random input to both these filters and compare the outputs.

a = [0 0.5];
allpass = dsp.AllpassFilter('AllpassCoefficients', a);
w = allpass2wdf(a);
allpasswdf = dsp.AllpassFilter('Structure', 'Wave Digital Filter',...
 'WDFCoefficients', w);
in = randn(512, 1);
outputAllpass = allpass(in);
outputAllpasswdf = allpasswdf(in);
plot(outputAllpass-outputAllpasswdf)

5 Functions

5-20

The difference between the two outputs is very small.

Input Arguments
a — allpass filter coefficients
vector of real numbers

Numeric vector of allpass filter coefficients, specified as real numbers. a can have length only equal
to 1,2, and 4. When the length is 4, the first and third components must both be zero. a can be a row
or a column vector.
Example: 0.7
Data Types: double | single

A — allpass filter coefficients
vector of cells

Cascade of allpass filter coefficients, specified as a cell vector. Every cell of A must contain a real
vector of length 1,2, or 4. When the length is 4, the first and third components must both be zero. A
can be a row or column vector of cells.
Example: {0.7, [0.1, 0.2]}
Data Types: double | single

 allpass2wdf

5-21

Output Arguments
w — transformed version of the coefficients a
vector of real numbers

Numeric vector of transformed coefficients, determined as a real number, to use with single-section
allpass filter objects having Structure set to 'Wave Digital Filter'. w is always returned as a
numeric row vector.
Example: 0.7
Data Types: double | single

W — transformed version of the coefficients cell array A
vector of cell

Cascade of transformed allpass filter coefficients, determined as a cell array, to use with multi-section
allpass filter objects having Structure set to 'Wave Digital Filter'. W is always returned as a
column of cells.
Example: {0.7;[0.2,-0.0833]}
Data Types: double | single

Algorithms
In the more general case, the input coefficients A define a cascade or multisection allpass filter.
allpass2wdf applies separately to each section of the same transformation used in the single-
section case. In the single-section case, the numeric coefficients vector a contains a standard
polynomial representation of an allpass filter of order 1, 2, or 4. For example, in the first order case,

a = a1

represents the first order transfer function:

H1(z) =
z−1 + a1

1 + a1z−1

and in the second order case,

a = a1, a2

represents the second order transfer function:

H2(z) =
z−2 + a1z−1 + a2

1 + a1z−1 + a2z−2

.

The allpass transfer functions H1 and H2 can also have the following alternative representations,
using decoupled coefficients in vector w1 or w2 respectively.

H1(z) =
z−1 + w1

1 + w1z−1

5 Functions

5-22

H2(z) =
z−2 + w2(1 + w1)z−1 + w1

1 + w2(1 + w1)z−1 + w1z−2

For allpass coefficients, w is often used to derive adaptor multipliers for Wave Digital Filter
structures, and it is required by a number of allpass based filters in DSP System Toolbox when
Structure is set to 'Wave Digital Filter' (e.g. dsp.AllpassFilter, and
dsp.CoupledAllpassFilter).

For a given vector of section coefficients a, allpass2wdf computes the corresponding vector w such
that

when i = 1, 2 or 4
H i(z) = Hi(z)

This results in using the following formulas:

f or order 1:
w1 = a1
f or order 2:
w1 = a2

w2 =
a1

1 + a2
f or order 4:
w1 = a4

w3 =
a2

1 + a4
w2 = w4 = 0

References
[1] M. Lutovac, D. Tosic, B. Evans, Filter Design for Signal Processing using MATLAB and

Mathematica. Prentice Hall, 2001.

See Also
Functions
wdf2allpass | tf2ca | tf2latc

Objects
dsp.AllpassFilter | dsp.CoupledAllpassFilter

Introduced in R2014a

 allpass2wdf

5-23

allpassbpc2bpc
Allpass filter for complex bandpass transformation

Syntax
[AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt)

Description
[AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt) returns the numerator, AllpassNum,
and the denominator, AllpassDen, of the first-order allpass mapping filter for performing a complex
bandpass to complex bandpass frequency transformation. For more information, see “Complex
Bandpass to Complex Bandpass Frequency Transformation” on page 5-26.

Examples

Design of the allpass mapping filter

This example shows how to design allpass mapping filter, changing the complex bandpass filter with
the band edges at Wo1 = 0 . 2 and Wo2 = 0 . 4 to the new band edges of Wt1 = 0 . 3 and Wt2 = 0 . 6.
Find the frequency response of the allpass mapping filter:

Wo = [0.2, 0.4]; Wt = [0.3, 0.6];
[AllpassNum, AllpassDen] = allpassbpc2bpc(Wo, Wt);
[ha, f] = freqz(AllpassNum, AllpassDen, 'whole');
plot(f/pi,-angle(ha)/pi, Wt, Wo, 'ro')
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt'); ylabel('Old Frequency, Wo');

5 Functions

5-24

Input Arguments
Wo — Frequency values to be transformed from prototype filter
real vector with values in the range (-1,1)

Frequency values to be transformed from the prototype filter, specified as a real vector with values in
the range (-1,1).
Data Types: single | double

Wt — Desired frequency locations in target filter
real vector with values in the range (-1,1)

Desired frequency locations in the transformed target filter, specified as a real vector with values in
the range (-1,1).
Data Types: single | double

Output Arguments
AllpassNum — Numerator of mapping filter
complex-valued vector

Numerator of the mapping filter, returned as a complex-valued vector.

 allpassbpc2bpc

5-25

Data Types: double
Complex Number Support: Yes

AllpassDen — Denominator of mapping filter
complex-valued vector

Denominator of the mapping filter, returned as a complex-valued vector.
Data Types: double
Complex Number Support: Yes

More About
Complex Bandpass to Complex Bandpass Frequency Transformation

Complex bandpass to complex bandpass frequency transformation effectively places two features of
an original filter, located at frequencies Wo1 and Wo2, at the required target frequency locations Wt1
and Wt2. It is assumed that Wt2 is greater than Wt1. In most of the cases the features selected for the
transformation are the band edges of the filter passbands. In general it is possible to select any
feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

This transformation can also be used for transforming other types of filters; e.g., complex notch filters
or resonators can be repositioned at two distinct desired frequencies at any place around the unit
circle. This is very attractive for adaptive systems.

See Also
iirbpc2bpc | zpkbpc2bpc

Introduced in R2011a

5 Functions

5-26

allpasslp2bp
Allpass filter for lowpass to bandpass transformation

Syntax
[AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt)

Description
[AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt) returns the numerator, AllpassNum, and
the denominator, AllpassDen, of the second-order allpass mapping filter for performing a real
lowpass to real bandpass frequency transformation. For more information, see “Real Lowpass to Real
Bandpass Frequency Transformation” on page 5-29.

Examples

Design Allpass Mapping Filter from Lowpass Filter

Design the allpass mapping filter changing the lowpass filter with cutoff frequency Wo at 0.5 to the
real–valued bandpass filter with cutoff frequencies Wt1 and Wt2 at 0.25 and 0.375, respectively.

Compute the frequency response and plot the phase response normalized to π, which is in effect the
mapping function Wo(Wt). Please note that the transformation works in the same way for both
positive and negative frequencies.

Wo = 0.5;
Wt = [0.25 0.375];
[AllpassNum, AllpassDen] = allpasslp2bp(Wo,Wt);
[h,f] = freqz(AllpassNum,AllpassDen,'whole');
plot(f/pi,abs(angle(h))/pi,Wt,Wo,'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

 allpasslp2bp

5-27

Input Arguments
Wo — Frequency value to be transformed from prototype filter
real scalar in the range (0,1)

Frequency value to be transformed from the prototype filter, specified as a real scalar in the range
(0,1).
Data Types: single | double

Wt — Desired frequency locations in target filter
real vector with values in the range (0,1)

Desired frequency locations in the transformed target filter, specified as a real vector with values in
the range (0,1).
Data Types: single | double

Output Arguments
AllpassNum — Numerator of mapping filter
real-valued vector

Numerator of the mapping filter, returned as a real-valued vector.

5 Functions

5-28

Data Types: double

AllpassDen — Denominator of mapping filter
real-valued vector

Denominator of the mapping filter, returned as a real-valued vector.
Data Types: double

More About
Real Lowpass to Real Bandpass Frequency Transformation

Real lowpass to real bandpass frequency transformation effectively places one feature of an original
filter, located at frequency -Wo, at the required target frequency location, Wt1, and the second feature,
originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is greater than Wt1. This
transformation implements the DC mobility, which means that the Nyquist feature stays at Nyquist,
but the DC feature moves to a location dependent on the selection of Wt.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the
cutoff frequency of an original lowpass filter. In general it is possible to select any feature, for
example, the stopband edge, the DC, the deep minimum in the stopband, or other features.

Lowpass to bandpass transformation can also be used for transforming other types of filters, for
example, real notch filters or resonators can be doubled and repositioned at two distinct desired
frequencies.

References
[1] Nowrouzian, B., and A.G. Constantinides. “Prototype Reference Transfer Function Parameters in

the Discrete-Time Frequency Transformations.” In Proceedings of the 33rd Midwest
Symposium on Circuits and Systems, 1078–82. Calgary, Alta., Canada: IEEE, 1991. https://
doi.org/10.1109/MWSCAS.1990.140912.

[2] Nowrouzian, B., and L.T. Bruton. “Closed-Form Solutions for Discrete-Time Elliptic Transfer
Functions.” In [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems ,
784–87. Washington, DC, USA: IEEE, 1992. https://doi.org/10.1109/MWSCAS.1992.271206.

[3] Constantinides, A.G.“Spectral transformations for digital filters.” Proceedings of the IEEE, vol.
117, no. 8: 1585-1590. August 1970.

See Also
iirlp2bp | zpklp2bp

Introduced in R2011a

 allpasslp2bp

5-29

allpasslp2bpc
Allpass filter for lowpass to complex bandpass transformation

Syntax
[AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt)

Description
[AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt) returns the numerator, AllpassNum,
and the denominator, AllpassDen, of the first-order allpass mapping filter for performing a real
lowpass to complex bandpass frequency transformation. For more information, see “Real Lowpass to
Complex Bandpass Frequency Transformation” on page 5-32.

Examples

Design Allpass Matching Filter

Design the allpass mapping filter changing the real lowpass filter with the cutoff frequency Wo at 0.5
into a complex bandpass filter with band edges Wt1 and Wt2 precisely defined at 0.2 and 0.4,
respectively. Calculate the frequency response of the mapping filter in the full range.

Wo = 0.5;
Wt = [0.2 0.4];
[AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt);
[h,f] = freqz(AllpassNum,AllpassDen,'whole');
plot(f/pi,abs(angle(h))/pi,Wt,Wo,'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

5 Functions

5-30

Input Arguments
Wo — Frequency value to be transformed from prototype filter
real scalar in the range (0,1)

Frequency value to be transformed from the prototype filter, specified as a real scalar in the range
(0,1) with 1 corresponding to half the sample rate.
Data Types: single | double

Wt — Desired frequency locations in target filter
real vector with values in the range (-1,1)

Desired frequency locations in the transformed target filter, specified as a real vector with values in
the range (-1,1) with 1 corresponding to half the sample rate.
Data Types: single | double

Output Arguments
AllpassNum — Numerator of mapping filter
complex-valued vector

Numerator of the mapping filter, returned as a complex-valued vector.

 allpasslp2bpc

5-31

Data Types: double

AllpassDen — Denominator of mapping filter
complex-valued vector

Denominator of the mapping filter, returned as a complex-valued vector.
Data Types: double

More About
Real Lowpass to Complex Bandpass Frequency Transformation

Real lowpass to complex bandpass frequency transformation effectively places one feature of the
original filter, located at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is greater than Wt1.

Relative positions of other features of the original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the
cutoff frequency of an original lowpass filter. In general it is possible to select any feature for
example, the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters, for
example, real notch filters or resonators can be doubled and positioned at two distinct desired
frequencies at any place around the unit circle forming a pair of complex notches/resonators. This
transformation can be used for designing bandpass filters for radio receivers from the high-quality
prototype lowpass filter.

See Also
iirlp2bpc | zpklp2bpc

Introduced in R2011a

5 Functions

5-32

allpasslp2bs
Allpass filter for lowpass to bandstop transformation

Syntax
[AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt)

Description
[AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt) returns the numerator, AllpassNum, and
the denominator, AllpassDen, of the second-order allpass mapping filter for performing a real
lowpass to real bandstop frequency transformation. This transformation effectively places one feature
of an original filter, located at frequency -Wo, at the required target frequency location, Wt1, and the
second feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is greater than Wt1.
This transformation implements the "Nyquist Mobility," which means that the DC feature stays at DC,
but the Nyquist feature moves to a location dependent on the selection of Wo and Wt.

Relative positions of other features of an original filter change in the target filter. This means that it is
possible to select two features of an original filter, F1 and F2, with F1 preceding F2. After the
transformation feature F2 will precede F1 in the target filter. However, the distance between F1 and F2
will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the
cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the
stopband edge, the DC, the deep minimum in the stopband, or other ones.

Examples
Design the allpass filter changing the lowpass filter with cutoff frequency at Wo=0.5 to the real
bandstop filter with cutoff frequencies at Wt1=0.25 and Wt2=0.375:

Wo = 0.5; Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bs(Wo, Wt);
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt'); ylabel('Old Frequency, Wo');

In the figure, you find the mapping filter function as determined by the example. Note the response is
normalized to π:

 allpasslp2bs

5-33

Arguments
Variable Description
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency locations in the transformed target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
Constantinides, A.G., “Spectral transformations for digital filters,” IEEE Proceedings, vol. 117, no. 8,
pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer function parameters in the
discrete-time frequency transformations,” Proceedings 33rd Midwest Symposium on Circuits and
Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time elliptic transfer functions,”
Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE Proceedings, vol. 1, pp. 1129-1231,
June 1969.

See Also
iirlp2bs | zpklp2bs

5 Functions

5-34

Introduced in R2011a

 allpasslp2bs

5-35

allpasslp2bsc
Allpass filter for lowpass to complex bandstop transformation

Syntax
[AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt)

Description
[AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt) returns the numerator, AllpassNum,
and the denominator, AllpassDen, of the first-order allpass mapping filter for performing a real
lowpass to complex bandstop frequency transformation. This transformation effectively places one
feature of an original filter, located at frequency -Wo, at the required target frequency location, Wt1,
and the second feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is greater
than Wt1. Additionally the transformation swaps passbands with stopbands in the target filter.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the
cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the
stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real
notch filters or resonators can be doubled and positioned at two distinct desired frequencies at any
place around the unit circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandstop filters for band attenuation or frequency equalizers, from the high-
quality prototype lowpass filter.

Examples
Design the allpass filter changing the real lowpass filter with the cutoff frequency of Wo=0.5 into a
complex bandstop filter with band edges of Wt1=0.2 and Wt2=0.4 precisely defined:

Wo = 0.5; Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bsc(Wo, Wt);
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Arguments
Variable Description
Wo Frequency value to be transformed from the prototype filter. It should be

normalized to be between 0 and 1, with 1 corresponding to half the sample
rate.

5 Functions

5-36

Variable Description
Wt Desired frequency locations in the transformed target filter. They should be

normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

See Also
iirlp2bsc | zpklp2bsc

Introduced in R2011a

 allpasslp2bsc

5-37

allpasslp2hp
Allpass filter for lowpass to highpass transformation

Syntax
[AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt)

Description
[AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt) returns the numerator, AllpassNum, and
the denominator, AllpassDen, of the first-order allpass mapping filter for performing a real lowpass
to real highpass frequency transformation. This transformation effectively places one feature of an
original filter, located originally at frequency, Wo, at the required target frequency location, Wt, at the
same time rotating the whole frequency response by half of the sampling frequency. Result is that the
DC and Nyquist features swap places.

Relative positions of other features of an original filter change in the target filter. This means that it is
possible to select two features of an original filter, F1 and F2, with F1 preceding F2. After the
transformation feature F2 will precede F1 in the target filter. However, the distance between F1 and F2
will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not restricted to the cutoff
frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the
stopband edge, the DC, the deep minimum in the stopband.

Lowpass to highpass transformation can also be used for transforming other types of filters; e.g.,
notch filters or resonators can change their position in a simple way by using the lowpass to highpass
transformation.

Examples
Design the allpass filter changing the lowpass filter to the highpass filter with its cutoff frequency
moved from Wo = 0.5 to Wt = 0.25.

Plot the phase response normalized to π, which is in effect the mapping function Wo(Wt). Please note
that the transformation works in the same way for both positive and negative frequencies:

Wo = 0.5; Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2hp(Wo, Wt);
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

5 Functions

5-38

Arguments
Variable Description
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
Constantinides, A.G., “Spectral transformations for digital filters,” IEE Proceedings, vol. 117, no. 8,
pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer function parameters in the
discrete-time frequency transformations,” Proceedings 33rd Midwest Symposium on Circuits and
Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time elliptic transfer functions,”
Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Frequency transformations for digital filters,” Electronics Letters, vol. 3, no.
11, pp. 487-489, November 1967.

See Also
iirlp2hp | zpklp2hp

Introduced in R2011a

 allpasslp2hp

5-39

allpasslp2lp
Allpass filter for lowpass to lowpass transformation

Syntax
[AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt)

Description
[AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt) returns the numerator, AllpassNum, and
the denominator, AllpassDen, of the first-order allpass mapping filter for performing a real lowpass
to real lowpass frequency transformation. This transformation effectively places one feature of an
original filter, located originally at frequency Wo, at the required target frequency location, Wt.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not restricted to the cutoff
frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the
stopband edge, the DC, the deep minimum in the stopband and so on.

Lowpass to lowpass transformation can also be used for transforming other types of filters; e.g.,
notch filters or resonators can change their position in a simple way by applying the lowpass to
lowpass transformation.

Examples
Design the allpass filter changing the lowpass filter cutoff frequency originally at Wo=0.5 to Wt=0.25.
Plot the phase response normalized to π, which is in effect the mapping function Wo(Wt). Please note
that the transformation works in the same way for both positive and negative frequencies:

Wo = 0.5; Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2lp(Wo, Wt);
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt'); ylabel('Old Frequency, Wo');

5 Functions

5-40

As shown in the figure, allpasslp2lp generates a mapping function that converts your prototype
lowpass filter to a target lowpass filter with different passband specifications.

Arguments
Variable Description
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
Constantinides, A.G., “Spectral transformations for digital filters,” IEEE Proceedings, vol. 117, no. 8,
pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer function parameters in the
discrete-time frequency transformations,” Proceedings 33rd Midwest Symposium on Circuits and
Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time elliptic transfer functions,”
Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Frequency transformations for digital filters,” Electronics Letters, vol. 3, no.
11, pp. 487-489, November 1967.

 allpasslp2lp

5-41

See Also
iirlp2lp | zpklp2lp

Introduced in R2011a

5 Functions

5-42

allpasslp2mb
Allpass filter for lowpass to M-band transformation

Syntax
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt,Pass)

Description
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt) returns the numerator, AllpassNum, and
the denominator, AllpassDen, of the Mth-order allpass mapping filter for performing a real lowpass
to real multipassband frequency transformation. Parameter M is the number of times an original
feature is replicated in the target filter. This transformation effectively places one feature of an
original filter, located at frequency Wo, at the required target frequency locations, Wt1,...,WtM. By
default the DC feature is kept at its original location.

[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt,Pass) allows you to specify an additional
parameter, Pass, which chooses between using the "DC Mobility" and the “Nyquist Mobility.” In the
first case the Nyquist feature stays at its original location and the DC feature is free to move. In the
second case the DC feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC,
the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or
resonators can be easily replicated at a number of required frequency locations without redesigning
them. A good application would be an adaptive tone cancellation circuit reacting to the changing
number and location of tones.

Examples
Design the allpass filter changing the real lowpass filter with the cutoff frequency of Wo=0.5 into a
real multiband filter with band edges of Wt=[1:2:9]/10 precisely defined. Plot the phase response
normalized to π, which is in effect the mapping function Wo(Wt). Please note that the transformation
works in the same way for both positive and negative frequencies:

Wo = 0.5; Wt = [1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mb(Wo, Wt);
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt'); ylabel('Old Frequency, Wo');

 allpasslp2mb

5-43

Arguments
Variable Description
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency locations in the transformed target filter
Pass Choice ('pass'/'stop') of passband/stopband at DC, 'pass' being

the default
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
Franchitti, J.C., “All-pass filter interpolation and frequency transformation problems,“MSc Thesis,
Dept. of Electrical and Computer Engineering, University of Colorado, 1985.

Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and frequency transformation
problem,” Proceedings 20th Asilomar Conference on Signals, Systems and Computers, Pacific Grove,
California, pp. 164-168, November 1986.

Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7, Reading, Massachusetts,
Addison-Wesley, 1987.

Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm for frequency
transformations, Linear Circuits, Systems and Signal Processing: Theory and Application, C. J. Byrnes
et al Eds, Amsterdam: Elsevier, 1988.

5 Functions

5-44

See Also
iirlp2mb | zpklp2mb

Introduced in R2011a

 allpasslp2mb

5-45

allpasslp2mbc
Allpass filter for lowpass to complex M-band transformation

Syntax
[AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt)

Description
[AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt) returns the numerator, AllpassNum,
and the denominator, AllpassDen, of the Mth-order allpass mapping filter for performing a real
lowpass to complex multipassband frequency transformation. Parameter M is the number of times an
original feature is replicated in the target filter. This transformation effectively places one feature of
an original filter, located at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC,
the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or
resonators can be easily replicated at a number of required frequency locations without the need to
design them again. A good application would be an adaptive tone cancellation circuit reacting to the
changing number and location of tones.

Examples
Design the allpass filter changing the real lowpass filter with the cutoff frequency of Wo=0.5 into a
complex multiband filter with band edges of Wt=[-3+1:2:9]/10 precisely defined:

Wo = 0.5; Wt = [-3+1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mbc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping function Wo(Wt). Please note
that the transformation works in the same way for both positive and negative frequencies:

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
 title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt'); ylabel('Old Frequency, Wo');

In this example, the resulting mapping function converts real filters to multiband complex filters.

5 Functions

5-46

Arguments
Variable Description
Wo Frequency value to be transformed from the prototype filter. It should

be normalized to be between 0 and 1, with 1 corresponding to half the
sample rate.

Wt Desired frequency locations in the transformed target filter. They
should be normalized to be between -1 and 1, with 1 corresponding to
half the sample rate.

AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

See Also
iirlp2mbc | zpklp2mbc

Introduced in R2011a

 allpasslp2mbc

5-47

allpasslp2xc
Allpass filter for lowpass to complex N-point transformation

Syntax
[AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt)

Description
[AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt) returns the numerator, AllpassNum, and
the denominator, AllpassDen, of the Nth-order allpass mapping filter, where N is the allpass filter
order, for performing a real lowpass to complex multipoint frequency transformation. Parameter N
also specifies the number of replicas of the prototype filter created around the unit circle after the
transformation. This transformation effectively places N features of the, original filter located at
frequencies Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the target filter for the
Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is
possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation. For DC mobility feature F2 will precede F1 after the
transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC,
the deep minimum in the stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there will be no band
overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or
resonators can be easily replicated at a number of required frequency locations. A good application
would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

Examples
Design the allpass filter moving four features of an original complex filter given in Wo to the new
independent frequency locations Wt. Please note that the transformation creates N replicas of an
original filter around the unit circle, where N is the order of the allpass mapping filter:

Wo = [-0.2, 0.3, -0.7, 0.4]; Wt = [0.3, 0.5, 0.7, 0.9];
[AllpassNum, AllpassDen] = allpasslp2xc(Wo, Wt);
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Arguments
Variable Description
Wo Frequency values to be transformed from the prototype filter

5 Functions

5-48

Variable Description
Wt Desired frequency locations in the transformed target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

See Also
iirlp2xc | zpklp2xc

Introduced in R2011a

 allpasslp2xc

5-49

allpasslp2xn
Allpass filter for lowpass to N-point transformation

Syntax
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt,Pass)

Description
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt) returns the numerator, AllpassNum, and
the denominator, AllpassDen, of the Nth-order allpass mapping filter, where N is the allpass filter
order, for performing a real lowpass to real multipoint frequency transformation. Parameter N also
specifies the number of replicas of the prototype filter created around the unit circle after the
transformation. This transformation effectively places N features of an original filter, located at
frequencies Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM. By default the DC
feature is kept at its original location.

[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt,Pass) allows you to specify an additional
parameter, Pass, which chooses between using the “DC Mobility” and the “Nyquist Mobility.” In the
first case the Nyquist feature stays at its original location and the DC feature is free to move. In the
second case the DC feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter are the same in the target filter for the
Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is
possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation. For DC mobility feature F2 will precede F1 after the
transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC,
the deep minimum in the stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there will be no band
overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or
resonators can be easily replicated at a number of required frequency locations without the need of
designing them again. A good application would be an adaptive tone cancellation circuit reacting to
the changing number and location of tones.

Arguments
Variable Description
Wo Frequency values to be transformed from the prototype filter
Wt Desired frequency locations in the transformed target filter

5 Functions

5-50

Variable Description
Pass Choice ('pass'/'stop') of passband/stopband at DC, 'pass' being the

default
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for Flexible IIR Filter Design,” VII
European Signal Processing Conference (EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United
Kingdom, September 1994.

Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order frequency transformations for IIR
filters,” 38th Midwest Symposium on Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil,
August 1995.

See Also
iirlp2xn | zpklp2xn

Introduced in R2011a

 allpasslp2xn

5-51

allpassrateup
Allpass filter for integer upsample transformation

Syntax
[AllpassNum,AllpassDen] = allpassrateup(N)

Description
[AllpassNum,AllpassDen] = allpassrateup(N) returns the numerator, AllpassNum, and the
denominator, AllpassDen, of the Nth-order allpass mapping filter for performing the rateup
frequency transformation, which creates N equal replicas of the prototype filter frequency response.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Examples
Design the allpass filter creating the effect of upsampling the digital filter four times:

Choose any feature from an original filter, say at Wo=0.2:

N = 4;
Wo = 0.2; Wt = Wo/N + 2*[0:N-1]/N;
[AllpassNum, AllpassDen] = allpassrateup(N);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Arguments
Variable Description
N Frequency replication ratio (upsampling ratio)
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

See Also
iirrateup | zpkrateup

Introduced in R2011a

5 Functions

5-52

allpassshift
Allpass filter for real shift transformation

Syntax
[AllpassNum,AllpassDen] = allpassshift(Wo,Wt)

Description
[AllpassNum,AllpassDen] = allpassshift(Wo,Wt) returns the numerator, AllpassNum, and
the denominator, AllpassDen, of the second-order allpass mapping filter for performing a real
frequency shift transformation. This transformation places one selected feature of an original filter,
located at frequency Wo, at the required target frequency location, Wt. This transformation implements
the “DC mobility,” which means that the Nyquist feature stays at Nyquist, but the DC feature moves
to a location dependent on the selection of Wo and Wt.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to the cutoff frequency
of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the
DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or
resonators can be moved to a different frequency by applying a shift transformation. In such a way
you can avoid designing the filter from the beginning.

Examples
Design the allpass filter precisely shifting one feature of the lowpass filter originally at Wo=0.5 to the
new frequencies of Wt=0.25:

Wo = 0.5; Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshift(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping function Wo(Wt). Please note
that the transformation works in the same way for both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt'); ylabel('Old Frequency, Wo');

 allpassshift

5-53

Arguments
Variable Description
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

See Also
iirshift | zpkshift

Introduced in R2011a

5 Functions

5-54

allpassshiftc
Allpass filter for complex shift transformation

Syntax
[AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt)
[AllpassNum,AllpassDen] = allpassshiftc(0,0.5)
[AllpassNum,AllpassDen] = allpassshiftc(0,-0.5)

Description
[AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt) returns the numerator, AllpassNum,
and denominator, AllpassDen, vectors of the allpass mapping filter for performing a complex
frequency shift of the frequency response of the digital filter by an arbitrary amount.

[AllpassNum,AllpassDen] = allpassshiftc(0,0.5) calculates the allpass filter for doing the
Hilbert transformation, a 90 degree counterclockwise rotation of an original filter in the frequency
domain.

[AllpassNum,AllpassDen] = allpassshiftc(0,-0.5) calculates the allpass filter for doing an
inverse Hilbert transformation, i.e. a 90 degree clockwise rotation of an original filter in the
frequency domain.

Examples
Design the allpass filter precisely rotating the whole filter by the amount defined by the location of
the selected feature from an original filter, Wo=0.5, and its required position in the target filter,
Wt=0.25:
Wo = 0.5; Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshiftc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Arguments
Variable Description
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

 allpassshiftc

5-55

References
Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, Prentice-Hall
International Inc., 1989.

Dutta-Roy, S.C. and B. Kumar, “On Digital Differentiators, Hilbert Transformers, and Half-band Low-
pass Filters,” IEEE Transactions on Education, vol. 32, pp. 314-318, August 1989.

See Also
iirshiftc | zpkshiftc

Introduced in R2011a

5 Functions

5-56

autoscale
Automatic dynamic range scaling

Syntax
autoscale(hd,x)
hnew = autoscale(hd,x)

Description
autoscale(hd,x) provides dynamic range scaling for each node of the filter hd. This method runs
signal x through hd in floating-point to simulate filtering. autoscale uses the maximum and
minimum data obtained from that simulation at each filter node to set fraction lengths to cover the
simulation full range and maximize the precision. Word lengths are not changed during autoscaling.

hnew = autoscale(hd,x) If you request an output, autoscale returns a new filter with the
scaled fraction lengths. The original filter is not changed.

For an introductory example of the automatic scale process, see “Floating-Point to Fixed-Point
Conversion of IIR Filters”.

Examples

Dynamic Range Scaling in a Lattice ARMA Filter

hd = design(fdesign.bandpass,'ellip');
hd = convert(hd,'latticearma');
hd.arithmetic = 'fixed';
rng(4); x = rand(100,10); % Training input data.
hd(2) = autoscale(hd,x);
hfvt = fvtool(hd,'Analysis','magestimate','ShowReference','off');
legend(hfvt, 'Before Autoscaling', 'After Autoscaling')

 autoscale

5-57

Introduced in R2011a

5 Functions

5-58

bandedgeFrequencies
Package: dsp

Compute the bandedge frequencies

Syntax
w = bandedgeFrequencies(obj)
f = bandedgeFrequencies(obj,Fs)

Description
w = bandedgeFrequencies(obj) returns a vector of normalized frequencies, w, containing the
bandedge frequencies between adjacent bandpass filters in the dsp.Channelizer System object.

f = bandedgeFrequencies(obj,Fs) returns a vector of bandedge frequencies in Hz, using the
sample rate Fs.

Examples

Bandedge Frequencies of Channelizer

Compute the normalized bandedge frequencies of the bandpass filters in a channelizer using the
bandedgeFrequencies function.

channelizer = dsp.Channelizer;
w = bandedgeFrequencies(channelizer)

w = 1×8

 -2.7489 -1.9635 -1.1781 -0.3927 0.3927 1.1781 1.9635 2.7489

To compute the frequencies in Hz, pass a sampling frequency, Fs.

f = (ω/2π) × Fs

where:

• f is frequency in Hz.
• ω is frequency in radians.

Here, the sampling frequency is 44,100 Hz.

f = bandedgeFrequencies(channelizer,44100)

f = 1×8
104 ×

 -1.9294 -1.3781 -0.8269 -0.2756 0.2756 0.8269 1.3781 1.9294

 bandedgeFrequencies

5-59

Input Arguments
obj — Input filter System object
dsp.Channelizer

Input filter, specified as a dsp.Channelizer System object.

Fs — Sample rate
positive scalar

Sample rate used to compute the bandedge frequencies in Hz, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
w — Normalized bandedge frequencies
row vector

Normalized frequencies containing the bandedge frequencies between adjacent bandpass filters in
the channelizer, returned as a row vector. The length of the vector equals the number of frequency
bands.
Data Types: double

f — Bandedge frequencies in Hz
row vector

Bandedge frequencies in Hz, returned as a row vector. The length of the vector equals the number of
frequency bands. To return the frequencies in Hz, input the sample rate, Fs. Frequency in Hz is given
by [w/(2π)]×Fs, where w is the normalized frequency in rad/sample, and Fs is the sampling rate in
Hz.
Data Types: double

See Also
Functions
polyphase | tf | fvtool | freqz | coeffs | centerFrequencies | getFilters

Objects
dsp.Channelizer

Introduced in R2017b

5 Functions

5-60

block
Generate block from a digital filter

Syntax
block(hd)
block(hd,'propertyname1',propertyvalue1,'propertyname2',propertyvalue2,...)

Description
block(hd) generates a DSP System Toolbox block equivalent to the digital filter, hd.

block(hd,'propertyname1',propertyvalue1,'propertyname2',propertyvalue2,...)
generates a DSP System Toolbox block using the options specified in the property name/property
value pairs. The valid properties and their values are

Property
Name

Property Values Description and Values

Destination 'current' (default), 'new',
or Subsystemname.

Determine which Simulink model gets the block.
Enter 'current', 'new', or specify the name of
an existing subsystem with subsystemname.
'current' adds the block to your current
Simulink model. Specifying 'new' opens a new
model and adds the block. If you provide the name
of a subsystem in subsystemname, block adds the
new block to your specified subsystem.

Blockname 'filter' (default) Specify the name of the generated block. The name
appears below the block in the model. When you do
not specify a block name, the default is filter.

OverwriteBlo
ck

'off' (default), or 'on'. Tell block whether to overwrite an existing block
of the same name, or create a new block. 'off' is
the default setting—block does not overwrite
existing blocks with matching names. Switching
from 'off' to 'on' directs block to overwrite
existing blocks.

MapStates 'off' (default), or 'on'. Specify whether to apply the current filter states to
the new block. This lets you save states from a filter
object you may have used or configured in a
specific way. The default setting of 'off' means
the states are not transferred to the block.
Choosing 'on' preserves the current filter states in
the block.

 block

5-61

Property
Name

Property Values Description and Values

Link2Obj 'off' (default), or 'on'. Specify how to set the Coefficient source in the
block mask. The default setting is 'off' and the
Coefficient source is set to Dialog parameters.
Setting Link2Obj to 'on' sets the Coefficient
source to Discrete-time filter object (DFILT).
The Link2Obj and MapCoeffstoPorts cannot be
simultaneously 'on'.

MapCoeffstoP
orts

'off' (default) or 'on' Specify whether to map the coefficients of the filter
to the ports of the block. The Link2Obj and
MapCoeffstoPorts cannot be simultaneously
'on'.

CoeffNames {'Num'} (default FIR)

{'Num','Den'} (default
direct form IIR)

{'Num','Den','g'}
(default IIR SOS),

{'K'} (default form lattice)

Specify the coefficient variable names as a cell
array of character vectors.

MapCoeffsToPorts must be set to 'on' for this
property to apply.

InputProcess
ing

'columns as channels'
(default), 'elements as
channels'

Specify sample-based (elements as channels)
or frame-based (columns as channels)
processing.

RateOption 'enforce single rate'
(default) or 'allow
multirate'

Specify how the block adjusts the rate at the output
to accommodate the reduced number of samples.
This parameter applies only when
InputProcessing is 'columns as channels'.

Using block to Realize a Fixed-Point Digital Filter

When the source filter hd is fixed-point, the input word and fraction lengths for the block are derived
from the block input signal. The realization process issues a warning and ignores the input word and
input fraction lengths that are part of the source filter object, choosing to inherit the settings from
the input data. Other fixed-point properties map directly to settings for word and fraction length in
the realized block.

Examples

Create a Block from a Lowpass Filter

Create a lowpass filter specification object. Specify the passband frequency to be rad/sample
and the stopband frequency to be rad/sample. Specify 1 dB of allowable passband ripple and a
stopband attenuation of 60 dB.

In the first example, use block with the default syntax, letting the function determine the block name
and configuration.

5 Functions

5-62

d = fdesign.lowpass('Fp,Fst,Ap,Ast',0.15,0.25,1,60);
hd = design(d);

Now use the default syntax to create a block.

block(hd);

In this second example, define the block name to meet your needs by using the property name/
property value pair input arguments.

block(hd, 'blockname', 'FIR Filter');

The figure shows the blocks in a Simulink model. When you try these examples, you see that the
second block writes over the first block location. You can avoid this by moving the first block before
you generate the second, always naming your block with the blockname property, or setting the
Destination property to new which puts the filter block in a new Simulink model.

See Also
realizemdl

Topics
“Realize Filters as Simulink Subsystem Blocks”

Introduced in R2011a

 block

5-63

butter
Butterworth IIR digital filter design

Syntax
butterFilter = butter(designSpecs,'SystemObject',true)
butterFilter = butter(designSpecs,designoption,value,... 'SystemObject',true)
butterFilter = design(designSpecs,'butter','SystemObject',true)

Description
butterFilter = butter(designSpecs,'SystemObject',true) designs a butterworth IIR
digital filter using specifications in the object designSpecs.

Depending on the filter specification object designSpecs, the butter design method might not be
valid. Use designmethods with the filter specification object to determine if a butterworth IIR
digital filter design is possible.

designmethods(designSpecs,'Systemobject',true)

butterFilter = butter(designSpecs,designoption,value,... 'SystemObject',true)
returns a butterworth IIR filter with one or more specified designed options and the corresponding
values.

To view a list of available design options, run the designoptions function on the specification
object. The function also lists the default design options the filter uses.

designoptions(designSpecs,'butter')

butterFilter = design(designSpecs,'butter','SystemObject',true) is an alternative
syntax for designing the butterworth IIR digital filter.

For complete help about using the butter design method for a specification object, designSpecs,
enter the following at the MATLAB command prompt.

help(designSpecs,'butter')

Examples

Design Butterworth Filter

Design a butterworth filter with lowpass and highpass frequency responses. The filter design
procedure is:

1 Specify the filter design specifications using a fdesign function.
2 Pick a design method provided by the designmethods function.
3 To determine the available design options to choose from, use the designoptions function.
4 Design the filter using the design function.

5 Functions

5-64

Lowpass Filter

Construct a default lowpass filter design specification object using fdesign.lowpass.

designSpecs = fdesign.lowpass

designSpecs =
 lowpass with properties:

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: 1
 Fpass: 0.4500
 Fstop: 0.5500
 Apass: 1
 Astop: 60

Determine the available design methods using the designmethods function. To design a butterworth
filter, pick butter.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

designoptions(designSpecs,'butter','SystemObject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 MatchExactly: {'passband' 'stopband'}
 DefaultFilterStructure: 'df2sos'
 DefaultMatchExactly: 'stopband'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

Use the design function to design the filter. Pass 'butter' and the specifications given by variable
designSpecs, as input arguments. Specify the 'matchexactly' design option to 'passband'.

lpFilter = design(designSpecs,'butter','matchexactly','passband','SystemObject',true);

Visualize the frequency response of the designed filter.

 butter

5-65

fvtool(lpFilter)

Highpass Filter

Construct a highpass filter design specification object using fdesign.highpass. Specify the order
to be 7 and the 3 dB frequency to be 0 . 6π radians/sample.

designSpecs = fdesign.highpass('N,F3dB',7,.6);

Determine the available design methods. To design a butterworth filter, pick butter.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.highpass (N,F3dB):

butter
maxflat

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

designoptions(designSpecs,'butter','SystemObject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'

5 Functions

5-66

 DefaultFilterStructure: 'df2sos'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

To design the butterworth filter, use the design function and specify 'butter' as an input. Set
'FilterStructure' to 'cascadeallpass'.

hpFilter = design(designSpecs,'butter','FilterStructure','cascadeallpass','SystemObject',true);

Visualize the highpass frequency response.

fvtool(hpFilter)

Input Arguments
designSpecs — Filter specification object
object

Filter specification object, specified as one of the following:

• fdesign.bandpass
• fdesign.bandstop
• fdesign.comb
• fdesign.decimator

 butter

5-67

• fdesign.halfband
• fdesign.highpass
• fdesign.interpolator
• fdesign.lowpass
• fdesign.notch
• fdesign.nyquist
• fdesign.octave
• fdesign.parameq
• fdesign.peak

Output Arguments
butterFilter — Butterworth IIR filter
System object

Butterworth IIR filter, returned as a filter System object. The System object and the values of its
properties depend on the input designSpecs object and the other design options specified to the
function.

See Also
Functions
design | designmethods | designoptions | fdesign | cheby1 | cheby2 | ellip | equiripple |
kaiserwin

Introduced in R2011a

5 Functions

5-68

ca2tf
Convert coupled allpass filter to transfer function form

Syntax
[b,a] = ca2tf(d1,d2)
[b,a] = ca2tf(d1,d2,beta)
[b,a,bp] = ca2tf(d1,d2)
[b,a,bp] = ca2tf(d1,d2,beta)

Description
[b,a] = ca2tf(d1,d2) returns the vector of coefficients of b and a. b and a corresponds to the
numerator and the denominator of the transfer function H(z), respectively, where d1 and d2 are real
vectors corresponding to the denominators of the allpass filters H1(z) and H2(z).

H(z) = B(z)/A(z) = 1
2 H1(z) + H2(z)

[b,a] = ca2tf(d1,d2,beta) returns the vector of coefficients b and the vector of coefficients a
corresponding to the numerator and the denominator of the transfer function H(z), respectively,
where d1 and d2 are complex vectors and beta is a complex scalar.

H(z) = B(z)/A(z) = 1
2 −(β) ⋅ H1(z) + β ⋅ H2(z)

[b,a,bp] = ca2tf(d1,d2) also returns the vector bp of real coefficients corresponding to the
numerator of the power-complementary filter G(z), where d1 and d2 are real vectors.

G(z) = Bp(z)/A(z) = 1
2 H1(z)− H2(z)

[b,a,bp] = ca2tf(d1,d2,beta) also returns the vector of coefficients bp of real or complex
coefficients that correspond to the numerator of the power-complementary filter G(z), where d1 and
d2 are complex vectors and beta is a complex scalar.

G(z) = Bp(z)/A(z) = 1
2 j
−(β) ⋅ H1(z) + β ⋅ H2(z)

Examples

Convert Coupled Allpass Filter to Transfer Function Form

Create a coupled allpass filter.

[b,a] = cheby1(10,.5,.4);

The tf2ca function returns the denominators of the coupled allpass filter.

[d1,d2,beta] = tf2ca(b,a);

 ca2tf

5-69

Reconstruct the original and the power-complementary filters using the ca2tf function.

[num,den,numpc] = ca2tf(d1,d2,beta);

Plot the magnitude response of the original filter and the power-complementary one.

fvtool(num,den,numpc,den,'Analysis','magnitude','MagnitudeDisplay',...
 'Magnitude Squared')

Input Arguments
d1 — Denominator of allpass filter H1(z)
vector

Denominator of the allpass filter H1(z), specified as a real- or complex-valued vector.
Data Types: single | double

d2 — Denominator of allpass filter H2(z)
vector

Denominator of the allpass filter H2(z), specified as a real- or complex-valued vector.
Data Types: single | double

beta — Complex scalar of magnitude 1
complex scalar

5 Functions

5-70

Complex scalar of magnitude 1.
Data Types: single | double

Output Arguments
b — Numerator coefficients of transfer function
vector

Numerator coefficients of the transfer function H(z), returned as a real- or complex-valued vector.
Data Types: double

a — Denominator coefficients of transfer function
vector

Denominator coefficients of the transfer function H(z), returned as a real- or complex-valued vector.
Data Types: double

bp — Numerator coefficients of power-complementary filter G(z)
vector

Numerator coefficients of the power-complementary filter G(z), returned as a real- or complex-valued
vector.
Data Types: double

References
[1] Vaidyanathan, P. P., and Sanjit K. Mitra. Robust Digital Filter Structures: A Direct Approach. IEEE

Circuits and Systems Magazine 19, no. 1 (2019): 14–32. https://doi.org/10.1109/
MCAS.2018.2889204.

[2] Vaidyanathan, P. P. Multirate Systems and Filter Banks. Prentice-Hall Signal Processing Series.
Englewood Cliffs, N.J: Prentice Hall, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
cl2tf | iirpowcomp | tf2ca | tf2cl

Introduced in R2011a

 ca2tf

5-71

cascade
Cascade of filter system objects

Syntax
FC = cascade(obj1,obj2,...objn)

Description
FC = cascade(obj1,obj2,...objn) returns an object, FC, of type dsp.FilterCascade. FC is a
cascaded version of the input System objects obj1, obj2,....objn. You can input multiple System
objects to the function. The input System objects must be supported by the cascade method. For the
list of supported System objects, see “Input Arguments” on page 5-73.

Examples

Design Two-Stage Decimator

Design a two-stage decimator by cascading dsp.CICDecimator and
dsp.CICCompensationDecimator System objects.

Construct the objects

CICDecim = dsp.CICDecimator('DecimationFactor', 6, ...
 'NumSections', 6);
fs = 16e3; % Sampling frequency of input of compensation decimator
fPass = 4e3; % Passband frequency
fStop = 4.5e3; % Stopband frequency
CICCompDecim = dsp.CICCompensationDecimator(CICDecim, ...
 'DecimationFactor', 2, ...
 'PassbandFrequency', fPass, ...
 'StopbandFrequency', fStop, ...
 'SampleRate', fs);

Create a cascade of the two objects using the cascade method

 FC = cascade(CICDecim, CICCompDecim);

Visualize the frequency response of the cascade

 f = fvtool(CICDecim, CICCompDecim, FC, 'Fs', [fs*6, fs, fs*6],...
 'Arithmetic', 'fixed');
 set(f, 'NormalizeMagnitudeto1', 'on');
 legend(f,'CIC Decimator','CIC Compensation Decimator', ...
 'Overall Response');

5 Functions

5-72

Input Arguments
obj1 — Filter to be cascaded
filter System object

obj1, obj2,....objn are filters to be cascaded. To see the list of System objects you can pass to the
cascade method, type

dsp.FilterCascade.helpSupportedSystemObjects

in the MATLAB command prompt.

Output Arguments
FC — cascaded filter
dsp.FilterCascade System object

Cascaded filter, returned as a System object of type dsp.FilterCascade. For information on the
properties of the filter in each stage, type info(FC) in the MATLAB command prompt.

See Also
dsp.FilterCascade

 cascade

5-73

Introduced in R2016a

5 Functions

5-74

centerFrequencies
Package: dsp

Compute center frequencies

Syntax
w = centerFrequencies(obj)
f = centerFrequencies(obj,Fs)

Description
w = centerFrequencies(obj) returns a vector of normalized frequencies, w, containing the
center frequencies of all the bandpass filters in the dsp.Channelizer System object.

f = centerFrequencies(obj,Fs) returns a vector of center frequencies in Hz, using the sample
rate Fs.

Examples

Center Frequencies of Channelizer

Compute the normalized center frequencies of the bandpass filters in a channelizer using the
centerFrequencies function.

channelizer = dsp.Channelizer;
w = centerFrequencies(channelizer)

w = 1×8

 -3.1416 -2.3562 -1.5708 -0.7854 0 0.7854 1.5708 2.3562

To compute the frequencies in Hz, pass a sampling frequency. Frequency in Hz, f, equals
f = (ω/2π) × Fs, where w is frequency in radians, and Fs is the sampling rate.

f = centerFrequencies(channelizer,44100)

f = 1×8
104 ×

 -2.2050 -1.6538 -1.1025 -0.5513 0 0.5513 1.1025 1.6538

Input Arguments
obj — Input filter System object
dsp.Channelizer

Input filter, specified as a dsp.Channelizer System object.

 centerFrequencies

5-75

Fs — Sample rate
positive scalar

Sample rate used to compute the center frequencies in Hz, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
w — Normalized center frequencies
row vector

Normalized frequencies containing the center frequencies of all the bandpass filters in the
channelizer, returned as a row vector. The length of the vector equals the number of frequency bands.
Data Types: double

f — Center frequencies in Hz
row vector

Center frequencies in Hz, returned as a row vector. The length of the vector equals the number of
frequency bands. To return the frequencies in Hz, input the sample rate, Fs. Frequency in Hz is given
by [w/(2π)]×Fs, where w is the normalized frequency in rad/sample, and Fs is the sampling rate in
Hz.
Data Types: double

See Also
Functions
polyphase | tf | fvtool | freqz | coeffs | bandedgeFrequencies | getFilters

Objects
dsp.Channelizer

Introduced in R2017b

5 Functions

5-76

cheby1
Chebyshev Type I filter using specification object

Syntax
chebOneFilter = cheby1(designSpecs,'SystemObject',true)
chebOneFilter = cheby1(designSpecs,designoption,value,...
'SystemObject',true)
chebOneFilter = design(designSpecs,'cheby1','SystemObject',true)

Description
chebOneFilter = cheby1(designSpecs,'SystemObject',true) designs a type I Chebyshev
IIR digital filter using specifications in the designSpecs object.

For help about using the cheby1 design method for a filter specification object, enter the following at
the MATLAB command prompt.

help(designSpecs,'cheby1')

You cannot use the cheby1 design method for certain filter specification objects. Use the
designmethods function with the filter specification object to determine if the cheby1 design
method is valid for your filter specifications.

designmethods(designSpecs,'Systemobject',true)

cheby1 returns filters that use second-order sections (SOS). SOS filters are particularly well-suited
for most fixed-point applications.

chebOneFilter = cheby1(designSpecs,designoption,value,...
'SystemObject',true) returns a type I Chebyshev IIR digital filter with the specified design
options. You can specify one or more design options and their corresponding values.

To view a list of available design options, run the designoptions function on the filter specification
object. The function also lists the default design options that the filter uses.

designoptions(designSpecs,'cheby1')

chebOneFilter = design(designSpecs,'cheby1','SystemObject',true) is an alternative
syntax for designing a type I Chebyshev IIR digital filter.

Examples

Design Chebyshev Type I Filter

Design a type 1 Chebyshev IIR filter with lowpass and highpass frequency responses. The filter
design procedure is:

1 Specify the filter design specifications using a fdesign function.

 cheby1

5-77

2 Pick a design method provided by the designmethods function.
3 To determine the available design options, use the designoptions function.
4 Design the filter using the design function.

Lowpass Filter

Create a default lowpass filter specification object using the fdesign.lowpass function.

designSpecs = fdesign.lowpass;

Determine the available design methods using the designmethods function. To design a type 1
Chebyshev filter, pick cheby1.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

While designing the filter, you can specify additional design options. View the options using the
designoptions function. This function also shows the default design options the filter uses.

designoptions(designSpecs,'cheby1','SystemObject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 MatchExactly: {'passband' 'stopband'}
 DefaultFilterStructure: 'df2sos'
 DefaultMatchExactly: 'passband'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

Use the design function to design the filter. Pass 'cheby1' and the designSpecs object containing
the filter design specifications as input arguments. Set the filter structure to 'df1sos' to design a
filter with a direct form I SOS structure.

LowpassCheb1 = design(designSpecs,'cheby1','FilterStructure','df1sos',...
 'SystemObject',true)

LowpassCheb1 =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form I'
 SOSMatrixSource: 'Property'
 SOSMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 NumeratorInitialConditions: 0

5 Functions

5-78

 DenominatorInitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Use fvtool to view the frequency response of the designed filter.

fvtool(LowpassCheb1)

Highpass Filter

Create a highpass filter design specification object using the fdesign.highpass function. Specify
the filter order, passband edge frequency, and the passband ripple.

designSpecs = fdesign.highpass('n,fp,ap',7,20,.4,50);

Determine the available design methods.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.highpass (N,Fp,Ap):

cheby1

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

 cheby1

5-79

HighpassCheb1 = design(designSpecs,'cheby1','SystemObject',true)

HighpassCheb1 =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [4x6 double]
 ScaleValues: [5x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Use fvtool to visualize the highpass frequency response.

fvtool(HighpassCheb1)

Input Arguments
designSpecs — Filter specification object
object

Filter specification object, specified as one of the following:

5 Functions

5-80

• fdesign.bandpass
• fdesign.bandstop
• fdesign.highpass
• fdesign.lowpass
• fdesign.parameq

Output Arguments
chebOneFilter — Type I Chebyshev IIR digital filter
System object

Type I Chebyshev IIR digital filter, returned as a System object. The System object and the values of
its properties depend on the input designSpecs object and the other design options that you specify
as inputs to the function.

See Also
butter | design | designmethods | designoptions | fdesign | cheby2 | ellip | equiripple |
kaiserwin

Introduced in R2011a

 cheby1

5-81

cheby2
Chebyshev Type II filter using specification object

Syntax
chebTwoFilter = cheby2(designSpecs,'SystemObject',true)
chebTwoFilter = cheby2(designSpecs,designoption,value,...
'SystemObject',true)
chebTwoFilter = design(designSpecs,'cheby2','SystemObject',true)

Description
chebTwoFilter = cheby2(designSpecs,'SystemObject',true) designs a type II Chebyshev
IIR digital filter using specifications in the object designSpecs.

Depending on the filter specification object designSpecs, the cheby2 design method might not be
valid. Use designmethods with the filter specification object to determine if a Chebyshev type II
filter design is possible.

designmethods(designSpecs,'Systemobject',true)

chebTwoFilter = cheby2(designSpecs,designoption,value,...
'SystemObject',true) returns a type II Chebyshev IIR digital filter with one or more specified
designed options and the corresponding values.

To view a list of available design options, run the designoptions function on the specification
object. The function also lists the default design options the filter uses.

designoptions(designSpecs,'cheby2')

chebTwoFilter = design(designSpecs,'cheby2','SystemObject',true) is an alternative
syntax for designing the type II Chebyshev IIR digital filter.

For complete help about using the cheby2 design method for a specification object, designSpecs,
enter the following at the MATLAB command prompt.

help(designSpecs,'cheby2')

Examples

Design a Chebyshev Type II Filter

Design a type II Chebyshev IIR filter with lowpass and highpass frequency responses. The filter
design procedure is:

1 Specify the filter design specifications using a fdesign function.
2 Pick a design method provided by the designmethods function.
3 To determine the available design options to choose from, use the designoptions function.

5 Functions

5-82

4 Design the filter using the design function.

Lowpass Filter

Construct a default lowpass filter specification object using fdesign.lowpass.

designSpecs = fdesign.lowpass

designSpecs =
 lowpass with properties:

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: 1
 Fpass: 0.4500
 Fstop: 0.5500
 Apass: 1
 Astop: 60

Determine the available design methods using the designmethods function. To design a type II
Chebyshev filter, pick cheby2.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

designoptions(designSpecs,'cheby2','SystemObject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 MatchExactly: {'passband' 'stopband'}
 DefaultFilterStructure: 'df2sos'
 DefaultMatchExactly: 'stopband'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

Use the design function to design the filter. Pass 'cheby2' and the specifications given by the
variable designSpecs, as input arguments. Specify the 'matchexactly' design option to
'passband' to ensure the performance of the filter in the passband.

 cheby2

5-83

LowpassCheb2 = design(designSpecs,'cheby2','matchexactly','passband',...
 'SystemObject',true);

Use fvtool to view the frequency response of the designed filter.

fvtool(LowpassCheb2)

Highpass Filter

Construct a highpass filter specification object using fdesign.highpass. Specify the filter order,
stopband edge frequency, and the stopband attenuation to get the filter exactly as required.

designSpecs = fdesign.highpass('n,fst,ast',5,20,55,50);

Determine the available design methods. To design a type II Chebyshev IIR filter, pick cheby2.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.highpass (N,Fst,Ast):

cheby2

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

HighpassCheb2 = design(designSpecs,'cheby2','SystemObject',true)

5 Functions

5-84

HighpassCheb2 =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [3x6 double]
 ScaleValues: [4x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Use fvtool to visualize the highpass frequency response.

fvtool(HighpassCheb2)

By design, cheby2 returns filters that use second-order sections (SOS). For many applications, and
for most fixed-point applications, SOS filters are particularly well-suited.

Input Arguments
designSpecs — Filter specification object
object

Filter specification object, specified as one of the following:

 cheby2

5-85

• fdesign.bandpass
• fdesign.bandstop
• fdesign.highpass
• fdesign.lowpass

Output Arguments
chebTwoFilter — Type II Chebyshev IIR digital filter
System object

Type II Chebyshev IIR digital filter, returned as a filter System object. The System object and the
values of its properties depend on the input designSpecs object and the other design options
specified to the function.

See Also
butter | cheby1 | design | designmethods | designoptions | fdesign | ellip | equiripple |
kaiserwin

Introduced in R2011a

5 Functions

5-86

cl2tf
Convert coupled allpass lattice to transfer function form

Syntax
[b,a] = cl2tf(k1,k2)
[b,a] = cl2tf(k1,k2,beta)
[b,a,bp] = cl2tf(k1,k2)
[b,a,bp] = cl2tf(k1,k2,beta)

Description
[b,a] = cl2tf(k1,k2) returns vectors of coefficients b and a when k1 and k2 are real vectors. b
is the vector of coefficients corresponding to the numerator of the transfer function H(z). a is the
vector of coefficients corresponding to the denominator of the transfer function H(z). k1 and k2 are
real vectors corresponding to denominators of the allpass filters H1(z) and H2(z). This is provided in
the transfer function:

H(z) = B(z)/A(z) = 1
2 H1(z) + H2(z)

[b,a] = cl2tf(k1,k2,beta) returns the vectors of coefficients b and a corresponding to the
numerator and denominator, respectively, of the transfer function H(z), where k1, k2, and beta are
complex vectors.

H(z) = B(z)/A(z) = 1
2 −(β) ⋅ H1(z) + β ⋅ H2(z)

[b,a,bp] = cl2tf(k1,k2) also returns the vector bp of real coefficients corresponding to the
numerator of the power-complementary filter G(z), where k1 and k2 are real vectors.

G(z) = Bp(z)/A(z) = 1
2 H1(z)− H2(z)

[b,a,bp] = cl2tf(k1,k2,beta) also returns the vector of coefficients bp of possibly complex
coefficients corresponding to the numerator of the power complementary filter G(z), where k1, k2,
and beta are complex.

G(z) = Bp(z)/A(z) = 1
2 j
−(β) ⋅ H1(z) + β ⋅ H2(z)

Examples

Convert Coupled Allpass Filter Lattice to Transfer Function

Compute the reflection coefficient using tf2cl function.

[b,a] = cheby1(10,.5,.4);
[k1,k2,beta] = tf2cl(b,a);

 cl2tf

5-87

Construct the original and the power-complementary filters.

[num,den,numpc] = cl2tf(k1,k2,beta);
[h,w] = freqz(num,den);
hpc = freqz(numpc,den);

Plot the frequency response.

subplot(211)
plot(w./pi,20*log10(abs(h)),'k')
hold on;
grid on;
plot(w./pi,20*log10(abs(hpc)),'b')
xlabel('Normalized Frequency (x \pi radians/sample)');
ylabel('dB');
legend('Original Filter','Power Complementary Filter',...
 'Location','best');
subplot(212)
plot(w./pi,unwrap(angle(h)),'k')
hold on;
grid on;
xlabel('Normalized Frequency (x \pi radians/sample)');
ylabel('Phase (radians)');
plot(w./pi,unwrap(angle(hpc)),'b')

5 Functions

5-88

Input Arguments
k1 — Reflection coefficients corresponding to allpass lattice structure of H1(z)
vector

Reflection coefficients corresponding to allpass lattice structure of H1(z), specified as a real- or
complex-valued vector.
Data Types: single | double

k2 — Reflection coefficients corresponding to allpass lattice structure of H2(z)
vector

Reflection coefficients corresponding to allpass lattice structure of H2(z), specified as a real- or
complex-valued vector.
Data Types: single | double

beta — Complex scalar of magnitude 1
complex scalar

Complex scalar of magnitude 1.
Data Types: single | double

Output Arguments
b — Numerator coefficients of transfer function
vector

Coefficients of the numerator of the transfer function H(z), returned as a real- or complex-valued
vector.
Data Types: double

a — Denominator coefficients of transfer function
vector

Coefficients of the denominator of the transfer function H(z), returned as a real- or complex-valued
vector.
Data Types: double

bp — Numerator coefficients of power-complementary filter G(z)
vector

Coefficients of the numerator of the power-complementary filter G(z), returned as a real- or complex-
valued vector.
Data Types: double

References
[1] Mitra, Sanjit Kumar, and James F. Kaiser, eds. Handbook for Digital Signal Processing. New York:

Wiley, 1993.

 cl2tf

5-89

[2] Vaidyanathan, P. P. Multirate Systems and Filter Banks . Prentice-Hall Signal Processing Series.
Englewood Cliffs, N.J: Prentice Hall, 1993. CloseDeleteEdit

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
tf2cl | tf2ca | ca2tf | tf2latc | latc2tf | iirpowcomp

Introduced in R2011a

5 Functions

5-90

coeffs
Package: dsp

Returns the filter System object coefficients in a structure

Syntax
s = coeffs(sysobj)
s = coeffs(sysobj,'Arithmetic',arithType)

Description
s = coeffs(sysobj) returns the coefficients of filter System object, sysobj, in the structure s.

s = coeffs(sysobj,'Arithmetic',arithType) returns filter coefficients for the filter System
object sysobj with the arithmetic specified in arithType.

Examples

Coefficients of an FIR Halfband Interpolator

FIRHalfbandInterp = dsp.FIRHalfbandInterpolator('Specification',...
 'Filter order and transition width','FilterOrder',26);
C = coeffs(FIRHalfbandInterp);
C.Numerator

ans = 1×27

 0.0525 0 -0.0379 0 0.0537 0 -0.0771 0 0.1172 0 -0.2060 0 0.6345 1.0000 0.6345 0 -0.2060 0 0.1172 0 -0.0771 0 0.0537 0 -0.0379 0 0.0525

% Impulse response of the filter
fvtool(FIRHalfbandInterp,'impulse')

 coeffs

5-91

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator

5 Functions

5-92

• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
s — Structure
struct

Structure with a single field, Numerator, containing filter coefficients.

 coeffs

5-93

See Also
Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

5 Functions

5-94

coeffs
Package: dsp

Coefficients of prototype lowpass filter

Syntax
c = coeffs(obj)

Description
c = coeffs(obj) returns the coefficients of the prototype lowpass filter in dsp.Channelizer and
dsp.ChannelSynthesizer System objects.

Examples

Coefficients Of Channelizer

Determine the coefficients of the prototype lowpass filter in the dsp.Channelizer object using the
coeffs function.

The coeffs function returns a structure, c. The structure field Numerator contains the coefficients
as a row vector. The number of elements in the row vector, given by c.Numerator, equals the
number of frequency bands times the number of coefficients per band. These values are given by the
NumFrequencyBands and NumTapsPerBand properties of the dsp.Channelizer object.

channelizer = dsp.Channelizer;
c = coeffs(channelizer);

Visualize the impulse response of the filter using fvtool.

fvtool(c.Numerator,'impulse');

 coeffs

5-95

Input Arguments
obj — Input filter System object
dsp.Channelizer | dsp.ChannelSynthesizer

Input filter, specified as either a dsp.Channelizer or a dsp.ChannelSynthesizer System object.
Example: channelizer = dsp.Channelizer;
Example: channelizer = dsp.ChannelSynthesizer

Output Arguments
c — Lowpass filter coefficients
structure

Lowpass filter coefficients, returned as a structure. The structure field Numerator contains the
coefficients as a row vector.

See Also
Functions
polyphase | tf | fvtool | freqz | bandedgeFrequencies | centerFrequencies | getFilters

5 Functions

5-96

Objects
dsp.Channelizer | dsp.ChannelSynthesizer

Introduced in R2016b

 coeffs

5-97

coeread
Read Xilinx COE file

Syntax
hd = coeread(filename)

Description
hd = coeread(filename) extracts the Distributed Arithmetic FIR filter coefficients defined in the
XILINX CORE Generator .COE file specified by filename. It returns a dfilt object, the fixed-point
filter hd. If you do not provide the file type extension .coe with the filename, the function assumes
the .coe extension.

Introduced in R2011a

5 Functions

5-98

coewrite
Write Xilinx COE file

Syntax
coewrite(hd)
coewrite(hd,radix)
coewrite(...,filename)

Description
coewrite(hd) writes a XILINX Distributed Arithmetic FIR filter coefficient .COE file which can be
loaded into the XILINX CORE Generator. The coefficients are extracted from the fixed-point dfilt
object hd. Your fixed-point filter must be a direct form FIR structure dfilt object with one section
and whose Arithmetic property is set to fixed. You cannot export single-precision, double-
precision, or floating-point filters as .coe files, nor multiple-section filters. To enable you to provide a
name for the file, coewrite displays a dialog box where you fill in the file name. If you do not specify
the name of the output file, the default file name is untitled.coe.

coewrite(hd,radix) indicates the radix (number base) used to specify the FIR filter coefficients.
Valid radix values are 2 for binary, 10 for decimal, and 16 for hexadecimal (default).

coewrite(...,filename) writes a XILINX.COE file to filename. If you omit the file extension,
coewrite adds the .coe extension to the name of the file.

The coewrite function always generates the XILINX.COE file in your current folder. To use this
function, you must have write permission in your current folder.

Examples
coewrite generates an ASCII text file that contains the filter coefficients in a format the XILINX
CORE Generator can read and load. In this example, you create a 30th-order fixed-point filter and
generate the .coe file that includes the filter coefficients as well as associated information about the
filter.
b = firceqrip(30,0.4,[0.05 0.03]); hq = dfilt.dffir(b);
set(hq,'arithmetic','fixed'); coewrite(hq,10,'mycoefile');

The coewrite function generates the output file, mycoefile.coe, in your current folder. The .coe
file contains the radix, coefficient width, and filter coefficients. The file reports the filter coefficients
in column-major order. The radix, coefficient width, and filter coefficients are the minimum set of data
needed in a .coe file.

Introduced in R2011a

 coewrite

5-99

constraincoeffwl
Constrain coefficient wordlength

Syntax
Hq = constraincoeffwl(Hd,wordlength)
Hq = constraincoeffwl(Hd,wordlength,'Ntrials',N)
Hq = constraincoeffwl(Hd,wordlength,...,'NoiseShaping',NSFlag)
Hq = constraincoeffwl(Hd,wordlength,...,'Apasstol',Apasstol)
Hq = constraincoeffwl(Hd,wordlength,...,'Astoptol',Astoptol)

Description
Hq = constraincoeffwl(Hd,wordlength) returns a fixed-point filter Hq meeting the design
specifications of the single-stage or multistage FIR filter object Hd with a wordlength of at most
wordlength bits. For multistage filters, wordlength can either be a scalar or vector. If
wordlength is a scalar, the same wordlength is used for all stages. If wordlength is a vector, each
stage uses the corresponding element in the vector. The vector length must equal the number of
stages. Hd must be generated using fdesign and design. constraincoeffwl uses a stochastic
noise-shaping procedure by default to minimize the wordlength. To obtain repeatable results on
successive function calls, initialize the uniform random number generator rand

Hq = constraincoeffwl(Hd,wordlength,'Ntrials',N) specifies the number of Monte Carlo
trials to use. Hq is first filter among the trials to meet the specifications in Hd with a wordlength of at
most wordlength.

Hq = constraincoeffwl(Hd,wordlength,...,'NoiseShaping',NSFlag) enables or disables
the stochastic noise-shaping procedure in the constraint of the wordlength. By default NSFlag is
true. Setting NSFlag to false constrains the wordlength without using noise-shaping.

Hq = constraincoeffwl(Hd,wordlength,...,'Apasstol',Apasstol) specifies the passband
ripple tolerance in dB. 'Apasstol' defaults to 1e-4.

Hq = constraincoeffwl(Hd,wordlength,...,'Astoptol',Astoptol) specifies the stopband
tolerance in dB. 'Astoptol' defaults to 1e-2

You must have the Fixed-Point Designer software installed to use this function.

Examples

Design Fixed-Point Filter

Design fixed-point filter with a wordlength of at most 11 bits using constraincoeffwl

Hf = fdesign.lowpass('Fp,Fst,Ap,Ast',.4,.5,1,60);
Hd = design(Hf,'equiripple'); % 43 coefficients
Hq = constraincoeffwl(Hd,11); % 45 11-bit coefficients
hfvt = fvtool(Hd,Hq);
legend(hfvt,'Floating-point Filter','Fixed-point Filter');

5 Functions

5-100

See Also
design | fdesign | maximizestopband | minimizecoeffwl | measure | rand

Topics
“Fixed-Point Overview”

Introduced in R2011a

 constraincoeffwl

5-101

convert
Convert filter structure of discrete-time filter

Syntax
hq = convert(hq,newstruct)

Description
Discrete-Time Filters

hq = convert(hq,newstruct) returns a quantized filter whose structure has been transformed to
the filter structure specified by newstruct. You can enter any one of the following quantized filter
structures:

• 'antisymmetricfir': Antisymmetric finite impulse response (FIR)
• 'df1': Direct form I
• 'df1t': Direct form I transposed
• 'df1sos': Direct-Form I, Second-Order Sections
• 'df1tsos': Direct-Form I Transposed, Second-Order Sections
• 'df2': Direct form II
• 'df2t': Direct form II transposed. Default filter structure
• 'df2sos': Direct-Form II, Second-Order Sections
• 'df2tsos': Direct-Form II Transposed, Second-Order Sections
• 'dffir': FIR
• 'dffirt': Direct form FIR transposed
• 'latcallpass': Lattice allpass
• 'latticeca': Lattice coupled-allpass
• 'latticecapc': Lattice coupled-allpass power-complementary
• 'latticear': Lattice autoregressive (AR)
• 'latticemamax': Lattice moving average (MA) maximum phase
• 'latticemamin': Lattice moving average (MA) minimum phase
• 'latticearma': Lattice ARMA
• 'statespace': Single-input/single-output state-space
• 'symmetricfir': Symmetric FIR. Even and odd forms

All filters can be converted to the following structures:

• 'df1': Direct form I
• 'df1t': Direct form I transposed
• 'df1sos': Direct-Form I, Second-Order Sections
• 'df1tsos': Direct-Form I Transposed, Second-Order Sections

5 Functions

5-102

• 'df2': Direct form II
• 'df2t': Direct form II transposed. Default filter structure
• 'df2sos': Direct-Form II, Second-Order Sections
• 'df2tsos': Direct-Form II Transposed, Second-Order Sections
• 'statespace': Single-input/single-output state-space
• 'symmetricfir': Symmetric FIR. Even and odd forms

For the following filter classes, you can specify other conversions as well:

• Minimum phase FIR filters can be converted to latticemamin
• Maximum phase FIR filters can be converted to latticemamax
• Allpass filters can be converted to latcallpass

convert generates an error when you specify a conversion that is not possible.

Examples

Convert Direct-Form II Transposed Structure to Direct-Form I

[b,a]=ellip(5,3,40,.7); hq = dfilt.df2t(b,a)

hq =
 FilterStructure: 'Direct-Form II Transposed'
 Arithmetic: 'double'
 Numerator: [1x6 double]
 Denominator: [1x6 double]
 PersistentMemory: false

hq2 = convert(hq,'df1')

hq2 =
 FilterStructure: 'Direct-Form I'
 Arithmetic: 'double'
 Numerator: [1x6 double]
 Denominator: [1x6 double]
 PersistentMemory: false

Introduced in R2011a

 convert

5-103

cost
Package: dsp

Estimate cost of implementing filter System object

Syntax
c = cost(sysobj)
c = cost(sysobj,'Arithmetic',arithType)

Description
c = cost(sysobj) returns a structure, c, whose fields contain information about the computational
cost of implementing the filter System object, sysobj.

c = cost(sysobj,'Arithmetic',arithType) returns a cost estimate c for the filter System
object sysobj in the arithmetic specified by arithType.

Examples

Cost of FIR Filter

This example shows how to compute the cost of implementing an FIR Filter created using
dsp.FIRFilter object.

Fs = 8000; Fcutoff = 2000;
firFilt = dsp.FIRFilter('Numerator', fir1(130,Fcutoff/(Fs/2)));
cost(firFilt)

ans = struct with fields:
 NumCoefficients: 131
 NumStates: 130
 MultiplicationsPerInputSample: 131
 AdditionsPerInputSample: 130

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator

5 Functions

5-104

• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

 cost

5-105

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
c — cost estimate
struct

Cost estimate, c contains the following fields:

Estimated Value Description
NumCoefficients Number of filter coefficients (excluding

coefficients with values 0, 1 or -1)
NumStates Number of filter states
MultiplicationsPerInputSample Number of multiplication operations performed

for each input sample
AdditionsPerInputSample Number of addition operations performed for

each input sample

See Also
Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

5 Functions

5-106

cost
Package: dsp

Implementation cost of the complex bandpass decimator

Syntax
c = cost(cbd)

Description
c = cost(cbd) returns a structure, c, whose fields contain information about the computation cost
of implementing the complex bandpass decimator object, cbd.

Examples

Compute Cost of Complex Bandpass Decimator

Compute the implementation cost of a complex bandpass decimator using the cost function.

Create a dsp.ComplexBandpassDecimator object. Set the DecimationFactor to 12, the
CenterFrequency to 5000 Hz, and the SampleRate to 44,100 Hz.

cbp = dsp.ComplexBandpassDecimator(12,5000,44100)

cbp =
 dsp.ComplexBandpassDecimator with properties:

 CenterFrequency: 5000
 Specification: 'Decimation factor'
 DecimationFactor: 12
 StopbandAttenuation: 80
 TransitionWidth: 100
 MinimizeComplexCoefficients: true
 SampleRate: 44100

Compute the implementation cost of cbp using the cost function.

c = cost(cbp)

c = struct with fields:
 NumCoefficients: 201
 NumStates: 379
 RealMultiplicationsPerInputSample: 44.3333
 RealAdditionsPerInputSample: 43.8333

 cost

5-107

Input Arguments
cbd — Filter System object
dsp.ComplexBandpassDecimator

Filter System object, specified as a dsp.ComplexBandpassDecimator System object.

Output Arguments
c — Cost estimate
structure

Cost estimate containing these fields:

Estimated Value Description
NumCoefficients Number of filter coefficients (excluding

coefficients with values 0, 1 or –1)
NumStates Number of filter states
RealMultiplicationsPerInputSample Number of real multiplication operations

performed for each input sample
RealAdditionsPerInputSample Number of real addition operations performed for

each input sample

The function assumes that a complex-by-complex multiplication requires 3 real multiplications and 5
real additions.

See Also
Functions
freqz | info | visualizeFilterStages

Objects
dsp.ComplexBandpassDecimator

Introduced in R2018a

5 Functions

5-108

cost
Package: dsp

Implementation cost of the sample rate converter

Syntax
c = cost(src)

Description
c = cost(src) returns a structure, c, whose fields contain information about the computational
cost of implementing a multistage sample rate converter, src.

Examples

Computational Cost of Sample Rate Converter

Create src, a multistage sample rate converter with default values. src combines three filter stages
to convert from 192 kHz to 44.1 kHz. Determine its computational cost: the number of coefficients,
the number of states, the number of multiplications per unit sample, and the number of additions per
unit sample.

src = dsp.SampleRateConverter;
cst = cost(src)

cst = struct with fields:
 NumCoefficients: 8631
 NumStates: 138
 MultiplicationsPerInputSample: 27.6672
 AdditionsPerInputSample: 26.6875

Repeat the computation allowing a tolerance of 10% in the output sample rate.

src.OutputRateTolerance = 0.1;
ctl = cost(src)

ctl = struct with fields:
 NumCoefficients: 44
 NumStates: 80
 MultiplicationsPerInputSample: 14.2500
 AdditionsPerInputSample: 13.5000

Input Arguments
src — Multistage sample rate converter
SampleRateConverter System object

 cost

5-109

Multistage sample rate converter, specified as a dsp.SampleRateConverter System object.

Output Arguments
c — Output structure
structure

Output structure with information about the computational cost of src:

Estimated Value Description
NumCoefficients Number of filter coefficients (excluding

coefficients with values 0, 1 or −1)
NumStates Number of filter states
MultiplicationsPerInputSample Number of multiplication operations performed

for each input sample
AdditionsPerInputSample Number of addition operations performed for

each input sample

See Also
Functions
freqz | getActualOutputRate | getFilters | info | visualizeFilterStages |
getRateChangeFactors

Objects
dsp.SampleRateConverter

Introduced in R2014b

5 Functions

5-110

getFilters
Package: dsp

Obtain single-stage filters

Syntax
c = getFilters(src)

Description
c = getFilters(src) returns the multirate filters cascaded together in src to perform the overall
sample rate conversion. The result is a FilterCascade structure, c. Each field of c holds the filter
used at a particular stage and gives access to its coefficients and rate-change factors.

Examples

Single-Stage Filters

Create src, a multistage sample rate converter with default properties. src converts between 192
kHz and 44.1 kHz. Find the individual filters that are cascaded together to perform the conversion.

src = dsp.SampleRateConverter;
c = getFilters(src);

Visualize the frequency response of the decimator used in the first stage of the process.

m = c.Stage1;

[h,w] = freqz(m);
plot(w/pi,20*log10(abs(h)))
xlabel('\omega / \pi')
ylabel('Magnitude (dB)')

 getFilters

5-111

Input Arguments
src — Multistage sample rate converter
dsp.SampleRateConverter System object

Multistage sample rate converter, specified as a dsp.SampleRateConverter System object.

Output Arguments
c — Single-stage filters
FilterCascade structure

Single-stage filters, returned as a FilterCascade structure.

See Also
Functions
cost | freqz | getActualOutputRate | info | visualizeFilterStages |
getRateChangeFactors

Objects
dsp.SampleRateConverter

5 Functions

5-112

Introduced in R2014b

 getFilters

5-113

info
Package: dsp

Display information about sample rate converter

Syntax
s = info(src)

Description
s = info(src) displays information about the multistage SampleRateConverter System object,
src.

Examples

Default Multistage Sample Rate Converter

Create a multistage sample rate converter with default properties, corresponding to the combined
three filter stages used to convert from 192 kHz to 44.1 kHz.

src = dsp.SampleRateConverter

src =
 dsp.SampleRateConverter with properties:

 InputSampleRate: 192000
 OutputSampleRate: 44100
 OutputRateTolerance: 0
 Bandwidth: 40000
 StopbandAttenuation: 80

Display information about the design.

info(src)

ans =
 'Overall Interpolation Factor : 147
 Overall Decimation Factor : 640
 Number of Filters : 3
 Multiplications per Input Sample: 27.667188
 Number of Coefficients : 8631
 Filters:
 Filter 1:
 dsp.FIRDecimator - Decimation Factor : 2
 Filter 2:
 dsp.FIRDecimator - Decimation Factor : 2
 Filter 3:
 dsp.FIRRateConverter - Interpolation Factor: 147
 - Decimation Factor : 160

5 Functions

5-114

 '

Input Arguments
src — Multistage sample rate converter
dsp.SampleRateConverter System object

Multistage sample rate converter, specified as a dsp.SampleRateConverter System object.

Output Arguments
s — Store filter information
character array

Filter information, returned as a character array with the following fields.

• Overall Interpolation Factor
• Overall Decimation Factor
• Number of Filters
• Multiplications Per Input Sample
• Number of Coefficients
• Filters

See Also
Functions
cost | freqz | getActualOutputRate | getFilters | visualizeFilterStages |
getRateChangeFactors

Objects
dsp.SampleRateConverter

Introduced in R2014b

 info

5-115

cumsec
Package: dsp

Cumulative second-order section of the biquadratic filter

Syntax
sect = cumsec(sysobj)
sect = cumsec(sysobj,indices)
sect = cumsec(sysobj,indices,secondary)
cumsec(sysobj,...)
sect = cumsec(sysobj,'Arithmetic',arithType)

Description
sect = cumsec(sysobj) returns a cell array, sect, which contains cumulative sections of the
biquadratic filter System object, sysobj. Each element in sect is a filter with the structure of the
original filter. The first element is the first filter section of the biquadratic filter. The second element
of sect is a filter that represents the combination of the first and second sections of the biquadratic
filter. The third element of sect is a filter which combines sections 1, 2, and 3 of the biquadratic
filter. This pattern continues until the final element of sect contains all the sections of the
biquadratic filter and should be identical to the biquadratic filter.

sect = cumsec(sysobj,indices) returns the cumulative sections of the biquadratic filter object
whose indices in the original filter are in the vector indices.

sect = cumsec(sysobj,indices,secondary) uses the secondary scaling points secondary in
the sections to determine where the sections should be split when secondary is true. secondary is
false by default. This option only applies for biquadratic filter objects with 'Direct form II' and
'Direct form I transposed' structures. For these structures, the secondary scaling points refer
to the location between the recursive and the nonrecursive part, that is the 'middle' of the section.

cumsec(sysobj,...) plots the magnitude response of the cumulative sections using fvtool.

sect = cumsec(sysobj,'Arithmetic',arithType) returns the cumulative sections of the
biquadratic filter object with the arithmetic specified in arithType.

Examples

Frequency Response of SOS Filter

This example plots the relative responses of the sections of a sixth-order filter with three sections.
Each curve adds one more section to form the filter response.

Lowpass = fdesign.lowpass('n,fc',6,.4); ButterLowpass = butter(Lowpass,'SystemObject',true);
CumSections = cumsec(ButterLowpass); hfvt = fvtool(CumSections{1},CumSections{2},CumSections{3});
legend(hfvt,'First Section','First Two Sections','Overall Filter');

5 Functions

5-116

Input Arguments
sysobj — Input filter object
dsp.BiquadFilter System object | dsp.SOSFilter System object

Input filter, specified as one of the following System objects:

• dsp.BiquadFilter
• dsp.SOSFilter

indices — Filter indices
scalar | row vector

Filter indices. Use indices to specify the filter sections cumsec uses to compute the cumulative
responses.

secondary — Flag to use secondary scaling points
false (default) | true

This option applies only when sysobj has the df2sos and df1tsos structures. For these second-
order section structures, the secondary scaling points refer to the scaling locations between the
recursive and the nonrecursive parts of the section (the "middle" of the section). Argument
secondary accepts either true or false. By default, secondary is false.

 cumsec

5-117

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

See Also
Functions
scale | scalecheck | scaleopts

Objects
dsp.BiquadFilter | dsp.SOSFilter

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

5 Functions

5-118

deleteCursor
Package: dsp

Delete Logic Analyzer cursor

Syntax
deleteCursor(scope,tag)

Description
deleteCursor(scope,tag) deletes the Logic Analyzer cursor specified by the input tag.

Examples

Modify Logic Analyzer Cursors Programmatically

This example shows how to use functions to create, manipulate, and delete cursors in a
dsp.LogicAnalyzer object.

Create Logic Analyzer and Signals

scope = dsp.LogicAnalyzer('NumInputPorts',3);
for ii = 1:20
 scope(ii,10*ii,20*ii);
end

 deleteCursor

5-119

Add Cursor

Add a cursor at 15 seconds and show the cursor information.

cursor = addCursor(scope,'Location',15,'Color','Cyan');
getCursorInfo(scope,cursor)

ans = struct with fields:
 Location: 15
 Color: [0 1 1]
 Locked: 0
 Tag: 'C2'

Modify Cursor

Change the cursor color to magenta.

hide(scope)
modifyCursor(scope,cursor,'Color','Magenta')
show(scope)

5 Functions

5-120

Remove Cursor

Delete the yellow cursor at 0 seconds.

hide(scope)
tags = getCursorTags(scope);
deleteCursor(scope,tags{1});
show(scope)

 deleteCursor

5-121

Input Arguments
scope — Logic Analyzer object from which you want to delete a cursor
dsp.LogicAnalyzer object handle

The Logic Analyzer object from which you want to delete a cursor, specified as a handle to the
dsp.LogicAnalyzer object.

tag — Tag identifying which cursor to delete
randomly assigned character vector

The tag identifying which cursor to delete, specified as a randomly assigned character vector.
Example: deleteCursor(scope,tag) deletes a cursor from Logic Analyzer.
Data Types: char | string

See Also
dsp.LogicAnalyzer | addCursor | getCursorTags | getCursorInfo | modifyCursor |
deleteDisplayChannel

5 Functions

5-122

Introduced in R2013a

 deleteCursor

5-123

deleteDisplayChannel
Package: dsp

Delete Logic Analyzer channel

Syntax
deleteDisplayChannel(scope,tag)

Description
deleteDisplayChannel(scope,tag) deletes the display channel, either a wave or a divider,
specified by the input tag.

Examples

Manipulate Logic Analyzer Programatically

Use functions to construct and manipulate a dsp.LogicAnalyzer System object.

Display Waves on Logic Analyzer scope.

scope = dsp.LogicAnalyzer('NumInputPorts',2);

stop = 30;
for count = 1:stop
 sinValVec = sin(count/stop*2*pi);
 cosValVec = cos(count/stop*2*pi);
 cosValVecOffset = cos((count+10)/stop*2*pi);

 scope([count (count-(stop/2))],[sinValVec cosValVec cosValVecOffset])
end

5 Functions

5-124

Reorganize Display

hide(scope)
digitalDividerTag = addDivider(scope,'Name','Digital','Height',20);
analogDividerTag = addDivider(scope,'Name','Analog','Height',40);

tags = getDisplayChannelTags(scope);

modifyDisplayChannel(scope,tags{1},'InputChannel',1,...
 'Name','Ramp Digital','Height',40);
modifyDisplayChannel(scope,tags{2},'InputChannel',2,...
 'Name','Waves Analog','Format','Analog','Height',80);

moveDisplayChannel(scope,digitalDividerTag,'DisplayChannel',1)
moveDisplayChannel(scope,tags{2},'DisplayChannel',length(tags))

show(scope)

 deleteDisplayChannel

5-125

Duplicate Wave and Check Information

hide(scope)
addWave(scope,'InputChannel',2,'Name','Waves Digital','Format','Digital',...
 'Height',30,'DisplayChannel',3);
show(scope)

5 Functions

5-126

Remove Dividers

hide(scope)
deleteDisplayChannel(scope,digitalDividerTag)
deleteDisplayChannel(scope,analogDividerTag)
show(scope)

 deleteDisplayChannel

5-127

Clear variables
clear analogDividerTag cosValVec cosValVecOffset count digitalDividerTag duplicateWave scope sinValVec stop tags

Input Arguments
scope — Logic Analyzer object
dsp.LogicAnalyzer object

The Logic Analyzer object from which you want to delete a display channel, specified as a handle to
the dsp.LogicAnalyzer object.

tag — tag identifier
randomly assigned character vector

The tag identifying which display channel to delete, specified as the randomly assigned character
vector.
Example: 'deleteDisplayChannel(scope,tag)' deletes a display channel from Logic Analyzer.
Data Types: char | string

5 Functions

5-128

See Also
dsp.LogicAnalyzer | getDisplayChannelTags | addDivider | addWave |
modifyDisplayChannel | deleteCursor

Introduced in R2013a

 deleteDisplayChannel

5-129

getFilter
Package: dsp

Get underlying FIR filter

Syntax
filter = getFilter(DF)

Description
filter = getFilter(DF) returns the underlying FIR filter, filter, used to implement the
differentiator, DF.

Examples

Get the Underlying FIR Filter of the Differentiator

Create a dsp.Differentiator System object with default properties.

DF = dsp.Differentiator;

Use getFilter to get the underlying FIR filter, filter, which implements the differentiator, DF.

filter = getFilter(DF)

filter =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [-0.0019 0.0024 -8.7640e-04 6.6377e-04 ...]
 InitialConditions: 0

 Show all properties

Input Arguments
DF — Differentiator filter
dsp.Differentiator System object

Differentiator filter, specified as a dsp.Differentiator System object.

Output Arguments
filter — Underlying filter
system object

5 Functions

5-130

Underlying filter used to implement the differentiator, returned as a filter System object.

See Also
Objects
dsp.Differentiator

Introduced in R2016a

 getFilter

5-131

fvtool
Package: dsp

Visualize frequency response of digital down converter or digital up converter filter cascade

Syntax
fvtool(Conv)
fvtool(Conv,'Arithmetic',arithType)

Description
fvtool(Conv) plots the magnitude response of a digital down converter or digital up converter,
Conv. By default, the object plots the cascade response up to the second CIC null frequency (or to the
first when only one CIC null exists). To use this syntax, the object Conv must be locked.

fvtool(Conv,'Arithmetic',arithType) specifies the arithmetic type of the filters inside the
converter. Set the 'Arithmetic' input to 'double', 'single', or 'fixed-point'. When the
Conv object is in an unlocked state, you must specify the arithmetic type. When the Conv object is in
a locked state, it ignores the arithmetic input argument.

For example, to plot the magnitude response of a digital down converter in an unlocked state, set the
'Arithmetic' input.

dwnConv = dsp.DigitalDownConverter
fvtool(dwnConv,'Arithmetic','fixed-point')

Examples

Magnitude Response of Digital Down Converter

Plot the magnitude response of the digital down converter using the fvtool function and the
visualizeFilterStages function.

Create a dsp.DigitalDownConverter System object with the default settings. Using the fvtool
function, plot the magnitude response of the overall filter cascade. The visualizeFilterStages
function in addition plots the magnitude response of the individual filters stages.

dwnConv = dsp.DigitalDownConverter

dwnConv =
 dsp.DigitalDownConverter with properties:

 DecimationFactor: 100
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'

5 Functions

5-132

 CenterFrequency: 14000000
 SampleRate: 30000000

 Show all properties

Using fvtool

If the System object is unlocked, you must specify the filter arithmetic through the 'Arithmetic'
input of the fvtool function. If the System object is locked, the arithmetic input is ignored.

fvtool(dwnConv,'Arithmetic','fixed-point')

Using visualizeFilterStages

To view the magnitude response of the individual filter stages, call the visualizeFilterStages
function.

visualizeFilterStages(dwnConv,'Arithmetic','fixed-point')

 fvtool

5-133

Input Arguments
Conv — Digital down converter or digital up converter
dsp.DigitalDownConverter | dsp.DigitalUpConverter

Digital down converter or digital up converter, specified as a dsp.DigitalDownConverter or
dsp.DigitalUpConverter System object.

arithType — Arithmetic type
'double' (default) | 'single' | 'fixed-point'

When the Conv object is in an unlocked state, you must specify the arithmetic type. When the Conv
object is in a locked state, it ignores the arithmetic input argument.

See Also
Functions
getInterpolationFactors | getDecimationFactors | getFilterOrders | getFilters |
groupDelay | visualizeFilterStages

Objects
dsp.DigitalDownConverter | dsp.DigitalUpConverter

Introduced in R2012a

5 Functions

5-134

denormalize
Undo filter coefficient and gain changes caused by normalize

Syntax
denormalize(hq)

Description
denormalize(hq) reverses the coefficient changes you make when you use normalize with hq.
The filter coefficients do not change if you call denormalize(hq) before you use normalize(hq).
Calling denormalize more than once on a filter does not change the coefficients after the first
denormalize call.

Examples

Denormalize Filter Coefficients

Construct a quantized filter hd.

d=fdesign.highpass('n,F3dB',14,0.45);
hd =design(d,'butter');
hd.arithmetic='fixed';

Normalize the filter coefficients

normalize(hd)
NormSOSMatrix = hd.sosMatrix;

After normalizing the filter coefficients, restore them to their original values by reversing the effects
of the normalize function.

denormalize(hd)
eqSOSMatrices = isequal(NormSOSMatrix,hd.sosMatrix)

eqSOSMatrices = logical
 0

Introduced in R2011a

 denormalize

5-135

design
Apply design method to filter specification object

Syntax
filt = design(designSpecs,'Systemobject',true)
filt = design(designSpecs,method,'Systemobject',true)
filt = design(designSpecs,method,PARAM,VALUE,...,'Systemobject',true)
filt = design(designSpecs,method,opts,'Systemobject',true)

Description
filt = design(designSpecs,'Systemobject',true) uses the filter specification object,
designSpecs, to generate a filter System object, filt. When you do not provide a design method as
an input argument, design uses the default design method. Use
designmethods(designSpecs,'default') to see the default design method for your filter design
specification object. For more information on filter design specifications, see “Design a Filter in
Fdesign — Process Overview”.

filt = design(designSpecs,method,'Systemobject',true) uses the design method
specified by method. method must be one of the options returned by designmethods.

filt = design(designSpecs,method,PARAM,VALUE,...,'Systemobject',true) specifies
design method options. Use designoptions(designSpecs,method) to see a list of available
design method options to choose from. For detailed help on each of these options, type
help(designSpecs,method) in the MATLAB command prompt.

filt = design(designSpecs,method,opts,'Systemobject',true) specifies design method
options using the structure opts. opts is usually obtained from the designopts function and then
specified as an input to the design function. Use help(designSpecs,method) for more
information on optional inputs.

Examples

Design FIR Equiripple Lowpass Filters

Design an FIR equiripple lowpass filter. Specify a passband edge frequency of 0.2π rad/sample and a
stopband edge frequency of 0.25π rad/sample. Set the passband ripple to 0.5 dB and the stopband
attenuation to 40 dB..

designSpecs = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.25,0.5,40)

designSpecs =
 lowpass with properties:

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: 1

5 Functions

5-136

 Fpass: 0.2000
 Fstop: 0.2500
 Apass: 0.5000
 Astop: 40

Use the default Equiripple method to design the filter.

filt = design(designSpecs,'SystemObject',true)

filt =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [-0.0057 -0.0010 0.0010 0.0040 0.0065 0.0073 ...]
 InitialConditions: 0

 Show all properties

Determine the available design methods by running the designmethods function on the filter design
specification object, designSpecs.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

You can also specify the design options used in designing the filter. To see a list of available options,
run the designoptions function on designSpecs.

designoptions(designSpecs,'equiripple')

ans = struct with fields:
 FilterStructure: {'dffir' 'dffirt' 'dfsymfir' 'fftfir'}
 DensityFactor: 'double'
 MinPhase: 'bool'
 MaxPhase: 'bool'
 MinOrder: {'any' 'even' 'odd'}
 StopbandShape: {'flat' 'linear' '1/f'}
 StopbandDecay: 'double'
 UniformGrid: 'bool'
 SystemObject: 'bool'
 DefaultFilterStructure: 'dffir'
 DefaultDensityFactor: 16
 DefaultMaxPhase: 0
 DefaultMinOrder: 'any'
 DefaultMinPhase: 0
 DefaultStopbandDecay: 0

 design

5-137

 DefaultStopbandShape: 'flat'
 DefaultSystemObject: 0
 DefaultUniformGrid: 1

Design a minimum-phase FIR equiripple filter by setting 'MinPhase' to true.

filtMin = design(designSpecs,'equiripple','MinPhase',true,'SystemObject',true)

filtMin =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [0.0163 0.0381 0.0724 0.1144 0.1562 0.1875 0.1981 ...]
 InitialConditions: 0

 Show all properties

Display pole-zero plots of the default and minimum-phase designs.

fvt = fvtool(filt,filtMin,'Analysis','polezero');
legend(fvt,'Default design','Minimum-phase design')

Redesign the filter using the elliptic method. Determine the available design options for the elliptic
method.

designoptions(designSpecs,'ellip')

5 Functions

5-138

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 MatchExactly: {'passband' 'stopband' 'both'}
 SystemObject: 'bool'
 DefaultFilterStructure: 'df2sos'
 DefaultMatchExactly: 'both'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]
 DefaultSystemObject: 0

Match the passband exactly by setting 'MatchExactly' to 'passband'.

filt = design(designSpecs,'ellip','MatchExactly','passband','SystemObject',true)

filt =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [3x6 double]
 ScaleValues: [4x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

You can specify the Pth norm scaling on the second-order sections. Use L-infinity norm scaling in the
time domain.

filtL = design(designSpecs,'ellip','MatchExactly','passband','SOSScaleNorm','linf', ...
 'SystemObject',true)

filtL =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [3x6 double]
 ScaleValues: [4x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Display the frequency responses of the filters.

fvt = fvtool(filt,filtL);
legend(fvt,'Default scaling','L-infinity norm scaling')

 design

5-139

Input Arguments
designSpecs — Filter design specification object
fdesign.response object

fdesign returns a filter design specification object. Every filter design specification object has these
properties.

Property Name Default Value Description
Response Depends on the chosen

type
Defines the type of filter to design,
such as an interpolator or bandpass
filter. This is a read-only value.

Specification Depends on the chosen
type

Defines the filter characteristics used
to define the desired filter
performance, such as the cutoff
frequency Fc or the filter order N.

Description Depends on the filter
type you choose

Contains descriptions of the filter
specifications used to define the object,
and the filter specifications you use
when you create a filter from the
object. This is a read-only value.

5 Functions

5-140

Property Name Default Value Description
NormalizedFrequency Logical true Determines whether the filter

calculation uses a normalized
frequency from 0 to 1, or the frequency
band from 0 to Fs/2, the sampling
frequency. Accepts either true or
false without single quotation marks.
Audio weighting filters do not support
normalized frequency.

In addition to these properties, filter design specification objects may have other properties as well,
depending on whether they design single-rate filters or multirate filters.

Added Properties for
Multirate Filters

Description

DecimationFactor Specifies the amount to decrease the sampling rate. Always a
positive integer.

InterpolationFactor Specifies the amount to increase the sampling rate. Always a
positive integer.

PolyphaseLength Polyphase length is the length of each polyphase subfilter that
composes the decimator or interpolator or rate-change factor
filters. Total filter length is the product of pl and the rate change
factors. pl must be an even integer.

method — Design method
character vector

Design method, specified as a character vector. The design method you provide as the input argument
must be one of the methods returned by:

designmethods(designSpecs,'Systemobject',true)

The table lists all the design methods. A subset of these become available depending on the filter
design specification object, designSpecs.

Design methods Description
butter Butterworth filter
cheby1 Chebyshev Type I filter
cheby2 Chebyshev Type II filter
ellip Elliptic filter
equiripple Equiripple FIR filter
firls Least-square linear-phase FIR filter
freqsamp Frequency-sampled FIR filter
ifir Interpolated FIR filter
iirlinphase Quasi-linear phase IIR filter
iirlpnorm Least P-norm optimal IIR filter

 design

5-141

Design methods Description
iirls Least-squares IIR filter
fircls FIR constrained least squares filter
kaiserwin Kaiser window filter
maxflat Maxflat FIR filter
multistage Multistage filter
window FIR filter using windowed impulse response
ansis142 ANSI S1.42 filter. Applies to the fdesign.audioweighting

object.
bell41009 Bell 41009 (C-message) IIR filter. Applies to the

fdesign.audioweighting object.

To help you design filters more quickly, the input argument method accepts a variety of special
keywords that force design to behave in different ways. This table presents the keywords you can
use for method and how design responds to the keyword:

Design Method
Keyword

Description of the Design Response

'FIR' Forces design to produce an FIR filter. When no FIR design method
exists for object d, design returns an error.

'IIR' Forces design to produce an IIR filter. When no IIR design method exists
for object d, design returns an error.

'ALLFIR' Produces filters from every applicable FIR design method for the
specifications in d, one filter for each design method. As a result, design
returns multiple filters in the output object.

'ALLIIR' Produces filters from every applicable IIR design method for the
specifications in d, one filter for each design method. As a result, design
returns multiple filters in the output object.

'ALL' Designs filters using all applicable design methods for the specifications
object d. As a result, design returns multiple filters, one for each design
method. design uses the design methods in the order that
designmethods(D,'Systemobject',true) returns them.

Keywords are not case sensitive.

When design returns multiple filters in the output object, use indexing to see the individual filters.
For example, to see the third filter in filt, enter:

filt(3)

Example: filt = design(designSpecs,'butter','SystemObject',true)
Example: filt = design(designSpecs,'ALLFIR','SystemObject',true)

opts — Specify design options
structure

Specify design options by passing opts structure as an input to the design function. The opts
structure is obtained by running designopts(designSpecs,method).

5 Functions

5-142

designSpecs = fdesign.notch
opts = designopts(designSpecs,'butter')
opts.FilterStructure = 'df1sos'
filt = design(designSpecs,'butter',opts,'SystemObject',true)

See Also
fdesign | designmethods | designopts | designoptions

Topics
“Design a Filter in Fdesign — Process Overview”

Introduced in R2009a

 design

5-143

designFracDelayFIR
Design band-limited fractional delay FIR filter

Syntax
h = designFracDelayFIR(fd)
h = designFracDelayFIR(fd,N)
h = designFracDelayFIR(fd,TBW)
[h,i0] = designFracDelayFIR(___)
[h,i0,MBW] = designFracDelayFIR(___)

Description
h = designFracDelayFIR(fd) designs a fractional delay FIR filter of delay fd, default length of
50, approximate bandwidth of 0.9.

h = designFracDelayFIR(fd,N) designs a fractional delay FIR filter of delay fd and length N >
1. The function designs the filter to achieve the specified FIR length.

h = designFracDelayFIR(fd,TBW) designs a fractional delay FIR filter of delay fd and a
combined bandwidth of at least TBW, where TBW < 0.999 and is specified in normalized frequency
units. The function automatically determines the appropriate FIR length N for which the combined
bandwidth is at least TBW.

[h,i0] = designFracDelayFIR(___) returns the integer latency of the FIR filter. This value is
approximately N/2. The nominal group delay of the filter is i0+fd.

[h,i0,MBW] = designFracDelayFIR(___) returns the measured combined bandwidth of the
filter h.

Examples

Design Fractional Delay FIR Filter with Specified Delay and Filter Length

Design a fractional delay FIR filter using the designFracDelayFIR function. Pass the delay and the
filter length as the input arguments to the function. Vary the filter length and observe the effect on
the measured combined bandwidth and the nominal group delay.

Vary Filter Length

Filter Length Set to 8

Specify the delay to be 0.25 and the filter length to be 8 and design the fractional delay FIR filter.

fd = 0.25;
len = [8 32 64];
[h1,i10,bw1] = designFracDelayFIR(fd,len(1))

h1 = 1×8

5 Functions

5-144

 -0.0086 0.0417 -0.1355 0.8793 0.2931 -0.0968 0.0341 -0.0074

i10 = 3

bw1 = 0.5810

The nominal group delay of the filter i10+fd equals 3.25 samples. The measured combined
bandwidth of the filter is 0.5810 in normalized frequency units.

Filter Length Set to 32

Repeat the process with a filter length of 32 taps.

[h2,i20,bw2] = designFracDelayFIR(fd,len(2))

h2 = 1×32

 -0.0001 0.0004 -0.0009 0.0017 -0.0029 0.0046 -0.0071 0.0104 -0.0148 0.0208 -0.0291 0.0410 -0.0594 0.0926 -0.1752 0.8983 0.2994 -0.1252 0.0758 -0.0515 0.0367 -0.0266 0.0193 -0.0139 0.0098 -0.0067 0.0044 -0.0028 0.0016 -0.0009 0.0004 -0.0001

i20 = 15

bw2 = 0.8571

The nominal group delay of the filter now equals 15.25 samples. By increasing the filter length, the
integer latency i0 also increases, resulting in an increase in the nominal group delay. The combined
bandwidth of the filter has increased to 0.8571 in normalized frequency units.

Filter Length Set to 64

Increase the filter length to 64 taps. The group delay increases to 31.25 samples, and the integer
latency is 31 samples. The measured combined bandwidth of the filter further increases to 0.9219.
That is a bandwidth coverage of 92.19% of the overall bandwidth. As the filter length continues to
increase, the combined bandwidth tends closer towards 1.

[h3,i30,bw3] = designFracDelayFIR(fd,len(3))

h3 = 1×64

 -0.0000 0.0001 -0.0001 0.0002 -0.0003 0.0004 -0.0006 0.0008 -0.0010 0.0013 -0.0017 0.0022 -0.0027 0.0034 -0.0042 0.0051 -0.0061 0.0074 -0.0088 0.0105 -0.0125 0.0149 -0.0177 0.0212 -0.0255 0.0311 -0.0386 0.0494 -0.0664 0.0979 -0.1787 0.8997 0.2999 -0.1277 0.0801 -0.0575 0.0442 -0.0352 0.0288 -0.0239 0.0200 -0.0168 0.0142 -0.0120 0.0101 -0.0085 0.0071 -0.0059 0.0049 -0.0040

i30 = 31

bw3 = 0.9219

Plot Magnitude Response

Plot the resulting magnitude response of the three filters using fvtool. Mark the measured
combined bandwidth of the three filters. By increasing the filter length, you can see that the
measured combined bandwidth increases.

hfv = fvtool(h1,1,h2,1,h3);
ax = findall(hfv,"type","axes");
hline = findobj(ax(2),'Type','line');
xline(bw1, "LineStyle",'--', "LineWidth",2,'Color',hline(3).Color)
xline(bw2, "LineStyle",'--', "LineWidth",2,'Color',hline(2).Color)
xline(bw3, "LineStyle",'--', "LineWidth",2,'Color',hline(1).Color)

 designFracDelayFIR

5-145

title('Magnitude Responses in dB','FontSize',12)

legend('Gain Response (N = 8)','Gain Response (N = 32)','Gain Response (N = 64)',...
 'Measured Combined Bandwidth (N = 8)',...
 'Measured Combined Bandwidth (N = 32)',...
 'Measured Combined Bandwidth (N = 64)','Location','Southwest','FontSize',12);

Plot Group Delay Response

Plot the group delay response of the three filters using fvtool. Mark the nominal group delay i0 + fd
of the three filters. By increasing the filter length, you can see that the nominal group delay
increases.

hfv = fvtool(h1,1,h2,1,h3,1,"Analysis","grpdelay");
ax = findall(hfv,"type","axes");
hline = findobj(ax(2),'Type','line');

yline(i10+fd, "LineStyle",'--', "LineWidth",2,'Color',hline(3).Color)
yline(i20+fd, "LineStyle",'--', "LineWidth",2,'Color',hline(2).Color)
yline(i30+fd, "LineStyle",'--', "LineWidth",2,'Color',hline(1).Color)

title('Group Delay Responses','FontSize',12)

legend('Group Delay Response (N = 8)','Group Delay Response (N = 32)','Group Delay Response (N = 64)',...
 'Nominal Group Delay (N = 8)',...
 'Nominal Group Delay (N = 32)',...
 'Nominal Group Delay (N = 64)','Location','west','FontSize',12);
ax(1).YLim = [-10,40];

5 Functions

5-146

Design Fractional Delay FIR Filter with Specified Delay and Combined Bandwidth

Design a fractional delay FIR filter using the designFracDelayFIR function. Pass the delay and the
combined bandwidth as input arguments to the function.

Specify the delay to be 0.786 and the target combined bandwidth to be 0.8. The function designs a
filter that has a length of 22 taps, an integer latency i0 of 10 samples, and a combined bandwidth
mbw of 0.8044 in normalized frequency units. This mbw value makes the combined bandwidth
coverage to be 80.44% of the frequency domain and exceeds the specified target combined
bandwidth. The nominal group delay of the filter i0+fd equals 10.786.

fd = 0.786;
tbw = 0.8;
[h,i0,mbw] = designFracDelayFIR(fd, tbw)

h = 1×22

 0.0003 -0.0011 0.0026 -0.0052 0.0094 -0.0156 0.0248 -0.0386 0.0611 -0.1052 0.2512 0.9225 -0.1548 0.0769 -0.0455 0.0281 -0.0173 0.0102 -0.0057 0.0028 -0.0012 0.0003

i0 = 10

mbw = 0.8044

Plot the impulse response of the FIR.

 designFracDelayFIR

5-147

stem((0:length(h)-1),h);
xlabel('h'); ylabel('h[n]');
title('Impulse Response of the Fractional Delay FIR')

Plot the resulting magnitude response and the group delay response using fvtool. Mark the nominal
group delay and the combined bandwidth of the filter.

hfv = fvtool(h,'Analysis','magnitude','OverlayedAnalysis','grpdelay');
ax = findall(hfv,'type','axes');
xline(mbw, 'LineStyle',':', 'Color','b', 'LineWidth',2)
xline(tbw, 'LineStyle','--', 'Color','m', 'LineWidth',2)

yline(ax(1),i0+fd, 'LineStyle',':','Color','r','LineWidth',1)

yticks(ax(1),[i0, i0+fd,i0+1:i0+9]); yticklabels(ax(1),'auto')
legend('Gain Response','Measured Combined Bandwidth',...
 'Target Combined Bandwidth','Group Delay Response','Nominal Group Delay', ...
 'Location','west','FontSize',12)
grid off

5 Functions

5-148

Design Fractional Delay FIR Filter and Compare with Shifted Input

Design a fractional delay FIR filter using the designFracDelayFIR function. Determine the group
delay of the designed filter. Create a dsp.FIRFilter object that uses these designed coefficients
and hence has the same group delay. Alternately, create a sampled sequence of a known function.
Pass the sampled sequence to the FIR filter. Compare the output of the FIR filter to the shifted
samples of the known function. Specify this shift to be equal to the group delay of the FIR filter. Verify
that the two sequences match.

Specify the delay of the fractional delay FIR filter to be 1/3 and the length to be 6 taps.

fd = 1/3;
len = 6;

Design the filter using the designFracDelayFIR function and determine the center index i0 and the
combined bandwidth bw of the filter. The group delay of the filter you have designed is i0 + fd or
approximately 2.33 for the bandwidth of bw.

[h,i0,bw] = designFracDelayFIR(fd,len)

h = 1×6

 0.0293 -0.1360 0.7932 0.3966 -0.1088 0.0257

 designFracDelayFIR

5-149

i0 = 2

bw = 0.5158

Create a dsp.FIRFilter object and set its numerator to the filter coefficients h. This filter is now
effectively a fractional delay FIR filter. Verify that the group delay response of this filter is
approximately 2.33 for the duration of the bandwidth bw.

fdf = dsp.FIRFilter(h);
grpdelay(fdf)

Compare with Shifted Function

Define a sequence x as samples of a known function.

f = @(t) (0.1*t.^2+cos(0.9*t)).*exp(-0.1*(t-5).^2);
n = (0:19)'; t = linspace(0,19,512);
x = f(n); % Samples

Plot the sampled values x against the original known function f(t).

scatter(n,x,20,'k','filled');
hold on;
plot(t,f(t),'color',[0.5 0.5 0.5],'LineWidth',0.5)
hold off;
xlabel('Time')
legend(["Input Samples","f(t)"])

5 Functions

5-150

title('Input Sequence with Known Underlying Analog Signal')
ax = gca; ax.XGrid='on';

Pass the sampled sequence x through the FIR filter. Plot the input sequence and output sequence.

y = fdf(x);

subplot(2,1,1);
stem(x);
title('Input Sequence');
xlabel('n')
subplot(2,1,2)
stem(y);
title('FIR Output Sequence');
xlabel('n')

 designFracDelayFIR

5-151

Shift the input sequnce horizontally by i0 + fd, which is equal to the group delay of the FIR filter.
Plot the function f(t-i0-FD). Verify that the input and output sequences fall roughly on the shifted
function.

figure
scatter(n,y,20,'red','filled')
hold on;
scatter(n+i0+fd,x,20,'black','filled')
plot(t,f(t-i0-fd),'Color',[1,0.5,0.5],'LineWidth',0.1)
xlabel('Time')
legend(["Filter output","Shifted Input Samples","Shifted f(t-i0-fd)"])
hold off
grid on
title('Input and Output Sequences Aligned and Overlaid')

5 Functions

5-152

Input Arguments
fd — Fractional delay of filter
positive scalar in the range [0,1]

Fractional delay of the filter, specified as a positive scalar in the range [0,1]. The fractional delay
value that you specify determines the measured combined bandwidth MBW of the filter. When fd is set
to 0 or 1, the designed filter has a full bandwidth.
Data Types: single | double

N — Length of FIR filter
integer greater than 1

Length of the fractional delay FIR filter, specified as an integer greater than 1. In order to specify the
length of the filter, you must specify the second input argument of the function to be an integer that is
greater than 1. The function treats this value as the desired filter length and returns a filter that is N
taps long.
Data Types: single | double

TBW — Target combined bandwidth
positive scalar less than 0.999

 designFracDelayFIR

5-153

Target combined bandwidth, specified as a positive scalar less than 0.999. This is the value of the
combined bandwidth that the function must satisfy. Combined bandwidth is defined as the minimum
of the gain bandwidth on page 5-158 and the group delay bandwidth on page 5-158.

In order to specify the target combined bandwidth, you must specify the second input argument of
the function to be a real scalar that is less than 0.999. The function then treats this value as the
target combined bandwidth, determines the corresponding filter length, and designs the filter
accordingly.

Specify a higher target combined bandwidth for a longer filter. For example TBW set to 0.9 yields a
filter of length of 52. For TBW that is set to 0.99, the length is 724. This value is more than 10 times
longer. As TBW tends towards 1, the filter length theoretically tends towards infinity.
Data Types: single | double

Output Arguments
h — Coefficients of fractional delay FIR filter
row vector

Coefficients of the fractional delay FIR filter, returned as a real-valued N-length row vector. When
fractional delay is the only input to the function, the function designs a filter of length 50. The
bandwidth for this default filter is approximately 0.9. When the second input argument is specified,
the function designs the filter according to the following:

• When the second input argument to the function is specified to be a value greater than 1, the
function treats this value as the desired filter length and returns a filter that is N taps long.

• When the second input argument to the function is specified to be a value less than 0.999, the
function treats this value as the desired combined bandwidth TBW, determines the corresponding
filter length, and designs the filter accordingly.

Data Types: single | double

i0 — Integer latency
integer

Integer latency of the designed FIR filter, returned as an integer value. Integer latency is the smallest
integer shift required to make the symmetric Kaiser window causal. This value is approximately equal
to half the filter length, N/2. For more details, see “Integer latency, i0” on page 5-156.

The nominal group delay of the filter is given by i0+fd.
Data Types: single | double

MBW — Measured combined bandwidth
positive scalar less than 0.999

Measured combined bandwidth, returned as a real positive scalar that is less than 0.999. This is the
value of the combined bandwidth of the designed filter. Combined bandwidth is defined as the
minimum of the gain bandwidth on page 5-158 and the group delay bandwidth on page 5-158.

When you specify the second input argument and the value is less than 0.999, the function treats
this value as the target combined bandwidth TBW. The function designs the filter such that the
measured combined bandwidth MBW meets or exceeds the target combined bandwidth TBW. The filter
length is determined such that this bandwidth constraint is met.

5 Functions

5-154

When you specify the second input argument and the value is an integer greater than 1, the function
treats this value as the desired length N of the filter. The measured combined bandwidth in this case
varies with the length you specify. Larger the value of N, higher is the measured combined bandwidth
MBW. See the plot below that shows this variation. As the filter length grows, the combined bandwidth
of the filter moves closer towards 1. The red dashed vertical line marks the combined bandwidth for
each length. The fractional delay value for each of these filters is set to 0.3

Data Types: single | double

More About
Fractional Delay FIR Filter

The fractional delay FIR filter is an FIR approximation of an ideal sinc shift filter with a specified
fractional (non-integer) delay value fd within [0,1].

The ideal shift filter models a band-limited D/A interpolator followed by shifted A/D uniform sampling.
Assuming uniform sampling rate and shift invariant interpolation, the resulting overall system can be
expressed as a convolution filter, approximated by an FIR filter. In other words, y[n] = hfd[n] ∗ x[n],
which encapsulates the D/A interpolation, shift, and A/D sampling chain as depicted in the figure.

 designFracDelayFIR

5-155

where,

hfd[n] = sinc(n− fd),
x (t) = ∑

k
x[k]sinc(t − k)

x (t + fd) = ∑
k

x[k]sinc t + fd− k

The frequency response of the ideal shift filter is given by the following equation:

Hfd(ω) = e− jωfd

The ideal shift filter has a flat unity gain response, and a constant group delay of fd, where fd is the
fractional delay value you specify.

The FIR approximation is obtained by truncating the ideal filter and weighting the truncated filter by
a Kaiser window.

x (n + fd) ≈ y[n] = h ∗ x n , where h[m] = sinc(m + fd) · KN, β[m]

where, KN, β[m] is a Kaiser window of length N and has a shape parameter β. The Kaiser window is
designed to optimize the FIR frequency response, maximizing the combined bandwidths of both gain
response and group delay response.

To make the FIR approximation causal, an additional shift of i0 is introduced, making the nominal
group delay of the filter equal to i0+fd. The frequency response of the truncated filter is given by,
H(ω) = e− jω fd + i0 .

For more details, see “Integer latency, i0” on page 5-156.

Integer latency, i0

Integer latency, i0, is the smallest integer shift that is required to make the symmetric Kaiser window
causal.

The ideal sinc shift filter is an allpass filter, which has an infinite and non-causal impulse response.
To approximate this filter, the function uses a finite index Kaiser window of length N that is symmetric
around the origin and captures the main lobe of the sinc function.

5 Functions

5-156

Due to the symmetric nature of the window, half of the window (approximately equal to N/2) is on the
negative side of the origin making the truncated filter anti-causal. To make the truncated filter causal,
shift the anti-causal (negative indices) part of the FIR window by an integer latency, i0, that is
approximately equal to N/2.

 designFracDelayFIR

5-157

The overall delay of the causal FIR filter is i0+fd, where fd is the fractional delay value you specify.

For more details on FIR approximation, see the Causal FIR Approximations of an Ideal sinc Shift
Filter section in “Design of Fractional Delay FIR Filters”.

Gain Bandwidth

Given an FIR frequency response H(ω), the gain bandwidth is the largest interval [0 Ba] over which
the gain response |H(ω)| is close to 1 up to a given tolerance value, tol.

Ba = max
ω

H(ν) − 1 < tol ∀ 0 ≤ ν ≤ ω

Group Delay Bandwidth

Given a tolerance tol and a group delay response G, the group delay bandwidth is the largest interval
[0 Bg] such that the group delay is close to the nominal value, fd.

Bg = max
ω

G(ν)− fd− i0 < tol ∀ 0 ≤ ν ≤ ω

Combined Bandwidth

Combined bandwidth is defined as the minimum between the gain bandwidth and the group delay
bandwidth.

Bc = min(Ba, Bg)

5 Functions

5-158

Combined bandwidth depends on the fractional delay fd and the length of the FIR filter N.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
designMultirateFIR

Objects
dsp.FIRFilter | dsp.VariableFractionalDelay | dsp.Delay

Topics
“Design of Fractional Delay FIR Filters”
“Fractional Delay Filters Using Farrow Structures”

Introduced in R2021a

 designFracDelayFIR

5-159

designMultirateFIR
Multirate FIR filter design

Syntax
B = designMultirateFIR(L,M)

B = designMultirateFIR(L,M,P)

B = designMultirateFIR(L,M,TW)

B = designMultirateFIR(L,M,P,Astop)

B = designMultirateFIR(L,M,TW,Astop)

B = designMultirateFIR(___ ,'SystemObject',flag)

Description
B = designMultirateFIR(L,M) designs a multirate FIR filter with interpolation factor L and
decimation factor M. The output B is the vector of designed FIR coefficients. To design a pure
interpolator, set M to 1. To design a pure decimator, set L to 1.

B = designMultirateFIR(L,M,P) designs a multirate FIR filter with half-polyphase length P. By
default, the half-polyphase length is 12.

B = designMultirateFIR(L,M,TW) designs a multirate FIR filter with interpolation factor L,
decimation factor M, and normalized transition width TW.

B = designMultirateFIR(L,M,P,Astop) designs a multirate FIR filter with stopband
attenuation Astop. By default, the stopband attenuation is 80 dB.

B = designMultirateFIR(L,M,TW,Astop) designs a multirate FIR filter with interpolation factor
L, decimation factor M, normalized transition width TW, and stopband attenuation Astop, specified in
dB.

B = designMultirateFIR(___ ,'SystemObject',flag) returns a vector of filter coefficients B
if the flag is set to false, or a multirate filter System object if the flag is set to true.

Examples

Design an FIR Interpolator

To design an FIR Interpolator using the designMultirateFIR function, you must specify the
interpolation factor of interest (usually greater than 1) and a decimation factor equal to 1. You can
use the default half-polyphase length of 12 and the default stopband attenuation of 80 dB. Alternately,
you can also specify the half-polyphase length and stopband attenuation values.

Design an FIR interpolator with interpolation factor set to 5. Use the default half-polyphase length of
12 and the default stopband attenuation of 80 dB.

5 Functions

5-160

b = designMultirateFIR(5,1);
fvtool(b,'impulse')

Design an FIR Decimator

To design an FIR Decimator using the designMultirateFIR function, you must specify the
decimation factor of interest (usually greater than 1) and an interpolation factor equal to 1. You can
use the default half-polyphase length of 12 and the default stopband attenuation of 80 dB. Alternately,
you can also specify the half-polyphase length and stopband attenuation values. Design an FIR
decimator with decimation factor set to 3, and half-polyphase length set to 14. Use the default
stopband attenuation of 80 dB.

b = designMultirateFIR(1,3,14);
fvtool(b,'impulse');

 designMultirateFIR

5-161

Design an FIR Rate Converter

To design an FIR Rate Converter using the designMultirateFIR function, you must specify the
interpolation and decimation factors of interest (usually greater than 1). In addition, you can specify
either the half-polyphase length and stopband attenuation values, or the normalized transition width
and stopband attenuation values.

Design an FIR rate converter with interpolation factor set to 3, decimation factor set to 4, half-
polyphase length set to 14, and stopband attenuation set to 90 dB.

b = designMultirateFIR(3,4,14,90);
fvtool(b,'impulse');

5 Functions

5-162

Design an FIR rate converter with interpolation factor set to 3, decimation factor set to 4, normalized
transition width set to 0.2, and stopband attenuation set to 90 dB.

bTW = designMultirateFIR(3,4,0.2,90);
fvtool(bTW,'impulse');

 designMultirateFIR

5-163

Design a dsp.FIRInterpolator System object

Set the 'SystemObject' flag to true in the designMultirateFIR function to design a multirate
filter object. The design parameters specified in the function determine the type of System object the
function designs.

In this example, the function designs a polyphase FIR interpolator System object™. For more details,
see dsp.FIRInterpolator.

Create a dsp.FIRInterpolator object with the interpolation factor equal to 5, transition width
equal to 0.01, and stopband attenuation equal to 60 dB. Set the 'SystemObject' flag to true to
design a multirate filter object.

firInterp = designMultirateFIR(5,1,0.01,60,'SystemObject',true);
fvtool(firInterp)

5 Functions

5-164

Compute the cost of implementing the filter.

cost(firInterp)

ans = struct with fields:
 NumCoefficients: 582
 NumStates: 145
 MultiplicationsPerInputSample: 582
 AdditionsPerInputSample: 578

Measure the frequency response characteristics of the filter object.

measure(firInterp)

ans =
Sample Rate : N/A (normalized frequency)
Passband Edge : 0.195
3-dB Point : 0.19884
6-dB Point : 0.2
Stopband Edge : 0.205
Passband Ripple : 0.016474 dB
Stopband Atten. : 60.1827 dB
Transition Width : 0.01

 designMultirateFIR

5-165

Input Arguments
L — Interpolation factor
positive scalar integer

Interpolation factor, specified as a positive scalar integer. To design a decimator only, set L to 1.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

M — Decimation factor
positive scalar integer

Decimation factor, specified as a positive scalar integer. To design an interpolator only, set M to 1.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

P — Half-polyphase length
12 (default) | positive scalar integer

Half-polyphase length, specified as a positive scalar integer.
Example: 12
Example: 20
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TW — Normalized transition width
real scalar in the range (0 1)

Normalized transition width of the multirate FIR filter, specified as a real scalar in the range (0 1).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Astop — Stopband attenuation
90 (default) | nonnegative scalar

Stopband attenuation in dB, specified as a nonnegative real scalar greater than or equal to 0.
Example: 0.0
Example: 80.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

flag — System object flag
false (default) | true

System object flag set to:

• false –– Function returns a vector of filter coefficients.
• true –– Function returns one of the following multirate filter System objects:

• dsp.FIRInterpolator –– When L > 1 and M = 1.
• dsp.FIRDecimator –– When L = 1 and M > 1.

5 Functions

5-166

• dsp.FIRRateConverter –– When L > 1 and M > 1.

Data Types: logical

Output Arguments
B — Coefficients
real-valued vector

Multirate FIR filter coefficients, returned as a real-valued N-length vector.

If both L and M are equal to 1, then N equals 1.

If max(L,M) > 1, then N = 2*P*R, where P is the half-polyphase length and R is defined by the
following equations:

• If L > 1, R = L.
• If L = 1, R = M.

For more details, see the “Algorithms” on page 5-167 section.

When the 'SystemObject' flag is set to true, the function returns one of the following multirate
filter System objects:

• dsp.FIRInterpolator –– When L > 1 and M = 1.
• dsp.FIRDecimator –– When L = 1 and M > 1.
• dsp.FIRRateConverter –– When L > 1 and M > 1.

Data Types: double

Algorithms
designMultirateFIR designs an (N – 1)th order, Rth band Nyquist FIR filter using the N-length
Kaiser window vector to window the truncated impulse response of the FIR filter.

Filter length, N is defined as N = 2*P*R and R is defined as explained in “B” on page 5-0 .

The truncated impulse response d(n) is delayed by N/2 samples to make it causal. The truncated and
delayed impulse response is given by:

d(n− N/2) =
sin(wc(n− N/2))

π(n− N/2) , n = 0,⋯, N
2 ,⋯, N

where wc = π/R.

For every Rth band, the impulse response of the Nyquist filters is exactly zero. Because of this
property, when Nyquist filters are used for pure interpolation, the input samples remain unaltered
after interpolating.

A Kaiser window is used because of its near-optimum performance while providing a robust way of
designing a Nyquist filter. The window depends on two parameters: length N + 1 and shape
parameter β.

The Kaiser window is defined by:

 designMultirateFIR

5-167

w(n) =
I0 β 1− n− N/2

N/2
2

I0(β) , 0 ≤ n ≤ N,

where I0 is the zeroth-order modified Bessel function of the first kind.

The shape parameter β is calculated from:

β =

0.1102(Astop− 8.7) if Astop ≥ 50

0.5842(Astop− 21)0.4 + 0.07886(Astop− 21) if 21 < Astop < 50
0 if Astop ≤ 21,

where Astop is the stopband attenuation in dB.

The windowed impulse response is given by

h(n) = w(n)d(n− N/2) = w(n)
sin(wc(n− N/2))

π(n− N/2) , n = 0,⋯, N
2 ,⋯, N

h(n) for n = 0,..,N/2,...N are the coefficients of the multirate filter. These coefficients are defined by
the interpolation factor, L, and decimation factor, M.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Upper Saddle River, NJ: Prentice-Hall,

1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The inputs to the function must be constants.
• The function must return a vector of coefficients. Setting the 'SystemObject' flag to true is not

supported for code generation.

See Also
Functions
firnyquist | firhalfband | rcosdesign | fdesign.decimator | fdesign.interpolator |
fdesign.halfband | designMultistageDecimator | designFracDelayFIR

Objects
dsp.FIRInterpolator | dsp.FIRDecimator | dsp.FIRRateConverter

Introduced in R2016a

5 Functions

5-168

designMultistageDecimator
Multistage decimator design

Syntax
C = designMultistageDecimator(M)
C = designMultistageDecimator(M,Fs,TW)
C = designMultistageDecimator(M,Fs,TW,Astop)
C = designMultistageDecimator(___ ,Name,Value)

Description
C = designMultistageDecimator(M) designs a multistage decimator that has an overall
decimation factor of M. In order for C to be multistage, M must not be a prime number. For details, see
“Algorithms” on page 5-179. The design process can take a while if M has many factors.

C = designMultistageDecimator(M,Fs,TW) designs a multistage decimator with a sampling
rate of Fs and a transition width of TW. Sampling rate in this case refers to the input sampling rate of
the signal before the multistage decimator.

The multistage decimator has a cutoff frequency of Fs/(2M).

C = designMultistageDecimator(M,Fs,TW,Astop) specifies a minimum attenuation of Astop
dB for the resulting design.

C = designMultistageDecimator(___ ,Name,Value) specifies additional design parameters
using one or more name-value pair arguments.
Example: C = designMultistageDecimator(48,48000,200,80,'NumStages','auto')
designs a multistage decimator with the least number of multiplications per input sample (MPIS).

Examples

Design Efficient Decimator

Design a single-stage decimator using the designMultirateFIR function and a multistage
decimator using the designMultistageDecimator function. Determine the efficiency of the two
designs using the cost function. The implementation efficiency is characterized by two cost metrics -
NumCoefficients and MultiplicationsPerInputSample.

Compute the cost of implementing both designs, and determine which design is more efficient. To
make a comparison, design the filters such that their transition width is the same.

Initialization

Choose a decimation factor of 48, input sample rate of 30 . 72 × 48 MHz, one-sided bandwidth of 10
MHz, and a stopband attenution of 90 dB.

M = 48;
Fin = 30.72e6*M;

 designMultistageDecimator

5-169

Astop = 90;
BW = 1e7;

Using the designMultirateFIR Function

Designing the decimation filter using the designMultirateFIR function yields a single-stage
design. Set the half-polyphase length to a finite integer, in this case 8.

HalfPolyLength = 8;
b = designMultirateFIR(1,M,HalfPolyLength,Astop);
d = dsp.FIRDecimator(M,b)

d =
 dsp.FIRDecimator with properties:

 DecimationFactor: 48
 NumeratorSource: 'Property'
 Numerator: [0 -5.7242e-08 -1.2617e-07 -2.0736e-07 -3.0130e-07 ...]
 Structure: 'Direct form'

 Show all properties

Compute the cost of implementing the decimator. The decimation filter requires 753 coefficients and
720 states. The number of multiplications per input sample and additions per input sample are
15.6875 and 15.6667, respectively.

cost(d)

ans = struct with fields:
 NumCoefficients: 753
 NumStates: 720
 MultiplicationsPerInputSample: 15.6875
 AdditionsPerInputSample: 15.6667

Using the designMultistageDecimator Function

Design a multistage decimator with the same filter specifications as the single-stage design. Compute
the transition width using the following relationship:

Fc = Fin/(2*M);
TW = 2*(Fc-BW);

By default, the number of stages given by the NumStages argument is set to 'Auto', yielding an
optimal design that tries to minimize the number of multiplications per input sample.

c = designMultistageDecimator(M,Fin,TW,Astop)

c =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRDecimator]
 Stage2: [1x1 dsp.FIRDecimator]
 Stage3: [1x1 dsp.FIRDecimator]
 Stage4: [1x1 dsp.FIRDecimator]

5 Functions

5-170

Calling the info function on c shows that the filter is implemented as a cascade of four
dsp.FIRDecimator objects, with decimation factors of 3, 2, 2, and 4, respectively.

Compute the cost of implementing the decimator.

cost(c)

ans = struct with fields:
 NumCoefficients: 78
 NumStates: 99
 MultiplicationsPerInputSample: 7.2708
 AdditionsPerInputSample: 6.6667

The NumCoefficients and the MultiplicationsPerInputSample parameters are lower for the
four-stage filter designed by the designMultistageDecimator function, making it more efficient.

Compare the magnitude response of both the designs.

fvtool(b,c)
legend('Single-stage','Multistage')

The magnitude response shows that the transition width of both the filters is the same, making the
filters comparable. The cost function shows that implementing the multistage design is more
efficient compared to implementing the single-stage design.

 designMultistageDecimator

5-171

Using the 'design' Option in the designMultistageDecimator Function

The filter can be made even more efficient by setting the 'CostMethod' argument of the
designMultistageDecimator function to 'design'. By default, this argument is set to
'estimate'.

In the 'design' mode, the function designs each stage and computes the filter order. This yields an
optimal design compared to the 'estimate' mode, where the function estimates the filter order for
each stage and designs the filter based on the estimate.

Note that the 'design' option can take much longer compared to the 'estimate' option.

cOptimal = designMultistageDecimator(M,Fin,TW,Astop,'CostMethod','design')

cOptimal =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRDecimator]
 Stage2: [1x1 dsp.FIRDecimator]
 Stage3: [1x1 dsp.FIRDecimator]
 Stage4: [1x1 dsp.FIRDecimator]

cost(cOptimal)

ans = struct with fields:
 NumCoefficients: 70
 NumStates: 93
 MultiplicationsPerInputSample: 7
 AdditionsPerInputSample: 6.5417

Compare Multistage Decimator Designs

Design a decimator with an overall decimation factor of 24 using the designMultistageDecimator
function. Design the filter in two configurations:

• Two-stage configuration - NumStages is set to 2.
• Auto configuration - NumStages is set to 'Auto'. This configuration designs a filter with the

lowest number of multiplications per input sample.

Compare the cost of implementing both the configurations.

Initialization

Choose a decimation factor of 24, input sample rate of 6 kHz, stopband attenuation of 90 dB, and a
transition width of 0 . 03 × 6000

2 .

M = 24;
Fs = 6000;
Astop = 90;
TW = 0.03*Fs/2;

5 Functions

5-172

Design the Filter

Design the two filters using the designMultistageDecimator function.

cAuto = designMultistageDecimator(M,Fs,TW,Astop,'NumStages','Auto')

cAuto =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRDecimator]
 Stage2: [1x1 dsp.FIRDecimator]
 Stage3: [1x1 dsp.FIRDecimator]

cTwo = designMultistageDecimator(M,Fs,TW,Astop,'NumStages',2)

cTwo =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRDecimator]
 Stage2: [1x1 dsp.FIRDecimator]

View the filter information using the info function. The 'Auto' configuration designs a cascade of
three FIR decimators with decimation factors 2, 3, and 4, respectively. The two-stage configuration
designs a cascade of two FIR decimators with decimation factors 4 and 6, respectively.

Compare the Cost

Compare the cost of implementing the two designs using the cost function.

cost(cAuto)

ans = struct with fields:
 NumCoefficients: 73
 NumStates: 94
 MultiplicationsPerInputSample: 8.6250
 AdditionsPerInputSample: 7.9167

cost(cTwo)

ans = struct with fields:
 NumCoefficients: 104
 NumStates: 124
 MultiplicationsPerInputSample: 9.1250
 AdditionsPerInputSample: 8.8333

The 'Auto' configuration decimation filter yields a three-stage design that out-performs the two-
stage design on all cost metrics.

Compare the Magnitude Response

Comparing the magnitude response of the two filters, both the filters have the same transition-band
behavior and follow the design specifications.

fvtool(cAuto,cTwo,'magnitude')
legend('Auto multistage','Two-stage')

 designMultistageDecimator

5-173

However, to understand where the computational savings are coming from in the three-stage design,
look at the magnitude response of the three stages individually.

autoSt1 = cAuto.Stage1;
autoSt2 = cAuto.Stage2;
autoSt3 = cAuto.Stage3;
fvtool(autoSt1, autoSt2, autoSt3,'magnitude')
legend('Stage 1','Stage 2','Stage 3')

5 Functions

5-174

The third stage provides the narrow transition width required for the overall design (0.03×Fs/2).
However, the third stage operates at 1.5 kHz and has spectral replicas centered at that frequency and
its harmonics.

The first stage removes such replicas. This first and second stages operate at a faster rate but can
afford a wide transition width. The result is a decimate-by-2 first-stage filter with only 7 nonzero
coefficients and a decimate-by-3 second-stage filter with only 19 nonzero coefficients. The third stage
requires 47 coefficients. Overall, there are 73 nonzero coefficients for the three-stage design and 100
nonzero coefficients for the two-stage design.

Determining Best Multistage Decimator Design

The filters in the multistage design satisfy the following conditions:

• The combined response must meet or exceed the given design specifications.
• The combined decimation must equal the overall decimation required.

For an overall decimation factor of 48, there are several combinations of individual stages.

To obtain a design with the least number of total coefficients, set the 'MinTotalCoeffs' argument
to true.

Astop = 80;
M = 48;

 designMultistageDecimator

5-175

Fs = 6000;
TW = 0.03*Fs/2;
cMinCoeffs = designMultistageDecimator(M,Fs,TW,Astop,'MinTotalCoeffs',true)

cMinCoeffs =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRDecimator]
 Stage2: [1x1 dsp.FIRDecimator]
 Stage3: [1x1 dsp.FIRDecimator]
 Stage4: [1x1 dsp.FIRDecimator]

cost(cMinCoeffs)

ans = struct with fields:
 NumCoefficients: 48
 NumStates: 59
 MultiplicationsPerInputSample: 5.8542
 AdditionsPerInputSample: 5.0833

To obtain the design with the least number of multiplications per input sample, set 'NumStages' to
'auto'.

cMinMulti = designMultistageDecimator(M,Fs,TW,Astop,'NumStages','auto')

cMinMulti =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRDecimator]
 Stage2: [1x1 dsp.FIRDecimator]

cost(cMinMulti)

ans = struct with fields:
 NumCoefficients: 158
 NumStates: 150
 MultiplicationsPerInputSample: 5.6875
 AdditionsPerInputSample: 5.1667

Compare the magnitude response of both filters using fvtool. Both filters have the same transition-
band behavior and a stopband attenuation that is below 80 dB.

fvtool(cMinCoeffs,cMinMulti)
legend('Minimize total coefficients','Minimize number of multiplications per input sample')

5 Functions

5-176

Input Arguments
M — Overall decimation factor
positive integer

Overall decimation factor, specified as a positive integer greater than one. In order for C to be
multistage, M must not be a prime number. For details, see “Algorithms” on page 5-179.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fs — Input sampling rate
48000 (default) | positive real scalar

Input sampling rate prior to the multistage decimator, specified as a positive real scalar. If not
specified, Fs defaults to 48,000 Hz. The multistage decimator has a cutoff frequency of Fs/(2M).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TW — Transition width
0.2×Fs/M (default) | positive real scalar

Transition width, specified as a positive real scalar less than Fs/M. If not specified, TW defaults to
0.2×Fs/M. Transition width must be less than Fs/M.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 designMultistageDecimator

5-177

Astop — Minimum stopband attenuation
positive real scalar

Minimum stopband attenuation for the resulting design, specified as a positive real scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: C = designMultistageDecimator(48,48000,200,80,'NumStages','auto')
designs a multistage decimator with the lowest number of multiplications per input sample.

NumStages — Number of decimator stages
'auto' (default) | positive integer

Number of decimator stages, specified as a positive integer. If set to 'auto', the design algorithm
determines the number of stages that result in the lowest number of multiplications per input sample.
If specified as a positive integer, N, the overall decimation factor, M, must be able to factor into at
least N factors, not counting 1 or M as factors.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MinTotalCoeffs — Minimize total number of coefficients
false (default) | true

When false, the design algorithm minimizes the number of multiplications per input sample. When
true, the design algorithm minimizes the total number of coefficients.
Data Types: logical

CostMethod — Cost computation method
'estimate' (default) | 'design'

Cost computation method, specified as either:

• 'estimate' –– The function estimates the filter order required for each stage and designs the
filter based on the estimate. This method is faster than 'design', but can lead to suboptimal
designs.

• 'design' –– The function designs each stage and computes the filter order. This method leads to
an optimal overall design.

Data Types: char

CostTolerance — Tolerance
1e-6 (default) | positive scalar

Tolerance, specified as a positive scalar. The tolerance is used to determine the multistage
configuration with the least MPIS. When multiple configurations result in the same lowest MPIS
within the tolerance specified, the configuration that yields the lowest number of coefficients overall
is chosen. To view the total number of coefficients and MPIS for a specific filter, use the cost
function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

5 Functions

5-178

Output Arguments
C — Designed filter
dsp.FilterCascade

Designed filter, returned as a dsp.FilterCascade System object. The filter is a cascade of the
multiple stages designed by the function. The number of stages is determined by the 'NumStages'
argument.

To get information about each filter stage, call the info function on the C argument.

Algorithms
The overall decimation factor is split into smaller factors with each factor being the decimation factor
of the corresponding individual stage. The combined decimation of all the individual stages must
equal the overall decimation. The combined response must meet or exceed the given design
specifications.

The function determines the number of decimator stages through the 'NumStages' argument. The
sequence of stages is determined based on the implementation cost. By default, 'NumStages' is set
to 'auto', resulting in a sequence that gives the lowest number of MPIS. When multiple
configurations result in the same lowest MPIS within the tolerance specified, the configuration that
yields the lowest number of coefficients overall is chosen. If 'MinTotalCoeffs' is set to true, the
function determines the sequence that requires the lowest number of total coefficients.

By default, the 'CostMethod' is set to 'estimate'. In this mode, the function estimates the filter
order required for each stage and designs the filter based on the estimate. This method is faster than
'design', but can lead to suboptimal designs. For an optimal design, set 'CostMethod' to
'design'. In this mode, the function designs each stage and computes the filter order.

See Also
Objects
dsp.FilterCascade | dsp.FIRDecimator

Functions
designMultirateFIR | designMultistageInterpolator | info | cost

Topics
“Multistage Rate Conversion”

Introduced in R2018b

 designMultistageDecimator

5-179

designMultistageInterpolator
Multistage interpolator design

Syntax
C = designMultistageInterpolator(L)
C = designMultistageInterpolator(L,Fs,TW)
C = designMultistageInterpolator(L,Fs,TW,Astop)
C = designMultistageInterpolator(___ ,Name,Value)

Description
C = designMultistageInterpolator(L) designs a multistage interpolator that has an overall
interpolation factor of L. In order for C to be multistage, L must not be a prime number. For details,
see “Algorithms” on page 5-188. The design process can take a while if L has many factors.

C = designMultistageInterpolator(L,Fs,TW) designs a multistage interpolator with a
sampling rate of Fs and a transition width of TW. Sampling rate in this case refers to the output
sampling rate of the signal after the multistage interpolator.

The multistage interpolator has a cutoff frequency of Fs/(2L).

C = designMultistageInterpolator(L,Fs,TW,Astop) specifies a minimum attenuation of
Astop dB for the resulting design.

C = designMultistageInterpolator(___ ,Name,Value) specifies additional design
parameters using one or more name-value pair arguments.
Example: C = designMultistageInterpolator(48,48000,200,80,'NumStages','auto')
designs a multistage interpolator with the least number of multiplications per input sample (MPIS).

Examples

Design Efficient Interpolator

Design a single-stage interpolator using the designMultirateFIR function and a multistage
interpolator using the designMultistageInterpolator function. Determine the efficiency of the
two designs using the cost function. The implementation efficiency is characterized by two cost
metrics: NumCoefficients and MultiplicationsPerInputSample.

Compute the cost of implementing both designs, and determine which design is more efficient. To
make a comparison, design the filters such that their transition width is the same.

Initialization

Choose an interpolation factor of 48, input sample rate of 30.72 MHz, one-sided bandwidth of 100
kHz, and a stopband attenution of 90 dB.

L = 48;
Fin = 30.72e6;

5 Functions

5-180

Astop = 90;
BW = 1e5;

Using the designMultirateFIR Function

Designing the interpolation filter using the designMultirateFIR function yields a single-stage
design. Set the half-polyphase length to a finite integer, in this case 4.

HalfPolyLength = 4;
b = designMultirateFIR(L,1,HalfPolyLength,Astop);
d = dsp.FIRInterpolator(L,b)

d =
 dsp.FIRInterpolator with properties:

 InterpolationFactor: 48
 NumeratorSource: 'Property'
 Numerator: [0 -6.0692e-06 -1.4587e-05 -2.5889e-05 ...]

 Show all properties

Compute the cost of implementing the interpolator. The interpolation filter requires 376 coefficients
and 7 states. The number of multiplications per input sample and additions per input sample are 376
and 329, respectively.

cost(d)

ans = struct with fields:
 NumCoefficients: 376
 NumStates: 7
 MultiplicationsPerInputSample: 376
 AdditionsPerInputSample: 329

Using the designMultistageInterpolator Function

Design a multistage interpolator with the same filter specifications as the single-stage design.
Compute the transition width using the following relationship:

Fc = Fin/(2*L);
TW = 2*(Fc-BW);

By default, the number of stages given by the NumStages argument is set to 'Auto', yielding an
optimal design that tries to minimize the number of multiplications per input sample.

c = designMultistageInterpolator(L,Fin,TW,Astop)

c =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRInterpolator]
 Stage2: [1x1 dsp.FIRInterpolator]

Calling the info function on c shows that the filter is implemented as a cascade of two
dsp.FIRInterpolator objects with interpolation factors of 24 and 2, respectively.

Compute the cost of implementing the interpolator.

 designMultistageInterpolator

5-181

cost(c)

ans = struct with fields:
 NumCoefficients: 184
 NumStates: 12
 MultiplicationsPerInputSample: 322
 AdditionsPerInputSample: 275

The NumCoefficients and the MultiplicationsPerInputSample parameters are lower for the
two-stage filter designed by the designMultistageInterpolator function, making it more
efficient.

Compare the magnitude response of both designs.

fvtool(b,c)
legend('Single-stage','Multistage')

The magnitude response shows that the transition width of both the filters is the same, making the
filters comparable. The cost function shows that implementing the multistage design is more
efficient compared to implementing the single-stage design.

Using the 'design' Option in the designMultistageInterpolator Function

The filter can be made even more efficient by setting the 'CostMethod' argument of the
designMultistageInterpolator function to 'design'. By default, this argument is set to
'estimate'.

5 Functions

5-182

In the 'design' mode, the function designs each stage and computes the filter order. This yields an
optimal design compared to the 'estimate' mode, where the function estimates the filter order for
each stage and designs the filter based on the estimate.

Note that the 'design' option can take much longer compared to the 'estimate' option.

cOptimal = designMultistageInterpolator(L,Fin,TW,Astop,'CostMethod','design')

cOptimal =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRInterpolator]
 Stage2: [1x1 dsp.FIRInterpolator]
 Stage3: [1x1 dsp.FIRInterpolator]

cost(cOptimal)

ans = struct with fields:
 NumCoefficients: 74
 NumStates: 17
 MultiplicationsPerInputSample: 296
 AdditionsPerInputSample: 249

Compare Multistage Interpolator Designs

Design an interpolator with an overall interpolation factor of 24 using the
designMultistageInterpolator function. Design the filter in two configurations:

• Two-stage configuration - NumStages is set to 2.
• Auto configuration - NumStages is set to 'Auto'. This configuration designs a filter with the

lowest number of multiplications per input sample.

Compare the cost of implementing both the configurations.

Initialization

Choose an interpolation factor of 24, input sample rate of 6 kHz, stopband attenuation of 90 dB, and a
transition width of 0.03×6000/2.

L = 24;
Fs = 6000;
Astop = 90;
TW = 0.03*Fs/2;

Design the Filter

Design the two filters using the designMultistageInterpolator function.

cAuto = designMultistageInterpolator(L,Fs,TW,Astop,'NumStages','Auto')

cAuto =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRInterpolator]

 designMultistageInterpolator

5-183

 Stage2: [1x1 dsp.FIRInterpolator]
 Stage3: [1x1 dsp.FIRInterpolator]

cTwo = designMultistageInterpolator(L,Fs,TW,Astop,'NumStages',2)

cTwo =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRInterpolator]
 Stage2: [1x1 dsp.FIRInterpolator]

View the filter information using the info function. The 'Auto' configuration designs a cascade of
three FIR interpolators with interpolation factors 4, 3, and 2, respectively. The two-stage
configuration designs a cascade of two FIR interpolators with interpolation factors 6 and 4,
respectively.

Compare the Cost

Compare the cost of implementing the two designs using the cost function.

cost(cAuto)

ans = struct with fields:
 NumCoefficients: 70
 NumStates: 28
 MultiplicationsPerInputSample: 190
 AdditionsPerInputSample: 167

cost(cTwo)

ans = struct with fields:
 NumCoefficients: 102
 NumStates: 23
 MultiplicationsPerInputSample: 212
 AdditionsPerInputSample: 189

The 'Auto' configuration interpolation filter yields a three-stage design that out-performs the two-
stage design in terms of NumCoefficients and MultiplicationsPerInputSample metrics.

Determining Best Multistage Interpolator Design

The filters in the multistage design satisfy the following conditions:

• The combined response must meet or exceed the given design specifications.
• The combined interpolation must equal the overall interpolation required.

For an overall interpolation factor of 50, there are several combinations of individual stages.

To obtain a design with the least number of total coefficients, set the 'MinTotalCoeffs' argument
to true.

Astop = 80;
L = 50;

5 Functions

5-184

Fs = 6000;
TW = 0.03*Fs/2;
cMinCoeffs = designMultistageInterpolator(L,Fs,TW,Astop,'MinTotalCoeffs',true)

cMinCoeffs =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRInterpolator]
 Stage2: [1x1 dsp.FIRInterpolator]
 Stage3: [1x1 dsp.FIRInterpolator]

cost(cMinCoeffs)

ans = struct with fields:
 NumCoefficients: 58
 NumStates: 18
 MultiplicationsPerInputSample: 306
 AdditionsPerInputSample: 257

To obtain the design with the lowest number of multiplications per input sample, set 'NumStages' to
'auto'.

cMinMulti = designMultistageInterpolator(L,Fs,TW,Astop,'NumStages','auto')

cMinMulti =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRInterpolator]
 Stage2: [1x1 dsp.FIRInterpolator]

cost(cMinMulti)

ans = struct with fields:
 NumCoefficients: 156
 NumStates: 9
 MultiplicationsPerInputSample: 252
 AdditionsPerInputSample: 203

Compare the magnitude response of both the filters using fvtool. Both filters have the same
transition-band behavior and a stopband attenuation that is below 80 dB.

fvtool(cMinCoeffs,cMinMulti)
legend('Minimize total coefficients','Minimize number of multiplications per input sample')

 designMultistageInterpolator

5-185

Input Arguments
L — Overall interpolation factor
positive integer

Overall interpolation factor, specified as a positive integer greater than one. In order for C to be
multistage, L must not be a prime number. For details, see “Algorithms” on page 5-188.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fs — Input sampling rate
48000 (default) | positive real scalar

Sampling rate of the output signal after the multistage interpolator, specified as a positive real scalar.
If not specified, Fs defaults to 48,000 Hz. The multistage interpolator has a cutoff frequency of Fs/
(2L).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TW — Transition width
0.2×Fs/L (default) | positive real scalar

Transition width, specified as a positive real scalar less than Fs/L. If not specified, TW defaults to
0.2×Fs/L. Transition width must be less than Fs/L.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

5 Functions

5-186

Astop — Minimum stopband attenuation
positive real scalar

Minimum stopband attenuation for the resulting design, specified as a positive real scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: C = designMultistageInterpolator(48,48000,200,80,'NumStages','auto')
designs a multistage interpolator with the lowest number of multiplications per input sample.

NumStages — Number of interpolator stages
'auto' (default) | positive integer

Number of interpolator stages, specified as a positive integer. If set to 'auto', the design algorithm
determines the number of stages that result in the lowest number of multiplications per input sample.
If specified as a positive integer, N, the overall interpolation factor, L, must be able to factor into at
least N factors, not counting 1 or L as factors.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MinTotalCoeffs — Minimize total number of coefficients
false (default) | true

When false, the design algorithm minimizes the number of multiplications per input sample. When
true, the design algorithm minimizes the total number of coefficients.
Data Types: logical

CostMethod — Cost computation method
'estimate' (default) | 'design'

Cost computation method, specified as either:

• 'estimate' –– The function estimates the filter order required for each stage and designs the
filter based on the estimate. This method is faster than 'design', but can lead to suboptimal
designs.

• 'design' –– The function designs each stage and computes the filter order.

Data Types: char

CostTolerance — Tolerance
1e-6 (default) | positive scalar

Tolerance, specified as a positive scalar. The tolerance is used to determine the multistage
configuration with the least number of MPIS. When multiple configurations result in the same lowest
MPIS within the tolerance specified, the configuration that yields the lowest number of coefficients
overall is chosen. To view the total number of coefficients and MPIS for a specific filter, use the cost
function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 designMultistageInterpolator

5-187

Output Arguments
C — Designed filter
dsp.FilterCascade

Designed filter, returned as a dsp.FilterCascade System object. The filter is a cascade of the
multiple stages designed by the function. The number of stages is determined by the 'NumStages'
argument.

To get information about each filter stage, call the info function on the C argument.

Algorithms
The overall interpolation factor is split into smaller factors with each factor being the interpolation
factor of the corresponding individual stage. The combined interpolation of all the individual stages
must equal the overall interpolation. The combined response must meet or exceed the given design
specifications.

The function determines the number of interpolator stages through the 'NumStages' argument. The
sequence of stages is determined based on the implementation cost. By default, 'NumStages' is set
to 'auto', resulting in a sequence that gives the lowest number of MPIS. When multiple
configurations result in the same lowest MPIS within the tolerance specified, the configuration that
yields the lowest number of coefficients overall is chosen. If 'MinTotalCoeffs' is set to true, the
function determines the sequence that requires the lowest number of total coefficients.

By default, the 'CostMethod' is set to 'estimate'. In this mode, the function estimates the filter
order required for each stage and designs the filter based on the estimate. This method is faster but
can lead to suboptimal designs. For an optimal design, set 'CostMethod' to 'design'. In this
mode, the function designs each stage and computes the filter order.

See Also
Objects
dsp.FilterCascade | dsp.FIRInterpolator

Functions
designMultirateFIR | info | cost | designMultistageDecimator

Topics
“Multistage Rate Conversion”

Introduced in R2018b

5 Functions

5-188

designmethods
Methods available for designing filter from specification object

Syntax
methods = designmethods(designSpecs,'SystemObject',true)
methods = designmethods(designSpecs,'default')
methods = designmethods(designSpecs,TYPE,'SystemObject',true)
methods = designmethods(designSpecs,'full','SystemObject',true)

Description
methods = designmethods(designSpecs,'SystemObject',true) returns the available
design methods for designing filter System objects for the filter specification object, designSpecs.

methods = designmethods(designSpecs,'default') returns the default design method for
the filter specification object designSpecs.

methods = designmethods(designSpecs,TYPE,'SystemObject',true) returns the TYPE
design methods for the filter specification object, designSpecs. TYPE can be either 'FIR' or
'IIR'.

methods = designmethods(designSpecs,'full','SystemObject',true) returns the full
name for each of the available design methods. For example, designmethods with the 'full'
argument returns Butterworth for the butter method.

Examples

Valid Design Methods for Lowpass Filter

Construct a lowpass filter design specification object and determine the valid design methods.

designSpecs = fdesign.lowpass('Fp,Fst,Ap,Ast',500,600,0.5,60,1e4);
methods = designmethods(designSpecs,'SystemObject',true)

methods = 8x1 cell
 {'butter' }
 {'cheby1' }
 {'cheby2' }
 {'ellip' }
 {'equiripple'}
 {'ifir' }
 {'kaiserwin' }
 {'multistage'}

Use help to get more information on the Chebyshev type I design method.

help(designSpecs,methods{2})

 designmethods

5-189

 DESIGN Design a Chebyshev type I iir filter.
 HD = DESIGN(D, 'cheby1') designs a Chebyshev type I filter specified by the
 FDESIGN object D, and returns the DFILT/MFILT object HD.

 HD = DESIGN(D, ..., 'SystemObject', true) implements the filter, HD,
 using a System object instead of a DFILT/MFILT object.

 HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with the
 structure STRUCTURE. STRUCTURE is 'df2sos' by default and can be any of
 the following:

 'df1sos'
 'df2sos'
 'df1tsos'
 'df2tsos'
 'cascadeallpass'
 'cascadewdfallpass'

 Some of the listed structures may not be supported by System object
 filters. Type validstructures(D, 'cheby1', 'SystemObject', true) to
 get a list of structures supported by System objects.

 HD = DESIGN(..., 'MatchExactly', MATCH) designs a Chebyshev type I
 filter and matches the frequency and magnitude specification for the
 band MATCH exactly. The other band will exceed the specification. MATCH
 can be 'stopband' or 'passband' and is 'passband' by default.

 HD = DESIGN(..., 'SOSScaleNorm', NORM) designs an SOS filter and scales
 the coefficients using the P-Norm NORM. NORM can be either a
 discrete-time-domain norm or a frequency-domain norm. Valid time-domain
 norms are 'l1','l2', and 'linf'. Valid frequency-domain norms are
 'L1','L2', and 'Linf'. Note that L2-norm is equal to l2-norm
 (Parseval's theorem) but the same is not true for other norms.

 The different norms can be ordered in terms of how stringent they are
 as follows: 'l1' >= 'Linf' >= 'L2' = 'l2' >= 'L1' >= 'linf'.
 Using the most stringent scaling, 'l1', the filter is the least prone
 to overflow, but also has the worst signal-to-noise ratio. Linf-scaling is
 the most commonly used scaling in practice.

 Scaling is turned off by default, which is equivalent to setting
 SOSScaleNorm = ''.

 HD = DESIGN(..., 'SOSScaleOpts', OPTS) designs an SOS filter and scales
 the coefficients using an FDOPTS.SOSSCALING object OPTS. Scaling options
 are:
 Property Default Description/Valid values
 --------- ------- ------------------------
 'sosReorder' 'auto' Reorder section prior to scaling.
 {'auto','none','up','down','lowpass',
 'highpass','bandpass','bandstop'}
 'MaxNumerator' 2 Maximum value for numerator coefficients
 'NumeratorConstraint' 'none' {'none', 'unit', 'normalize','po2'}
 'OverflowMode' 'wrap' {'wrap','saturate'}
 'ScaleValueConstraint' 'unit' {'unit','none','po2'}
 'MaxScaleValue' 'Not used' Maximum value for scale values

 When sosReorder is set to 'auto', the sections will be automatically

5 Functions

5-190

 reordered depending on the response type of the design (lowpass,
 highpass, etc.).

 Note that 'MaxScaleValue' will only be used when 'ScaleValueConstraint'
 is set to something other than 'unit'. If 'MaxScaleValue' is set to a
 number, the 'ScaleValueConstraint' will be changed to 'none'. Further,
 if SOSScaleNorm is off (as it is by default), then all the SOSScaleOpts
 will be ignored.

 For more information about P-Norm and scaling options see help for DFILT\SCALE.

 % Example #1 - Compare passband and stopband MatchExactly.
 h = fdesign.lowpass('Fp,Fst,Ap,Ast', .1, .3, 1, 60);
 Hd = design(h, 'cheby1', 'MatchExactly', 'passband');
 Hd(2) = design(h, 'cheby1', 'MatchExactly', 'stopband');

 % Compare the passband edges in FVTool.
 fvtool(Hd);
 axis([.09 .11 -2 0]);

Input Arguments
designSpecs — Filter specification object
object

Filter specification object, specified as one of the fdesign functions.

TYPE — Filter impulse response type
'FIR' | 'IIR'

Impulse response of the designed filter, specified as 'FIR' or 'IIR'. When not specified, the
function outputs design methods which support both 'FIR' and 'IIR' response types.
Example: designmethods(designSpecs,'FIR','SystemObject',true)

Output Arguments
methods — Available design methods
cell array

Available design methods, returned as a cell array. Each cell contains the name of the method and is
determined by the arguments input to the function.

See Also
design | designopts | fdesign | designoptions

Introduced in R2009a

 designmethods

5-191

designoptions
Show all options available for specified design

Syntax
options = designoptions(designSpecs,method)

Description
options = designoptions(designSpecs,method) returns all design options available for a
specification object, designSpecs, using a particular design method, method.

Examples

Design Butterworth Filter

Design a butterworth filter with lowpass and highpass frequency responses. The filter design
procedure is:

1 Specify the filter design specifications using a fdesign function.
2 Pick a design method provided by the designmethods function.
3 To determine the available design options to choose from, use the designoptions function.
4 Design the filter using the design function.

Lowpass Filter

Construct a default lowpass filter design specification object using fdesign.lowpass.

designSpecs = fdesign.lowpass

designSpecs =
 lowpass with properties:

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: 1
 Fpass: 0.4500
 Fstop: 0.5500
 Apass: 1
 Astop: 60

Determine the available design methods using the designmethods function. To design a butterworth
filter, pick butter.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

5 Functions

5-192

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

designoptions(designSpecs,'butter','SystemObject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 MatchExactly: {'passband' 'stopband'}
 DefaultFilterStructure: 'df2sos'
 DefaultMatchExactly: 'stopband'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

Use the design function to design the filter. Pass 'butter' and the specifications given by variable
designSpecs, as input arguments. Specify the 'matchexactly' design option to 'passband'.

lpFilter = design(designSpecs,'butter','matchexactly','passband','SystemObject',true);

Visualize the frequency response of the designed filter.

fvtool(lpFilter)

 designoptions

5-193

Highpass Filter

Construct a highpass filter design specification object using fdesign.highpass. Specify the order
to be 7 and the 3 dB frequency to be 0 . 6π radians/sample.

designSpecs = fdesign.highpass('N,F3dB',7,.6);

Determine the available design methods. To design a butterworth filter, pick butter.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.highpass (N,F3dB):

butter
maxflat

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

designoptions(designSpecs,'butter','SystemObject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 DefaultFilterStructure: 'df2sos'
 DefaultSOSScaleNorm: ''

5 Functions

5-194

 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

To design the butterworth filter, use the design function and specify 'butter' as an input. Set
'FilterStructure' to 'cascadeallpass'.

hpFilter = design(designSpecs,'butter','FilterStructure','cascadeallpass','SystemObject',true);

Visualize the highpass frequency response.

fvtool(hpFilter)

Design Notch Filter

Design a direct-form I notching filter that has a filter order of 6, center frequency of 0.5, quality
factor of 10, and a passband ripple of 1 dB.

Create a notch filter design specification object using the fdesign.notch function and specify
these design parameters.

notchSpecs = fdesign.notch('N,F0,Q,Ap',6,0.5,10,1);

Design the notch filter using the design function. The resulting filter is a dsp.BiquadFilter
System object™. For details on how to apply this filter on streaming data, refer to
dsp.BiquadFilter.

 designoptions

5-195

notchFilt = design(notchSpecs,'SystemObject',true)

notchFilt =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [3x6 double]
 ScaleValues: [4x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Visualize the frequency response of the designed filter using fvtool.

fvtool(notchFilt)

Input Arguments
designSpecs — Filter specification object
object

Filter specification object, specified as one of the fdesign functions.

5 Functions

5-196

method — Design method
character vector

Design method, specified as a character vector. You can pick a design method from the available
methods given by the designmethods function.

Output Arguments
options — Available design options
structure

Available design options, returned as a structure with the fields determined by the input filter
specification object, designSpecs, and the design method chosen.

See Also
Functions
fdesign | designmethods | design

Introduced in R2007b

 designoptions

5-197

designopts
Valid input arguments and values for specification object and method

Syntax
OPTS = designopts(D,METHOD)

Description
OPTS = designopts(D,METHOD) returns a structure array with the default design parameters used
by the design method METHOD. METHOD must be one of the options returned by designmethods.

Use help(D,METHOD) to get a description of the design parameters.

If you have DSP System Toolbox software installed, OPTS has the SystemObject property if at least
one of the structures available for that design method is supported by System objects. However, not
all structures for that design method are supported by System objects.

Examples

Butterworth Filter Design Options

Create a lowpass filter with a numerator and denominator order of 10 and a 3-dB frequency of 0.2π
rad/sample. Obtain the default design parameters for a Butterworth design. Test whether the filter
structure is a direct-form II biquad.

D = fdesign.lowpass('Nb,Na,F3dB',10,10,0.2);
OPTS = designopts(D,'butter')

OPTS = struct with fields:
 FilterStructure: 'df2sos'
 SOSScaleNorm: ''
 SOSScaleOpts: [1x1 fdopts.sosscaling]
 SystemObject: 0

if isequal(OPTS.FilterStructure,'df2sos')
 fprintf('The default filter structure is Direct-Form II\n');
 fprintf('with second-order sections.\n');
end

The default filter structure is Direct-Form II

with second-order sections.

See Also
design | designmethods | fdesign | validstructures

5 Functions

5-198

Introduced in R2009a

 designopts

5-199

dfilt
Discrete-time filter

Syntax
hd = dfilt.structure(input1,...)
hd = design(d,'designmethod')

Description
hd = dfilt.structure(input1,...) returns a discrete-time filter, hd, of type structure. Each
structure takes one or more inputs. When you specify a dfilt.structure with no inputs, a default
filter is created.

You must use a structure with dfilt.

You can get a vector of dfilt filters by concatenating dfilt.structure(input1,...) as an
array.

hd = [dfilt.dffir, dfilt.df1, dfilt.df2]

hd =

dfilt.dffir
dfilt.df1
dfilt.df2

Structures

Structures for dfilt.structure specify the type of filter structure. Available types of structures for
dfilt are shown below.

dfilt.structure Description Coefficient Mapping Support in
realizemdl

dfilt.allpass Allpass filter Supported
dfilt.cascadeallpass Cascade of allpass filter sections Supported
dfilt.cascadewdfallpa
ss

Cascade of allpass wave digital filters Supported

dfilt.delay Delay Not supported
dfilt.df1 Direct-form I Supported
dfilt.df1sos Direct-form I, second-order sections Supported
dfilt.df1t Direct-form I transposed Supported
dfilt.df1tsos Direct-form I transposed, second-order

sections
Supported

dfilt.df2 Direct-form II Supported
dfilt.df2sos Direct-form II, second-order sections Supported

5 Functions

5-200

dfilt.structure Description Coefficient Mapping Support in
realizemdl

dfilt.df2t Direct-form II transposed Supported
dfilt.df2tsos Direct-form II transposed, second-order

sections
Supported

dfilt.dffir Direct-form FIR Supported
dfilt.dffirt Direct-form FIR transposed Supported
dfilt.dfsymfir Direct-form symmetric FIR Supported
dfilt.dfasymfir Direct-form antisymmetric FIR Supported
dfilt.farrowfd Generic fractional delay Farrow filter Supported
dfilt.farrowlinearfd Linear fractional delay Farrow filter Not supported
dfilt.fftfir Overlap-add FIR Not supported
dfilt.latticeallpass Lattice allpass Supported
dfilt.latticear Lattice autoregressive (AR) Supported
dfilt.latticearma Lattice autoregressive moving- average

(ARMA)
Supported

dfilt.latticemamax Lattice moving-average (MA) for
maximum phase

Supported

dfilt.latticemamin Lattice moving-average (MA) for
minimum phase

Supported

dfilt.calattice Coupled, allpass lattice Supported
dfilt.calatticepc Coupled, allpass lattice with power

complementary output
Supported

dfilt.statespace State-space Supported
dfilt.scalar Scalar gain object Supported
dfilt.wdfallpass Allpass wave digital filter object Supported
dfilt.cascade Filters arranged in series Supported
dfilt.parallel Filters arranged in parallel Supported

For more information on each structure, refer to its reference page.

hd = design(d,'designmethod') returns the dfilt object hd resulting from the filter
specification object d and the design method you specify in designmethod. When you omit the
designmethod argument, design uses the default design method to construct a filter from the
object d.

With this syntax, you design filters by:

1 Specifying the filter specifications, such as the response shape (perhaps highpass) and details
(passband edges and attenuation).

2 Selecting a method (such as equiripple) to design the filter.
3 Applying the method to the specifications object with design(d,'designmethod).

Using the specification-based technique can be more effective than the coefficient-based filter design
techniques.

 dfilt

5-201

Design Methods for Design Syntax

When you use the hd = design(d,'designmethod') syntax, you have a range of design methods
available depending on d, the filter specification object. The next table lists all of the design methods
in the toolbox.

Design Method Filter Design Result
butter Butterworth IIR
cheby1 Chebyshev Type I IIR
cheby2 Chebyshev Type II IIR
ellip Elliptic IIR
equiripple Equiripple with the same ripple in the pass and stopbands
firls Least-squares FIR
freqsamp Frequency-Sampled FIR
ifir Interpolated FIR
iirlpnorm Least Pth norm IIR
iirls Least-Squares IIR
kaiserwin Kaiser-windowed FIR
lagrange Fractional delay filter
multistage Multistage FIR
window Windowed FIR

As the specifications object d changes, the available methods for designing filters from d also change.
For instance, if d is a lowpass filter with the default specification 'Fp,Fst,Ap,Ast', the applicable
methods are:

% Create an object to design a lowpass filter.
d=fdesign.lowpass;
designmethods(d) % What design methods apply to object d?

If you change the specification to 'N,F3dB', the available design methods change:

d=fdesign.lowpass('N,F3dB');
designmethods(d)

Analysis Methods

Methods provide ways of performing functions directly on your dfilt object without having to
specify the filter parameters again. You can apply these methods directly on the variable you assigned
to your dfilt object.

For example, if you create a dfilt object, hd, you can check whether it has linear phase with
islinphase(hd), view its frequency response plot with fvtool(hd), or obtain its frequency
response values with h = freqz(hd). You can use all of the methods described here in this way.

Note If your variable hd is a 1-D array of dfilt filters, the method is applied to each object in the
array. Only freqz, grpdelay, impz, is*, order, and stepz methods can be applied to arrays. The
zplane method can be applied to an array only if zplane is used without outputs.

5 Functions

5-202

Some of the methods listed here have the same name as functions in Signal Processing Toolbox
software. They behave similarly.

Method Description
addstage Adds a stage to a cascade or parallel object, where a stage is a

separate, modular filter. Refer to dfilt.cascade and
dfilt.parallel.

block block(hd) creates a block of the dfilt object. The block method
can specify these properties and values:

'Destination' indicates where to place the block. 'Current'
places the block in the current Simulink model. 'New' creates a
new model. Default value is 'Current'.

'Blockname' assigns the entered character vector to the block
name. Default name is 'Filter'.

'OverwriteBlock'indicates whether to overwrite the block
generated by the block method ('on') and defined by Blockame.
Default is 'off'.

'MapStates' specifies initial conditions in the block ('on').
Default is 'off'. Refer to "Using Filter States" in Signal Processing
Toolbox documentation.

cascade Returns the series combination of two dfilt objects. Refer to
dfilt.cascade.

coeffs Returns the filter coefficients in a structure containing fields that
use the same property names as those in the original dfilt.

convert Converts a dfilt object from one filter structure, to another filter
structure.

fcfwrite Writes a filter coefficient ASCII file. The file can contain a single
filter or a vector of objects. The default file name is untitled.fcf.

fcfwrite(hd,filename) writes to a disk file named filename in
the current working folder. The .fcf extension is added
automatically.

fcfwrite(...,fmt) writes the coefficients in the format fmt,
where valid fmt character vectors are:

'hex' for hexadecimal

'dec' for decimal

'bin' for binary representation
fftcoeffs Returns the frequency-domain coefficients used when filtering with

a dfilt.fftfir
filter Performs filtering using the dfilt object.
firtype Returns the type (1-4) of a linear phase FIR filter.

 dfilt

5-203

Method Description
freqz Plots the frequency response in fvtool. Unlike the freqz function,

this dfilt freqz method has a default length of 8192.
grpdelay Plots the group delay in fvtool.
impz Plots the impulse response in fvtool.
impzlength Returns the length of the impulse response.
info Displays dfilt information, such as filter structure, length,

stability, linear phase, and, when appropriate, lattice and ladder
length.

isallpass Returns a logical 1 (i.e., true) if the dfilt object in an allpass filter
or a logical 0 (i.e., false) if it is not.

iscascade Returns a logical 1 if the dfilt object is cascaded or a logical 0 if it
is not.

isfir Returns a logical 1 if the dfilt object has finite impulse response
(FIR) or a logical 0 if it does not.

islinphase Returns a logical 1 if the dfilt object is linear phase or a logical 0
if it is not.

ismaxphase Returns a logical 1 if the dfilt object is maximum-phase or a
logical 0 if it is not.

isminphase Returns a logical 1 if the dfilt object is minimum-phase or a
logical 0 if it is not.

isparallel Returns a logical 1 if the dfilt object has parallel stages or a
logical 0 if it does not.

isreal Returns a logical 1 if the dfilt object has real-valued coefficients
or a logical 0 if it does not.

isscalar Returns a logical 1 if the dfilt object is a scalar or a logical 0 if it
is not scalar.

issos Returns a logical 1 if the dfilt object has second-order sections or
a logical 0 if it does not.

isstable Returns a logical 1 if the dfilt object is stable or a logical 0 if it
are not.

nsections Returns the number of sections in a second-order sections filter. If a
multistage filter contains stages with multiple sections, using
nsections returns the total number of sections in all the stages (a
stage with a single section returns 1).

nstages Returns the number of stages of the filter, where a stage is a
separate, modular filter.

nstates Returns the number of states for an object.
order Returns the filter order. If hd is a single-stage filter, the order is

given by the number of delays needed for a minimum realization of
the filter. If hd has multiple stages, the order is given by the number
of delays needed for a minimum realization of the overall filter.

5 Functions

5-204

Method Description
parallel Returns the parallel combination of two dfilt filters. Refer to

dfilt.parallel.
phasez Plots the phase response in fvtool.
realizemdl (Available only with Simulink.)

realizemdl(hd) creates a Simulink model containing a subsystem
block realization of your dfilt.

realizemdl(hd,p1,v1,p2,v2,...) creates the block using the
properties p1, p2,... and values v1, v2,... specified.

The following properties are available:

'Blockname' specifies the name of the block. The default value is
'Filter'.

'Destination' specifies whether to add the block to a current
Simulink model or create a new model. Valid values are 'Current'
and 'New'.

'OverwriteBlock' specifies whether to overwrite an existing
block that was created by realizemdl or create a new block. Valid
values are 'on' and 'off'. Only blocks created by realizemdl
are overwritten.

The following properties optimize the block structure. Specifying
'on' turns the optimization on and 'off' creates the block
without optimization. The default for each block is 'off'.

'OptimizeZeros' removes zero-gain blocks.

'OptimizeOnes' replaces unity-gain blocks with a direct
connection.

'OptimizeNegOnes' replaces negative unity-gain blocks with a
sign change at the nearest summation block.

'OptimizeDelayChains' replaces delay chains made up of n unit
delays with a single delay by n.

removestage Removes a stage from a cascade or parallel dfilt. Refer to
dfilt.cascade and dfilt.parallel.

setstage Overwrites a stage of a cascade or parallel dfilt. Refer to
dfilt.cascade and dfilt.parallel.

 dfilt

5-205

Method Description
sos Converts the dfilt to a second-order sections dfilt. If hd has a

single section, the returned filter has the same class.

sos(hd,flag) specifies the ordering of the second-order sections.
If flag='UP', the first row contains the poles closest to the origin,
and the last row contains the poles closest to the unit circle. If
flag='down', the sections are ordered in the opposite direction.
The zeros are always paired with the poles closest to them.

sos(hd,flag,scale) specifies the scaling of the gain and the
numerator coefficients of all second-order sections. scale can be
'none', 'inf' (infinity-norm), or 'two' (2-norm). Using infinity-
norm scaling with up ordering minimizes the probability of overflow
in the realization. Using 2-norm scaling with down ordering
minimizes the peak roundoff noise.

ss Converts the dfilt to state-space. To see the separate A,B,C,D
matrices for the state-space model, use [A,B,C,D]=ss(hd).

stepz Plots the step response in fvtool

stepz(hd,n) computes the first n samples of the step response.

stepz(hd,n,Fs) separates the time samples by T = 1/Fs, where
Fs is assumed to be in hertz.

sysobj Converts the dfilt to a filter System object. See the reference
page for a list of supported objects.

tf Converts the dfilt to a transfer function.
zerophase Plots the zero-phase response in fvtool.
zpk Converts the dfilt to zeros-pole-gain form.
zplane Plots a pole-zero plot in fvtool.

Viewing Properties

As with any object, use get to view a dfilt properties. To see a specific property, use

 get(hd,'property')

To see all properties for an object, use

get(hd)

Note dfilt objects include an arithmetic property. You can change the internal arithmetic of the
filter from double- precision to single-precision using: hd.arithmetic = 'single'.

If you have Fixed-Point Designer software, you can change the arithmetic property to fixed-point
using: hd.arithmetic = 'fixed'

Changing Properties

To set specific properties, use

5 Functions

5-206

set(hd,'property1',value,'property2',value,...)

You must use single quotation marks around the property name. Use single quotation marks around
the value argument when the value is a character vector, such as specifyall or fixed.

Copying an Object

To create a copy of an object, use the copy method.

h2 = copy(hd)

Note Using the syntax H2 = hd copies only the object handle and does not create a new,
independent object.

Converting Between Filter Structures

To change the filter structure of a dfilt object hd, use

hd2 = convert(hd,'structure_charactervector');

where structure_charactervector is any valid structure name in single quotation marks. If hd is
a cascade or parallel structure, each stage is converted to the new structure.

Using Filter States

Two properties control the filter states:

• states — Stores the current states of the filter. Before the filter is applied, the states correspond
to the initial conditions and after the filter is applied, the states correspond to the final conditions.
For df1, df1t, df1sos and df1tsos structures, states returns a filtstates object.

• PersistentMemory — Controls whether filter states are saved. The default value is 'false',
which causes the initial conditions to be reset to zero before filtering and turns off the display of
states information. Setting PersistentMemory to 'true' allows the filter to use your initial
conditions or to reuse the final conditions from a previous filtering operation as the initial
conditions of the next filtering operation. The true setting also displays information about the
filter states.

Note If you set the states and want to use them for filtering, you must set PersistentMemory to
'true' before you use the filter.

Examples
Create a direct-form I filter, and use a method to see if it is stable.

[b,a] = butter(8,0.25);
hd = dfilt.df1(b,a);
isstable(hd)

If a dfilt's numerator values do not fit on a single line, a description of the vector is displayed. To
see the specific numerator values for this example, use

 dfilt

5-207

B = get(hd,'numerator');
% or
B1 = hd.numerator;

Create an array containing two dfilt objects, apply a method and verify that the method acts on
both objects. Use a method to test whether the objects are FIR objects.

b = fir1(5,.5);
hd = dfilt.dffir(b); % Create an FIR filter object
[b,a] = butter(5,.5); % Create IIR filter
hd(2) = dfilt.df2t(b,a); % Create DF2T object and place
 % in the second column of hd.
[h,w] = freqz(hd);
test_fir = isfir(hd)
% hd(1) is FIR and hd(2) is not.

Refer to the reference pages for each structure for more examples.

See Also
design | fdesign | realizemdl | sos | stepz | freqz | grpdelay | impz | zplane

Introduced in R2011a

5 Functions

5-208

dfilt.allpass
Allpass filter

Syntax
hd = dfilt.allpass(c)

Description
hd = dfilt.allpass(c) constructs an allpass filter with the minimum number of multipliers from
the elements in vector c. To be valid, c must contain one, two, three, or four real elements. The
number of elements in c determines the order of the filter. For example, c with two elements creates
a second-order filter and c with four elements creates a fourth-order filter.

The transfer function for the allpass filter is defined by

H(z) = c(n) + c(n− 1)z−1 + … + z−n

1 + c(1)z−1 + … + c(n)z−n

given the coefficients in c.

To construct a cascade of allpass filter objects, use dfilt.cascadeallpass.

Properties
The following table provides a list of all the properties associated with an allpass dfilt object.

Property Name Brief Description
AllpassCoefficients Contains the coefficients for the allpass filter object
FilterStructure Describes the signal flow for the filter object, including all of the

active elements that perform operations during filtering — gains,
delays, sums, products, and input/output.

PersistentMemory Specifies whether to reset the filter states and memory before
each filtering operation. Lets you decide whether your filter
retains states from previous filtering runs. False is the default
setting.

States This property contains the filter states before, during, and after
filter operations. States act as filter memory between filtering
runs or sessions. They also provide linkage between the sections
of a multisection filter, such as a cascade filter. For details, refer
to filtstates in Signal Processing Toolbox documentation or
in the Help system.

Examples
This example constructs and displays the information about a second-order allpass filter that uses the
minimum number of multipliers.

 dfilt.allpass

5-209

c = [1.5, 0.7];
% Create a second-order dfilt object.
hd = dfilt.allpass(c);

See Also
dsp.AllpassFilter | dsp.CICInterpolator | dsp.IIRHalfbandDecimator

Introduced in R2011a

5 Functions

5-210

dfilt.calattice
Coupled-allpass, lattice filter

Syntax
hd = dfilt.calattice(k1,k2,beta)
hd = dfilt.calattice

Description
hd = dfilt.calattice(k1,k2,beta) returns a discrete-time, coupled-allpass, lattice filter object
hd, which is two allpass, lattice filter structures coupled together. The lattice coefficients for each
structure are vectors k1 and k2. Input argument beta is shown in the diagram below.

hd = dfilt.calattice returns a default, discrete-time coupled-allpass, lattice filter object, hd.
The default values are k1 = k2 = [], and beta = 1. This filter passes the input through to the output
unchanged.

Examples
Specify a third-order lattice coupled-allpass filter structure for a dfilt filter, hd with the following
code.

k1 = [0.9511 + 1j*0.3088; 0.7511 + 1j*0.1158];
k2 = 0.7502 - 1j*0.1218;
beta = 0.1385 + 1j*0.9904;
hd = dfilt.calattice(k1,k2,beta);

 dfilt.calattice

5-211

The Allpass1 and Allpass2 properties store vectors of coefficients.

See Also
dsp.CoupledAllpassFilter

Introduced in R2011a

5 Functions

5-212

dfilt.calatticepc
Coupled-allpass, power-complementary lattice filter

Syntax
hd = dfilt.calatticepc(k1,k2)
hd = dfilt.calatticepc

Description
hd = dfilt.calatticepc(k1,k2) returns a discrete-time, coupled-allpass, lattice filter object hd,
with power-complementary output. This object is two allpass lattice filter structures coupled together
to produce complementary output. The lattice coefficients for each structure are vectors, k1 and k2,
respectively. beta is shown in the following diagram.

hd = dfilt.calatticepc returns a default, discrete-time, coupled-allpass, lattice filter object hd,
with power-complementary output. The default values are k1 = k2 = [], which is the default value for
the dfilt.latticeallpass. The default for beta = 1. This filter passes the input through to the
output unchanged.

 dfilt.calatticepc

5-213

Examples
Specify a third-order lattice coupled-allpass power complementary filter structure for a filter hd with
the following code. You see from the returned properties that Allpass1 and Allpass2 contain
vectors of coefficients for the constituent filters.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i];
k2 = 0.7502 - 0.1218i;
beta = 0.1385 + 0.9904i;
hd = dfilt.calatticepc(k1,k2,beta);

To see the coefficients for Allpass1, check the property values.

get(hd,'Allpass1')

See Also
dsp.CoupledAllpassFilter

Introduced in R2011a

5 Functions

5-214

dfilt.cascade
Cascade of discrete-time filters

Syntax
hd = dfilt.cascade(filterobject1,filterobject2,...)

Description
hd = dfilt.cascade(filterobject1,filterobject2,...) returns a discrete-time filter
object hd of type cascade, which is a serial interconnection of two or more filter objects
filterobject1, filterobject2, and so on. dfilt.cascade accepts any combination of dfilt
objects (discrete time filters) to cascade, as well as Farrow filter objects.

You can use the standard notation to cascade one or more filters:

cascade(hd1,hd2,...)

where hd1, hd2, and so on can be mixed types, such as dfilt objects and other filtering objects.

hd1, hd2, and so on can be fixed-point filters. All filters in the cascade must be the same arithmetic
format — double, single, or fixed. hd, the filter object returned, inherits the format of the
cascaded filters.

Examples
Cascade a lowpass filter and a highpass filter to produce a bandpass filter.
[b1,a1]=butter(8,0.6); % Lowpass
[b2,a2]=butter(8,0.4,'high'); % Highpass
h1=dfilt.df2t(b1,a1);
h2=dfilt.df2t(b2,a2);
hcas=dfilt.cascade(h1,h2); % Bandpass with passband 0.4-0.6
% View stage 1 with hcas.Stage(1)

See Also
dsp.FilterCascade

Introduced in R2011a

 dfilt.cascade

5-215

dfilt.cascadeallpass
Cascade of allpass discrete-time filters

Syntax
hd = dfilt.cascadeallpass(c1,c2,...)

Description
hd = dfilt.cascadeallpass(c1,c2,...) constructs a cascade of allpass filters, each of which
uses the minimum number of multipliers, given the filter coefficients provided in c1, c2, and so on.

Each vector c represents one section in the cascade filter. c vectors must contain one, two, three, or
four elements as the filter coefficients for each section. As a result of the design algorithm, each
section is a dfilt.allpass structure whose coefficients are given in the matching c vector, such as
the c1 vector contains the coefficients for the first stage.

States for each section are shared between sections.

Vectors c do not have to be the same length. You can combine various length vectors in the input
arguments. For example, you can cascade fourth-order sections with second-order sections, or first-
order sections.

For more information about the vectors ci and about the transfer function of each section, refer to
dfilt.allpass.

Generally, you do not construct these allpass cascade filters directly. Instead, they result from the
design process for an IIR filter. Refer to the first example in Examples for more about using
dfilt.cascadeallpass to design an IIR filter.

Properties
In the next table, the row entries are the filter properties and a brief description of each property.

Property Name Brief Description
AllpassCoefficients Contains the coefficients for the allpass filter object
FilterStructure Describes the signal flow for the filter object, including all of

the active elements that perform operations during filtering —
gains, delays, sums, products, and input/output.

PersistentMemory Specifies whether to reset the filter states and memory before
each filtering operation. Lets you decide whether your filter
retains states from previous filtering runs. False is the default
setting.

5 Functions

5-216

Property Name Brief Description
States This property contains the filter states before, during, and after

filter operations. States act as filter memory between filtering
runs or sessions. They also provide linkage between the
sections of a multisection filter, such as a cascade filter. For
details, refer to filtstates in Signal Processing Toolbox
documentation or in the Help system.

Examples
Two examples show how dfilt.cascadeallpass works in very different applications — designing
a halfband IIR filter and constructing an allpass cascade of dfilt objects.

First, design the IIR halfband filter using cascaded allpass filters. Each branch of the parallel cascade
construction is a cascadeallpass filter object.

tw = 100; % Transition width of filter to be designed, 100 Hz.
ast = 80; % Stopband attenuation of filter to be designed, 80dB.
fs = 2000; % Sampling frequency of signal to be filtered.
% Store halfband design specs in the specifications object d.
d = fdesign.halfband('tw,ast',tw,ast,fs);

Now perform the actual filter design. hd contains two dfilt.cascadeallpass objects.

hd = design(d,'ellip','filterstructure','cascadeallpass');
% Get summary information about one dfilt.cascadeallpass stage.
StageInfo = hd.Stage(1).Stage(1);

This second example constructs a dfilt.cascadeallpass filter object directly given allpass
coefficients for the input vectors.

section1 = 0.8;
section2 = [1.2,0.7];
section3 = [1.3,0.9];
hd = dfilt.cascadeallpass(section1,section2,section3);
% Get information about the filter
% return informatio in character array
S = info(hd);

See Also
dsp.IIRHalfbandDecimator | dsp.IIRHalfbandDecimator

Introduced in R2011a

 dfilt.cascadeallpass

5-217

dfilt.cascadewdfallpass
Cascade allpass WDF filters to construct allpass WDF

Syntax
hd = dfilt.cascadewdfallpass(c1,c2,...)

Description
hd = dfilt.cascadewdfallpass(c1,c2,...) constructs a cascade of allpass wave digital filters
given the allpass coefficients in the vectors c1, c2, and so on.

Each c vector contains the coefficients for one section of the cascaded filter. C vectors must have one,
two, or four elements (coefficients). Three element vectors are not supported.

When the c vector has four elements, the first and third elements of the vector must be 0. Each
section of the cascade is an allpass wave digital filter, from dfilt.wdfallpass, with the coefficients
given by the corresponding c vector. That is, the first section has coefficients from vector c1, the
second section coefficients come from c2, and on until all of the c vectors are used.

You can mix the lengths of the c vectors. They do not need to be the same length. For example, you
can cascade several fourth-order sections (length(c) = 4) with first or second-order sections.

Wave digital filters are usually used to create other filters. This toolbox uses them to implement
halfband filters, which the first example in Examples demonstrates. They are most often building
blocks for filters.

Generally, you do not construct these WDF allpass cascade filters directly. Instead, they result from
the design process for an IIR filter. Refer to the first example in Examples for more about using
dfilt.cascadewdfallpass to design an IIR filter.

For more information about the c vectors and the transfer function for the allpass filters, refer to
dfilt.wdfallpass.

Properties
In the next table, the row entries are the filter properties and a brief description of each property.

Property Name Brief Description
AllpassCoefficients Contains the coefficients for the allpass wave digital filter object
FilterStructure Describes the signal flow for the filter object, including all of the

active elements that perform operations during filtering — gains,
delays, sums, products, and input/output.

PersistentMemory Specifies whether to reset the filter states and memory before each
filtering operation. Lets you decide whether your filter retains
states from previous filtering runs. False is the default setting.

5 Functions

5-218

Property Name Brief Description
States This property contains the filter states before, during, and after

filter operations. States act as filter memory between filtering runs
or sessions. They also provide linkage between the sections of a
multisection filter, such as a cascade filter. For details, refer to
filtstates in Signal Processing Toolbox documentation or in the
Help system.

Examples
To demonstrate two approaches to using dfilt.cascadewdfallpass to design a filter, these
examples show both direct construction and construction as part of another filter.

The first design shown creates an IIR halfband filter that uses lattice wave digital filters. Each branch
of the parallel connection in the lattice is an allpass cascade wave digital filter.

tw = 100; % Transition width of filter, 100 Hz.
ast = 80; % Stopband attenuation of filter, 80 dB.
fs = 2000; % Sampling frequency of signal to filter.
% Store halfband specs.
d = fdesign.halfband('tw,ast',tw,ast,fs);

Now perform the actual halfband design process. hd contains two dfilt.cascadewdfallpass
filters.
hd = design(d,'ellip','filterstructure','cascadewdfallpass');
% Summary info on dfilt.cascadewdfallpass.
StageSummary = hd.stage(1).stage(2);

This example demonstrates direct construction of a dfilt.cascadewdfallpass filter with allpass
coefficients.

section1 = 0.8;
section2 = [1.5,0.7];
section3 = [1.8,0.9];
hd = dfilt.cascadewdfallpass(section1,section2,section3);

 dfilt.cascadewdfallpass

5-219

Introduced in R2011a

5 Functions

5-220

dfilt.delay
Delay filter

Syntax
Hd = dfilt.delay
Hd = dfilt.delay(latency)

Description
Hd = dfilt.delay returns a discrete-time filter, Hd, of type delay, which adds a single delay to
any signal filtered with Hd. The filtered signal has its values shifted by one sample.

Hd = dfilt.delay(latency) returns a discrete-time filter, Hd, of type delay, which adds the
number of delay units specified in latency to any signal filtered with Hd. The filtered signal has its
values shifted by the latency number of samples. The values that appear before the shifted signal
are the filter states.

Examples
Create a delay filter with a latency of 4 and filter a simple signal to view the impact of applying a
delay.

h = dfilt.delay(4);
Fs = 1000;
t = 0:1/Fs:1;
sig = cos(2*pi*100*t);
y = filter(h,sig);
subplot(211);
stem(sig,'markerfacecolor',[0 0 1]);
axis([0 20 -2 2]);
title('Input Signal');
subplot(212);
stem(y,'markerfacecolor',[0 0 1]);
axis([0 20 -2 2]);
title('Delayed Signal');

 dfilt.delay

5-221

Introduced in R2011a

5 Functions

5-222

dfilt.df1
Discrete-time, direct-form I filter

Syntax
hd = dfilt.df1

Description
hd = dfilt.df1 returns a default discrete-time, direct-form I filter object that uses double-
precision arithmetic. By default, the numerator and denominator coefficients b and a are set to 1.
With these coefficients the filter passes the input to the output without changes.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

Note a(1), the leading denominator coefficient, cannot be 0. To allow you to change the arithmetic
setting to fixed or single, a(1) must be equal to 1.

Fixed-Point Filter Structure
The following figure shows the signal flow for the direct-form I filter implemented by dfilt.df1. To
help you see how the filter processes the coefficients, input, output, and states of the filter, as well as
numerical operations, the figure includes the locations of the arithmetic and data type format
elements within the signal flow.

 dfilt.df1

5-223

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the word “format.” In this use, “format”
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFormat, which
refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with
representing filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale ,
SignedDenominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

InputFormat InputWordLength InputFracLength None
NumAccumFormat AccumWordLength NumAccumFracLength AccumMode,

CastBeforeSum
NumFormat CoeffWordLength NumFracLength CoeffAutoScale,

Signed, Numerator
NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength,

ProductMode

5 Functions

5-224

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

OutputFormat OutputWordLength OutputFracLength OutputMode

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient
multiplication element in the signal flow. The label indicates that denominator coefficients leave the
multiplication element with the word length and fraction length associated with product operations
that include denominator coefficients. From reviewing the table, you see that the DenProdFormat
refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define
the denominator format after multiply (or product) operations.

Properties
In this table you see the properties associated with df1 implementations of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use get(hd) where hd
is a filter.

Property Name Brief Description
AccumMode Determines how the accumulator outputs stored values. Choose

from full precision (FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant bits (KeepLSB) when
output results need shorter word length than the accumulator
supports. To let you set the word length and the precision (the
fraction length) used by the output from the accumulator, set
AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the accumulator/buffer.
Arithmetic Defines the arithmetic the filter uses. Gives you the options

double, single, and fixed. In short, this property defines the
operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically chooses the proper
fraction length to represent filter coefficients without overflowing.
Turning this off by setting the value to false enables you to
change the NumFracLength and DenFracLength properties to
specify the precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.

 dfilt.df1

5-225

Property Name Brief Description
DenAccumFracLength Specifies the fraction length the filter algorithm uses to interpret

the results of product operations involving denominator
coefficients. You can change the value for this property when you
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to interpret denominator
coefficients. DenFracLength is always available, but it is read-
only until you set CoeffAutoScale to false.

Denominator Stores the denominator coefficients for the IIR filter.
DenProdFracLength Specifies how the filter algorithm interprets the results of product

operations involving denominator coefficients. You can change this
property value when you set ProductMode to
SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object, including all of the
active elements that perform operations during filtering — gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret input data.
InputWordLength Specifies the word length applied to interpret input data.
NumAccumFracLength Specifies how the filter algorithm interprets the results of addition

operations involving numerator coefficients. You can change the
value of this property after you set AccumMode to
SpecifyPrecision.

Numerator Holds the numerator coefficient values for the filter.
NumFracLength Sets the fraction length used to interpret the value of numerator

coefficients.
NumProdFracLength Specifies how the filter algorithm interprets the results of product

operations involving numerator coefficients. Available to be
changed when you set ProductMode to SpecifyPrecision.

OutputFracLength Determines how the filter interprets the filter output data. You can
change the value of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputWordLength Determines the word length used for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in fixed-point

arithmetic. Choose from either saturate (limit the output to the
largest positive or negative representable value) or wrap (set
overflowing values to the nearest representable value using
modular arithmetic). The choice you make affects only the
accumulator and output arithmetic. Coefficient and input
arithmetic always saturates. Finally, products never overflow —
they maintain full precision.

5 Functions

5-226

Property Name Brief Description
ProductMode Determines how the filter handles the output of product

operations. Choose from full precision (FullPrecision), or
whether to keep the most significant bit (KeepMSB) or least
significant bit (KeepLSB) in the result when you need to shorten
the data words. For you to be able to set the precision (the fraction
length) used by the output from the multiplies, you set
ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication operation
results. This property becomes writable (you can change the value)
when you set ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory before each
filtering operation. Lets you decide whether your filter retains
states from previous filtering runs. False is the default setting.

RoundMode Sets the mode the filter uses to quantize numeric values when the
values lie between representable values for the data format (word
and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer. Ties

round to the nearest even stored integer. This is the least
biased of the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward positive
infinity.

• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round. Finally,
products never overflow — they maintain full precision.

Signed Specifies whether the filter uses signed or unsigned fixed-point
coefficients. Only coefficients reflect this property setting.

States This property contains the filter states before, during, and after
filter operations. States act as filter memory between filtering runs
or sessions. The states use fi objects, with the associated
properties from those objects. For details, refer to filtstates in
Signal Processing Toolbox documentation or in the Help system.

Examples
Specify a second-order direct-form I structure for a dfilt object, hd, with the following code:

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1(b,a);

 dfilt.df1

5-227

% Convert hd to fixed-point filter
set(hd,'arithmetic','fixed')

See Also
dsp.IIRFilter

Introduced in R2011a

5 Functions

5-228

dfilt.df1sos
Discrete-time, SOS direct-form I filter

Syntax
hd = dfilt.df1sos(s)
hd = dfilt.df1sos(b1,a1,b2,a2,...)
hd = dfilt.df1sos(...,g)
hd = dfilt.df1sos

Description
hd = dfilt.df1sos(s) returns a discrete-time, second-order section, direct-form I filter object hd,
with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.df1sos(b1,a1,b2,a2,...) returns a discrete-time, second-order section, direct-
form I filter object hd, with coefficients for the first section given in the b1 and a1 vectors, for the
second section given in the b2 and a2 vectors, and so on.

hd = dfilt.df1sos(...,g) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. When you do not specify g, all
gains default to one.

hd = dfilt.df1sos returns a default, discrete-time, second-order section, direct-form I filter
object, hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow you to change the
arithmetic setting to fixed or single, a(1) must be equal to 1.

Fixed-Point Filter Structure
The following figure shows the signal flow for the direct-form I filter implemented in second-order
sections by dfilt.df1sos. To help you see how the filter processes the coefficients, input, and
states of the filter, as well as numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

 dfilt.df1sos

5-229

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the letters “frmt” (format). In this use,
“frmt“ means the word length and fraction length associated with the filter part referred to by the
prefix.

For example, the InputFrmt label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Similarly consider NumFrmt, which
refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with
representing filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale, Signed,
Denominator

DenProdFrmt ProductWordLength DenProdFracLength ProductMode
DenStateFrmt DenStateWordLength DenStateFracLength CastBeforeSum, States
InputFrmt InputWordLength InputFracLength None
NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,

CastBeforeSum
NumFrmt CoeffWordLength NumFracLength CoeffAutoScale, Signed,

Numerator
NumProdFrmt ProductWordLength NumProdFracLength ProductMode
NumStateFrmt NumStateWordLength NumStateFracLength States
OutputFrmt OutputWordLength OutputFracLength OutputMode

5 Functions

5-230

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

ScaleValueFrmt CoeffWordLength ScaleValueFracLength CoeffAutoScale,
ScaleValues

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFrmt, which always follows a denominator coefficient
multiplication element in the signal flow. The label indicates that denominator coefficients leave the
multiplication element with the word length and fraction length associated with product operations
that include denominator coefficients. From reviewing the table, you see that the DenProdFrmt refers
to the properties ProductWordLength, DenProdFracLength and ProductMode that fully define
the denominator format after multiply (or product) operations.

Properties
In this table you see the properties associated with SOS implementation of direct-form I dfilt
objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

Property Name Brief Description
AccumMode Determines how the accumulator outputs stored values. Choose

from full precision (FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least significant bits (KeepLSB)
when output results need shorter word length than the
accumulator supports. To let you set the word length and the
precision (the fraction length) used by the output from the
accumulator, set AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the accumulator/buffer.
Arithmetic Defines the arithmetic the filter uses. Gives you the options

double, single, and fixed. In short, this property defines the
operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically chooses the proper
fraction length to represent filter coefficients without overflowing.
Turning this off by setting the value to false enables you to
change the NumFracLength and DenFracLength properties to
specify the precision used.

 dfilt.df1sos

5-231

Property Name Brief Description
CoeffWordLength Specifies the word length to apply to filter coefficients.
DenAccumFracLength Specifies the fraction length used to interpret data in the

accumulator used to hold the results of sum operations. You can
change the value for this property when you set AccumMode to
SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to interpret denominator
coefficients. DenFracLength is always available, but it is read-
only until you set CoeffAutoScale to false.

DenProdFracLength Specifies how the filter algorithm interprets the results of product
operations involving denominator coefficients. You can change
this property value when you set ProductMode to
SpecifyPrecision.

DenStateFracLength Specifies the fraction length used to interpret the states
associated with denominator coefficients in the filter.

DenStateWordLength Specifies the word length used to represent the states associated
with denominator coefficients in the filter.

FilterStructure Describes the signal flow for the filter object, including all of the
active elements that perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret input data.
InputWordLength Specifies the word length applied to interpret input data.
NumAccumFracLength Specifies how the filter algorithm interprets the results of

addition operations involving numerator coefficients. You can
change the value of this property after you set AccumMode to
SpecifyPrecision.

NumFracLength Sets the fraction length used to interpret the value of numerator
coefficients.

NumStateFracLength Specifies the fraction length used to interpret the states
associated with numerator coefficient operations in the filter.

NumWordFracLength Specifies the word length used to interpret the states associated
with numerator coefficient operations in the filter.

OptimizeScaleValues When true, the filter skips multiplication-by-one scaling. When
false, the filter performs multiplication-by-one scaling.

OutputFracLength Determines how the filter interprets the filter output data. You
can change the value of OutputFracLength when you set
OutputMode to SpecifyPrecision.

5 Functions

5-232

Property Name Brief Description
OutputMode Sets the mode the filter uses to scale the filtered data for output.

You have the following choices:

• AvoidOverflow — directs the filter to set the output data
word length and fraction length to avoid causing the data to
overflow.

• BestPrecision — directs the filter to set the output data
word length and fraction length to maximize the precision in
the output data.

• SpecifyPrecision — lets you set the word and fraction
lengths used by the output data from filtering.

OutputWordLength Determines the word length applied for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in fixed-

point arithmetic. Choose from either saturate (limit the output
to the largest positive or negative representable value) or wrap
(set overflowing values to the nearest representable value using
modular arithmetic). The choice you make affects only the
accumulator and output arithmetic. Coefficient and input
arithmetic always saturates. Finally, products never overflow—
they maintain full precision.

ProductMode Determines how the filter handles the output of product
operations. Choose from full precision (FullPrecision), or
whether to keep the most significant bit (KeepMSB) or least
significant bit (KeepLSB) in the result when you need to shorten
the data words. For you to be able to set the precision (the
fraction length) used by the output from the multiplies, you set
ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication operation
results. This property becomes writable (you can change the
value) when you set ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory before
each filtering operation. Lets you decide whether your filter
retains states from previous filtering runs. False is the default
setting.

 dfilt.df1sos

5-233

Property Name Brief Description
RoundMode Sets the mode the filter uses to quantize numeric values when the

values lie between representable values for the data format (word
and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer. Ties

round to the nearest even stored integer. This is the least
biased of the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward positive
infinity.

• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round. Finally,
products never overflow — they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting this property controls
how your filter interprets the scale values by setting the fraction
length. Only available when you disable AutoScaleMode by
setting it to false.

ScaleValues Scaling for the filter objects in SOS filters.
Signed Specifies whether the filter uses signed or unsigned fixed-point

coefficients. Only coefficients reflect this property setting.
SosMatrix Holds the filter coefficients as property values. Displays the

matrix in the format [sections x coefficients/section datatype]. A
[15x6 double] SOS matrix represents a filter with 6
coefficients per section and 15 sections, using data type double
to represent the coefficients.

States This property contains the filter states before, during, and after
filter operations. States act as filter memory between filtering
runs or sessions. The states use fi objects, with the associated
properties from those objects. For details, refer to filtstates in
Signal Processing Toolbox documentation or in the Help system.

StateWordLength Sets the word length used to represent the filter states.

Examples
Specify a fixed-point, second-order section, direct-form I dfilt object with the following code:
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1sos(b,a);
% Convert to fixed-point filter
hd.arithmetic = 'fixed';

5 Functions

5-234

See Also
dsp.BiquadFilter

Introduced in R2011a

 dfilt.df1sos

5-235

dfilt.df1t
Discrete-time, direct-form I transposed filter

Syntax
hd = dfilt.df1t(b,a)
hd = dfilt.df1t

Description
hd = dfilt.df1t(b,a) returns a discrete-time, direct-form I transposed filter object hd, with
numerator coefficients b and denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.df1t returns a default, discrete-time, direct-form I transposed filter object hd, with
b=1 and a=1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow you to change the
arithmetic setting to fixed or single, a(1) must be equal to 1.

Fixed-Point Filter Structure
The following figure shows the signal flow for the transposed direct-form I filter implemented by
dfilt.df1t. To help you see how the filter processes the coefficients, input, and states of the filter,
as well as numerical operations, the figure includes the locations of the formatting objects within the
signal flow.

5 Functions

5-236

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the letters “frmt” (format). In this use, “frmt”
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFrmt, which refers
to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing
filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale ,
Signed, Denominator

DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

DenStateFrmt DenStateWordLength DenStateFracLength CastBeforeSum, States
InputFrmt InputWordLength InputFracLength None
Multiplicandfrmt Multiplicand‐

WordLength
Multiplicand‐
FracLength

CastBeforeSum

NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,CastBeforeSu
m

 dfilt.df1t

5-237

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

NumStateFrmt NumStateWordLength NumStateFracLength States
OutputFrmt OutputWordLength OutputFracLength OutputMode

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFrmt, which always follows a denominator coefficient
multiplication element in the signal flow. The label indicates that denominator coefficients leave the
multiplication element with the word length and fraction length associated with product operations
that include denominator coefficients. From reviewing the table, you see that the DenProdFrmt refers
to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the
denominator format after multiply (or product) operations.

Properties
In this table you see the properties associated with df1t implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

Property Name Brief Description
AccumMode Determines how the accumulator outputs stored values.

Choose from full precision (FullPrecision), or whether
to keep the most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output results need shorter
word length than the accumulator supports. To let you set
the word length and the precision (the fraction length) used
by the output from the accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the accumulator/
buffer.

Arithmetic Defines the arithmetic the filter uses. Gives you the options
double, single, and fixed. In short, this property defines
the operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams)
before performing sum operations.

5 Functions

5-238

Property Name Brief Description
CoeffAutoScale Specifies whether the filter automatically chooses the

proper fraction length to represent filter coefficients
without overflowing. Turning this off by setting the value to
false enables you to change the NumFracLength and
DenFracLength properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.
DenAccumFracLength Specifies the fraction length used to interpret data in the

accumulator used to hold the results of sum operations. You
can change the value for this property when you set
AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to interpret
denominator coefficients. DenFracLength is always
available, but it is read-only until you set CoeffAutoScale
to false.

Denominator Holds the denominator coefficients for the filter.
DenProdFracLength Specifies how the filter algorithm interprets the results of

product operations involving denominator coefficients. You
can change this property value when you set ProductMode
to SpecifyPrecision.

DenStateFracLength Specifies the fraction length used to interpret the states
associated with denominator coefficients in the filter.

FilterStructure Describes the signal flow for the filter object, including all
of the active elements that perform operations during
filtering — gains, delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret
input data.

InputWordLength Specifies the word length applied to interpret input data.
MultiplicandFracLength Sets the fraction length for values (multiplicands) used in

multiply operations in the filter.
MultiplicandWordLength Sets the word length applied to the values input to a

multiply operation (the multiplicands).
NumAccumFracLength Specifies how the filter algorithm interprets the results of

addition operations involving numerator coefficients. You
can change the value of this property after you set
AccumMode to SpecifyPrecision.

Numerator Holds the numerator coefficient values for the filter.
NumFracLength Sets the fraction length used to interpret the value of

numerator coefficients.
NumProdFracLength Specifies how the filter algorithm interprets the results of

product operations involving numerator coefficients.
Available to be changed when you set ProductMode to
SpecifyPrecision.

 dfilt.df1t

5-239

Property Name Brief Description
NumStateFracLength For IIR filters, this defines the binary point location applied

to the numerator states of the filter. Specifies the fraction
length used to interpret the states associated with
numerator coefficient operations in the filter.

OutputFracLength Determines how the filter interprets the filter output data.
You can change the value of OutputFracLength when you
set OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data for
output. You have the following choices:

• AvoidOverflow — directs the filter to set the output
data word length and fraction length to avoid causing
the data to overflow.

• BestPrecision — directs the filter to set the output
data word length and fraction length to maximize the
precision in the output data.

• SpecifyPrecision — lets you set the word and
fraction lengths used by the output data from filtering.

OutputWordLength Determines the word length used for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in

fixed-point arithmetic. Choose from either saturate (limit
the output to the largest positive or negative representable
value) or wrap (set overflowing values to the nearest
representable value using modular arithmetic). The choice
you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always
saturates. Finally, products never overflow—they maintain
full precision.

ProductMode Determines how the filter handles the output of product
operations. Choose from full precision (FullPrecision),
or whether to keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result when you need
to shorten the data words. For you to be able to set the
precision (the fraction length) used by the output from the
multiplies, you set ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication operation
results. This property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory
before each filtering operation. Lets you decide whether
your filter retains states from previous filtering runs. False
is the default setting.

5 Functions

5-240

Property Name Brief Description
RoundMode Sets the mode the filter uses to quantize numeric values

when the values lie between representable values for the
data format (word and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable

integer. Ties round to the nearest even stored integer.
This is the least biased of the methods available in this
software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward

positive infinity.
• round - Round toward nearest. Ties round toward

negative infinity for negative numbers, and toward
positive infinity for positive numbers.

The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic always
round. Finally, products never overflow — they maintain full
precision.

Signed Specifies whether the filter uses signed or unsigned fixed-
point coefficients. Only coefficients reflect this property
setting.

StateAutoScale Setting autoscaling for filter states to true reduces the
possibility of overflows occurring during fixed-point
operations. Set to false, StateAutoScale lets the filter
select the fraction length to limit the overflow potential.

States This property contains the filter states before, during, and
after filter operations. States act as filter memory between
filtering runs or sessions.

StateWordLength Sets the word length used to represent the filter states.

Examples
Specify a second-order direct-form I transposed filter structure for a dfilt object, hd, with the
following code:

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1t(b,a);
% Convert filter to single-precision arithmetic
set(hd,'arithmetic','single')

See Also
dsp.IIRFilter

 dfilt.df1t

5-241

Introduced in R2011a

5 Functions

5-242

dfilt.df1tsos
Discrete-time, SOS direct-form I transposed filter

Syntax
hd = dfilt.df1tsos(s)
hd = dfilt.df1tsos(b1,a1,b2,a2,...)
hd = dfilt.df1tsos(...,g)
hd = dfilt.df1tsos

Description
hd = dfilt.df1tsos(s) returns a discrete-time, second-order section, direct-form I, transposed
filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to .

hd = dfilt.df1tsos(b1,a1,b2,a2,...) returns a discrete-time, second-order section, direct-
form I, transposed filter object hd, with coefficients for the first section given in the b1 and a1
vectors, for the second section given in the b2 and a2 vectors, etc.

hd = dfilt.df1tsos(...,g) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. If g is not specified, all gains
default to one.

hd = dfilt.df1tsos returns a default, discrete-time, second-order section, direct-form I,
transposed filter object, hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow you to change the
arithmetic setting to fixed or single, a(1) must be equal to 1.

Fixed-Point Filter Structure
The following figure shows the signal flow for the direct-form I transposed filter implemented using
second-order sections by dfilt.df1tsos. To help you see how the filter processes the coefficients,
input, and states of the filter, as well as numerical operations, the figure includes the locations of the
formatting objects within the signal flow.

 dfilt.df1tsos

5-243

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the letters “frmt” (format). In this use, “frmt”
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFrmt, which refers
to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing
filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode, CastBeforeSum
DenFrmt CoeffWordLength DenFracLength CoeffAutoScale, Signed,

Denominator
DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,

ProductWordLength
DenStateFrmt DenStateWordLength DenStateFracLength CastBeforeSum, States
InputFrmt InputWordLength InputFracLength None
MultiplicandFrmt Multiplicand‐

WordLength
Multiplicand‐
FracLength

CastBeforeSum

5 Functions

5-244

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale, Signed,
Numerator

NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

NumStateFrmt NumStateWordLength NumStateFracLength States
OutputFrmt OutputWordLength OutputFracLength OutputMode
ScaleValueFrmt CoeffWordLength ScaleValueFracLength CoeffAutoScale,

ScaleValues

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFrmt, which always follows a denominator coefficient
multiplication element in the signal flow. The label indicates that denominator coefficients leave the
multiplication element with the word length and fraction length associated with product operations
that include denominator coefficients. From reviewing the table, you see that the DenProdFrmt refers
to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the
denominator format after multiply (or product) operations.

Properties
In this table you see the properties associated with SOS implementation of transposed direct-form I
dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

Property Name Brief Description
AccumMode Determines how the accumulator outputs stored

values. Choose from full precision (FullPrecision),
or whether to keep the most significant bits
(KeepMSB) or least significant bits (KeepLSB) when
output results need shorter word length than the
accumulator supports. To let you set the word length
and the precision (the fraction length) used by the
output from the accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the
accumulator/buffer.

 dfilt.df1tsos

5-245

Property Name Brief Description
Arithmetic Defines the arithmetic the filter uses. Gives you the

options double, single, and fixed. In short, this
property defines the operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in the
signal flow diagrams) before performing sum
operations.

CoeffAutoScale Specifies whether the filter automatically chooses the
proper fraction length to represent filter coefficients
without overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength and DenFracLength properties to
specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length used to interpret data in
the accumulator used to hold the results of sum
operations. You can change the value for this
property when you set AccumMode to
SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to interpret
denominator coefficients. DenFracLength is always
available, but it is read-only until you set
CoeffAutoScale to false.

DenProdFracLength Specifies how the filter algorithm interprets the
results of product operations involving denominator
coefficients. You can change this property value when
you set ProductMode to SpecifyPrecision.

DenStateFracLength Specifies the fraction length used to interpret the
states associated with denominator coefficients in the
filter.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that perform
operations during filtering—gains, delays, sums,
products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to interpret input
data.

MultiplicandFracLength Sets the fraction length for values (multiplicands)
used in multiply operations in the filter.

MultiplicandWordLength Sets the word length applied to the values input to a
multiply operation (the multiplicands)

5 Functions

5-246

Property Name Brief Description
NumAccumFracLength Specifies how the filter algorithm interprets the

results of addition operations involving numerator
coefficients. You can change the value of this property
after you set AccumMode to SpecifyPrecision.

Numerator Holds the numerator coefficient values for the filter.
NumProdFracLength Specifies how the filter algorithm interprets the

results of product operations involving numerator
coefficients. Available to be changed when you set
ProductMode to SpecifyPrecision.

NumStateFracLength For IIR filters, this defines the binary point location
applied to the numerator states of the filter. Specifies
the fraction length used to interpret the states
associated with numerator coefficient operations in
the filter.

NumStateWordLength For IIR filters, this defines the word length applied to
the numerator states of the filter. Specifies the word
length used to interpret the states associated with
numerator coefficient operations in the filter.

OptimizeScaleValues When true, the filter skips multiplication-by-one
scaling. When false, the filter performs multiplication-
by-one scaling.

OutputFracLength Determines how the filter interprets the filter output
data. You can change the value of
OutputFracLength when you set OutputMode to
SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data
for output. You have the following choices:

• AvoidOverflow — directs the filter to set the
output data word length and fraction length to
avoid causing the data to overflow.

• BestPrecision — directs the filter to set the
output data word length and fraction length to
maximize the precision in the output data.

• SpecifyPrecision — lets you set the word and
fraction lengths used by the output data from
filtering.

OutputWordLength Determines the word length used for the output data.

 dfilt.df1tsos

5-247

Property Name Brief Description
OverflowMode Sets the mode used to respond to overflow conditions

in fixed-point arithmetic. Choose from either
saturate (limit the output to the largest positive or
negative representable value) or wrap (set
overflowing values to the nearest representable value
using modular arithmetic). The choice you make
affects only the accumulator and output arithmetic.
Coefficient and input arithmetic always saturates.
Finally, products never overflow—they maintain full
precision.

ProductMode Determines how the filter handles the output of
product operations. Choose from full precision
(FullPrecision), or whether to keep the most
significant bit (KeepMSB) or least significant bit
(KeepLSB) in the result when you need to shorten the
data words. For you to be able to set the precision
(the fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication
operation results. This property becomes writable
(you can change the value) when you set
ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets you
decide whether your filter retains states from
previous filtering runs. False is the default setting.

5 Functions

5-248

Property Name Brief Description
RoundMode Sets the mode the filter uses to quantize numeric

values when the values lie between representable
values for the data format (word and fraction
lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable

integer. Ties round to the nearest even stored
integer. This is the least biased of the methods
available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round

toward positive infinity.
• round - Round toward nearest. Ties round toward

negative infinity for negative numbers, and toward
positive infinity for positive numbers.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow — they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting this
property controls how your filter interprets the scale
values by setting the fraction length. Only available
when you disable AutoScaleMode by setting it to
false.

ScaleValues Scaling for the filter objects in SOS filters.
Signed Specifies whether the filter uses signed or unsigned

fixed-point coefficients. Only coefficients reflect this
property setting.

SosMatrix Holds the filter coefficients as property values.
Displays the matrix in the format [sections x
coefficients/sectiondatatype]. A [15x6 double] SOS
matrix represents a filter with 6 coefficients per
section and 15 sections, using data type double to
represent the coefficients.

StateAutoScale Setting autoscaling for filter states to true reduces
the possibility of overflows occurring during fixed-
point operations. Set to false, StateAutoScale
lets the filter select the fraction length to limit the
overflow potential.

States This property contains the filter states before, during,
and after filter operations. States act as filter memory
between filtering runs or sessions.

 dfilt.df1tsos

5-249

Property Name Brief Description
StateWordLength Sets the word length used to represent the filter

states.

Examples
With the following code, this example specifies a second-order section, direct-form I transposed
dfilt object for a filter. Then convert the filter to fixed-point operation.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1tsos(b,a);
set(hd,'arithmetic','fixed')

See Also
dsp.BiquadFilter

Introduced in R2011a

5 Functions

5-250

dfilt.df2
Discrete-time, direct-form II filter

Syntax
hd = dfilt.df2(b,a)
hd = dfilt.df2

Description
hd = dfilt.df2(b,a) returns a discrete-time, direct-form II filter object hd, with numerator
coefficients b and denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.df2 returns a default, discrete-time, direct-form II filter object hd, with b = 1 and a =
1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow you to change the
arithmetic setting to fixed or single, a(1) must be equal to 1.

Fixed-Point Filter Structure
The following figure shows the signal flow for the direct-form II filter implemented by dfilt.df2. To
help you see how the filter processes the coefficients, input, and states of the filter, as well as
numerical operations, the figure includes the locations of the formatting objects within the signal
flow.

 dfilt.df2

5-251

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the letters“frmt” (format). In this use, “frmt”
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFrmt, which refers
to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing
filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale,
Signed, Denominator

DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

InputFrmt InputWordLength InputFracLength None
NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,

CastBeforeSum
NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,

Signed, Numerator
NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,

ProductMode
OutputFrmt OutputWordLength OutputFracLength OutputMode
StateFrmt StateWordLength StateFracLength States

5 Functions

5-252

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFrmt, which always follows a denominator coefficient
multiplication element in the signal flow. The label indicates that denominator coefficients leave the
multiplication element with the word length and fraction length associated with product operations
that include denominator coefficients. From reviewing the table, you see that the DenProdFrmt refers
to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the
denominator format after multiply (or product) operations.

Properties
In this table you see the properties associated with the df2 implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

Property Name Brief Description
AccumMode Determines how the accumulator outputs stored values. Choose

from full precision (FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least significant bits (KeepLSB)
when output results need shorter word length than the
accumulator supports. To let you set the word length and the
precision (the fraction length) used by the output from the
accumulator, set AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the accumulator/buffer.
Arithmetic Defines the arithmetic the filter uses. Gives you the options

double, single, and fixed. In short, this property defines the
operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically chooses the proper
fraction length to represent filter coefficients without overflowing.
Turning this off by setting the value to false enables you to
change the NumFracLength and DenFracLength properties to
specify the precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.
DenAccumFracLength Specifies the fraction length used to interpret data in the

accumulator used to hold the results of sum operations. You can
change the value for this property when you set AccumMode to
SpecifyPrecision.

 dfilt.df2

5-253

Property Name Brief Description
DenFracLength Set the fraction length the filter uses to interpret denominator

coefficients. DenFracLength is always available, but it is read-
only until you set CoeffAutoScale to false.

Denominator Holds the denominator coefficients for IIR filters.
DenProdFracLength Specifies how the filter algorithm interprets the results of product

operations involving denominator coefficients. You can change
this property value when you set ProductMode to
SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object, including all of the
active elements that perform operations during filtering — gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret input data.
InputWordLength Specifies the word length applied to interpret input data.
NumAccumFracLength Specifies how the filter algorithm interprets the results of

addition operations involving numerator coefficients. You can
change the value of this property after you set AccumMode to
SpecifyPrecision.

Numerator Holds the numerator coefficient values for the filter.
NumFracLength Sets the fraction length used to interpret the value of numerator

coefficients.
NumProdFracLength Specifies how the filter algorithm interprets the results of product

operations involving numerator coefficients. Available to be
changed when you set ProductMode to SpecifyPrecision.

OutputFracLength Determines how the filter interprets the filter output data. You
can change the value of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data for output.
You have the following choices:

• AvoidOverflow — directs the filter to set the output data
word length and fraction length to avoid causing the data to
overflow.

• BestPrecision — directs the filter to set the output data
word length and fraction length to maximize the precision in
the output data.

• SpecifyPrecision — lets you set the word and fraction
lengths used by the output data from filtering.

OutputWordLength Determines the word length used for the output data.

5 Functions

5-254

Property Name Brief Description
OverflowMode Sets the mode used to respond to overflow conditions in fixed-

point arithmetic. Choose from either saturate (limit the output
to the largest positive or negative representable value) or wrap
(set overflowing values to the nearest representable value using
modular arithmetic). The choice you make affects only the
accumulator and output arithmetic. Coefficient and input
arithmetic always saturates. Finally, products never overflow—
they maintain full precision.

ProductMode Determines how the filter handles the output of product
operations. Choose from full precision (FullPrecision), or
whether to keep the most significant bit (KeepMSB) or least
significant bit (KeepLSB) in the result when you need to shorten
the data words. For you to be able to set the precision (the
fraction length) used by the output from the multiplies, you set
ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory before
each filtering operation. Lets you decide whether your filter
retains states from previous filtering runs. False is the default
setting.

RoundMode Sets the mode the filter uses to quantize numeric values when the
values lie between representable values for the data format (word
and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer. Ties

round to the nearest even stored integer. This is the least
biased of the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward positive
infinity.

• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round. Finally,
products never overflow — they maintain full precision.

Signed Specifies whether the filter uses signed or unsigned fixed-point
coefficients. Only coefficients reflect this property setting.

StateFracLength When you set StateAutoScale to false, you enable the
StateFracLength property that lets you set the fraction length
applied to interpret the filter states.

States This property contains the filter states before, during, and after
filter operations. States act as filter memory between filtering
runs or sessions.

 dfilt.df2

5-255

Property Name Brief Description
StateWordLength Sets the word length used to represent the filter states.

Examples
Specify a second-order direct-form II filter structure for a dfilt object, hd, with the following code:

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2(b,a);
% Change filter to fixed-point
set(hd,'arithmetic','fixed')

See Also
dsp.IIRFilter

Introduced in R2011a

5 Functions

5-256

dfilt.df2sos
Discrete-time, SOS, direct-form II filter

Syntax
hd = dfilt.df2sos(s)
hd = dfilt.df2sos(b1,a1,b2,a2,...)
hd = dfilt.df2sos(...,g)
hd = dfilt.df2sos

Description
hd = dfilt.df2sos(s) returns a discrete-time, second-order section, direct-form II filter object
hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.df2sos(b1,a1,b2,a2,...) returns a discrete-time, second-order section, direct-
form II object, hd, with coefficients for the first section given in the b1 and a1 vectors, for the second
section given in the b2 and a2 vectors, etc.

hd = dfilt.df2sos(...,g) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. If g is not specified, all gains
default to one.

hd = dfilt.df2sos returns a default, discrete-time, second-order section, direct-form II filter
object, hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow you to change the
arithmetic setting to fixed or single, a(1) must be equal to 1.

Fixed-Point Filter Structure
The figure below shows the signal flow for the direct-form II filter implemented with second-order
sections by dfilt.df2sos. To help you see how the filter processes the coefficients, input, and
states of the filter, as well as numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

 dfilt.df2sos

5-257

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the letters “frmt” (format). In this use, “frmt”
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and fraction length used to interpret the
data input to the filter. The frmt properties InputWordLength and InputFracLength (as shown in
the table) store the word length and the fraction length in bits. Or consider NumFrmt, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing
filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale,
Signed, sosMatrix

DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength,
sosMatrix

InputFrmt InputWordLength InputFracLength None
NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,

CastBeforeSum

5 Functions

5-258

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,
Signed, sosMatrix

NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFrmt OutputWordLength OutputFracLength OutputMode
ScaleValueFrmat CoeffWordLength ScaleValueFracLength CoeffAutoScale,

ScaleValues
SectionInputFormt SectionInput‐

WordLength
SectionInput‐
FracLength

SectionInput‐
AutoScale

SectionOutputFrmt SectionOutput‐
WordLength

SectionOutput‐
FracLength

SectionOutput‐
AutoScale

StateFrmt StateWordLength StateFracLength CastBeforeSum,
States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFrmt, which always follows a denominator coefficient
multiplication element in the signal flow. The label indicates that denominator coefficients leave the
multiplication element with the word length and fraction length associated with product operations
that include denominator coefficients. From reviewing the table, you see that the DenProdFrmt refers
to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the
denominator format after multiply (or product) operations.

Properties
In this table you see the properties associated with second-order section implementation of direct-
form II dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

Property Name Brief Description
AccumMode Determines how the accumulator outputs stored values. Choose

from full precision (FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least significant bits
(KeepLSB) when output results need shorter word length than
the accumulator supports. To let you set the word length and
the precision (the fraction length) used by the output from the
accumulator, set AccumMode to SpecifyPrecision.

 dfilt.df2sos

5-259

Property Name Brief Description
AccumWordLength Sets the word length used to store data in the accumulator/

buffer.
Arithmetic Defines the arithmetic the filter uses. Gives you the options

double, single, and fixed. In short, this property defines the
operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams)
before performing sum operations.

CoeffAutoScale Specifies whether the filter automatically chooses the proper
fraction length to represent filter coefficients without
overflowing. Turning this off by setting the value to false
enables you to change the NumFracLength and
DenFracLength properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.
DenAccumFracLength Specifies the fraction length used to interpret data in the

accumulator used to hold the results of sum operations. You can
change the value for this property when you set AccumMode to
SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to interpret denominator
coefficients. DenFracLength is always available, but it is read-
only until you set CoeffAutoScale to false.

DenProdFracLength Specifies how the filter algorithm interprets the results of
product operations involving denominator coefficients. You can
change this property value when you set ProductMode to
SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object, including all of
the active elements that perform operations during filtering—
gains, delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret input
data.

InputWordLength Specifies the word length applied to interpret input data.
NumAccumFracLength Specifies how the filter algorithm interprets the results of

addition operations involving numerator coefficients. You can
change the value of this property after you set AccumMode to
SpecifyPrecision.

NumFracLength Sets the fraction length used to interpret the value of
numerator coefficients.

NumFracLength is always available, but it is read-only until
you set CoeffAutoScale to false.

NumProdFracLength Specifies how the filter algorithm interprets the results of
product operations involving numerator coefficients. Available
to be changed when you set ProductMode to
SpecifyPrecision.

5 Functions

5-260

Property Name Brief Description
OptimizeScaleValues When true, the filter skips multiplication-by-one scaling. When

false, the filter performs multiplication-by-one scaling.
OutputFracLength Determines how the filter interprets the filter output data. You

can change the value of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data for
output. You have the following choices:

• AvoidOverflow — directs the filter to set the output data
word length and fraction length to avoid causing the data to
overflow.

• BestPrecision — directs the filter to set the output data
word length and fraction length to maximize the precision in
the output data.

• SpecifyPrecision — lets you set the word and fraction
lengths used by the output data from filtering.

OutputWordLength Determines the word length used for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in fixed-

point arithmetic. Choose from either saturate (limit the
output to the largest positive or negative representable value)
or wrap (set overflowing values to the nearest representable
value using modular arithmetic). The choice you make affects
only the accumulator and output arithmetic. Coefficient and
input arithmetic always saturates. Finally, products never
overflow — they maintain full precision.

ProductMode Determines how the filter handles the output of product
operations. Choose from full precision (FullPrecision), or
whether to keep the most significant bit (KeepMSB) or least
significant bit (KeepLSB) in the result when you need to shorten
the data words. For you to be able to set the precision (the
fraction length) used by the output from the multiplies, you set
ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication operation
results. This property becomes writable (you can change the
value) when you set ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory before
each filtering operation. Lets you decide whether your filter
retains states from previous filtering runs. False is the default
setting.

 dfilt.df2sos

5-261

Property Name Brief Description
RoundMode Sets the mode the filter uses to quantize numeric values when

the values lie between representable values for the data format
(word and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer.

Ties round to the nearest even stored integer. This is the
least biased of the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward

positive infinity.
• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round.
Finally, products never overflow — they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting this property
controls how your filter interprets the scale values by setting
the fraction length.

ScaleValueFracLength is always available, but it is read-only
until you set CoeffAutoScale to false.

ScaleValues Scaling for the filter objects in SOS filters.
SectionInputAutoScale Tells the filter whether to set the stage input data format to

minimize the occurrence of overflow conditions.
SectionInputFracLength Lets you set the fraction length for section inputs in SOS filters,

if you set SectionInputAutoScale to false.
SectionInputWordLength Lets you set the word length for section inputs in SOS filters, if

you set SectionInputAutoScale to false.
SectionOutputAutoScale Tells the filter whether to set the section output data format to

minimize the occurrence of overflow conditions.
SectionOutputFracLength Lets you set the fraction length for section outputs in SOS

filters, if you set SectionOutputAutoScale to off.
SectionOutputWordLength Lets you set the word length for section outputs in SOS filters,

if you set SectionOutputAutoScale to false.
Signed Specifies whether the filter uses signed or unsigned fixed-point

coefficients. Only coefficients reflect this property setting.
SosMatrix Holds the filter coefficients as property values. Displays the

matrix in the format [sections x coefficients/section datatype]. A
[15x6 double] SOS matrix represents a filter with 6
coefficients per section and 15 sections, using data type
double to represent the coefficients.

5 Functions

5-262

Property Name Brief Description
StateFracLength StateFracLength property that lets you set the fraction

length applied to interpret the filter states.
States This property contains the filter states before, during, and after

filter operations. States act as filter memory between filtering
runs or sessions.

StateWordLength Sets the word length used to represent the filter states.

Examples
Specify a second-order section, direct-form II dfilt object for a Butterworth filter converted to
second-order sections, with the following code:
[z,p,k] = butter(30,0.5);
[s,g] = zp2sos(z,p,k);
hd = dfilt.df2sos(s,g);
% Convert filter to fixed-point
hd.arithmetic='fixed';

See Also
dsp.BiquadFilter

Introduced in R2011a

 dfilt.df2sos

5-263

dfilt.df2t
Discrete-time, direct-form II transposed filter

Syntax
hd = dfilt.df2t(b,a)
hd = dfilt.df2t

Description
hd = dfilt.df2t(b,a) returns a discrete-time, direct-form II transposed filter object hd, with
numerator coefficients b and denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.df2t returns a default, discrete-time, direct-form II transposed filter object hd, with b
= 1 and a = 1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow you to change the
arithmetic setting to fixed or single, a(1) must be equal to 1.

Fixed-Point Filter Structure
The following figure shows the signal flow for the direct-form II transposed filter implemented by
dfilt.df2t. To help you see how the filter processes the coefficients, input, and states of the filter,
as well as numerical operations, the figure includes the locations of the formatting objects within the
signal flow.

5 Functions

5-264

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the letters “frmt.” In this use, “frmt” means
the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFrmt, which refers
to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing
filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode, CastBeforeSum
DenFrmt CoeffWordLength DenFracLength CoeffAutoScale,Signed,

Denominator
DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,

ProductWordLength
InputFrmt InputWordLength InputFracLength None
NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode, CastBeforeSum

 dfilt.df2t

5-265

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale, Signed,
Numerator

NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFrmt OutputWordLength OutputFracLength None
StateFrmt StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFrmt, which always follows a denominator coefficient
multiplication element in the signal flow. The label indicates that denominator coefficients leave the
multiplication element with the word length and fraction length associated with product operations
that include denominator coefficients. From reviewing the table, you see that the DenProdFrmt refers
to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the
denominator format after multiply (or product) operations.

Properties
In this table you see the properties associated with df2t implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

Property Name Brief Description
AccumMode Determines how the accumulator outputs stored values. Choose

from full precision (FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant bits (KeepLSB) when
output results need shorter word length than the accumulator
supports. To let you set the word length and the precision (the
fraction length) used by the output from the accumulator, set
AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the accumulator/buffer.
Arithmetic Defines the arithmetic the filter uses. Gives you the options

double, single, and fixed. In short, this property defines the
operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams) before
performing sum operations.

5 Functions

5-266

Property Name Brief Description
CoeffAutoScale Specifies whether the filter automatically chooses the proper

fraction length to represent filter coefficients without overflowing.
Turning this off by setting the value to false enables you to
change the NumFracLength and DenFracLength properties to
specify the precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.
DenAccumFracLength Specifies the fraction length used to interpret data in the

accumulator used to hold the results of sum operations. You can
change the value for this property when you set AccumMode to
SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to interpret denominator
coefficients. DenFracLength is always available, but it is read-
only until you set CoeffAutoScale to false.

Denominator Holds the denominator coefficients for IIR filters.
DenProdFracLength Specifies how the filter algorithm interprets the results of product

operations involving denominator coefficients. You can change this
property value when you set ProductMode to
SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object, including all of the
active elements that perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret input data.
InputWordLength Specifies the word length applied to interpret input data.
NumAccumFracLength Specifies how the filter algorithm interprets the results of addition

operations involving numerator coefficients. You can change the
value of this property after you set AccumMode to
SpecifyPrecision.

Numerator Holds the numerator coefficient values for the filter.
NumFracLength Sets the fraction length used to interpret the value of numerator

coefficients.
NumProdFracLength Specifies how the filter algorithm interprets the results of product

operations involving numerator coefficients. Available to be
changed when you set ProductMode to SpecifyPrecision.

OutputFracLength Determines how the filter interprets the filter output data.
OutputWordLength Determines the word length used for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in fixed-point

arithmetic. Choose from either saturate (limit the output to the
largest positive or negative representable value) or wrap (set
overflowing values to the nearest representable value using
modular arithmetic). The choice you make affects only the
accumulator and output arithmetic. Coefficient and input
arithmetic always saturates. Finally, products never overflow —
they maintain full precision.

 dfilt.df2t

5-267

Property Name Brief Description
ProductMode Determines how the filter handles the output of product

operations. Choose from full precision (FullPrecision), or
whether to keep the most significant bit (KeepMSB) or least
significant bit (KeepLSB) in the result when you need to shorten
the data words. For you to be able to set the precision (the fraction
length) used by the output from the multiplies, you set
ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication operation
results. This property becomes writable (you can change the value)
when you set ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory before each
filtering operation. Lets you decide whether your filter retains
states from previous filtering runs. False is the default setting.

RoundMode Sets the mode the filter uses to quantize numeric values when the
values lie between representable values for the data format (word
and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer. Ties

round to the nearest even stored integer. This is the least
biased of the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward positive
infinity.

• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round. Finally,
products never overflow — they maintain full precision.

Signed Specifies whether the filter uses signed or unsigned fixed-point
coefficients. Only coefficients reflect this property setting.

StateAutoScale Setting autoscaling for filter states to true reduces the possibility
of overflows occurring during fixed-point operations. Set to false,
StateAutoScale lets the filter select the fraction length to limit
the overflow potential.

StateFracLength When you set StateAutoScale to false, you enable the
StateFracLength property that lets you set the fraction length
applied to interpret the filter states.

States This property contains the filter states before, during, and after
filter operations. States act as filter memory between filtering runs
or sessions.

StateWordLength Sets the word length used to represent the filter states.

5 Functions

5-268

Examples
Create a fixed-point filter by specifying a second-order direct-form II transposed filter structure for a
dfilt object, and then converting the double-precision arithmetic setting to fixed-point.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2t(b,a);
% Convert filter to fixed-point
set(hd,'arithmetic','fixed')

See Also
dsp.IIRFilter

Introduced in R2011a

 dfilt.df2t

5-269

dfilt.df2tsos
Discrete-time, SOS direct-form II transposed filter

Syntax
hd = dfilt.df2tsos(s)
hd = dfilt.df2tsos(b1,a1,b2,a2,...)
hd = dfilt.df2tsos(...,g)
hd = dfilt.df2tsos

Description
hd = dfilt.df2tsos(s) returns a discrete-time, second-order section, direct-form II, transposed
filter object hd, with coefficients given in the matrix s.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.df2tsos(b1,a1,b2,a2,...) returns a discrete-time, second-order section, direct-
form II, transposed filter object hd, with coefficients for the first section given in the b1 and a1
vectors, for the second section given in the b2 and a2 vectors, etc.

hd = dfilt.df2tsos(...,g) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. If g is not specified, all gains
default to one.

hd = dfilt.df2tsos returns a default, discrete-time, second-order section, direct-form II,
transposed filter object, hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow you to change the
arithmetic setting to fixed or single, a(1) must be equal to 1.

Fixed-Point Filter Structure
The figure below shows the signal flow for the second-order section transposed direct-form II filter
implemented by dfilt.dftsos. To help you see how the filter processes the coefficients, input, and
states of the filter, as well as numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

5 Functions

5-270

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the letters “frmt” (format). In this use, “frmt”
indicates the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFrmt, which refers
to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing
filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

 dfilt.df2tsos

5-271

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale,
Signed, Denominator

DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

InputFrmt InputWordLength InputFracLength None
NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,

CastBeforeSum
NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,

SignedNumerator
NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,

ProductMode
OutputFrmt OutputWordLength OutputFracLength OutputMode
ScaleValueFrmt CoeffWordLength ScaleValueFracLength CoeffAutoScale,

ScaleValues
SectionInputFormt SectionInput‐

WordLength
SectionInput‐
FracLength

SectionOutputFrmt SectionOutput‐
WordLength

SectionOutput‐
FracLength

StateFrmt StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFrmt, which always follows a denominator coefficient
multiplication element in the signal flow. The label indicates that denominator coefficients leave the
multiplication element with the word length and fraction length associated with product operations
that include denominator coefficients. From reviewing the table, you see that the DenProdFrmt refers
to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the
denominator format after multiply (or product) operations.

Properties
In this table you see the properties associated with second-order section implementation of
transposed direct-form II dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

5 Functions

5-272

Property Name Brief Description
AccumMode Determines how the accumulator outputs stored values. Choose

from full precision (FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant bits (KeepLSB) when
output results need shorter word length than the accumulator
supports. To let you set the word length and the precision (the
fraction length) used by the output from the accumulator, set
AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the accumulator/buffer.
Arithmetic Defines the arithmetic the filter uses. Gives you the options double,

single, and fixed. In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically chooses the proper
fraction length to represent filter coefficients without overflowing.
Turning this off by setting the value to false enables you to change
the NumFracLength and DenFracLength properties to specify the
precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.
DenAccumFracLength Specifies the fraction length used to interpret data in the

accumulator used to hold the results of sum operations. You can
change the value for this property when you set AccumMode to
SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to interpret denominator
coefficients. DenFracLength is always available, but it is read-only
until you set CoeffAutoScale to false.

DenProdFracLength Specifies how the filter algorithm interprets the results of product
operations involving denominator coefficients. You can change this
property value when you set ProductMode to SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object, including all of the
active elements that perform operations during filtering — gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret input data.
InputWordLength Specifies the word length applied to interpret input data.
NumAccumFracLength Specifies how the filter algorithm interprets the results of addition

operations involving numerator coefficients. You can change the
value of this property after you set AccumMode to
SpecifyPrecision.

NumFracLength Sets the fraction length used to interpret the value of numerator
coefficients.

NumProdFracLength Specifies how the filter algorithm interprets the results of product
operations involving numerator coefficients. Available to be changed
when you set ProductMode to SpecifyPrecision.

 dfilt.df2tsos

5-273

Property Name Brief Description
OptimizeScaleValues When true, the filter skips multiplication-by-one scaling. When false,

the filter performs multiplication-by-one scaling.
OutputFracLength Determines how the filter interprets the filter output data. You can

change the value of OutputFracLength when you set OutputMode
to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data for output.
You have the following choices:

• AvoidOverflow — directs the filter to set the output data word
length and fraction length to avoid causing the data to overflow.

• BestPrecision — directs the filter to set the output data word
length and fraction length to maximize the precision in the
output data.

• SpecifyPrecision — lets you set the word and fraction
lengths used by the output data from filtering.

OutputWordLength Determines the word length used for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in fixed-point

arithmetic. Choose from either saturate (limit the output to the
largest positive or negative representable value) or wrap (set
overflowing values to the nearest representable value using modular
arithmetic). The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic always saturates.
Finally, products never overflow — they maintain full precision.

ProductMode Determines how the filter handles the output of product operations.
Choose from full precision (FullPrecision), or whether to keep
the most significant bit (KeepMSB) or least significant bit (KeepLSB)
in the result when you need to shorten the data words. For you to be
able to set the precision (the fraction length) used by the output
from the multiplies, you set ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication operation results.
This property becomes writable (you can change the value) when
you set ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory before each
filtering operation. Lets you decide whether your filter retains states
from previous filtering runs. False is the default setting.

5 Functions

5-274

Property Name Brief Description
RoundMode Sets the mode the filter uses to quantize numeric values when the

values lie between representable values for the data format (word
and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer. Ties

round to the nearest even stored integer. This is the least biased
of the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward positive
infinity.

• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round. Finally,
products never overflow — they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting this property controls
how your filter interprets the scale values by setting the fraction
length. Only available when you disable AutoScaleMode by setting
it to false.

ScaleValues Scaling for the filter objects in SOS filters.
Signed Specifies whether the filter uses signed or unsigned fixed-point

coefficients. Only coefficients reflect this property setting.
SosMatrix Holds the filter coefficients as property values — you use set and

get to modify them. Displays the matrix in the format [sections x
coefficients/section data type]. A [15x6 double] SOS matrix
represents a filter with 6 coefficients per section and 15 sections,
using data type double to represent the coefficients.

SectionInputFracLength Lets you set the fraction length for section inputs in SOS filters, if
you set SectionInputAutoScale to false.

SectionInputWordLength Lets you set the word length for section inputs in SOS filters, if you
set SectionInputAutoScale to false.

SectionOutputFracLength Lets you set the fraction length for section outputs in SOS filters, if
you set SectionOutputAutoScale to off.

SectionOutputWordLength Lets you set the word length for section outputs in SOS filters, if you
set SectionOutputAutoScale to false.

StateAutoScale Setting autoscaling for filter states to true reduces the possibility
of overflows occurring during fixed-point operations. Set to false,
StateAutoScale lets the filter select the fraction length to limit
the overflow potential.

 dfilt.df2tsos

5-275

Property Name Brief Description
StateFracLength When you set StateAutoScale to false, you enable the

StateFracLength property that lets you set the fraction length
applied to interpret the filter states.

States This property contains the filter states before, during, and after
filter operations. States act as filter memory between filtering runs
or sessions.

StateWordLength Sets the word length used to represent the filter states.

Examples
Construct a second-order section Butterworth filter for fixed-point filtering. Start by specifying a
Butterworth filter, and then convert the filter to second-order sections, with the following code:

[z,p,k] = butter(30,0.5);
[s,g] = zp2sos(z,p,k);
hd = dfilt.df2tsos(s,g);
% convert filter to fixed-point
hd.arithmetic='fixed';

See Also
dsp.BiquadFilter

Introduced in R2011a

5 Functions

5-276

dfilt.dfasymfir
Discrete-time, direct-form antisymmetric FIR filter

Syntax
hd = dfilt.dfasymfir(b)
hd = dfilt.dfasymfir

Description
hd = dfilt.dfasymfir(b) returns a discrete-time, direct-form, antisymmetric FIR filter object hd,
with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.dfasymfir returns a default, discrete-time, direct-form, antisymmetric FIR filter
object hd, with b=1. This filter passes the input through to the output unchanged.

Note Only the coefficients in the first half of vector b are used because dfilt.dfasymfir assumes
the coefficients in the second half are antisymmetric to those in the first half. For example, in the
figure coefficients, b(4) = -b(3), b(5) = -b(2), and b(6) = -b(1).

Fixed-Point Filter Structure
The following figure shows the signal flow for the odd-order antisymmetric FIR filter implemented by
dfilt.dfasymfir. The even-order filter uses similar flow. To help you see how the filter processes
the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the
locations of the formatting objects within the signal flow.

 dfilt.dfasymfir

5-277

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the word “format.” In this use, "format"
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFormat, which
refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with
representing filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

AccumFormat AccumWordLength AccumFracLength None
InputFormat InputWordLength InputFracLength None
NumFormat CoeffWordLength NumFracLength CoeffAutoScale, ,

Signed, Numerator
OutputFormat OutputWordLength OutputFracLength None
ProductFormat ProductWordLength ProductFracLength None
TapSumFormat InputWordLength InputFracLength InputFormat

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication
element in the signal flow. The label indicates that coefficients leave the multiplication element with
the word length and fraction length associated with product operations that include coefficients.
From reviewing the table, you see that the ProductFormat refers to the properties

5 Functions

5-278

ProductFracLength and ProductWordLength that fully define the coefficient format after
multiply (or product) operations.

Properties
In this table you see the properties associated with an antisymmetric FIR implementation of dfilt
objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

Name Values Description
AccumFracLength Any positive or negative

integer number of bits
[27]

Specifies the fraction length used to interpret data
output by the accumulator.

AccumWordLength Any integer number of
bits[33]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for fixed-point
filters

Setting this to fixed allows you to modify other filter
properties to customize your fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically chooses the
proper fraction length to represent filter coefficients
without overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify the
precision used.

CoeffWordLength Any integer number of
bits [16]

Specifies the word length to apply to filter coefficients.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets the
output word and fraction lengths, product word and
fraction lengths, and the accumulator word and
fraction lengths to maintain the best precision results
during filtering. The default value, FullPrecision,
sets automatic word and fraction length determination
by the filter. SpecifyPrecision makes the output
and accumulator-related properties available so you
can set your own word and fraction lengths for them.

InputFracLength Any positive or negative
integer number of bits
[15]

Specifies the fraction length the filter uses to interpret
input data. Also controls TapSumFracLength.

InputWordLength Any integer number of
bits [16]

Specifies the word length applied to interpret input
data. Also determines TapSumWordLength.

 dfilt.dfasymfir

5-279

Name Values Description
NumFracLength Any positive or negative

integer number of bits
[14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or negative
integer number of bits
[29]

Determines how the filter interprets the filter output
data. You can change the value of OutputFracLength
when you set FilerInternals to
SpecifyPrecision.

OutputWordLength Any integer number of
bits [33]

Determines the word length used for the output data.
You make this property editable by setting
FilterInternals to SpecifyPrecision.

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow conditions
in fixed-point arithmetic. Choose from either
saturate (limit the output to the largest positive or
negative representable value) or wrap (set overflowing
values to the nearest representable value using
modular arithmetic). The choice you make affects only
the accumulator and output arithmetic. Coefficient and
input arithmetic always saturates. Finally, products
never overflow — they maintain full precision.

ProductFracLength Any positive or negative
integer number of bits
[27]

Specifies the fraction length to use for multiplication
operation results. This property becomes writable (you
can change the value) when you set ProductMode to
SpecifyPrecision.

ProductWordLength Any integer number of
bits [33]

Specifies the word length to use for multiplication
operation results. This property becomes writable (you
can change the value) when you set ProductMode to
SpecifyPrecision.

5 Functions

5-280

Name Values Description
RoundMode [convergent], ceil,

fix, floor, nearest,
round

Sets the mode the filter uses to quantize numeric
values when the values lie between representable
values for the data format (word and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable

integer. Ties round to the nearest even stored
integer. This is the least biased of the methods
available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round

toward positive infinity.
• round - Round toward nearest. Ties round toward

negative infinity for negative numbers, and toward
positive infinity for positive numbers.

The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic
always round. Finally, products never overflow — they
maintain full precision.

Signed [true], false Specifies whether the filter uses signed or unsigned
fixed-point coefficients. Only coefficients reflect this
property setting.

States fi object to match the
filter arithmetic setting

Contains the filter states before, during, and after
filter operations. States act as filter memory between
filtering runs or sessions. The states use fi objects,
with the associated properties from those objects. For
details, refer to fixed-point objects in Fixed-Point
Designer documentation.

Examples
Specify a fifth-order direct-form antisymmetric FIR filter structure for a dfilt object, hd, with the
following code:
b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];
hd = dfilt.dfasymfir(b);

See Also
dsp.FIRFilter

Introduced in R2011a

 dfilt.dfasymfir

5-281

dfilt.dffir
Discrete-time, direct-form FIR filter

Syntax
hd = dfilt.dffir(b)
hd = dfilt.dffir

Description
hd = dfilt.dffir(b) returns a discrete-time, direct-form finite impulse response (FIR) filter
object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.dffir returns a default, discrete-time, direct-form FIR filter object hd, with b=1. This
filter passes the input through to the output unchanged.

Fixed-Point Filter Structure
The following figure shows the signal flow for the direct-form FIR filter implemented by
dfilt.dffir. To help you see how the filter processes the coefficients, input, and states of the filter,
as well as numerical operations, the figure includes the locations of the formatting objects within the
signal flow.

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following

5 Functions

5-282

table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the letters“frmt” (format). In this use, “frmt”
indicates the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFrmt, which refers
to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing
filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

AccumFrmt AccumWordLength AccumFracLength None
InputFrmt InputWordLength InputFracLength None
NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,

Signed, Numerator
OutputFrmt OutputWordLength OutputFracLength None
ProductFrmt ProductWordLength ProductFracLength None

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFrmt, which always follows a coefficient multiplication
element in the signal flow. The label indicates that coefficients leave the multiplication element with
the word length and fraction length associated with product operations that include coefficients.
From reviewing the table, you see that the ProductFrmt refers to the properties
ProductFracLength and ProductWordLength that fully define the coefficient format after
multiply (or product) operations.

Properties
In this table you see the properties associated with direct-form FIR implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

Name Values Description
AccumFracLength Any positive or

negative integer
number of bits [30]

Specifies the fraction length used to interpret data output
by the accumulator.

AccumWordLength Any integer number of
bits[34]

Sets the word length used to store data in the
accumulator.

 dfilt.dffir

5-283

Name Values Description
Arithmetic fixed for fixed-point

filters
Setting this to fixed allows you to modify other filter
properties to customize your fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically chooses the
proper fraction length to represent filter coefficients
without overflowing. Turning this off by setting the value
to false enables you to change the NumFracLength
property value to specify the precision used.

CoeffWordLength Any integer number of
bits [16]

Specifies the word length to apply to filter coefficients.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets the output
word and fraction lengths, product word and fraction
lengths, and the accumulator word and fraction lengths to
maintain the best precision results during filtering. The
default value, FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and accumulator-
related properties available so you can set your own word
and fraction lengths for them.

InputFracLength Any positive or
negative integer
number of bits [15]

Specifies the fraction length the filter uses to interpret
input data.

InputWordLength Any integer number of
bits [16]

Specifies the word length applied to interpret input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the numerator
coefficients.

OutputFracLength Any positive or
negative integer
number of bits [32]

Determines how the filter interprets the filter output data.
You can change the value of OutputFracLength when
you set FilerInternals to SpecifyPrecision.

OutputWordLength Any integer number of
bits [39]

Determines the word length used for the output data. You
make this property editable by setting FilterInternals
to SpecifyPrecision.

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow conditions in
fixed-point arithmetic. Choose from either saturate
(limit the output to the largest positive or negative
representable value) or wrap (set overflowing values to
the nearest representable value using modular
arithmetic). The choice you make affects only the
accumulator and output arithmetic. Coefficient and input
arithmetic always saturates. Finally, products never
overflow — they maintain full precision.

ProductFracLength Any positive or
negative integer
number of bits [30]

Specifies the fraction length to use for multiplication
operation results. This property becomes writable (you
can change the value) when you set ProductMode to
SpecifyPrecision.

5 Functions

5-284

Name Values Description
ProductWordLength Any integer number of

bits [32]
Specifies the word length to use for multiplication
operation results. This property becomes writable (you
can change the value) when you set ProductMode to
SpecifyPrecision.

RoundMode [convergent], ceil,
fix, floor, nearest,
round

Sets the mode the filter uses to quantize numeric values
when the values lie between representable values for the
data format (word and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable

integer. Ties round to the nearest even stored integer.
This is the least biased of the methods available in this
software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward

positive infinity.
• round - Round toward nearest. Ties round toward

negative infinity for negative numbers, and toward
positive infinity for positive numbers.

The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic always
round. Finally, products never overflow — they maintain
full precision.

Signed [true], false Specifies whether the filter uses signed or unsigned fixed-
point coefficients. Only coefficients reflect this property
setting.

States fi object to match the
filter arithmetic setting

Contains the filter states before, during, and after filter
operations. States act as filter memory between filtering
runs or sessions. The states use fi objects, with the
associated properties from those objects. For details, refer
to fixed-point objects in Fixed-Point Designer
documentation.

Examples
Specify a second-order direct-form FIR filter structure for a dfilt object hd, with the following code
that constructs the filter in double-precision format and then converts the filter to fixed-point
operation:

b = [0.05 0.9 0.05];
hd = dfilt.dffir(b);
% Create fixed-point filter
hd.arithmetic='fixed';
% Change FilterInternals property to
% SpecifyPrecision enabling other properties
hd.FilterInternals='SpecifyPrecision';

 dfilt.dffir

5-285

See Also
dsp.FIRFilter

Introduced in R2011a

5 Functions

5-286

dfilt.dffirt
Discrete-time, direct-form FIR transposed filter

Syntax
hd = dfilt.dffirt(b)
hd = dfilt.dffirt

Description
hd = dfilt.dffirt(b) returns a discrete-time, direct-form FIR transposed filter object hd, with
numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR transposed filter object hd,
with b = 1. This filter passes the input through to the output unchanged.

Fixed-Point Filter Structure
The following figure shows the signal flow for the transposed direct-form FIR filter implemented by
dfilt.dffirt. To help you see how the filter processes the coefficients, input, and states of the
filter, as well as numerical operations, the figure includes the locations of the formatting objects
within the signal flow.

 dfilt.dffirt

5-287

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the word “format.” In this use, “format”
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFormat, which
refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with
representing filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

AccumFormat AccumWordLength AccumFracLength None
InputFormat InputWordLength InputFracLength None

5 Functions

5-288

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

NumFormat CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

OutputFormat OutputWordLength OutputFracLength None
ProductFormat ProductWordLength ProductFracLength None

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication
element in the signal flow. The label indicates that coefficients leave the multiplication element with
the word length and fraction length associated with product operations that include coefficients.
From reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength and ProductWordLength that fully define the coefficient format after
multiply (or product) operations.

Properties
In this table you see the properties associated with the transposed direct-form FIR implementation of
dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

Name Values Description
AccumFracLength Any positive or negative

integer number of bits
[30]

Specifies the fraction length used to interpret data
output by the accumulator.

AccumWordLength Any integer number of
bits[34]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for fixed-point filters Setting this to fixed allows you to modify other filter
properties to customize your fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically chooses the
proper fraction length to represent filter coefficients
without overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify the
precision used.

CoeffWordLength Any integer number of
bits [16]

Specifies the word length to apply to filter
coefficients.

 dfilt.dffirt

5-289

Name Values Description
FilterInternals [FullPrecision],

SpecifyPrecision
Controls whether the filter automatically sets the
output word and fraction lengths, product word and
fraction lengths, and the accumulator word and
fraction lengths to maintain the best precision results
during filtering. The default value, FullPrecision,
sets automatic word and fraction length
determination by the filter. SpecifyPrecision
makes the output and accumulator-related properties
available so you can set your own word and fraction
lengths for them.

InputFracLength Any positive or negative
integer number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer number of
bits [16]

Specifies the word length applied to interpret input
data.

NumFracLength Any positive or negative
integer number of bits
[14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or negative
integer number of bits
[30]

Determines how the filter interprets the filter output
data. You can change the value of
OutputFracLength when you set FilerInternals
to SpecifyPrecision.

OutputWordLength Any integer number of
bits [34]

Determines the word length used for the output data.
You make this property editable by setting
FilterInternals to SpecifyPrecision.

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow conditions
in fixed-point arithmetic. Choose from either
saturate (limit the output to the largest positive or
negative representable value) or wrap (set
overflowing values to the nearest representable value
using modular arithmetic). The choice you make
affects only the accumulator and output arithmetic.
Coefficient and input arithmetic always saturates.
Finally, products never overflow—they maintain full
precision.

5 Functions

5-290

Name Values Description
RoundMode [convergent], ceil,

fix, floor, nearest,
round

Sets the mode the filter uses to quantize numeric
values when the values lie between representable
values for the data format (word and fraction
lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable

integer. Ties round to the nearest even stored
integer. This is the least biased of the methods
available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round

toward positive infinity.
• round - Round toward nearest. Ties round toward

negative infinity for negative numbers, and toward
positive infinity for positive numbers.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow — they maintain full precision.

Signed [true], false Specifies whether the filter uses signed or unsigned
fixed-point coefficients. Only coefficients reflect this
property setting.

States fi object to match the
filter arithmetic setting

Contains the filter states before, during, and after
filter operations. States act as filter memory between
filtering runs or sessions. The states use fi objects,
with the associated properties from those objects. For
details, refer to fixed-point objects in Fixed-Point
Designer documentation.

Examples
Specify a second-order direct-form FIR transposed filter structure for a dfilt object, hd, with the
following code:

b = [0.05 0.9 0.05];
hd = dfilt.dffirt(b);
set(hd,'arithmetic','fixed')

See Also
dsp.FIRFilter

Introduced in R2011a

 dfilt.dffirt

5-291

dfilt.dfsymfir
Discrete-time, direct-form symmetric FIR filter

Syntax
hd = dfilt.dfsymfir(b)
hd = dfilt.dfsymfir

Description
hd = dfilt.dfsymfir(b) returns a discrete-time, direct-form symmetric FIR filter object hd, with
numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.dfsymfir returns a default, discrete-time, direct-form symmetric FIR filter object hd,
with b=1. This filter passes the input through to the output unchanged.

Note Only the coefficients in the first half of vector b are used because dfilt.dfsymfir assumes
the coefficients in the second half are symmetric to those in the first half. In the following figure, for
example, b(3) = 0, b(4) = b(2) and b(5) = b(1).

Fixed-Point Filter Structure
In the following figure you see the signal flow diagram for the symmetric FIR filter that
dfilt.dfsymfir implements.

5 Functions

5-292

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the letters“frmt” (format). In this use, “frmt”
indicates the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFrmt, which refers
to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing
filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

AccumFrmt AccumWordLength AccumFracLength None
InputFrmt InputWordLength InputFracLength None
NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,

Signed, Numerator
OutputFrmt OutputWordLength OutputFracLength None
ProductFrmt ProductWordLength ProductFracLength None
TapSumFrmt InputWordLength InputFracLength None

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFrmt, which always follows a coefficient multiplication
element in the signal flow. The label indicates that coefficients leave the multiplication element with
the word length and fraction length associated with product operations that include coefficients.
From reviewing the table, you see that the ProductFrmt refers to the properties

 dfilt.dfsymfir

5-293

ProductFracLength and ProductWordLength that fully define the coefficient format after
multiply (or product) operations.

Properties
In this table you see the properties associated with the symmetric FIR implementation of dfilt
objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

Name Values Description
AccumFracLength Any positive or negative

integer number of bits [27]
Specifies the fraction length used to interpret data
output by the accumulator.

AccumWordLength Any integer number of
bits[33]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for fixed-point filters Setting this to fixed allows you to modify other filter
properties to customize your fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically chooses the
proper fraction length to represent filter coefficients
without overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify the
precision used.

CoeffWordLength Any integer number of bits
[16]

Specifies the word length to apply to filter
coefficients.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets the
output word and fraction lengths, product word and
fraction lengths, and the accumulator word and
fraction lengths to maintain the best precision results
during filtering. The default value, FullPrecision,
sets automatic word and fraction length
determination by the filter. SpecifyPrecision
makes the output and accumulator-related properties
available so you can set your own word and fraction
lengths for them.

InputFracLength Any positive or negative
integer number of bits [15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer number of bits
[16]

Specifies the word length applied to interpret input
data.

5 Functions

5-294

Name Values Description
NumFracLength Any positive or negative

integer number of bits
[14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or negative
integer number of bits [29]

Determines how the filter interprets the filter output
data. You can change the value of
OutputFracLength when you set FilerInternals
to SpecifyPrecision.

OutputWordLength Any integer number of bits
[33]

Determines the word length used for the output data.
You make this property editable by setting
FilterInternals to SpecifyPrecision.

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow conditions
in fixed-point arithmetic. Choose from either
saturate (limit the output to the largest positive or
negative representable value) or wrap (set
overflowing values to the nearest representable value
using modular arithmetic). The choice you make
affects only the accumulator and output arithmetic.
Coefficient and input arithmetic always saturates.
Finally, products never overflow—they maintain full
precision.

ProductFracLength Any positive or negative
integer number of bits
[29]

Specifies the fraction length to use for multiplication
operation results. This property becomes writable
(you can change the value) when you set
ProductMode to SpecifyPrecision.

ProductWordLength Any integer number of bits
[33]

Specifies the word length to use for multiplication
operation results. This property becomes writable
(you can change the value) when you set
ProductMode to SpecifyPrecision.

 dfilt.dfsymfir

5-295

Name Values Description
RoundMode [convergent], ceil, fix,

floor, nearest, round
Sets the mode the filter uses to quantize numeric
values when the values lie between representable
values for the data format (word and fraction
lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable

integer. Ties round to the nearest even stored
integer. This is the least biased of the methods
available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round

toward positive infinity.
• round - Round toward nearest. Ties round toward

negative infinity for negative numbers, and toward
positive infinity for positive numbers.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow — they maintain full precision.

Signed [true], false Specifies whether the filter uses signed or unsigned
fixed-point coefficients. Only coefficients reflect this
property setting.

States fi object to match the
filter arithmetic setting

Contains the filter states before, during, and after
filter operations. States act as filter memory between
filtering runs or sessions. The states use fi objects,
with the associated properties from those objects. For
details, refer to fixed-point objects in Fixed-Point
Designer documentation.

Examples
Specify a fifth-order direct-form symmetric FIR filter structure for a dfilt object hd, with the
following code:
b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
hd = dfilt.dfsymfir(b);
% Create fixed-point filter
set(hd,'arithmetic','fixed')
% Change FilterInternals property to
% SpecifyPrecision
hd.Filterinternals='SpecifyPrecision';

See Also
dsp.FIRFilter

Introduced in R2011a

5 Functions

5-296

dfilt.farrowfd
Fractional Delay Farrow filter

Syntax
Hd = dfilt.farrowfd(D, COEFFS)

Description
Hd = dfilt.farrowfd(D, COEFFS) Constructs a discrete-time fractional delay Farrow filter with
COEFFS coefficients and D delay.

Examples

Design a Fractional Delay Farrow Filter

Farrow filters can be designed with the dfilt.farrowfd filter designer.

coeffs = [-1/6 1/2 -1/3 0;1/2 -1 -1/2 1;
-1/2 1/2 1 0;1/6 0 -1/6 0];
farrow = dfilt.farrowfd(0.5, coeffs);

Design a cubic fractional delay filter with the Lagrange method.

fdelay = .2; % Fractional delay
d = fdesign.fracdelay(fdelay,'N',3);
cubicfarrow = design(d, 'lagrange', 'FilterStructure', 'farrowfd');
fvtool(cubicfarrow, 'Analysis', 'grpdelay');

 dfilt.farrowfd

5-297

For more information about fractional delay filter implementations, see the "Fractional Delay Filters
Using Farrow Structures" example, farrowdemo.

Introduced in R2011a

5 Functions

5-298

dfilt.farrowlinearfd
Farrow Linear Fractional Delay filter

Syntax
Hd = dfilt.farrowlinearfd(D)

Description
Hd = dfilt.farrowlinearfd(D) Constructs a discrete-time linear fractional delay Farrow filter
with the delay D.

Examples
Farrow linear fractional delay filter with 1/2 sample delay:

 Hd = dfilt.farrowlinearfd(0.5);
x = cos(pi/10*(0:159));
y = filter(Hd,x);
stem(x(1:40));
axis([0 40 -2 2]);
hold on;
stem(y(1:40),'color',[1 0 0],'markerfacecolor',[1 0 0]);
legend('Original Signal','Filtered Signal','Location','best');

For more information about fractional delay filter implementations, see “Fractional Delay Filters
Using Farrow Structures”.

Introduced in R2011a

 dfilt.farrowlinearfd

5-299

dfilt.fftfir
Discrete-time, overlap-add, FIR filter

Syntax
Hd = dfilt.fftfir(b,len)
Hd = dfilt.fftfir(b)
Hd = dfilt.fftfir

Description
This object uses the overlap-add method of block FIR filtering, which is very efficient for streaming
data.

Hd = dfilt.fftfir(b,len) returns a discrete-time, FFT, FIR filter, Hd, with numerator
coefficients, b and block length, len. The block length is the number of input points to use for each
overlap-add computation.

Hd = dfilt.fftfir(b) returns a discrete-time, FFT, FIR filter, Hd, with numerator coefficients, b
and block length, len=100.

Hd = dfilt.fftfir returns a default, discrete-time, FFT, FIR filter, Hd, with the numerator b=1
and block length, len=100. This filter passes the input through to the output unchanged.

Note When you use a dfilt.fftfir object to filter, the input signal length must be an integer
multiple of the object's block length, len. The resulting number of FFT points = (filter length + the
block length - 1). The filter is most efficient if the number of FFT points is a power of 2.

The fftfir uses an overlap-add block processing algorithm, which is represented as follows,

where len is the block length and M is the length of the numerator-1, (length(b)-1), which is also
the number of states. The output of each convolution is a block that is longer than the input block by

5 Functions

5-300

a tail of (length(b)-1) samples. These tails overlap the next block and are added to it. The states
reported by dfilt.fftfir are the tails of the final convolution.

Examples
Create an FFT FIR discrete-time filter with coefficients from a 30th order lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.fftfir(b);
% To obtain frequency domain coefficients
% used in filtering
Coeffs = fftcoeffs(Hd);

Introduced in R2011a

 dfilt.fftfir

5-301

dfilt.latticeallpass
Discrete-time, lattice allpass filter

Syntax
hd = dfilt.latticeallpass(k)
hd = dfilt.latticeallpass

Description
hd = dfilt.latticeallpass(k) returns a discrete-time, lattice allpass filter object hd, with
lattice coefficients, k.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.latticeallpass returns a default, discrete-time, lattice allpass filter object hd, with
k=[]. This filter passes the input through to the output unchanged.

Fixed-Point Filter Structure
The following figure shows the signal flow for the allpass lattice filter implemented by
dfilt.latticeallpass. To help you see how the filter processes the coefficients, input, and states
of the filter, as well as numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following

5 Functions

5-302

table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the word “format.” In this use, “format”
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFormat, which
refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with
representing filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode
InputFormat InputWordLength InputFracLength None
LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale
OutputFormat OutputWordLength OutputFracLength OutputMode
ProductFormat ProductWordLength ProductFracLength ProductMode
StateFormat StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication
element in the signal flow. The label indicates that coefficients leave the multiplication element with
the word length and fraction length associated with product operations that include coefficients.
From reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient
format after multiply (or product) operations.

Properties
In this table you see the properties associated with the allpass lattice implementation of dfilt
objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

 dfilt.latticeallpass

5-303

Property Name Brief Description
AccumFracLength Specifies the fraction length used to interpret data output by the

accumulator. This is a property of FIR filters and lattice filters. IIR
filters have two similar properties —DenAccumFracLength and
NumAccumFracLength — that let you set the precision for
numerator and denominator operations separately.

AccumMode Determines how the accumulator outputs stored values. Choose from
full precision (FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant bits (KeepLSB) when
output results need shorter word length than the accumulator
supports. To let you set the word length and the precision (the
fraction length) used by the output from the accumulator, set
AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the accumulator/buffer.
Arithmetic Defines the arithmetic the filter uses. Gives you the options double,

single, and fixed. In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically chooses the proper fraction
length to represent filter coefficients without overflowing. Turning
this off by setting the value to false enables you to change the
LatticeFracLength property value to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.
FilterStructure Describes the signal flow for the filter object, including all of the

active elements that perform operations during filtering — gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret input data.
InputWordLength Specifies the word length applied to interpret input data.
Lattice Any lattice structure coefficients. No default value.
LatticeFracLength Sets the fraction length applied to the lattice coefficients.
OutputFracLength Determines how the filter interprets the filter output data. You can

change the value of OutputFracLength when you set OutputMode
to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data for output. You
have the following choices:

• AvoidOverflow — directs the filter to set the output data word
length and fraction length to avoid causing the data to overflow.

• BestPrecision — directs the filter to set the output data word
length and fraction length to maximize the precision in the output
data.

• SpecifyPrecision — lets you set the word and fraction lengths
used by the output data from filtering.

5 Functions

5-304

Property Name Brief Description
OutputWordLength Determines the word length used for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in fixed-point

arithmetic. Choose from either saturate (limit the output to the
largest positive or negative representable value) or wrap (set
overflowing values to the nearest representable value using modular
arithmetic). The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic always saturates.
Finally, products never overflow—they maintain full precision.

ProductFracLength For the output from a product operation, this sets the fraction length
used to interpret the data. This property becomes writable (you can
change the value) when you set ProductMode to
SpecifyPrecision.

ProductMode Determines how the filter handles the output of product operations.
Choose from full precision (FullPrecision), or whether to keep
the most significant bit (KeepMSB) or least significant bit (KeepLSB)
in the result when you need to shorten the data words. For you to be
able to set the precision (the fraction length) used by the output from
the multiplies, you set ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication operation results.
This property becomes writable (you can change the value) when you
set ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory before each
filtering operation. Lets you decide whether your filter retains states
from previous filtering runs. False is the default setting.

RoundMode Sets the mode the filter uses to quantize numeric values when the
values lie between representable values for the data format (word
and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer. Ties

round to the nearest even stored integer. This is the least biased
of the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward positive
infinity.

• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round. Finally,
products never overflow — they maintain full precision.

Signed Specifies whether the filter uses signed or unsigned fixed-point
coefficients. Only coefficients reflect this property setting.

 dfilt.latticeallpass

5-305

Property Name Brief Description
StateFracLength When you set StateAutoScale to false, you enable the

StateFracLength property that lets you set the fraction length
applied to interpret the filter states.

States This property contains the filter states before, during, and after filter
operations. States act as filter memory between filtering runs or
sessions. The states use fi objects, with the associated properties
from those objects. For details, refer to filtstates in Signal
Processing Toolbox documentation or in the Help system.

StateWordLength Sets the word length used to represent the filter states.

Examples
Specify a third-order lattice allpass filter structure for a dfilt object hd, with the following code:

k = [.66 .7 .44];
hd=dfilt.latticeallpass(k);
% convert to fixed-point arithmetic
hd.arithmetic = 'fixed';

Introduced in R2011a

5 Functions

5-306

dfilt.latticear
Discrete-time, lattice, autoregressive filter

Syntax
hd = dfilt.latticear(k)
hd = dfilt.latticear

Description
hd = dfilt.latticear(k) returns a discrete-time, lattice autoregressive filter object hd, with
lattice coefficients, k.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd = dfilt.latticear returns a default, discrete-time, lattice autoregressive filter object hd, with
k=[]. This filter passes the input through to the output unchanged.

Fixed-Point Filter Structure
The following figure shows the signal flow for the autoregressive lattice filter implemented by
dfilt.latticear. To help you see how the filter processes the coefficients, input, and states of the
filter, as well as numerical operations, the figure includes the locations of the formatting objects
within the signal flow.

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following

 dfilt.latticear

5-307

table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the word “format.” In this use, “format”
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFormat, which
refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with
representing filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode
InputFormat InputWordLength InputFracLength None
LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale
OutputFormat OutputWordLength OutputFracLength OutputMode
ProductFormat ProductWordLength ProductFracLength ProductMode
StateFormat StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication
element in the signal flow. The label indicates that coefficients leave the multiplication element with
the word length and fraction length associated with product operations that include coefficients.
From reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient
format after multiply (or product) operations.

Properties
In this table you see the properties associated with the autoregressive lattice implementation of
dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

5 Functions

5-308

Property Name Brief Description
AccumFracLength Specifies the fraction length used to interpret data output by the

accumulator. This is a property of FIR filters and lattice filters. IIR
filters have two similar properties — DenAccumFracLength and
NumAccumFracLength — that let you set the precision for
numerator and denominator operations separately.

AccumMode Determines how the accumulator outputs stored values. Choose from
full precision (FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant bits (KeepLSB) when
output results need shorter word length than the accumulator
supports. To let you set the word length and the precision (the
fraction length) used by the output from the accumulator, set
AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the accumulator/buffer.
Arithmetic Defines the arithmetic the filter uses. Gives you the options double,

single, and fixed. In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically chooses the proper fraction
length to represent filter coefficients without overflowing. Turning
this off by setting the value to false enables you to change the
LatticeFracLength to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.
FilterStructure Describes the signal flow for the filter object, including all of the

active elements that perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret input data.
InputWordLength Specifies the word length applied to interpret input data.
Lattice Any lattice structure coefficients.
LatticeFracLength Sets the fraction length applied to the lattice coefficients.
OutputFracLength Determines how the filter interprets the filter output data. You can

change the value of OutputFracLength when you set OutputMode
to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data for output. You
have the following choices:

• AvoidOverflow — directs the filter to set the output data word
length and fraction length to avoid causing the data to overflow.

• BestPrecision — directs the filter to set the output data word
length and fraction length to maximize the precision in the output
data.

• SpecifyPrecision — lets you set the word and fraction lengths
used by the output data from filtering.

 dfilt.latticear

5-309

Property Name Brief Description
OutputWordLength Determines the word length used for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in fixed-point

arithmetic. Choose from either saturate (limit the output to the
largest positive or negative representable value) or wrap (set
overflowing values to the nearest representable value using modular
arithmetic). The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic always saturates.
Finally, products never overflow — they maintain full precision.

ProductFracLength For the output from a product operation, this sets the fraction length
used to interpret the data. This property becomes writable (you can
change the value) when you set ProductMode to
SpecifyPrecision.

ProductMode Determines how the filter handles the output of product operations.
Choose from full precision (FullPrecision), or whether to keep
the most significant bit (KeepMSB) or least significant bit (KeepLSB)
in the result when you need to shorten the data words. For you to be
able to set the precision (the fraction length) used by the output from
the multiplies, you set ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication operation results.
This property becomes writable (you can change the value) when you
set ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory before each
filtering operation. Lets you decide whether your filter retains states
from previous filtering runs. False is the default setting.

RoundMode Sets the mode the filter uses to quantize numeric values when the
values lie between representable values for the data format (word
and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer. Ties

round to the nearest even stored integer. This is the least biased
of the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward positive
infinity.

• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round. Finally,
products never overflow — they maintain full precision.

Signed Specifies whether the filter uses signed or unsigned fixed-point
coefficients. Only coefficients reflect this property setting.

5 Functions

5-310

Property Name Brief Description
StateFracLength When you set StateAutoScale to false, you enable the

StateFracLength property that lets you set the fraction length
applied to interpret the filter states.

States This property contains the filter states before, during, and after filter
operations. States act as filter memory between filtering runs or
sessions. The states use fi objects, with the associated properties
from those objects. For details, refer to filtstates in Signal
Processing Toolbox documentation or in the Help system.

StateWordLength Sets the word length used to represent the filter states.

Examples
Specify a third-order lattice autoregressive filter structure for a dfilt object, hd, with the following
code that creates a fixed-point filter.

k = [.66 .7 .44];
hd1=dfilt.latticear(k);
hd1.arithmetic='fixed';
specifyall(hd1);

Introduced in R2011a

 dfilt.latticear

5-311

dfilt.latticearma
Discrete-time, lattice, autoregressive, moving-average filter

Syntax
hd = dfilt.latticearma(k)
hd dfilt.latticearma

Description
hd = dfilt.latticearma(k) returns a discrete-time, lattice moving-average autoregressive filter
object hd, with lattice coefficients, k.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

hd dfilt.latticearma returns a default, discrete-time, lattice moving-average, autoregressive
filter object hd, with k = []. This filter passes the input through to the output unchanged.

Fixed-Point Filter Structure
The following figure shows the signal flow for the autoregressive lattice filter implemented by
dfilt.latticearma. To help you see how the filter processes the coefficients, input, and states of
the filter, as well as numerical operations, the figure includes the locations of the formatting objects
within the signal flow.

5 Functions

5-312

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the word “format.” In this use, “format”
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFormat, which
refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with
representing filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

InputFormat InputWordLength InputFracLength None
LadderAccumFormat AccumWordLength LadderAccumFracLength AccumMode
LadderFormat CoeffWordLength LadderFracLength CoeffAutoScale
LadderProdFormat ProductWordLength LadderProdFracLength ProductMode
LatticeAccumFormat AccumWordLength LatticeAccumFracLength AccumMode
LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale
LatticeProdFormat ProductWordLength LatticeProdFracLength ProductMode
OutputFormat OutputWordLength OutputFracLength OutputMode
StateFormat StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label LatticeProdFormat, which always follows a coefficient multiplication
element in the signal flow. The label indicates that lattice coefficients leave the multiplication element
with the word length and fraction length associated with product operations that include coefficients.
From reviewing the table, you see that the LatticeProdFormat refers to the properties
ProductWordLength, LatticeProdFracLength, and ProductMode that fully define the
coefficient format after multiply (or product) operations.

Properties
In this table you see the properties associated with the autoregressive moving-average lattice
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

 dfilt.latticearma

5-313

Property Name Brief Description
AccumFracLength Specifies the fraction length used to interpret data output by

the accumulator. This is a property of FIR filters and lattice
filters. IIR filters have two similar properties —
DenAccumFracLength and NumAccumFracLength — that let
you set the precision for numerator and denominator
operations separately.

AccumMode Determines how the accumulator outputs stored values.
Choose from full precision (FullPrecision), or whether to
keep the most significant bits (KeepMSB) or least significant
bits (KeepLSB) when output results need shorter word length
than the accumulator supports. To let you set the word length
and the precision (the fraction length) used by the output from
the accumulator, set AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the accumulator/
buffer.

Arithmetic Defines the arithmetic the filter uses. Gives you the options
double, single, and fixed. In short, this property defines
the operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams)
before performing sum operations.

CoeffAutoScale Specifies whether the filter automatically chooses the proper
fraction length to represent filter coefficients without
overflowing. Turning this off by setting the value to false
enables you to change the LatticeFracLength property to
specify the precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.
FilterStructure Describes the signal flow for the filter object, including all of

the active elements that perform operations during filtering—
gains, delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret input
data.

InputWordLength Specifies the word length applied to interpret input data.
Ladder Stores the ladder coefficients for lattice ARMA

(dfilt.latticearma) filters.
LadderAccumFracLength Sets the fraction length used to interpret the output from sum

operations that include the ladder coefficients. You can change
this property value after you set AccumMode to
SpecifyPrecision.

LadderFracLength Determines the precision used to represent the ladder
coefficients in ARMA lattice filters.

Lattice Stores the lattice structure coefficients.
LatticeFracLength Sets the fraction length applied to the lattice coefficients.

5 Functions

5-314

Property Name Brief Description
OutputFracLength Determines how the filter interprets the filter output data. You

can change the value of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data for
output. You have the following choices:

• AvoidOverflow — directs the filter to set the output data
word length and fraction length to avoid causing the data to
overflow.

• BestPrecision — directs the filter to set the output data
word length and fraction length to maximize the precision
in the output data.

• SpecifyPrecision — lets you set the word and fraction
lengths used by the output data from filtering.

OutputWordLength Determines the word length used for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in fixed-

point arithmetic. Choose from either saturate (limit the
output to the largest positive or negative representable value)
or wrap (set overflowing values to the nearest representable
value using modular arithmetic). The choice you make affects
only the accumulator and output arithmetic. Coefficient and
input arithmetic always saturates. Finally, products never
overflow—they maintain full precision.

ProductFracLength For the output from a product operation, this sets the fraction
length used to interpret the data. This property becomes
writable (you can change the value) when you set
ProductMode to SpecifyPrecision.

ProductMode Determines how the filter handles the output of product
operations. Choose from full precision (FullPrecision), or
whether to keep the most significant bit (KeepMSB) or least
significant bit (KeepLSB) in the result when you need to
shorten the data words. For you to be able to set the precision
(the fraction length) used by the output from the multiplies,
you set ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication operation
results. This property becomes writable (you can change the
value) when you set ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory before
each filtering operation. Lets you decide whether your filter
retains states from previous filtering runs. False is the default
setting.

 dfilt.latticearma

5-315

Property Name Brief Description
RoundMode Sets the mode the filter uses to quantize numeric values when

the values lie between representable values for the data
format (word and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer.

Ties round to the nearest even stored integer. This is the
least biased of the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward

positive infinity.
• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity
for positive numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round.
Finally, products never overflow — they maintain full precision.

Signed Specifies whether the filter uses signed or unsigned fixed-point
coefficients. Only coefficients reflect this property setting.

StateFracLength When you set StateAutoScale to false, you enable the
StateFracLength property that lets you set the fraction
length applied to interpret the filter states.

States This property contains the filter states before, during, and
after filter operations. States act as filter memory between
filtering runs or sessions. The states use fi objects, with the
associated properties from those objects. For details, refer to
filtstates in Signal Processing Toolbox documentation or in
the Help system.

StateWordLength Sets the word length used to represent the filter states.

Introduced in R2011a

5 Functions

5-316

dfilt.latticemamax
Discrete-time, lattice, moving-average filter with maximum phase

Syntax
hd = dfilt.latticemamax(k)
hd = dfilt.latticemamax

Description
hd = dfilt.latticemamax(k) returns a discrete-time, lattice, moving-average filter object hd,
with lattice coefficients k.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

Note When the k coefficients define a maximum phase filter, the resulting filter in this structure is
maximum phase. When your coefficients do not define a maximum phase filter, placing them in this
structure does not produce a maximum phase filter.

hd = dfilt.latticemamax returns a default discrete-time, lattice, moving-average filter object hd,
with k = []. This filter passes the input through to the output unchanged.

Fixed-Point Filter Structure
The following figure shows the signal flow for the maximum phase implementation of a moving-
average lattice filter implemented by dfilt.latticemamax. To help you see how the filter
processes the coefficients, input, and states of the filter, as well as numerical operations, the figure
includes the locations of the formatting objects within the signal flow.

 dfilt.latticemamax

5-317

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the word “format.” In this use, “format”
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFormat, which
refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with
representing filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode
InputFormat InputWordLength InputFracLength None
LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale
OutputFormat OutputWordLength OutputFracLength OutputMode
ProductFormat ProductWordLength ProductFracLength ProductMode
StateFormat StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication
element in the signal flow. The label indicates that coefficients leave the multiplication element with
the word length and fraction length associated with product operations that include coefficients.
From reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient
format after multiply (or product) operations.

Properties
In this table you see the properties associated with the maximum phase, moving average lattice
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

5 Functions

5-318

Property Name Brief Description
AccumFracLength Specifies the fraction length used to interpret data output by the

accumulator. This is a property of FIR filters and lattice filters. IIR
filters have two similar properties — DenAccumFracLength and
NumAccumFracLength — that let you set the precision for
numerator and denominator operations separately.

AccumMode Determines how the accumulator outputs stored values. Choose from
full precision (FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant bits (KeepLSB) when
output results need shorter word length than the accumulator
supports. To let you set the word length and the precision (the
fraction length) used by the output from the accumulator, set
AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the accumulator/buffer.
Arithmetic Defines the arithmetic the filter uses. Gives you the options double,

single, and fixed. In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically chooses the proper fraction
length to represent filter coefficients without overflowing. Turning
this off by setting the value to false enables you to change the
LatticeFracLength property to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.
FilterStructure Describes the signal flow for the filter object, including all of the

active elements that perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret input data.
InputWordLength Specifies the word length applied to interpret input data.
Lattice Any lattice structure coefficients.
LatticeFracLength Sets the fraction length applied to the lattice coefficients.
OutputFracLength Determines how the filter interprets the filter output data. You can

change the value of OutputFracLength when you set OutputMode
to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data for output. You
have the following choices:

• AvoidOverflow — directs the filter to set the output data word
length and fraction length to avoid causing the data to overflow.

• BestPrecision — directs the filter to set the output data word
length and fraction length to maximize the precision in the output
data.

• SpecifyPrecision — lets you set the word and fraction lengths
used by the output data from filtering.

 dfilt.latticemamax

5-319

Property Name Brief Description
OutputWordLength Determines the word length used for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in fixed-point

arithmetic. Choose from either saturate (limit the output to the
largest positive or negative representable value) or wrap (set
overflowing values to the nearest representable value using modular
arithmetic). The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic always saturates.
Finally, products never overflow—they maintain full precision.

ProductFracLength For the output from a product operation, this sets the fraction length
used to interpret the data. This property becomes writable (you can
change the value) when you set ProductMode to
SpecifyPrecision.

ProductMode Determines how the filter handles the output of product operations.
Choose from full precision (FullPrecision), or whether to keep
the most significant bit (KeepMSB) or least significant bit (KeepLSB)
in the result when you need to shorten the data words. For you to be
able to set the precision (the fraction length) used by the output from
the multiplies, you set ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication operation results.
This property becomes writable (you can change the value) when you
set ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory before each
filtering operation. Lets you decide whether your filter retains states
from previous filtering runs. False is the default setting.

RoundMode Sets the mode the filter uses to quantize numeric values when the
values lie between representable values for the data format (word
and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer. Ties

round to the nearest even stored integer. This is the least biased
of the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward positive
infinity.

• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round. Finally,
products never overflow — they maintain full precision.

Signed Specifies whether the filter uses signed or unsigned fixed-point
coefficients. Only coefficients reflect this property setting.

5 Functions

5-320

Property Name Brief Description
StateFracLength When you set StateAutoScale to false, you enable the

StateFracLength property that lets you set the fraction length
applied to interpret the filter states.

States This property contains the filter states before, during, and after filter
operations. States act as filter memory between filtering runs or
sessions. The states use fi objects, with the associated properties
from those objects. For details, refer to filtstates in Signal
Processing Toolbox documentation or in the Help system.

StateWordLength Sets the word length used to represent the filter states.

Examples
Specify a fourth-order lattice, moving-average, maximum phase filter structure for a dfilt object,
hd, with the following code:

k = [.66 .7 .44 .33];
hd = dfilt.latticemamax(k);

Introduced in R2011a

 dfilt.latticemamax

5-321

dfilt.latticemamin
Discrete-time, lattice, moving-average filter with minimum phase

Syntax
hd = dfilt.latticemamin(k)
hd = dfilt.latticemamin

Description
hd = dfilt.latticemamin(k) returns a discrete-time, lattice, moving-average, minimum phase,
filter object hd, with lattice coefficients k.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

Note When the k coefficients define a minimum phase filter, the resulting filter in this structure is
minimum phase. When your coefficients do not define a minimum phase filter, placing them in this
structure does not produce a minimum phase filter.

hd = dfilt.latticemamin returns a default discrete-time, lattice, moving-average, minimum
phase, filter object hd, with k=[]. This filter passes the input through to the output unchanged.

Fixed-Point Filter Structure
The following figure shows the signal flow for the minimum phase implementation of a moving-
average lattice filter implemented by dfilt.latticemamin. To help you see how the filter
processes the coefficients, input, and states of the filter, as well as numerical operations, the figure
includes the locations of the formatting objects within the signal flow.

5 Functions

5-322

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the
figure shows various labels associated with data and functional elements in the filter. The following
table describes each label in the signal flow and relates the label to the filter properties that are
associated with it.

The labels use a common format — a prefix followed by the word “format.” In this use, “format”
means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the
data input to the filter. The format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or consider NumFormat, which
refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with
representing filter numerator coefficients.

Signal Flow Label Corresponding Word
Length Property

Corresponding Fraction
Length Property

Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode
InputFormat InputWordLength InputFracLength None
LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale
OutputFormat OutputWordLength OutputFracLength OutputMode
ProductFormat ProductWordLength ProductFracLength ProductMode
StateFormat StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication
element in the signal flow. The label indicates that coefficients leave the multiplication element with
the word length and fraction length associated with product operations that include coefficients.
From reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient
format after multiply (or product) operations.

Properties
In this table you see the properties associated with the minimum phase, moving average lattice
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

 dfilt.latticemamin

5-323

Property Name Brief Description
AccumFracLength Specifies the fraction length used to interpret data output by the

accumulator. This is a property of FIR filters and lattice filters. IIR
filters have two similar properties — DenAccumFracLength and
NumAccumFracLength — that let you set the precision for
numerator and denominator operations separately.

AccumMode Determines how the accumulator outputs stored values. Choose from
full precision (FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant bits (KeepLSB) when
output results need shorter word length than the accumulator
supports. To let you set the word length and the precision (the
fraction length) used by the output from the accumulator, set
AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the accumulator/buffer.
Arithmetic Defines the arithmetic the filter uses. Gives you the options double,

single, and fixed. In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate
accumulator format (as shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically chooses the proper fraction
length to represent filter coefficients without overflowing. Turning
this off by setting the value to false enables you to change the
LatticeFracLength property to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.
FilterStructure Describes the signal flow for the filter object, including all of the

active elements that perform operations during filtering — gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to interpret input data.
InputWordLength Specifies the word length applied to interpret input data.
Lattice Any lattice structure coefficients.
LatticeFracLength Sets the fraction length applied to the lattice coefficients.
OutputFracLength Determines how the filter interprets the filter output data. You can

change the value of OutputFracLength when you set OutputMode
to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data for output. You
have the following choices:

• AvoidOverflow — directs the filter to set the output data word
length and fraction length to avoid causing the data to overflow.

• BestPrecision — directs the filter to set the output data word
length and fraction length to maximize the precision in the output
data.

• SpecifyPrecision — lets you set the word and fraction lengths
used by the output data from filtering.

5 Functions

5-324

Property Name Brief Description
OutputWordLength Determines the word length used for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in fixed-point

arithmetic. Choose from either saturate (limit the output to the
largest positive or negative representable value) or wrap (set
overflowing values to the nearest representable value using modular
arithmetic). The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic always saturates.
Finally, products never overflow — they maintain full precision.

ProductFracLength For the output from a product operation, this sets the fraction length
used to interpret the data. This property becomes writable (you can
change the value) when you set ProductMode to
SpecifyPrecision.

ProductMode Determines how the filter handles the output of product operations.
Choose from full precision (FullPrecision), or whether to keep
the most significant bit (KeepMSB) or least significant bit (KeepLSB)
in the result when you need to shorten the data words. For you to be
able to set the precision (the fraction length) used by the output from
the multiplies, you set ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication operation results.
This property becomes writable (you can change the value) when you
set ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory before each
filtering operation. Lets you decide whether your filter retains states
from previous filtering runs. False is the default setting.

RoundMode Sets the mode the filter uses to quantize numeric values when the
values lie between representable values for the data format (word
and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer. Ties

round to the nearest even stored integer. This is the least biased
of the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward positive
infinity.

• round - Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round. Finally,
products never overflow — they maintain full precision.

Signed Specifies whether the filter uses signed or unsigned fixed-point
coefficients. Only coefficients reflect this property setting.

 dfilt.latticemamin

5-325

Property Name Brief Description
StateFracLength When you set StateAutoScale to false, you enable the

StateFracLength property that lets you set the fraction length
applied to interpret the filter states.

States This property contains the filter states before, during, and after filter
operations. States act as filter memory between filtering runs or
sessions. The states use fi objects, with the associated properties
from those objects. For details, refer to filtstates in Signal
Processing Toolbox documentation or in the Help system.

StateWordLength Sets the word length used to represent the filter states.

Examples
Specify a third-order lattice, moving-average, minimum phase, filter structure for a dfilt object, hd,
with the following code:

k = [.66 .7 .44];
hd = dfilt.latticemamin(k);

Introduced in R2011a

5 Functions

5-326

dfilt.parallel
Discrete-time, parallel structure filter

Syntax
hd = dfilt.parallel(hd1,hd2,...)

Description
hd = dfilt.parallel(hd1,hd2,...) returns a discrete-time filter object hd, which is a structure
of two or more dfilt filter objects, hd1, hd2, and so on arranged in parallel.

You can also use the standard notation to combine filters into a parallel structure.

parallel(hd1,hd2,...)

In this syntax, hd1, hd2, and so on can be a mix of dfilt objects and other filtering objects.

hd1, hd2, and so on can be fixed-point filters. All filters in the parallel structure must be the same
arithmetic format — double, single, or fixed. hd, the filter returned, inherits the format of the
individual filters.

Introduced in R2011a

 dfilt.parallel

5-327

dfilt.scalar
Discrete-time, scalar filter

Syntax
dfilt.scalar(g)
dfilt.scalar

Description
dfilt.scalar(g) returns a discrete-time, scalar filter object with gain g, where g is a scalar.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

dfilt.scalar returns a default, discrete-time scalar gain filter object hd, with gain 1.

Properties
In this table you see the properties associated with the scalar implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic,
meaning they exist only in response to the settings of other properties. You might not see all of the
listed properties all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

Property Name Brief Description
Arithmetic Defines the arithmetic the filter uses. Gives you the options double,

single, and fixed. In short, this property defines the operating mode
for your filter.

CastBeforeSum Specifies whether to cast numeric data to the appropriate accumulator
format (as shown in the signal flow diagrams) before performing sum
operations.

5 Functions

5-328

Property Name Brief Description
CoeffAutoScale Specifies whether the filter automatically chooses the proper fraction

length to represent filter coefficients without overflowing. Turning this
off by setting the value to false enables you to change the
CoeffFracLength property to specify the precision used.

CoeffFracLength Set the fraction length the filter uses to interpret coefficients.
CoeffFracLength is always available, but it is read-only until you set
CoeffAutoScale to false.

CoeffWordLength Specifies the word length to apply to filter coefficients.
FilterStructure Describes the signal flow for the filter object, including all of the active

elements that perform operations during filtering — gains, delays,
sums, products, and input/output.

Gain Returns the gain for the scalar filter. Scalar filters do not alter the
input data except by adding gain.

InputFracLength Specifies the fraction length the filter uses to interpret input data.
InputWordLength Specifies the word length applied to interpret input data.
OutputFracLength Determines how the filter interprets the filter output data. You can

change the value of OutputFracLength when you set OutputMode to
SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data for output. You
have the following choices:

• AvoidOverflow — directs the filter to set the output data word
length and fraction length to avoid causing the data to overflow.

• BestPrecision — directs the filter to set the output data word
length and fraction length to maximize the precision in the output
data.

• SpecifyPrecision — lets you set the word and fraction lengths
used by the output data from filtering.

OutputWordLength Determines the word length used for the output data.
OverflowMode Sets the mode used to respond to overflow conditions in fixed-point

arithmetic. Choose from either saturate (limit the output to the
largest positive or negative representable value) or wrap (set
overflowing values to the nearest representable value using modular
arithmetic). The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic always saturates.
Finally, products never overflow — they maintain full precision.

PersistentMemory Specifies whether to reset the filter states and memory before each
filtering operation. Lets you decide whether your filter retains states
from previous filtering runs. False is the default setting.

 dfilt.scalar

5-329

Property Name Brief Description
RoundMode Sets the mode the filter uses to quantize numeric values when the

values lie between representable values for the data format (word and
fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable integer. Ties

round to the nearest even stored integer. This is the least biased of
the methods available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward positive
infinity.

• round - Round toward nearest. Ties round toward negative infinity
for negative numbers, and toward positive infinity for positive
numbers.

The choice you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always round. Finally,
products never overflow — they maintain full precision.

Signed Specifies whether the filter uses signed or unsigned fixed-point
coefficients. Only coefficients reflect this property setting.

States This property contains the filter states before, during, and after filter
operations. States act as filter memory between filtering runs or
sessions. The states use fi objects, with the associated properties
from those objects. For details, refer to filtstates in Signal
Processing Toolbox documentation or in the Help system.

Examples
Create a direct-form I filter object hd_filt and a scalar object with a gain of 3 hd_gain and cascade
them together.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd_filt = dfilt.df1(b,a);
hd_gain = dfilt.scalar(3);
hd_cascade=cascade(hd_gain,hd_filt);
fvtool_handle = fvtool(hd_filt,hd_gain,hd_cascade);
legend(fvtool_handle,'IIR Filter (direct form I)',...
'Gain','Cascaded Filter');

5 Functions

5-330

To view the stages of the cascaded filter, use

hd.Stage(1)

and

hd.Stage(2)

Introduced in R2011a

 dfilt.scalar

5-331

dfilt.wdfallpass
Wave digital allpass filter

Syntax
hd = dfilt.wdfallpass(c)

Description
hd = dfilt.wdfallpass(c) constructs an allpass wave digital filter structure given the allpass
coefficients in vector c.

Vector c must have, one, two, or four elements (filter coefficients). Filters with three coefficients are
not supported. When you use c with four coefficients, the first and third coefficients must be 0.

Given the coefficients in c, the transfer function for the wave digital allpass filter is defined by

H(z) = c(n) + c(n− 1)z−1 + … + z−n

1 + c(1)z−1 + … + c(n)z−n

Internally, the allpass coefficients are converted to wave digital filters for filtering. Note that
dfilt.wdfallpass allows only stable filters. Also note that the leading coefficient in the
denominator, a 1, does not need to be included in vector c.

Use the constructor dfilt.cascadewdfallpass to cascade wdfallpass filters.

To compare these filters to other similar filters, dfilt.wdfallpass and
dfilt.cascadewdfallpass filters have the same number of multipliers as the non-wave digital
filters dfilt.allpass and dfilt.cascadeallpass. However, the wave digital filters use fewer
states and they may require more adders in the filter structure.

Wave digital filters are usually used to create other filters. This toolbox uses them to implement
halfband filters, which the first example in Examples demonstrates. They are most often building
blocks for filters.

Properties
In the next table, the row entries are the filter properties and a brief description of each property.

Property Name Brief Description
AllpassCoefficients Contains the coefficients for the allpass wave digital filter object
FilterStructure Describes the signal flow for the filter object, including all of the

active elements that perform operations during filtering — gains,
delays, sums, products, and input/output.

5 Functions

5-332

Property Name Brief Description
PersistentMemory Specifies whether to reset the filter states and memory before

each filtering operation. Lets you decide whether your filter
retains states from previous filtering runs. False is the default
setting.

States This property contains the filter states before, during, and after
filter operations. States act as filter memory between filtering
runs or sessions. They also provide linkage between the sections
of a multisection filter, such as a cascade filter. For details, refer
to filtstates in Signal Processing Toolbox documentation or in
the Help system.

Filter Structure
When you change the order of the wave digital filters in the cascade, the filter structure changes as
well.

As shown in this example, realizemdl lets you see the filter structure used for your filter, if you
have Simulink installed.

section11=0.8;
section12=[1.5,0.7];
section13=[1.8,0.9];
hd1=dfilt.cascadewdfallpass(section11,section12,section13);

section21=[0.8,0.4];
section22=[0,1.5,0,0.7];
section23=[0,1.8,0,0.9];
hd2=dfilt.cascadewdfallpass(section21,section22,section23);
% If you have Simulink
realizemdl(hd2)

hd1 has this filter structure with three sections.

 dfilt.wdfallpass

5-333

The filter structure for hd2 is somewhat different, with the different orders and interconnections
between the three sections.

5 Functions

5-334

Examples
Construct a second-order wave digital allpass filter with two coefficients. Note that to use
realizemdl, you must have Simulink.

c = [1.5,0.7];
hd = dfilt.wdfallpass(c);

With Simulink installed, realizemdl returns this structure for hd.

 dfilt.wdfallpass

5-335

See Also
dsp.IIRHalfbandDecimator | dsp.CICInterpolator

Introduced in R2011a

5 Functions

5-336

disp
Display filter properties and values

Syntax
disp(obj)

Description
disp(obj) lists the property names and property values of the object obj. In all ways, it is the same
as leaving the semicolon off an on the command line while creating the object, except that disp does
not display the variable name.

Examples

Display Properties of Filter Object

Create a dsp.FIRFilter object.

filt = dsp.FIRFilter

filt =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [0.5000 0.5000]
 InitialConditions: 0

 Show all properties

Display its properties using the disp function.

disp(filt)

 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [0.5000 0.5000]
 InitialConditions: 0

 Use get to show all properties

Input Arguments
obj — Input object
object

 disp

5-337

Input object, specified as one of the System objects or fdesign objects supported by DSP System
Toolbox. For a list, see “Functions”.

See Also
set

Introduced in R2011a

5 Functions

5-338

double
Cast fixed-point filter to use double-precision arithmetic

Syntax
hd = double(h)

Description
hd = double(h) returns a new filter hd that has the same structure and coefficients as h, but
whose arithmetic property is set to double to use double-precision arithmetic for filtering.
double(h) is not the same as the reffilter(h) function:

• hd, the filter returned by double has the quantized coefficients of h represented in double-
precision floating-point format

• The reference filter returned by reffilter has double-precision, floating-point coefficients that
have not been quantized.

You might find double(h) useful to isolate the effects of quantizing the coefficients of a filter by
using double to create a filter hd that operates in double-precision but uses the quantized filter
coefficients.

Examples

Compare Fixed-point Output with Floating-Point Output

Construct a Lowpass Filter

h = dfilt.dffir(firgr(27,[0 .4 .6 1],...
[1 1 0 0]));

Set h to use fixed-point arithmetic to filter. Quantize the coefficients.

h.arithmetic = 'fixed';

Cast h to double-precision

hd = double(h);

Set up an input signal.

n = 0:99; x = sin(0.7*pi*n(:));

Fixed-point output.

y = filter(h,x);

Floating-point output.

yd = filter(hd,x);

 double

5-339

Compare the Fixed-point output with Floating-point output

FixedFloatNormDiff=norm(yd-double(y),inf)

FixedFloatNormDiff = 2.1234e-05

Introduced in R2011a

5 Functions

5-340

dsp.util.getLogsArray
Package: dsp.util

Return logged signal as MATLAB array

Syntax
Array = dsp.util.getLogsArray(LogObject,Format2D,'SignalPath',PATH)
Array = dsp.util.getLogsArray(LogObject,Format2D,'SignalName',NAME)

Description
Array = dsp.util.getLogsArray(LogObject,Format2D,'SignalPath',PATH) returns a
MATLAB array that contains a signal in LogObject. You must specify the PATH to the signal in
LogObject using the Name,Value pair argument.

Array = dsp.util.getLogsArray(LogObject,Format2D,'SignalName',NAME) returns a
MATLAB array that contains a signal in LogObject. You must specify the NAME of the signal in
LogObject using the Name,Value pair argument.

Input Arguments
LogObject

Specify the name of the object that contains your logged signals. Valid classes for LogObject depend
on the syntax you use:

• When you specify PATH as a dsp.util.getSignalPath object, LogObject can be either a
Simulink.SimulationData.Dataset or Simulink.SimulationData.Signal object.

• When you specify PATH as the full path to a block in a Simulink model, LogObject must be a
Simulink.SimulationData.Dataset object.

• When you specify the NAME of a signal in LogObject, LogObject can be an object of class
timeseries, Simulink.SimulationData.Dataset, or
Simulink.SimulationData.Signal.

Format2D

Specify a logical value to determine whether the function formats 3-D logged signals as a 2-D or 3-D
MATLAB array. When you set this property to true, the function uses the following formula to format
the 3-D logged signal into a 2-D MATLAB array:

dim = size(signal);
ntimes = dim(1)*dim(3);
Array = reshape(permute(signal,[1 3 2]),[ntimes dim(2)]);

When you set this property to false, the function returns the logged signal without any
reformatting.

 dsp.util.getLogsArray

5-341

PATH

Specify the path to the logged signal in LogObject. You can specify the path using a
dsp.util.getSignalPath object, or you can provide the full path to a block in your Simulink
model. To get the full path to a block in your Simulink model, use the gcb command.

NAME

Specify the name of the signal in LogObject.

Output Arguments
Array

The output Array is a MATLAB array that contains the specified logged signal. When the input is a 3-
D logged signal, the dimensions of Array depend on the value you specify for Format2D:

• When Format2D is true, Array is a 2-D MATLAB array.
• When Format2D is false, Array is a 3-D MATLAB array.

When the input is not a 3-D signal, the dimensions of the output Array match those of the input.

Examples

Note To run the following examples, you must first load ex_logsout.mat which contains a
Simulink.SimulationData.Dataset object. Alternatively, you can open and simulate the
ex_log_utils Simulink model. Doing so will log signals and generate the necessary ex_logsout
object.

Example 5.1. Extract a unique signal named Signal3x4 from ex_logsout.

dsp.util.getLogsArray(ex_logsout, true, 'SignalName','Signal3x4')

Example 5.2. Extract a unique signal named Signal3x4 from ex_logsout as a 3-D array.

dsp.util.getLogsArray(ex_logsout, false, 'SignalName','Signal3x4')

Example 5.3. Find and extract a specific signal from multiple signals that have the same
name.

Because ex_logsout contains multiple signals named Signal2x4, you must use the
dsp.util.getSignalPath function to find the paths to each of those signals.

paths = dsp.util.getSignalPath(ex_logsout, 'Signal2x4')
% paths is a 2x1 array of dsp.util.SignalPath objects. Next, examine
% the BlockPath property of each paths object.
paths.BlockPath
% Find the signal path that corresponds to the logged signal you are
% interested in. For example paths(2). You can then use the
% dsp.util.getLogsArray function and provide the 'SignalPath' name-value
% pair argument.
dsp.util.getLogsArray(ex_logsout, true, 'SignalPath', paths(2))

5 Functions

5-342

matlab: load ex_logsout.mat
matlab: ex_log_utils

Example 5.4. Find and extract a signal from a bus.

Use the dsp.util.getSignalPath function to get paths to all the signals in the bus named Bus1.

buspaths = dsp.util.getSignalPath(ex_logsout, 'Bus1')
% buspaths is a 2x1 array of dsp.util.SignalPath objects. Examine the
% BusElement property of each buspaths object.
buspaths.BusElement
% Select a signal path. For example buspaths(1). This is the path to the
% signal named 'Signal3x4' in bus 'Bus' that is contained in bus 'Bus1'.
% Now that you have the path to the signal, call dsp.util.getLogsArray
% using the 'SignalPath' name-value pair argument.
dsp.util.getLogsArray(ex_logsout, true, 'SignalPath', buspaths(1))

See Also
dsp.util.getSignalPath | dsp.util.getSignalPath |
Simulink.SimulationData.BlockPath | Simulink.SimulationData.Dataset |
Simulink.SimulationData.Signal | timeseries

Topics
“Export Signal Data Using Signal Logging” (Simulink)
“Configure a Signal for Logging” (Simulink)
“Migrate Scripts That Use Legacy ModelDataLogs API” (Simulink)

Introduced in R2011b

 dsp.util.getLogsArray

5-343

dsp.util.getSignalPath
Package: dsp.util

Paths to logged signals

Syntax
Path = dsp.util.getSignalPath(LogObject, SignalName)

Description
Path = dsp.util.getSignalPath(LogObject, SignalName) returns all paths to signals in
LogObject with name SignalName. The output Path is a dsp.util.SignalPath object or an
array of dsp.util.SignalPath objects.

Input Arguments
LogObject

Specify the name of the object that contains your logged signals. LogObject must be a
Simulink.SimulationData.Dataset or Simulink.SimulationData.Signal object.

SignalName

Specify the name of a logged signal in LogObject.

Output Arguments
Path

The output Path contains the path to all signals named SignalName in LogObject.

• If LogObject contains a unique signal with name SignalName, the function returns a single
dsp.util.SignalPath object.

• If LogObject contains more than one signal with the specified name, the function returns an
array of dsp.util.SignalPath objects.

Examples

Note To run the following examples, you must first load ex_logsout.mat which contains a
Simulink.SimulationData.Dataset object. Alternatively, you can open and simulate the
ex_log_utils Simulink model. Doing so will log signals and generate the necessary ex_logsout
object.

5 Functions

5-344

matlab: load ex_logsout.mat
matlab: ex_log_utils

Example 5.5. Find and extract a specific signal from multiple signals that have the same
name.

Because ex_logsout contains multiple signals named Signal2x4, you must use the
dsp.util.getSignalPath function to find the paths to each of those signals.

paths = dsp.util.getSignalPath(ex_logsout, 'Signal2x4')
% paths is a 2x1 array of dsp.util.SignalPath objects. Next, examine
% the BlockPath property of each paths object.
paths.BlockPath
% Find the signal path that corresponds to the logged signal you are
% interested in. For example paths(2). You can then use the
% dsp.util.getLogsArray function and provide the 'SignalPath' name-value
% pair argument.
dsp.util.getLogsArray(ex_logsout, true, 'SignalPath', paths(2))

Example 5.6. Find and extract a signal from a bus.

Use the dsp.util.getSignalPath function to get paths to all the signals in the bus named Bus1.

buspaths = dsp.util.getSignalPath(ex_logsout, 'Bus1')
% buspaths is a 2x1 array of dsp.util.SignalPath objects. Examine the
% BusElement property of each buspaths object.
buspaths.BusElement
% Select a signal path. For example buspaths(1). This is the path to the
% signal named 'Signal3x4' in bus 'Bus' that is contained in bus 'Bus1'.
% Now that you have the path to the signal, call dsp.util.getLogsArray
% using the 'SignalPath' name-value pair argument.
dsp.util.getLogsArray(ex_logsout, true, 'SignalPath', buspaths(1))

Tips
• To return the path to an unnamed signal in LogObject, set SignalName to the empty string ('').

See Also
dsp.util.getLogsArray | dsp.util.SignalPath | Simulink.SimulationData.Dataset |
Simulink.SimulationData.Signal |
Simulink.SimulationData.updateDatasetFormatLogging

Topics
“Export Signal Data Using Signal Logging” (Simulink)
“Configure a Signal for Logging” (Simulink)
“Migrate Scripts That Use Legacy ModelDataLogs API” (Simulink)

Introduced in R2011b

 dsp.util.getSignalPath

5-345

dsp.util.SignalPath
Package: dsp.util

Properties of paths to signals

Description
dsp.util.SignalPath objects contain path information for signals in
Simulink.SimulationData.Dataset objects. You get Simulink.SimulationData.Dataset
objects when you use Dataset logging to log signals from a Simulink model.

Construction
dsp.util.SignalPath objects are returned by the dsp.util.getSignalPath function and can
be used as input to the dsp.util.getLogsArray function.

Properties
SignalName

Contains the name of the signal output by the block at the specified BlockPath.

BlockPath

Provides the Simulink.SimulationData.BlockPath to the block in the Simulink model from
which the signal originates.

PortIndex

Provides the output port index of the block from which the logged signal SignalName originates.

BusElement

Provides a string description of a signal in a logged bus. When SignalPath is not a logged bus, this
property will be an empty string.

If the SignalPath object is a logged bus signal, the BusElement string will be formatted as follows:

• When the bus contains a nonbus signal, BusElement is the name of that signal.
• When the bus contains a nested bus that contains a nonbus signal, BusElement will be a dot-

separated string consisting of the name of the nested bus followed by the name of the non-bus
signal. For example: nestbus.signal1

• When the bus contains nested busses within nested busses to any depth, BusElement will be a
dot-separated string. This string contains each of the nested bus names, and ends with the nonbus
signal name. For example: outernestedbus.innernestedbus.signal1

5 Functions

5-346

See Also
Functions
dsp.util.getLogsArray | dsp.util.getSignalPath

Classes
Simulink.SimulationData.Dataset | Simulink.SimulationData.BlockPath

 dsp.util.SignalPath

5-347

dsp_links
Identify whether blocks in model are current, deprecated, or obsolete

Syntax
dsp_links
dsp_links('modelname')

Description
dsp_links returns a structure with three elements that identify whether the DSP System Toolbox
blocks in the current model are current, deprecated, or obsolete. Each element is one of the three
block categories and contains a cell array of character vectors. Each character vector is the name of
a library block in the current model.

dsp_links('modelname') returns the three-element structure for the specified model.

Examples

Name of the First Current Block

Display block support information for the specified model, and then find the name of the first current
block.

sys = 'dspcochlear';

Load the dspcochlear model

load_system(sys)

Run dsp_links on the model

links = dsp_links(sys)

links = struct with fields:
 obsolete: {}
 deprecated: {}
 current: {1x23 cell}

Find the name of the first current block

links.current{1}

ans =
'dspcochlear/Filter bank signal processing/Subsystem3/IIR Filter Bank/Digital Filter10'

5 Functions

5-348

More About
Obsolete Blocks

Obsolete blocks are blocks that the toolbox no longer supports. In some cases, these blocks no longer
function properly.

Deprecated Blocks

Deprecated blocks are blocks that the toolbox still supports but are likely to become obsolete in a
future release. Refer to the block reference page for suggested replacements.

Current Blocks

Current blocks are blocks that the toolbox supports and that represent the latest block functionality.

See Also
liblinks

Introduced before R2006a

 dsp_links

5-349

dsplib
Open top-level DSP System Toolbox library

Syntax
dsplib

Description
dsplib opens the top-level DSP System Toolbox block library model.

Examples
View and gain access to the DSP System Toolbox blocks:

dsplib

Alternatives
To view and gain access to the DSP System Toolbox blocks using the Simulink library browser:

• Type simulink at the MATLAB command line, and then expand the DSP System Toolbox node in
the library browser.

•

Click the Simulink icon from the MATLAB Toolstrip.

Introduced before R2006a

5 Functions

5-350

dspunfold
Generates a multi-threaded MEX file from a MATLAB function

Syntax
dspunfold file
dspunfold options file

Description
dspunfold file generates a multi-threaded MEX file from the entry-point MATLAB function
specified by file, using the unfolding technology. Unfolding is a technique to improve throughput
through parallelization. The multi-threaded MEX file leverages the multicore CPU architecture of the
host computer and can improve speed significantly. In addition to the multi-threaded MEX file, the
function generates a single-threaded MEX file, a self-diagnostic analyzer function, and the
corresponding help files.

dspunfold options file generates a multi-threaded MEX file from the entry-point MATLAB
function specified by file, using the function arguments specified by options.

Note This function requires a MATLAB Coder license.

Input Arguments
options — Function parameters
option value pairs

 dspunfold

5-351

Option Values Description Examples
-args arguments Cell

array
Argument types for
the entry-point
MATLAB function,
specified as a cell
array.

The cell array accepts
numeric elements, the
coder.typeof
function, and the
coder.Constant
function.

The generated multi-
threaded MEX file is
specialized to the
size, class, and
complexity of
arguments.

The number of elements in the cell array
must be the same as the number of
arguments that the entry-point MATLAB
function expects.

• dspunfold fcn -args
{ones(10,1), 5}

dspunfold extracts the type (size,
class, and complexity) information
from the elements in the arguments
cell array.

fcn is the entry-point MATLAB
function.

• dspunfold fcn -args
{coder.typeof(ones(10,1)),
coder.typeof(5)}

coder.typeof is used to specify the
types of the fcn arguments.

• dspunfold fcn -args
{coder.Constant(ones(10,1)),
coder.Constant(5)}

• dspunfold fcn -args {}

By default, arguments is {}. An
empty cell array {} indicates that
fcn accepts no input arguments.

5 Functions

5-352

Option Values Description Examples
-o output Charact

er
vector

Name of the output
multi-threaded MEX
file, specified as a
character vector. If no
output name is
specified, the name of
the generated multi-
threaded MEX file is
inherited from the
input MATLAB
function with an
'_mt' suffix.
dspunfold also adds
a platform-specific
extension to this
name. In addition,
dspunfold generates
a single-threaded
MEX file with an
'_st' suffix, and a
test bench file with an
'_analyzer' suffix.

• No output name specified

dspunfold fcn

Files generated: fcn_mt.mexw64,
fcn_st.mexw64, fcn_analyzer.p

• output name specified

dspunfold fcn -o foo

Files generated: foo.mexw64,
foo_st.mexw64, foo_analyzer.p

 dspunfold

5-353

Option Values Description Examples
-s statelength Scalar

integer
greater
than or
equal to
zero

auto

State length of the
algorithm in the
entry-point MATLAB
function, specified as
a scalar integer
greater than or equal
to zero, or auto. By
default, the
statelength is
zero frames,
indicating that the
algorithm is stateless.

If at least one entry of
frameinputs is
true, statelength
is considered in
samples.

For information on
frames and samples,
see “Sample- and
Frame-Based
Concepts”

-s auto triggers
automatic state length
detection. In this
mode, you must
provide numeric
inputs to the
arguments cell array.
These inputs detect
the state length of the
algorithm. You can
input
coder.Constant but
not coder.typeof.
When automatic state
length detection is
invoked, it is
recommended that
you provide random
inputs to the
arguments array. See
“Automatic State
Length Detection” on
page 5-362

• dspunfold fcn -args
{randn(10,1), randn(10,1),
randn(10,1)} -s 3 -f [false,
false, false]

State length is three frames.
• dspunfold fcn -args

{randn(10,1), randn(10,1),
randn(10,1)} -s 3 -f [true,
false, false]

State length is three samples. State
length is considered in samples,
because at least one entry of the -f
option is true.

• dspunfold fcn -args
{randn(10,1), randn(10,1),
randn(10,1)} -s auto

Automatic state length detection is
invoked.

• dspunfold fcn -args
{coder.typeof (randn(10,1)),
coder.typeof(randn(10,1)),
coder.typeof(randn(10,1))} -
s auto generates this error
message: The input argument 1
is of type
coder.PrimitiveType which is
not supported when using -s
auto

5 Functions

5-354

Option Values Description Examples
-f frameinputs scalar

logical

vector
of
logical
values

Frame status of input
arguments for the
entry-point MATLAB
function, specified as
one of true or
false.

• true — Input is in
frames and can be
subdivided into
samples without
changing the
system behavior.

• false — Input
cannot be
subdivided into
samples without
changing the
system behavior.
For example, you
cannot subdivide
the coefficients of
a filter without
changing the
characteristics of
the filter.

By default,
frameinputs is
false.

frameinputs set to a
scalar logical value
sets the frame status
of all the inputs
simultaneously.

To specify
statelength in
samples, set at least
one entry of
frameinputs to
true.

If frameinputs is
not specified, the unit
of statelength is
frames.

• dspunfold fcn -args
{randn(10,1), randn(10,1),
randn(10,1)} -s 3 -f true

All the inputs are marked as frames.
State length is three samples.

• dspunfold fcn -args
{randn(10,1), randn(10,1),
randn(10,1)} -s 3 -f [true,
false, false]

State length is three samples.
• dspunfold fcn -args

{randn(10,1), randn(10,1),
randn(10,1)} -s 3

The default value of frameinputs is
false. State length is three frames.

 dspunfold

5-355

Option Values Description Examples
-r repetition Positive

integer
Repetition factor used
to generate the multi-
threaded MEX file,
specified as a positive
integer. The default
value of repetition
is 1. See “Repetition
Factor” on page 5-
363.

dspunfold fcn -args
{randn(10,2), randn(20,2),
randn(30,3)} -r 2

-t threads Positive
integer

Number of threads
used by the multi-
threaded MEX file,
specified as a positive
integer. The default
value of threads is
the number of
physical CPU cores
present on your
machine. See
“Threads” on page 5-
363.

dspunfold fcn -args
{randn(10,1), randn(20,2),
randn(30,3)} -t 4

-v verbose Scalar
logical

Option to show
verbose output during
code generation,
specified as true or
false. The default is
true.

• dspunfold fcn -args
{randn(10,1), randn(20,2),
randn(30,3)} -v true

• dspunfold fcn -args
{randn(10,1), randn(20,2),
randn(30,3)} -v false

file — entry-point MATLAB function
character vector

Entry-point MATLAB function from which dspunfold generates the multi-threaded MEX file. The
function must support code generation.
Example: dspunfold fcn -args {randn(10,1),randn(10,2),randn(20,1)}

fcn is the entry-point MATLAB function and {randn(10,1),randn(10,2),randn(20,1)} are its
input arguments.

Output Files
When you invoke dspunfold on an entry-point MATLAB function, dspunfold generates the
following files.

5 Functions

5-356

File Value Description Examples
Multi-threaded MEX
file

MEX
file

Multi-threaded MEX file
generated from the entry-point
MATLAB function. The MEX file
inherits the output name. If no
output name is specified, the
name of this file is inherited from
the MATLAB function with an
'_mt' suffix. A platform-specific
extension is also added to the
name.

• dspunfold fcn -o foo
generates foo.mexw64

• dspunfold fcn generates
fcn_mt.mexw64

Help file for the multi-
threaded MEX file

MATL
AB file

MATLAB help file for the multi-
threaded MEX file. The help file
has the same name as the MEX
file, but with an '.m' extension. To
invoke the help file, type help
<MEX filename> at the MATLAB
command prompt.

This help file displays information
on how to invoke the MEX file, its
syntax, latency, and types (size,
class, and complexity) of the
inputs to the MEX file. In addition,
the help file documents the
parameters used by dspunfold
— Threads, Repetition, and
State length. This information
is useful when you are invoking
the MEX file. The syntax to invoke
the MEX file should be the same
as the syntax shown in the help
file.

• help foo
• help fcn_mt

Single-threaded MEX
file

MEX
file

Single-threaded MEX file
generated from the entry-point
MATLAB function. The MEX file
inherits the output name with an
'_st' suffix. If no output name
is specified, the name of this file is
inherited from the MATLAB
function with an '_st' suffix. A
platform-specific extension is also
added to the name. Use this file as
a benchmark to compare against
the speed of the multi-threaded
MEX file.

• dspunfold fcn -o foo
generates foo_st.mexw64

• dspunfold fcn generates
fcn_st.mexw64

 dspunfold

5-357

File Value Description Examples
Help file for the
single-threaded MEX
file

MATL
AB file

MATLAB help file for the single-
threaded MEX file. The help file
has the same name as the MEX
file, but with an '.m' extension. To
invoke the help file, type help
<MEX filename> at the MATLAB
command prompt.

The help file displays information
on how to invoke the MEX file, its
syntax, and types (size, class, and
complexity) of the inputs to the
MEX file. The syntax to invoke the
MEX file should be the same as
the syntax shown in the help file.

• help foo_st
• help fcn_st

5 Functions

5-358

File Value Description Examples
Self-diagnostic
analyzer function

P-
coded
file

report = function_analyzer
(input 1, input 2,...input
n) measures the difference in
speed between the multi-threaded
MEX file and the single-threaded
MEX file. This file verifies that the
output values match.

report =
function_analyzer('latency
') reports the latency of the
multi-threaded MEX file
introduced by unfolding.

report contains the following
fields:

• Latency — The value of the
latency (in frames)

• Speedup — The speedup
difference between the multi-
threaded MEX file and single-
threaded MEX file. If you
specified latency option, the
value of this field is empty [].

• Pass — Logical value that
shows if the outputs match
between the generated multi-
threaded MEX file and the
single-threaded MEX file. If
you specified latency option,
the value of this field is empty
[].

The first dimension of the analyzer
inputs must be a multiple of the
first dimension of the
corresponding inputs, given to the
-args option. The other
dimensions must match exactly.

The analyzer inherits the output
name with an '_analyzer'
suffix. If no output name is
specified, the name of this file is
inherited from the MATLAB
function with an '_analyzer'
suffix.

• Multiple frames with different
values are specified along the
first dimension

Example 1: report =
foo_analyzer(randn(10*2
,1), randn(20*2,2),
randn(30*3,3))

Example 2: report =
foo_analyzer([randn(10,
1);randn(10,1)],
[randn(20,1);randn(20,1
)],
[randn(30,1);randn(30,1
);randn(30,1)])

• report =
foo_analyzer('latency')

 dspunfold

5-359

File Value Description Examples
Help file for the self-
diagnostic analyzer
function

MATL
AB file

Help file for the self-diagnostic
analyzer function. The help file
has the same name as the MEX
file, but with an '.m' extension. To
invoke the help file, type help
<function_analyzer> in
MATLAB.

The help file for the self-diagnostic
analyzer function displays
information on how to invoke the
analyzer function, its syntax, and
types (size, class, and complexity)
of the inputs to the analyzer
function. The syntax to invoke the
analyzer function should be the
same as the syntax shown in the
help file.

help foo_analyzer

Limitations
General Limitations:

• On Windows and Linux, you must use a compiler that supports the Open Multiprocessing
(OpenMP) application interface. See https://www.mathworks.com/support/compilers/
current_release/.

• If you have a macOS with an Xcode version 12.0 or later, using the dspunfold function is not
supported.

• If the input MATLAB function has runtime errors, the errors are not caught when you run the
multi-threaded MEX file. Before you use the dspunfold function, call codegen on the MATLAB
function and make sure that the MEX file is generated successfully.

• If the generated code uses a large amount of memory to store the local variables, around 4 MB on
Windows platform, the generated multi-threaded MEX file can have unexpected behavior. This
limit varies with each platform. As a workaround, reduce the size of the input signals or
restructure the MATLAB function to use less local memory.

• dspunfold does not support:

• varargin and varargout inside the MATLAB function
• variable-size inputs and outputs
• P-coded entry-point MATLAB functions
• cell arrays as inputs and outputs

Analyzer Limitations:

The following limitations apply to the analyzer function generated by the dspunfold function. For
more information on the analyzer function, see 'Self-Diagnostic Analyzer’ in the 'More About' section
of dspunfold.

5 Functions

5-360

• If multiple frames of the analyzer input are identical, the analyzer might throw false positive pass
results. It is recommended that you provide at least two different frames for each input of the
analyzer.

• If the algorithm in the entry-point MATLAB function chooses its state length based on the input
values, the analyzer might provide different pass results for different input values. For an
example, see the FIR_Mean function in “Why Does the Analyzer Choose the Wrong State
Length?”.

• If the input to the entry-point MATLAB function does affect the output immediately, the analyzer
might throw false positive pass results. For an example, see the Input_Output function in “Why
Does the Analyzer Choose a Zero State Length?”.

• If the output results of the multi-threaded MEX file and single-threaded MEX file match
statistically but do not match numerically, the analyzer does not pass. Consider the FilterNoise
function that follows, which filters a random noise signal with an FIR filter. The function calls
randn from within itself to generate random noise. Hence, the output results of the FilterNoise
function match statistically but not match numerically.

function Output = FilterNoise(x)

persistent FIRFilter
if isempty(FIRFilter)
 FIRFilter = dsp.FIRFilter('Numerator',fir1(12,0.4));
end
Output = FIRFilter(x+randn(1000,1));

end

When you run the automatic state length detection tool run on FilterNoise, the tool detects an
infinite state length. Because the tool cannot find a numerical match for a finite state length, it
chooses an infinite state length.

dspunfold FilterNoise -args {randn(1000,1)} -s auto

Analyzing input MATLAB function FilterNoise
Creating single-threaded MEX file FilterNoise_st.mexw64
Searching for minimal state length (this might take a while)
Checking stateless ... Insufficient
Checking 1 ... Insufficient
Checking Infinite ... Sufficient
Checking 2 ... Insufficient
Minimal state length is Inf
Creating multi-threaded MEX file FilterNoise_mt.mexw64
Warning: The multi-threading was disabled due to performance considerations.
This happens when the state length is greater than or
equal to (Threads-1)*Repetition frames (3 frames in this case).
> In coder.internal.warning (line 8)
 In unfoldingEngine/BuildParallelSolution (line 25)
 In unfoldingEngine/generate (line 207)
 In dspunfold (line 234)
Creating analyzer file FilterNoise_analyzer

The algorithm does not need an infinite state. The state length of the FIR filter, hence the
algorithm is 12.

Call dspunfold with state length set to 12.

dspunfold FilterNoise -args {randn(1000,1)} -s 12 -f true

Analyzing input MATLAB function FilterNoise
Creating single-threaded MEX file FilterNoise_st.mexw64
Creating multi-threaded MEX file FilterNoise_mt.mexw64
Creating analyzer file FilterNoise_analyzer

 dspunfold

5-361

Run the analyzer function.

FilterNoise_analyzer(randn(1000*4,1))

Analyzing multi-threaded MEX file FilterNoise_mt.mexw64 ...
Latency = 8 frames
Speedup = 0.5x
Warning: The output results of the multi-threaded MEX file FilterNoise_mt.mexw64 do not
match the output results of the single-threaded MEX file FilterNoise_st.mexw64. Check that
you provided the correct state length value to the dspunfold function when you generated the
multi-threaded MEX file FilterNoise_mt.mexw64. For best practices and possible solutions to
this problem, see the 'Tips' section in the dspunfold function reference page.
> In coder.internal.warning (line 8)
 In FilterNoise_analyzer
ans =
 Latency: 8
 Speedup: 0.4970
 Pass: 0

The analyzer looks for a numerical match and fails the verification, even though the generated
multi-threaded MEX file is valid.

Speedup Limitations:

• If the entry-point MATLAB function contains code with low complexity, MATLAB overhead or
multi-threaded MEX overhead overshadow any performance gains. In such cases, do not use
dspunfold.

• If the number of operations in the input MATLAB function is small compared to the size of the
input or output data, the multi-threaded MEX file does not provide any speedup gain. Sometimes,
it can result in a speedup loss, even if the repetition value is increased. In such cases, do not use
dspunfold.

More About
State Length

State length of the algorithm.

Most of the time, the state length used by dspunfold matches the state length of the algorithm in
the entry-point MATLAB function. If the algorithm is simple, state length is easy to determine. For
example, the state length of an FIR filter is the number of taps in the filter – 1. In some scenarios, to
optimize speedup, dspunfold chooses a state length that is different from the algorithm state length
or the state length specified using the -s option. For example, when the state length is greater than
(threads – 1) × repetition frames, dspunfold considers the state length to be infinite. Also, multi-
threading gets disabled due to performance considerations.

Automatic State Length Detection

You can automatically detect the minimum state length for which the outputs of the multi-threaded
MEX and single-threaded MEX match.

In complex algorithms, it is not easy to determine the state length analytically. In such scenarios, use
the analyzer to compute the state length. When you set -s to auto, dspunfold invokes the analyzer.
The analyzer computes the outputs for different state lengths and detects the minimum state length
for which the outputs of the multi-threaded MEX file and single-threaded MEX file match. The
analyzer uses the numeric value of the inputs given to -args. To detect the most efficient state
length, provide random inputs to -args. In this mode, you cannot input coder.typeof to
arguments. Due to the extra analysis this tool requires, the time to generate the MEX file increases.

5 Functions

5-362

When you use automatic state length detection on an algorithm with code paths that depend on the
input values, use inputs that choose the code path with the longest state length. Also, the inputs must
have an immediate effect on the output. If inputs choose a code path that triggers runtime errors,
automatic state length detection stops, and so does the analyzer. Make sure that the MATLAB
function supports code generation and does not have run-time errors for the inputs under test. Before
invoking dspunfold, call codegen on the entry-point MATLAB function. In addition, simulate the
entry-point MATLAB function to make sure it has no run-time errors.

Threads

The -t option specifies the number of threads used by the multi-threaded MEX file.

Increasing this value can improve the multi-threaded MEX speedup, at the cost of a larger latency.
Decreasing this value reduces the latency and potentially decreases the multi-threaded MEX
speedup.

Repetition Factor

Repetition factor is the number of consecutive frames processed by each thread in one processing
step.

Increasing this value reduces the overhead per frame of data, potentially improving the speedup at
the cost of larger latency. Decreasing this value reduces the latency, and potentially decreases the
multi-threaded MEX speedup.

Self-Diagnostic Analyzer

The self-diagnostic analyzer function is a help tool that is generated with the MEX file. This function
measures the speedup gain of the multi-threaded MEX file compared to the single-threaded MEX file.
The analyzer function also verifies that the outputs of the multi-threaded MEX file and single-
threaded MEX file match.

If you specify an incorrect state length value, the outputs usually do not match. To check for the
numerical match between the multi-threaded MEX file and the single-threaded MEX file, provide at
least two different frames for each input argument of the analyzer. The frames are appended along
the first dimension. The analyzer alternates between these frames while verifying that the outputs
match. Failure to provide multiple frames for each input can decrease the effectiveness of the
analyzer and can lead to false positive verification results. In other words, the analyzer might produce
pass = 1 results even when an incorrect state length value is specified. The analyzer alternates
through a maximum of 3 × (2 × threads × repetition) frames. If your algorithm requires more than 3
× (2 × threads × repetition) frames to verify the results, then the analyzer cannot verify accurately.

Tips
General

• Do not display plots, scopes, or execute other user interface operations from within the multi-
threaded MEX file. The generated MEX file can have unexpected behavior.

• Do not use coder.extrinsic inside the input MATLAB function. The generated MEX file can
have unexpected behavior.

When the state length is less than or equal to (threads – 1) × repetition frames:

 dspunfold

5-363

• Do not use a random number inside the MATLAB function. The outputs of the single-threaded
MEX file and the multi-threaded MEX file might not match. Also, the outputs of the consecutive
executions of the multi-threaded MEX file might not match. The analyzer might not pass the
numerical match verification.

It is recommended that you generate the random number outside the entry-point MATLAB
function and pass it as an argument to the function.

• Do not use global or persistent variables anywhere other than in the entry-point MATLAB function.
For example, avoid using persistent variables in subfunctions. The generated MEX file can
produce inaccurate results. In general, global variables are not recommended.

• Do not access I/O resources from within the multi-threaded MEX file. The generated MEX file can
have unexpected behavior. These resources include file writers and readers, UDP sockets, and
audio players and recorders.

• Do not use functions with interactive inputs (for example, the keyboard) inside the multi-threaded
MEX file. The generated MEX file can have unexpected behavior.

Workflow

• To generate a valid multi-threaded MEX file with the required speedup and latency, follow the
“Workflow for Generating a Multithreaded MEX File using dspunfold”.

• Before using dspunfold, call codegen on the entry-point MATLAB function and make sure that
the function generates a MEX file successfully.

• After generating the multi-threaded MEX file using dspunfold, run the analyzer function. Make
sure that the analyzer function passes. The exception to this rule is when the algorithm produces
results that match statistically, but not numerically. In this exception, the analyzer function does
not pass, even though the dspunfold function generates a valid multi-threaded MEX file. See
'Analyzer Limitations' for an example.

• For help on using the MEX file and analyzer, at the MATLAB command prompt, enter help
<mexfile name> and help <analyzer name>.

State Length

• If you choose a state length that is greater than or equal to the value of the exact state length, the
analyzer passes. If the analyzer fails, increase the state length, regenerate the MEX file, and verify
again.

• If the state length is greater than 0, the inputs marked as frames (through -f option) must all
have the same dimensions.

• When generating the MEX file and running the analyzer, use inputs that invoke the same state
length.

Automatic State Length Detection

When you set -s to auto:

• If the algorithm in the entry-point MATLAB function chooses a code path based on the input
values, use inputs that choose the code path with the longest state length.

• Provide random inputs to -args.
• Choose inputs that have an immediate effect on the output. See “Why Does the Analyzer Choose a

Zero State Length?”.

Analyzer

5 Functions

5-364

• Make sure the outputs of the multi-threaded MEX file and the single-threaded MEX file do not
contain NaN or an Inf. The analyzer cannot do numeric checks and returns pass as false. The
automatic state length detection tool detects infinite state length and displays a warning

Warning The output results of the multi-threaded MEX file do not match the output results of the
single-threaded MEX file even for Infinite state length. A possible reason is that input MATLAB
function generates different output results between consecutive runs even for the same input
values.

• Provide multiple frames with different values for each input of the analyzer. To improve the
analyzer effectiveness, append successive frames along the first dimension.

• Provide inputs to the analyzer that lead to efficient code coverage.

Speedup

• To improve the speedup of the multi-threaded MEX file, specify the exact state length in samples.
You can specify the state length in samples by setting at least one entry of frameinputs to true.
The use of samples reduces the overhead and increases the speedup.

• To increase the speedup at the cost of larger latency, you can:

• Increase the repetition factor. Use the -r option.
• Increase the number of threads. Use the -t option.

• For each input that can be divided into samples without altering the algorithm behavior, set frame
status to true using the -f option. The input is then considered in samples, which can increase
the speedup of the generated multi-threaded MEX file.

Algorithms
The multi-threaded MEX file buffers multiple-input signal frames into a buffer of 2 × threads ×
repetition frames, where threads is the number of threads, and repetition is the repetition factor. The
MEX file processes these frames simultaneously, using multiple cores. This process introduces some
deterministic latency, where latency = 2 × threads × repetition. Latency is traded off with the
speedup you might gain by increasing the number of threads or the repetition factor.

See Also
Topics
“Multithreaded MEX File Generation”
“How Is dspunfold Different from parfor?”
“Workflow for Generating a Multithreaded MEX File using dspunfold”
“Why Does the Analyzer Choose the Wrong State Length?”
“Why Does the Analyzer Choose a Zero State Length?”
“MATLAB Algorithm Acceleration” (MATLAB Coder)

Introduced in R2015b

 dspunfold

5-365

ellip
Elliptic filter using specification object

Syntax
ellipFilter = ellip(designSpecs,'SystemObject',true)
ellipFilter = ellip(designSpecs,designoption,value,... 'SystemObject',true)
ellipFilter = design(designSpecs,'ellip','SystemObject',true)

Description
ellipFilter = ellip(designSpecs,'SystemObject',true) designs an elliptical IIR digital
filter using the specifications in the object designSpecs.

Depending on the filter specification object designSpecs, the ellip design method might not be
valid. Use designmethods with the filter specification object to determine if an elliptic IIR filter
design is possible.

designmethods(designSpecs,'Systemobject',true)

ellipFilter = ellip(designSpecs,designoption,value,... 'SystemObject',true)
returns an elliptic IIR digital filter with one or more specified designed options and the corresponding
values.

To view a list of available design options, run the designoptions function on the specification
object. The function also lists the default design options the filter uses.

designoptions(designSpecs,'ellip')

ellipFilter = design(designSpecs,'ellip','SystemObject',true) is an alternative
syntax for designing the elliptic IIR digital filter.

For complete help about using the ellip design method for a specification object, designSpecs,
enter the following at the MATLAB command prompt.

help(designSpecs,'ellip')

Examples

Design a Bandpass Filter

Design an elliptic digital filter with bandpass frequency response. The filter design procedure is:

1 Specify the filter design specifications using a fdesign function.
2 Pick a design method provided by the designmethods function.
3 To determine the available design options to choose from, use the designoptions function.
4 Design the filter using the design function.

Construct the default bandpass filter specification object using fdesign.bandpass.

5 Functions

5-366

designSpecs = fdesign.bandpass

designSpecs =
 bandpass with properties:

 Response: 'Bandpass'
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
 NormalizedFrequency: 1
 Fstop1: 0.3500
 Fpass1: 0.4500
 Fpass2: 0.5500
 Fstop2: 0.6500
 Astop1: 60
 Apass: 1
 Astop2: 60

Determine the available design methods using the designmethods function. To design an elliptic
digital filter, pick ellip.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

designoptions(designSpecs,'ellip','SystemObject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 MatchExactly: {'passband' 'stopband' 'both'}
 DefaultFilterStructure: 'df2sos'
 DefaultMatchExactly: 'both'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

Use the design function to design the filter. Pass 'ellip' and the specifications given by the
variable designSpecs, as input arguments. Specify the 'matchexactly' design option to 'both'
to ensure the performance of the filter in both the passband and the stopband regions.

bandpassEllip = design(designSpecs,'ellip','matchexactly','both',...
 'SystemObject',true)

bandpassEllip =
 dsp.BiquadFilter with properties:

 ellip

5-367

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [4x6 double]
 ScaleValues: [5x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Use fvtool to view the frequency response of the designed filter.

fvtool(bandpassEllip)

Design Lowpass Filter

Design an elliptic digital filter with lowpass frequency response.

Construct a lowpass filter specification object using fdesign.lowpass. Specify the filter order,
passband edge frequency, stopband edge frequency, and the passband ripple of the filter.

designSpecs = fdesign.lowpass('n,fp,fst,ap',6,20,25,.8,80);

Determine the available design methods. To design an elliptic filter, pick ellip.

5 Functions

5-368

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.lowpass (N,Fp,Fst,Ap):

ellip
equiripple

Use the design function to design the filter. Pass 'ellip' and the specifications given by the
variable designSpecs, as input arguments.

ellipLowpass = design(designSpecs,'ellip','SystemObject',true)

ellipLowpass =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [3x6 double]
 ScaleValues: [4x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Use fvtool to visualize the lowpass frequency response.

fvtool(ellipLowpass)

 ellip

5-369

Input Arguments
designSpecs — Filter specification object
object

Filter specification object, specified as one of the following:

• fdesign.bandpass
• fdesign.bandstop
• fdesign.decimator
• fdesign.halfband
• fdesign.highpass
• fdesign.hilbert
• fdesign.interpolator
• fdesign.lowpass
• fdesign.nyquist

Output Arguments
ellipFilter — Elliptical digital filter
System object

Elliptical digital filter, returned as a filter System object. The System object and the values of its
properties depend on the input designSpecs object and the other design options specified to the
function.

See Also
butter | cheby1 | cheby2 | design | designmethods | designoptions | fdesign | equiripple
| kaiserwin

Introduced in R2011a

5 Functions

5-370

euclidfactors
Euclid factors for multirate filter

Compatibility
mfilt will be removed in a future release. See dsp.CICDecimator, dsp.CICInterpolator,
dsp.FIRDecimator, dsp.FIRInterpolator, dsp.FilterCascade,
dsp.FarrowRateConverter, dsp.FIRRateConverter, dsp.IIRHalfbandDecimator, or
dsp.IIRHalfbandInterpolator instead.

Syntax
[lo,mo] = euclidfactors(hm)

Description
[lo,mo] = euclidfactors(hm) returns integer factors lo and mo such that (lo*L)-(mo*M) = -1. L
and M are relatively prime and represent the interpolation and decimation factors of the multirate
filter hm.

euclidfactors works with the multirate filter mfilt.firsc. You cannot return lo and mo for
decimators or interpolators.

Examples
Use an FIR fractional decimator, with L = 5 and M = 7, to show what euclidfactors does.

Indeed, (lo*L)-(mo*M) = (4*5)-(3*7) = -1.

See Also
polyphase

Introduced in R2011a

 euclidfactors

5-371

equiripple
Equiripple single-rate FIR filter from specification object

Syntax
equiFilt = design(d,'equiripple','SystemObject',true)
equiFilt = design(d,'equiripple',designoption,value,...,'SystemObject',true)

Description
equiFilt = design(d,'equiripple','SystemObject',true) designs an equiripple FIR
digital filter using the specifications supplied in the object d. Equiripple filter designs minimize the
maximum ripple in the passbands and stopbands.

When you use equiripple with Nyquist filter specification objects, you might encounter design
cases where the filter design does not converge. Convergence errors occur mostly at large filter
orders, or small transition widths, or large stopband attenuations. These specifications, alone or
combined, can cause design failures. For more information, refer to fdesign.nyquist in the online
Help system.

equiFilt = design(d,'equiripple',designoption,value,...,'SystemObject',true)
returns an equiripple FIR filter where you specify design options as input arguments.

To determine the available design options, use designopts with the specification object and the
design method as input arguments as shown.

designopts(d,'method')

For complete help about using equiripple, refer to the command line help system. For example, to
get specific information about using equiripple with d, the specification object, enter the following
at the MATLAB prompt.

help(d,'equiripple')

Examples

Design a Single-Rate Equiripple Filter

Design a single-rate equiripple filter from a halfband filter
specification object. Notice the help command used to learn about the
options for the specification object and method.

d = fdesign.halfband('tw,ast',0.1,80);
designmethods(d,'Systemobject',true)

Design Methods that support System objects for class fdesign.halfband (TW,Ast):

butter
ellip

5 Functions

5-372

iirlinphase
equiripple
kaiserwin

help(d,'equiripple')

 DESIGN Design a Equiripple FIR filter.
 HD = DESIGN(D, 'equiripple') designs a Equiripple filter specified by the
 FDESIGN object D, and returns the DFILT/MFILT object HD.

 HD = DESIGN(D, ..., 'SystemObject', true) implements the filter, HD,
 using a System object instead of a DFILT/MFILT object.

 HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with the
 structure STRUCTURE. STRUCTURE is 'dffir' by default and can be any of
 the following:

 'dffir'
 'dffirt'
 'dfsymfir'
 'fftfir'

 Some of the listed structures may not be supported by System object
 filters. Type validstructures(D, 'equiripple', 'SystemObject', true) to
 get a list of structures supported by System objects.

 HD = DESIGN(..., 'MinPhase', MPHASE) designs a minimum-phase filter
 when MPHASE is TRUE. MPHASE is FALSE by default.

 HD = DESIGN(..., 'StopbandShape', SHAPE) designs a filter whose stopband
 has the shape defined by SHAPE. SHAPE can be 'flat', '1/f', or 'linear'.
 SHAPE is 'flat' by default.

 HD = DESIGN(..., 'StopbandDecay', DECAY) specifies the decay to use when
 'StopbandShape' is not set to 'flat'. When the shape is '1/f' this
 specifies the power that 1/f is raised. When shaped is 'linear' this
 specifies the slope of the stopband in dB/rad/s.

 % Example #1 - Design a halfband lowpass equiripple filter with increased stopband attenuation.
 TW = 0.1; % Transition Width
 Ast = 80; % Stopband Attenuation (dB)
 h = fdesign.halfband('Type','Lowpass','TW,Ast',TW,Ast);
 Hd = design(h, 'equiripple', 'StopbandShape','linear','StopbandDecay',50);
 fvtool(Hd)

designopts(d,'equiripple')

ans = struct with fields:
 FilterStructure: 'dffir'
 MinPhase: 0
 StopbandShape: 'flat'
 StopbandDecay: 0
 SystemObject: 0

equiFilt = design(d,'equiripple','stopbandshape','flat','SystemObject',true);
fvtool(equiFilt);

 equiripple

5-373

The fvtool shows the equiripple nature of the filter.

Design an Equiripple FIR Filter with a Direct-Form Transposed Structure

This example designs an equiripple filter with a direct-form transposed structure by specifying the
'FilterStructure' argument. To set the design options for the filter, use the designopts method and
options object opts.

d = fdesign.lowpass('fp,fst,ap,ast');
opts = designopts(d,'equiripple');
opts.FilterStructure='dffirt';
opts.DensityFactor=20

opts = struct with fields:
 FilterStructure: 'dffirt'
 DensityFactor: 20
 MinPhase: 0
 MaxPhase: 0
 MinOrder: 'any'
 StopbandShape: 'flat'
 StopbandDecay: 0
 UniformGrid: 1
 SystemObject: 0

5 Functions

5-374

firFilt = design(d,'equiripple','SystemObject',true,opts)

firFilt =
 dsp.FIRFilter with properties:

 Structure: 'Direct form transposed'
 NumeratorSource: 'Property'
 Numerator: [-0.0024 -0.0021 0.0068 0.0167 0.0111 -0.0062 ...]
 InitialConditions: 0

 Show all properties

fvtool(firFilt);

The MaxPhase design option for equripple FIR filters is currently only available for lowpass,
highpass, bandpass, and bandstop filters.

See Also
Functions
fdesign.nyquist | firls | kaiserwin

Introduced in R2011a

 equiripple

5-375

fcfwrite
Write file containing filter coefficients

Syntax
fcfwrite(h)
fcfwrite(h,filename)
fcfwrite(...,'fmt')

Description
fcfwrite(h) writes a filter coefficient ASCII file in a folder you choose, or your current MATLAB
working folder. h can be a single filter object or a vector of filter objects. On execution, fcfwrite
opens the Export Filter Coefficients to .FCF File dialog box to let you assign a file name for the
output file. You can choose the destination folder within this dialog as well.

The default file name is untitled.fcf. When you have DSP System Toolbox software, you can use
fcfwrite(h) to write filter coefficient files for multirate filters, adaptive filters, and discrete-time
filters.

fcfwrite(h,filename) writes the filter coefficients and general information to a text file called
filename in your present MATLAB working folder and opens the file in the MATLAB editor for you to
review or modify.

If you do not include a file extension in filename, fcfwrite adds the extension fcf to filename.

fcfwrite(...,'fmt') writes the filter coefficients in the format specified by the input argument
fmt. Valid fmt values are hex for hexadecimal, dec for decimal, or bin for binary representation of
the filter coefficients.

Examples
To demonstrate fcfwrite, create a fixed-point IIR filter at the command line, and then write the
filter coefficients to a file named iirfilter.fcf.

d=fdesign.lowpass;
hd=design(d,'butter');
set(hd,'arithmetic','fixed');
fcfwrite(hd,'iirfilter.fcf');

Here is the output from fcfwrite as it appears in the MATLAB editor. Not shown here is the
filename — iirfilter.fcf as specified and some comments at the top of the file.

%
%
% Coefficient Format: Decimal
%
% Discrete-Time IIR Filter (real)
% -------------------------------
% Filter Structure : Direct-Form II, Second-Order
% Sections

5 Functions

5-376

% Number of Sections : 13
% Stable : Yes
% Linear Phase : No
% Arithmetic : fixed
% Numerator : s16,13 -> [-4 4)
% Denominator : s16,14 -> [-2 2)
% Scale Values : s16,14 -> [-2 2)
% Input : s16,15 -> [-1 1)
% Section Input : s16,8 -> [-128 128)
% Section Output : s16,10 -> [-32 32)
% Output : s16,10 -> [-32 32)
% State : s16,15 -> [-1 1)
% Numerator Prod : s32,28 -> [-8 8)
% Denominator Prod : s32,29 -> [-4 4)
% Numerator Accum : s40,28 -> [-2048 2048)
% Denominator Accum : s40,29 -> [-1024 1024)
% Round Mode : convergent
% Overflow Mode : wrap
% Cast Before Sum : true

SOS matrix:
1 2 1 1 -0.22222900390625 0.88262939453125
1 2 1 1 -0.19903564453125 0.68621826171875
1 2 1 1 -0.18060302734375 0.5303955078125
1 2 1 1 -0.1658935546875 0.40570068359375
1 2 1 1 -0.154052734375 0.305419921875
1 2 1 1 -0.14453125 0.22479248046875
1 2 1 1 -0.136962890625 0.16015625
1 2 1 1 -0.13092041015625 0.10906982421875
1 2 1 1 -0.126220703125 0.06939697265625
1 2 1 1 -0.12274169921875 0.0399169921875
1 2 1 1 -0.12030029296875 0.01947021484375
1 2 1 1 -0.118896484375 0.0074462890625
1 1 0 1 -0.0592041015625 0

Scale Values:
0.41510009765625
0.371826171875
0.33746337890625
0.3099365234375
0.287841796875
0.27008056640625
0.25579833984375
0.2445068359375
0.23577880859375
0.22930908203125
0.22479248046875
0.22216796875
0.47039794921875
1

To write two or more filters out to one file, provide the filters as a vector to fcfwrite:

fcfwrite([hd hd1 hd2])

Introduced in R2011a

 fcfwrite

5-377

filterDesigner
Open Filter Designer app

Syntax
filterDesigner

Description
filterDesigner opens the Filter Designer app. Use this tool to:

• Design filters
• Quantize filters (with DSP System Toolbox software installed)
• Analyze filters
• Modify existing filter designs
• Create multirate filters (with DSP System Toolbox software installed)
• Realize Simulink models of quantized, direct-form, FIR filters (with DSP System Toolbox software

installed)
• Perform digital frequency transformations of filters (with DSP System Toolbox software installed)

Refer to “Use Filter Designer with DSP System Toolbox Software” for more information about using
the analysis, design, and quantization features of filter designer. For general information about using
filter designer, refer to “Using Filter Designer”.

When you open the filter designer app and you have DSP System Toolbox software installed, filter
designer incorporates features that are added by DSP System Toolbox software. With DSP System
Toolbox software installed, filter designer lets you design and analyze quantized filters, as well as
convert quantized filters to various filter structures, transform filters, design multirate filters, and
realize models of filters.

5 Functions

5-378

Use the buttons on the sidebar to configure the design area to use various tools in the filter designer
app.

Set Quantization Parameters — provides access to the properties of the quantizers that compose a
quantized filter. When you click Set Quantization Parameters, you see filter designer displaying the
quantization options at the bottom of the dialog box (the design area), as shown in the figure.

Transform Filter — clicking this button opens the Frequency Transformations pane so you can use
digital frequency transformations to change the magnitude response of your filter.

Create a multirate filter — clicking this button switches filter designer to multirate filter design
mode so you can design interpolators, decimators, and fractional rate change filters.

Realize Model — starting from your quantized, direct-form, FIR filter, clicking this button creates a
Simulink model of your filter structure in new model window.

 filterDesigner

5-379

Other options in the menu bar let you convert the filter structure to a new structure, change the
order of second-order sections in a filter, or change the scaling applied to the filter, among many
possibilities.

Limitations
• The Input/Output section in the Set quantization parameters panel of the filterDesigner

app supports only signed data types.
• The word length value specified by the Input word length and the Output word length settings

in the Input/Output section of the Set quantization parameters panel must be 2 or more to
support signed numeric types.

Examples
• “Use Filter Designer with DSP System Toolbox Software”

See Also
filterDesigner | fvtool

Introduced in R2011a

5 Functions

5-380

fdesign
Filter design specification object

Syntax
designSpecs = fdesign.response
designSpecs = fdesign.response(spec)
designSpecs = fdesign.response(___ ,Fs)
designSpecs = fdesign.response(___ ,magunits)

Description
Use the fdesign function to create a filter design specification object that contains the specifications
for a filter, such as passband ripple, stopband attenuation, and filter order. Then, use the design
function to design the filter from the filter design specifications object. For an example, see “Design
of Lowpass Decimator” on page 5-382.

Here is the workflow diagram that shows the simple procedure to design, analyze, and finally apply
the filter on streaming data.

For more control options, see “Filter Design Procedure” on page 5-391. For a complete workflow, see
“Design a Filter in Fdesign — Process Overview”.

designSpecs = fdesign.response returns a design specification object for the filter with a given
response.

designSpecs = fdesign.response(spec) specifies the variables to use that define your filter
design. The filter design parameters are applied to the filter design method you choose for your filter.
The specification option you choose determines which design methods apply to the fdesign object.

 fdesign

5-381

designSpecs = fdesign.response(___ ,Fs) specifies the sample rate in Hz to use in the filter
specifications. The sample rate scalar must be the last input argument. If you specify a sample rate,
all frequency specifications are in Hz.

designSpecs = fdesign.response(___ ,magunits) specifies the units for any magnitude
specification you provide in the input arguments.

Examples

Design of Lowpass Decimator

Design a 100-tap FIR lowpass decimator filter that reduces the sample rate of a signal from 60 kHz to
20 kHz. The passband of the filter extends up to 6 kHz. Specify a passband ripple of 0.01 dB and a
stopband attenuation of 100 dB.

Fs = 60e3;
N = 99;
Fpass = 6e3;
Apass = 0.01;
Astop = 100;
M = Fs/20e3;

Setup the filter design specifications object using the fdesign.decimator function.

filtSpecs = fdesign.decimator(M,'lowpass','N,Fp,Ap,Ast',N,Fpass,Apass,Astop,Fs);

Design the FIR lowpass decimator using the design function.

The resulting filter is a dsp.FIRDecimator System object™. For details on how to apply this filter to
streaming data, refer to dsp.FIRDecimator.

decimFIR = design(filtSpecs,'SystemObject',true)

decimFIR =
 dsp.FIRDecimator with properties:

 DecimationFactor: 3
 NumeratorSource: 'Property'
 Numerator: [-1.5100e-05 -2.2164e-05 -9.6058e-06 4.3636e-05 ...]
 Structure: 'Direct form'

 Show all properties

Use info to display information about the filter.

info(decimFIR)

ans = 10x56 char array
 'Discrete-Time FIR Multirate Filter (real) '
 '--- '
 'Filter Structure : Direct-Form FIR Polyphase Decimator'
 'Decimation Factor : 3 '
 'Polyphase Length : 34 '
 'Filter Length : 100 '
 'Stable : Yes '

5 Functions

5-382

 'Linear Phase : Yes (Type 2) '
 ' '
 'Arithmetic : double '

Visualize the magnitude response of the filter using fvtool.

fvtool(decimFIR,'Fs',Fs)

Design of Lowpass Filter

Design a lowpass filter to use on a signal sampled at 96 kHz. The passband of the filter extends up to
20 kHz. The stopband of the filter starts at 24 kHz. Specify a passband ripple of 0.01 dB and a
stopband attenuation of 80 dB. Determine automatically the order required to meet the
specifications.

Set up the filter design specifications object using the fdesign.lowpass function.

Fs = 96e3;
Fpass = 20e3;
Fstop = 24e3;
Apass = 0.01;
Astop = 80;

filtSpecs = fdesign.lowpass(Fpass,Fstop,Apass,Astop,Fs);

 fdesign

5-383

Determine the available design algorithms using the designmethods function.

designmethods(filtSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

Using the design function, design an equiripple FIR filter and an elliptic IIR filter that meet the
specifications.

lpFIR = design(filtSpecs,'equiripple','SystemObject',true)

lpFIR =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [1.0908e-04 2.1016e-05 -2.3369e-04 -2.8798e-04 ...]
 InitialConditions: 0

 Show all properties

lpIIR = design(filtSpecs,'ellip','SystemObject',true)

lpIIR =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

You can also measure the designs to verify that the filters satisfy the constraints.

FIRmeas = measure(lpFIR)

FIRmeas =
Sample Rate : 96 kHz
Passband Edge : 20 kHz
3-dB Point : 21.4297 kHz
6-dB Point : 21.8447 kHz
Stopband Edge : 24 kHz
Passband Ripple : 0.0092309 dB
Stopband Atten. : 80.6014 dB

5 Functions

5-384

Transition Width : 4 kHz

IIRmeas = measure(lpIIR)

IIRmeas =
Sample Rate : 96 kHz
Passband Edge : 20 kHz
3-dB Point : 20.5524 kHz
6-dB Point : 20.7138 kHz
Stopband Edge : 24 kHz
Passband Ripple : 0.01 dB
Stopband Atten. : 80 dB
Transition Width : 4 kHz

Estimate and display the computational cost of each filter. The equiripple FIR filter requires many
more coefficients than the elliptic IIR filter.

FIRcost = cost(lpFIR)

FIRcost = struct with fields:
 NumCoefficients: 101
 NumStates: 100
 MultiplicationsPerInputSample: 101
 AdditionsPerInputSample: 100

IIRcost = cost(lpIIR)

IIRcost = struct with fields:
 NumCoefficients: 20
 NumStates: 10
 MultiplicationsPerInputSample: 20
 AdditionsPerInputSample: 20

Use fvtool function to visualize the resulting designs and compare their properties.

fvtool(lpFIR,lpIIR,'Fs',Fs);
legend('FIR Equiripple','Elliptic IIR')

 fdesign

5-385

Lowpass Butterworth Filter Specification and Design

Design a lowpass Butterworth filter that has a passband edge frequency of 0 . 4π rad/sample, a
stopband frequency of 0 . 5π rad/sample, a passband ripple of 1 dB, and a stopband attenuation of 80
dB.

Create a lowpass filter design specification object using the fdesign.lowpass function. Specify
the design parameters.

lowpassSpecs = fdesign.lowpass(0.4,0.5,1,80);

To view a list of design methods available for the specification object, use the designmethods
function. If multiple methods are available, pick one that best meets the design criteria. For this
example, pick 'butter'.

designmethods(lowpassSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip

5 Functions

5-386

equiripple
ifir
kaiserwin
multistage

Furthermore, you can specify the design options used in designing the filter. To see a list of available
options, run the designoptions function on lowpassSpecs. The design options are dependent on
the design method you pick. The design method, in this case, 'butter', must be specified as an
argument to the designoptions function.

designoptions(lowpassSpecs,'butter','Systemobject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 MatchExactly: {'passband' 'stopband'}
 DefaultFilterStructure: 'df2sos'
 DefaultMatchExactly: 'stopband'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

The filter order necessary to meet a set of design constraints must also be rounded up to an integer
value. This loosens some of the constraints, and as a consequence, some design specifications are met
while others are exceeded. The 'MatchExactly' option allows you to match the passband or
stopband exactly while exceeding the specification for the other band. Design the filter so that it
matches the passband exactly.

The resulting filter is a dsp.BiquadFiter System object™. For details on how to apply this filter on
streaming data, refer to dsp.BiquadFilter.

IIRbutter = design(lowpassSpecs,'butter','MatchExactly','passband', ...
 'SystemObject',true)

IIRbutter =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [16x6 double]
 ScaleValues: [17x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Use fvtool to visualize the magnitude response of the filter.

fvtool(IIRbutter)

 fdesign

5-387

Input Arguments
response — Desired filter response
response entry

The table specifies the possible filter responses.

fdesign Response Method Description
arbgrpdelay fdesign.arbgrpdelay creates an object to specify allpass

arbitrary group delay filters.
arbmag fdesign.arbmag creates an object to specify IIR filters that have

arbitrary magnitude responses defined by the input arguments.
arbmagnphase fdesign.arbmagnphase creates an object to specify IIR filters

that have arbitrary magnitude and phase responses defined by the
input arguments.

audioweighting fdesign.audioweighting creates a filter design specification
object for audio weighting filters. The supported audio weighting
types are: A, C, C-message, ITU-T 0.41, and ITU-R 468-4 weighting.

bandpass fdesign.bandpass creates an object to specify bandpass filters.
bandstop fdesign.bandstop creates an object to specify bandstop filters.

5 Functions

5-388

fdesign Response Method Description
ciccomp fdesign.ciccomp creates an object to specify filters that

compensate for the CIC decimator or interpolator response curves.
comb fdesign.comb creates an object to specify a notching or peaking

comb filter.
decimator fdesign.decimator creates an object to specify decimators.
differentiator fdesign.differentiator creates an object to specify an FIR

differentiator filter.
fracdelay fdesign.fracdelay creates an object to specify fractional delay

filters.
halfband fdesign.halfband creates an object to specify halfband filters.
highpass fdesign.highpass creates an object to specify highpass filters.
hilbert fdesign.hilbert creates an object to specify an FIR Hilbert

transformer.
interpolator fdesign.interpolator creates an object to specify interpolators.
isinchp fdesign.isinchp creates an object to specify an inverse sinc

highpass filter.
isinclp fdesign.isinclp creates an object to specify an inverse sinc

lowpass filters.
lowpass fdesign.lowpass creates an object to specify lowpass filters.
notch fdesign.notch creates an object to specify notch filters.
nyquist fdesign.nyquist creates an object to specify Nyquist filters.
octave fdesign.octave creates an object to specify octave and fractional

octave filters.
parameq fdesign.parameq creates an object to specify parametric

equalizer filters.
peak fdesign.peak creates an object to specify peak filters.
polysrc fdesign.polysrc creates an object to specify polynomial sample-

rate converter filters.
rsrc fdesign.rsrc creates an object to specify rational-factor sample-

rate convertors.

Use the doc fdesign.response syntax at the MATLAB prompt to get help on a specific structure.
For example, this command provides more information about the lowpass specification object:

doc fdesign.lowpass

Each response has a Specification property that defines the specifications to use to design your
filter. You can use defaults or specify the Specification property when you construct the
specifications object.

Using the Specification property, you can provide filter constraints such as the filter order or the
passband attenuation to use when you construct your filter from the specification object.

spec — Filter design specifications
character vector

 fdesign

5-389

Filter design specifications, specified as a character vector. The set of available specification options
depends on the fdesign.response function. For more information, refer to the individual
fdesign.response pages.

The filter design is based on the specifications provided by the fdesign.response object. For
example, when you create a default lowpass filter design specification object, fdesign.lowpass, the
specification expression is set to 'Fp,Fst,Ap,Ast'. The filter design parameters — Fp (passband
frequency), Fst (stopband frequency), Ap (passband ripple), and Ast (stopband attenuation) — are
set to default values. The design function designs the filter based on these parameters.

Specifications that do not contain the filter order result in minimum-order designs when you invoke
the design function:

d = fdesign.lowpass; % Specification is 'Fp,Fst,Ap,Ast'
FIReq = design(d,'equiripple','SystemObject',true);
length(FIReq.Numerator) % Returns 43. The filter order is 42

The specification option you choose determines which design methods are applicable. You can use the
setspecs function to set all of the specifications simultaneously.

You can set filter specification values by passing them after the Specification argument, or by
passing the values without the Specification.

Filter object constructors take the input arguments in the same order as setspecs and
Specification.

When the first input to fdesign.response is not a valid Specification option, fdesign assumes
that the input argument is a filter specification and applies it using the default Specification
option. For example, 'Fp,Fst,Ap,Ast' is the default for a lowpass object.

Fs — Sample rate
scalar

Sample rate to use in filter specifications, specified in Hz. The sample rate scalar must be the last
input argument. If you specify a sample rate, all frequency specifications are in Hz.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

magunits — Units for magnitude specification
'dB' (default) | 'linear' | 'squared'

Units for magnitude specification, specified as:

• 'dB' –– decibels
• 'linear' –– linear units
• 'squared' –– power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB. Note that
fdesign stores all magnitude specifications in dB. If you set magunits to an option other than 'dB',
the function converts the unit to 'dB'.

Output Arguments
designSpecs — Filter design specification object
fdesign.response object

5 Functions

5-390

fdesign returns a filter design specification object. Every filter design specification object has these
properties:

Property Name Default Value Description
Response Depends on the chosen

type
Defines the type of filter to design,
such as an interpolator or bandpass
filter. This is a read-only value.

Specification Depends on the chosen
type

Defines the filter characteristics used
to define the desired filter
performance, such as the cutoff
frequency Fc or the filter order N.

Description Depends on the filter
type you choose

Contains descriptions of the filter
specifications used to define the object,
and the filter specifications you use
when you create a filter from the
object. This is a read-only value.

NormalizedFrequency Logical true Determines whether the filter
calculation uses a normalized
frequency from 0 to 1, or the frequency
band from 0 to Fs/2, the sampling
frequency. Accepts either true or
false without single quotation marks.
Audio weighting filters do not support
normalized frequency.

In addition to these properties, filter design specification objects may have other properties as well,
depending on whether they design single-rate filters or multirate filters.

Added Properties for
Multirate Filters

Description

DecimationFactor Specifies the amount to decrease the sampling rate. Always a
positive integer.

InterpolationFactor Specifies the amount to increase the sampling rate. Always a
positive integer.

PolyphaseLength Polyphase length is the length of each polyphase subfilter that
composes the decimator or interpolator or rate-change factor
filters. Total filter length is the product of pl and the rate change
factors. pl must be an even integer.

More About
Filter Design Procedure

Here is the workflow diagram of the overall procedure for designing and analyzing the filter.

 fdesign

5-391

Here are the steps in detail:

1 Create an fdesign.response specification object to specify the design parameters.
2 Use designmethods to determine the filter design methods that work for your new filter

specification object. If you choose to use the default design method, then this step is optional.
3 If you prefer to change the design options and would like to see a list of available options, run the

designoptions function on the specification object. The output also shows the design options
the filter uses by default.

4 Use design to design the filter from the filter specification object. Specify the design method
(determined from step 2) as an input. If the design options must change from the default values,
specify them as name-value pairs following the design method.

If you call the design function without any output arguments, FVTool is launched and shows the
magnitude response of the designed filter.

Alternatively, use the fvtool function.
5 Further analysis, such as viewing the frequency response of the filter, computing the cost of

implementing the filter, and measuring the filter response characteristics, can be done using one
of the supported “Analysis Methods for Filter System Objects” on page 3-2.

6 Once you analyze the filter and determine that the filter satisfies the design constraints, you can
apply the filter object to streaming input data. For details on how to pass data to the filter object,
refer to the corresponding filter System object reference pages.

For a detailed example on the design and analysis, see “Lowpass Butterworth Filter Specification and
Design” on page 5-386.

5 Functions

5-392

See Also
Apps
Filter Designer

Functions
designmethods | designoptions | design | setspecs | filterBuilder

Topics
“Design a Filter in Fdesign — Process Overview”

Introduced in R2009a

 fdesign

5-393

fdesign.arbgrpdelay
Arbitrary group delay filter specification object

Syntax
D = fdesign.arbgrpdelay(SPEC)
D = fdesign.arbgrpdelay(SPEC,SPEC1,SPEC2,...)
D = fdesign.arbgrpdelay(N,F,Gd)
D = fdesign.arbgrpdelay(...,Fs)

Description
Arbitrary group delay filters are allpass filters you can use for correcting phase distortion introduced
by other filters. fdesign.arbgrpdelay uses an iterative least p-th norm optimization procedure to
minimize the phase response error [1] on page 5-401.

D = fdesign.arbgrpdelay(SPEC) specifies an allpass arbitrary group delay filter with the
Specification property set to SPEC. See “Input Arguments” on page 5-395 for a description of
supported specifications.

D = fdesign.arbgrpdelay(SPEC,SPEC1,SPEC2,...) initializes the allpass arbitrary group
delay filter specification object with specifications SPEC1,SPEC2,.... See SPEC on page 5-0 for a
description of supported specifications.

D = fdesign.arbgrpdelay(N,F,Gd) specifies an allpass arbitrary group delay filter. The filter
order is equal to N, frequency vector equal to F, and group delay vector equal to Gd. See SPEC on
page 5-0 for a description of the filter order, frequency vector, and group delay vector inputs. See
the example “Design an Allpass Filter With an Arbitrary Group Delay” on page 5-398 for an example
using this syntax.

D = fdesign.arbgrpdelay(...,Fs) specifies the sampling frequency in hertz as a trailing scalar.
If you do not specify a sampling frequency, all frequencies are normalized frequencies and group
delay values are in samples. If you specify a sampling frequency, group delay values are in seconds.

Tips
If your arbitrary group delay design produces the error Poorly conditioned Hessian matrix,
attempt one or more of the following:

• Set the MaxPoleRadius IIR lp norm design option to some number less than 1. Set this option
when you design your filter with the syntax:

design(d,'iirlpnorm','MaxPoleRadius',0.95)

See the “Design an Arbitrary Group Delay Filter” on page 5-396 and “Multiband Delay
Equalization” on page 5-399 examples for the use of the MaxPoleRadius design option.

• Reduce the order of your filter design.

5 Functions

5-394

Input Arguments
SPEC

Filter specification. SPEC is one of the following two options. The entries are not case sensitive.

• 'N,F,Gd'
• 'N,B,F,Gd'

The filter specifications are defined as follows:

• N — Filter order. This value must be an even positive integer. The numerator and denominator
orders are both equal to N. “Allpass Systems” on page 5-401 explains why the numerator and
denominator filter orders are equal and the order must be even in fdesign.arbgrpdelay.

• F — Frequency vector for the group delay specifications. The elements of the frequency vector
must increase monotonically. If you do not specify a sampling frequency, Fs, in hertz, the
frequencies are normalized frequencies. For a single-band design, the first element of the
normalized frequency vector must be zero and the last element must be 1. These correspond to 0
and π radians/sample respectively. For multiband designs, the union of the frequency vectors must
range from [0,1].

If you specify a sampling frequency, Fs, the first element of the frequency vector in a single-band
design must be 0. The last element must be the Nyquist frequency, Fs/2. For multiband designs,
the union of the frequency vectors must range from [0,Fs/2].

• Gd — Group delay vector. A vector with nonnegative elements equal in length to the frequency
vector, F. The elements of Gd specify the nonnegative group delay at the corresponding element of
the frequency vector, F.

If you do not specify a sampling frequency, Fs, in Hertz, the group delays are in samples. If you
specify a sampling frequency, the group delays are in seconds.

• B — Number of frequency bands. If you use this specification, you must specify a frequency and
group delay vector for each band. The union of the frequency vectors must range from [0,1] in
normalized frequency, or [0,Fs/2] when a sampling frequency is specified. The elements in the
union of the frequency bands must be monotonically increasing.

For example:
filtorder = 14;
freqband1 = [0 0.1 0.4]; grpdelay1 = [1 2 3];
freqband2 = [0.5 0.8 1]; grpdelay2 = [3 2 1];
D = fdesign.arbgrpdelay('N,B,F,Gd',filtorder,2,freqband1,grpdelay1,freqband2,grpdelay2);

Default: 'N,F,Gd'

Fs

Sampling frequency. Specify the sampling frequency as a trailing positive scalar after all other input
arguments. Specifying a sampling frequency forces the group delay units to be in seconds. If you
specify a sampling frequency, the first element of the frequency vector must be 0. The last element
must be the Nyquist frequency, Fs/2.

 fdesign.arbgrpdelay

5-395

Output Arguments
D

Filter specification object. An allpass arbitrary group delay filter specification object containing the
following modifiable properties: Specification, NormalizedFrequency, FilterOrder,
Frequencies, and GroupDelay.

Use the normalizefreq method to change the NormalizedFrequency property after construction.

Examples

Design an Arbitrary Group Delay Filter

Construct a signal consisting of two discrete-time windowed sinusoids (wave packets) with disjoint
time support to illustrate frequency dispersion. One discrete-time sinusoid has a frequency of pi/2
radians/sample and the other has a frequency of pi/4 radians/sample. There are 9 periods of the
higher-frequency sinusoid that precede 5 periods of the lower-frequency signal.

Create the signal.

x = zeros(300,1);
x(1:36) = cos(pi/2*(0:35)).*hamming(36)';
x(40:40+39) = cos(pi/4*(0:39)).*hamming(40)';

Create an arbitrary group delay filter that delays the higher-frequency wave packet by approximately
100 samples.

N = 18;
f = 0:.1:1;
gd = ones(size(f));

Delay pi/2 radians/sample by 100 samples

gd(6) = 100;
d = fdesign.arbgrpdelay(N,f,gd);
Hd = design(d,'iirlpnorm','MaxPoleRadius',0.9,'SystemObject',true);

Visualize the group delay

fvtool(Hd,'analysis','grpdelay');

5 Functions

5-396

Filter the input signal with the arbitrary group delay filter and illustrate the frequency dispersion.
The high-frequency wave packet, which initially preceded the low-frequency wave packet, now occurs
later because of the nonconstant group delay.

y = Hd(x);
subplot(211)
plot(x); title('Input Signal');
grid on; ylabel('Amplitude');
subplot(212);
plot(y); title('Output Signal'); grid on;
xlabel('Samples'); ylabel('Amplitude');

 fdesign.arbgrpdelay

5-397

Design an Allpass Filter With an Arbitrary Group Delay

 N = 10;
 f = [0 0.02 0.04 0.06 0.08 0.1 0.25 0.5 0.75 1];
 g = [5 5 5 5 5 5 4 3 2 1];
 w = [2 2 2 2 2 2 1 1 1 1];
 hgd = fdesign.arbgrpdelay(N,f,g);
 Hgd = design(hgd,'iirlpnorm','Weights',w,'MaxPoleRadius',0.95,...
 'SystemObject',true);
 fvtool(Hgd,'Analysis','grpdelay') ;

5 Functions

5-398

Multiband Delay Equalization

Perform multiband delay equalization outside the stopband.

Fs = 1e3;
Hcheby2 = design(fdesign.bandstop('N,Fst1,Fst2,Ast',10,150,400,60,Fs),'cheby2',...
 'SystemObject',true);
f1 = 0.0:0.5:150; % Hz
g1 = grpdelay(Hcheby2,f1,Fs).'/Fs; % seconds
f2 = 400:0.5:500; % Hz
g2 = grpdelay(Hcheby2,f2,Fs).'/Fs; % seconds
maxg = max([g1 g2]);
% Design an arbitrary group delay allpass filter to equalize the group
% delay of the bandstop filter. Use an order 18 multiband design and specify
% two bands.
hgd = fdesign.arbgrpdelay('N,B,F,Gd',18,2,f1,maxg-g1,f2,maxg-g2,Fs);
Hgd = design(hgd,'iirlpnorm','MaxPoleRadius',0.95,'SystemObject',true);
Hcascade = cascade(Hcheby2,Hgd);
hft = fvtool(Hcheby2,Hgd,Hcascade,'Analysis','grpdelay','Fs',Fs);
 legend(hft,'Original Bandstop Filter','Allpass Arbitrary Group Delay Filter',...
 'Delay Equalization', 'Location','North');

 fdesign.arbgrpdelay

5-399

More About
Group Delay in Discrete-Time Filter Design

The frequency response of a rational discrete-time filter is:

H(e jω) = B(e jω)
A(e jω)

The argument of the frequency response as a function of the angle, ω, is referred to as the phase
response.

The negative of the first derivative of the argument with respect to ω is the group delay.

τ(ω) = − d
dω Arg(H(e jω))

Systems with nonlinear phase responses have nonconstant group delay, which causes dispersion of
the frequency components of the signal. You may not want this phase distortion even if the magnitude
distortion introduced by the filter produces the desired effect. See “Design an Arbitrary Group Delay
Filter” on page 5-396 for an illustration of frequency dispersion resulting from nonconstant group
delay.

In these cases, you can cascade the frequency-selective filter with an allpass filter that compensates
for the group delay. This process is often referred to as delay equalization.

5 Functions

5-400

Allpass Systems

The general form of an allpass system function with a real-valued impulse response is:

Hap(z) = ∏
k = 1

M z−1− dk
1− dkz−1 ∏k = 1

N (z−1− ck)(z−1− ck*)
(1− ckz−1)(1− ck*z−1)

where the dk denote the real-valued poles and the ck denote the complex-valued poles, which occur in
conjugate pairs.

The preceding equation demonstrates that allpass systems with real-valued impulse responses have
2N+M zeros and poles. The poles and zeros occur in pairs with reciprocal magnitudes. The filter
order is always the same for the numerator and denominator.

Because fdesign.arbgrpdelay uses robust second-order section (biquad) filter structures to
implement the allpass arbitrary group delay filter, the filter order must be even.

Algorithms
fdesign.arbgrpdelay uses a least p-th norm iterative optimization described in [1] on page 5-401.

Alternatives
iirgrpdelay — Returns an allpass arbitrary group delay filter. The iirgrpdelay function returns
the numerator and denominator coefficients. This behavior differs from that of
fdesign.arbgrpdelay, which returns the filter in second-order sections. iirgrpdelay accepts
only normalized frequencies.

References

[1] Antoniou, A. Digital Signal Processing: Signals, Systems, and Filters., New York:McGraw-Hill,
2006, pp. 719–771.

See Also
fdesign | design | iirgrpdelay

Topics
“Design a Filter in Fdesign — Process Overview”

Introduced in R2011b

 fdesign.arbgrpdelay

5-401

fdesign.arbmag
Arbitrary response magnitude filter specification object

Syntax
D= fdesign.arbmag
D= fdesign.arbmag(SPEC)
D = fdesign.arbmag(SPEC,specvalue1,specvalue2,...)
D = fdesign.arbmag(specvalue1,specvalue2,specvalue3)
D = fdesign.arbmag(...,Fs)

Description
D= fdesign.arbmag constructs an arbitrary magnitude filter specification object D.

D= fdesign.arbmag(SPEC) initializes the Specification property to SPEC. The input argument
SPEC must be one of the entries shown in the following table. Specification entries are not case
sensitive.

Note Specification entries marked with an asterisk require the DSP System Toolbox software.

• 'N,F,A' — Single band design (default)
• 'F,A,R' — Single band minimum order design *
• 'N,B,F,A' — Multiband design
• 'N,B,F,A,C' — Constrained multiband design *
• 'B,F,A,R' — Multiband minimum order design *
• 'Nb,Na,F,A' — Single band design *
• 'Nb,Na,B,F,A' — Multiband design *

The SPEC entries are defined as follows:

• A — Amplitude vector. Values in A define the filter amplitude at frequency points you specify in f,
the frequency vector. If you use A, you must use F as well. Amplitude values must be real. For
complex values designs, use fdesign.arbmagnphase.

• B — Number of bands in the multiband filter
• C — Constrained band flag. This enables you to constrain the passband ripple in your multiband

design. You cannot constrain the passband ripple in all bands simultaneously.
• F — Frequency vector. Frequency values in specified in F indicate locations where you provide
specific filter response amplitudes. When you provide F, you must also provide A.

• N — Filter order for FIR filters and the numerator and denominator orders for IIR filters.
• Nb — Numerator order for IIR filters
• Na — Denominator order for IIR filter designs
• R — Ripple

5 Functions

5-402

By default, this method assumes that all frequency specifications are supplied in normalized
frequency.

Specifying Frequency and Amplitude Vectors

F and A are the input arguments you use to define the filter response desired. Each frequency value
you specify in F must have a corresponding response value in A. The following table shows how F and
A are related.

Define the frequency vector F as [0 0.25 0.3 0.4 0.5 0.6 0.7 0.75 1.0]

Define the response vector A as [1 1 0 0 0 0 0 1 1]

These specifications connect F and A as shown here:

F (Normalized Frequency) A (Response Desired at F)
0 1
0.25 1
0.3 0
0.4 0
0.5 0
0.6 0
0.7 0
0.75 1
1.0 1

Different specifications can have different design methods available. Use designmethods to get a
list of design methods available for a given specification and filter specification object.

Use designopts to get a list of design options available for a filter specification object and a given
design method. Enter help(D,METHOD) to get detailed help on the available design options for a
given design method.

D = fdesign.arbmag(SPEC,specvalue1,specvalue2,...) initializes the specifications with
specvalue1, specvalue2. Use get(D,'Description') for descriptions of the various
specifications specvalue1, specvalue2, ... specvalueN.

D = fdesign.arbmag(specvalue1,specvalue2,specvalue3) uses the default specification
'N,F,A', setting the filter order, filter frequency vector, and the amplitude vector to the values
specvalue1, specvalue2, and specvalue3.

D = fdesign.arbmag(...,Fs) specifies the sampling frequency in Hz. All other frequency
specifications are also assumed to be in Hz when you specify Fs.

Examples

Design Multiband Arbitrary-Magnitude Filter

Use fdesign.arbmag to design a three-band filter.

 fdesign.arbmag

5-403

• Define the frequency vector F = [0 0.25 0.3 0.4 0.5 0.6 0.7 0.75 1.0].
• Define the response vector A = [1 1 0 0 0 0 0 1 1].

N = 150;
B = 3;
F = [0 .25 .3 .4 .5 .6 .7 .75 1];
A = [1 1 0 0 0 0 0 1 1];
A1 = A(1:2);
A2 = A(3:7);
A3 = A(8:end);
F1 = F(1:2);
F2 = F(3:7);
F3 = F(8:end);
d = fdesign.arbmag('N,B,F,A',N,B,F1,A1,F2,A2,F3,A3);
Hd = design(d);
fvtool(Hd)

A response with two passbands -- one roughly between 0 and 0.25 and the second between 0.75 and 1
-- results from the mapping between F and A.

Design Single-Band Arbitrary-Magnitude Filter

Use fdesign.arbmag to design a single band equiripple filter.

Specify 100 frequency points.

5 Functions

5-404

n = 120;
f = linspace(0,1,100);

as = ones(1,100)-f*0.2;
absorb = [ones(1,30),1-0.6*bohmanwin(10)',ones(1,5), ...
 1-0.5*bohmanwin(8)',ones(1,47)];
a = as.*absorb;

d = fdesign.arbmag('N,F,A',n,f,a);
hd1 = design(d,'equiripple');

Design a minimum-phase equiripple filter. Visualize the poles and zeros of the two filters.

hd2 = design(d,'equiripple','MinPhase',true);

hfvt = fvtool(hd1,hd2,'Analysis','polezero');
legend(hfvt,'Equiripple Filter','Minimum-phase Equiripple Filter')

Design Multiband Minimum-Order Arbitrary-Magnitude Filter

Use fdesign.arbmag to design a multiband minimum order filter.

Place the notches at 0 . 25π and 0 . 55π rad/sample.

d = fdesign.arbmag('B,F,A,R');
d.NBands = 5;

 fdesign.arbmag

5-405

d.B1Frequencies = [0 0.2];
d.B1Amplitudes = [1 1];
d.B1Ripple = 0.25;
d.B2Frequencies = 0.25;
d.B2Amplitudes = 0;
d.B3Frequencies = [0.3 0.5];
d.B3Amplitudes = [1 1];
d.B3Ripple = 0.25;
d.B4Frequencies = 0.55;
d.B4Amplitudes = 0;
d.B5Frequencies = [0.6 1];
d.B5Amplitudes = [1 1];
d.B5Ripple = 0.25;
Hd = design(d,'equiripple');

Visualize the frequency response of the resulting filter.

fvtool(Hd)

Design Multiband Constrained Arbitrary-Magnitude Filter

Use fdesign.arbmag to design a multiband constrained FIR filter.

Force the frequency response at 0 . 15π rad/sample to 0 dB.

5 Functions

5-406

d = fdesign.arbmag('N,B,F,A,C',82,2);
d.B1Frequencies = [0 0.06 0.1];
d.B1Amplitudes = [0 0 0];
d.B2Frequencies = [0.15 1];
d.B2Amplitudes = [1 1];

Design a filter with no constraints.

Hd1 = design(d,'equiripple','B2ForcedFrequencyPoints',0.15);

Add a constraint to the first band to increase attenuation.

d.B1Constrained = true;
d.B1Ripple = 0.001;
Hd2 = design(d,'equiripple','B2ForcedFrequencyPoints',0.15);

Visualize the frequency response.

hfvt = fvtool(Hd1,Hd2);
legend(hfvt,'Original Design','Design with Constrained Stopband Ripple')

See Also
design | designmethods | fdesign

Introduced in R2009a

 fdesign.arbmag

5-407

fdesign.arbmagnphase
Arbitrary response magnitude and phase filter specification object

Syntax
d = fdesign.arbmagnphase
d = fdesign.arbmagnphase(specification)
d = fdesign.arbmagnphase(specification,specvalue1,specvalue2,...)
d = fdesign.arbmagnphase(specvalue1,specvalue2,specvalue3)
d = fdesign.arbmagnphase(...,fs)

Description
d = fdesign.arbmagnphase constructs an arbitrary magnitude filter specification object d.

d = fdesign.arbmagnphase(specification) initializes the Specification property for
specifications object d to specification. The input argument specification must be one of the
choices shown in the following table. Specification options are not case sensitive.

Specification Description of Resulting Filter
n,f,h Single band design (default). FIR and IIR (n is the order for both numerator

and denominator).
n,b,f,h FIR multiband design where b defines the number of bands.
nb,na,f,h IIR single band design.

The following table describes the specification arguments.

Argument Description
b Number of bands in the multiband filter.
f Frequency vector. Frequency values specified in f indicate locations where

you provide specific filter response amplitudes. When you provide f you
must also provide h which contains the response values.

h Complex frequency response values.
n Filter order for FIR filters and the numerator and denominator orders for

IIR filters (when not specified by nb and na).
nb Numerator order for IIR filters.
na Denominator order for IIR filter designs.

By default, this method assumes that all frequency specifications are supplied in normalized
frequency.

Specifying f and h

f and h are the input arguments you use to define the filter response desired. Each frequency value
you specify in f must have a corresponding response value in h. This example creates a filter with

5 Functions

5-408

two passbands (b = 4) and shows how f and h are related. This example is for illustration only. It is
not an actual filter.

Define the frequency vector f as [0 0.1 0.2 0.4 0.5 0.6 0.9 1.0]

Define the response vector h as [0 0.5 0.5 0.1 0.1 0.8 0.8 0]

These specifications connectf and h as shown in the following table.

f (Normalized Frequency) h (Response Desired at f)
0 0
0.1 0.5
0.2 0.5
0.4 0.1
0.5 0.1
0.6 0.8
0.9 0.8
1.0 0.0

A response with two passbands—one roughly between 0.1 and 0.2 and the second between 0.6 and
0.9—results from the mapping between f and h. Plotting f and h yields the following figure that
resembles a filter with two passbands.

The second example in Examples shows this plot in more detail with a complex filter response for h.
In the example, h uses complex values for the response.

Different specification types often have different design methods available. Use designmethods(d)
to get a list of design methods available for a given specification option and specifications object.

 fdesign.arbmagnphase

5-409

d = fdesign.arbmagnphase(specification,specvalue1,specvalue2,...) initializes the
filter specification object with specvalue1, specvalue2, and so on. Use get(d,'description')
for descriptions of the various specifications specvalue1, specvalue2, ...specn.

d = fdesign.arbmagnphase(specvalue1,specvalue2,specvalue3) uses the default
specification option n,f,h, setting the filter order, filter frequency vector, and the complex frequency
response vector to the values specvalue1, specvalue2, and specvalue3.

d = fdesign.arbmagnphase(...,fs) specifies the sampling frequency in Hz. All other frequency
specifications are also assumed to be in Hz when you specify fs.

Examples

Construct a Complex Analog Filter

Use fdesign.arbmagnphase to model a complex analog filter.

d = fdesign.arbmagnphase('n,f,h',100); % N=100, f and h set to defaults.
design(d,'freqsamp','SystemObject',true);

For a more complex example, design a bandpass filter with low group delay by specifying the desired
delay and using f and h to define the filter bands.

n = 50; % Group delay of a linear phase filter would be 25.
gd = 12; % Set the desired group delay for the filter.

5 Functions

5-410

f1=linspace(0,.25,30); % Define the first stopband frequencies.
f2=linspace(.3,.56,40);% Define the passband frequencies.
f3=linspace(.62,1,30); % Define the second stopband frequencies.
h1 = zeros(size(f1)); % Specify the filter response at the freqs in f1.
h2 = exp(-1j*pi*gd*f2); % Specify the filter response at the freqs in f2.
h3 = zeros(size(f3)); % Specify the response at the freqs in f3.
d=fdesign.arbmagnphase('n,b,f,h',50,3,f1,h1,f2,h2,f3,h3);
D = design(d,'equiripple','SystemObject',true);
fvtool(D,'Analysis','freq');

See Also
fdesign | design | designmethods | setspecs

Introduced in R2011a

 fdesign.arbmagnphase

5-411

fdesign.audioweighting
Audio weighting filter specification object

Compatibility

Note The fdesign.audioweighting function will be removed from DSP System Toolbox in a
future release. Existing instances of the function continue to run. For new code, use the
weightingFilter object instead.

Syntax
HAwf = fdesign.audioweighting
HAwf = fdesign.audioweighting(spec)
HAwf = fdesign.audioweighting(spec,specvalue1,specvalue2)
HAwf = fdesign.audioweighting(specvalue1,specvalue2)
HAwf = fdesign.audioweighting(...,Fs)

Description
Supported audio weighting filter types are: A weighting, C weighting, C-message, ITU-T 0.41, and
ITU-R 468–4 weighting.

HAwf = fdesign.audioweighting constructs an audio weighting filter specification object HAwf
with a weighting type of A and a filter class of 1. Use the design method and set the
'SystemObject' flag to true, to instantiate a System object based on the specifications in HAwf.
Use designmethods to find valid filter design methods. Because the standards for audio weighting
filters are in Hz, normalized frequency specifications are not supported for
fdesign.audioweighting objects. The default sampling frequency for A weighting, C weighting,
C-message, and ITU-T 0.41 filters is 48 kHz. The default sampling frequency for the ITU-R 468–4 filter
is 80 kHz. If you invoke the normalizefreq method, a warning is issued when you instantiate the
System object and the default sampling frequencies in Hz are used.

HAwf = fdesign.audioweighting(spec) returns an audio weighting filter specification object
using default values for the specification in spec. The following are valid entries for spec. The
entries are not case sensitive.

• 'WT,Class' (default spec)

The 'WT,Class' specification is valid for A weighting and C weighting filters of class 1 or 2.

The weighting type is specified by the character vector: 'A' or 'C'. The class is the scalar 1 or 2.

The default values for 'WT,Class' are 'A',1.
• 'WT'

The 'WT' specification is valid for C-message (default), ITU-T 0.41, and ITU-R 468–4 weighting
filters.

5 Functions

5-412

The weighting type is specified by the character vector: 'Cmessage', 'ITUT041', or
'ITUR4684'.

HAwf = fdesign.audioweighting(spec,specvalue1,specvalue2) constructs an audio
weighting filter specification object HAwf and sets its specifications at construction time.

HAwf = fdesign.audioweighting(specvalue1,specvalue2) constructs an audio weighting
filter specification object HAwf with the specification 'WT,Class' using the values you provide. The
valid weighting types are 'A' or 'C'.

HAwf = fdesign.audioweighting(...,Fs) specifies the sampling frequency in Hz. The
sampling frequency is a scalar trailing all other input arguments.

Input Arguments
Parameter Name/Value Pairs

WT

Weighting type

The weighting type defines the frequency response of the filter. The valid weighting types are: A
weighting, C weighting, C-message, ITU-T 0.41, and ITU-R 468–4 weighting. The weighting types are
described in “More About” on page 5-415.

Class

Filter Class

Filter class is only applicable for A weighting and C weighting filters. The filter class describes the
frequency-dependent tolerances specified in the relevant standards [1], [2]. There are two possible
class values: 1 and 2. Class 1 weighting filters have stricter tolerances than class 2 filters. The filter
class value does not affect the design. The class value is only used to provide a specification mask in
fvtool for the analysis of the filter design.

Default: 1

Examples

Compare Class 1 A and ITU-R 468-4 Weighting Filters

Compare class 1 A weighting and ITU-R 468-4 filters between 0.1 and 12 kHz. Sampling frequency is
44.1 kHz

HawfA = fdesign.audioweighting('WT,Class','A',1,44.1e3);
HawfITUR = fdesign.audioweighting('WT','ITUR4684',44.1e3);

Afilter = design(HawfA,'SystemObject',true);
ITURfilter = design(HawfITUR,'SystemObject',true);

hfvt = fvtool(Afilter,ITURfilter);

 fdesign.audioweighting

5-413

axis([0.1 12 -80 20]);
legend(hfvt,'A-weighting','ITU-R 468-4');

Compare C-message and ITU-T 0.41 Weighting Filters

hCmessage = fdesign.audioweighting('WT','Cmessage',24e3);
hITUT = fdesign.audioweighting('WT','ITUT041',24e3);
dCmessage = design(hCmessage,'SystemObject',true);
dITUT = design(hITUT,'SystemObject',true);
hfvt = fvtool(dCmessage,dITUT);
legend(hfvt,'C-Message Weighting','ITU-T 0.41 Weighting');
axis([0.1 10 -50 5]);

Construct an ITU-R 468-4 Weighting Filter

Construct an ITU-R 468-4 filter using all available design methods.

HAwf = fdesign.audioweighting('WT','ITUR4684');
ValidDesigns = designmethods(HAwf);
% returns iirlpnorm,equiripple,freqsamp in cell array
D = design(HAwf,'all','SystemObject',true); % returns all designs
hfvt = fvtool(D{1},D{2},D{3});
legend(hfvt,'Least P-norm IIR','FIR Equiripple',...,
'FIR Frequency Sampling')

Design and Use Audio Weighting Filter

Design a class 2 A-weighted filter.

fs = 48e3;
audioWeightingFilterDesign = fdesign.audioweighting('A',2,fs);

Convert the design to a System object for use.

audioWeightingFilter = design(audioWeightingFilterDesign,...
'SystemObject',true);

Create a dsp.SpectrumAnalyzer object to visualize original and filtered signals.

windowLength = 2048;
scope = dsp.SpectrumAnalyzer(...
 'SampleRate',fs, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'SpectralAverages',50, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'WindowLength',windowLength, ...
 'Title','A-Weighted Filtering', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original signal','Filtered signal'});

Apply the A-weighting filter to white noise.

5 Functions

5-414

tic
while toc < 10
 x = rand(windowLength,1) - 0.5;
 y = audioWeightingFilter(x);
 scope([x,y])
end

More About
A weighting

The specifications for the A weighting filter are found in ANSI standard S1.42-2001. The A weighting
filter is based on the 40–phon Fletcher-Munson equal loudness contour [3]. One phon is equal to one
dB sound pressure level (SPL) at one kHz. The Fletcher-Munson equal loudness contours are
designed to account for frequency and level dependent differences in the perceived loudness of tonal
stimuli. The 40–phon contour reflects the fact that the human auditory system is more sensitive to
frequencies around 1–2 kHz than lower and higher frequencies. The filter roll off is more pronounced
at lower frequencies and more modest at higher frequencies. While A weighting is based on the equal
loudness contour for low-level (40–phon) tonal stimuli, it is commonly used in the United States for
assessing potential health risks associated with noise exposure to narrowband and broadband stimuli
at high levels.

C weighting

The specifications for the C weighting filter are found in ANSI standard S1.42-2001. The C weighting
filter approximates the 100–phon Fletcher-Munson equal loudness contour for tonal stimuli. The C
weighting magnitude response is essentially flat with 3–dB frequencies at 31.5 Hz and 8000 Hz.
While C weighting is not as common as A weighting, sound level meters frequently have a C
weighting filter option.

C-message

The specifications for the C–message weighting filter are found in Bell System Technical Reference,
PUB 41009. C-message weighting filters are designed for measuring the impact of noise on
telecommunications circuits used in speech transmission [6]. C-message weighting filters are
commonly used in North America, while the ITU-T 0.41 filter is more commonly used outside of North
America.

ITU-R 468–4

The specifications for the ITU-R 486–4 weighting filter are found in the International
Telecommunication Union Recommendation ITU-R BS.468-4. ITU-R 486–4 is an equal loudness
contour weighting filter. Unlike the A weighting filter, the ITU-R 468–4 filter describes subjective
loudness judgements for broadband stimuli [4]. A common criticism of the A weighting filter is that it
underestimates the loudness judgement of real-world stimuli particularly in the frequency band from
about 1–9 kHz. A comparison of A weighting and ITU-R 468–4 weighting curves shows that the ITU-R
468–4 curve applies more gain between 1 and 10 kHz with a peak difference of approximately 12 dB
around 6–7 kHz.

ITU-T 0.41

The specifications for the ITU-T 0.41 filter are found in the ITU-T Recommendation 0.41. ITU-T 0.41
weighting filters are designed for measuring the impact of noise on telecommunications circuits used

 fdesign.audioweighting

5-415

in speech transmission [5]. ITU-T 0.41 weighting filters are commonly used outside of North America,
while the C-message weighting filter is more common in North America.

References

[1] American National Standard Design Response of Weighting Networks for Acoustical
Measurements, ANSI S1.42-2001, Acoustical Society of America, New York, NY, 2001.

[2] Electroacoustics Sound Level Meters Part 1: Specifications, IEC 61672-1, First Edition 2002-05.

[3] Fletcher, H. and W.A. Munson. “Loudness, its definition, measurement and calculation.” Journal of
the Acoustical Society of America, Vol. 5, 1933, pp. 82–108.

[4] Measurement of Audio-Frequency Noise Voltage Level in Sound Broadcasting, International
Telecommunication Union Recommendation ITU-R BS.468-4, 1986.

[5] Psophometer for Use on Telephone-Type Circuits, ITU-T Recommendation 0.41.

[6] Transmission Parameters Affecting Voiceband Data Transmission-Measuring Techniques, Bell
System Technical Reference, PUB 41009, 1972.

See Also
design | designmethods | fdesign | fvtool

Topics
“Audio Weighting Filters” (Audio Toolbox)
“Design a Filter in Fdesign — Process Overview”

Introduced in R2011a

5 Functions

5-416

fdesign.bandpass
Bandpass filter design specification object

Syntax
bandpassSpecs = fdesign.bandpass
bandpassSpecs = fdesign.bandpass(spec,value1,...,valueN)
bandpassSpecs = fdesign.bandpass(___ ,Fs)
bandpassSpecs = fdesign.bandpass(___ ,magunits)

Description
The fdesign.bandpass function returns a bandpass filter design specification object that contains
specifications for a filter such as passband frequency, stopband frequency, passband ripple, and filter
order. Use the design function to design the filter from the filter design specifications object.

For more control options, see “Filter Design Procedure” on page 5-391. For a complete workflow, see
“Design a Filter in Fdesign — Process Overview”.

bandpassSpecs = fdesign.bandpass constructs a bandpass filter design specifications object
with the following default values:

• First stopband frequency set to 0.35.
• First passband frequency set to 0.45.
• Second passband frequency set to 0.55.
• Second stopband frequency set to 0.65.
• First stopband attenuation set to 60 dB.
• Passband ripple set to 1dB.
• Second stopband attenuation set to 60 dB.

bandpassSpecs = fdesign.bandpass(spec,value1,...,valueN) constructs a bandpass filter
specification object with a particular filter order, stopband frequency, passband frequency, and other
specification options. Indicate the options you want to specify in the expression spec. After the
expression, specify a value for each option. If you do not specify values after the spec argument, the
function assumes the default values.

bandpassSpecs = fdesign.bandpass(___ ,Fs) provides the sample rate in Hz of the signal to
be filtered. Fs must be specified as a scalar trailing the other numerical values provided. In this case,
all frequencies in the specifications are in Hz as well.

The design specification
fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2',.4,.5,.6,.7,60,1,80) designs
the same filter as
fdesign.bandstop('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2',1600,2000,2400,2800,60,1,80
,8000)

bandpassSpecs = fdesign.bandpass(___ ,magunits) provides the units for the specified
magnitude. magunits can be one of the following: 'linear', 'dB', or 'squared'. If this argument

 fdesign.bandpass

5-417

is omitted, the object assumes the units of magnitude specification to be 'dB'. The magnitude
specifications are always converted and stored in decibels regardless of how they were specified. If
Fs is provided, magunits must follow Fs in the input argument list.

Examples

Design Equiripple FIR Bandpass Filter

Design a constrained-band FIR equiripple filter of order 100 with a passband of [1, 1.4] kHz. Both
stopband attenuation values are constrained to 60 dB. The sample rate is 10 kHz.

Create a bandpass filter design specification object using the fdesign.bandpass function and
specify these design parameters.

bandpassSpecs = fdesign.bandpass('N,Fst1,Fp1,Fp2,Fst2,C',100,800,1e3,1.4e3,1.6e3,1e4);

Constrain the two stopbands with a stopband attenuation of 60 dB.

bandpassSpecs.Stopband1Constrained = true;
bandpassSpecs.Astop1 = 60;
bandpassSpecs.Stopband2Constrained = true;
bandpassSpecs.Astop2 = 60;

Design the bandpass filter using the design function. The resulting filter is a dsp.FIRFilter
System object™. For details on how to apply this filter on streaming data, refer to dsp.FIRFilter.

bandpassFilt = design(bandpassSpecs,'Systemobject',true)

bandpassFilt =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [5.5055e-04 5.4751e-05 -2.2052e-05 6.5244e-05 ...]
 InitialConditions: 0

 Show all properties

Visualize the frequency response of the designed filter using fvtool.

fvtool(bandpassFilt)

5 Functions

5-418

Measure the frequency response characteristics of the filter using measure. The passband ripple is
slightly over 2 dB. Because the design constrains both stopbands, you cannot constrain the passband
ripple.

measure(bandpassFilt)

ans =
Sample Rate : 10 kHz
First Stopband Edge : 800 Hz
First 6-dB Point : 946.7621 Hz
First 3-dB Point : 975.1807 Hz
First Passband Edge : 1 kHz
Second Passband Edge : 1.4 kHz
Second 3-dB Point : 1.4248 kHz
Second 6-dB Point : 1.4533 kHz
Second Stopband Edge : 1.6 kHz
First Stopband Atten. : 60.0614 dB
Passband Ripple : 2.1443 dB
Second Stopband Atten. : 60.0399 dB
First Transition Width : 200 Hz
Second Transition Width : 200 Hz

 fdesign.bandpass

5-419

Design Butterworth IIR Bandpass Filter

Design a Butterworth IIR bandpass filter. The filter design procedure is:

1 Specify the filter design specifications using a fdesign function.
2 Pick a design method provided by the designmethods function.
3 To determine the available design options to choose from, use the designoptions function.
4 Design the filter using the design function.

Construct a default bandpass filter design specification object using fdesign.bandpass.

bandpassSpecs = fdesign.bandpass

bandpassSpecs =
 bandpass with properties:

 Response: 'Bandpass'
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
 NormalizedFrequency: 1
 Fstop1: 0.3500
 Fpass1: 0.4500
 Fpass2: 0.5500
 Fstop2: 0.6500
 Astop1: 60
 Apass: 1
 Astop2: 60

Determine the available designmethods using the designmethods function. To design a Butterworth
filter, pick butter.

designmethods(bandpassSpecs,'Systemobject',true)

Design Methods that support System objects for class fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

When designing the filter, you can specify additional design options. View a list of options using the
designoptions function. The function also shows the default design options the filter uses.

designoptions(bandpassSpecs,'butter')

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 MatchExactly: {'passband' 'stopband'}
 SystemObject: 'bool'
 DefaultFilterStructure: 'df2sos'
 DefaultMatchExactly: 'stopband'

5 Functions

5-420

 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]
 DefaultSystemObject: 0

Use the design function to design the filter. Pass 'butter' and the specifications given by variable
bandpassSpecs, as input arguments. Specify the 'matchexactly' design option to 'passband'.

bpFilter = design(bandpassSpecs,'butter','matchexactly','passband','SystemObject',true)

bpFilter =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [7x6 double]
 ScaleValues: [8x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Visualize the frequency response of the designed filter.

fvtool(bpFilter)

 fdesign.bandpass

5-421

Bandpass Filtering of Sinusoids

Bandpass filter a discrete-time sine wave signal which consists of three sinusoids at frequencies, 1
kHz, 10 kHz, and 15 kHz.

Design an FIR Equiripple bandpass filter by first creating a bandpass filter design specifications
object, and then designing a filter using these specifications.

Design Bandpass Filter

Create a bandpass filter design specifications object using fdesign.bandpass.

bandpassSpecs = fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2', ...
 1/4,3/8,5/8,6/8,60,1,60);

List the available design methods for this object.

designmethods(bandpassSpecs)

Design Methods for class fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

To design an Equiripple filter, pick 'equiripple'.

bpFilter = design(bandpassSpecs,'equiripple','Systemobject',true)

bpFilter =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [-0.0043 -3.0812e-15 0.0136 3.7820e-15 -0.0180 ...]
 InitialConditions: 0

 Show all properties

Visualize the frequency response of the designed filter.

fvtool(bpFilter,'Fs',44100)

5 Functions

5-422

Create Sinusoidal Signal

Create a signal that is a sum of three sinusoids with frequencies at 1 kHz, 10 kHz, and 15 kHz.
Initialize Spectrum Analyzer to view the original signal and the filtered signal.

Sine1 = dsp.SineWave('Frequency',1e3,'SampleRate',44.1e3,'SamplesPerFrame',4000);
Sine2 = dsp.SineWave('Frequency',10e3,'SampleRate',44.1e3,'SamplesPerFrame',4000);
Sine3 = dsp.SineWave('Frequency',15e3,'SampleRate',44.1e3,'SamplesPerFrame',4000);

SpecAna = dsp.SpectrumAnalyzer('PlotAsTwoSidedSpectrum',false, ...
 'SampleRate',Sine1.SampleRate, ...
 'NumInputPorts',2,...
 'ShowLegend',true, ...
 'YLimits',[-240,45]);

SpecAna.ChannelNames = {'Original noisy signal','Bandpass filtered signal'};

Filter Sinusoidal Signal

Filter the sinusoidal signal using the bandpass filter that has been designed. View the original signal
and the filtered signal in the Spectrum Analyzer. The tone at 1 kHz is filtered out and attenuated. The
tone at 10 kHz is unaffected, and the tone at 15 kHz is mildly attenuated because it appears in the
transition band of the filter.

for i = 1 : 1000
 x = Sine1()+Sine2()+Sine3();
 y = bpFilter(x);

 fdesign.bandpass

5-423

 SpecAna(x,y);
end
release(SpecAna)

Input Arguments
spec — Specification
'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2' (default) | 'N,F3dB1,F3dB2' | 'N,F3dB1,F3dB2,Ap'
| ...

Specification expression, specified as one of these character vectors:

• 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2' (default)
• 'N,F3dB1,F3dB2'
• 'N,F3dB1,F3dB2,Ap'
• 'N,F3dB1,F3dB2,Ast'
• 'N,F3dB1,F3dB2,Ast1,Ap,Ast2'
• 'N,F3dB1,F3dB2,BWp'
• 'N,F3dB1,F3dB2,BWst'
• 'N,Fc1,Fc2'

5 Functions

5-424

• 'N,Fc1,Fc2,Ast1,Ap,Ast2'
• 'N,Fp1,Fp2,Ap'
• 'N,Fp1,Fp2,Ast1,Ap,Ast2'
• 'N,Fst1,Fp1,Fp2,Fst2'
• 'N,Fst1,Fp1,Fp2,Fst2,C'
• 'N,Fst1,Fp1,Fp2,Fst2,Ap'
• 'N,Fst1,Fst2,Ast'
• 'Nb,Na,Fst1,Fp1,Fp2,Fst2'

This table describes each option that can appear in the expression.

Specification option Description
Ap Amount of ripple allowed in passband, specified

as Apass in dB.
Ast Stopband attenuation (dB), specified using

Astop.
Ast1 Attenuation in the first stopband (dB), specified

using Astop1.
Ast2 Attenuation in the second stopband (dB),

specified using Astop2.
BWp Bandwidth of the filter passband, specified as

BWpass in normalized frequency units.
BWst Frequency width between the two stopband

frequencies, specified as BWstop in normalized
frequency units.

F3dB1 Frequency of the 3 dB point below the passband
value for the first cutoff, specified in normalized
frequency units. Applies to IIR filters.

F3dB2 Frequency of the 3 dB point below the passband
value for the second cutoff, specified in
normalized frequency units. Applies to IIR filters.

Fc1 First cutoff frequency (normalized frequency
units), specified using Fcutoff1. Applies to FIR
filters.

Fc2 Second cutoff frequency (normalized frequency
units), specified using Fcutoff1. Applies to FIR
filters.

Fp1 Frequency at the edge of the start of the
passband, specified as Fpass1 in normalized
frequency units.

Fp2 Frequency at the edge of the end of the
passband, specified as Fpass2 in normalized
frequency units.

 fdesign.bandpass

5-425

Specification option Description
Fst1 Frequency at the edge of the end of the first stop

band, specified as Fstop1 in normalized
frequency units.

Fst2 Frequency at the edge of the start of the second
stop band, specified as Fstop2 in normalized
frequency units.

N Filter order for FIR filters. Or both the numerator
and denominator orders for IIR filters when Na
and Nb are not provided. Specified using
FilterOrder.

Nb Numerator order for IIR filters, specified using
the NumOrder property.

Na Denominator order for IIR filters, specified using
the DenOrder property.

C Constrained band flag. This enables you to
specify passband ripple or stopband attenuation
for fixed-order designs in one or two of the three
bands.

For more details, see c.

Graphically, the filter specifications look similar to those shown in this figure.

Regions between specification values like Fst1 and Fp1 are transition regions where the filter
response is not explicitly defined.

The design methods available for designing the filter depend on the specification expression. You can
obtain these methods using the designmethods function. This table lists each specification
expression supported by fdesign.bandpass and the available corresponding design methods.

Specification expression Supported design methods
'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2' butter, cheby1, cheby2, ellip, equiripple,

kaiserwin
'N,F3dB1,F3dB2' butter
'N,F3dB1,F3dB2,Ap' cheby1

5 Functions

5-426

Specification expression Supported design methods
'N,F3dB1,F3dB2,Ast' cheby2, ellip
'N,F3dB1,F3dB2,Ast1,Ap,Ast2' ellip
'N,F3dB1,F3dB2,BWp' cheby1
'N,F3dB1,F3dB2,BWst' cheby2
'N,Fc1,Fc2' window
'N,Fc1,Fc2,Ast1,Ap,Ast2' fircls
'N,Fp1,Fp2,Ap' cheby1
'N,Fp1,Fp2,Ast1,Ap,Ast2' ellip
'N,Fst1,Fp1,Fp2,Fst2' iirlpnorm, equiripple, firls
'N,Fst1,Fp1,Fp2,Fst2,C' equiripple
'N,Fst1,Fp1,Fp2,Fst2,Ap' ellip
'N,Fst1,Fst2,Ast' cheby2
'Nb,Na,Fst1,Fp1,Fp2,Fst2' iirlpnorm

To design the filter, call the design function with one of these design methods as an input. You can
choose the type of filter response by passing 'FIR' or 'IIR' to the design function. For more
details, see design. Enter help(bandpassSpecs,'method') at the MATLAB command line to
obtain detailed help on the design options for a given design method.

value1,...,valueN — Specification values
comma-separated list of values

Specification values, specified as a comma-separated list of values. Specify a value for each option in
spec in the same order that the options appear in the expression.
Example: bandpassSpecs =
fdesign.bandpass('N,Fc1,Fc2,Ast1,Ap,Ast2',n,fc1,fc2,ast1,ap,ast2)

The input arguments below provide more details for each option in the expression.

n — Filter order
positive integer

Filter order for FIR filters, specified as a positive integer. In the case of an IIR filter design, if nb and
na are not provided, this value is interpreted as both the numerator order and the denominator order.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

nb — Numerator order for IIR filters
nonnegative integer

Numerator order for IIR filters, specified as a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

na — Denominator order for IIR filters
positive integer

Denominator order for IIR filters, specified as a positive integer.

 fdesign.bandpass

5-427

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

c — Constrained band flag
logical

This enables you to specify passband ripple or stopband attenuation for fixed-order designs in one or
two of the three bands.

In the specification 'N,Fst1,Fp1,Fp2,Fst2,C', you cannot specify constraints for all three bands
(two stopbands and one passband) simultaneously. You can specify constraints in any one or two
bands.

Consider the following bandpass design specification where both the stopbands are constrained to
the default value 60 dB.
Example: spec =
fdesign.bandpass('N,Fst1,Fp1,Fp2,Fst2,C',100,800,1e3,1.4e3,1.6e3,1e4);
spec.Stopband1Constrained=true; spec.Stopband2Constrained=true;

ap — Passband ripple
positive scalar

Passband ripple, specified as a positive scalar in dB. If magunits is 'linear' or 'squared', the
passband ripple is converted and stored in dB by the function regardless of how it has been specified.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ast — Stopband attenuation
positive scalar

5 Functions

5-428

Stopband attenuation, specified as a positive scalar in dB. If magunits is 'linear' or 'squared',
the stopband attenuation is converted and stored in dB by the function regardless of how it has been
specified.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ast1 — First stopband attenuation
positive scalar

Attenuation in the first stopband, specified as a positive scalar in dB. If magunits is 'linear' or
'squared', the first stopband attenuation is converted and stored in dB by the function regardless
of how it has been specified.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ast2 — Second stopband attenuation
positive scalar

Attenuation in the second stopband, specified as a positive scalar in dB. If magunits is 'linear' or
'squared', the second stopband attenuation is converted and stored in dB by the function
regardless of how it has been specified.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

F3dB1 — First 3 dB frequency
positive scalar

First 3 dB frequency, specified as positive scalar in normalized frequency units.

 fdesign.bandpass

5-429

This is the frequency of the 3 dB point below the passband value for the first cutoff. This input
argument applies to IIR filters only.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

F3dB2 — Second 3 dB frequency
positive scalar

Second 3 dB frequency, specified as positive scalar in normalized frequency units.

This is the frequency of the 3 dB point below the passband value for the second cutoff. This input
argument applies to IIR filters only.

5 Functions

5-430

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fc1 — First cutoff frequency
positive scalar

First cutoff frequency, specified as positive scalar in normalized frequency units.

This input argument applies to FIR filters only.

 fdesign.bandpass

5-431

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fc2 — Second cutoff frequency
positive scalar

Second cutoff frequency, specified as positive scalar in normalized frequency units.

This input argument applies to FIR filters only.

5 Functions

5-432

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fst1 — First stopband frequency
positive scalar

First stopband frequency, specified as positive scalar in normalized frequency units.

This is the frequency at the edge of the end of the first stopband.

 fdesign.bandpass

5-433

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fst2 — Second stopband frequency
positive scalar

Second stopband frequency, specified as a positive scalar in normalized frequency units.

This is the frequency at the edge of the start of the second stopband.

5 Functions

5-434

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fp1 — First passband frequency
positive scalar

First passband frequency, specified as positive scalar in normalized frequency units.

This is the frequency at the edge of the start of the first passband.

 fdesign.bandpass

5-435

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fp2 — Second passband frequency
positive scalar

Second passband frequency, specified as positive scalar in normalized frequency units.

This is the frequency at the edge of the end of the passband.

5 Functions

5-436

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

bwp — Passband frequency width
positive scalar

Bandwidth of the filter passband in normalized frequency units, specified as a positive scalar less
than F3dB2−F3dB1.

 fdesign.bandpass

5-437

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

bwst — Frequency width between stopband frequencies
positive scalar

Frequency width between the two stopband frequencies, specified as a positive scalar in normalized
frequency units.

5 Functions

5-438

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fs — Sample rate
scalar

Sample rate of the signal to be filtered, specified as a scalar in Hz. Specify the sample rate as a scalar
trailing the other numerical values provided. When Fs is provided, Fs is assumed to be in Hz, as are
all other frequency values. Note that you do not have to change the specification string.

The following design has the specification string set to 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2',
and sample rate set to 8000 Hz.

bandpassSpecs =
fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2',1600,2000,2400,2800,60,1,80
,8000); filt = design(bandpassSpecs,'Systemobject',true);

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

magunits — Magnitude units
'dB' (default) | 'linear' | 'squared'

Magnitude specification units, specified as 'dB', 'linear', or 'squared'. If this argument is
omitted, the object assumes the units of magnitude to be 'dB'. Note that the magnitude
specifications are always converted and stored in dB regardless of how they were specified. If Fs is
one of the input arguments, magunits must be specified after Fs in the input argument list.

 fdesign.bandpass

5-439

Output Arguments
bandpassSpecs — Bandpass filter design specification object
bandpass object

Bandpass filter design specification object, returned as a bandpass object. The fields of the object
depend on the spec input character vector.

Consider an example where the spec argument is set to 'N,Fc1,Fc2', and the corresponding
values are set to 10, 0.6, and 0.8, respectively. The bandpass filter design specification object is
populated with the following fields:

See Also
fdesign | fdesign.bandstop | fdesign.highpass | fdesign.lowpass

Topics
“Design a Filter in Fdesign — Process Overview”

Introduced in R2009a

5 Functions

5-440

fdesign.bandstop
Bandstop filter design specification object

Syntax
bandstopSpecs = fdesign.bandstop
bandstopSpecs = fdesign.bandstop(spec,value1,...,valueN)
bandstopSpecs = fdesign.bandstop(___ ,Fs)
bandstopSpecs = fdesign.bandstop(___ ,magunits)

Description
The fdesign.bandstop function returns a bandstop filter design specification object that contains
the specifications for a filter, such as passband frequency, stopband frequency, passband ripple, and
filter order. Then, use the design function to design the filter from the filter design specifications
object.

For more control options, see “Filter Design Procedure” on page 5-391. For a complete workflow, see
“Design a Filter in Fdesign — Process Overview”.

bandstopSpecs = fdesign.bandstop constructs a bandstop filter design specifications object
with the following default values:

• First passband frequency set to 0.35.
• First stopband frequency set to 0.45.
• Second stopband frequency set to 0.55.
• Second passband frequency set to 0.65.
• First passband ripple 1 dB.
• Stopband attenuation set to 60 dB.
• Second passband ripple set to 1 dB.

bandstopSpecs = fdesign.bandstop(spec,value1,...,valueN) constructs a bandstop filter
design specifications object with a particular filter order, passband frequencies, stopband
frequencies, and other specification options. Indicate the options you want to specify in the
expression spec. After the expression, specify a value for each option. If you do not specify values
after the spec argument, the function assumes the default values.

bandstopSpecs = fdesign.bandstop(___ ,Fs) provides the sample rate of the signal to be
filtered, in Hz. Fs must be specified as a scalar trailing the other numerical values provided. In this
case, all frequencies in the specifications are in Hz as well.

The design specification
fdesign.bandstop('Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2',.4,.5,.6,.7,1,80,.5) designs
the same filter as
fdesign.bandstop('Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2',1600,2000,2400,2800,1,80,0.5
,8000)

bandstopSpecs = fdesign.bandstop(___ ,magunits) provides the units for any magnitude
specification given. magunits can be one of the following: 'linear', 'dB', or 'squared'. If this

 fdesign.bandstop

5-441

argument is omitted, 'dB' is assumed. The magnitude specifications are always converted and stored
in dB regardless of how they were specified. If Fs is provided, magunits must follow Fs in the input
argument list.

Examples

Design Equiripple FIR Bandstop Filter

Design a constrained-band FIR equiripple filter of order 60 with a stopband of [12.8 22.4] kHz. Both
passband ripple values are constrained to 1 dB. The sample rate is 64 kHz.

Create a bandstop filter design specification object using the fdesign.bandstop function and
specify these design parameters.

bandstopSpecs = fdesign.bandstop('N,Fp1,Fst1,Fst2,Fp2,C',60,9.6e3,12.8e3,22.4e3,25.6e3,64000);

Constrain the two passbands with a passband ripple of 1 dB.

bandstopSpecs.Passband1Constrained = true;
bandstopSpecs.Apass1 = 1;
bandstopSpecs.Passband2Constrained = true;
bandstopSpecs.Apass2 = 1;

Design the bandstop filter using the design function. The resulting filter is a dsp.Filter System
object™. For details on how to apply this filter on streaming data, refer to dsp.FIRFilter.

bandstopFilt = design(bandstopSpecs,'Systemobject',true)

bandstopFilt =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [-3.6116e-04 -0.0027 -3.1395e-04 -0.0033 0.0030 ...]
 InitialConditions: 0

 Show all properties

Visualize the frequency response of the designed filter using fvtool.

fvtool(bandstopFilt)

5 Functions

5-442

Measure the frequency response characteristics of the filter using measure.

measure(bandstopFilt)

ans =
Sample Rate : 64 kHz
First Passband Edge : 9.6 kHz
First 3-dB Point : 10.5255 kHz
First 6-dB Point : 10.9058 kHz
First Stopband Edge : 12.8 kHz
Second Stopband Edge : 22.4 kHz
Second 6-dB Point : 24.2866 kHz
Second 3-dB Point : 24.6685 kHz
Second Passband Edge : 25.6 kHz
First Passband Ripple : 0.11754 dB
Stopband Atten. : 69.3934 dB
Second Passband Ripple : 0.11761 dB
First Transition Width : 3.2 kHz
Second Transition Width : 3.2 kHz

Design Minimum Order Elliptic Bandstop Filter

Design a minimum order elliptic bandstop filter. The filter design procedure is:

 fdesign.bandstop

5-443

1 Specify the filter design specifications using a fdesign function.
2 Pick a design method provided by the designmethods function.
3 To determine the available design options to choose from, use the designoptions function.
4 Design the filter using the design function.

Construct fdesign.bandstop in the default state and input the design specifications to the
function.

bandstopSpecs = fdesign.bandstop(.3,.4,.6,.7,.5,60,1)

bandstopSpecs =
 bandstop with properties:

 Response: 'Bandstop'
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
 NormalizedFrequency: 1
 Fpass1: 0.3000
 Fstop1: 0.4000
 Fstop2: 0.6000
 Fpass2: 0.7000
 Apass1: 0.5000
 Astop: 60
 Apass2: 1

Determine the available designmethods using the designmethods function. To design an elliptic
filter, pick ellip.

designmethods(bandstopSpecs,'Systemobject',true)

Design Methods that support System objects for class fdesign.bandstop (Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

When designing the filter, you can specify additional design options. View a list of options using the
designoptions function. The function also shows the default design options the filter uses.

designoptions(bandstopSpecs,'ellip')

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 MatchExactly: {'passband' 'stopband' 'both'}
 SystemObject: 'bool'
 DefaultFilterStructure: 'df2sos'
 DefaultMatchExactly: 'both'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]
 DefaultSystemObject: 0

5 Functions

5-444

Use the design function to design the filter. Pass 'ellip' and the specifications given by the
variable 'bandstopSpecs', as input arguments.

bsFilter = design(bandstopSpecs,'ellip','Systemobject',true)

bsFilter =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Visualize the frequency response of the designed filter.

fvtool(bsFilter)

 fdesign.bandstop

5-445

Bandstop Filtering of Sinusoids

Construct a bandstop filter to reject the discrete frequency band between 3π/8 and 5π/8 rad/sample.
With a sampling frequency of 48 kHz, these values translate to a frequency range of [9 15] kHz. Apply
the filter to a discrete-time signal consisting of the superposition of three discrete-time sinusoids.

The filter is designed by first creating a bandstop filter design specifications object, and then passing
the object as an input to the design function.

Design Bandstop Filter

Create a bandstop filter design specifications object using fdesign.bandstop.

bandstopSpecs = fdesign.bandstop(1/4,3/8,5/8,6/8,1,60,1)

bandstopSpecs =
 bandstop with properties:

 Response: 'Bandstop'
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
 NormalizedFrequency: 1
 Fpass1: 0.2500
 Fstop1: 0.3750
 Fstop2: 0.6250
 Fpass2: 0.7500
 Apass1: 1
 Astop: 60
 Apass2: 1

List the available design methods for this object.

designmethods(bandstopSpecs)

Design Methods for class fdesign.bandstop (Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

To design an equiripple filter, pick 'equiripple'.

bsFilter = design(bandstopSpecs,'equiripple','Systemobject',true)

bsFilter =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [0.0054 -1.9744e-15 0.0202 -3.1206e-15 0.0064 ...]
 InitialConditions: 0

 Show all properties

5 Functions

5-446

Visualize the frequency response of the designed filter.

fvtool(bsFilter,'Fs',48000)

Create Sinusoidal Signal

Create a signal that is a sum of three sinusoids with frequencies at 1 kHz, 12 kHz, and 16 kHz.
Initialize Spectrum Analyzer to view the original signal and the filtered signal.

Sine1 = dsp.SineWave('Frequency',1e3,'SampleRate',44.1e3,'SamplesPerFrame',4000);
Sine2 = dsp.SineWave('Frequency',12e3,'SampleRate',44.1e3,'SamplesPerFrame',4000);
Sine3 = dsp.SineWave('Frequency',16e3,'SampleRate',44.1e3,'SamplesPerFrame',4000);

SpecAna = dsp.SpectrumAnalyzer('PlotAsTwoSidedSpectrum',false, ...
 'SampleRate',Sine1.SampleRate, ...
 'NumInputPorts',2,...
 'ShowLegend',true, ...
 'YLimits',[-240,45]);

SpecAna.ChannelNames = {'Original noisy signal','Filtered signal'};

Filter Sinusoidal Signal

Filter the sinusoidal signal using the bandstop filter that has been designed. View the original signal
and the filtered signal in the Spectrum Analyzer. The tone at 1 kHz is unaffected. The tone at 12 kHz
is filtered out and attenuated, and the tone at 16 kHz is mildly attenuated because it appears in the
transition band of the filter.

 fdesign.bandstop

5-447

for i = 1 : 1000
 x = Sine1()+Sine2()+Sine3();
 y = bsFilter(x);
 SpecAna(x,y);
end
release(SpecAna)

Input Arguments
spec — Specification
'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2' (default) | 'N,F3dB1,F3dB2' | 'N,F3dB1,F3dB2,Ap' | ...

Specification expression, specified as one of these character vectors:

• 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2' (default)
• 'N,F3dB1,F3dB2'
• 'N,F3dB1,F3dB2,Ap' *
• 'N,F3dB1,F3dB2,Ap,Ast' *
• 'N,F3dB1,F3dB2,Ast' *
• 'N,F3dB1,F3dB2,BWp' *
• 'N,F3dB1,F3dB2,BWst' *

5 Functions

5-448

• 'N,Fc1,Fc2'
• 'N,Fc1,Fc2,Ap1,Ast,Ap2'
• 'N,Fp1,Fp2,Ap'
• 'N,Fp1,Fp2,Ap,Ast'
• 'N,Fp1,Fst1,Fst2,Fp2'
• 'N,Fp1,Fst1,Fst2,Fp2,C' *
• 'N,Fp1,Fst1,Fst2,Fp2,Ap' *
• 'N,Fst1,Fst2,Ast'
• 'Nb,Na,Fp1,Fst1,Fst2,Fp2' *

This table describes each option that can appear in the expression.

Specification option Description
Ap Amount of ripple allowed in passband, specified

as Apass in dB.
Ap1 Amount of ripple allowed in the first passband,

specified as Apass1 in dB.
Ap2 Amount of ripple allowed in the second passband,

specified as Apass2 in dB.
Ast Stopband attenuation (dB), specified using

Astop.
BWp Bandwidth of the filter passband, specified as

BWpass in normalized frequency units.
BWst Bandwidth of the filter stopband, specified as

BWstop in normalized frequency units.
F3dB1 Frequency of the 3 dB point below the passband

value for the first cutoff, specified in normalized
frequency units. Applies to IIR filters.

F3dB2 Frequency of the 3 dB point below the passband
value for the second cutoff, specified in
normalized frequency units. Applies to IIR filters.

Fc1 First cutoff frequency (normalized frequency
units), specified using Fcutoff1. Applies to FIR
filters.

Fc2 Second cutoff frequency (normalized frequency
units), specified using Fcutoff1. Applies to FIR
filters.

Fp1 Frequency at the start of the pass band, specified
as Fpass1 in normalized frequency units.

Fp2 Frequency at the end of the pass band, specified
as Fpass2 in normalized frequency units.

Fst1 Frequency at the end of the first stop band,
specified as Fstop1 in normalized frequency
units.

 fdesign.bandstop

5-449

Specification option Description
Fst2 Frequency at the start of the second stop band,

specified as Fstop2 in normalized frequency
units.

N Filter order for FIR filters. Or both the numerator
and denominator orders for IIR filters when Na
and Nb are not provided. Specified using
FilterOrder.

Nb Numerator order for IIR filters, specified using
the DenOrder property.

Na Denominator order for IIR filters, specified using
the NumOrder property.

C Constrained band flag. This enables you to
specify passband ripple or stopband attenuation
for fixed-order designs in one or two of the three
bands.

In the specification
'N,Fp1,Fst1,Fst2,Fp2,C', you cannot specify
constraints in both passbands and the stopband
simultaneously. You can specify constraints in any
one or two bands.

Graphically, the filter specifications look similar to those shown in the following figure.

Regions between specification values like Fp1 and Fst1 are transition regions where the filter
response is not explicitly defined.

The design methods available for designing the filter depend on the specification expression. You can
obtain these methods using the designmethods function. The table lists each specification
expression supported by fdesign.bandstop and the corresponding design methods available.

Specification expression Supported design methods
'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2' butter, cheby1, cheby2, ellip, equiripple,

kaiserwin
'N,F3dB1,F3dB2' butter
'N,F3dB1,F3dB2,Ap' cheby1

5 Functions

5-450

Specification expression Supported design methods
'N,F3dB1,F3dB2,Ap,Ast' ellip
'N,F3dB1,F3dB2,Ast' cheby2, ellip
'N,F3dB1,F3dB2,BWp' cheby1
'N,F3dB1,F3dB2,BWst' cheby2
'N,Fc1,Fc2' window
'N,Fc1,Fc2,Ap1,Ast,Ap2' fircls
'N,Fp1,Fp2,Ap' cheby1
'N,Fp1,Fp2,Ap,Ast' ellip
'N,Fp1,Fst1,Fst2,Fp2' iirlpnorm, equiripple, firls
'N,Fp1,Fst1,Fst2,Fp2,C' equiripple
'N,Fp1,Fst1,Fst2,Fp2,Ap' ellip
'N,Fst1,Fst2,Ast' cheby2
'Nb,Na,Fp1,Fst1,Fst2,Fp2' iirlpnorm

To design the filter, call the design function with one of these design methods as an input. You can
choose the type of filter response by passing 'FIR' or 'IIR' to the design function. For more
details, see design. Enter help(bandstopSpecs,'method') at the MATLAB command line to
obtain detailed help on the design options for a given design method, 'method'.

For more details on the procedure, see “Filter Design Procedure” on page 5-391. For an example, see
“Design Notch Filter” on page 5-528.

value1,...,valueN — Specification values
comma-separated list of values

Specification values, specified as a comma-separated list of values. Specify a value for each option in
spec in the same order that the options appear in the expression.
Example: bandstopSpecs =
fdesign.bandstop('N,Fp1,Fst1,Fst2,Fp2,C',n,fp1,fst1,fst2,fp2,c)

The arguments below describe more details for each option in the expression.

n — Filter order
positive integer

Filter order for FIR filters, specified as a positive integer. In the case of IIR filter design, if nb and na
are not provided, this value is interpreted as both the numerator order and the denominator order.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

nb — Numerator order for IIR filters
nonnegative integer

Numerator order for IIR filters, specified as a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

na — Denominator order for IIR filters
positive integer

 fdesign.bandstop

5-451

Denominator order for IIR filters, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

c — Constrained band flag
logical

This enables you to specify passband ripple or stopband attenuation for fixed-order designs in one or
two of the three bands.

In the specification 'N,Fp1,Fst1,Fst2,Fp2,C', you cannot specify constraints for all three bands
(two passbands and one stopband) simultaneously. You can specify constraints in any one or two
bands.

Consider the following bandstop design specification where both the passbands are constrained to
the default value, 1 dB.
Example: spec =
fdesign.bandstop('N,Fp1,Fst1,Fst2,Fp2,C',10,0.35,0.45,0.55,0.65);
spec.Passband1Constrained=true; spec.Passband2Constrained=true;

ap — Passband ripple
positive scalar

Passband ripple, specified as a positive scalar in dB. If magunits is 'linear' or 'squared', the
passband ripple is converted and stored in dB by the function regardless of how it has been specified.

The specified ap value applies to both the first passband and the second passband.

5 Functions

5-452

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ap1 — First passband ripple in dB
positive scalar

Amount of ripple allowed in the first passband, specified as a positive scalar in dB. If magunits is
'linear' or 'squared', the first passband ripple is converted and stored in dB by the function
regardless of how it has been specified.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ap2 — Second passband ripple in dB
positive scalar

Amount of ripple allowed in the second passband, specified as a positive scalar in dB. If magunits is
'linear' or 'squared', the second passband ripple is converted and stored in dB by the function
regardless of how it has been specified.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ast — Stopband attenuation in dB
positive scalar

Stopband attenuation, specified as a positive scalar in dB. If magunits is 'linear' or 'squared',
the stopband attenuation is converted and stored in dB by the function regardless of how it has been
specified.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 fdesign.bandstop

5-453

bwp — Passband frequency width
positive scalar

Bandwidth of the filter passband in normalized frequency units, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

bwst — Stopband frequency width
positive scalar

Bandwidth of the filter stopband in normalized frequency units, specified as a positive scalar less than
F3dB2−F3dB1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

F3dB1 — First 3 dB frequency
positive scalar

First 3 dB frequency, specified as positive scalar in normalized frequency units.

This is the frequency of the 3 dB point below the passband value for the first cutoff. Applies to IIR
filters only.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

F3dB2 — Second 3 dB frequency
positive scalar

Second 3 dB frequency, specified as positive scalar in normalized frequency units.

5 Functions

5-454

This is the frequency of the 3 dB point below the passband value for the second cutoff. Applies to IIR
filters only.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fc1 — First cutoff frequency
positive scalar

First cutoff frequency, specified as positive scalar in normalized frequency units.

Applies to FIR filters only.

 fdesign.bandstop

5-455

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fc2 — Second cutoff frequency
positive scalar

Second cutoff frequency, specified as positive scalar in normalized frequency units.

Applies to FIR filters only.

5 Functions

5-456

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fst1 — First stopband frequency
positive scalar

First stopband frequency, specified as positive scalar in normalized frequency units.

This is the frequency at the start of the stopband.

 fdesign.bandstop

5-457

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fst2 — Second stopband frequency
positive scalar

Second stopband frequency, specified as positive scalar in normalized frequency units.

This is the frequency at the end of the stopband.

5 Functions

5-458

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fp1 — First passband frequency
positive scalar

First passband frequency, specified as positive scalar in normalized frequency units.

This is the frequency at the end of the first passband.

 fdesign.bandstop

5-459

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fp2 — Second passband frequency
positive scalar

Second passband frequency, specified as positive scalar in normalized frequency units.

This is the frequency at the start of the second passband.

5 Functions

5-460

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fs — Sample rate
scalar

Sample rate of the signal to be filtered, specified as a scalar in Hz. Specify the sample rate as a scalar
trailing the other numerical values provided. When Fs is provided, Fs is assumed to be in Hz, as are
all other frequency values provided. Note that you do not have to change the specification string.

The following design has the specification string set to 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2', and
sample rate set to 8000 Hz.

bandstopSpecs =
fdesign.bandstop('Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2',1600,2000,2400,2800,1,80,.5,
8000); filt = design(bandstopSpecs,'Systemobject',true);

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

magunits — Magnitude units
'dB' (default) | 'linear' | 'squared'

Magnitude specification units, specified as 'dB', 'linear', or 'squared'. If this argument is
omitted, 'dB' is assumed. Note that the magnitude specifications are always converted and stored in
dB regardless of how they were specified. If Fs is one of the input arguments, magunits must be
specified after Fs in the input argument list.

 fdesign.bandstop

5-461

Output Arguments
bandstopSpecs — Bandstop filter design specification object
bandstop object

Bandstop filter design specification object, returned as a bandstop object. The fields of the object
depend on the spec input character vector.

Consider an example where the spec argument is set to 'N,Fc1,Fc2', and the corresponding
values are set to 10, 0.6, and 0.8, respectively. The bandstop filter design specification object is
populated with the following fields:

See Also
fdesign | fdesign.bandpass | fdesign.highpass | fdesign.lowpass

Topics
“Design a Filter in Fdesign — Process Overview”

Introduced in R2009a

5 Functions

5-462

fdesign.ciccomp
CIC compensator filter specification object

Syntax
d= fdesign.ciccomp
d= fdesign.ciccomp(d,nsections,rcic)
d= fdesign.ciccomp(...,spec)
h = fdesign.ciccomp(...,spec,specvalue1,specvalue2,...)

Description
d= fdesign.ciccomp constructs a CIC compensator specifications object d, applying default values
for the properties Fpass, Fstop, Apass, and Astop. In this syntax, the filter has two sections and the
differential delay is 1.

Using fdesign.ciccomp with design method creates a System object, if the 'SystemObject' flag
is set to true.

d= fdesign.ciccomp(d,nsections,rcic) constructs a CIC compensator specifications object
with the filter differential delay set to d, the number of sections in the filter set to nsections, and
the CIC rate change factor set to rcic. The default values of these parameters are: the differential
delay equal to 1, the number of sections equal to 2, and the CIC rate change factor equal to 1.

If the CIC rate change factor is equal to 1, the filter passband response is an inverse sinc that is an
approximation to the true inverse passband response of the CIC filter.

If you specify a CIC rate change factor not equal to 1, the filter passband response is an inverse
Dirichlet sinc that matches exactly the true inverse passband response of the CIC filter.

d= fdesign.ciccomp(...,spec) constructs a CIC Compensator specifications object and sets its
Specification property to spec. Entries in the spec represent various filter response features,
such as the filter order, that govern the filter design. Valid entries for spec are shown in the list
below. The entries are not case sensitive.

• 'fp,fst,ap,ast' (default spec)
• 'n,fc,ap,ast'
• 'n,fp,ap,ast'
• 'n,fp,fst'
• 'n,fst,ap,ast'

The filter specifications are defined as follows:

• ap — amount of ripple allowed in the pass band in decibels (the default units). Also called Apass.
• ast — attenuation in the stop band in decibels (the default units). Also called Astop.
• fc — cutoff frequency for the point 6 dB point below the passband value. Specified in normalized

frequency units.

 fdesign.ciccomp

5-463

• fp — frequency at the end of the pass band. Specified in normalized frequency units. Also called
Fpass.

• fst — frequency at the start of the stop band. Specified in normalized frequency units. Also called
Fstop.

• n — filter order.

In graphic form, the filter specifications look like this:

Regions between specification values like fp and fst are transition regions where the filter response
is not explicitly defined.

The filter design methods that apply to a CIC compensator specifications object change depending on
the Specification. Use designmethods to determine which design method applies to an object
and its specification.

h = fdesign.ciccomp(...,spec,specvalue1,specvalue2,...) constructs an object and sets
the specifications in the order they are specified in the spec input when you construct the object.

Designing CIC Compensators

Typically, when they develop filters, designers want flat passbands and transition regions that are as
narrow as possible. CIC filters present a (sinx/x) profile in the passband and relatively wide
transitions.

To compensate for this fall off in the passband, and to try to reduce the width of the transition region,
you can use a CIC compensator filter that demonstrates an (x/sinx) profile in the passband.
fdesign.ciccomp is specifically tailored to designing CIC compensators.

You can design a compensator for CIC filter using differential delay, d, number of sections,
numberofsections, and the usable passband frequency, Fpass.

By taking the number of sections, passband, and differential delay from your CIC filter and using
them in the definition of the CIC compensator, the resulting compensator filter effectively corrects for
the passband droop of the CIC filter, and narrows the transition region.

As a demonstration of this concept, this example creates a CIC decimator and its compensator.

fs = 96e3; % Input sampling frequency.
fpass = 4e3; % Frequency band of interest.
m = 6; % Decimation factor.
hcic = design(fdesign.decimator(m,'cic',1,fpass,60,fs),'SystemObject',true);
hd = design(fdesign.ciccomp(hcic.DifferentialDelay, ...

5 Functions

5-464

 hcic.NumSections,fpass,4.5e3,.1,60,fs/m),'SystemObject',true);
fvtool(hcic,hd,...
cascade(hcic,hd),'ShowReference','off','Fs',[96e3 96e3/m 96e3])
legend('CIC Decimator','CIC Compensator','Resulting Cascade Filter');

Here is a plot of a CIC filter and a compensator for that filter.

Examples

Design a CIC Compensator Using fdesign Object

Designed to compensate for the rolloff inherent in CIC filters, CIC compensators can improve the
performance of your CIC design. This example designs a compensator d with five sections and a
differential delay equal to one. The plot displayed after the code shows the increasing gain in the
passband that is characteristic of CIC compensators, to overcome the droop in the CIC filter
passband. Ideally, cascading the CIC compensator with the CIC filter results in a lowpass filter with
flat passband response and narrow transition region.

h = fdesign.ciccomp;
set(h, 'NumberOfSections', 5, 'DifferentialDelay', 1);
cicComp = design(h,'equiripple','SystemObject',true);
fvtool(cicComp)

 fdesign.ciccomp

5-465

This compensator would work for a decimator or interpolator that had differential delay of 1 and 5
sections.

See Also
fdesign.decimator | fdesign.interpolator

Introduced in R2011a

5 Functions

5-466

fdesign.comb
IIR comb filter specification object

Syntax
d=fdesign.comb
d=fdesign.comb(combtype)
d=fdesign(combtype,specstring)
d=fdesign(combtype,specstring,specvalue1,specvalue2,...)
d=fdesign.comb(...,Fs)

Description
fdesign.comb specifies a peaking or notching comb filter. Comb filters amplify or attenuate a set of
harmonically related frequencies.

d=fdesign.comb creates a notching comb filter specification object and applies default values for
the filter order (N=10) and quality factor (Q=16).

d=fdesign.comb(combtype) creates a comb filter specification object of the specified type and
applies default values for the filter order and quality factor. The valid entries for combtype are shown
in the following table. The entries are not case-sensitive.

Argument Description
notch creates a comb filter that attenuates a set of

harmonically related frequencies.
peak creates a comb filter that amplifies a set of

harmonically related frequencies.

d=fdesign(combtype,specstring) creates a comb filter specification object of type combtype
and sets its Specification property to specstring with default values. The entries in
specstring determine the number of peaks or notches in the comb filter as well as their bandwidth
and slope. Valid entries for specstring are shown below. The entries are not case-sensitive.

• 'N,Q' (default)
• ''N,BW'
• 'L,BW,GWB,Nsh'

The following table describes the arguments in specstring.

Argument Description
BW Bandwidth of the notch or peak. By default the

bandwidth is calculated at the point –3 dB down
from the center frequency of the peak or notch.
For example, setting BW=0.01 specifies that the –
3 dB point will be +/- 0.005 (in normalized
frequency) from the center of the notch or peak.

 fdesign.comb

5-467

Argument Description
GWB Gain at which the bandwidth is measured. This

allows the user to specify the bandwidth of the
notch or peak at a gain different from the –3 dB
default.

L Upsampling factor for a shelving filter of order
Nsh. L determines the number of peaks or
notches, which are equally spaced over the
normalized frequency interval [-1,1].

N Filter order. Specifies a filter with N+1 numerator
and denominator coefficients. The filter will have
N peaks or notches equally spaced over the
interval [–1,1] .

Nsh Shelving filter order. Nsh represents a positive
integer that determines the sharpness of the
peaks or notches. The greater the value of the
shelving filter order, the steeper the slope of the
peak or notch. This results in a filter of order
L*Nsh.

Q Peak or notch quality factor. Q represents the
ratio of the lowest center frequency peak or
notch (not including DC) to the bandwidth
calculated at the –3 dB point.

d=fdesign(combtype,specstring,specvalue1,specvalue2,...) creates an IIR comb filter
specification object of type combtype and sets its Specification property to the values in
specvalue1,specvalue2,...

d=fdesign.comb(...,Fs) creates an IIR comb filter specification object using the sampling
frequency, Fs, of the signal to be filtered. The function assumes that Fs is in Hertz and must be
specified as a scalar trailing all other provided values.

Examples

Construct a Peaking and Notching Combing Filter

These examples demonstrate how to create IIR comb filter specification objects.

First, create a default specification object.

d = fdesign.comb; %#ok

In the next example, create a notching filter of order 8 with a bandwidth of 0.02 (normalized
frequency) referenced to the -3 dB point.

d = fdesign.comb('notch','N,BW',8,0.02);
Hd = design(d,'SystemObject',true);
fvtool(Hd);

5 Functions

5-468

Next, create a peaking comb filter with 5 peaks and a quality factor of 25.

d = fdesign.comb('peak','N,Q',5,25);
Hd = design(d,'SystemObject',true);
fvtool(Hd);

 fdesign.comb

5-469

In the next example, create a notching filter to remove interference at 60 Hz and its harmonics. The
following code creates a filter with 10 notches and a notch bandwidth of 5 Hz referenced to the -4dB
level. The filter has a shelving filter order of 4 and a sampling frequency of 600 Hz. Because the
notches are equidistantly spaced in the interval [-300, 300] Hz, they occur at multiples of 60 Hz.

d = fdesign.comb('notch','L,BW,GBW,Nsh',10,5,-4,4,600);
Hd=design(d,'SystemObject',true);
fvtool(Hd);

5 Functions

5-470

Introduced in R2011a

 fdesign.comb

5-471

fdesign.decimator
Decimator filter specification object

Note The 'Raised Cosine' and 'Square Root Raised Cosine' response methods in the
fdesign.decimator object will be removed in a future release. Use rcosdesign,
comm.RaisedCosineTransmitFilter, and comm.RaisedCosineReceiveFilter instead.

Syntax
D = fdesign.decimator(M)
D = fdesign.decimator(M, RESPONSE)
D = fdesign.decimator(M, CICRESPONSE, D)
D = fdesign.decimator(M, RESPONSE, SPEC)
D = fdesign.decimator(...,SPEC,specvalue1,specvalue2,...)
D = fdesign.decimator(...,Fs)
D = fdesign.decimator(...,MAGUNITS)

Description
D = fdesign.decimator(M) constructs a decimator filter specification object D with the
DecimationFactor property equal to the positive integer M and the Response property set to
'Nyquist'. The default values for the transition width and stopband attenuation in the Nyquist
design are 0.1π radians/sample and 80 dB. If M is unspecified, M defaults to 2.

D = fdesign.decimator(M, RESPONSE) constructs a decimator specification object with the
decimation factor M and the 'Response' property.

D = fdesign.decimator(M, CICRESPONSE, D) constructs a CIC or CIC compensator decimator
specification object with the decimation factor, M, 'Response' property equal to 'CIC' or
'CICCOMP', and D equal to the differential delay. The differential delay, D, must precede any
specification option.

Because you are designing multirate filters, the specification options available are not the same as
the specifications for designing single-rate filters. The decimation factor M is not included in the
specification options. Different filter responses support different specifications. The following table
lists the supported response types and specification options. The options are not case sensitive.

Design Method Valid Specification Options
'Arbitrary Magnitude' See fdesign.arbmag for a description of the specification entries.

• 'N,F,A' (default option)
• 'N,B,F,A'

'Arbitrary Magnitude
and Phase'

See fdesign.arbmagnphase for a description of the specification
entries.

• 'N,F,H' (default option)
• 'N,B,F,H'

5 Functions

5-472

Design Method Valid Specification Options
'Bandpass' See fdesign.bandpass for a description of the specification entries.

• 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2' (default option)
• 'N,Fc1,Fc2'
• 'N,Fst1,Fp1,Fp2,Fst2'

'Bandstop' See fdesign.bandstop for a description of the specification entries.

• 'N,Fc1,Fc2'
• 'N,Fp1,Fst1,Fst2,Fp2'
• 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2' (default option)

'CIC' 'Fp,Ast' — Only valid specification. Fp is the passband frequency
and Ast is the stopband attenuation in decibels.

To specify a CIC decimator, include the differential delay after 'CIC'
and before the filter specification option: 'Fp,Ast'. For example:
d = fdesign.decimator(2,'cic',4,'Fp,Ast',0.4,40);

'CIC Compensator' See fdesign.ciccomp for a description of the specification entries.

• 'Fp,Fst,Ap,Ast' (default option)
• 'N,Fc,Ap,Ast'
• 'N,Fp,Ap,Ast'
• 'N,Fp,Fst'
• 'N,Fst,Ap,Ast'

To specify a CIC compensator decimator, include the differential delay
after 'CICCOMP' and before the filter specification. For example:
d = fdesign.decimator(2,'ciccomp',4);

'Differentiator' 'N' — filter order
'Gaussian' 'Nsym,BT — Nsym is the filter order in symbols and BT is the

bandwidth-symbol time product.

The specification must be preceded by an integer-valued
SamplesPerSymbol.

'Halfband See fdesign.halfband for a description of the specification entries.

• 'TW,Ast' (default option)
• 'N,TW'
• 'N'
• 'N,Ast'

If you use the quasi-linear IIR design method, iirlinphase, with a
halfband specification, the interpolation factor must be 2.

 fdesign.decimator

5-473

Design Method Valid Specification Options
'Highpass' See fdesign.highpass for a description of the specification entries.

• 'Fst,Fp,Ast,Ap' (default option)
• 'N,F3db'
• 'N,Fc'
• 'N,Fc,Ast,Ap'
• 'N,Fp,Ast,Ap'
• 'N,Fst,Ast,Ap'
• 'N,Fst,Fp'
• 'N,Fst,Ast,Ap'
• 'N,Fst,Fp,Ast'

'Hilbert' See fdesign.hilbert for a description of the specification entries.

• 'N,TW' (default option)
• 'TW,Ap'

'Inverse-sinc
Lowpass'

See fdesign.isinclp for a description of the specification entries.

• 'Fp,Fst,Ap,Ast' (default option)
• 'N,Fc,Ap,Ast'
• 'N,Fp,Fst'
• 'N,Fst,Ap,Ast'

'Inverse-sinc
Highpass'

See fdesign.isinchp for a description of the specification entries.

• 'Fst,Fp,Ast,Ap' (default option)
• 'N,Fc,Ast,Ap'
• 'N,Fst,Fp'
• 'N,Fst,Ast,Ap'

'Lowpass' See fdesign.lowpass for a description of the specification entries.

• 'Fp,Fst,Ap,Ast' (default option)
• 'N,F3dB'
• 'N,Fc'
• 'N,Fc,Ap,Ast'
• 'N,Fp,Ap,Ast'
• 'N,Fp,Fst'
• 'N,Fp,Fst,Ap'
• 'N,Fp,Fst,Ast'
• 'N,Fst,Ap,Ast'

5 Functions

5-474

Design Method Valid Specification Options
'Nyquist' See fdesign.nyquist for a description of the specification entries.

For all Nyquist specifications, you must specify the Lth band. This
typically corresponds to the DecimationFactor.

• 'TW,Ast' (default option)
• 'N'
• 'N,Ast'
• 'N,Ast'

D = fdesign.decimator(M, RESPONSE, SPEC) constructs object D and sets the
Specification property to SPEC for the response type, RESPONSE. Entries in the SPEC represent
various filter response features, such as the filter order, that govern the filter design. Valid entries for
SPEC depend on the RESPONSE type.

Because you are designing multirate filters, the specification options available are not the same as
the specifications for designing single-rate filters with such response types as fdesign.lowpass.
The options are not case sensitive.

The decimation factor M is not in the specification options.

D = fdesign.decimator(...,SPEC,specvalue1,specvalue2,...) constructs an object D and
sets its specifications at construction time.

D = fdesign.decimator(...,Fs) provides the sampling frequency of the signal to be filtered. Fs
must be specified as a scalar trailing the other numerical values provided. Fs is assumed to be in Hz
as are all other frequency values provided.

D = fdesign.decimator(...,MAGUNITS) specifies the units for any magnitude specification you
provide in the input arguments. MAGUNITS can be one of

• 'linear' — specify the magnitude in linear units.
• 'dB' — specify the magnitude in dB (decibels).
• 'squared' — specify the magnitude in power units.

When you omit the MAGUNITS argument, fdesign assumes that all magnitudes are in decibels. Note
that fdesign stores all magnitude specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples

Construct a Decimator Using fdesign Object

These examples show how to construct decimating filter specification objects.

First, create a default specifications object without using input arguments except for the decimation
factor m.

d = fdesign.decimator(2,'Nyquist',2,0.1,80) %#ok % Set tw=0.1, and ast=80.

d =
 decimator with properties:

 fdesign.decimator

5-475

 MultirateType: 'Decimator'
 Response: 'Nyquist'
 DecimationFactor: 2
 Specification: 'TW,Ast'
 Description: {2x1 cell}
 Band: 2
 NormalizedFrequency: 1
 TransitionWidth: 0.1000
 Astop: 80

Now create an object by passing a specification type option 'fst1,fp1,fp2,fst2,ast1,ap,ast2' and a
design - the resulting object uses default values for the filter specifications. You must provide the
design input argument, bandpass in this example, when you include a specification.

d = fdesign.decimator(8,'bandpass',...
'fst1,fp1,fp2,fst2,ast1,ap,ast2'); %#ok

Create another decimating filter specification object, passing the specification values to the object
rather than accepting the default values for fp,fst,ap,ast.

d = fdesign.decimator(3,'lowpass',.45,0.55,.1,60); %#ok

Now pass the filter specifications that correspond to the specifications - n,fc,ap,ast.

d = fdesign.decimator(3,'ciccomp',1,2,'n,fc,ap,ast',...
20,0.45,.05,50);

Now design a decimator using the equiripple design method.

equiDecimator = design(d,'equiripple','SystemObject',true);

Pass a new specification type for the filter, specifying the filter order. Note that the inputs must
include the differential delay dd with the CIC input argument to design a CIC specification object.

m = 5;
dd = 2;
d = fdesign.decimator(m,'cic',dd,'fp,ast',0.55,55); %#ok

In this example, you specify a sampling frequency as the last input argument. Here is it 1000 Hz.
Design an equiripple filter and plot the magnitude response:

d = fdesign.decimator(8,'bandpass','fst1,fp1,fp2,fst2,ast1,ap,ast2',...
100,150,250,300,50,.05,50,1000);
fvtool(design(d,'equiripple','SystemObject',true))

5 Functions

5-476

Compatibility Considerations
'Raised Cosine' and 'Square Root Raised Cosine' response methods will be removed
Not recommended starting in R2021b

The 'Raised Cosine' and 'Square Root Raised Cosine' response methods in the
fdesign.decimator object will be removed in a future release. Use rcosdesign,
comm.RaisedCosineTransmitFilter, and comm.RaisedCosineReceiveFilter instead.

See Also
fdesign | fdesign.arbmagnphase | fdesign.interpolator | fdesign.rsrc

Introduced in R2011a

 fdesign.decimator

5-477

fdesign.differentiator
Differentiator filter specification object

Syntax
D = fdesign.differentiator
D = fdesign.differentiator(SPEC)
D = fdesign.differentiator(SPEC,specvalue1,specvalue2, ...)
D = fdesign.differentiator(specvalue1)
D = fdesign.differentiator(...,Fs)
D = fdesign.differentiator(...,MAGUNITS)

Description
D = fdesign.differentiator constructs a default differentiator filter designer D with the filter
order set to 31.

D = fdesign.differentiator(SPEC) initializes the filter designer Specification property to
SPEC. You provide one of the following filter entries as input to replace SPEC. These entries are not
case sensitive.

Note Specifications marked with an asterisk require the DSP System Toolbox software.

• 'N' — Full band differentiator (default)
• 'N,Fp,Fst' — Partial band differentiator
• 'N,Fp,Fst,Ap' — Partial band differentiator *
• 'N,Fp,Fst,Ast' — Partial band differentiator *
• 'Ap' — Minimum order full band differentiator *
• 'Fp,Fst,Ap,Ast' — Minimum order partial band differentiator *

The filter specifications are defined as follows:

• Ap — amount of ripple allowed in the pass band in decibels (the default units). Also called Apass.
• Ast — attenuation in the stop band in decibels (the default units). Also called Astop.
• Fp — frequency at the start of the pass band. Specified in normalized frequency units. Also called

Fpass.
• Fst — frequency at the end of the stop band. Specified in normalized frequency units. Also called

Fstop.
• N — filter order.

By default, fdesign.differentiator assumes that all frequency specifications are provided in
normalized frequency units. Also, decibels is the default for all magnitude specifications.

Use designopts to determine the design options for a given design method. Enter
help(D,METHOD) at the MATLAB command line to obtain detailed help on the design options for a
given design method, METHOD.

5 Functions

5-478

D = fdesign.differentiator(SPEC,specvalue1,specvalue2, ...) initializes the filter
designer specifications in SPEC with specvalue1, specvalue2, and so on. To get a description of
the specifications specvalue1, specvalue2, and more, enter

get(d,'description')

at the Command prompt.

D = fdesign.differentiator(specvalue1) assumes the default specification N, setting the
filter order to the value you provide.

D = fdesign.differentiator(...,Fs) adds the argument Fs, specified in Hz to define the
sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.

D = fdesign.differentiator(...,MAGUNITS) specifies the units for any magnitude
specification you provide in the input arguments. MAGUNITS can be one of

• 'linear' — specify the magnitude in linear units
• 'dB' — specify the magnitude in dB (decibels)
• 'squared' — specify the magnitude in power units

When you omit the MAGUNITS argument, fdesign assumes that all magnitudes are in decibels. Note
that fdesign stores all magnitude specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples

FIR Differentiator Filters

Design a 33rd-order FIR differentiator using least squares. Plot the zero-phase response of the filter.

d = fdesign.differentiator(33);
hd = design(d,'firls','SystemObject',true);

zerophase(hd)

 fdesign.differentiator

5-479

Design a 54th-order narrowband equiripple differentiator. Differentiate the lowest 25% of the
frequencies in the Nyquist range and filter the higher frequencies. Specify a sample rate of 20 kHz, a
passband frequency of 2.5 kHz, and a stopband frequency of 3 kHz.

Fs = 20000;

d = fdesign.differentiator('N,Fp,Fst',54,2500,3000,Fs);
Hd = design(d,'equiripple','SystemObject',true);

Redesign the filter, but this time weight the stopband to increase the attenuation.

Hd1 = design(d,'equiripple','Wstop',4,'SystemObject',true);

hfvt = fvtool(Hd,Hd1,'MagnitudeDisplay','zero-phase', ...
 'FrequencyRange','[0, Fs/2)');
legend(hfvt,'No stopband weighting','Stopband weighting');

5 Functions

5-480

See Also
design | fdesign

Introduced in R2009a

 fdesign.differentiator

5-481

fdesign.fracdelay
Fractional delay filter specification object

Syntax
d = fdesign.fracdelay(delta)
d = fdesign.fracdelay(delta,'N')
d = fdesign.fracdelay(delta,'N',n)
d = fdesign.fracdelay(delta,n)
d = fdesign.fracdelay(...,fs)

Description
d = fdesign.fracdelay(delta) constructs a default fractional delay filter designer d with the
filter order set to 3 and the delay value set to delta. The fractional delay delta must be between 0
and 1 samples.

d = fdesign.fracdelay(delta,'N') initializes the filter designer specification to N, where N
specifies the fractional delay filter order and defaults to filter order of 3.

Use designmethods(d) to get a list of the design methods available for a specification.

d = fdesign.fracdelay(delta,'N',n) initializes the filter designer to N and sets the filter
order to n.

d = fdesign.fracdelay(delta,n) assumes the default specification N, filter order, and sets the
filter order to the value you provide in input n.

d = fdesign.fracdelay(...,fs) adds the argument fs, specified in units of Hertz (Hz) to define
the sampling frequency. In this case, specify the fractional delay delta to be between 0 and 1/fs.

Examples

Create a Fractional Delay Filter Using fdesign Object

Design a second-order fractional delay filter of 0.2 samples using the Lagrange method. Implement
the filter using a Farrow fractional delay (fd) structure.

d = fdesign.fracdelay(0.2,'N',2);
secondOrderFrac = design(d,'lagrange','filterstructure','farrowfd');
fvtool(secondOrderFrac,'analysis','grpdelay')

5 Functions

5-482

Design a cubic fractional delay filter with a sampling frequency of 8 kHz and fractional delay of 50
microseconds using the Lagrange method.

d = fdesign.fracdelay(50e-6,'N',3,8000);
cubicFrac = design(d, 'lagrange', 'FilterStructure', 'farrowfd');

See Also
design | designopts | fdesign | setspecs

Introduced in R2011a

 fdesign.fracdelay

5-483

fdesign.halfband
Halfband filter specification object

Syntax
d = fdesign.halfband
d = fdesign.halfband('type',type)
d = fdesign.halfband(spec)
d = fdesign.halfband(spec,specvalue1,specvalue2,...)
d = fdesign.halfband(specvalue1,specvalue2)
d = fdesign.halfband(...,fs)
d = fdesign.halfband(...,magunits)

Description
d = fdesign.halfband constructs a halfband filter specification object d, applying default values
for the properties tw and ast.

Using fdesign.halfband along with design method generates a System object, if the
'SystemObject' flag in the design method is set to true.

d = fdesign.halfband('type',type) initializes the filter designer 'Type' property with type.
'type' must be either lowpass or highpass and is not case sensitive.

d = fdesign.halfband(spec) constructs object d and sets its 'Specification' to spec. Entries
in spec represent various filter response features, such as the filter order, that govern the filter
design. Valid entries for spec are shown below. These options are not case sensitive.

• tw,ast (default spec)
• n,tw
• n
• n,ast

where,

• ast — attenuation in the stop band in decibels (the default units).
• n — filter order.
• tw — width of the transition region between the pass and stop bands. Specified in normalized

frequency units.

By default, all frequency specifications are assumed to be in normalized frequency units. Moreover,
all magnitude specifications are assumed to be in dB. Different specification types may have different
design methods available.

The filter design methods that apply to a halfband filter specification object change depending on the
Specification choice. Use designmethods to determine which design method applies to an
object and its specification choice. Different filter design methods also have options that you can
specify. Use designopts with the design method to see the available options. For example:

5 Functions

5-484

f=fdesign.halfband('N,TW');
designmethods(f)

d = fdesign.halfband(spec,specvalue1,specvalue2,...) constructs an object d and sets
its specifications at construction time.

d = fdesign.halfband(specvalue1,specvalue2) constructs an object d assuming the default
Specification property tw,ast, using the values you provide for the input arguments
specvalue1 and specvalue2 for tw and ast.

d = fdesign.halfband(...,fs) adds the argument fs, specified in Hz to define the sampling
frequency to use. In this case, all frequencies in the specifications are in Hz as well.

d = fdesign.halfband(...,magunits) specifies the units for any magnitude specification you
provide in the input arguments. magunits can be one of

• linear — specify the magnitude in linear units
• dB — specify the magnitude in dB (decibels)
• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in decibels. Note
that fdesign stores all magnitude specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples

Create Halfband Filters Using fdesign Object

Create a default halfband filter specifications object.

d=fdesign.halfband;

Create another halfband filter object, passing the specification values to the object rather than
accepting the default values for n and ast.

d2 = fdesign.halfband('n,ast', 42, 80);

For another example, pass the filter values that correspond to the default Specification - n,ast.

d3 = fdesign.halfband(.01, 80);

This example designs an equiripple FIR filter, starting by passing a new specification type and
specification values to fdesign.halfband.

hs = fdesign.halfband('n,ast',80,70);
hd =design(hs,'equiripple','SystemObject',true);

In this example, pass the specifications for the filter, and then design a least-squares FIR filter from
the object, using firls as the design method.

hs = fdesign.halfband('n,tw', 42, .04);
hd2 = design(hs,'firls','SystemObject',true);

Create two equiripple halfband filters with and without a nonnegative zero phase response:

 fdesign.halfband

5-485

f=fdesign.halfband('N,TW',12,0.2);

Equiripple halfband filter with nonnegative zero phase response

Hd1 = design(f,'equiripple','ZeroPhase',true,'SystemObject',true);

Equiripple halfband filter with zero phase false 'zerophase',false is the default

Hd2=design(f,'equiripple','ZeroPhase',false,'SystemObject',true);

Obtain real-valued amplitudes (not magnitudes)

[Hr_zerophase,~]=zerophase(Hd1);
[Hr,W]=zerophase(Hd2);

Plot and compare response

plot(W,Hr_zerophase,'k','linewidth',2);
xlabel('Radians/sample'); ylabel('Amplitude');
hold on;
plot(W,Hr,'r');
axis tight; grid on;
legend('with ''ZeroPhase'', true','with ''ZeroPhase'' false');

Note that the amplitude of the zero phase response (black line) is nonnegative for all frequencies. The
'ZeroPhase' option is valid only for equiripple halfband designs with the 'N,TW' specification. You
cannot specify 'MinPhase' and 'ZeroPhase' to be simultaneously 'true'.

5 Functions

5-486

See Also
fdesign | fdesign.decimator | design | fdesign.interpolator | fdesign.nyquist |
setspecs | zerophase

Introduced in R2011a

 fdesign.halfband

5-487

fdesign.highpass
Highpass filter specification object

Syntax
D = fdesign.highpass
D = fdesign.highpass(SPEC)
D = fdesign.highpass(SPEC,specvalue1,specvalue2,...)
D = fdesign.highpass(specvalue1,specvalue2,specvalue3,
specvalue4)
D = fdesign.highpass(...,Fs)
D = fdesign.highpass(...,MAGUNITS)

Description
D = fdesign.highpass constructs a highpass filter specification object D, applying default values
for the specification, 'Fst,Fp,Ast,Ap'.

D = fdesign.highpass(SPEC) constructs object D and sets the Specification property to
SPEC. Entries in the SPEC represent various filter response features, such as the filter order, that
govern the filter design. Valid entries for SPEC are shown below. These entries are not case sensitive.

Note Specification entries marked with an asterisk require the DSP System Toolbox software.

• 'Fst,Fp,Ast,Ap' (default spec)
• 'N,F3db'
• 'N,F3db,Ap' *
• 'N,F3db,Ast' *
• 'N,F3db,Ast,Ap' *
• 'N,F3db,Fp *
• 'N,Fc'
• 'N,Fc,Ast,Ap'
• 'N,Fp,Ap'
• 'N,Fp,Ast,Ap'
• 'N,Fst,Ast'
• 'N,Fst,Ast,Ap'
• 'N,Fst,F3db' *
• 'N,Fst,Fp'
• 'N,Fst,Fp,Ap' *
• 'N,Fst,Fp,Ast' *
• 'Nb,Na,Fst,Fp' *

The filter specifications are defined as follows:

5 Functions

5-488

• Ap — amount of ripple allowed in the pass band in decibels (the default units). Also called Apass.
• Ast — attenuation in the stop band in decibels (the default units). Also called Astop.
• F3db — cutoff frequency for the point 3 dB point below the passband value. Specified in

normalized frequency units.
• Fc — cutoff frequency for the point 6 dB point below the passband value. Specified in normalized

frequency units.
• Fp — frequency at the start of the pass band. Specified in normalized frequency units. Also called

Fpass.
• Fst — frequency at the end of the stop band. Specified in normalized frequency units. Also called

Fstop.
• N — filter order.
• Na and Nb are the order of the denominator and numerator.

Graphically, the filter specifications look similar to those shown in the following figure.

Regions between specification values like Fst and Fp are transition regions where the filter response
is not explicitly defined.

The filter design methods that apply to a highpass filter specification object change depending on the
Specification. Use designmethods to determine which design method applies to an object and
its specification.

Use designopts to determine which design options are valid for a given design method. For detailed
information on design options for a given design method, METHOD, enter help(D,METHOD) at the
MATLAB command line.

D = fdesign.highpass(SPEC,specvalue1,specvalue2,...) constructs an object d and sets
its specification values at construction time.

D = fdesign.highpass(specvalue1,specvalue2,specvalue3,
specvalue4) constructs an object D with the default Specification property and the values you
enter for specvalue1,specvalue2,....

D = fdesign.highpass(...,Fs) provides the sampling frequency for the filter specification
object. Fs is in Hz and must be specified as a scalar trailing the other numerical values provided. If
you specify a sampling frequency, all other frequency specifications are in Hz.

D = fdesign.highpass(...,MAGUNITS) specifies the units for any magnitude specification you
provide in the input arguments. MAGUNITS can be one of

 fdesign.highpass

5-489

• 'linear' — specify the magnitude in linear units
• 'dB' — specify the magnitude in dB (decibels)
• 'squared' — specify the magnitude in power units

When you omit the MAGUNITS argument, fdesign assumes that all magnitudes are in decibels. Note
that fdesign stores all magnitude specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples

Design Butterworth Filter

Design a butterworth filter with lowpass and highpass frequency responses. The filter design
procedure is:

1 Specify the filter design specifications using a fdesign function.
2 Pick a design method provided by the designmethods function.
3 To determine the available design options to choose from, use the designoptions function.
4 Design the filter using the design function.

Lowpass Filter

Construct a default lowpass filter design specification object using fdesign.lowpass.

designSpecs = fdesign.lowpass

designSpecs =
 lowpass with properties:

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: 1
 Fpass: 0.4500
 Fstop: 0.5500
 Apass: 1
 Astop: 60

Determine the available design methods using the designmethods function. To design a butterworth
filter, pick butter.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir

5 Functions

5-490

kaiserwin
multistage

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

designoptions(designSpecs,'butter','SystemObject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 MatchExactly: {'passband' 'stopband'}
 DefaultFilterStructure: 'df2sos'
 DefaultMatchExactly: 'stopband'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

Use the design function to design the filter. Pass 'butter' and the specifications given by variable
designSpecs, as input arguments. Specify the 'matchexactly' design option to 'passband'.

lpFilter = design(designSpecs,'butter','matchexactly','passband','SystemObject',true);

Visualize the frequency response of the designed filter.

fvtool(lpFilter)

 fdesign.highpass

5-491

Highpass Filter

Construct a highpass filter design specification object using fdesign.highpass. Specify the order
to be 7 and the 3 dB frequency to be 0 . 6π radians/sample.

designSpecs = fdesign.highpass('N,F3dB',7,.6);

Determine the available design methods. To design a butterworth filter, pick butter.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.highpass (N,F3dB):

butter
maxflat

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

designoptions(designSpecs,'butter','SystemObject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 DefaultFilterStructure: 'df2sos'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

To design the butterworth filter, use the design function and specify 'butter' as an input. Set
'FilterStructure' to 'cascadeallpass'.

hpFilter = design(designSpecs,'butter','FilterStructure','cascadeallpass','SystemObject',true);

Visualize the highpass frequency response.

fvtool(hpFilter)

5 Functions

5-492

Highpass Filtering of Sinusoids

Highpass filter a discrete-time signal consisting of two sine waves.

Create a highpass filter specification object. Specify the passband frequency to be 0.25π rad/sample
and the stopband frequency to be 0.15π rad/sample. Specify 1 dB of allowable passband ripple and a
stopband attenuation of 60 dB.

d = fdesign.highpass('Fst,Fp,Ast,Ap',0.15,0.25,60,1);

Query the valid design methods for your filter specification object.

designmethods(d)

Design Methods for class fdesign.highpass (Fst,Fp,Ast,Ap):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin

Create an FIR equiripple filter and view the filter magnitude response with FVTool.

 fdesign.highpass

5-493

Hd = design(d,'equiripple');
fvtool(Hd)

Create a signal consisting of the sum of two discrete-time sinusoids with frequencies of π/8 and π/4
rad/sample and amplitudes of 1 and 0.25 respectively. Filter the discrete-time signal with the FIR
equiripple filter object.

n = 0:159;
x = cos(pi/8*n)+0.25*sin(pi/4*n);
y = filter(Hd,x);

Plot the original and filtered signals in the frequency domain.

freq = 0:(2*pi)/160:pi;
xdft = fft(x);
ydft = fft(y);

plot(freq/pi,abs(xdft(1:length(x)/2+1)))
hold on
plot(freq/pi,abs(ydft(1:length(y)/2+1)),'r','linewidth',2)
hold off
legend('Original Signal','Lowpass Signal','Location','NorthEast')
ylabel('Magnitude')
xlabel('Normalized Frequency (\times\pi rad/sample)')

5 Functions

5-494

Window Method Highpass Design

Create a filter of order 10 with a 6-dB frequency of 9.6 kHz and a sample rate of 48 kHz. Look at the
available design methods.

d=fdesign.highpass('N,Fc',10,9600,48000);
designmethods(d)

Design Methods for class fdesign.highpass (N,Fc):

window

The only available method is the FIR window method. Design the filter and display its magnitude
response.

Hd = design(d);

fvtool(Hd)

 fdesign.highpass

5-495

Stopband Constraints

You can specify the shape of the stopband and the rate at which the stopband decays.

Create two FIR equiripple filters with different linear stopband slopes. Specify the passband
frequency to be 0.3π rad/sample and the stopband frequency to be 0.35π rad/sample. Specify 1 dB of
allowable passband ripple and a stopband attenuation of 60 dB. Design one filter with a 20 dB/(rad/
sample) stopband slope and another filter with a slope of 40 dB/(rad/sample).

D = fdesign.highpass('Fst,Fp,Ast,Ap',0.3,0.35,60,1);
Hd1 = design(D,'equiripple','StopBandShape','linear','StopBandDecay',20);
Hd2 = design(D,'equiripple','StopBandShape','linear','StopBandDecay',40);

Visualize the magnitude responses of the filters.

hfvt = fvtool([Hd1 Hd2]);
legend(hfvt,'20 dB/rad/sample','40 dB/rad/sample')

5 Functions

5-496

See Also
design | designmethods | fdesign

Introduced in R2009a

 fdesign.highpass

5-497

fdesign.hilbert
Hilbert filter specification object

Syntax
d = fdesign.hilbert
d = fdesign.hilbert(specvalue1,specvalue2)
d = fdesign.hilbert(spec)
d = fdesign.hilbert(spec,specvalue1,specvalue2)
d = fdesign.hilbert(...,Fs)
d = fdesign.hilbert(...,MAGUNITS)

Description
d = fdesign.hilbert constructs a default Hilbert filter designer d with N, the filter order, set to
30 and TW, the transition width set to 0.1π radians/sample.

d = fdesign.hilbert(specvalue1,specvalue2) constructs a Hilbert filter designer d
assuming the default specification 'N,TW'. You input specvalue1 and specvalue2 for N and TW.

d = fdesign.hilbert(spec) initializes the filter designer Specification property to spec. You
provide one of the following as input to replace spec. The specification options are not case sensitive.

Note Specifications marked with an asterisk require the DSP System Toolbox software.

• 'N,TW' default specification option.
• 'TW,Ap' *

The filter specifications are defined as follows:

• Ap — amount of ripple allowed in the pass band in decibels (the default units). Also called Apass.
• N — filter order.
• TW — width of the transition region between the passband and the stopband.

By default, fdesign.hilbert assumes that all frequency specifications are provided in normalized
frequency units. Also, decibels is the default for all magnitude specifications.

Different specifications may have different design methods available. Use designmethods(d) to get
a list of the design methods available for a given specification.

d = fdesign.hilbert(spec,specvalue1,specvalue2) initializes the filter designer
specifications in spec with specvalue1, specvalue2, and so on. To get a description of the
specifications specvalue1 and specvalue2, enter

get(d,'description')

at the Command prompt.

5 Functions

5-498

d = fdesign.hilbert(...,Fs) adds the argument Fs, specified in Hz to define the sampling
frequency. In this case, all frequencies in the specifications are in Hz as well.

d = fdesign.hilbert(...,MAGUNITS) specifies the units for any magnitude specification you
provide in the input arguments. MAGUNITS can be one of

• 'linear' — specify the magnitude in linear units
• 'dB' — specify the magnitude in dB (decibels)
• 'squared' — specify the magnitude in power units

When you omit the MAGUNITS argument, fdesign assumes that all magnitudes are in decibels. Note
that fdesign stores all magnitude specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples

Hilbert Transformers

Design a Hilbert transformer of order 30 with a transition width of 0.2π rad/sample. Use least-
squares minimization to obtain an equiripple linear-phase FIR filter. Plot the zero-phase response in
the interval [–π,π).

d = fdesign.hilbert('N,TW',30,0.2);
Hd = design(d,'equiripple','SystemObject',true);
zerophase(Hd,'whole')

 fdesign.hilbert

5-499

The impulse response of this even-order type-3 filter is antisymmetric.

impz(Hd)

ftype = firtype(Hd)

ftype = 3

Design a minimum-order Hilbert transformer that has a sample rate of 1 kHz. Specify the width of the
transition region as 10 Hz and the passband ripple as 1 dB. Display the zero-phase response of the
filter.

fs = 1e3;
d = fdesign.hilbert('TW,Ap',10,1,fs);
hd = design(d,'equiripple','SystemObject',true);
zerophase(hd,-fs/2:0.1:fs/2,fs)

5 Functions

5-500

See Also
design | fdesign | setspecs

Introduced in R2009a

 fdesign.hilbert

5-501

fdesign.interpolator
Interpolator filter specification

Note The 'Raised Cosine' and 'Square Root Raised Cosine' response methods in the
fdesign.interpolator object will be removed in a future release. Use rcosdesign,
comm.RaisedCosineTransmitFilter, and comm.RaisedCosineReceiveFilter instead.

Syntax
D = fdesign.interpolator(L)
D = fdesign.interpolator(L,RESPONSE)
D = fdesign.interpolator(L,CICRESPONSE,D)
D = fdesign.interpolator(L,RESPONSE,spec)
D = fdesign.interpolator(...,spec,specvalue1,specvalue2,...)
D = fdesign.interpolator(...,Fs)
d = fdesign.interpolator(...,MAGUNITS)

Description
D = fdesign.interpolator(L) constructs an interpolator filter specification object D with the
InterpolationFactor property equal to the positive integer L and the Response property set to
'Nyquist'. The default values for the transition width and stopband attenuation in the Nyquist
design are 0.1π radians/sample and 80 dB. If L is unspecified, L defaults to 2.

D = fdesign.interpolator(L,RESPONSE) constructs a interpolator specification object with the
interpolation factor L and the 'Response' property set to one of the supported types.

D = fdesign.interpolator(L,CICRESPONSE,D) constructs a CIC or CIC compensator
interpolator specification object with the interpolation factor, L, and 'Response' property equal to
'CIC' or 'CICCOMP'. D is the differential delay. The differential delay, D, must precede any
specification option.

D = fdesign.interpolator(L,RESPONSE,spec) constructs object D and sets its
Specification property to spec. Entries in the spec represent various filter response features,
such as the filter order, that govern the filter design. Valid entries for spec depend on the design type
of the specifications object.

When you add the spec input argument, you must also add the RESPONSE input argument.

Because you are designing multirate filters, the specification options available are not the same as
the specifications for designing single-rate filters with design methods such as fdesign.lowpass.
The options are not case sensitive.

The interpolation factor L is not in the specification options. The different filter responses support
different specifications. The following table lists the supported response types and specification
options.

5 Functions

5-502

Design Method Valid Specification Options
'Arbitrary Magnitude' See fdesign.arbmag for a description of the specification entries.

• 'N,F,A' (default option)
• 'N,B,F,A'

'Arbitrary Magnitude
and Phase'

See fdesign.arbmagnphase for a description of the specification
entries.

• 'N,F,H' (default option)
• 'N,B,F,H'

'Bandpass' See fdesign.bandpass for a description of the specification entries.

• 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2' (default option)
• 'N,Fc1,Fc2'
• 'N,Fst1,Fp1,Fp2,Fst2'

'Bandstop' See fdesign.bandstop for a description of the specification entries.

• 'N,Fc1,Fc2'
• 'N,Fp1,Fst1,Fst2,Fp2'
• 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2' (default option)

'CIC' 'Fp,Ast' — Only valid specification. Fp is the passband frequency
and Ast is the stopband attenuation in decibels.

To specify a CIC interpolator, include the differential delay after 'CIC'
and before the filter specification: 'Fp,Ast'. For example:
d = fdesign.interpolator(2,'cic',4,'Fp,Ast',0.4,40);

'CIC Compensator' See fdesign.ciccomp for a description of the specification entries.

• 'Fp,Fst,Ap,Ast' (default option)
• 'N,Fc,Ap,Ast'
• 'N,Fp,Ap,Ast'
• 'N,Fp,Fst'
• 'N,Fst,Ap,Ast'

To specify a CIC compensator interpolator, include the differential
delay after 'CICCOMP' and before the filter specification. For example:
d = fdesign.interpolator(2,'ciccomp',4);

'Differentiator' 'N' — filter order
'Gaussian' 'Nsym,BT — Nsym is the filter order in symbols and BT is the

bandwidth-symbol time product.

The specification must be preceded by an integer-valued
SamplesPerSymbol.

 fdesign.interpolator

5-503

Design Method Valid Specification Options
'Halfband See fdesign.halfband for a description of the specification entries.

• 'TW,Ast' (default option)
• 'N,TW'
• 'N'
• 'N,Ast'

If you use the quasi-linear IIR design method, iirlinphase, with a
halfband specification, the interpolation factor must be 2.

'Highpass' See fdesign.highpass for a description of the specification entries.

• 'Fst,Fp,Ast,Ap' (default option)
• 'N,F3db'
• 'N,Fc'
• 'N,Fc,Ast,Ap'
• 'N,Fp,Ast,Ap'
• 'N,Fst,Ast,Ap'
• 'N,Fst,Fp'
• 'N,Fst,Ast,Ap'
• 'N,Fst,Fp,Ast'

'Hilbert' See fdesign.hilbert for a description of the specification entries.

• 'N,TW' (default option)
• 'TW,Ap'

'Inverse-sinc
Lowpass'

See fdesign.isinclp for a description of the specification entries.

• 'Fp,Fst,Ap,Ast' (default option)
• 'N,Fc,Ap,Ast'
• 'N,Fp,Fst'
• 'N,Fst,Ap,Ast'

'Inverse-sinc
Highpass'

See fdesign.isinchp for a description of the specification entries.

• 'Fst,Fp,Ast,Ap' (default option)
• 'N,Fc,Ast,Ap'
• 'N,Fst,Fp'
• 'N,Fst,Ast,Ap'

5 Functions

5-504

Design Method Valid Specification Options
'Lowpass' See fdesign.lowpass for a description of the specification entries.

• 'Fp,Fst,Ap,Ast' (default option)
• 'N,F3dB'
• 'N,Fc'
• 'N,Fc,Ap,Ast'
• 'N,Fp,Ap,Ast'
• 'N,Fp,Fst'
• 'N,Fp,Fst,Ap'
• 'N,Fp,Fst,Ast'
• 'N,Fst,Ap,Ast'

'Nyquist' See fdesign.nyquist for a description of the specification entries.
For all Nyquist specifications, you must specify the Lth band. This
typically corresponds to the interpolation factor so that the nonzero
samples of the upsampler output are preserved.

• 'TW,Ast' (default option)
• 'N'
• 'N,Ast'
• 'N,Ast'

D = fdesign.interpolator(...,spec,specvalue1,specvalue2,...) constructs an object D
and sets its specifications at construction time.

D = fdesign.interpolator(...,Fs) adds the argument Fs, specified in Hz, to define the
sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.

d = fdesign.interpolator(...,MAGUNITS) specifies the units for any magnitude specification
you provide in the input arguments. MAGUNITS can be one of

• 'linear' — specify the magnitude in linear units.
• 'dB' — specify the magnitude in dB (decibels).
• 'squared' — specify the magnitude in power units.

When you omit the MAGUNITS argument, fdesign assumes that all magnitudes are in decibels. Note
that fdesign stores all magnitude specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples

Create an Interpolator Using fdesign Object

These examples show how to construct interpolating filter specification objects.

First, create a default specifications object without using input arguments except for the interpolation
factor l.

 fdesign.interpolator

5-505

l = 2;
d = fdesign.interpolator(l); %#ok

Now create an object by passing a specification option 'fst1,fp1,fp2,fst2,ast1,ap,ast2' and a design -
the resulting object uses default values for all of the filter specifications. You must provide the design
input argument when you include a specification.

d = fdesign.interpolator(8,'bandpass','fst1,fp1,fp2,fst2,ast1,ap,ast2'); %#ok

Create another interpolating filter object, passing the specification values to the object rather than
accepting the default values for, in this case, fp,fst,ap,ast.

d = fdesign.interpolator(3,'lowpass',.45,0.55,.1,60); %#ok

Now pass the filter specifications that correspond to the specifications - n,fc,ap,ast.

d = fdesign.interpolator(3,'ciccomp',1,2,'n,fc,ap,ast',...
20,0.45,.05,50);

With the specifications object in your workspace, design an interpolator using the equiripple design
method.

hm = design(d,'equiripple','SystemObject',true); %#ok

Pass a new specification type for the filter, specifying the filter order.

d = fdesign.interpolator(5,'CIC',1,'fp,ast',0.05,55);

With the specifications object in your workspace, design an interpolator using the multisection design
method.

hm = design(d,'multisection','SystemObject',true); %#ok

In this example, you specify a sampling frequency as the right most input argument. Here, it is set to
1000 Hz.

d = fdesign.interpolator(8,'bandpass','fst1,fp1,fp2,fst2,ast1,ap,ast2',...
 0.25,0.35,.55,.65,50,.05,1e3); %#ok

In this, the last example, use the linear option for the filter specification object and specify the
stopband ripple attenuation in linear form.

d = fdesign.interpolator(4,'lowpass','n,fst,ap,ast',15,0.55,.05,0.001,...
 'linear'); %#ok

Now design a CIC interpolator for a signal sampled at 19200 Hz. Specify the differential delay of 2
and set the attenuation of information beyond 50 Hz to be at least 80 dB.

% The filter object sampling frequency is (l x fs) where fs is the sampling frequency of the input signal.

dd = 2; % Differential delay.
fp = 50; % Passband of interest.
ast = 80; % Minimum attenuation of alias components in passband.
fs = 600; % Sampling frequency for input signal.
l = 32; % Interpolation factor.
d = fdesign.interpolator(l,'cic',dd,'fp,ast',fp,ast,l*fs);
hm = design(d,'SystemObject',true); %Use the default design method.

5 Functions

5-506

This next example results in a minimum-order CIC compensator that interpolates by 4 and
compensates for the droop in the passband for the CIC filter hm from the previous example.

nsecs = hm.NumSections;
d = fdesign.interpolator(4,'ciccomp',dd,nsecs,...
50,100,0.1,80,fs);
hmc = design(d,'equiripple','SystemObject',true);

hmc is designed to compensate for hm. To see the effect of the compensating CIC filter, use fvtool
to analyze both filters individually and include the compound filter response by cascading hm and
hmc.

hfvt = fvtool(hmc,hm,cascade(hmc,hm),'fs',[fs,l*fs,l*fs],'ShowReference','off');
legend(hfvt,'CIC Compensator','CIC Interpolator',...
'Overall Response');

fvtool returns with this plot.

For the third example, use fdesign.interpolator to design a minimum-order Nyquist interpolator that
uses a Kaiser window. For comparison, design a multistage interpolator as well and compare the
responses.

l = 15; % Set the interpolation factor and the Nyquist band.
tw = 0.05; % Specify the normalized transition width.
ast = 40; % Set the minimum stopband attenuation in dB.
d = fdesign.interpolator(l,'nyquist',l,tw,ast);
hm = design(d,'kaiserwin','SystemObject',true);

 fdesign.interpolator

5-507

hm2 = design(d,'multistage','SystemObject',true); % Design the multistage interpolator.
hfvt = fvtool(hm,hm2);
legend(hfvt,'Kaiser Window','Multistage')

fvtool shows both responses.

Design a lowpass interpolator for an interpolation factor of 8. Compare the single-stage equiripple
design to a multistage design with the same interpolation factor.

l = 8; % Interpolation factor.
d = fdesign.interpolator(l,'lowpass');
hm1 = design(d,'equiripple','SystemObject',true);
% Use halfband filters whenever possible.
hm2 = design(d,'multistage','usehalfbands',true,'SystemObject',true);
hfvt = fvtool(hm1,hm2);
legend(hfvt,'Single-Stage Equiripple','Multistage')

5 Functions

5-508

Compatibility Considerations
'Raised Cosine' and 'Square Root Raised Cosine' response methods will be removed
Not recommended starting in R2021b

The 'Raised Cosine' and 'Square Root Raised Cosine' response methods in the
fdesign.interpolator object will be removed in a future release. Use rcosdesign,
comm.RaisedCosineTransmitFilter, and comm.RaisedCosineReceiveFilter instead.

See Also
fdesign | fdesign.arbmagnphase | fdesign.interpolator | fdesign.rsrc | setspecs

Introduced in R2011a

 fdesign.interpolator

5-509

fdesign.isinchp
Inverse sinc highpass filter specification

Syntax
D = fdesign.isinchp
D = fdesign.isinchp(SPEC)
D = fdesign.isinchp(SPEC,specvalue1,specvalue2,...)
D = fdesign.isinchp(specvalue1,specvalue2,specvalue3,specvalue4)
D = fdesign.isinchp(...,Fs)
D = fdesign.isinchp(...,MAGUNITS)

Description
D = fdesign.isinchp constructs an inverse sinc highpass filter specification object D, applying
default values for the default specification 'Fst,Fp,Ast,Ap'.

D = fdesign.isinchp(SPEC) constructs object D and sets the Specification property to SPEC.
Entries in the SPEC represent various filter response features, such as the filter order, that govern the
filter design. Valid entries for SPEC are shown below. The entries are not case sensitive.

• 'Fst,Fp,Ast,Ap' (default spec)
• 'N,Fc,Ast,Ap'
• 'N,Fst,Fp'
• 'N,Fp,Ast,Ap'
• 'N,Fst,Ast,Ap'

The filter specifications are defined as follows:

• Ast — attenuation in the stopband in decibels (the default units). Also called Astop.
• Ap — amount of ripple allowed in the passband in decibels (the default units). Also called Apass.
• Fp — frequency at the start of the passband. Specified in normalized frequency units. Also called

Fpass.
• Fst — frequency at the end of the stopband. Specified in normalized frequency units. Also called

Fstop.
• N — filter order.

The filter design methods that apply to an inverse sinc highpass filter specification object change
depending on the value of the Specification property. Use designmethods to determine which
design method applies to a specific Specification.

Use designopts to see the available design options for a specific design method. Enter
help(D,METHOD) at the MATLAB command line to obtain detailed information on the design options
for a given design method, METHOD.

D = fdesign.isinchp(SPEC,specvalue1,specvalue2,...) constructs an object D and sets
the specifications at construction time.

5 Functions

5-510

D = fdesign.isinchp(specvalue1,specvalue2,specvalue3,specvalue4) constructs an
object D assuming the default Specification property 'Fst,Fp,Ast,Ap', using the values you
provide in specvalue1,specvalue2, specvalue3, and specvalue4.

D = fdesign.isinchp(...,Fs) adds the argument Fs, specified in Hz to define the sampling
frequency to use. In this case, all frequencies in the specifications are in Hz as well.

D = fdesign.isinchp(...,MAGUNITS) specifies the units for any magnitude specification you
provide in the input arguments. MAGUNITS can be one of

• 'linear' — specify the magnitude in linear units
• 'dB' — specify the magnitude in dB (decibels)
• 'squared' — specify the magnitude in power units

When you omit the MAGUNITS argument, fdesign assumes that all magnitudes are in decibels. Note
that fdesign stores all magnitude specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

The design method of fdesign.isinchp implements a filter with a passband magnitude response
equal to:

H(ω) = sinc(C(1− ω))−P

You can control the values of the sinc frequency factor, C, and the sinc power, P, using the
'SincFrequencyFactor' and 'SincPower' options in the design method.
'SincFrequencyFactor' and 'SincPower' default to 0.5 and 1 respectively.

Examples

Construct an Inverse Sinc Highpass Filter Using fdesign Object

Design a minimum order inverse sinc highpass filter and shape the stopband to have a slope of 20 dB/
radian/sample.

 d = fdesign.isinchp('Fst,Fp,Ast,Ap',.4,.5,40,0.01);
 Hd = design(d,'SystemObject',true);

Shape the stopband to have a linear slope of 20 dB/rad/sample

 Hd1 = design(d,'StopbandShape','linear','StopbandDecay',20,'SystemObject',...
 true);
 fvtool(Hd,Hd1);

 fdesign.isinchp

5-511

Design a 50th order inverse sinc highpass filter. Set the sinc frequency factor to 0.25, and the sinc
power to 16 to achieve a magnitude response in the passband of the form H(?) =
sinc(0.25*(1-?))^(-16) .

 d = fdesign.isinchp('N,Fst,Fp',50,.4,.5);
 Hd = design(d,'SincFrequencyFactor',0.25,'SincPower',16,...
 'SystemObject',true);
 fvtool(Hd);

5 Functions

5-512

See Also
design | designmethods | fdesign | fdesign.ciccomp | fdesign.highpass |
fdesign.isinclp | fdesign.nyquist

Introduced in R2011b

 fdesign.isinchp

5-513

fdesign.isinclp
Inverse sinc lowpass filter specification

Syntax
d = fdesign.isinclp
d = fdesign.isinclp(spec)
d = fdesign.isinclp(spec,specvalue1,specvalue2,...)
d = fdesign.isinclp(specvalue1,specvalue2,specvalue3,specvalue4)
d = fdesign.isinclp(...,Fs)
d = fdesign.isinclp(...,MAGUNITS)

Description
d = fdesign.isinclp constructs an inverse sinc lowpass filter specification object d, applying
default values for the default specification, 'Fp,Fst,Ap,Ast'.

d = fdesign.isinclp(spec) constructs object d and sets its 'Specification' to spec. Entries
in the spec represent various filter response features, such as the filter order, that govern the filter
design. Valid entries for spec are shown below. The options are not case sensitive.

• 'Fp,Fst,Ap,Ast' (default option)
• 'N,Fc,Ap,Ast'
• 'N,Fp,Ap,Ast'
• 'N,Fp,Fst'
• 'N,Fst,Ap,Ast'

The filter specifications are defined as follows:

• Ast — attenuation in the stopband in decibels (the default units). Also called Astop.
• Ap — amount of ripple allowed in the passband in decibels (the default units). Also called Apass.
• Fp — frequency at the start of the passband. Specified in normalized frequency units. Also called

Fpass.
• Fst — frequency at the end of the stopband. Specified in normalized frequency units. Also called

Fstop.
• N — filter order.

The filter design methods that apply to an inverse sinc lowpass filter specification object change
depending on the Specification. Use designmethods to determine which design method applies
to an object and its specification.

d = fdesign.isinclp(spec,specvalue1,specvalue2,...) constructs an object d and sets its
specifications at construction time.

d = fdesign.isinclp(specvalue1,specvalue2,specvalue3,specvalue4) constructs an
object d assuming the default Specification property 'Fp,Fst,Ap,Ast', using the values you
provide in specvalue1,specvalue2, specvalue3, and specvalue4.

5 Functions

5-514

d = fdesign.isinclp(...,Fs) adds the argument Fs, specified in Hz to define the sampling
frequency to use. In this case, all frequencies in the specifications are in Hz as well.

d = fdesign.isinclp(...,MAGUNITS) specifies the units for any magnitude specification you
provide in the input arguments. MAGUNITS can be one of

• 'linear' — specify the magnitude in linear units
• 'dB' — specify the magnitude in dB (decibels)
• 'squared' — specify the magnitude in power units

When you omit the MAGUNITS argument, fdesign assumes that all magnitudes are in decibels. Note
that fdesign stores all magnitude specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

The design method of fdesign.isinclp implements a filter with a passband magnitude response
equal to:

H(ω) = sinc(Cω)−P

You can control the values of the sinc frequency factor, C, and the sinc power, P, using the
'SincFrequencyFactor' and 'SincPower' options in the design method.
'SincFrequencyFactor' and 'SincPower' default to 0.5 and 1 respectively.

Examples

Construct an Inverse Sinc Lowpass Filter Using fdesign Object

Pass the specifications for the default specification - 'Fp,Fst,Ap,Ast', as input arguments to the
specifications object.

d = fdesign.isinclp(.4,.5,.01,40);
hd = design(d,'equiripple','SystemObject',true);
fvtool(hd);

 fdesign.isinclp

5-515

Design a 50th order inverse sinc lowpass filter. Set the sinc frequency factor to 0.25 and the sinc
power to 16 to achieve a magnitude response in the passband of the form H(w) = sinc(0.25*w)^(-16) .

 d = fdesign.isinclp('N,Fp,Fst',50,.4,.5);
 Hd = design(d,'SincFrequencyFactor',0.25,'SincPower',16,'SystemObject',...
 true);
 fvtool(Hd, 'MagnitudeDisplay', 'Magnitude');

5 Functions

5-516

See Also
fdesign | fdesign.bandpass | fdesign.bandstop | fdesign.halfband | fdesign.highpass
| fdesign.lowpass | fdesign.nyquist

Introduced in R2011a

 fdesign.isinclp

5-517

fdesign.lowpass
Lowpass filter specification

Syntax
D = fdesign.lowpass
D = fdesign.lowpass(SPEC)
D = fdesign.lowpass(SPEC,specvalue1,specvalue2,...)
D = fdesign.lowpass(specvalue1,specvalue2,specvalue3,specvalue4)
D = fdesign.lowpass(...,Fs)
D = fdesign.lowpass(...,MAGUNITS)

Description
D = fdesign.lowpass constructs a lowpass filter specification object D, applying default values for
the default specification option 'Fp,Fst,Ap,Ast'.

D = fdesign.lowpass(SPEC) constructs object D and sets the Specification property to the
entry in SPEC. Entries in SPEC represent various filter response features, such as the filter order, that
govern the filter design. Valid entries for SPEC are shown below. The options are not case sensitive.

Note Specifications options marked with an asterisk require the DSP System Toolbox software.

• 'Fp,Fst,Ap,Ast' (default option)
• 'N,F3db'
• 'N,F3db,Ap' *
• 'N,F3db,Ap,Ast' *
• 'N,F3db,Ast' *
• 'N,F3db,Fst' *
• 'N,Fc'
• 'N,Fc,Ap,Ast'
• 'N,Fp,Ap'
• 'N,Fp,Ap,Ast'
• 'N,Fp,Fst,Ap' *
• 'N,Fp,F3db' *
• 'N,Fp,Fst'
• 'N,Fp,Fst,Ast' *
• 'N,Fst,Ap,Ast' *
• 'N,Fst,Ast'
• 'Nb,Na,Fp,Fst' *

The filter specifications are defined as follows:

5 Functions

5-518

• Ap — amount of ripple allowed in the pass band in decibels (the default units). Also called Apass.
• Ast — attenuation in the stop band in decibels (the default units). Also called Astop.
• F3db — cutoff frequency for the point 3 dB point below the passband value. Specified in

normalized frequency units.
• Fc — cutoff frequency for the point 6 dB point below the passband value. Specified in normalized

frequency units.
• Fp — frequency at the start of the pass band. Specified in normalized frequency units. Also called

Fpass.
• Fst — frequency at the end of the stop band. Specified in normalized frequency units. Also called

Fstop.
• N — filter order.
• Na and Nb are the order of the denominator and numerator.

Graphically, the filter specifications look similar to those shown in the following figure.

Regions between specification values like Fp and Fst are transition regions where the filter response
is not explicitly defined.

D = fdesign.lowpass(SPEC,specvalue1,specvalue2,...) constructs an object D and sets
the specification values at construction time using specvalue1, specvalue2, and so on for all of the
specification variables in SPEC.

D = fdesign.lowpass(specvalue1,specvalue2,specvalue3,specvalue4) constructs an
object D with values for the default Specification property 'Fp,Fst,Ap,Ast' using the
specifications you provide as input arguments
specvalue1,specvalue2,specvalue3,specvalue4.

D = fdesign.lowpass(...,Fs) adds the argument Fs, specified in Hz to define the sampling
frequency to use. In this case, all frequencies in the specifications are in Hz as well.

D = fdesign.lowpass(...,MAGUNITS) specifies the units for any magnitude specification you
provide in the input arguments. MAGUNITS can be one of

• 'linear' — specify the magnitude in linear units
• 'dB' — specify the magnitude in dB (decibels)
• 'squared' — specify the magnitude in power units

When you omit the MAGNUNITS argument, fdesign assumes that all magnitudes are in decibels.
Note that fdesign stores all magnitude specifications in decibels (converting to decibels when
necessary) regardless of how you specify the magnitudes.

 fdesign.lowpass

5-519

Examples

Design Butterworth Filter

Design a butterworth filter with lowpass and highpass frequency responses. The filter design
procedure is:

1 Specify the filter design specifications using a fdesign function.
2 Pick a design method provided by the designmethods function.
3 To determine the available design options to choose from, use the designoptions function.
4 Design the filter using the design function.

Lowpass Filter

Construct a default lowpass filter design specification object using fdesign.lowpass.

designSpecs = fdesign.lowpass

designSpecs =
 lowpass with properties:

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: 1
 Fpass: 0.4500
 Fstop: 0.5500
 Apass: 1
 Astop: 60

Determine the available design methods using the designmethods function. To design a butterworth
filter, pick butter.

designmethods(designSpecs,'SystemObject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

designoptions(designSpecs,'butter','SystemObject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'

5 Functions

5-520

 SOSScaleOpts: 'fdopts.sosscaling'
 MatchExactly: {'passband' 'stopband'}
 DefaultFilterStructure: 'df2sos'
 DefaultMatchExactly: 'stopband'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

Use the design function to design the filter. Pass 'butter' and the specifications given by variable
designSpecs, as input arguments. Specify the 'matchexactly' design option to 'passband'.

lpFilter = design(designSpecs,'butter','matchexactly','passband','SystemObject',true);

Visualize the frequency response of the designed filter.

fvtool(lpFilter)

Highpass Filter

Construct a highpass filter design specification object using fdesign.highpass. Specify the order
to be 7 and the 3 dB frequency to be 0 . 6π radians/sample.

designSpecs = fdesign.highpass('N,F3dB',7,.6);

Determine the available design methods. To design a butterworth filter, pick butter.

designmethods(designSpecs,'SystemObject',true)

 fdesign.lowpass

5-521

Design Methods that support System objects for class fdesign.highpass (N,F3dB):

butter
maxflat

While designing the filter, you can specify additional design options. View a list of the options using
the designoptions function. This function also shows the default design options the filter uses.

designoptions(designSpecs,'butter','SystemObject',true)

ans = struct with fields:
 FilterStructure: {1x6 cell}
 SOSScaleNorm: 'ustring'
 SOSScaleOpts: 'fdopts.sosscaling'
 DefaultFilterStructure: 'df2sos'
 DefaultSOSScaleNorm: ''
 DefaultSOSScaleOpts: [1x1 fdopts.sosscaling]

To design the butterworth filter, use the design function and specify 'butter' as an input. Set
'FilterStructure' to 'cascadeallpass'.

hpFilter = design(designSpecs,'butter','FilterStructure','cascadeallpass','SystemObject',true);

Visualize the highpass frequency response.

fvtool(hpFilter)

5 Functions

5-522

Lowpass Filtering of Sinusoids

Lowpass filter a discrete-time signal consisting of two sine waves.

Create a lowpass filter specification object. Specify the passband frequency to be 0 . 15π rad/sample
and the stopband frequency to be 0 . 25π rad/sample. Specify 1 dB of allowable passband ripple and a
stopband attenuation of 60 dB.

d = fdesign.lowpass('Fp,Fst,Ap,Ast',0.15,0.25,1,60);

Query the valid design methods for your filter specification object, d.

designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

 fdesign.lowpass

5-523

Create an FIR equiripple filter and view the filter magnitude response with fvtool.

Hd = design(d,'equiripple');
fvtool(Hd)

Create a signal consisting of the sum of two discrete-time sinusoids with frequencies of π/8 and π/4
rad/sample and amplitudes of 1 and 0.25, respectively. Filter the discrete-time signal with the FIR
equiripple filter object, Hd.

n = 0:159;
x = (0.25*cos((pi/8)*n)+sin((pi/4)*n));
y = filter(Hd,x);

Compute the Fourier transform of the original signal and the filtered signal. Verify that the high-
frequency component has been filtered out.

freq = 0:(2*pi)/160:pi;
xdft = fft(x);
ydft = fft(y);

figure
plot(freq/pi,abs(xdft(1:length(x)/2+1)))
hold on
plot(freq/pi,abs(ydft(1:length(y)/2+1)))
hold off

legend('Original Signal','Filtered Signal')

5 Functions

5-524

ylabel('Magnitude')
xlabel('Normalized Frequency (\times\pi rad/sample)')

Window Method Lowpass Design

Create a filter of order 10 with a 6-dB frequency of 9.6 kHz and a sampling frequency of 48 kHz. Look
at the available design methods.

d = fdesign.lowpass('N,Fc',10,9600,48000);
designmethods(d)

Design Methods for class fdesign.lowpass (N,Fc):

window

The only valid design method is the FIR window method. Design the filter.

Hd = design(d);

Display the filter magnitude response. The -6 dB point is at 9.6 kHz, as expected.

fvtool(Hd)

 fdesign.lowpass

5-525

Stopband Shape and Decay

Create an FIR equiripple filter with a passband frequency of 0 . 2π rad/sample, a stopband frequency
of 0 . 25π rad/sample, a passband ripple of 1 dB, and a stopband attenuation of 60 dB. Design the
filter with a 20 dB/rad/sample linear stopband.

D = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.25,1,60);
Hd = design(D,'equiripple','StopbandShape','linear','StopbandDecay',20);

Visualize the frequency response of the filter.

fvtool(Hd)

5 Functions

5-526

See Also
design | designmethods | fdesign

Introduced in R2009a

 fdesign.lowpass

5-527

fdesign.notch
Notch filter specification

Syntax
notchSpecs = fdesign.notch
notchSpecs = fdesign.notch(n,f0,q)
notchSpecs = fdesign.notch(spec,value1,...,valueN)
notchSpecs = fdesign.notch(___ ,Fs)
notchSpecs = fdesign.notch(___ ,magunits)

Description
The fdesign.notch function returns a notch filter design specification object that contains the
specifications for a filter, such as passband ripple, stopband attenuation, and filter order. Then, use
the design function to design the filter from the filter design specifications object.

For more control options, see “Filter Design Procedure” on page 5-391. For a complete workflow, see
“Design a Filter in Fdesign — Process Overview”.

notchSpecs = fdesign.notch constructs a notch filter specification object with the filter order
set to 10, center frequency set to 0.5, and quality factor set to 2.5.

notchSpecs = fdesign.notch(n,f0,q) constructs a notch filter specification object with the
filter order, center frequency, and quality factor specified by n,f0, and q, respectively.

notchSpecs = fdesign.notch(spec,value1,...,valueN) constructs a notch filter
specification object with a particular filter order, center frequency, and other specification options.
Indicate the options you want to specify in the expression spec. After the expression, specify a value
for each option.

notchSpecs = fdesign.notch(___ ,Fs) provides the sample rate of the signal to be filtered.

notchSpecs = fdesign.notch(___ ,magunits) provides the units for any magnitude
specification given. magunits can be one of the following: 'linear', 'dB', or 'squared'. If this
argument is omitted, 'dB' is assumed. The magnitude specifications are always converted and stored
in decibels regardless of how they were specified. If Fs is provided, magunits must follow Fs in the
input argument list.

Examples

Design Notch Filter

Design a direct-form I notching filter that has a filter order of 6, center frequency of 0.5, quality
factor of 10, and a passband ripple of 1 dB.

Create a notch filter design specification object using the fdesign.notch function and specify
these design parameters.

5 Functions

5-528

notchSpecs = fdesign.notch('N,F0,Q,Ap',6,0.5,10,1);

Design the notch filter using the design function. The resulting filter is a dsp.BiquadFilter
System object™. For details on how to apply this filter on streaming data, refer to
dsp.BiquadFilter.

notchFilt = design(notchSpecs,'SystemObject',true)

notchFilt =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [3x6 double]
 ScaleValues: [4x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Visualize the frequency response of the designed filter using fvtool.

fvtool(notchFilt)

 fdesign.notch

5-529

Input Arguments
spec — Specification
'N,F0,Q' (default) | 'N,F0,Q,Ap' | 'N,F0,Q,Ast' | ...

Specification expression, specified as one of these character vectors:

• 'N,F0,Q' (default)
• 'N,F0,Q,Ap'
• 'N,F0,Q,Ast'
• 'N,F0,Q,Ap,Ast'
• 'N,F0,BW'
• 'N,F0,BW,Ap'
• 'N,F0,BW,Ast'
• 'N,F0,BW,Ap,Ast'

This table describes each option that can appear in the expression.

Specification option Description
N Filter order (must be even)
F0 Center frequency
Q Quality factor
BW 3 dB bandwidth
Ap Passband ripple (dB)
Ast Stopband attenuation (dB)

The design methods available for designing the filter depend on the specification expression. You can
obtain these methods using the designmethods function. The table lists each specification
expression supported by fdesign.notch and the corresponding design methods available.

Specification expression Supported design method Filter description
'N,F0,Q' butter Butterworth digital filter
'N,F0,Q,Ap' cheby1 Chebyshev Type I digital filter
'N,F0,Q,Ast' cheby2 Chebyshev Type II digital filter
'N,F0,Q,Ap,Ast' ellip Elliptical digital filter
'N,F0,BW' butter Butterworth digital filter
'N,F0,BW,Ap' cheby1 Chebyshev Type I digital filter
'N,F0,BW,Ast' cheby2 Chebyshev Type II digital filter
'N,F0,BW,Ap,Ast' ellip Elliptical digital filter

To design the filter, call the design function with one of these design methods as an input. You can
choose the type of filter response by passing 'FIR' or 'IIR' to the design function. For more
details, see design.

For more details on the procedure, see “Filter Design Procedure” on page 5-391. For an example, see
“Design Notch Filter” on page 5-528.

5 Functions

5-530

value1,...,valueN — Specification values
comma-separated list of values

Specification values, specified as a comma-separated list of values. Specify a value for each option in
spec in the same order that the options appear in the expression.
Example: d = fdesign.notch('N,F0,BW,Ast',n,f0,bw,ast)

The arguments below describe more details for each option in the expression.

n — Filter order
even positive integer

Filter order, specified as an even positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

f0 — Center frequency
scalar

Center frequency of the filter, specified as a scalar. When the input sampling frequency Fs is
specified, the center frequency is in Hz. When the input sample rate is not specified, the center
frequency is in normalized units between 0 and 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

q — Quality factor
positive scalar

Quality factor of the filter, specified as a real positive scalar.

Quality factor of the filter is defined as the ratio of the center frequency to the 3 dB bandwidth.

q = f0/bw

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

bw — 3 dB Bandwidth
scalar

3 dB bandwidth of the filter, specified as a real scalar.

Specify the 3 dB bandwidth value in normalized frequency units between 0 and 1. If you specify the
sample rate Fs, then specify the bandwidth value in Hz instead.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ap — Passband ripple
positive scalar

Passband ripple, specified as a positive scalar in dB. If magunits is 'linear' or 'squared', the
passband ripple is converted and stored in dB by the function regardless of how it has been specified.
Data Types: double

ast — Stopband attenuation
positive scalar

 fdesign.notch

5-531

Stopband attenuation of the filter, specified as a positive scalar in dB. If magunits is 'linear' or
'squared', the stopband attenuation is converted and stored in dB by the function regardless of
how it has been specified.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fs — Sample rate
scalar

Sample rate of the signal to be filtered, specified as a scalar in Hz. Specify the sample rate as a scalar
trailing the other numerical values provided. When Fs is provided, Fs is assumed to be in Hz, as are
all other frequency values provided. Note that you do not have to change the specification string.

Consider a design specification where N is set to 4, F0 is set to 1200 Hz, and Q is set to 6.5. Specify
the sample rate of the input signal as 8000 Hz. Here is how the design looks:

d = fdesign.notch('N,F0,Q',4,1200,6.5,8e3); filt =
design(d,'Systemobject',true);

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

magunits — Magnitude units
'dB' (default) | 'linear' | 'squared'

Magnitude specification units, specified as 'dB', 'linear', or 'squared'. If this argument is
omitted, 'dB' is assumed. Note that the magnitude specifications are always converted and stored in
dB regardless of how they were specified. If Fs is one of the input arguments, magunits must be
specified after Fs in the input argument list.

Output Arguments
notchSpecs — Notch filter design specification object
notch object

Notch filter design specification object, returned as a notch object. The fields of the object depend
on the spec input character vector.

Consider an example where the spec argument is set to 'N,F0,Q,Ap,Ast', and the corresponding
values are set to 6, 0.5, 10, 1, 80, respectively. The notch filter design specification object is
populated with the following fields:

5 Functions

5-532

See Also
Functions
design | fdesign | fdesign.peak | designmethods | designoptions

Objects
dsp.BiquadFilter

Topics
“Design a Filter in Fdesign — Process Overview”

Introduced in R2011a

 fdesign.notch

5-533

fdesign.nyquist
Nyquist filter specification

Syntax
d = fdesign.nyquist
d = fdesign.nyquist(l, spec)
d = fdesign.nyquist(l,spec,specvalue1,specvalue2,...)
d = fdesign.nyquist(l,specvalue1,specvalue2)
d = fdesign.nyquist(...,fs)
d = fdesign.nyquist(...,magunits)

Description
d = fdesign.nyquist constructs a Nyquist or L-band filter specification object d, applying default
values for the properties tw and ast. By default, the filter object designs a minimum-order half-band
(L=2) Nyquist filter.

Using fdesign.nyquist along with design method generates a System object, if the
'SystemObject' flag in the design method is set to true.

d = fdesign.nyquist(l, spec) constructs object d and sets its Specification property to
spec. Use l to specify the desired value for L. L = 2 designs a half-band FIR filter, L = 3 a third-band
FIR filter, and so on. When you use a Nyquist filter as an interpolator, l or L is the interpolation factor.
The first input argument must be l when you are not using the default syntax d =
fdesign.nyquist.

Entries in the spec represent various filter response features, such as the filter order, that govern the
filter design. Valid entries for spec are shown below. The entries are not case sensitive.

• tw,ast (default option)
• n,tw
• n
• n,ast

where,

• ast — attenuation in the stop band in decibels (the default units).
• n — filter order.
• tw — width of the transition region between the pass and stop bands. Specified in normalized

frequency units.

The filter design methods that apply to a Nyquist filter specification object change depending on the
Specification option. Use designmethods to determine which design method applies to an
object and its specification option. Different filter design methods also have options that you can
specify. Use designopts with the design method to see the available options. For example:

f=fdesign.nyquist(4,'N,TW');
designmethods(f)

5 Functions

5-534

d = fdesign.nyquist(l,spec,specvalue1,specvalue2,...) constructs an object d and sets
its specification to spec, and the specification values to specvalue1, specvalue2, and so on at
construction time.

d = fdesign.nyquist(l,specvalue1,specvalue2) constructs an object d with the values you
provide in l, specvalue1,specvalue2 as the values for l, tw and ast.

d = fdesign.nyquist(...,fs) adds the argument fs, specified in Hz to define the sampling
frequency to use. In this case, all frequencies in the specifications are in Hz as well.

d = fdesign.nyquist(...,magunits) specifies the units for any magnitude specification you
provide in the input arguments. magunits can be one of

• linear — specify the magnitude in linear units
• dB — specify the magnitude in dB (decibels)
• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in decibels. Note
that fdesign stores all magnitude specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Limitations of the Nyquist fdesign Object

Using Nyquist filter specification objects with the equiripple design method imposes a few
limitations on the resulting filter, caused by the equiripple design algorithm.

• When you request a minimum-order design from equiripple with your Nyquist object, the
design algorithm might not converge and can fail with a filter convergence error.

• When you specify the order of your desired filter, and use the equiripple design method, the
design might not converge.

• Generally, the following specifications, alone or in combination with one another, can cause filter
convergence problems with Nyquist objects and the equiripple design method.

• very high order
• small transition width
• very large stopband attenuation

Note that halfband filters (filters where band = 2) do not exhibit convergence problems.

When convergence issues arise, either in the cases mentioned or in others, you might be able to
design your filter with the kaiserwin method.

In addition, if you use Nyquist objects to design decimators or interpolators (where the interpolation
or decimation factor is not a prime number), using multistage filter designs might be your best
approach.

Examples

Construct a Nyquist Filter Using fdesign Object

These examples show how to construct a Nyquist filter specification object.

 fdesign.nyquist

5-535

First, create a default specifications object without using input arguments.

d = fdesign.nyquist; %#ok

Now create an object by passing a specification type 'n,ast' - the resulting object uses default values
for n and ast.

d = fdesign.nyquist(2,'n,ast'); %#ok

Create another Nyquist filter object, passing the specification values to the object rather than
accepting the default values for n and ast.

d = fdesign.nyquist(3,'n,ast',42,80) %#ok

d =
 nyquist with properties:

 Response: 'Nyquist'
 Specification: 'N,Ast'
 Description: {2x1 cell}
 NormalizedFrequency: 1
 FilterOrder: 42
 Astop: 80
 Band: 3

Finally, pass the filter specifications that correspond to the default Specification - tw,ast. When you
pass only the values, fdesign.nyquist assumes the default Specification option.

d = fdesign.nyquist(4,.01,80)

d =
 nyquist with properties:

 Response: 'Nyquist'
 Specification: 'TW,Ast'
 Description: {2x1 cell}
 NormalizedFrequency: 1
 TransitionWidth: 0.0100
 Astop: 80
 Band: 4

Now design a Nyquist filter using the kaiserwin design method.

hd = design(d,'kaiserwin','SystemObject',true);

Create two equiripple Nyquist 4th-band filters with and without a nonnegative zero phase response:

f = fdesign.nyquist(4,'N,TW',12,0.2);

Equiripple Nyquist 4th-band filter with nonnegative zero phase response

Hd1 = design(f,'equiripple','zerophase',true,'SystemObject',true);

Equiripple Nyquist 4th-band filter with 'ZeroPhase' set to false 'zerophase',false is the default

Hd2 = design(f,'equiripple','zerophase',false,'SystemObject',true);

5 Functions

5-536

Obtain real-valued amplitudes (not magnitudes)

[Hr_zerophase,~] = zerophase(Hd1);
[Hr,W] = zerophase(Hd2);

Plot and compare response

plot(W,Hr_zerophase,'k','linewidth',2);
xlabel('Radians/sample'); ylabel('Amplitude');
hold on;
plot(W,Hr,'r');
axis tight; grid on;
legend('with ''ZeroPhase'', true','with ''ZeroPhase'' false');

Note that the amplitude of the zero phase response (black line) is nonnegative for all frequencies.

The 'ZeroPhase' option is valid only for equiripple Nyquist designs with the 'N,TW' specification. You
cannot specify 'MinPhase' and 'ZeroPhase' to be simultaneously 'true'.

See Also
fdesign | fdesign.interpolator | fdesign.halfband | fdesign.interpolator |
fdesign.rsrc | zerophase

Introduced in R2011a

 fdesign.nyquist

5-537

fdesign.octave
Octave filter specification

Compatibility

Note The fdesign.octave function will be removed from DSP System Toolbox in a future release.
Existing instances of the function continue to run. For new code, use the octaveFilter object
instead.

Syntax
d = fdesign.octave(l)
d = fdesign.octave(l, MASK)
d = fdesign.octave(l, MASK, spec)
d = fdesign.octave(..., Fs)

Description
d = fdesign.octave(l) constructs an octave filter specification object d, with l bands per octave.
The default value for l is one.

Note The filters created by fdesign.octave comply with the ANSI® S1.11-2004 and IEC
61260:1995 standards.

d = fdesign.octave(l, MASK) constructs an octave filter specification object d with l bands per
octave and MASK specification for the FVTool. The available values for mask are:

• 'class 0'
• 'class 1'
• 'class 2'

d = fdesign.octave(l, MASK, spec) constructs an octave filter specification object d with l
bands per octave, MASK specification for the FVTool, and the spec specification character vector. The
specifications available are:

• 'N, F0'

(not case sensitive), where:

• N is the filter order
• F0 is the center frequency. The center frequency is specified in normalized frequency units

assuming a sampling frequency of 48 kHz, unless a sampling frequency in Hz is included in the
specification: d = fdesign.octave(..., Fs). If you specify an invalid center frequency, a
warning is issued and the center frequency is rounded to the nearest valid value. You can
determine the valid center frequencies for your design by using validfrequencies with your
octave filter specification object. For example:

5 Functions

5-538

d = fdesign.octave(1,'Class 1','N,F0',6,1000,44.1e3);
validcenterfreq = validfrequencies(d);

Valid center frequencies:

• Must be greater than 20 Hz and less than 20 kHz if you specify a sampling frequency. The
range 20 Hz to 20 kHz is the standard range of human hearing.

• Are calculated according to the following algorithm if the number of bands per octave, L, is
even:
G = 10^(3/10);
x = -1000:1350;
validcenterfreq = 1000*(G.^((2*x-59)/(2*L)));
validcenterfreq = validcenterfreq(validcenterfreq>20 & validcenterfreq<2e4);

• Are calculated according to the following algorithm if the number of bands per octave, L, is
odd:
G = 10^(3/10);
x = -1000:1350;
validcenterfreq = 1000*(G.^((x-30)/L));
validcenterfreq = validcenterfreq(validcenterfreq>20 & validcenterfreq<2e4);

Only center frequencies greater than 20 and less than 20,000 are retained. The center
frequencies and the corresponding upper band frequencies must be less than the Nyquist
frequency, which is half the sampling rate (samplingfreq). The vector of upper band
frequencies (upperbandfreq) corresponding to the center frequencies (validcenterfreq)
is computed using the following algorithm:

upperbandfreq = validcenterfreq.*(G^(1/(2*L)));

The algorithm removes the center frequencies whose corresponding upper band frequencies
do not obey the Nyquist rule.

validcenterfreq = validcenterfreq(upperbandfreq < samplingfreq/2);

If you do not specify a sampling frequency, fdesign.octave assumes a samplingfreq of 48
kHz. To obtain valid normalized center frequencies, the remaining center frequencies are
divided by 24,000.

validcenterfreq = validcenterfreq/24000;

Examples

Design an Octave Band Filter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Design a sixth order, octave-band class 0 filter with a center frequency of 1000 Hz and, a sampling
frequency of 44.1 kHz.

d = fdesign.octave(1,'Class 0','N,F0',6,1000,44100)

d = octave with properties:
 Response: 'Octave and Fractional Octave'
 BandsPerOctave: 1
 Mask: 'Class 0'
 Specification: 'N,F0'

 fdesign.octave

5-539

 Description: {2x1 cell}
 NormalizedFrequency: 0
 Fs: 44100
 FilterOrder: 6
 F0: 1000

biquad = design(d,'SystemObject',true)

biquad = BiquadFilter with properties:
 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [3x6 double]
 ScaleValues: [4x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Plot the magnitude response of the filter using fvtool. The logarithmic scale for frequency is
automatically set by fvtool for the octave filters.

fvtool(biquad)

Filter a sinusoidal signal using the above designed filter. The input is a sum of two tones - one at 0.3
kHz and the other at 3 kHz. Initiatize a spectrum analyzer to view the filtered output power
spectrum.

Fs = 2500;
Sineobject1 = dsp.SineWave('SamplesPerFrame',1024,...
 'SampleRate',Fs,'Frequency',100);
Sineobject2 = dsp.SineWave('SamplesPerFrame',1024,...
 'SampleRate',Fs,'Frequency',1000);

sa = dsp.SpectrumAnalyzer('SampleRate',Fs,'NumInputPorts',2,...
 'PlotAsTwoSidedSpectrum',false,'YLimits',[-250,50],...
 'ChannelNames',{'Input','FilteredOutput'},'ShowLegend',true);

Stream the sinusoidal signal and pass it as an input to the biquadratic filter. View the input and the
filtered output power spectra using the spectrum analyzer.

for Iter = 1:3000
 Sinewave1 = Sineobject1();
 Sinewave2 = Sineobject2();
 Input = Sinewave1 + Sinewave2;
 filteredOutput = biquad(Input);
 sa(Input,filteredOutput);
end

See Also
fdesign

Introduced in R2011a

5 Functions

5-540

fdesign.parameq
Parametric equalizer filter specification

Compatibility

Note The fdesign.parameq function will be removed from DSP System Toolbox in a future release.
Existing instances of the function continue to run. For new code, use the designParamEQ function
instead.

Syntax
d = fdesign.parameq(spec, specvalue1, specvalue2, ...)
d = fdesign.parameq(... fs)

Description
d = fdesign.parameq(spec, specvalue1, specvalue2, ...) constructs a parametric
equalizer filter design object, where spec is a non-case sensitive specification character vector. The
choices for spec are as follows:

• 'F0, BW, BWp, Gref, G0, GBW, Gp' (minimum order default)
• 'F0, BW, BWst, Gref, G0, GBW, Gst'
• 'F0, BW, BWp, Gref, G0, GBW, Gp, Gst'
• 'N, F0, BW, Gref, G0, GBW'
• 'N, F0, BW, Gref, G0, GBW, Gp'
• 'N, F0, Fc, Qa, G0'
• 'N, F0, Fc, S, G0'
• 'N, F0 ,BW, Gref, G0, GBW, Gst'
• 'N, F0, BW, Gref, G0, GBW, Gp, Gst'
• 'N, Flow, Fhigh, Gref, G0, GBW'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gp'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gst'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gp, Gst'

where the parameters are defined as follows:

• BW — Bandwidth
• BWp — Passband Bandwidth
• BWst — Stopband Bandwidth
• Gref — Reference Gain (decibels)
• G0 — Center Frequency Gain (decibels)
• GBW — Gain at which Bandwidth (BW) is measured (decibels)

 fdesign.parameq

5-541

• Gp — Passband Gain (decibels)
• Gst — Stopband Gain (decibels)
• N — Filter Order
• F0 — Center Frequency
• Fc— Cutoff frequency
• Fhigh - Higher Frequency at Gain GBW
• Flow - Lower Frequency at Gain GBW
• Qa-Quality Factor
• S-Slope Parameter for Shelving Filters

Regardless of the specification chosen, there are some conditions that apply to the specification
parameters. These are as follows:

• Specifications for parametric equalizers must be given in decibels
• To boost the input signal, set G0 > Gref; to cut, set Gref > G0
• For boost: G0 > Gp > GBW > Gst > Gref; For cut: G0 < Gp < GBW < Gst < Gref
• Bandwidth must satisfy: BWst > BW > BWp

d = fdesign.parameq(... fs) adds the input sampling frequency. Fs must be specified as a
scalar trailing the other numerical values provided, and is assumed to be in Hz.

Examples
Design a Chebyshev Type II parametric equalizer filter that cuts by 12 dB:

d = fdesign.parameq('N,Flow,Fhigh,Gref,G0,GBW,Gst',...
 4,.3,.5,0,-12,-10,-1);
 Hd = design(d,'cheby2');
 fvtool(Hd)

Design a 4th order audio lowpass (F0 = 0) shelving filter with cutoff frequency of Fc = 0.25, quality
factor Qa =10, and boost gain of G0 = 8 dB:

5 Functions

5-542

d = fdesign.parameq('N,F0,Fc,Qa,G0',4,0,0.25,10,8);
Hd = design(d);
fvtool(Hd)

Design 4th-order highpass shelving filters with S=1.5 and S=3:

N=4;
F0 = 1;
Fc = .4; % Cutoff Frequency
G0 = 10;
S = 1.5;
S2=3;
f = fdesign.parameq('N,F0,Fc,S,G0',N,F0,Fc,S,G0);
h1 = design(f);
f.S=3;
h2=design(f);
hfvt=fvtool([h1 h2]);
set(hfvt,'Filters',[h1 h2]);
legend(hfvt,'S=1.5','S=3');

 fdesign.parameq

5-543

See Also
fdesign

Introduced in R2011a

5 Functions

5-544

fdesign.peak
Peak filter specification

Syntax
d = fdesign.peak(specstring, value1, value2, ...)
d = fdesign.peak(n,f0,q)
d = fdesign.peak(...,Fs)
d = fdesign.peak(...,MAGUNITS)

Description
d = fdesign.peak(specstring, value1, value2, ...) constructs a peaking filter
specification object d, with specification set to specstring and values provided for all members of
the specstring. The possible specification options, which are not case sensitive, are listed as
follows:

• 'N,F0,Q' (default)
• 'N,F0,Q,Ap'
• 'N,F0,Q,Ast'
• 'N,F0,Q,Ap,Ast'
• 'N,F0,BW'
• 'N,F0,BW,Ap'
• 'N,F0,BW,Ast'
• 'N,F0,BW,Ap,Ast'

where the variables are defined as follows:

• N - Filter Order (must be even)
• F0 - Center Frequency
• Q - Quality Factor
• BW - 3-dB Bandwidth
• Ap - Passband Ripple (decibels)
• Ast - Stopband Attenuation (decibels)

Different specification options, resulting in different specification objects, may have different design
methods available. Use the function designmethods to get a list of design methods available for a
given specification. For example:

>> d = fdesign.peak('N,F0,Q,Ap',6,0.5,10,1);
>> designmethods(d)

Design Methods for class fdesign.peak (N,F0,Q,Ap):

cheby1

 fdesign.peak

5-545

d = fdesign.peak(n,f0,q) constructs a peaking filter specification object using the default
specstring ('N,F0,Q') and setting the corresponding values to n, f0, and q.

By default, all frequency specifications are assumed to be in normalized frequency units. All
magnitude specifications are assumed to be in decibels.

d = fdesign.peak(...,Fs) constructs a peak filter specification object while providing the
sampling frequency of the signal to be filtered. Fs must be specified as a scalar trailing the other
values provided. If you specify an Fs, it is assumed to be in Hz, as all the other frequency values
provided.

d = fdesign.peak(...,MAGUNITS) constructs a notch filter specification while providing the
units for any magnitude specification given. MAGUNITS can be one of the following: 'linear', 'dB',
or 'squared'. If this argument is omitted, 'dB' is assumed. The magnitude specifications are
always converted and stored in decibels regardless of how they were specified. If Fs is provided,
MAGUNITS must follow Fs in the input argument list.

Examples

Design a Chebyshev Type II Peaking Filter

Design a Chebyshev Type II peaking filter with a stopband attenuation of 80 dB.

d = fdesign.peak('N,F0,BW,Ast',8,.65,.02,80);
Hd = design(d,'cheby2','SystemObject',true);
fvtool(Hd)

5 Functions

5-546

See Also
fdesign | fdesign.notch | fdesign.parameq

Introduced in R2011a

 fdesign.peak

5-547

fdesign.polysrc
Construct polynomial sample-rate converter (POLYSRC) filter designer

Syntax
d = fdesign.polysrc(l,m)
d = fdesign.polysrc(l,m,'Fractional Delay','Np',Np)
d = fdesign.polysrc(...,Fs)

Description
d = fdesign.polysrc(l,m) constructs a polynomial sample-rate converter filter designer D with
an interpolation factor L and a decimation factor M. L defaults to 3. M defaults to 2. L and M can be
arbitrary positive numbers.

d = fdesign.polysrc(l,m,'Fractional Delay','Np',Np) initializes the filter designer
specification with Np and sets the polynomial order to the value Np. If omitted Np defaults to 3.

d = fdesign.polysrc(...,Fs) specifies the sampling frequency (in Hz).

Examples

Design a Sample-Rate Converter

This example shows how to design sample-rate converter that uses a 3rd order Lagrange
interpolation filter to convert from 44.1kHz to 48kHz.

[L,M] = rat(48/44.1);
f = fdesign.polysrc(L,M,'Fractional Delay','Np',3);
Hm = design(f,'lagrange');

Original sampling frequency

Fs = 44.1e3;

9408 samples, 0.213 seconds long

n = 0:9407;

Original signal, sinusoid at 1kHz

x = sin(2*pi*1e3/Fs*n);

10241 samples, still 0.213 seconds

y = filter(Hm,x);

Plot original sampled at 44.1kHz

stem(n(1:45)/Fs,x(1:45))
hold on

5 Functions

5-548

Plot fractionally interpolated signal (48kHz) in red

stem((n(3:51)-2)/(Fs*L/M),y(3:51),'r','filled')
xlabel('Time (sec)');ylabel('Signal value')
legend('44.1 kHz sample rate','48 kHz sample rate')

 fdesign.polysrc

5-549

For more information about Farrow SRCs, see the "Efficient Sample Rate Conversion between
Arbitrary Factors" example, efficientsrcdemo.

See Also
fdesign

Introduced in R2011a

5 Functions

5-550

fdesign.pulseshaping
Pulse-shaping filter specification object

Syntax
D = fdesign.pulseshaping
D = fdesign.pulseshaping(sps)
D = fdesign.pulseshaping(sps,shape)
d = fdesign.pulseshaping(sps,shape,spec,value1,value2,...)
d = fdesign.pulseshaping(...,fs)
d = fdesign.pulseshaping(...,magunits)

Description

Note The use of fdesign.pulseshaping is not recommended. Use rcosdesign or gaussdesign
instead.

D = fdesign.pulseshaping constructs a specification object D, which can be used to design a
minimum-order raised cosine filter object with a default stop band attenuation of 60dB and a rolloff
factor of 0.25.

D = fdesign.pulseshaping(sps) constructs a minimum-order raised cosine filter specification
object d with a positive integer-valued oversampling factor, SamplesPerSymbol .

D = fdesign.pulseshaping(sps,shape) constructs d where shape specifies the PulseShape
property. Valid entries for shape are:

• 'Raised Cosine'
• 'Square Root Raised Cosine'
• 'Gaussian'

d = fdesign.pulseshaping(sps,shape,spec,value1,value2,...) constructs d where
spec defines the Specification properties. The entries for spec specify various properties of the
filter, including the order and frequency response. Valid entries for spec depend upon the shape
property. For 'Raised Cosine' and 'Square Root Raised Cosine' filters, the valid entries for
spec are:

• 'Ast,Beta' (minimum order; default)
• 'Nsym,Beta'
• 'N,Beta'

The filter specifications are defined as follows:

• Ast —stopband attenuation (in dB). The default stopband attenuation for a raised cosine filter is
60 dB. The default stopband attenuation for a square root raised cosine filter is 30 dB. If Ast is
specified, the minimum-order filter is returned.

 fdesign.pulseshaping

5-551

• Beta —rolloff factor expressed as a real-valued scalar ranging from 0 to 1. Smaller rolloff factors
result in steeper transitions between the passband and stopband of the filter.

• Nsym —filter order in symbols. The length of the impulse response is given by
Nsym*SamplesPerSymbol+1. The product Nsym*SamplesPerSymbol must be even.

• N —filter order (must be even). The length of the impulse response is N+1.

If the shape property is specified as 'Gaussian', the valid entries for spec are:

• 'Nsym,BT' (default)

The filter specifications are defined as follows:

• Nsym—filter order in symbols. Nsym defaults to 6. The length of the filter impulse response is
Nsym*SamplesPerSymbol+1. The product Nsym*SamplesPerSymbol must be even.

• BT —the 3–dB bandwidth-symbol time product. BT is a positive real-valued scalar, which defaults
to 0.3. Larger values of BT produce a narrower pulse width in time with poorer concentration of
energy in the frequency domain.

d = fdesign.pulseshaping(...,fs) specifies the sampling frequency of the signal to be
filtered. fs must be specified as a scalar trailing the other numerical values provided. For this case,
fs is assumed to be in Hz and is used for analysis and visualization.

d = fdesign.pulseshaping(...,magunits) specifies the units for any magnitude specification
you provide in the input arguments. Valid entries for magunits are:

• linear — specify the magnitude in linear units
• dB — specify the magnitude in dB (decibels)
• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in decibels. Note
that fdesign stores all magnitude specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

After creating the specification object d, you can use the design function to create a filter object
such as h in the following example:
d = fdesign.pulseshaping(8,'Raised Cosine','Nsym,Beta',6,0.25);
h = design(d);

Normally, the Specification property of the specification object also determines which design
methods you can use when you create the filter object. Currently, regardless of the Specification
property, the design function uses the window design method with all fdesign.pulseshaping
specification objects. The window method creates an FIR filter with a windowed impulse response.

Examples

Pulse-shaping can be used to change the waveform of transmitted pulses so the signal bandwidth
matches that of the communication channel. This helps to reduce distortion and intersymbol
interference (ISI).

This example shows how to design a minimum-order raised cosine filter that provides a stop band
attenuation of 60 dB, rolloff factor of 0.50, and 8 samples per symbol.

5 Functions

5-552

h = fdesign.pulseshaping(8,'Raised Cosine','Ast,Beta',60,0.50);
 Hd = design(h);
 fvtool(Hd)

This code generates the following figure.

This example shows how to design a raised cosine filter that spans 8 symbol durations (i.e., of order 8
symbols), has a rolloff factor of 0.50, and oversampling factor of 10.

h = fdesign.pulseshaping(10,'Raised Cosine','Nsym,Beta',8,0.50);
 Hd = design(h);
 fvtool(Hd, 'impulse')

This example shows how to design a square root raised cosine filter of order 42, rolloff factor of 0.25,
and 10 samples per symbol.

h = fdesign.pulseshaping(10,'Square Root Raised Cosine','N,Beta',42);
 Hd = design(h);
 fvtool(Hd, 'impulse')

 fdesign.pulseshaping

5-553

The following example demonstrates how to create a Gaussian pulse-shaping filter with an
oversampling factor (sps) of 10, a bandwidth-time symbol product of 0.2, and 8 symbol periods. The
sampling frequency is specified as 10 kHz.

Introduced in R2011a

5 Functions

5-554

fdesign.rsrc
Rational-factor sample-rate converter specification

Syntax
D = fdesign.rsrc(L,M)
D = fdesign.rsrc(L,M,RESPONSE)
D = fdesign.rsrc(L,M,CICRESPONSE,D)
D = fdesign.rsrc(L,M,RESPONSE,SPEC)
D = fdesign.rsrc(L,M,SPEC,specvalue1,specvalue2,...)
D = fdesign.rsrc(...,Fs)
D = fdesign.rsrc(...,MAGUNITS)

Description
D = fdesign.rsrc(L,M) constructs a rational-factor sample-rate filter specification object D with
the InterpolationFactor property equal to the positive integer L, the DecimationFactor
property equal to the positive integer M and the Response property set to 'Nyquist'. The default
values for the transition width and stopband attenuation in the Nyquist design are 0.1π radians/
sample and 80 dB. If L is unspecified, L defaults to 3. If M is unspecified, M defaults to 2.

D = fdesign.rsrc(L,M,RESPONSE) constructs an rational-factor sample-rate converter with the
interpolation factor L, decimation factor M, and the response you specify in RESPONSE.

D = fdesign.rsrc(L,M,CICRESPONSE,D) constructs a CIC or CIC compensator rational-factor
sample-rate convertor filter specification object with the 'RESPONSE' property equal to 'CIC' or
'CICCOMP'. D is the differential delay. The differential delay, D, must precede the filter specification.

Because you are designing multirate filters, the specification options available are not the same as
the specification options for designing single-rate filters. The interpolation and decimation factors are
not included in the specification. Different filter responses support different specifications. The
following table lists the supported response types and specification options. These options are not
case sensitive.

Design Method Valid Specification Options
'Arbitrary Magnitude' See fdesign.arbmag for a description of the specification entries.

• 'N,F,A' (default option)
• 'N,B,F,A'

'Arbitrary Magnitude
and Phase'

See fdesign.arbmagnphase for a description of the specification
entries.

• 'N,F,H' (default option)
• 'N,B,F,H'

 fdesign.rsrc

5-555

Design Method Valid Specification Options
'Bandpass' See fdesign.bandpass for a description of the specification entries.

• 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2' (default option)
• 'N,Fc1,Fc2'
• 'N,Fst1,Fp1,Fp2,Fst2'

'Bandstop' See fdesign.bandstop for a description of the specification entries.

• 'N,Fc1,Fc2'
• 'N,Fp1,Fst1,Fst2,Fp2'
• 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2' (default option)

'CIC' 'Fp,Fst,Ap,Ast' — Only valid specification. Fp is the passband
frequency, Fst is the stopband frequency, Ap is the passband ripple,
and Ast is the stopband attenuation in decibels.

To specify a CIC rational-factor sample-rate convertor, include the
differential delay after 'CIC' and before the filter specification:
'Fp,Ast'. For example:
d = fdesign.rsrc(2,2,'cic',4);

'CIC Compensator' See fdesign.ciccomp for a description of the specification entries.

• 'Fp,Fst,Ap,Ast' (default option)
• 'N,Fc,Ap,Ast'
• 'N,Fp,Ap,Ast'
• 'N,Fp,Fst'
• 'N,Fst,Ap,Ast'

To specify a CIC compensator rational-factor sample-rate convertor,
include the differential delay after 'CICCOMP' and before the filter
specification. For example:
d = fdesign.rsrc(2,2,'ciccomp',4);

'Differentiator' 'N' — filter order
'Gaussian' 'Nsym,BT — Nsym is the filter order in symbols and BT is the

bandwidth-symbol time product.

The filter specification must be preceded by an integer-valued
SamplesPerSymbol.

'Halfband See fdesign.halfband for a description of the specification entries.

• 'TW,Ast' (default option)
• 'N,TW'
• 'N'
• 'N,Ast'

If you use the quasi-linear IIR design method, iirlinphase, with a
halfband specification, the interpolation factor must be 2.

5 Functions

5-556

Design Method Valid Specification Options
'Highpass' See fdesign.highpass for a description of the specification entries.

• 'Fst,Fp,Ast,Ap' (default option)
• 'N,F3db'
• 'N,Fc'
• 'N,Fc,Ast,Ap'
• 'N,Fp,Ast,Ap'
• 'N,Fst,Ast,Ap'
• 'N,Fst,Fp'
• 'N,Fst,Ast,Ap'
• 'N,Fst,Fp,Ast'

'Hilbert' See fdesign.hilbert for a description of the specification entries.

• 'N,TW' (default option)
• 'TW,Ap'

'Inverse-sinc
Lowpass'

See fdesign.isinclp for a description of the specification entries.

• 'Fp,Fst,Ap,Ast' (default option)
• 'N,Fc,Ap,Ast'
• 'N,Fp,Fst'
• 'N,Fst,Ap,Ast'

'Inverse-sinc
Highpass'

See fdesign.isinchp for a description of the specification entries.

• 'Fst,Fp,Ast,Ap' (default option)
• 'N,Fc,Ast,Ap'
• 'N,Fst,Fp'
• 'N,Fst,Ast,Ap'

'Lowpass' See fdesign.lowpass for a description of the specification entries.

• 'Fp,Fst,Ap,Ast' (default option)
• 'N,F3dB'
• 'N,Fc'
• 'N,Fc,Ap,Ast'
• 'N,Fp,Ap,Ast'
• 'N,Fp,Fst'
• 'N,Fp,Fst,Ap'
• 'N,Fp,Fst,Ast'
• 'N,Fst,Ap,Ast'

 fdesign.rsrc

5-557

Design Method Valid Specification Options
'Nyquist' See fdesign.nyquist for a description of the specification entries.

For all Nyquist specifications, you must specify the Lth band. This
typically corresponds to the interpolation factor so that the nonzero
samples of the upsampler output are preserved.

• 'TW,Ast' (default option)
• 'N'
• 'N,Ast'
• 'N,Ast'

D = fdesign.rsrc(L,M,RESPONSE,SPEC) constructs object D and sets its Specification
property to SPEC. Entries in the SPEC represent various filter response features, such as the filter
order, that govern the filter design. Valid entries for SPEC depend on the design type of the
specifications object.

When you add the SPEC input argument, you must also add the RESPONSE input argument.

D = fdesign.rsrc(L,M,SPEC,specvalue1,specvalue2,...) constructs an object D and sets
its specifications at construction time.

D = fdesign.rsrc(...,Fs) provides the sampling frequency of the signal to be filtered. Fs must
be specified as a scalar trailing the other numerical values provided. Fs is assumed to be in Hz as are
all other frequency values provided.

D = fdesign.rsrc(...,MAGUNITS) specifies the units for any magnitude specification you
provide in the input arguments. MAGUNITS can be one of

• 'linear' — specify the magnitude in linear units.
• 'dB' — specify the magnitude in dB (decibels).
• 'squared' — specify the magnitude in power units.

When you omit the MAGUNITS argument, fdesign assumes that all magnitudes are in decibels. Note
that fdesign stores all magnitude specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples

Construct a Sample-Rate Converter Using fdesign Object

Design a rational-factor sample-rate converter. Set the rational sample-rate change to 5/3. Use the
default Nyquist design with a transition width of 0.05π radians/sample and stopband attenuation of
40 dB. The Lth band factor in the Nyquist design is equal to the interpolation factor.

d = fdesign.rsrc(5,3,'nyquist',5,.05,40);
hm = design(d,'kaiserwin','SystemObject',true); %design with Kaiser window

Design a rational-factor sample-rate converter. Set the rational sample-rate change to 5/3. Use a
Nyquist design with the filter specification set to 'N,TW'. Set the order equal to 12 and the transition
width to 0.1π radians/sample. The Lth band factor in the Nyquist design is equal to the interpolation
factor.

5 Functions

5-558

d = fdesign.rsrc(5,3,'nyquist',5,'N,TW',12,0.1); %#ok

Design a rational-factor sample-rate converter. Assume the data are sampled at 10 kHz. Set the
rational sample-rate change to 3/2. Use a Nyquist design with the filter specification set to 'N,TW'.
Set the order equal to 12 and the transition width to 100 Hz. The Lth band factor in the Nyquist
design is equal to the interpolation factor.

d = fdesign.rsrc(3,2,'nyquist',3,'N,TW',12,100,1e4);
hd = design(d,'equiripple','SystemObject',true);

See Also
design | designmethods | fdesign.rsrc | fdesign.interpolator | setspecs |
fdesign.arbmag | fdesign.arbmagnphase

Introduced in R2011a

 fdesign.rsrc

5-559

fftcoeffs
Frequency-domain coefficients

Syntax
c = fftcoeffs(hd)

Description
c = fftcoeffs(hd) return the frequency-domain coefficients used when filtering with the
dfilt.fftfir object. c contains the coefficients

Examples

Frequency Domain Coefficients of FIR Filter

This example demonstrates returning the FFT coefficients from the discrete-time filter hd.

b = [0.05 0.9 0.05];
len = 50;
hd = dfilt.fftfir(b,len);
c=fftcoeffs(hd);

Plot the impulse response of the coefficients.

impz(c);

5 Functions

5-560

Introduced in R2011a

 fftcoeffs

5-561

filterBuilder
Interactive filter design

Syntax
filterBuilder(h)
filterBuilder('response')

Description
filterBuilder starts a interactive tool for building filters. It relies on the fdesign object-object
oriented filter design paradigm, and is intended to reduce development time during the filter design
process. filterBuilder uses a specification-centered approach to find the best algorithm for the
desired response.

Note You must have the Signal Processing Toolbox installed to use fdesign and filterBuilder.
Some of the features described below may be unavailable if your installation does not additionally
include the DSP System Toolbox. You can verify the presence of both toolboxes by typing ver at the
command prompt.

For more information on how to use filterBuilder, see “Filter Builder Design Process”.

To use filterBuilder, enter filterBuilder at the MATLAB command line using one of three
approaches:

• Simply enter filterBuilder. MATLAB opens a dialog for you to select a filter response type.
After you select a filter response type, filterBuilder launches the appropriate filter design
dialog box.

• Enter filterBuilder(h), where h is an existing filter object. For example, if h is a bandpass
filter, filterBuilder(h) opens the bandpass filter design dialog box. The h object must have
been created using filterBuilder or using fdesign.

Note You must have the DSP System Toolbox software to create and import filter System objects.
• Enter filterBuilder('response') to replace response with a response method from the

following table. MATLAB opens a filter design dialog that corresponds to the specified response.

Note You must have the DSP System Toolbox software to implement a number of the filter designs
listed in the following table. If you only have the Signal Processing Toolbox software, you can design a
limited set of the following filter-response types.

Response Method Description of Resulting
Filter Design

Filter Object

arbgrpdelay on page 5-573 Arbitrary group delay filter
design

fdesign.arbgrpdelay

5 Functions

5-562

Response Method Description of Resulting
Filter Design

Filter Object

arbmag on page 5-573 Arbitrary magnitude filter
design

fdesign.arbmag

arbmagnphase on page 5-573 Arbitrary response filter
(magnitude and phase)

fdesign.arbmagnphase

audioweighting on page 5-576 Audio weighting filter fdesign.audioweighting
bandpass on page 5-577 or bp Bandpass filter fdesign.bandpass
bandstop on page 5-581 or bs Bandstop filter fdesign.bandstop
cic on page 5-586 CIC filter fdesign.decimator(M,'cic

',...) or
fdesign.interpolator(L,'
cic',...)
See fdesign.decimator and
fdesign.interpolator

ciccomp on page 5-587 CIC compensator fdesign.ciccomp
comb on page 5-590 Comb filter fdesign.comb
diff on page 5-592 Differentiator filter fdesign.differentiator
fracdelay on page 5-595 Fractional delay filter fdesign.fracdelay
halfband on page 5-595 or hb Halfband filter fdesign.halfband
highpass on page 5-598 or hp Highpass filter fdesign.highpass
hilb on page 5-602 Hilbert filter fdesign.hilbert
isinc on page 5-605,
isinclp on page 5-605, or
isinchp on page 5-605

Inverse sinc lowpass or
highpass filter

fdesign.isinclp and
fdesign.isinchp

lowpass on page 5-609 or lp Lowpass filter (default) fdesign.lowpass
notch on page 5-613 Notch filter fdesign.notch
nyquist on page 5-613 Nyquist filter fdesign.nyquist
octave on page 5-617 Octave filter fdesign.octave
parameq on page 5-618 Parametric equalizer filter fdesign.parameq
peak on page 5-621 Peak filter fdesign.peak

Note Because they do not change the filter structure, the magnitude specifications and design
method are tunable when using filterBuilder.

Filter Builder Design Panes
Main Design Pane

The main pane of Filter Builder varies depending on the filter response type, but the basic structure
is the same. The following figure shows the basic layout of the dialog box.

 filterBuilder

5-563

As you choose the response for the filter, the available options and design parameters displayed in the
dialog box change. This display allows you to focus only on parameters that make sense in the context
of your filter design.

Every filter design dialog box includes the options displayed at the top of the dialog box, shown in the
following figure.

• Save variable as — When you click Apply to apply your changes or OK to close this dialog box,
filterBuilder saves the current filter to your MATLAB workspace as a filter object with the
name you enter.

• View Filter Response — Displays the magnitude response for the current filter specifications and
design method by opening the Filter Visualization Tool (FVTool).

Note The filterBuilder dialog box includes an Apply option. Each time you click Apply,
filterBuilder writes the modified filter to your MATLAB workspace. This modified filter has the
variable name you assign in Save variable as. To apply changes without overwriting the variable in
you workspace, change the variable name in Save variable as before you click Apply.

There are three tabs in the Filter Builder dialog box, containing three panes: Main, Data Types, and
Code Generation. The first pane changes according to the filter being designed. The last two panes
are the same for all filters. These panes are discussed in the following sections.

Data Types Pane

The second tab in the Filter Builder dialog box is shown in the following figure.

5 Functions

5-564

The Arithmetic drop down box allows the choice of Double precision, Single precision, or
Fixed point. Some of these options may be unavailable depending on the filter parameters. The
following table describes these options.

Arithmetic List Entry Effect on the Filter
Double precision All filtering operations and coefficients use double-precision, floating-

point representations and math. When you use filterBuilder to
create a filter, double precision is the default value for the
Arithmetic property.

Single precision All filtering operations and coefficients use single-precision floating-
point representations and math.

Fixed point This entry applies selected default values, typically used on many
digital processors, for the properties in the fixed-point filter. These
properties include coefficient word lengths, fraction lengths, and
various operating modes. This setting allows signed fixed data types
only. Fixed-point filter design with filterBuilder is available only
when you install Fixed-Point Designer software along with DSP
System Toolbox software.

The following figure shows the Data Types pane after you select Fixed point for Arithmetic and
set Filter internals to Specify precision. This figure shows the Data Types pane for the case
where the Use a System object to implement filter check box is not selected in the Main pane.

 filterBuilder

5-565

When you select Use a System object to implement filter check box in the Main pane, the Data
Types pane appears as below:

5 Functions

5-566

Not all parameters described in the following section apply to all filters. For example, FIR filters do
not have the Section input and Section output parameters.

Input signal
Specify the format the filter applies to data to be filtered. For all cases, filterBuilder
implements filters that use binary point scaling and signed input. You set the word length and
fraction length as needed.

 filterBuilder

5-567

Coefficients
Choose how you specify the word length and the fraction length of the filter numerator and
denominator coefficients:

• Specify word length enables you to enter the word length of the coefficients in bits. In
this mode, filterBuilder automatically sets the fraction length of the coefficients to the
binary-point only scaling that provides the best possible precision for the value and word
length of the coefficients.

• Binary point scaling enables you to enter the word length and the fraction length of the
coefficients in bits. If applicable, enter separate fraction lengths for the numerator and
denominator coefficients.

• The filter coefficients do not obey the Rounding mode and Overflow mode parameters that
are available when you select Specify precision from the Filter internals list. Coefficients
are always saturated and rounded to Nearest.

Section Input
Choose how you specify the word length and the fraction length of the fixed-point data type going
into each section of an SOS filter. This parameter is visible only when the selected filter structure
is IIR and SOS.

• Binary point scaling enables you to enter the word and fraction lengths of the section
input in bits.

• Specify word length enables you to enter the word lengths in bits.

Section Output
Choose how you specify the word length and the fraction length of the fixed-point data type
coming out of each section of an SOS filter. This parameter is visible only when the selected filter
structure is IIR and SOS.

• Binary point scaling enables you to enter the word and fraction lengths of the section
output in bits.

• Specify word length enables you to enter the output word lengths in bits.

State
Contains the filter states before, during, and after filter operations. States act as filter memory
between filtering runs or sessions. Use this parameter to specify how to designate the state word
and fraction lengths. This parameter is not visible for direct form and direct form I filter
structures because filterBuilder deduces the state directly from the input format. States
always use signed representation:

• Binary point scaling enables you to enter the word length and the fraction length of the
accumulator in bits.

• Specify precision enables you to enter the word length and fraction length in bits (if
available).

Product
Determines how the filter handles the output of product operations. Choose from the following
options:

• Full precision — Maintain full precision in the result.

5 Functions

5-568

• Keep LSB — Keep the least significant bit in the result when you need to shorten the data
words.

• Specify Precision — Enables you to set the precision (the fraction length) used by the
output from the multiplies.

Filter internals
Specify how the fixed-point filter performs arithmetic operations within the filter. The affected
filter portions are filter products, sums, states, and output. Select one of these options:

• Full precision — Specifies that the filter maintains full precision in all calculations for
products, output, and in the accumulator.

• Specify precision — Set the word and fraction lengths applied to the results of product
operations, the filter output, and the accumulator. Selecting this option enables the word and
fraction length controls.

Signed
Selecting this option directs the filter to use signed representations for the filter coefficients.

Word length
Sets the word length for the associated filter parameter in bits.

Fraction length
Sets the fraction length for the associate filter parameter in bits.

Accum
Use this parameter to specify how you would like to designate the accumulator word and fraction
lengths.

Determines how the accumulator outputs stored values. Choose from the following options:

• Full precision — Maintain full precision in the accumulator.
• Keep MSB — Keep the most significant bit in the accumulator.
• Keep LSB — Keep the least significant bit in the accumulator when you need to shorten the

data words.
• Specify Precision — Enables you to set the precision (the fraction length) used by the

accumulator.

Output
Sets the mode the filter uses to scale the output data after filtering. You have the following
choices:

• Avoid Overflow — Set the output data fraction length to avoid causing the data to overflow.
Avoid overflow is considered the conservative setting because it is independent of the
input data values and range.

• Best Precision — Set the output data fraction length to maximize the precision in the
output data.

• Specify Precision — Set the fraction length used by the filtered data.

Fixed-point operational parameters
Parameters in this group control how the filter rounds fixed-point values and how it treats values
that overflow.

 filterBuilder

5-569

Rounding mode
Sets the mode the filter uses to quantize numeric values when the values lie between
representable values for the data format (word and fraction lengths).

• ceil — Round toward positive infinity.
• convergent — Round to the closest representable integer. Ties round to the nearest even

stored integer. This is the least biased of the methods available in this software.
• zero/fix — Round toward zero.
• floor — Round toward negative infinity.
• nearest — Round toward nearest. Ties round toward positive infinity.
• round — Round toward nearest. Ties round toward negative infinity for negative numbers,

and toward positive infinity for positive numbers.

The choice you make affects everything except coefficient values and input data which always
round. In most cases, products do not overflow—they maintain full precision.

Overflow mode
Sets the mode the filter uses to respond to overflow conditions in fixed-point arithmetic. Choose
from the following options:

• Saturate — Limit the output to the largest positive or negative representable value.
• Wrap — Set overflowing values to the nearest representable value using modular arithmetic.

The choice you make affects everything except coefficient values and input data which always
round. In most cases, products do not overflow—they maintain full precision.

Cast before sum
Specifies whether to cast numeric data to the appropriate accumulator format before performing
sum operations. Selecting Cast before sum ensures that the results of the affected sum
operations match most closely the results found on most digital signal processors. Performing the
cast operation before the summation adds one or two additional quantization operations that can
add error sources to your filter results.

If you clear Cast before sum, the filter prevents the addends from being cast to the sum format
before the addition operation. Choose this setting to get the most accurate results from
summations without considering the hardware your filter might use. The input format referenced
by Cast before sum depends on the filter structure you are using.

The effect of clearing or selecting Cast before sum is as follows:

• Cleared — Configures filter summation operations to retain the addends in the format carried
from the previous operation.

• Selected — Configures filter summation operations to convert the input format of the addends
to match the summation output format before performing the summation operation. Usually,
selecting Cast before sum generates results from the summation that more closely match
those found from digital signal processors.

Code Generation Pane

The code generation pane contains options for various implementations of the completed filter
design. Depending on your installation, you can generate MATLAB, VHDL, and Verilog code from the

5 Functions

5-570

designed filter. You can also choose to create or update a Simulink model from the designed filter. The
following section explains these options.

HDL
For more information on this option, see “Opening the Filter Design HDL Coder UI from the Filter
Builder” (Filter Design HDL Coder).

MATLAB
Generate MATLAB code based on filter specifications

• Generate function that returns your filter as an output

Selecting this option generates a function that designs a filter object using fdesign.
• Generate function that filters your data

Selecting this option generates a function that takes data as input, and outputs data filtered
with the designed filter. The data type of the filter output is set according to the data type
settings in the Data Types pane.

Clicking on the Generate MATLAB code button, brings up a Save File dialog. Specify the file
name and location, and save. The filter is now contained in an editable file.

Simulink Model
Generate Simulink blocks and subsystems from your designed filters

When you click Generate Model, the filter builder generates Simulink blocks and subsystems
from your designed filters.

Clicking on the Generate Model button opens the Export to Simulink dialog box.

 filterBuilder

5-571

• Block Name — The name for the new subsystem block, set to Filter by default.
• Destination — Current saves the generated model to the current Simulink model. New

creates a new model to contain the generated block. User Defined creates a new model or
subsystem at the location specified in User Defined.

• Overwrite generated 'Filter' block — Overwrites an existing block with the name specified
in Block Name. Clear this check box to create a new block with the same name.

• Build model using basic elements — Builds the model using only basic blocks.
• Optimize for zero gains — Removes all zero-gain blocks from the model.
• Optimize for unity gains — Replaces all unity gains with direct connections.
• Optimize for negative gains — Removes all negative unity gain blocks, and changes sign at

the nearest summation block.
• Optimize delay chains — Replaces delay chains made up of n unit delays with a single delay

by n.
• Optimize for unity scale values — Removes all scale value multiplications by 1 from the
filter structure.

• Input processing — Specify how the generated filter block or subsystem block processes the
input. Depending on the type of filter you are designing, one or both of the following options
may be available:

• Columns as channels (frame based) — The block treats each column of the input as
a separate channel.

• Elements as channels (sample based) — The block treats each element of the input
as a separate channel.

For more information about sample-based and frame-based processing, see “Sample- and
Frame-Based Concepts”.

• Realize Model — Builds the model with the set parameters.

When the Use a System object to implement filter check box is selected in the Main pane, the
Generate Model button in the Simulink model panel is disabled under the following
conditions:

• Select Filter response as Comb and Arithmetic on the Data Types pane as Fixed point.
• Select Filter response as Arbitrary Response, Impulse response as IIR, set Specify

response as to either Magnitudes and phases or Frequency response, and Arithmetic
on the Data Types pane as Fixed point.

5 Functions

5-572

These settings design a dsp.IIRFilter System object with fixed point arithmetic. Generating a
Simulink model for fixed point dsp.IIRFilter object is not supported.

Filter Responses
Select your filter response from the filterBuilder Response Selection main menu.

If you have the DSP System Toolbox software, the following Response Selection menu appears.

Select your desired filter response from the menu and design your filter.

The following sections describe the options available for each response type.

Arbitrary Response Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
This dialog only applies if you have the DSP System Toolbox software. Select either FIR or IIR
from the drop down list, where FIR is the default impulse response. When you choose an impulse
response, the design methods and structures you can use to implement your filter change
accordingly. Arbitrary group delay designs are only available if Impulse response is IIR.
Without the DSP System Toolbox, the only available arbitrary response filter design is FIR.

Order mode
This dialog only applies if you have the DSP System Toolbox software. Choose Minimum or
Specify. Choosing Specify enables the Order dialog.

Order
This dialog only applies when Order mode is Specify. For an FIR design, specify the filter
order. For an IIR design, you can specify an equal order for the numerator and denominator, or

 filterBuilder

5-573

you can specify different numerator and denominator orders. The default is equal orders. To
specify a different denominator order, check the Denominator order box. Because the Signal
Processing Toolbox only supports FIR arbitrary-magnitude filters, you do not have the option to
specify a denominator order.

Denominator order
Select the check box and enter the denominator order. This option is enabled only if IIR is
selected for Impulse response.

Filter type
This dialog only applies if you have the DSP System Toolbox software and is only available for FIR
filters. Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your
choice determines the type of filter as well as the design methods and structures that are
available to implement your filter. By default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2 for Decimator and 3 for Sample-rate
converter.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Response Specification

Number of Bands
Select the number of bands in the filter. Multiband design is available for both FIR and IIR filters.

Specify response as:
Specify the response as Amplitudes, Magnitudes and phase, Frequency response, or
Group delay. Amplitudes is the only option if you do not have the DSP System Toolbox
software. Group delay is only available for IIR designs.

Frequency units
Specify frequency units as either Normalized, Hz, kHz, MHz, or GHz.

Input sample rate
Enter the input sampling frequency in the units specified in the Frequency units drop-down box.
This option is enabled when Frequency units is set to an option in hertz.

Band Properties

These properties are modified automatically depending on the response chosen in the Specify
response as drop-down box. Two or three columns are presented for input. The first column is
always Frequencies. The other columns are either Amplitudes, Magnitudes, Phases, or Frequency
Response. Enter the corresponding vectors of values for each column.

5 Functions

5-574

• Frequencies and Amplitudes — These columns are presented for input if you select
Amplitudes in the Specify response as drop-down box.

• Frequencies, Magnitudes, and Phases — These columns are presented for input if the response
chosen in the Specify response as drop-down box is Magnitudes and phases.

• Frequencies and Frequency response — These columns are presented for input if the response
chosen in the Specify response as drop-down box is Frequency response.

Algorithm

The options for each design are specific for each design method. In the arbitrary response design, the
available options also depend on the Response specifications. This section does not present all of
the available options for all designs and design methods.

Design Method
Select the design method for the filter. Different methods are enabled depending on the defining
parameters entered in the previous sections.

Design Options

• Window — Valid when the Design method is Frequency Sampling. Replace the square
brackets with the name of a window function or function handle. For example, 'hamming' or
@hamming. If the window function takes parameters other than the length, use a cell array.
For example, {'kaiser',3.5} or {@chebwin,60}.

• Density factor — Valid when the Design method is equiripple. Density factor controls the
density of the frequency grid over which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid is the value you enter for
Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter
but increases the time required to design the filter. The default value of 16 represents a
reasonable trade between the accurate approximation to the ideal filter and the time to design
the filter.

The default changes to 20 for an IIR arbitrary group delay design.
• Phase constraint — Valid when the Design method is equiripple, you have the DSP

System Toolbox installed, and Specify response as is set to Amplitudes. Choose one of
Linear, Minimum, or Maximum.

• Weights — Uses the weights in Weights to weight the error for a single-band design. If you
have multiple frequency bands, the Weights design option changes to B1 Weights, B2
Weights to designate the separate bands. Use Bi Weights to specify weights for the i-th
band. The Bi Weights design option is only available when you specify the i-th band as an
unconstrained.

• Bi forced frequency point — This option is only available in a multi-band constrained
equiripple design when Specify response as is Amplitudes. Bi forced frequency point is
the frequency point in the i-th band at which the response is forced to be zero. The index i
corresponds to the frequency bands in Band properties. For example, if you specify two
bands in Band properties, you have B1 forced frequency point and B2 forced frequency
point.

• Norm — Valid only for IIR arbitrary group delay designs. Norm is the norm used in the
optimization. The default value is 128, which essentially equals the L-infinity norm. The norm
must be even.

 filterBuilder

5-575

• Max pole radius — Valid only for IIR arbitrary group delay designs. Constrains the maximum
pole radius. The default is 0.999999. Reducing the Max pole radius can produce a transfer
function more resistant to quantization.

• Init norm — Valid only for IIR arbitrary group delay designs. The initial norm used in the
optimization. The default initial norm is 2.

• Init numerator — Specifies an initial estimate of the filter numerator coefficients.
• Init denominator — Specifies an initial estimate of the filter denominator coefficients. This

may be useful in difficult optimization problems. In allpass filters, you only have to specify
either the denominator or numerator coefficients. If you specify the denominator coefficients,
you can obtain the numerator coefficients.

Filter implementation

Structure
Select the structure for the filter. The available filter structures depend on the parameters you
select for your filter.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, this check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Audio Weighting Filter Design — Main Pane

Filter specifications

• Weighting type — The weighting type defines the frequency response of the filter. The valid
weighting types are: A, C , C-message, ITU-T 0.41, and ITU-R 468–4 weighting. See
fdesign.audioweighting for definitions of the weighting types.

• Class — Filter class is only applicable for A weighting and C weighting filters. The filter class
describes the frequency-dependent tolerances specified in the relevant standards. There are two
possible class values: 1 and 2. Class 1 weighting filters have stricter tolerances than class 2 filters.
The filter class value does not affect the design. The class value is only used to provide a
specification mask in FVTool for the analysis of the filter design.

• Impulse response — Impulse response type as one of IIR or FIR. For A, C , C-message, and ITU-
R 468–4 filter, IIR is the only option. For a ITU-T 0.41 weighting filter, FIR is the only option.

• Frequency units — Choose Hz, kHz, MHz, or GHz. Normalized frequency designs are not
supported for audio weighting filters.

• Input sample rate — The sampling frequency in Frequency units. For example, if Frequency
units is set to kHz, setting Input sample rate to 40 is equivalent to a 40 kHz sampling frequency.

Algorithm

• Design method — Valid design methods depend on the weighting type. For type A and C
weighting filters, the only valid design type is ANSI S1.42. This is an IIR design method that
follows ANSI standard S1.42–2001. For a C message filter, the only valid design method is Bell
41009, which is an IIR design method following the Bell System Technical Reference PUB 41009.
For a ITU-R 468–4 weighting filter, you can design an IIR or FIR filter. If you choose an IIR design,

5 Functions

5-576

the design method is IIR least p-norm. If you choose an FIR design, the design method
choices are: Equiripple or Frequency Sampling. For an ITU-T 0.41 weighting filter, the
available FIR design methods are Equiripple or Frequency Sampling

• Scale SOS filter coefficients to reduce chance of overflow — Selecting this parameter directs
the design to scale the filter coefficients to reduce the chances that the inputs or calculations in
the filter overflow and exceed the representable range of the filter. Clearing this option removes
the scaling. This parameter applies only to IIR filters.

Filter implementation

• Structure — For the filter specifications and design method you select, this parameter lists the
filter structures available to implement your filter. For audio weighting IIR filter designs, you can
choose direct form I or II biquad (SOS). You can also choose to implement these structures in
transposed form.

For FIR designs, you can choose direct form, direct-form transposed, direct-form symmetric,
direct-form asymmetric structures, or an overlap and add structure.

• Use a System object to implement filter — Selecting this check box gives you the choice of
using a System object to implement the filter. By default, this check box is cleared. When the
current design method or structure is not supported by a System object filter, then this check box
is disabled.

Bandpass Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down box. Selecting Specify enables
the Order option so you can enter the filter order.

If you have the DSP System Toolbox software installed, you can specify IIR filters with different
numerator and denominator orders. The default is equal orders. To specify a different
denominator order, check the Denominator order box.

Filter type — This dialog only applies if you have the DSP System Toolbox software.
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

 filterBuilder

5-577

• Selecting Sample-rate converter activates both factors.

Order
Enter the filter order. This option is enabled only if you select Specify for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

In the figure, regions between specification values such as Stopband frequency 1 (Fstop1) and
Passband frequency 1 (Fpass1) represent transition regions where the filter response is not explicitly
defined.

Frequency constraints
Select the filter features to use to define the frequency response characteristics. This dialog
applies only when Order mode is Specify.

• Passband and stopband frequencies — Define the filter by specifying the frequencies
for the edges for the stop- and passbands.

• Passband frequency — Define the filter by specifying frequencies for the edges of the
passband.

• Stopband frequency — Define the filter by specifying frequencies for the edges of the
stopbands.

• Half power (3dB) frequency — Define the filter response by specifying the locations of
the 3 dB points (IIR filters). The 3-dB point is the frequency for the point 3 dB below the
passband value.

• Half power (3dB) frequencies and passband width — Define the filter by specifying
frequencies for the 3-dB points in the filter response and the width of the passband. (IIR
filters)

5 Functions

5-578

• Half power (3dB) frequencies and stopband width — Define the filter by specifying
frequencies for the 3-dB points in the filter response and the width of the stopband. (IIR
filters)

• Cutoff (6dB) frequency — Define the filter response by specifying the locations of the 6-
dB points. The 6-dB point is the frequency for the point 6 dB below the passband value. (FIR
filters)

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in hertz, select one of the frequency units from the drop-down
list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input sample rate
parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Stopband frequency 1
Enter the frequency at the edge of the end of the first stopband. Specify the value in either
normalized frequency units or the absolute units you select in Frequency units.

Passband frequency 1
Enter the frequency at the edge of the start of the passband. Specify the value in either
normalized frequency units or the absolute units you select Frequency units.

Passband frequency 2
Enter the frequency at the edge of the end of the passband. Specify the value in either normalized
frequency units or the absolute units you select Frequency units.

Stopband frequency 2
Enter the frequency at the edge of the start of the second stopband. Specify the value in either
normalized frequency units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude constraints
Specify as Unconstrained or Constrained bands. You must have the DSP System Toolbox
software to select Constrained bands. Selecting Constrained bands enables dialogs for
both stopbands and the passband: Stopband attenuation 1, Stopband attenuation 2, and
Passband ripple. You cannot specify constraints for all three bands simultaneously.

Setting Magnitude constraints to Constrained bands enables the Wstop and Wpass options
under Design options.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.

 filterBuilder

5-579

• dB — Specify the magnitude in dB (decibels). This is the default setting.
• Squared — Specify the magnitude in squared units.

Stopband attenuation 1
Enter the filter attenuation in the first stopband in the units you choose for Magnitude units,
either linear or decibels.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation 2
Enter the filter attenuation in the second stopband in the units you choose for Magnitude units,
either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Phase constraint
Valid when the Design method is equiripple and you have the DSP System Toolbox installed.
Choose one of Linear, Minimum, or Maximum.

Minimum order
This option only applies when you have the DSP System Toolbox software and Order mode is
Minimum.

5 Functions

5-580

Select Any (default), Even, or Odd. Selecting Even or Odd forces the minimum-order design to be
an even or odd order.

Wstop1
Weight for the first stopband.

Wpass
Passband weight.

Wstop2
Weight for the second stopband.

Max pole radius
Valid only for IIR designs. Constrains the maximum pole radius. The default is 1. Reducing the
max pole radius can produce a transfer function more resistant to quantization.

Init norm
Valid only for IIR designs. The initial norm used in the optimization. The default initial norm is 2.

Init numerator
Specifies an initial estimate of the filter numerator coefficients. This may be useful in difficult
optimization problems.

Init denominator
Specifies an initial estimate of the filter denominator coefficients. This may be useful in difficult
optimization problems.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, this check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Bandstop Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

 filterBuilder

5-581

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option so you can enter the filter order.

If you have the DSP System Toolbox software installed, you can specify IIR filters with different
numerator and denominator orders. The default is equal orders. To specify a different
denominator order, check the Denominator order box.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

5 Functions

5-582

Frequency constraints
Select the filter features to use to define the frequency response characteristics. This dialog
applies only when Order mode is Specify.

• Passband and stopband frequencies — Define the filter by specifying the frequencies
for the edges for the stop- and passbands.

• Passband frequency — Define the filter by specifying frequencies for the edges of the
passband.

• Stopband frequency — Define the filter by specifying frequencies for the edges of the
stopbands.

• Half power (3dB) frequency — Define the filter response by specifying the locations of
the 3 dB points (IIR filters). The 3 dB point is the frequency for the point 3 dB point below the
passband value.

• Half power (3dB) frequencies and passband width — Define the filter by specifying
frequencies for the 3 dB points in the filter response and the width of the passband (IIR
filters).

• Half power (3dB) frequencies and stopband width — Define the filter by specifying
frequencies for the 3 dB points in the filter response and the width of the stopband (IIR
filters).

• Cutoff (6dB) frequency — Define the filter response by specifying the locations of the 6-
dB points (FIR filters). The 6-dB point is the frequency for the point 6 dB point below the
passband value.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Output sample rate
When you design an interpolator, Fs represents the sampling frequency at the filter output rather
than the filter input. This option is available only when you set Filter type is interpolator.

Passband frequency 1
Enter the frequency at the edge of the end of the first passband. Specify the value in either
normalized frequency units or the absolute units you select in Frequency units.

Stopband frequency 1
Enter the frequency at the edge of the start of the stopband. Specify the value in either
normalized frequency units or the absolute units you select Frequency units.

Stopband frequency 2
Enter the frequency at the edge of the end of the stopband. Specify the value in either normalized
frequency units or the absolute units you select Frequency units.

 filterBuilder

5-583

Passband frequency 2
Enter the frequency at the edge of the start of the second passband. Specify the value in either
normalized frequency units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude constraints
Specify as Unconstrained or Constrained bands. You must have the DSP System Toolbox
software to select Constrained bands. Selecting Constrained bands enables dialogs for
both passbands and the stopband: Passband ripple 1, Passband ripple 2, and Stopband
attenuation. You cannot specify constraints for all three bands simultaneously.

Setting Magnitude constraints to Constrained bands enables the Wstop and Wpass options
under Design options.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Passband ripple 1
Enter the filter ripple allowed in the first passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels

Passband ripple 2
Enter the filter ripple allowed in the second passband in the units you choose for Magnitude
units, either linear or decibels

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

5 Functions

5-584

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Phase constraint
Valid when the Design method is equiripple and you have the DSP System Toolbox installed.
Choose one of Linear, Minimum, or Maximum.

Minimum order
This option only applies when you have the DSP System Toolbox software and Order mode is
Minimum.

Select Any (default), Even, or Odd. Selecting Even or Odd forces the minimum-order design to be
an even or odd order.

Wpass1
Weight for the first passband.

Wstop
Stopband weight.

Wpass2
Weight for the second passband.

Match exactly
Specifies that the resulting filter design matches either the passband or stopband or both bands
when you select passband or stopband .

Max pole radius
Valid only for IIR designs. Constrains the maximum pole radius. The default is 1. Reducing the
max pole radius can produce a transfer function more resistant to quantization.

Init norm
Valid only for IIR designs. The initial norm used in the optimization. The default initial norm is 2.

Init numerator
Specifies an initial estimate of the filter numerator coefficients. This may be useful in difficult
optimization problems.

Init denominator
Specifies an initial estimate of the filter denominator coefficients. This may be useful in difficult
optimization problems.

 filterBuilder

5-585

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, this check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

CIC Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your CIC filter format, such as the filter type and the
differential delay.

Filter type
Select whether your filter will be a decimator or an interpolator. Your choice determines the
type of filter and the design methods and structures that are available to implement your filter.
Selecting decimator or interpolator activates the Factor option. When you design an
interpolator, you enable the Output sample rate parameter.

When you design either a decimator or interpolator, the resulting filter is a CIC filter that
decimates or interpolates your input signal.

Differential Delay
Specify the differential delay of your CIC filter as an integer value greater than or equal to 1. The
default value is 1. The differential delay changes the shape, number, and location of nulls in the
filter response. Increasing the differential delay increases the sharpness of the nulls and the
response between the nulls. In practice, differential delay values of 1 or 2 are the most common.

Factor
Specify the decimation or interpolation factor for your filter as an integer value greater than or
equal to 1. The default value is 2.

Frequency specifications

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

5 Functions

5-586

Output sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter output. When you provide an output sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available only when you design
interpolators.

Passband frequency
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

CIC Compensator Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the filter order mode and
the filter type.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

 filterBuilder

5-587

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Number of CIC sections
Specify the number of sections in the CIC filter for which you are designing this compensator.
Select the number of sections from the drop-down list or enter the number.

Differential Delay
Specify the differential delay of your target CIC filter. The default value is 1. Most CIC filters use
1 or 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve.

Frequency specifications

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Output sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter output. When you provide an output sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available only when you design
interpolators.

Passband frequency
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.

5 Functions

5-588

• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum phase. Clearing the Minimum phase
option removes the phase constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines and design the minimum order
filter to meet your specifications. Some filters do not provide this parameter. Select Any, Even, or
Odd from the drop-down list to direct the design to be any minimum order, or minimum even
order, or minimum odd order.

Note Generally, Minimum order designs are not available for IIR filters.

Match exactly
Specifies that the resulting filter design matches either the passband or stopband or both bands
when you select passband or stopband or both from the drop-down list.

 filterBuilder

5-589

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, this check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Comb Filter Design —Main Pane

Filter specifications

Parameters in this group enable you to specify the type of comb filter and the number of peaks or
notches.

Comb Type
Select Notch or Peak from the drop-down list. Notch creates a comb filter that attenuates a set
of harmonically related frequencies. Peak creates a comb filter that amplifies a set of
harmonically related frequencies.

Order mode
Select Order or Number of Peaks/Notches from the drop-down menu.

5 Functions

5-590

Select Order to enter the desired filter order in the dialog box.
The comb filter has notches or peaks at increments of 2/Order in normalized frequency units.

Select Number of Peaks or Number of Notches to specify the number of peaks or notches
and the Shelving filter order

.
Shelving filter order

The Shelving filter order is a positive integer that determines the sharpness of the peaks
or notches. Larger values result in sharper peaks or notches.

Frequency specifications

Parameters in this group enable you to specify the frequency constraints and frequency units.

Frequency specifications
Select Quality factor or Bandwidth.

Quality factor is the ratio of the center frequency of the peak or notch to the bandwidth
calculated at the –3 dB point.

Bandwidth specifies the bandwidth of the peak or notch. By default the bandwidth is measured
at the –3 dB point. For example, setting the bandwidth equal to 0.1 results in 3 dB frequencies at
normalized frequencies 0.05 above and below the center frequency of the peak or notch.

Frequency Units
Specify the frequency units. The default is normalized frequency. Choosing an option in Hz
enables the Input sample rate dialog box.

Magnitude specifications

Specify the units for the magnitude specification and the gain at which the bandwidth is measured.
This menu is disabled if you specify a filter order. Select one of the following magnitude units from
the drop down list:

• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Bandwidth gain — Specify the gain at which the bandwidth is measured. The default is –3 dB.

 filterBuilder

5-591

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
The IIR Butterworth design is the only option for peaking or notching comb filters.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter.

Use a System object to implement filter
Selecting this check box gives you the choice of using a System object to implement the filter. By
default, the check box is cleared.

Differentiator Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order. Graphically, the filter specifications look similar to those shown in the following
figure.

In the figure, regions between specification values such as Passband frequency (f1) and Stopband
frequency (f3) represent transition regions where the filter response is not explicitly defined.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

5 Functions

5-592

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve.

Frequency constraints
This option is only available when you specify the order of the filter design. Supported options are
Unconstrained and Passband edge and stopband edge.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Passband frequency
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude constraints
This option is only available when you specify the order of your filter design. The options for
Magnitude constraints depend on the value of the Frequency constraints. If the value of
Frequency constraints is Unconstrained, Magnitude constraints must be Unconstrained.

 filterBuilder

5-593

If the value of Frequency constraints is Passband edge and stopband edge, Magnitude
constraints can be Unconstrained, Passband ripple, or Stopband attenuation.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation 2
Enter the filter attenuation in the second stopband in the units you choose for Magnitude units,
either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Wpass
Passband weight. This option is only available for a specified-order design when Frequency
constraints is equal to Passband edge and stopband edge and the Design method is
Equiripple.

5 Functions

5-594

Wstop
Stopband weight. This option is only available for a specified-order design when Frequency
constraints is equal to Passband edge and stopband edge and the Design method is
Equiripple.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Fractional Delay Design — Main Pane

Frequency specifications

Parameters in this group enable you to specify your filter format, such as the fractional delay and the
filter order.

Order
If you choose Specify for Order mode, enter your filter order in this field, or select the order
from the drop-down list.filterBuilder designs a filter with the order you specify.

Fractional delay
Specify a value between 0 and 1 samples for the filter fractional delay. The default value is 0.5
samples.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Halfband Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter type and order.

 filterBuilder

5-595

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, or Interpolator. By default, filterBuilder specifies
single-rate filters.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
decimates or interpolates your input by a factor of two.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications for a halfband lowpass filter look similar to those shown in the following figure.

In the figure, the transition region lies between the end of the passband and the start of the
stopband. The width is defined explicitly by the value of Transition width.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

5 Functions

5-596

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Transition width
Specify the width of the transition between the end of the passband and the edge of the stopband.
Specify the value in normalized frequency units or the absolute units you select in Frequency
units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
For FIR halfband filters, the available design options are Equiripple and Kaiser window. For
IIR halfband filters, the available design options are Butterworth, Elliptic, and IIR quasi-
linear phase.

Design Options

The following design options are available for FIR halfband filters when the user specifies an
equiripple design:

Minimum phase
To design a filter that is minimum phase, select Minimum phase. Clearing the Minimum phase
option removes the phase constraint—the resulting design is not minimum phase.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

 filterBuilder

5-597

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to either Interpolator or
Decimator. The filter builder always implements the filter as a System object.

Highpass Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option so you can enter the filter order.

If your Impulse response is IIR, you can specify an equal order for the numerator and
denominator, or different numerator and denominator orders. The default is equal orders. To
specify a different denominator order, check the Denominator order box.

5 Functions

5-598

Filter type
This option is only available if you have the DSP System Toolbox software. Select Single-rate,
Decimator, Interpolator, or Sample-rate converter. Your choice determines the type of
filter as well as the design methods and structures that are available to implement your filter. By
default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a highpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the interpolation factor. This option is enabled only if the Filter type is set to
Interpolator or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

In the figure, the region between specification values Stopband frequency (Fstop) and Passband
frequency (Fpass) represents the transition region where the filter response is not explicitly defined.

Frequency constraints
Select the filter features to use to define the frequency response characteristics. The list contains
the following options, when available for the filter specifications.

• Stopband edge and passband edge — Define the filter by specifying the frequencies for
the edges for the stopband and passband.

• Passband frequency — Define the filter by specifying the frequency for the edge of the
passband.

• Stopband frequency — Define the filter by specifying the frequency for the edges of the
stopband.

 filterBuilder

5-599

• Stopband and half power (3dB) frequencies — Define the filter by specifying the
stopband edge frequency and the 3-dB down point (IIR designs).

• Half power (3dB) and passband frequencies — Define the filter by specifying the 3-
dB down point and passband edge frequency (IIR designs).

• Half power (3dB) frequency — Define the filter by specifying the frequency for the 3-dB
point (IIR designs or maxflat FIR).

• Cutoff (6dB) frequency — Define the filter by specifying the frequency for the 6-dB point
in the filter response (FIR designs).

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Passband frequency
Enter the frequency at the of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

5 Functions

5-600

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Phase constraint
This option only applies when you have the DSP System Toolbox software and when the Design
method is equiripple. Select one of Linear, Minimum, or Maximum.

Minimum order — This option only applies when you have the DSP System Toolbox software and the
Order mode is Minimum.

Select Any (default), Even, or Odd. Selecting Even or Odd forces the minimum-order design to be
an even or odd order.

Match Exactly
Specifies that the resulting filter design matches either the passband or stopband when you
select Passband or Stopband.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

 filterBuilder

5-601

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Wpass
Passband weight. This option only applies when Impulse response is FIR and Order mode is
Specify.

Wstop
Stopband weight. This option only applies when Impulse response is FIR and Order mode is
Specify.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Hilbert Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

5 Functions

5-602

Order mode
This option is only available if you have the DSP System Toolbox software. Select either Minimum
(the default) or Specify from the drop-down list. Selecting Specify enables the Order option
(see the following sections) so you can enter the filter order.

Filter type
This option is only available if you have the DSP System Toolbox software. Select Single-rate,
Decimator, Interpolator, or Sample-rate converter. Your choice determines the type of
filter as well as the design methods and structures that are available to implement your filter. By
default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

In the figure, the regions between 0 and f1 and between f2 and 1 represent the transition regions
where the filter response is explicitly defined by the transition width.

 filterBuilder

5-603

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Transition width
Specify the width of the transitions at the ends of the passband. Specify the value in normalized
frequency units or the absolute units you select in Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as

5 Functions

5-604

you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

FIR Type
This option is only available in a minimum-order design. Specify whether to design a type 3 or a
type 4 FIR filter. The filter type is defined as follows:

• Type 3 — FIR filter with even order antisymmetric coefficients
• Type 4 — FIR filter with odd order antisymmetric coefficients

Select 3 or 4 from the drop-down list.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Inverse Sinc Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

Response type
Select Lowpass or Highpass to design an inverse sinc lowpass or highpass filter.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

 filterBuilder

5-605

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

Regions between specification values such as Passband frequency (Fpass) and Stopband frequency
(Fstop) represent transition regions where the filter response is not explicitly defined.

Frequency constraints
This option is only available when you specify the filter order. The following options are available:

• Passband and stopband frequencies — Define the filter by specifying the frequencies
for the edges for the stop- and passbands.

• Passband frequency — Define the filter by specifying frequencies for the edges of the
passband.

• Stopband frequency — Define the filter by specifying frequencies for the edges of the
stopbands.

• Cutoff (6dB) frequency — The 6-dB point is the frequency for the point 6 dB point below
the passband value.

5 Functions

5-606

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Passband frequency
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Design Options

 filterBuilder

5-607

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Phase constraint
Available options are Linear, Minimum, and Maximum.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options;

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Sinc frequency factor
A frequency dilation factor. The sinc frequency factor, C , parameterizes the passband magnitude
response for a lowpass design through H(ω) = sinc(Cω)^(–P) and for a highpass design through
H(ω) = sinc(C(1–ω))^(–P).

Sinc power
Negative power of passband magnitude response. The sinc power, P, parameterizes the passband
magnitude response for a lowpass design through H(ω) = sinc(Cω)^(–P) and for a highpass
design through H(ω) = sinc(C(1–ω))^(–P).

5 Functions

5-608

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Lowpass Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

If your Impulse response is IIR, you can specify an equal order for the numerator and
denominator, or different numerator and denominator orders. The default is equal orders. To
specify a different denominator order, check the Denominator order box.

Filter type
This option is only available if you have the DSP System Toolbox. Select Single-rate,
Decimator, Interpolator, or Sample-rate converter. Your choice determines the type of
filter as well as the design methods and structures that are available to implement your filter. By
default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

 filterBuilder

5-609

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to the one shown in the following figure.

In the figure, regions between specification values such as Passband frequency (Fpass) and Stopband
frequency (Fstop) represent transition regions where the filter response is not explicitly defined.

Frequency constraints
Select the filter features to use to define the frequency response characteristics. The list contains
the following options, when available for the filter specifications.

• Passband and stopband frequencies — Define the filter by specifying the frequencies
for the edge of the stopband and passband.

• Passband frequency — Define the filter by specifying the frequency for the edge of the
passband.

• Stopband frequency — Define the filter by specifying the frequency for the edges of the
stopband.

• Passband edge and 3dB point — Define the filter by specifying the passband edge
frequency and the 3-dB down point (IIR designs).

• Half power (3dB) and stopband frequencies — Define the filter by specifying the 3-
dB down point and stopband edge frequency (IIR designs).

• Half power (3dB) frequency — Define the filter by specifying the frequency for the 3-dB
point (IIR designs or maxflat FIR).

• Cutoff (6dB) frequency — Define the filter by specifying the frequency for the 6-dB point
in the filter response (FIR designs).

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior

5 Functions

5-610

is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Passband frequency
Enter the frequency at the of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

 filterBuilder

5-611

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Phase constraint
This option only applies when you have the DSP System Toolbox software and when the Design
method is equiripple. Select one of Linear, Minimum, or Maximum.

Minimum order — This option only applies when you have the DSP System Toolbox software and the
Order mode is Minimum.

Select Any (default), Even, or Odd. Selecting Even or Odd forces the minimum-order design to be
an even or odd order.

Match Exactly
Specifies that the resulting filter design matches either the passband or stopband when you
select Passband or Stopband.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

5 Functions

5-612

Wpass
Passband weight. This option only applies when Impulse response is FIR and Order mode is
Specify.

Wstop
Stopband weight. This option only applies when Impulse response is FIR and Order mode is
Specify.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Notch

See “Peak/Notch Filter Design — Main Pane” on page 5-621.

Nyquist Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Band
Specifies the location of the center of the transition region between the passband and the
stopband. The center of the transition region, bw, is calculated using the value for Band:

bw = Fs/(2 × Band).

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

 filterBuilder

5-613

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

In the figure, BW is the width of the transition region and Band determines the location of the center
of the region.

Frequency constraints
Select the filter features to use to define the frequency response characteristics. The list contains
the following options, when available for the filter specifications.

• Transition width — Define the filter using transition width and stopband attenuation or
transition width and order.

• Unconstrained — Define the filter by specifying the filter order and having no constraints on
the transition width and stopband attenuation. You can add constraints on the magnitude by
specifying the stopband attenuation.

5 Functions

5-614

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Transition width
Specify the width of the transition between the end of the passband and the edge of the stopband.
Specify the value in normalized frequency units or the absolute units you select in Frequency
units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)
• Squared — Specify the magnitude in squared units.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as

 filterBuilder

5-615

you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum phase. Clearing the Minimum phase
option removes the phase constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines and designs the minimum order
filter to meet your specifications. Some filters do not provide this parameter. Select Any, Even, or
Odd from the drop-down list to direct the design to be any minimum order, or minimum even
order, or minimum odd order.

Note Generally, Minimum order designs are not available for IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the passband or stopband or both bands
when you select passband or stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

5 Functions

5-616

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Octave Filter Design — Main Pane

Filter specifications

Order
Specify filter order. Possible values are: 4, 6, 8, 10.

Bands per octave
Specify the number of bands per octave. Possible values are: 1, 3, 6, 12, 24.

Frequency units
Specify frequency units as Hz or kHz.

Input sample rate
Specify the input sampling frequency in the frequency units specified previously.

Center Frequency
Select from the drop-down list of available center frequency values.

Algorithm

Design Method
Butterworth is the design method used for this type of filter.

Scale SOS filter coefficients to reduce chance of overflow
Select the check box to scale the filter coefficients.

Filter implementation

Structure
Specify filter structure. Choose from:

• Direct-form I SOS
• Direct-form II SOS
• Direct-form I transposed SOS
• Direct-form II transposed SOS

 filterBuilder

5-617

Use a System object to implement filter
Selecting this check box gives you the choice of using a System object to implement the filter. By
default, the check box is cleared. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.

Parametric Equalizer Filter Design — Main Pane

Filter specifications

Order mode
Select Minimum to design a minimum order filter that meets the design specifications, or
Specify to enter a specific filter order. The order mode also affects the possible frequency
constraints, which in turn limit the gain specifications. For example, if you specify a Minimum
order filter, the available frequency constraints are:

• Center frequency, bandwidth, passband width
• Center frequency, bandwidth, stopband width

If you select Specify, the available frequency constraints are:

• Center frequency, bandwidth
• Center frequency, quality factor
• Shelf type, cutoff frequency, quality factor
• Shelf type, cutoff frequency, shelf slope parameter
• Low frequency, high frequency

Order
This parameter is enabled only if the Order mode is set to Specify. Enter the filter order in this
text box.

Frequency specifications

Depending on the filter order, the possible frequency constraints change. Once you choose the
frequency constraints, the input boxes in this area change to reflect the selection.

Frequency constraints
Select the specification to represent the frequency constraints. The following options are
available:

• Center frequency, bandwidth, passband width (available for minimum order only)
• Center frequency, bandwidth, stopband width (available for minimum order only)
• Center frequency, bandwidth (available for a specified order only)
• Center frequency, quality factor (available for a specified order only)
• Shelf type, cutoff frequency, quality factor (available for a specified order only)
• Shelf type, cutoff frequency, shelf slope parameter (available for a specified

order only)
• Low frequency, high frequency (available for a specified order only)

5 Functions

5-618

Frequency units
Select the frequency units from the available drop down list (Normalized, Hz, kHz, MHz,
GHz). If Normalized is selected, then the Input sample rate box is disabled for input.

Input sample rate
Enter the input sampling frequency. This input box is disabled for input if Normalized is selected
in the Frequency units input box.

Center frequency
Enter the center frequency in the units specified by the value in Frequency units.

Bandwidth
The bandwidth determines the frequency points at which the filter magnitude is attenuated by the
value specified as the Bandwidth gain in the Gain specifications section. By default, the
Bandwidth gain defaults to db(sqrt(.5)), or –3 dB relative to the center frequency. The
Bandwidth property only applies when the Frequency constraints are: Center frequency,
bandwidth, passband width, Center frequency, bandwidth, stopband width, or
Center frequency, bandwidth.

Passband width
The passband width determines the frequency points at which the filter magnitude is attenuated
by the value specified as the Passband gain in the Gain specifications section. This option is
enabled only if the filter is of minimum order, and the frequency constraint selected is Center
frequency, bandwidth, passband width.

Stopband width
The stopband width determines the frequency points at which the filter magnitude is attenuated
by the value specified as the Stopband gain in the Gain specifications section. This option is
enabled only if the filter is of minimum order, and the frequency constraint selected is Center
frequency, bandwidth, stopband width.

Low frequency
Enter the low frequency cutoff. This option is enabled only if the filter order is user specified and
the frequency constraint selected is Low frequency, high frequency. The filter magnitude
is attenuated by the amount specified in Bandwidth gain.

High frequency
Enter the high frequency cutoff. This option is enabled only if the filter order is user specified and
the frequency constraint selected is Low frequency, high frequency. The filter magnitude
is attenuated by the amount specified in Bandwidth gain.

Gain specifications

Depending on the filter order and frequency constraints, the possible gain constraints change. Also,
once you choose the gain constraints the input boxes in this area change to reflect the selection.

Gain constraints
Select the specification array to represent gain constraints, and remember that not all of these
options are available for all configurations. The following is a list of all available options:

• Reference, center frequency, bandwidth, passband
• Reference, center frequency, bandwidth, stopband
• Reference, center frequency, bandwidth, passband, stopband

 filterBuilder

5-619

• Reference, center frequency, bandwidth

Gain units
Specify the gain units either dB or squared. These units are used for all gain specifications in the
dialog box.

Reference gain
The reference gain determines the level to which the filter magnitude attenuates in Gain units.
The reference gain is a floor gain for the filter magnitude response. For example, you may use the
reference gain together with the Center frequency gain to leave certain frequencies
unattenuated (reference gain of 0 dB) while boosting other frequencies.

Bandwidth gain
Specifies the gain in Gain units at which the bandwidth is defined. This property applies only
when the Frequency constraints specification contains a bandwidth parameter, or is Low
frequency, high frequency.

Center frequency gain
Specify the center frequency in Gain units

Passband gain
The passband gain determines the level in Gain units at which the passband is defined. The
passband is determined either by the Passband width value, or the Low frequency and High
frequency values in the Frequency specifications section.

Stopband gain
The stopband gain is the level in Gain units at which the stopband is defined. This property
applies only when the Order mode is minimum and the Frequency constraints are Center
frequency, bandwidth, stopband width.

Boost/cut gain
The boost/cut gain applies only when the designing a shelving filter. Shelving filters include the
Shelf type parameter in the Frequency constraints specification. The gain in the passband of
the shelving filter is increased by Boost/cut gain dB from a floor gain of 0 dB.

Algorithm

Design method
Select the design method from the drop-down list. Different IIR design methods are available
depending on the filter constraints you specify.

Scale SOS filter coefficients to reduce chance of overflow
Select the check box to scale the filter coefficients.

Filter implementation

Structure
Select filter structure. The possible choices are:

• Direct-form I SOS
• Direct-form II SOS
• Direct-form I transposed SOS
• Direct-form II transposed SOS

5 Functions

5-620

Use a System object to implement filter
Selecting this check box gives you the choice of using a System object to implement the filter. By
default, the check box is cleared. When the current design method or structure is not supported
by a System object filter, then this check box is disabled.

Peak/Notch Filter Design — Main Pane

Filter specifications

In this area you can specify whether you want to design a peaking filter or a notching filter, as well as
the order of the filter.

Response
Select Peak or Notch from the drop-down box.

Order
Enter the filter order. The order must be even.

Frequency specifications

This group of parameters allows you to specify frequency constraints and units.

Frequency Constraints
Select the frequency constraints for filter specification. There are two choices as follows:

• Center frequency and quality factor
• Center frequency and bandwidth

Frequency units
The frequency units are normalized by default. If you specify units other than normalized,
filterBuilder assumes that you wish to specify an input sampling frequency, and enables this
input box. The choice of frequency units are: Normalized (0 to 1), Hz, kHz, MHz, GHz.

Input sample rate
This input box is enabled if Frequency units other than Normalized (0 to 1) are specified.
Enter the input sampling frequency.

Center frequency
Enter the center frequency in the units you specified in Frequency units.

Quality Factor
This input box is enabled only when Center frequency and quality factor is chosen for
the Frequency Constraints. Enter the quality factor.

Bandwidth
This input box is enabled only when Center frequency and bandwidth is chosen for the
Frequency Constraints. Enter the bandwidth.

Magnitude specifications

This group of parameters allows you to specify the magnitude constraints, as well as their values and
units.

 filterBuilder

5-621

Magnitude Constraints
Depending on the choice of constraints, the other input boxes are enabled or disabled. Select
from four magnitude constraints available:

• Unconstrained
• Passband ripple
• Stopband attenuation
• Passband ripple and stopband attenuation

Magnitude units
Select the magnitude units: either dB or squared.

Passband ripple
This input box is enabled if the magnitude constraints selected are Passband ripple or
Passband ripple and stopband attenuation. Enter the passband ripple.

Stopband attenuation
This input box is enabled if the magnitude constraints selected are Stopband attenuation or
Passband ripple and stopband attenuation. Enter the stopband attenuation.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists all design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter the methods available to design filters changes as
well.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Filter implementation

Structure
Lists all available filter structures for the filter specifications and design method you select. The
typical options are:

• Direct-form I SOS
• Direct-form II SOS
• Direct-form I transposed SOS
• Direct-form II transposed SOS

Use a System object to implement filter
Selecting this check box gives you the choice of using a System object to implement the filter. By
default, the check box is cleared. When the current design method or structure is not supported
by a System object filter, then this check box is disabled.

5 Functions

5-622

Pulse-shaping Filter Design —Main Pane

Filter specifications

Parameters in this group enable you to specify the shape and length of the filter.

Pulse shape
Select the shape of the impulse response from the following options:

• Raised Cosine
• Square Root Raised Cosine
• Gaussian

Order mode
This specification is only available for raised cosine and square root raised cosine filters. For
these filters, select one of the following options:

• Minimum— This option will result in the minimum-length filter satisfying the user-specified
Frequency specifications.

• Specify order—This option allows the user to construct a raised cosine or square root
cosine filter of a specified order by entering an even number in the Order input box. The
length of the impulse response will be Order+1 .

• Specify symbols—This option enables the user to specify the length of the impulse
response in an alternative manner. If Specify symbols is chosen, the Order input box
changes to the Number of symbols input box.

Samples per symbol
Specify the oversampling factor. Increasing the oversampling factor guards against aliasing and
improves the FIR filter approximation to the ideal frequency response. If Order is specified in
Number of symbols, the filter length will be Number of symbols*Samples per symbol+1.
The product Number of symbols*Samples per symbol must be an even number.

If a Gaussian filter is specified, the filter length must be specified in Number of symbols and
Samples per symbol. The product Number of symbols*Samples per symbol must be an even
number. The filter length will be Number of symbols*Samples per symbol+1.

Filter Type
This option is only available if you have the DSP System Toolbox software. Choose Single rate,
Decimator, Interpolator, or Sample-rate converter. If you select Decimator or
Interpolator, the decimation and interpolation factors default to the value of the Samples per
symbol. If you select Sample-rate converter, the interpolation factor defaults to Samples
per symbol and the decimation factor defaults to 3.

Frequency specifications

Parameters in this group enable you to specify the frequency response of the filter. For raised cosine
and square root raised cosine filters, the frequency specifications include:

Rolloff factor
The rolloff factor takes values in the range [0,1]. The smaller the rolloff factor, the steeper the
transition in the stopband.

 filterBuilder

5-623

Frequency units
The frequency units are normalized by default. If you specify units other than normalized,
filterBuilder assumes that you wish to specify an input sampling frequency, and enables this
input box. The choice of frequency units are: Normalized (0 to 1), Hz, kHz, MHz, GHz

For a Gaussian pulse shape, the available frequency specifications are:

Bandwidth-time product
This option allows the user to specify the width of the Gaussian filter. Note that this is
independent of the length of the filter. The bandwidth-time product (BT) must be a positive real
number. Smaller values of the bandwidth-time product result in larger pulse widths in time and
steeper stopband transitions in the frequency response.

Frequency units
The frequency units are normalized by default. If you specify units other than normalized,
filterBuilder assumes that you wish to specify an input sampling frequency, and enables this
input box. The choice of frequency units are: Normalized (0 to 1), Hz, kHz, MHz, GHz

Magnitude specifications

If the Order mode is specified as Minimum, the Magnitude units may be selected from:

• dB— Specify the magnitude in decibels (default).
• Linear— Specify the magnitude in linear units.

Algorithm

The only Design method available for FIR pulse-shaping filters is the Window method.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Introduced in R2009a

5 Functions

5-624

filtstates.cic
Store CIC filter states

Description
filtstates.cic objects hold the states information for CIC filters. Once you create a CIC filter, the
states for the filter are stored in filtstates.cic objects, and you can access them and change
them as you would any property of the filter. This arrangement parallels that of the filtstates
object that IIR direct-form I filters use (refer to filtstates for more information).

Each States property in the CIC filter comprises two properties — Numerator and Comb — that
hold filtstates.cic objects. Within the filtstates.cic objects are the numerator-related and
comb-related filter states. The states are column vectors, where each column represents the states
for one section of the filter. For example, a CIC filter with four decimator sections and four
interpolator sections has filtstates.cic objects that contain four columns of states each.

Examples

Integrator and Comb States of a CIC Filter

Construct an object with integrator and comb states as vectors of zeros.

h = filtstates.cic(zeros(4,1),zeros(4,1));

h has zero states now. You can use int to see the states as 32-bit integers.

intStates = int(h.Integrator)

intStates = 4x1 int32 column vector

 0
 0
 0
 0

combStates = int(h.Comb)

combStates = 4x1 int32 column vector

 0
 0
 0
 0

See Also
dsp.CICDecimator | dsp.CICInterpolator | filtstates

 filtstates.cic

5-625

Introduced in R2011a

5 Functions

5-626

fircband
Constrained-band equiripple FIR filter

Syntax
b = fircband(n,f,a,w,c)
b = fircband(n,f,a,s)
b = fircband(...,'1')
b = fircband(...,'minphase')
b = fircband(..., 'check')
b = fircband(...,{lgrid})
[b,err] = fircband(...)
[b,err,res] = fircband(...)

Description
fircband is a minimax filter design algorithm that you use to design the following types of real FIR
filters:

• Types 1-4 linear phase

• Type 1 is even order, symmetric
• Type 2 is odd order, symmetric
• Type 3 is even order, antisymmetric
• Type 4 is odd order, antisymmetric

• Minimum phase
• Maximum phase
• Minimum order (even or odd), extra ripple
• Maximal ripple
• Constrained ripple
• Single-point band (notching and peaking)
• Forced gain
• Arbitrary shape frequency response curve filters

b = fircband(n,f,a,w,c) designs filters having constrained error magnitudes (ripples). c is a
cell array of character vectors of the same length as w. The entries of c must be either 'c' to indicate
that the corresponding element in w is a constraint (the ripple for that band cannot exceed that value)
or 'w' indicating that the corresponding entry in w is a weight. There must be at least one
unconstrained band — c must contain at least one w entry. For instance, the example 'Design a
Constrained Lowpass Filter' uses a weight of one in the passband, and constrains the stopband ripple
not to exceed 0.2 (about 14 dB).

A hint about using constrained values: if your constrained filter does not touch the constraints,
increase the error weighting you apply to the unconstrained bands.

Notice that, when you work with constrained stopbands, you enter the stopband constraint according
to the standard conversion formula for power — the resulting filter attenuation or constraint equals

 fircband

5-627

20*log(constraint) where constraint is the value you enter in the function. For example, to set 20 dB
of attenuation, use a value for the constraint equal to 0.1. This applies to constrained stopbands only.

b = fircband(n,f,a,s) is used to design filters with special properties at certain frequency
points. s is a cell array of character vectors and must be the same length as f and a. Entries of s
must be one of:

• 'n' — normal frequency point.
• 's' — single-point band. The frequency band is given by a single point. You must specify the

corresponding gain at this frequency point in a.
• 'f' — forced frequency point. Forces the gain at the specified frequency band to be the value
specified.

• 'i' — indeterminate frequency point. Use this argument when bands abut one another (no
transition region).

b = fircband(...,'1') designs a type 1 filter (even-order symmetric). You could also specify type
2 (odd-order symmetric), type 3 (even-order antisymmetric), or type 4 (odd-order antisymmetric)
filters. Note there are restrictions on a at f = 0 or f = 1 for types 2, 3, and 4.

b = fircband(...,'minphase') designs a minimum-phase FIR filter. There is also 'maxphase'.

b = fircband(..., 'check') produces a warning when there are potential transition-region
anomalies in the filter response.

b = fircband(...,{lgrid}), where {lgrid} is a scalar cell array containing an integer, controls
the density of the frequency grid.

[b,err] = fircband(...) returns the unweighted approximation error magnitudes. err has one
element for each independent approximation error.

[b,err,res] = fircband(...) returns a structure res of optional results computed by
fircband, and contains the following fields:

Structure Field Contents
res.fgrid Vector containing the frequency grid used in the filter design

optimization
res.des Desired response on fgrid
res.wt Weights on fgrid
res.h Actual frequency response on the frequency grid
res.error Error at each point (desired response - actual response) on the

frequency grid
res.iextr Vector of indices into fgrid of external frequencies
res.fextr Vector of extremely frequencies
res.order Filter order
res.edgecheck Transition-region anomaly check. One element per band edge. Element

values have the following meanings: 1 = OK , 0 = probable transition-
region anomaly , -1 = edge not checked. Computed when you specify
the 'check' input option in the function syntax.

5 Functions

5-628

Structure Field Contents
res.iterations Number of Remez iterations for the optimization
res.evals Number of function evaluations for the optimization

Examples

Design a Constrained Lowpass Filter

Design a 12th-order lowpass filter with a constraint on the filter response.

b = fircband(12,[0 0.4 0.5 1], [1 1 0 0], ...
[1 0.2], {'w' 'c'});

Using fvtool to display the result b shows you the response of the filter you designed.

fvtool(b)

Design two filters of different order with the stopband constrained to 60 dB. Use excess order (80) in
the second filter to improve the passband ripple.

b1 = fircband(60,[0 .2 .25 1],[1 1 0 0],...
[1 .001],{'w','c'});
b2 = fircband(80,[0 .2 .25 1],[1 1 0 0],...
[1 .001],{'w','c'});

 fircband

5-629

hfvt = fvtool(b1,1,b2,1);
legend(hfvt,'Filter Order 60','Filter Order 80');

See Also
firceqrip | firgr | firls | firpm

Introduced in R2011a

5 Functions

5-630

fireqint
Equiripple FIR interpolators

Syntax
b = fireqint(n,l,alpha)
b = fireqint(n,l,alpha,w)
b = fireqint('minorder', l,alpha,r)
b = fireqint({'minorder',initord},l,alpha,r)

Description
b = fireqint(n,l,alpha) designs an FIR equiripple filter useful for interpolating input signals.

b = fireqint(n,l,alpha,w) allows you to specify a vector of weights in w.

b = fireqint('minorder', l,alpha,r) allows you to design a minimum-order filter that meets
the design specifications. When you use the input argument 'minorder', you must provide the
maximum ripple vector r.

b = fireqint({'minorder',initord},l,alpha,r) allows you to provide an initial estimate of
the filter order in the input argument initord. Again, you must provide r, the vector of maximum
deviation or ripples from the ideal filter magnitude response.

Examples

Design an FIR Equiripple Filter

Design a minimum order interpolation filter with interpolation factor set to 6, and inverse measure of
transition bandwidth set to 0.8. A vector of ripples must be supplied with the input argument,
minorder.

b = fireqint('minorder',6,.8,[0.01 .1 .05 .02]);

Create a polyphase interpolation filter.

hm = dsp.FIRInterpolator(6,'Numerator',b);

Plot the zero-phase response of the interpolator.

zerophase(hm)

 fireqint

5-631

Input Arguments
n — Order of equiripple filter
positive integer

Order of the equiripple filter, specified as a positive integer. Filter order must be three or more.
Data Types: double

l — Interpolation factor
positive integer

Interpolation factor, specified as a positive integer.
Data Types: double

alpha — Inverse measure of transition bandwidth
positive scalar in the range (0,1)

Inverse measure of the transition bandwidth, specified as a positive scalar in the range (0,1).

The alpha argument is inversely proportional to the transition bandwidth of the filter. It also affects
the bandwidth of the don't-care regions in the stopband. Specifying alpha allows you to control how
much of the Nyquist interval your input signal occupies. This can be beneficial for signals to be
interpolated because it allows you to increase the transition bandwidth without affecting the

5 Functions

5-632

interpolation, resulting in better stopband attenuation for a given l. If you set alpha argument to 1,
then fireqint function assumes that your signal occupies the entire Nyquist interval. Setting the
alpha argument to a value less than one allows for don't-care regions in the stopband. For example,
if your input occupies half the Nyquist interval, you could set the alpha to 0.5.

The signal to be interpolated is assumed to have zero (or negligible) power in the frequency band
between (alpha*π) and π. The input argument, alpha must therefore be a positive scalar between 0
and 1. The fireqint function treats such bands as don't-care regions for assessing filter design.
Data Types: double

w — Weights
row vector of positive scalars

Weights applied to passband ripple and stopband attenuation, specified as a row vector of positive
scalars. The number of weights required in w is given by 1 + floor(l/2). Using weights enables you
to specify different attenuations in different parts of the stopband, as well as providing the ability to
adjust the compromise between passband ripple and stopband attenuation.
Data Types: double

r — Maximum deviation from ideal filter magnitude response
vector

Maximum deviations or ripples from the ideal filter magnitude response, specified as a vector. The
number of elements required in r is given by 1 + floor(l/2).
Data Types: double

initord — Initial filter order
positive integer

Initial filter order when designing a minimum order filter that meets design specifications, specified
as a positive integer.
Data Types: double

Output Arguments
b — Filter coefficients
real-valued row vector

Filter coefficients of the equiripple filter, returned as a real-valued row vector.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

 fireqint

5-633

See Also
firgr | firhalfband | firls | firnyquist | intfilt

Introduced in R2011a

5 Functions

5-634

firceqrip
Constrained equiripple FIR filter

Syntax
B = firceqrip(n,Fo,DEV)
B = firceqrip(...,'slope',r)
B = firceqrip('minorder',[Fp Fst],DEV)
B = firceqrip(...,'passedge')
B = firceqrip(...,'stopedge')
B = firceqrip(...,'high')
B = firceqrip(...,'min')
B = firceqrip(...,'invsinc',C)
B = firceqrip(...,'invdiric',C)

Description
B = firceqrip(n,Fo,DEV) designs an order n filter (filter length equal n + 1) lowpass FIR filter
with linear phase.

firceqrip produces the same equiripple lowpass filters that firpm produces using the Parks-
McClellan algorithm. The difference is how you specify the filter characteristics for the function.

The input argument Fo specifies the frequency at the upper edge of the passband in normalized
frequency (0<Fo<1). The two-element vector dev specifies the peak or maximum error allowed in the
passband and stopbands. Enter [d1 d2] for dev where d1 sets the passband error and d2 sets the
stopband error.

B = firceqrip(...,'slope',r) uses the input keyword 'slope' and input argument r to design
a filter with a nonequiripple stopband. r is specified as a positive constant and determines the slope
of the stopband attenuation in dB/normalized frequency. Greater values of r result in increased
stopband attenuation in dB/normalized frequency.

B = firceqrip('minorder',[Fp Fst],DEV) designs filter with the minimum number of
coefficients required to meet the deviations in DEV = [d1 d2] while having a transition width no
greater than Fst – Fp, the difference between the stopband and passband edge frequencies. You can
specify 'mineven' or 'minodd' instead of 'minorder' to design minimum even order (odd length)
or minimum odd order (even length) filters, respectively. The 'minorder' option does not apply
when you specify the 'min' (minimum-phase), 'invsinc', or the 'invdiric' options.

B = firceqrip(...,'passedge') designs a filter where Fo specifies the frequency at which the
passband starts to rolloff.

B = firceqrip(...,'stopedge') designs a filter where Fo specifies the frequency at which the
stopband begins.

B = firceqrip(...,'high') designs a high pass FIR filter instead of a lowpass filter.

B = firceqrip(...,'min') designs a minimum-phase filter.

 firceqrip

5-635

B = firceqrip(...,'invsinc',C) designs a lowpass filter whose magnitude response has the
shape of an inverse sinc function. This may be used to compensate for sinc-like responses in the
frequency domain such as the effect of the zero-order hold in a D/A converter. The amount of
compensation in the passband is controlled by C, which is specified as a scalar or two-element vector.
The elements of C are specified as follows:

• If C is supplied as a real-valued scalar or the first element of a two-element vector, firceqrip
constructs a filter with a magnitude response of 1/sinc(C*pi*F) where F is the normalized
frequency.

• If C is supplied as a two-element vector, the inverse-sinc shaped magnitude response is raised to
the positive power C(2). If we set P=C(2), firceqrip constructs a filter with a magnitude
response 1/sinc(C*pi*F)P.

If this FIR filter is used with a cascaded integrator-comb (CIC) filter, setting C(2) equal to the
number of stages compensates for the multiplicative effect of the successive sinc-like responses of the
CIC filters.

Note Since the value of the inverse sinc function becomes unbounded at C=1/F, the value of C
should be greater the reciprocal of the passband edge frequency. This can be expressed as Fo<1/C.
For users familiar with CIC decimators, C is equal to 1/2 the product of the differential delay and
decimation factor.

B = firceqrip(...,'invdiric',C) designs a lowpass filter with a passband that has the shape
of an inverse Dirichlet sinc function. The frequency response of the inverse Dirichlet sinc function is

given by rC(sin(f /2r)
sin(Cf /2)

p
where C, r, and p are scalars. The input C can be a scalar or vector

containing 2 or 3 elements. If C is a scalar, p and r equal 1. If C is a two-element vector, the first
element is C and the second element is p, [C p]. If C is a three-element vector, the third element is r,
[C p r].

Examples
To introduce a few of the variations on FIR filters that you design with firceqrip, these five
examples cover both the default syntax b = firceqrip(n,wo,del) and some of the optional input
arguments. For each example, the input arguments n, wo, and del remain the same.

Filter design using firceqrip

Design a 30th order FIR filter using firceqrip.

b = firceqrip(30,0.4,[0.05 0.03]); fvtool(b)

5 Functions

5-636

Design a minimum order FIR filter using firceqrip. The passband edge and stopband edge
frequencies are 0.35π and 0.45π rad/sample. The allowed deviations are 0.02 and 1e-4.

b = firceqrip('minorder',[0.35 0.45],[0.02 1e-4]); fvtool(b)

 firceqrip

5-637

Design a 30th order FIR filter with the stopedge keyword to define the response at the edge of the
filter stopband.

b = firceqrip(30,0.4,[0.05 0.03],'stopedge'); fvtool(b)

5 Functions

5-638

Design a 30th order FIR filter with the slope keyword and r = 20.

b = firceqrip(30,0.4,[0.05 0.03],'slope',20,'stopedge'); fvtool(b)

 firceqrip

5-639

Design a 30th order FIR filter defining the stopband and specifying that the resulting filter is
minimum phase with the min keyword.

b = firceqrip(30,0.4,[0.05 0.03],'stopedge','min'); fvtool(b)

5 Functions

5-640

Comparing this filter to the filter in Figure 1. The cutoff frequency wo = 0.4 now applies to the edge
of the stopband rather than the point at which the frequency response magnitude is 0.5.

Viewing the zero-pole plot shown here reveals this is a minimum phase FIR filter - the zeros lie on or
inside the unit circle, z = 1

fvtool(b,'polezero')

 firceqrip

5-641

Design a 30th order FIR filter with the invsinc keyword to shape the filter passband with an inverse
sinc function.

b = firceqrip(30,0.4,[0.05 0.03],'invsinc',[2 1.5]); fvtool(b)

5 Functions

5-642

The inverse sinc function being applied is defined as 1/sinc(2*w)^1.5.

Inverse-Dirichlet-Sinc-Shaped Passband

Design two order 30 constrained equiripple FIR filters with inverse-Dirichlet-sinc-shaped passbands.
The cutoff frequency in both designs is pi/4 radians/sample. Set C=1 in one design C=2 in the second
design. The maximum passband and stopband ripple is 0.05. Set p=1 in one design and p=2 in the
second design.

Design the filters.

b1 = firceqrip(30,0.25,[0.05 0.05],'invdiric',[1 1]);
b2 = firceqrip(30,0.25,[0.05 0.05],'invdiric',[2 2]);

Obtain the filter frequency responses using freqz. Plot the magnitude responses.

 [h1,~] = freqz(b1,1);
 [h2,w] = freqz(b2,1);
 plot(w,abs(h1)); hold on;
 plot(w,abs(h2),'r');
 axis([0 pi 0 1.5]);
 xlabel('Radians/sample');
 ylabel('Magnitude');
 legend('C=1 p=1','C=2 p=2');

 firceqrip

5-643

Inspect the stopband ripple in the design with C=1 and p=1. The constrained design sets the
maximum ripple to be 0.05. Zoom in on the stopband from the cutoff frequency of pi/4 radians/sample
to 3pi/4 radians/sample.

 figure;
 plot(w,abs(h1));
 set(gca,'xlim',[pi/4 3*pi/4]);
 grid on;

5 Functions

5-644

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
diric | fdesign.decimator | firhalfband | firnyquist | firgr | ifir | iirgrpdelay |
iirlpnorm | iirlpnormc | fircls | firls | firpm | sinc

Introduced in R2011a

 firceqrip

5-645

fircls
FIR Constrained Least Squares filter

Syntax
clsFilter = design(d,'fircls','SystemObject',true)
clsFilter = design(d,'fircls','FilterStructure',value,'SystemObject',true)
clsFilter = design(d,'fircls','PassbandOffset',value,'SystemObject',true)
clsFilter = design(d,'fircls','zerophase',value,'SystemObject',true)

Description
clsFilter = design(d,'fircls','SystemObject',true) designs a FIR Constrained Least
Squares (CLS) filter, clsFilter, from a filter specifications object, d.

clsFilter = design(d,'fircls','FilterStructure',value,'SystemObject',true)
where value is one of the following filter structures:

• 'dffir', a discrete-time, direct-form FIR filter (the default value)
• 'dffirt', a discrete-time, direct-form FIR transposed filter
• 'dfsymfir', a discrete-time, direct-form symmetric FIR filter

clsFilter = design(d,'fircls','PassbandOffset',value,'SystemObject',true)
where value sets the passband band gain in dB. The PassbandOffset and Ap values affect the
upper and lower approximation bound in the passband as follows:

• Lower bound = (PassbandOffset-Ap/2)
• Upper bound = (PassbandOffset+A/2)

For bandstop filters, the PassbandOffset is a vector of length two that specifies the first and
second passband gains. The PassbandOffset value defaults to 0 for lowpass, highpass and
bandpass filters. The PassbandOffset value defaults to [0 0] for bandstop filters.

clsFilter = design(d,'fircls','zerophase',value,'SystemObject',true) where
value is either 'true' ('1') or 'false' ('0') . If zerophase is true, the lower approximation bound
in the stopband is forced to zero (i.e., the filter has a zero phase response). Zerophase is false (0) by
default.

To determine the available design options, use designopts with the specification object and the
design method as input arguments as shown.

designopts(d,'fircls')

For complete help about using fircls, refer to the command line help system. For example, to get
specific information about using fircls with d, the specification object, enter the following at the
MATLAB prompt.

help(d,'fircls')

5 Functions

5-646

Examples

Create an FIR Constrained Least Squares (CLS) Filter

The following example designs a constrained least-squares FIR lowpass filter.

h = fdesign.lowpass('n,fc,ap,ast', 50, 0.3, 2, 30);
firLPFilter = design(h, 'fircls','SystemObject',true);
fvtool(firLPFilter)

The following example constructs a constrained least-squares FIR bandpass filter.

d = fdesign.bandpass('N,Fc1,Fc2,Ast1,Ap,Ast2',...
30,0.4,0.6,60,1,60);
firBPFilter = design(d,'fircls','SystemObject',true);
fvtool(firBPFilter)

 fircls

5-647

See Also
cheby1 | cheby2 | ellip

Introduced in R2011a

5 Functions

5-648

firgr
Parks-McClellan FIR filter

Syntax
b = firgr(n,f,a,w)
b = firgr(n,f,a,'hilbert')
b = firgr(m,f,a,r),
b = firgr({m,ni},f,a,r)
b = firgr(n,f,a,w,e)
b = firgr(n,f,a,s)
b = firgr(n,f,a,s,w,e)
b = firgr(...,'1')
b = firgr(...,'minphase')
b = firgr(..., 'check')
b = firgr(...,{lgrid}),
[b,err] = firgr(...)
[b,err,res] = firgr(...)
b = firgr(n,f,fresp,w)
b = firgr(n,f,{fresp,p1,p2,...},w)
b = firgr(n,f,a,w)

Description
firgr is a minimax filter design algorithm you use to design the following types of real FIR filters:

• Types 1-4 linear phase:

• Type 1 is even order, symmetric
• Type 2 is odd order, symmetric
• Type 3 is even order, antisymmetric
• Type 4 is odd order, antisymmetric

• Minimum phase
• Maximum phase
• Minimum order (even or odd)
• Extra ripple
• Maximal ripple
• Constrained ripple
• Single-point band (notching and peaking)
• Forced gain
• Arbitrary shape frequency response curve filters

b = firgr(n,f,a,w) returns a length n+1 linear phase FIR filter which has the best
approximation to the desired frequency response described by f and a in the minimax sense. w is a
vector of weights, one per band. When you omit w, all bands are weighted equally. For more
information on the input arguments, refer to firpm in Signal Processing Toolbox User's Guide.

 firgr

5-649

b = firgr(n,f,a,'hilbert') and b = firgr(n,f,a,'differentiator') design FIR Hilbert
transformers and differentiators. For more information on designing these filters, refer to firpm in
Signal Processing Toolbox User's Guide.

b = firgr(m,f,a,r), where m is one of 'minorder', 'mineven' or 'minodd', designs filters
repeatedly until the minimum order filter, as specified in m, that meets the specifications is found. r is
a vector containing the peak ripple per frequency band. You must specify r. When you specify
'mineven' or 'minodd', the minimum even or odd order filter is found.

b = firgr({m,ni},f,a,r) where m is one of 'minorder', 'mineven' or 'minodd', uses ni as the
initial estimate of the filter order. ni is optional for common filter designs, but it must be specified for
designs in which firpmord cannot be used, such as while designing differentiators or Hilbert
transformers.

b = firgr(n,f,a,w,e) specifies independent approximation errors for different bands. Use this
syntax to design extra ripple or maximal ripple filters. These filters have interesting properties such
as having the minimum transition width. e is a cell array of character vectors specifying the
approximation errors to use. Its length must equal the number of bands. Entries of e must be in the
form 'e#' where # indicates which approximation error to use for the corresponding band. For
example, when e = {'e1','e2','e1'}, the first and third bands use the same approximation error
'e1' and the second band uses a different one 'e2'. Note that when all bands use the same
approximation error, such as {'e1','e1','e1',...}, it is equivalent to omitting e, as in b =
firgr(n,f,a,w).

b = firgr(n,f,a,s) is used to design filters with special properties at certain frequency points. s
is a cell array of character vectors and must be the same length as f and a. Entries of s must be one
of:

• 'n' — normal frequency point.
• 's' — single-point band. The frequency “band” is given by a single point. The corresponding gain

at this frequency point must be specified in a.
• 'f' — forced frequency point. Forces the gain at the specified frequency band to be the value
specified.

• 'i' — indeterminate frequency point. Use this argument when adjacent bands abut one another
(no transition region).

For example, the following command designs a bandstop filter with zero-valued single-point stop
bands (notches) at 0.25 and 0.55.
b = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],...
[1 1 0 1 1 0 1 1],{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'})

b = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...{'n' 'i' 'f' 'n' 'n'
'n'}) designs a highpass filter with the gain at 0.06 forced to be zero. The band edge at 0.055 is
indeterminate since the first two bands actually touch. The other band edges are normal.

b = firgr(n,f,a,s,w,e) specifies weights and independent approximation errors for filters with
special properties. The weights and properties are included in vectors w and e. Sometimes, you may
need to use independent approximation errors to get designs with forced values to converge. For
example,

b = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

5 Functions

5-650

b = firgr(...,'1') designs a type 1 filter (even-order symmetric). You can specify type 2 (odd-
order symmetric), type 3 (even-order antisymmetric), and type 4 (odd-order antisymmetric) filters as
well. Note that restrictions apply to a at f = 0 or f = 1 for FIR filter types 2, 3, and 4.

b = firgr(...,'minphase') designs a minimum-phase FIR filter. You can use the argument
'maxphase' to design a maximum phase FIR filter.

b = firgr(..., 'check') returns a warning when there are potential transition-region
anomalies.

b = firgr(...,{lgrid}), where {lgrid} is a scalar cell array. The value of the scalar controls
the density of the frequency grid by setting the number of samples used along the frequency axis.

[b,err] = firgr(...) returns the unweighted approximation error magnitudes. err contains one
element for each independent approximation error returned by the function.

[b,err,res] = firgr(...) returns the structure res comprising optional results computed by
firgr. res contains the following fields.

Structure Field Contents
res.fgrid Vector containing the frequency grid used in the filter design

optimization
res.des Desired response on fgrid
res.wt Weights on fgrid
res.h Actual frequency response on the frequency grid
res.error Error at each point (desired response - actual response) on the

frequency grid
res.iextr Vector of indices into fgrid of external frequencies
res.fextr Vector of external frequencies
res.order Filter order
res.edgecheck Transition-region anomaly check. One element per band edge.

Element values have the following meanings: 1 = OK, 0 = probable
transition-region anomaly, -1 = edge not checked. Computed when
you specify the 'check' input option in the function syntax.

res.iterations Number of s iterations for the optimization
res.evals Number of function evaluations for the optimization

firgr is also a “function function,” allowing you to write a function that defines the desired
frequency response.

b = firgr(n,f,fresp,w) returns a length N + 1 FIR filter which has the best approximation to
the desired frequency response as returned by the user-defined function fresp. Use the following
firgr syntax to call fresp:

[dh,dw] = fresp(n,f,gf,w)

where:

• fresp identifies the function that you use to define your desired filter frequency response.

 firgr

5-651

• n is the filter order.
• f is the vector of frequency band edges which must appear monotonically between 0 and 1, where

1 is one-half of the sampling frequency. The frequency bands span f(k) to f(k+1) for k odd. The
intervals f(k+1) to f(k+2) for k odd are “transition bands” or “don't care” regions during
optimization.

• gf is a vector of grid points that have been chosen over each specified frequency band by firgr,
and determines the frequencies at which firgr evaluates the response function.

• w is a vector of real, positive weights, one per band, for use during optimization. w is optional in
the call to firgr. If you do not specify w, it is set to unity weighting before being passed to
fresp.

• dh and dw are the desired frequency response and optimization weight vectors, evaluated at each
frequency in grid gf.

firgr includes a predefined frequency response function named 'firpmfrf2'. You can write your
own based on the simpler 'firpmfrf'. See the help for private/firpmfrf for more information.

b = firgr(n,f,{fresp,p1,p2,...},w) specifies optional arguments p1, p2,..., pn to be passed
to the response function fresp.

b = firgr(n,f,a,w) is a synonym for b = firgr(n,f,{'firpmfrf2',a},w), where a is a
vector containing your specified response amplitudes at each band edge in f. By default, firgr
designs symmetric (even) FIR filters. 'firpmfrf2' is the predefined frequency response function. If
you do not specify your own frequency response function (the fresp variable), firgr uses
'firpmfrf2'.

b = firgr(...,'h') and b = firgr(...,'d') design antisymmetric (odd) filters. When you
omit the 'h' or 'd' arguments from the firgr command syntax, each frequency response function
fresp can tell firgr to design either an even or odd filter. Use the command syntax sym =
fresp('defaults',{n,f,[],w,p1,p2,...}).

firgr expects fresp to return sym = 'even' or sym = 'odd'. If fresp does not support this
call, firgr assumes even symmetry.

For more information about the input arguments to firgr, refer to firpm.

Examples

Design a Filter Using firgr

Design an FIR filter with two single-band notches at 0.25 and 0.55.

b1 = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[1 1 0 1 1 0 1 1],...
{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'});

Design a highpass filter whose gain at 0.06 is forced to be zero. The gain at 0.055 is indeterminate
since it should abut the band.

b2 = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'});

Design a second highpass filter with forced values and independent approximation errors.

5 Functions

5-652

b3 = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1], ...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

Use the filter visualization tool to view the results of the filters.

fvtool(b1,1,b2,1,b3,1)
legend('Filter b1','Filter b2','Filter b3');

References
Shpak, D.J. and A. Antoniou, “A generalized Remez method for the design of FIR digital filters,” IEEE
Trans. Circuits and Systems, pp. 161-174, Feb. 1990.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All inputs must be constant. Expressions or variables are allowed if their values do not change.
• Does not support syntaxes that have cell array input.

 firgr

5-653

See Also
butter | cheby1 | cheby2 | ellip | freqz | filter | firls | fircls | firpm

Introduced in R2011a

5 Functions

5-654

firhalfband
Halfband FIR filter design

Syntax
b = firhalfband(n,fp)
b = firhalfband(n,win)
b = firhalfband(n,dev,'dev')
b = firhalfband('minorder',fp,dev)
b = firhalfband('minorder',fp,dev,'kaiser')
b = firhalfband(...,'high')
b = firhalfband(...,'minphase')

Description
b = firhalfband(n,fp) designs a lowpass halfband FIR filter of order n with an equiripple
characteristic. n must be an even integer. fp determines the passband edge frequency, and it must
satisfy 0 < fp < 1/2, where 1/2 corresponds to π/2 rad/sample.

b = firhalfband(n,win) designs a lowpass Nth-order filter using the truncated, windowed-
impulse response method instead of the equiripple method. win is an n+1 length vector. The ideal
impulse response is truncated to length n + 1, and then multiplied point-by-point with the window
specified in win.

b = firhalfband(n,dev,'dev') designs an Nth-order lowpass halfband filter with an equiripple
characteristic. Input argument dev sets the value for the maximum passband and stopband ripple
allowed.

b = firhalfband('minorder',fp,dev) designs a lowpass minimum-order filter, with passband
edge fp. The peak ripple is constrained by the scalar dev. This design uses the equiripple method.

b = firhalfband('minorder',fp,dev,'kaiser') designs a lowpass minimum-order filter, with
passband edge fp. The peak ripple is constrained by the scalar dev. This design uses the Kaiser
window method.

b = firhalfband(...,'high') returns a highpass halfband FIR filter.

b = firhalfband(...,'minphase') designs a minimum-phase FIR filter such that the filter is a
spectral factor of a halfband filter (recall that h = conv(b,fliplr(b)) is a halfband filter). This
can be useful for designing perfect reconstruction, two-channel FIR filter banks. The minphase
option for firhalfband is not available for the window-based halfband filter designs — b =
firhalfband(n,win) and b = firhalfband('minorder',fp,dev,'kaiser') .

In the minimum phase cases, the filter order must be odd.

Examples

 firhalfband

5-655

Design a Halfband Filter using halfband

This example designs a minimum order halfband filter with a specified maximum ripple.

b = firhalfband('minorder',.45,0.0001);
impz(b)

You can see that the impulse response is zero for every alternate sample.

References
[1] Saramaki, T, “Finite Impulse Response Filter Design,” Handbook for Digital Signal Processing.

S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

5 Functions

5-656

See Also
Functions
firnyquist | firgr | fir1 | firls | firpm

Introduced in R2011a

 firhalfband

5-657

firlp2lp
Transform FIR Type I lowpass to FIR Type 1 lowpass with inverse bandwidth

Syntax
g = firlp2lp(b)

Description
g = firlp2lp(b) transforms the Type I lowpass FIR filter b with zero-phase response Hr(w) to a
Type I lowpass FIR filter g with zero-phase response [1 - Hr(π-w)].

When b is a narrowband filter, g will be a wideband filter and vice versa. The passband and stopband
ripples of g will be equal to the stopband and passband ripples of b, respectively.

Examples

Convert Narrowband Lowpass Filter to Wideband Lowpass Filter

Create a narrowband lowpass filter to use as a prototype. Display its zero-phase response.

b = firgr(36,[0 0.2 0.25 1],[1 1 0 0],[1 5]);

zerophase(b)

5 Functions

5-658

Convert the prototype filter to a wideband lowpass filter. Add to the plot the zero-phase response of
the new filter.

h = firlp2lp(b);

hold on
zerophase(h)

 firlp2lp

5-659

Convert the previous filter back to a narrowband lowpass filter. Add to the plot the zero-phase
response of the new filter.

g = firlp2lp(h);

[gr,w] = zerophase(g);
plot(w/pi,gr,'--')
hold off

5 Functions

5-660

Input Arguments
b — Lowpass FIR filter coefficients
row vector

Type 1 lowpass FIR filter coefficients with zero-phase response Hr(w), specified as a row vector.
Data Types: single | double

Output Arguments
g — Transformed lowpass FIR filter coefficients
row vector

Transformed Type 1 lowpass FIR filter coefficients with zero-phase response 1-Hr(pi-w), specified as
a row vector.
Data Types: single | double

References
[1] Mitra, Sanjit Kumar, and James F. Kaiser, eds. Handbook for Digital Signal Processing. New York:

Wiley, 1993.

 firlp2lp

5-661

See Also
firlp2hp | zerophase

Introduced in R2011a

5 Functions

5-662

firlp2hp
Transform FIR lowpass filter to Type I FIR highpass filter

Syntax
g = firlp2hp(b)
g = firlp2hp(b,'narrow')
g = firlp2hp(b,'wide')

Description
g = firlp2hp(b) transforms the lowpass FIR filter b with zero-phase response Hr(w) into a Type I
highpass FIR filter g with zero-phase response Hr(π-w). Filter b can be any FIR filter, including a
nonlinear-phase filter.

The passband and stopband ripples of g will be equal to the passband and stopband ripples of b,
respectively.

g = firlp2hp(b,'narrow') transforms the lowpass FIR filter b into a Type I narrowband
highpass FIR filter g with zero-phase response Hr(π-w). b can be any FIR filter, including a nonlinear-
phase filter.

g = firlp2hp(b,'wide') transforms the Type I lowpass FIR filter b with zero-phase response
Hr(w) into a Type I wideband highpass FIR filter g with zero-phase response 1 - Hr(w).

Note The b must be a Type I linear-phase filter.

For this case, the passband and stopband ripples of g will be equal to the stopband and passband
ripples of b.

Examples

Convert Narrowband Lowpass Filter to Highpass Filter

Create a narrowband lowpass filter to use as a prototype. Display its zero-phase response.

b = firgr(36,[0 0.2 0.25 1],[1 1 0 0],[1 3]);

zerophase(b)

 firlp2hp

5-663

Convert the prototype filter to a narrowband highpass filter. Add to the plot the zero-phase response
of the new filter.

h = firlp2hp(b);

hold on
zerophase(h)

5 Functions

5-664

Convert the prototype filter to a wideband highpass filter. Add to the plot the zero-phase response of
the new filter.

g = firlp2hp(b,'wide');

zerophase(g)
hold off

 firlp2hp

5-665

Input Arguments
b — Lowpass FIR filter coefficients
row vector

Lowpass FIR filter coefficients, specified as a row vector.
Data Types: single | double

Output Arguments
g — Type I highpass FIR filter coefficients
row vector

Type I highpass FIR filter coefficients, returned as a row vector.
Data Types: single | double

References
[1] Mitra, Sanjit Kumar, and James F. Kaiser, eds. Handbook for Digital Signal Processing. New York:

Wiley, 1993.

5 Functions

5-666

See Also
firlp2lp | zerophase

Introduced in R2011a

 firlp2hp

5-667

firlpnorm
Least P-norm optimal FIR filter

Syntax
b = firlpnorm(n,f,edges,a)
b = firlpnorm(n,f,edges,a,w)
b = firlpnorm(n,f,edges,a,w,p)
b = firlpnorm(n,f,edges,a,w,p,dens)
b = firlpnorm(n,f,edges,a,w,p,dens,initnum)
b = firlpnorm(...,'minphase')
[b,err] = firlpnorm(...)

Description
b = firlpnorm(n,f,edges,a) returns a filter of numerator order n which represents the best
approximation to the frequency response described by f and a in the least-Pth norm sense. P is set to
128 by default, which essentially equivalent to the infinity norm. Vector edges specifies the band-
edge frequencies for multiband designs. firlpnorm uses an unconstrained quasi-Newton algorithm
to design the specified filter.

f and a must have the same number of elements, which can exceed the number of elements in
edges. This lets you specify filters with any gain contour within each band. However, the frequencies
in edges must also be in vector f. Always use freqz to check the resulting filter.

Note firlpnorm uses a nonlinear optimization routine that may not converge in some filter design
cases. Furthermore the algorithm is not well-suited for certain large-order (order > 100) filter
designs.

b = firlpnorm(n,f,edges,a,w) uses the weights in w to weight the error. w has one entry per
frequency point (the same length as f and a) which tells firlpnorm how much emphasis to put on
minimizing the error in the vicinity of each frequency point relative to the other points. For example,

b = firlpnorm(20,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

designs a lowpass filter with a peak of 1.6 within the passband, and with emphasis placed on
minimizing the error in the stopband.

b = firlpnorm(n,f,edges,a,w,p) where p is a two-element vector [pmin pmax] lets you specify
the minimum and maximum values of p used in the least-pth algorithm. Default is [2 128] which
essentially yields the L-infinity, or Chebyshev, norm. pmin and pmax should be even numbers. The
design algorithm starts optimizing the filter with pmin and moves toward an optimal filter in the
pmax sense. When p is set to 'inspect', firlpnorm does not optimize the resulting filter. You might
use this feature to inspect the initial zero placement.

b = firlpnorm(n,f,edges,a,w,p,dens) specifies the grid density dens used in the
optimization. The number of grid points is [dens*(n+1)]. The default is 20. You can specify dens as
a single-element cell array. The grid is equally spaced.

5 Functions

5-668

b = firlpnorm(n,f,edges,a,w,p,dens,initnum) lets you determine the initial estimate of the
filter numerator coefficients in vector initnum. This can prove helpful for difficult optimization
problems. The pole-zero editor in Signal Processing Toolbox software can be used for generating
initnum.

b = firlpnorm(...,'minphase') where 'minphase' is the last argument in the argument list
generates a minimum-phase FIR filter. By default, firlpnorm design mixed-phase filters. Specifying
input option 'minphase' causes firlpnorm to use a different optimization method to design the
minimum-phase filter. As a result of the different optimization used, the minimum-phase filter can
yield slightly different results.

[b,err] = firlpnorm(...) returns the least-pth approximation error err.

Examples

Design a Lowpass and Highpass Filter Using firlpnorm

Lowpass filter with a peak of 1.4 in the passband.

b = firlpnorm(22,[0 .15 .4 .5 1],[0 .4 .5 1],[1 1.4 1 0 0],...
[1 1 1 2 2]);
fvtool(b)

The resulting filter is lowpass, with the desired 1.4 peak in the passband (notice the 1.4 specified in
vector a).

 firlpnorm

5-669

Highpass minimum-phase filter optimized for the 4-norm.

b = firlpnorm(44,[0 .4 .45 1],[0 .4 .45 1],[0 0 1 1],[5 1 1 1],...
[2 4],'minphase');
fvtool(b)

This is a minimum-phase, highpass filter.

The zero-pole plot shows the minimum phase nature more clearly.

fvtool(b,'polezero')

5 Functions

5-670

References
Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital Signal ProcessingMitra,
S.K. and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All inputs must be constant. Expressions or variables are allowed if their values do not change.
• Does not support syntaxes that have cell array input.

See Also
firgr | iirgrpdelay | iirlpnorm | iirlpnormc | filter | fvtool | freqz | zplane

Introduced in R2011a

 firlpnorm

5-671

firls
Least-square linear-phase FIR filter design

Syntax
b = firls(n,f,a)
b = firls(n,f,a,w)
b = firls(n,f,a,ftype)
b = firls(n,f,a,w,ftype)

Description
b = firls(n,f,a) returns row vector b containing the n+1 coefficients of the order n FIR filter.
This filter has frequency-amplitude characteristics approximately matching those given by vectors, f
and a.

b = firls(n,f,a,w) uses the weights in vector w, to weigh the error.

b = firls(n,f,a,ftype) specifies a filter type where ftype is:

• 'hilbert'
• 'differentiator'

b = firls(n,f,a,w,ftype) uses the weights in vector w to weigh the error. It also specifies a
filter type where ftype is:

• 'hilbert'
• 'differentiator'

Examples

Design a Lowpass Filter with Transition Band

The following illustrates how to design a lowpass filter of order 225 with transition band.

Create the frequency and amplitude vectors, f and a.

f = [0 0.25 0.3 1]

f = 1×4

 0 0.2500 0.3000 1.0000

a = [1 1 0 0]

a = 1×4

 1 1 0 0

5 Functions

5-672

Use firls to obtain the n+1 coefficients of the order n lowpass FIR filter.

b = firls(255,f,a);

Show the impulse response of the filter

fvtool(b,'impulse')

Design an Antisymmetric Filter with Piecewise Linear Passbands

The following shows how to design a 24th-order anti-symmetric filter with piecewise linear
passbands, and plot the desired and actual amplitude responses.

Create the frequency and amplitude vectors, f and a.

f = [0 0.3 0.4 0.6 0.7 0.9];
a = [0 1 0 0 0.5 0.5];

Use firls to obtain the 25 coefficients of the filter.

b = firls(24,f,a,'hilbert');

Plot the ideal amplitude response along with the transition regions.

 firls

5-673

plot(f.*pi,a,'o','markerfacecolor',[1 0 0]);
hold on;
plot(f.*pi,a,'r--','linewidth',2);

Use freqz to obtain the frequency response of the designed filter and plot the magnitude response of
the filter.

[H,F] = freqz(b,1);
plot(F,abs(H));
set(gca,'xlim',[0 pi])
legend('Filter Specification','Transition Regions','Magnitude Response')

5 Functions

5-674

Input Arguments
n — Filter order
integer scalar

Order of the filter, specified as an integer scalar. For odd orders, the frequency response at the
Nyquist frequency is necessarily 0. For this reason, firls always uses an even filter order for
configurations with a passband at the Nyquist frequency. If you specify an odd-valued n, firls
increments it by 1.
Example: 8
Data Types: int8 | int16 | int32 | int64

f — Pairs of frequency points
vector of numeric values

Pairs of frequency points, specified as a vector of values ranging between 0 and 1, where 1
corresponds to the Nyquist frequency. The frequencies must be in increasing order, and duplicate
frequency points are allowed. You can use duplicate frequency points to design filters exactly like
those returned by the fir1 and fir2 functions with a rectangular (rectwin) window.

f and a are the same length. This length must be an even number.
Example: [0 0.3 0.4 1]

 firls

5-675

Data Types: double | single

a — Amplitude values
vector of numeric values

Amplitude values of the function at each frequency point, specified as a vector of the same length as
f. This length must be an even number.

The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for k odd, is the line
segment connecting the points (f(k), a(k)) and (f(k+1), a(k+1)).

The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for k even is unspecified.
These are transition or “don't care” regions.
Example: [1 1 0 0]
Data Types: double | single

w — Weights
vector of numeric values

Weights to weigh the fit for each frequency band, specified as a vector of length half the length of f
and a, so there is exactly one weight per band. w indicates how much emphasis to put on minimizing
the integral squared error in each band, relative to the other bands.
Example: [0.5 1]
Data Types: double | single

ftype — Filter type
'hilbert' and 'differentiator'

Filter type, specified as either 'hilbert' or 'differentiator'.
Example: ‘hilbert’
Data Types: char

Output Arguments
b — Filter coefficients
vector of numeric values

Filter coefficients, returned as a numeric vector of n+1 values, where n is the filter order.

b = firls(n,f,a) designs a linear-phase filter of type I (n odd) and type II (n) . The output
coefficients, or “taps,” in b obey the relation:

b(k) = b(n+2-k), k = 1, ... , n + 1

b = firls(n,f,a,'hilbert') designs a linear-phase filter with odd symmetry (type III and type
IV). The output coefficients, or “taps,” in b obey the relation:

b(k) = –b(n+2-k), k = 1, ... , n + 1

b = firls(n,f,a,'differentiator') designs type III and type IV filters, using a special
weighting technique. For nonzero amplitude bands, the integrated squared error has a weight of (1/

5 Functions

5-676

f)2. This weighting causes the error at low frequencies to be much smaller than at high frequencies.
For FIR differentiators, which have an amplitude characteristic proportional to frequency, the filters
minimize the relative integrated squared error. This value is the integral of the square of the ratio of
the error to the desired amplitude.

More About
Diagnostics

Error and warning messages

One of the following diagnostic messages is displayed when an incorrect argument is used:

F must be even length.
F and A must be equal lengths.
Requires symmetry to be 'hilbert' or 'differentiator'.
Requires one weight per band.
Frequencies in F must be nondecreasing.
Frequencies in F must be in range [0,1].

A more serious warning message is

Warning: Matrix is close to singular or badly scaled.

This tends to happen when the product of the filter length and transition width grows large. In this
case, the filter coefficients b might not represent the desired filter. You can check the filter by looking
at its frequency response.

Algorithms
firls designs a linear-phase FIR filter. This filter minimizes the weighted, integrated squared error
between an ideal piecewise linear function and the magnitude response of the filter over a set of
desired frequency bands.

Reference [1] describes the theoretical approach behind firls. The function solves a system of
linear equations involving an inner product matrix of size roughly n/2 using the MATLAB \ operator.

This function designs type I, II, III, and IV linear-phase filters. Type I and II are the defaults for n even
and odd respectively. The 'hilbert' and 'differentiator' flags produce type III (n even) and IV
(n odd) filters. The various filter types have different symmetries and constraints on their frequency
responses (see [2] for details).

Linear Phase
Filter Type

Filter Order Symmetry of Coefficients Response H(f), f
= 0

Response H(f), f
= 1 (Nyquist)

Type I Even b(k) = b(n+2-k), k=1,..., n+1 No restriction No restriction
Type II Odd b(k) = b(n+2-k), k=1,..., n+1 No restriction H(1) = 0
Type III Even b(k) = –b(n+2-k), k=1,..., n+1 H(0) = 0 H(1) = 0
Type IV Odd b(k) = –b(n+2-k), k=1,..., n+1 H(0) = 0 No restriction

References
[1] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley & Sons, 1987, pp. 54-83.

 firls

5-677

[2] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, 1989, pp.
256-266.

See Also
fir1 | fir2 | rcosdesign | firpm

Introduced in R2011a

5 Functions

5-678

firminphase
Minimum-phase FIR spectral factor

Syntax
h = firminphase(b)
h = firminphase(b,nz)

Description
h = firminphase(b) computes the minimum-phase FIR spectral factor h of a linear-phase FIR
filter b.

h = firminphase(b,nz) specifies the number of zeros, nz, of b that lie on the unit circle.

Note You can find the maximum-phase spectral factor, g, by reversing h such that g = fliplr(h), and b
= conv(h, g).

Examples

Design Constrained Least Squares Filter

Design a constrained least squares filter with a nonnegative zero-phase response, and then use the
firminphase function to compute the minimum-phase spectral factor.

f = [0 0.4 0.8 1];
a = [0 1 0];
up = [0.02 1.02 0.01];
lo = [0 0.98 0]; % The zeros ensure nonnegative zero-phase resp.
n = 32;
b = fircls(n,f,a,up,lo);
h = firminphase(b)

h = 1×17

 0.2397 -0.1556 -0.2834 0.3866 0.0415 -0.2529 0.0584 -0.0028 0.0868 0.0079 -0.0978 0.0309 0.0095 0.0669 0.0171 -0.0111 -0.0019

Input Arguments
b — Lowpass FIR filter coefficients
row vector

Lowpass FIR filter coefficients, specified as a row vector. Elements of b must be real, of even order,
and have nonnegative zero-phase response.
Data Types: single | double

 firminphase

5-679

nz — Number of zeros
positive integer

Number of zeros of b that lie on the unit circle, specified as a positive integer. You must specify nz as
an even number to compute the minimum-phase spectral factor because every root on the unit circle
must have even multiplicity. Including nz can help the firminphase function calculate the required
FIR spectral factor. Zeros with multiplicity greater than two on the unit circle cause problems in the
spectral factor determination.
Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64

Output Arguments
h — Minimum-phase FIR spectral factor coefficients
row vector

Minimum-phase FIR spectral factor coefficients of a linear-phase FIR filter b, returned as a row
vector.
Data Types: single | double

References
[1] Mitra, Sanjit Kumar, and James F. Kaiser, eds. Handbook for Digital Signal Processing. New York:

Wiley, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
firgr | fircls | zerophase

Introduced in R2011a

5 Functions

5-680

firnyquist
Lowpass Nyquist (Lth-band) FIR filter

Syntax
b = firnyquist(n,l,r)
b = firnyquist('minorder',l,r,dev)
b = firnyquist(n,l,r,decay)
b = firnyquist(n,l,r,'nonnegative')
b = firnyquist(n,l,r,'minphase')

Description
b = firnyquist(n,l,r) designs an Nth order, Lth band, Nyquist FIR filter with a rolloff factor r
and an equiripple characteristic.

The rolloff factor r is related to the normalized transition width tw by tw = 2π(r/l) (rad/sample). The
order, n, must be even. l must be an integer greater than one. If l is not specified, it defaults to 4. r
must satisfy 0< r < 1. If r is not specified, it defaults to 0.5.

b = firnyquist('minorder',l,r,dev) designs a minimum-order, Lth band Nyquist FIR filter
with a rolloff factor r using the Kaiser window. The peak ripple is constrained by the scalar dev.

b = firnyquist(n,l,r,decay) designs an Nth order (n), Lth band (l), Nyquist FIR filter where
the scalar decay, specifies the rate of decay in the stopband. decay must be nonnegative. If you omit
or leave it empty, decay defaults to 0 which yields an equiripple stopband. A nonequiripple stopband
(decay ≠0) may be desirable for decimation purposes.

b = firnyquist(n,l,r,'nonnegative') returns an FIR filter with nonnegative zero-phase
response. This filter can be spectrally factored into minimum-phase and maximum-phase “square-
root” filters. This allows you to use the spectral factors in applications such as matched-filtering.

b = firnyquist(n,l,r,'minphase') returns the minimum-phase spectral factor bmin of order
n. bmin meets the condition b=conv(bmin,bmax) so that b is an Lth band FIR Nyquist filter of
order 2n with filter rolloff factor r. Obtain bmax, the maximum phase spectral factor by reversing the
coefficients of bmin. For example, bmax = bmin(end:-1:1).

Examples

Design a Nyquist Filter Using firnyquist

This example designs a minimum phase factor of a Nyquist filter.

bmin = firnyquist(47,10,.45,'minphase');
b = firnyquist(2*47,10,.45,'nonnegative');
[h,w,s] = freqz(b); hmin = freqz(bmin);
fvtool(b,1,bmin,1);

 firnyquist

5-681

This example compares filters with different decay rates.

b1 = firnyquist(72,8,.3,0); % Equiripple
b2 = firnyquist(72,8,.3,15);
b3 = firnyquist(72,8,.3,25);
fvtool(b1,1,b2,1,b3,1);

5 Functions

5-682

References
T. Saramaki, Finite Impulse Response Filter Design, Handbook for Digital Signal Processing, Mitra,
S.K. and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
firhalfband | firgr | firls | firminphase | rcosdesign | firls

Introduced in R2011a

 firnyquist

5-683

firpr2chfb
Two-channel FIR filter bank for perfect reconstruction

Syntax
[h0,h1,g0,g1] = firpr2chfb(n,fp)
[h0,h1,g0,g1] = firpr2chfb(n,dev,'dev')
[h0,h1,g0,g1] = firpr2chfb('minorder',fp,dev)

Description
[h0,h1,g0,g1] = firpr2chfb(n,fp) designs four FIR filters for the analysis sections (h0 and
h1) and synthesis section is (g0 and g1) of a two-channel perfect reconstruction filter bank. The
design corresponds to the orthogonal filter banks also known as power-symmetric filter banks.

n is the order of all four filters. It must be an odd integer. fp is the passband-edge for the lowpass
filters h0 and g0. The passband-edge argument fp must be less than 0.5. h1 and g1 are highpass
filters with the passband-edge given by (1-fp).

[h0,h1,g0,g1] = firpr2chfb(n,dev,'dev') designs the four filters such that the maximum
stopband ripple of h0 is given by the scalar dev. Specify dev in linear units, not decibels. The
stopband-ripple of h1 is also be given by dev, while the maximum stopband-ripple for both g0 and g1
is (2*dev).

[h0,h1,g0,g1] = firpr2chfb('minorder',fp,dev) designs the four filters such that h0 meets
the passband-edge specification fp and the stopband-ripple dev using minimum order filters to meet
the specification.

Examples

Design a Filter Bank Using firpr2chfb

Design a filter bank with filters of order n equal to 99 and passband edges of 0.45 and 0.55.

n = 99;
[h0,h1,g0,g1] = firpr2chfb(n,.45);
fvtool(h0,1,h1,1,g0,1,g1,1);

5 Functions

5-684

Here are the filters, showing clearly the passband edges.

Use the following stem plots to verify perfect reconstruction using the filter bank created by
firpr2chfb.

stem(1/2*conv(g0,h0)+1/2*conv(g1,h1))
n=0:n;
stem(1/2*conv((-1).^n.*h0,g0)+1/2*conv((-1).^n.*h1,g1))
stem(1/2*conv((-1).^n.*g0,h0)+1/2*conv((-1).^n.*g1,h1))
stem(1/2*conv((-1).^n.*g0,(-1).^n.*h0)+...
1/2*conv((-1).^n.*g1,(-1).^n.*h1))
stem(conv((-1).^n.*h1,h0)-conv((-1).^n.*h0,h1))

 firpr2chfb

5-685

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
firceqrip | firgr | firhalfband | firnyquist

Introduced in R2011a

5 Functions

5-686

firtype
Package: dsp

Determine type (1-4) of linear phase FIR filter System object

Syntax
type = firtype(sysobj)

Description
type = firtype(sysobj) determines the type (1 through 4) of the FIR filter System object

For more input options, see firtype in Signal Processing Toolbox.

Examples

Hilbert Transformers

Design a Hilbert transformer of order 30 with a transition width of 0.2π rad/sample. Use least-
squares minimization to obtain an equiripple linear-phase FIR filter. Plot the zero-phase response in
the interval [–π,π).

d = fdesign.hilbert('N,TW',30,0.2);
Hd = design(d,'equiripple','SystemObject',true);
zerophase(Hd,'whole')

 firtype

5-687

The impulse response of this even-order type-3 filter is antisymmetric.

impz(Hd)

5 Functions

5-688

ftype = firtype(Hd)

ftype = 3

Design a minimum-order Hilbert transformer that has a sample rate of 1 kHz. Specify the width of the
transition region as 10 Hz and the passband ripple as 1 dB. Display the zero-phase response of the
filter.

fs = 1e3;
d = fdesign.hilbert('TW,Ap',10,1,fs);
hd = design(d,'equiripple','SystemObject',true);
zerophase(hd,-fs/2:0.1:fs/2,fs)

 firtype

5-689

Input Arguments
sysobj — Input FIR filter
FIR filter System object

Input FIR filter with real and linear phase, specified as one of the following filter System objects:

• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.Differentiator
• dsp.HighpassFilter
• dsp.FilterCascade
• dsp.FIRFilter
• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FIRHalfbandDecimator

5 Functions

5-690

• dsp.FIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.VariableBandwidthFIRFilter

To check if a filter has linear phase, use the islinphase function. To check if a filter has real
coefficients, use the isreal function.

Output Arguments
type — FIR filter type
1 | 2 | 3 | 4

FIR filter type, defined as one of the following:

1 –– Type 1 filter with even order symmetric coefficients.

2 –– Type 2 filter with odd order symmetric coefficients.

3 –– Type 3 filter with even order antisymmetric coefficients.

4 –– Type 4 filter with odd order antisymmetric coefficients.

See Also
firtype | islinphase | isreal

Introduced in R2013a

 firtype

5-691

freqrespest
Package: dsp

Frequency response estimate via filtering

Syntax
[h,w] = freqrespest(sysobj)
[h,w] = freqrespest(sysobj,L)
[h,w] = freqrespest(sysobj,L,Name,Value)
[h,w] = freqrespest(sysobj,L,opts)
[h,w] = freqrespest(sysobj,'Arithmetic',arithType)
freqrespest(sysobj, ___)

Description
[h,w] = freqrespest(sysobj) computes the frequency response estimate of the input filter
System object. The function estimates by running input data made up from sinusoids with uniformly
distributed random frequencies through the filter and forming the ratio between output data and
input data.

The freqrespest function computes the frequency response estimate of the input filter object that
is close to the frequency response obtained by using only the quantized coefficients as long as:

• No overflow occurs when performing the fixed-point filtering
• There isn't significant quantization happening in the fixed-point additions and multiplications

freqrespest can be used as a diagnostic tool for fixed-point implementations. If freqrespest
differs significantly from freqz (which only takes into account the quantization of the coefficients), it
is an indication that at least one of the two conditions might be true.

[h,w] = freqrespest(sysobj,L) computes the frequency response estimate of the filter object
by specifying L number of trials.

[h,w] = freqrespest(sysobj,L,Name,Value) uses the Name,Value pairs as input arguments
to specify optional parameters for the test. Enter the parameter name as an input argument in single
quotation marks followed by the possible value of the parameter.

[h,w] = freqrespest(sysobj,L,opts) uses an options object to specify the optional input
parameters in lieu of specifying name-value pairs.

[h,w] = freqrespest(sysobj,'Arithmetic',arithType) analyzes the filter System object
based on the arithmetic specified in the arithType input.

freqrespest(sysobj, ___) with no output argument launches FVTool and shows the magnitude
response estimate of the filter object.

Examples

5 Functions

5-692

Estimate the Frequency Response of Fixed-Point FIR Filter

Estimate the frequency response of a fixed-point FIR filter.

firFilt = design(fdesign.lowpass(.4,.5,1,60),'equiripple','Systemobject',true);
dataIn = fi(randn(16,15),1,16,15);
dataOut = firFilt(dataIn); %#ok
[h,w] = freqrespest(firFilt); %#ok % This should be about the same as freqz.
release(firFilt);

Continuing with the filter object firFilt, change the FullPrecisionOverride property to false
and then specify the word lengths and precision (the fraction lengths) applied to the output from
internal addition and multiplication operations. After you set the word and fraction lengths, use the
freqrespest function to compute the frequency response estimate for the fixed-point filter.

firFilt.FullPrecisionOverride = false;
firFilt.ProductDataType = 'Custom';
firFilt.CustomProductDataType = numerictype(1,16,15);
firFilt.AccumulatorDataType = 'Custom';
firFilt.CustomAccumulatorDataType = numerictype(1,16,15);
firFilt.OutputDataType = 'Same as accumulator';
dataOut = firFilt(dataIn);
[h,w] = freqrespest(firFilt,2);
[h2,w2] = freqz(firFilt,512);
plot(w/pi,20*log10(abs([h,h2])))
legend('Frequency response estimated by filtering',...
'Freq. response computed by quantizing coefficients only');
xlabel('Normalized Frequency (\times\pi rad/sample)')
ylabel('Magnitude (dB)')

 freqrespest

5-693

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FIRFilter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter

5 Functions

5-694

• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

L — Number of trials
10 | positive integer

Number of trials used to compute the estimate, specified as a positive integer. If you do not specify
this value, L defaults to 10. More the number of trials, the greater is the accuracy in the estimate of
the response. However, when L is large, the function requires more time to compute the estimate.
Data Types: single | double

opts — Options object
options object

Options object to specify the optional input parameters in lieu of specifying name-value pairs.

Create the opts object using the freqrespopts function.

opts = freqrespopts(sysobj);

Because opts is an object, you use the set function to change the property values in opts before
you use it with freqrespest. For example, you could specify a new sample rate with:

set(opts,'fs',48e3); % Same as opts.fs = 48e3

arithType — Arithmetic type
'double' | 'single' | 'fixed'

Analyze the filter System object, based on the arithmetic specified in the arithType input.
arithType can be set to 'double', 'single', or 'fixed'. The analysis tool assumes a double-
precision filter when the arithmetic input is not specified and the filter System object is in an
unlocked state.

freqrespest requires knowledge of the input data type. Analysis cannot be performed if the input
data type is not available. If you do not specify the arithType parameter, that is, use the syntax
[h,w] = freqrespest(sysobj), then these rules apply.

• The System object state is Unlocked — freqrespest performs double precision analysis.
• The System object state is Locked — freqrespest performs analysis based on the locked input

data type.

When you do specify the arithType parameter, that is, use the syntax [h,w] =
freqrespest(sysobj,'Arithmetic',arithType), the following rules apply:

Value System Object State Rule
arithType = 'double' Unlocked freqrespest performs double-

precision analysis.
Locked freqrespest performs double-

precision analysis.
arithType = 'single' Unlocked freqrespest performs single-

precision analysis.

 freqrespest

5-695

Value System Object State Rule
Locked freqrespest performs single-

precision analysis.
arithType = 'fixed' Unlocked freqrespest produces an

error because the fixed-point
input data type is unknown.

Locked If the input data type is double
or single, then freqrespest
produces an error because the
fixed-point input data type is
unknown.
When the input data is of fixed-
point type, freqrespest
performs analysis based on the
locked input data type.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: firFilt =
design(fdesign.lowpass(.4,.5,1,60),'equiripple','Systemobject',true); [h,w] =
freqrespest(firFilt,10,'NFFT',1024);

NFFT — Number of FFT points
512 (default) | positive integer

Number of FFT points used in computing the frequency response estimate, specified as a positive
integer. This value determines the length of the frequency response vector h and the length of the
frequency vector w. When not specified, NFFT defaults to 512.
Data Types: single | double

NormalizedFrequency — Use normalized frequency
true (default) | false

Indicate whether to use normalized frequency or linear frequency, specified as either:

• true –– Use normalized frequency. When not specified, the function defaults to true.
• false –– Use linear frequency. When you specify false, you must supply the sampling frequency

Fs.

Fs — Sampling frequency
positive scalar

Sampling frequency to be specified when NormalizedFrequency is set to false. No default value.
You must set NormalizedFrequency to false before setting a value for Fs.
Data Types: single | double

SpectrumRange — Spectrum range
half (default) | whole

5 Functions

5-696

Spectrum range to be used while computing the frequency response estimate, specified as either:

• half
• whole

CenterDC — Set center of spectrum to DC
false (default) | true

Specify whether to set the center of the spectrum to the DC value in the output plot. If you select
true, both the negative and positive values appear in the plot. If you select false, DC appears at the
origin of the axes.

Output Arguments
h — Estimate of complex frequency response
vector

Estimate of the complex frequency response, returned as a vector. The length of the vector equals the
NFFT value. By default, this vector is of length 512.
Data Types: double
Complex Number Support: Yes

w — Frequencies
vector

Frequencies at which the complex frequency response h is estimated, returned as a vector. The
length of the vector equals the NFFT value. By default, this vector is of length 512.
Data Types: double

See Also
Functions
freqrespopts | freqz | noisepsd | scale

Introduced in R2011a

 freqrespest

5-697

freqrespopts
Package: dsp

Create an options object for frequency response estimate

Syntax
opts = freqrespopts(sysobj)

Description
opts = freqrespopts(sysobj) uses the current settings in the filter System object to create an
options object. This object contains options for frequency response estimation. You pass the opts
object as an input argument to the freqrespest function to specify values for the input parameters.

freqrespopts allows you to use the same settings for freqrespest with multiple filters without
specifying all of the parameters as input arguments to freqrespest.

Examples

Set Frequency Response Options

This example uses the freqrespopts function to set options which are used by the freqrespest
function. hd and hd2 are bandpass filters that use different design methods. The opts object makes
it easier to set the same conditions for the frequency response estimate when using the
freqrespest function with different filter objects..

d = fdesign.bandpass('fst1,fp1,fp2,fst2,ast1,ap,ast2',...
0.25,0.3,0.45,0.5,60,0.1,60);
hd = design(d,'butter','SystemObject',true)

hd =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [18x6 double]
 ScaleValues: [19x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

hd2 = design(d,'cheby2','SystemObject',true)

hd2 =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'

5 Functions

5-698

 SOSMatrix: [9x6 double]
 ScaleValues: [10x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

opts = freqrespopts(hd)

opts =

 struct with fields:

 FreqPoints: 'All'
 NFFT: 512
 NormalizedFrequency: true
 Fs: 'Normalized'
 SpectrumRange: 'Half'
 CenterDC: false

opts.NFFT = 256; % Same as set(opts,'nfft',256).
opts.NormalizedFrequency = false;
opts.fs = 1.5e3;
opts.CenterDC = true

opts =

 struct with fields:

 FreqPoints: 'All'
 NFFT: 256
 NormalizedFrequency: false
 Fs: 1500
 SpectrumRange: 'Whole'
 CenterDC: true

With the opts object configured as needed, use it as an input argument for the freqrespest
function.

[h2,w2] = freqrespest(hd2,20,opts);
[h1,w1] = freqrespest(hd,20,opts);

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CoupledAllpassFilter

 freqrespopts

5-699

• dsp.Differentiator
• dsp.FIRFilter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

Output Arguments
opts — Options object
pseudospectrum object

Options object which contains the options for frequency response estimation, returned as a
pseudospectrum object. You pass the opts object as an input argument to the freqrespest
function to specify values for input parameters.

See Also
freqrespest | noisepsd | noisepsdopts | scale

Introduced in R2011a

5 Functions

5-700

freqsamp
Real or complex frequency-sampled FIR filter from specification object

Syntax
hd = design(d,'freqsamp','SystemObject',true)
hd = design(...,'filterstructure',structure,'SystemObject',true)
hd = design(...,'window',window,'SystemObject',true)

Description
hd = design(d,'freqsamp','SystemObject',true) designs a frequency-sampled filter
specified by the filter specifications object d.

hd = design(...,'filterstructure',structure,'SystemObject',true) returns a filter
with the filter structure you specify by the structure input argument. structure is dffir by
default and can be any one of the following filter structures.

Structure Description of Resulting Filter Structure
dffir Direct-form FIR filter
dffirt Transposed direct-form FIR filter
dfsymfir Symmetrical direct-form FIR filter
dfasymfir Asymmetrical direct-form FIR filter

hd = design(...,'window',window,'SystemObject',true) designs filters using the window
specified by window. Provide the input argument window as

• A character vector for the window type. For example, use 'bartlett', or 'hamming'. See
window for the full list of windows available.

• A function handle that references the window function. When the window function requires more
than one input, use a cell array to hold the required arguments. The first example shows a cell
array input argument.

• The window vector itself.

Examples

Design a Frequency Sampled FIR Filter

These examples design FIR filters that have arbitrary magnitude responses. In the first filter, the
response has three distinct sections and the resulting filter is real.

The second example creates a complex filter.

b1 = 0:0.01:0.18;
b2 = [.2 .38 .4 .55 .562 .585 .6 .78];
b3 = 0.79:0.01:1;

 freqsamp

5-701

a1 = .5+sin(2*pi*7.5*b1)/4; % Sinusoidal response section.
a2 = [.5 2.3 1 1 -.2 -.2 1 1]; % Piecewise linear response section.
a3 = .2+18*(1-b3).^2; % Quadratic response section.
f = [b1 b2 b3];
a = [a1 a2 a3];
n = 300;
d = fdesign.arbmag('n,f,a',n,f,a); % First specifications object.
hd = design(d,'freqsamp','window',{@kaiser,.5},...
 'SystemObject',true); % Filter.
fvtool(hd)

Now design the arbitrary-magnitude complex FIR filter. Recall that vector f contains frequency
locations and vector a contains the desired filter response values at the locations specified in f.

f = [-1 -.93443 -.86885 -.80328 -.7377 -.67213 -.60656 -.54098 ...
-.47541,-.40984 -.34426 -.27869 -.21311 -.14754 -.081967 ...
-.016393 .04918 .11475,.18033 .2459 .31148 .37705 .44262 ...
 .5082 .57377 .63934 .70492 .77049,.83607 .90164 1];
a = [.0095848 .021972 .047249 .099869 .23119 .57569 .94032 ...
.98084 .99707,.99565 .9958 .99899 .99402 .99978 .99995 .99733 ...
.99731 .96979 .94936,.8196 .28502 .065469 .0044517 .018164 ...
.023305 .02397 .023141 .021341,.019364 .017379 .016061];
n = 48;
d = fdesign.arbmag('n,f,a',n,f,a); % Second spec. object.
hdc = design(d,'freqsamp','window','rectwin','SystemObject',true); % Filter.
fvtool(hdc)

5 Functions

5-702

fvtool shows you the response for hdc from -1 to 1 in normalized frequency. design(d,...) returns a
complex filter for hdc because the frequency vector includes negative frequency values.

See Also
design | designmethods | fdesign.arbmag | help | window

Introduced in R2011a

 freqsamp

5-703

freqz
Package: dsp

Frequency response of discrete-time filter System object

Syntax
[h,w] = freqz(sysobj)
[h,w] = freqz(sysobj,n)
[h,w] = freqz(sysobj,'Arithmetic',arithType)
freqz(sysobj)

Description
[h,w] = freqz(sysobj) returns the complex frequency response h of the filter System object,
sysobj. The vector w contains the frequencies (in radians/sample) at which the function evaluates
the frequency response. The frequency response is evaluated at 8192 points equally spaced around
the upper half of the unit circle.

[h,w] = freqz(sysobj,n) returns the complex frequency response of the filter System object and
the corresponding frequencies at n points equally spaced around the upper half of the unit circle.

freqz uses the transfer function associated with the filter to calculate the frequency response of the
filter with the current coefficient values.

[h,w] = freqz(sysobj,'Arithmetic',arithType) analyzes the filter System object, based on
the arithmetic specified in arithType, using either of the previous syntaxes.

freqz(sysobj) uses fvtool to plot the magnitude and unwrapped phase of the frequency response
of the filter System object sysobj.

For more input options, see freqz in Signal Processing Toolbox.

Examples

Frequency Response of the Filter

This examples plot the frequency response of the lowpass FIR filter using freqz.

b = fir1(80,0.5,kaiser(81,8));
firFilt = dsp.FIRFilter('Numerator',b);
freqz(firFilt);

5 Functions

5-704

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator

 freqz

5-705

• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

n — Number of points over which the frequency response is computed
8192 (default) | positive integer

Number of points over which the frequency response is computed. For an FIR filter where n is a
power of two, the computation is done faster using FFTs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

5 Functions

5-706

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
h — Frequency response
vector

Complex n-element frequency response vector. If n is not specified, the function uses a default value
of 8192. The frequency response is evaluated at n points equally spaced around the upper half of the
unit circle.
Data Types: double

w — frequencies
vector

Frequency vector of length n, in radians/sample. w consists of n points equally spaced around the
upper half of the unit circle (from 0 to π radians/sample). If n is not specified, the function uses a
default value of 8192.
Data Types: double

Tips
There are several ways of analyzing the frequency response of filters. freqz accounts for
quantization effects in the filter coefficients, but does not account for quantization effects in filtering
arithmetic. To account for the quantization effects in filtering arithmetic, refer to function noisepsd.

Algorithms
freqz calculates the frequency response for a filter from the filter transfer function Hq(z). The
complex-valued frequency response is calculated by evaluating Hq(ejω) at discrete values of w
specified by the syntax you use. The integer input argument n determines the number of equally-
spaced points around the upper half of the unit circle at which freqz evaluates the frequency
response. The frequency ranges from 0 to π radians per sample when you do not supply a sampling
frequency as an input argument. When you supply the scalar sampling frequency fs as an input
argument to freqz, the frequency ranges from 0 to fs/2 Hz.

See Also
Functions
freqz

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

 freqz

5-707

freqz
Package: dsp

Frequency response of filters in channelizer

Syntax
[H,w] = freqz(obj)
[H,w] = freqz(obj,ind)
[H,f] = freqz(obj,ind,Name,Value)

Description
[H,w] = freqz(obj) computes a matrix of complex frequency responses for each filter in the
dsp.Channelizer System object. Each column of H corresponds to the frequency response for one
of the filters in the channelizer. w is a vector of normalized frequencies at which the rows of H are
computed.

[H,w] = freqz(obj,ind) computes the frequency response of the filters with indices
corresponding to the elements in the vector ind. ind is a row vector of indices between 1 and
obj.NumFrequencyBands. By default, this vector is [1:N], where N is the number of frequency
bands.

For example, to compute the frequency response of the first 4 filters, set ind to [1:4].

channelizer = dsp.Channelizer;
[H,w] = freqz(channelizer,[1:4]);

[H,f] = freqz(obj,ind,Name,Value) computes the frequency response of the filters with
additional options specified by one or more Name,Value pair arguments.

For example, to specify a sampling rate of 44100 Hz, set 'Fs' to 44100. To compute the frequency
response using 1024 frequency points, set 'NFFT' to 1024. In addition, to compute the sum of the
frequency response of the filters, set 'overall' to true.

channelizer = dsp.Channelizer;
[H,f] = freqz(channelizer,[1:4],'Fs',44100,'NFFT',1024,'overall',true);

Examples

Frequency Response of Channelizer Filter Bank

Compute the frequency response of the filters in the channelizer using the freqz function.

Design a channelizer with the number of frequency bands or polyphase branches set to 8, the number
of taps or coefficients per band set to 12, and stopband attenuation set to 80 dB. Compute the
frequency response matrix, H, and the corresponding vector of frequency points, w.

5 Functions

5-708

channelizer = dsp.Channelizer;
[H,w] = freqz(channelizer); %#ok
whos H

 Name Size Bytes Class Attributes

 H 8192x8 1048576 double complex

The number of rows in H corresponds to the number of frequency points, and the number of columns
in H corresponds to the number of frequency bands. To view only a portion of the filter bank, specify
the indices.

[H,w] = freqz(channelizer,(1:4)); %#ok

Specifying the filter indices as [1:4] computes the individual frequency response of the first 4 filters.
You can alternatively view the sum of the filter responses by setting the 'overall' to true.

[H,w] = freqz(channelizer,1:4,'overall',true);
plot(w/pi,20*log10(abs(H)))
xlabel('Normalized Frequency (\times \pi rad/sample)')
ylabel('Magnitude (dB)')

You can also compute the frequencies in Hz by passing a sampling frequency. Frequency in Hz, f,
equals (w/2 * pi) * Fs, where w is frequency in radians, and Fs is the sampling rate.

[H,f] = freqz(channelizer,'Fs',44100); %#ok

Specify the number of frequency points using the 'NFFT' argument.

 freqz

5-709

[H,f] = freqz(channelizer,'Fs',44100,'NFFT',1024);

Input Arguments
obj — Input filter System object
dsp.Channelizer

Input filter, specified as a dsp.Channelizer System object.
Example: [H,w] = freqz(channelizer);

ind — Filter indices
row vector

Filter indices, specified as a row vector in the range [1 obj.NumFrequencyBands]. By default, ind
is set to 1:N, where N is the number of frequency bands specified through the
obj.NumFrequencyBands property.
Example: freqz(channelizer,[1:4]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [H,f] = freqz(channelizer,[1:4],'Fs',44100,'NFFT',1024,'overall',true);

Fs — Sampling rate
scalar

Sampling rate, specified as a scalar. This value determines the frequencies in Hz at which freqz
computes the frequency response.
Example: 44100
Example: 22050
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NFFT — Number of frequency points used to compute frequency response
8192 (default) | positive scalar

Number of frequency points used to compute the frequency response, specified as a positive scalar.
Example: 8192
Example: 1024
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

overall — Type of filter response
false (default) | true

The type of filter response, specified as either:

5 Functions

5-710

• true –– freqz computes the sum of the filter responses.
• false –– freqz computes the individual filter responses.

Data Types: logical

Output Arguments
H — Frequency response of filter
matrix (default) | vector

Complex frequency response of the filters in the channelizer. The dimensions of the output depend on
the value of the 'overall' argument:

• When the 'overall' argument is true, the frequency response vector contains the sum of the
frequency responses of all the filters. The vector is of size [nfft 1], where nfft is the number of
frequency points. For example, if nfft is 8192, H is a matrix of size [8192 1].

• When the 'overall' argument is false, the frequency response is a matrix of size [nfft
nFilters], where nfft is the number of frequency points and nFilters is the number of filters
whose frequency response is computed. Suppose nfft is 8192 and ind is [2:5], H is a matrix of
size [8192 4].

Data Types: double

w — Normalized frequencies
vector

Normalized frequencies, specified in rad/sample, at which the frequency response is computed. The
vector is of size [nfft 1].
Data Types: double

f — Frequencies
vector

Frequencies, specified in Hz, at which the frequency response is computed. The vector is of size
[nfft 1].
Data Types: double

See Also
Functions
coeffs | tf | polyphase | fvtool | bandedgeFrequencies | centerFrequencies | getFilters

Objects
dsp.Channelizer

Introduced in R2017b

 freqz

5-711

freqz
Package: dsp

Frequency response of the multirate multistage filter

Syntax
[h,f] = freqz(sysobj,n,range)
[h,f] = freqz(sysobj,f)

Description
[h,f] = freqz(sysobj,n,range) returns the complex frequency response, h, of the multirate
multistage filter System object and the frequency vector f at which h is computed. n is the number of
frequency points, and range is the frequency range over which the response is computed.

For the sample rate converter object, the sample rate is the larger of InputSampleRate and
OutputSampleRate.

[h,f] = freqz(sysobj,f) returns the complex frequency response h computed at the frequency
points specified by vector f. The input vector f is in Hz.

Examples

Frequency Response of Default Converter

Create a multistage sample rate converter with default properties, corresponding to the combined
three filter stages used to convert from 192 kHz to 44.1 kHz. Compute and display the frequency
response.

src = dsp.SampleRateConverter;
[H,f] = freqz(src);
plot(f,20*log10(abs(H)))

5 Functions

5-712

Compute and display the frequency response over the range between 20 Hz and 44.1 kHz.

f = 20:10:44.1e3;
[H,f] = freqz(src,f);
plot(f,20*log10(abs(H)))

 freqz

5-713

Compute Frequency Response of Complex Bandpass Decimator

Compute the complex frequency response of a complex bandpass decimator using the freqz
function.

Create a dsp.ComplexBandpassDecimator object. Set the DecimationFactor to 12, the
CenterFrequency to 5000 Hz, and the SampleRate to 44100 Hz. Compute and display the
frequency response.

cbp = dsp.ComplexBandpassDecimator(12,5000,44100);
[h,f] = freqz(cbp);
plot(f,20*log10(abs(h)))
grid on
xlabel('Frequency (Hz)')
ylabel('h (dB)')

5 Functions

5-714

Input Arguments
sysobj — Filter System object
dsp.ComplexBandpassDecimator | dsp.SampleRateConverter

Filter System object, specified as a dsp.ComplexBandpassDecimator or a
dsp.SampleRateConverter System object.

n — Number of evaluation points
8192 (default) | positive integer

Number of frequency points for response evaluation, specified as a positive integer scalar. If n is not
specified, the default is 8192.
Data Types: single | double

range — Range of frequencies
'half' (default) | 'whole'

Range considered when computing the frequency response, specified as either 'half' (from 0 to π)
or 'whole' (from 0 to 2π). If range is not specified, the defaults is 'half'.

f — Frequencies in Hz at which response is computed
vector

Frequencies in Hz at which the response is computed, specified as a vector.

 freqz

5-715

Data Types: double

Output Arguments
h — Complex frequency response
vector

Complex frequency response, returned as a vector.
Data Types: double

f — Frequencies at which response is computed
vector

Frequencies at which the response is computed, returned as a vector.
Data Types: double

See Also
Functions
cost | info | visualizeFilterStages | cost | getActualOutputRate | getFilters | info |
getRateChangeFactors

Objects
dsp.ComplexBandpassDecimator | dsp.SampleRateConverter

Introduced in R2018a

5 Functions

5-716

info
Package: dsp

Characteristic information about generated signal

Syntax
S = info(nco)

Description
S = info(nco) returns a structure containing the characteristic information, S, about the dsp.NCO
System object, nco.

Examples

Obtain the Characteristic Information of the NCO Object

The characteristic information of the NCO object is defined by the following fields:

• NumPointsLUT — Number of data points in the lookup table.
• SineLUTSize — Quarter-wave sine lookup table size in bytes.
• TheoreticalSFDR — Theoretical spurious free dynamic range (SFDR) in dBc.
• FrequencyResolution — Frequency resolultion of the NCO.

To obtain the above characteristics for a specific NCO object, call the info function on the object.

nco = dsp.NCO

nco =
 dsp.NCO with properties:

 PhaseIncrementSource: 'Input port'
 PhaseOffsetSource: 'Property'
 PhaseOffset: 0
 Dither: true
 NumDitherBits: 4
 PhaseQuantization: true
 NumQuantizerAccumulatorBits: 12
 PhaseQuantizationErrorOutputPort: false
 Waveform: 'Sine'
 SamplesPerFrame: 1
 OutputDataType: 'Custom'

 Show all properties

info(nco)

ans = struct with fields:
 NumPointsLUT: 1025

 info

5-717

 SineLUTSize: 2050
 TheoreticalSFDR: 84
 FrequencyResolution: 1.5259e-05

The fields and their corresponding values change depending on the settings of the object. For
instance, if the PhaseQuantization property is set to false, the TheoreticalSFDR field does not
appear.

nco.PhaseQuantization = false;
info(nco)

ans = struct with fields:
 NumPointsLUT: 16385
 SineLUTSize: 32770
 FrequencyResolution: 1.5259e-05

Input Arguments
nco — Numerically controlled oscillator
dsp.NCO System object

Numerically controlled oscillator, specified as a dsp.NCO System object.

Output Arguments
S — Characteristic information about signal
structure

Characteristic information about the dsp.NCO System object, returned as a structure, S. The number
of fields of S and their values vary depending on the property value settings of nco. The possible
fields and their values are:

Field Value
NumPointsLUT Number of data points for lookup table. The lookup table is

implemented as a quarter-wave sine table.
SineLUTSize Quarter-wave sine lookup table size in bytes.
TheoreticalSFDR Theoretical spurious free dynamic range (SFDR) in dBc. This

field applies when you set the PhaseQuantization
property to true.

FrequencyResolution Frequency resolution of the NCO in Hz. The sample time of
the output signal is assumed to be 1 second.

Data Types: struct

See Also
Objects
dsp.NCO

5 Functions

5-718

Introduced in R2012a

 info

5-719

fvtool
Package: dsp

Visualize frequency response of DSP filters

Syntax
fvtool(sysobj)
fvtool(sysobj,options)
fvtool(____,Name,Value)

Description
fvtool(sysobj) displays the magnitude response of the filter System object.

fvtool(sysobj,options) displays the response that is specified by the options.

For example, to visualize the impulse response of an FIR filter System object, set options to
'impulse'.

Fs = 96e3; filtSpecs = fdesign.lowpass(20e3,22.05e3,1,80,Fs);
 firlp2 = design(filtSpecs,'equiripple','SystemObject',true);
fvtool(firlp2,'impulse');

fvtool(____,Name,Value) visualizes the response of the filter with each specified property set to
the specified value.

For more input options, see fvtool in Signal Processing Toolbox.

Examples

Impulse and Frequency Response of Halfband Decimation Filter

Create a lowpass halfband decimation filter for data sampled at 44.1 kHz. The output data rate is 1/2
the input sampling rate, or 22.05 kHz. Specify the filter order to be 52 with a transition width of 4.1
kHz.

Fs = 44.1e3;
filterspec = 'Filter order and transition width';
Order = 52;
TW = 4.1e3;
firhalfbanddecim = dsp.FIRHalfbandDecimator(...
 'Specification',filterspec, ...
 'FilterOrder',Order, ...
 'TransitionWidth',TW, ...
 'SampleRate',Fs);

Plot the impulse response. The zeroth-order coefficient is delayed 26 samples, which is equal to the
group delay of the filter. This yields a causal halfband filter.

5 Functions

5-720

fvtool(firhalfbanddecim,...
 'Analysis','impulse')

Plot the magnitude and phase response.

fvtool(firhalfbanddecim,...
 'Analysis','freq')

 fvtool

5-721

Impulse and Frequency Response of FIR and IIR Lowpass Filters

Create a minimum-order FIR lowpass filter for data sampled at 44.1 kHz. Specify a passband
frequency of 8 kHz, a stopband frequency of 12 kHz, a passband ripple of 0.1 dB, and a stopband
attenuation of 80 dB.

Fs = 44.1e3;
filtertype = 'FIR';
Fpass = 8e3;
Fstop = 12e3;
Rp = 0.1;
Astop = 80;
FIRLPF = dsp.LowpassFilter('SampleRate',Fs, ...
 'FilterType',filtertype, ...
 'PassbandFrequency',Fpass, ...
 'StopbandFrequency',Fstop, ...
 'PassbandRipple',Rp, ...
 'StopbandAttenuation',Astop);

Design a minimum-order IIR lowpass filter with the same properties as the FIR lowpass filter. Change
the FilterType property of the cloned filter to IIR.

IIRLPF = clone(FIRLPF);
IIRLPF.FilterType = 'IIR';

5 Functions

5-722

Plot the impulse response of the FIR lowpass filter. The zeroth-order coefficient is delayed by 19
samples, which is equal to the group delay of the filter. The FIR lowpass filter is a causal FIR filter.

fvtool(FIRLPF,'Analysis','impulse')

Plot the impulse response of the IIR lowpass filter.

fvtool(IIRLPF,'Analysis','impulse')

 fvtool

5-723

Plot the magnitude and phase response of the FIR lowpass filter.

fvtool(FIRLPF,'Analysis','freq')

5 Functions

5-724

Plot the magnitude and phase response of the IIR lowpass filter.

fvtool(IIRLPF,'Analysis','freq')

 fvtool

5-725

Calculate the cost of implementing the FIR lowpass filter.

cost(FIRLPF)

ans = struct with fields:
 NumCoefficients: 39
 NumStates: 38
 MultiplicationsPerInputSample: 39
 AdditionsPerInputSample: 38

Calculate the cost of implementing the IIR lowpass filter. The IIR filter is more efficient to implement
than the FIR filter.

cost(IIRLPF)

ans = struct with fields:
 NumCoefficients: 18
 NumStates: 14
 MultiplicationsPerInputSample: 18
 AdditionsPerInputSample: 14

Calculate the group delay of the FIR lowpass filter.

grpdelay(FIRLPF)

5 Functions

5-726

Calculate the group delay of the IIR lowpass filter. The FIR filter has a constant group delay (linear
phase), while its IIR counterpart does not.

grpdelay(IIRLPF)

 fvtool

5-727

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter

5 Functions

5-728

• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

Example: firFilt = dsp.FIRFilter('Numerator', fir1(130, 2000/(8000/2)));
fvtool(firFilt)

options — Filter analysis options
'magnitude' (default) | 'phase' | 'freq' | 'grpdelay' | 'phasedelay' | 'impulse' | 'step' |
'polezero' | 'coefficients' | 'info' | 'magestimate' | 'noisepower'

Filter analysis options, specified as one of the following:

• 'magnitude' –– Magnitude response
• 'phase' –– Phase response
• 'freq' –– Frequency response
• 'grpdelay' –– Group delay
• 'phasedelay' –– Phase delay
• 'impulse' –– Impulse response
• 'step' –– Step response
• 'polezero' –– Pole zero plot
• 'coefficients' –– Coefficients vector
• 'info' –– Filter information
• 'magestimate' –– Magnitude response estimate
• 'noisepower' –– Round-off noise power spectrum

Example: fvtool(firFilt,'freq')

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: firFilt = dsp.FIRFilter('Numerator', fir1(130, 2000/(8000/2)));
fvtool(firFilt,'Arithmetic','single')

 fvtool

5-729

Fs — Sampling rate
scalar

Sampling rate, specified as a scalar. This value determines the Nyquist interval [-Fs/2 Fs/2] in which
the fvtool shows the frequency response of the filters in the channelizer.
Data Types: single | double

Arithmetic — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Specify the arithmetic used during analysis. The analysis tool assumes a double-precision filter when
the arithmetic input is not specified and the filter System object is unlocked. The 'Arithmetic'
property set to 'Fixed' applies only to filter System objects with fixed-point properties.

When the 'Arithmetic' property is set to 'Fixed', the tool shows both the double-precision
reference filter and the quantized version of the filter. The CoefficientsDataType property in the
respective filter System object is used in creating the quantized version of the filter for all the
analyses options except for the two below:

• 'magestimate' –– Magnitude response estimate.
• 'noisepower' –– Round-off noise power spectrum

For these two analyses options, all the fixed-point settings are used in analyzing the quantized version
of the filter.

See Also
Functions
fvtool

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced before R2006a

5 Functions

5-730

fvtool
Package: dsp

Visualize the filters in the channelizer

Syntax
fvtool(obj)
fvtool(obj,ind)
fvtool(obj,ind,Name,Value)

Description
fvtool(obj) visualizes the filters in the dsp.Channelizer System object using the Filter
Visualization Tool (FVTool).

fvtool(obj,ind) visualizes the filters corresponding to the indices in the vector ind. ind is a row
vector of indices between 1 and obj.NumFrequencyBands. By default, this vector is [1:N], where N
is the smallest of obj.NumFrequencyBands and 64.

For example, to visualize the first 4 filters, set ind to [1:4].

channelizer = dsp.Channelizer;
fvtool(channelizer,[1:4]);

fvtool(obj,ind,Name,Value) visualizes the filters with additional options specified by one or
more Name,Value pair arguments.

For example, to visualize the first 4 filters in the channelizer over the Nyquist interval [–44100/2,
44100/2] Hz, set 'Fs' to 44100. To compute the frequency response using 1024 frequency points,
set 'NFFT' to 1024. In addition, to visualize sum of the filter responses, set 'overall' to true.

channelizer = dsp.Channelizer;
fvtool(channelizer,[1:4],'Fs',44100,'NFFT',1024,'overall',true);

Examples

Visualize Filters in Channelizer

Using the fvtool function, you can visualize the individual filter responses or sum of all the filter
responses in the channelizer filter bank.

Design a channelizer with the number of frequency bands or polyphase branches set to 8, the number
of taps or coefficients per band set to 12, and stopband attenuation set to 80 dB. View the response of
the filter bank.

channelizer = dsp.Channelizer;
fvtool(channelizer)

 fvtool

5-731

The fvtool shows the response of the lowpass prototype filter and all the modulated filters. To view
only a portion of the filter bank, specify the indices in ind. To view the response of the first 4 filters,
set ind to [1:4].

fvtool(channelizer,(1:4));

5 Functions

5-732

You can change the Nyquist interval to [-22,050 22,050] Hz and the number of frequency points to
1024.

fvtool(channelizer,(1:4),'Fs',44100,'NFFT',1024);

 fvtool

5-733

To see the sum of the responses of all 4 filters, set the 'overall' argument to true.

fvtool(channelizer,(1:4),'Fs',44100,'NFFT',1024,'overall',true);

5 Functions

5-734

Input Arguments
obj — Input filter System object
dsp.Channelizer

Input filter, specified as a dsp.Channelizer System object.
Example: channelizer = dsp.Channelizer; fvtool(channelizer);

ind — Filter indices
row vector

Filter indices, specified as a row vector in the range [1 obj.NumFrequencyBands]. By default, ind
is set to 1:N, where N is the smallest of obj.NumFrequencyBands and 64.
Example: fvtool(channelizer,[1:4]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: fvtool(channelizer,'Fs',44100,'NFFT',1024,'overall',true);

 fvtool

5-735

Fs — Sampling rate
scalar

Sampling rate, specified as a scalar. This value determines the Nyquist interval [-Fs/2 Fs/2] in which
the fvtool shows the frequency response of the filters in the channelizer.
Example: 44100
Example: 22050
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NFFT — Number of frequency points used to compute the frequency response
8192 (default) | positive scalar

Number of frequency points used to compute the frequency response, specified as a positive scalar.
Example: 8192
Example: 1024
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

overall — Type of filter response
false (default) | true

Type of filter response, specified as either:

• true –– fvtool shows the sum of the filter responses.
• false –– fvtool shows the individual filter responses.

Data Types: logical

See Also
Functions
polyphase | coeffs | tf | freqz | bandedgeFrequencies | centerFrequencies | getFilters

Objects
dsp.Channelizer

Introduced in R2017b

5 Functions

5-736

fvtool
Package: dsp

Visualize frequency response of coupled allpass filter

Syntax
fvtool(caf)
fvtool(caf,options)
fvtool(____,Name,Value)

Description
fvtool(caf) displays the magnitude response of the coupled allpass filter System object.

fvtool(caf,options) displays the response that is specified by the options. For example, to
visualize the impulse response of a coupled allpass filter System object, set options to 'impulse'.

caf = dsp.CoupledAllpassFilter;
fvtool(caf,'impulse');

fvtool(____,Name,Value) visualizes the response of the filter with each specified property set to
the specified value.

For more input options, see fvtool.

Examples

View Power Complementary Output of Coupled Allpass Filter

Design a Butterworth lowpass filter of order 3. Use a coupled allpass structure with inner minimum
multiplier structure.

Fs = 48000; % in Hz
Fc = 12000; % in Hz
frameLength = 1024;
[b,a] = butter(3,2*Fc/Fs);
AExp = [freqz(b,a,frameLength/2); NaN];
[c1,c2] = tf2ca(b,a);
caf = dsp.CoupledAllpassFilter(c1(2:end),c2(2:end));

Using the 'SubbandView' option of the dsp.CoupledAllpassFilter, you can visualize the
lowpass filter output, the power complementary highpass filter output, or both using the fvtool.

To view the lowpass filter output, set 'SubbandView' to 1.

fvtool(caf,'SubbandView',1,'Fs',Fs)

 fvtool

5-737

To view the highpass filter output, set 'SubbandView' to 2.

fvtool(caf,'SubbandView',2,'Fs',Fs)

5 Functions

5-738

To view both the outputs, set 'SubbandView' to 'all', [1 2] or [1;2].

fvtool(caf,'SubbandView','all','Fs',Fs);

 fvtool

5-739

Input Arguments
caf — Input filter
filter System object

Input filter, specified as as a dsp.CoupledAllpassFilter System object.
Example: caf = dsp.CoupledAllpassFilter; fvtool(caf)

options — Filter analysis options
'magnitude' (default) | 'phase' | 'freq' | 'grpdelay' | 'phasedelay' | 'impulse' | 'step' |
'polezero' | 'coefficients' | 'info' | 'magestimate' | 'noisepower'

Filter analysis options, specified as one of the following:

• 'magnitude' –– Magnitude response
• 'phase' –– Phase response
• 'freq' –– Frequency response
• 'grpdelay' –– Group delay
• 'phasedelay' –– Phase delay
• 'impulse' –– Impulse response
• 'step' –– Step response

5 Functions

5-740

• 'polezero' –– Pole zero plot
• 'coefficients' –– Coefficients vector
• 'info' –– Filter information
• 'magestimate' –– Magnitude response estimate
• 'noisepower' –– Round-off noise power spectrum

Example: fvtool(caf,'freq')

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: caf = dsp.CoupledAllpassFilter;
fvtool(caf,'SubbandView','all','Arithmetic','single')

SubbandView — Subband view
1 (default) | 2 | 'all' | [1 2] | [1;2]

Specify the subband to be viewed. You can set this property to one of the following:

• 1 –– Display the lowpass filter output.
• 2 –– Display the power complimentary highpass filter output.
• 'all', [1 2], [1;2] –– Display both the outputs.

Fs — Sampling rate
scalar

Sampling rate, specified as a scalar. This value determines the Nyquist interval [–Fs/2 Fs/2] in which
FVTool shows the frequency response of the filters in the channelizer.
Data Types: single | double

Arithmetic — Arithmetic type
'double' (default) | 'single'

Specify the arithmetic used during analysis. The analysis tool assumes a double-precision filter when
the arithmetic input is not specified and the filter System object is unlocked.

See Also
Functions
fvtool | getBranches

Objects
dsp.CoupledAllpassFilter

Introduced in R2013b

 fvtool

5-741

gain
Package: dsp

Gain of CIC filter System object

Syntax
g = gain(sysobj)
g = gain(sysobj,j)

Description
g = gain(sysobj) returns the gain of the CIC filter System object.

When sysobj is a dsp.CICDecimator object, the gain function returns the gain for the overall CIC
decimator.

When sysobj is a dsp.CICInterpolator object, the gain function returns the gain of the 2Nth

stage of the CIC interpolation filter, where N is the number of filter sections. For more details, see g.

g = gain(sysobj,j) returns the gain of the jth section of a CIC interpolation filter. When you omit
j, the function assumes that j is 2N, and returns the gain of the last section of the filter. This syntax
does not apply when sysobj is a dsp.CICDecimator object.

Examples

Compare Performance of Interpolation Filters

To compare the performance of two interpolators, one a CIC filter and the other an FIR filter, use the
gain function to adjust the CIC filter output amplitude to match the FIR filter output amplitude.

Start by creating an input data set, a sinusoidal signal x.

fs = 1000; % Input sampling frequency.
t = 0:1/fs:1.5; % Signal length = 1501 samples.
x = sin(2*pi*10*t); % Amplitude = 1 sinusoid.
x = x';

Design a cascade of two dsp.FIRInterpolator objects with an overall interpolation factor of 4.

l = 4; % Interpolation factor for FIR filter.
d = fdesign.interpolator(l);
firInterp = design(d,'multistage','SystemObject',true);

Run the data through the interpolator.

yfir = firInterp(x);

Design a dsp.CICInterpolator object with an interpolation factor set 4, differential delay set to 1,
and the number of sections set to 4.

5 Functions

5-742

r = 4; % Interpolation factor for the CIC filter.
d = fdesign.interpolator(r,'cic');
cicInterp = design(d,'multisection','SystemObject',true);

Run the same data through the filter.

ycic = cicInterp(x);

Use the gain function to adjust the CIC filter output amplitude to match the FIR filter output
amplitude.

gaincic = gain(cicInterp);
subplot(211);
plot([yfir; double(ycic)]);
subplot(212)
plot([yfir; double(ycic)/gain(cicInterp)]);

After correcting for the gain induced by the CIC interpolator, in the second subplot you can see that
the FIR filter and the CIC filter provide nearly identical interpolation.

This gain equals the gain of the last section of the CIC filter. To confirm, correct the FIR filter
amplitude using gain(cicInterp,2N). If N is the number of integrator and comb sections of the CIC
filter, then 2N is the last section of the CIC filter. N is given by cicInterp.NumSections.

The second subplot shows that the FIR filter and CIC filter provide nearly identical interpolation
when the correction gain equals the gain of the last section of the CIC filter.

 gain

5-743

subplot(212);
plot([yfir; double(ycic)/gain(cicInterp,2*cicInterp.NumSections)]);

Input Arguments
sysobj — Input CIC filter
CIC filter System object

Input CIC filter, specified as one of the following filter System objects:

• dsp.CICDecimator
• dsp.CICInterpolator

j — Index of the CIC interpolator stage
positive scalar

Index of the CIC interpolator stage for which the gain is computed, specified as a positive scalar.
Data Types: single | double

Output Arguments
g — Gain of CIC filter
scalar

5 Functions

5-744

Gain of the CIC filter, returned a scalar. When the input sysobj is:

• dsp.CICDecimator –– The gain function returns the gain for the overall CIC decimator.
• dsp.CICInterpolator –– The CIC interpolator inserts zeros into the input data stream,

reducing the filter overall gain by 1/R, where R is the interpolation factor, to account for the added
zero-valued samples. Therefore, the gain of a CIC interpolator is (RM)N/R, where N is the number
of filter sections and M is the filter differential delay. The gain function returns this value.

Data Types: single | double

See Also
Functions
getFixedPointInfo | generatehdl | impz | freqz | phasez | fvtool

Introduced in R2011a

 gain

5-745

generatehdl
Package: dsp

Generate HDL code for quantized DSP filter (requires Filter Design HDL Coder)

Syntax
generatehdl(filtSO,'InputDataType',nt)
generatehdl(filtSO,'InputDataType',nt,'FractionalDelayDataType',fd)
generatehdl(filterObj)

generatehdl(___ ,Name,Value)

Description
generatehdl(filtSO,'InputDataType',nt) generates HDL code for the specified filter System
object and the input data type, nt.

The generated file is a single source file that includes the entity declaration and architecture code.
You can find this file in your current working folder, inside the hdlsrc subfolder.

generatehdl(filtSO,'InputDataType',nt,'FractionalDelayDataType',fd) generates
HDL code for a dsp.VariableFractionalDelay filter System object. Specify the input data type,
nt, and the fractional delay data type, fd.

generatehdl(filterObj) generates HDL code for the specified dfilt filter object using default
settings.

generatehdl(___ ,Name,Value) uses optional name-value arguments, in addition to the input
arguments in previous syntaxes. Use these properties to override default HDL code generation
settings.

For more details, see the corresponding properties in the Filter Design HDL Coder documentation:

• To customize filter name, destination folder, and to specify target language, see Fundamental HDL
Code Generation Properties.

• To configure coefficients, complex input ports, and optional ports for specific filter types, see HDL
Filter Configuration Properties.

• To optimize the speed or area of generated HDL code, see HDL Optimization Properties.
• To customize ports, identifiers, and comments, see HDL Ports and Identifiers Properties.
• To customize HDL constructs, see HDL Constructs Properties.
• To generate and customize test bench, see HDL Test Bench Properties.
• To integrate third-party EDA tools into the filter design workflow, see Synthesis and Workflow

Automation Properties.

Examples

5 Functions

5-746

Generate HDL Code for FIR Equiripple Filter

Design a direct form symmetric equiripple filter with these specifications:

• Normalized passband frequency of 0.2
• Normalized stopband frequency of 0.22
• Passband ripple of 1 dB
• Stopband attenuation of 60 dB

The design function returns a dsp.FIRFilter System object™ that implements the specification.

filtSpecs = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.22,1,60);
FIRe = design(filtSpecs,'equiripple','FilterStructure','dfsymfir','SystemObject',true)

FIRe =
 dsp.FIRFilter with properties:

 Structure: 'Direct form symmetric'
 NumeratorSource: 'Property'
 Numerator: [-0.0011 -0.0017 -0.0025 -0.0031 -0.0031 -0.0024 ...]
 InitialConditions: 0

 Show all properties

To generate HDL code, call the generatehdl function. When the filter is a System object, you must
specify a fixed-point data type for the input using the “InputDataType” (Filter Design HDL Coder)
property. The coder generates the file MyFilter.vhd in the default target folder, hdlsrc.

generatehdl(FIRe,'InputDataType',numerictype(1,16,15),'Name','MyFilter');

Starting VHDL code generation process for filter: MyFilter
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex48836167\hdlsrc\MyFilter.vhd
Starting generation of MyFilter VHDL entity
Starting generation of MyFilter VHDL architecture
Successful completion of VHDL code generation process for filter: MyFilter
HDL latency is 2 samples

Generate HDL Code and Test Bench for FIR Equiripple Filter

Design a direct form symmetric equiripple filter with these specifications:

• Normalized passband frequency of 0.2
• Normalized stopband frequency of 0.22
• Passband ripple of 1 dB
• Stopband attenuation of 60 dB

The design function returns a dsp.FIRFilter System object™ that implements the specification.

filtSpecs = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.22,1,60);
FIRe = design(filtSpecs,'equiripple','FilterStructure','dfsymfir','SystemObject',true)

FIRe =
 dsp.FIRFilter with properties:

 generatehdl

5-747

 Structure: 'Direct form symmetric'
 NumeratorSource: 'Property'
 Numerator: [-0.0011 -0.0017 -0.0025 -0.0031 -0.0031 -0.0024 ...]
 InitialConditions: 0

 Show all properties

Generate VHDL code and a VHDL test bench for the FIR equiripple filter. When the filter is a System
object, you must specify a fixed-point data type for the input data type. The coder generates the files
MyFilter.vhd and MyFilterTB.vhd in the default target folder, hdlsrc.

generatehdl(FIRe,'InputDataType',numerictype(1,16,15),'Name','MyFilter',...
 'GenerateHDLTestbench','on','TestBenchName','MyFilterTB')

Starting VHDL code generation process for filter: MyFilter
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex63281302\hdlsrc\MyFilter.vhd
Starting generation of MyFilter VHDL entity
Starting generation of MyFilter VHDL architecture
Successful completion of VHDL code generation process for filter: MyFilter
HDL latency is 2 samples
Starting generation of VHDL Test Bench.
Generating input stimulus
Done generating input stimulus; length 4486 samples.
Generating Test bench: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex63281302\hdlsrc\MyFilterTB.vhd
Creating stimulus vectors ...
Done generating VHDL Test Bench.

Generate HDL Code for Fully Parallel FIR Filter with Programmable Coefficients

Design a direct form symmetric equiripple filter with fully parallel (default) architecture and
programmable coefficients. The design function returns a dsp.FIRFilter System object™ with
default lowpass filter specification.

firfilt = design(fdesign.lowpass,'equiripple','FilterStructure','dfsymfir','SystemObject',true)

firfilt =
 dsp.FIRFilter with properties:

 Structure: 'Direct form symmetric'
 NumeratorSource: 'Property'
 Numerator: [-0.0024 -0.0021 0.0068 0.0167 0.0111 -0.0062 ...]
 InitialConditions: 0

 Show all properties

To generate HDL code, call the generatehdl function. When the filter is a System object, you must
specify a fixed-point data type for the input data. To generate a processor interface for the
coefficients, you must specify an additional name-value pair argument.

generatehdl(firfilt,'InputDataType',numerictype(1,16,15),'CoefficientSource','ProcessorInterface')

Starting VHDL code generation process for filter: firfilt
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex74213987\hdlsrc\firfilt.vhd

5 Functions

5-748

Starting generation of firfilt VHDL entity
Starting generation of firfilt VHDL architecture
Successful completion of VHDL code generation process for filter: firfilt
HDL latency is 2 samples

The coder generates this VHDL entity for the filter object.

Generate Partly Serial FIR Filter with Programmable Coefficients

Create a direct form antisymmetric filter with coefficients:

coeffs = fir1(22,0.45);
firfilt = dsp.FIRFilter('Numerator',coeffs,'Structure','Direct form antisymmetric')

firfilt =
 dsp.FIRFilter with properties:

 Structure: 'Direct form antisymmetric'
 NumeratorSource: 'Property'
 Numerator: [3.6133e-04 0.0031 8.4473e-04 -0.0090 -0.0072 ...]
 InitialConditions: 0

 Show all properties

To generate HDL code, call the generatehdl function. When the filter is a System object, you must
specify a fixed-point data type for the input data. To generate a partly serial architecture, specify a
serial partition. To enable CoefficientMemory property, you must set CoefficientSource to
ProcessorInterface.

generatehdl(firfilt,'InputDataType',numerictype(1,16,15), ...
 'SerialPartition',[7 4],'CoefficientMemory','DualPortRAMs', ...
 'CoefficientSource','ProcessorInterface')

Starting VHDL code generation process for filter: firfilt
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex21465785\hdlsrc\firfilt.vhd
Starting generation of firfilt VHDL entity
Starting generation of firfilt VHDL architecture
Clock rate is 7 times the input sample rate for this architecture.

 generatehdl

5-749

Successful completion of VHDL code generation process for filter: firfilt
HDL latency is 3 samples

The generated code includes a dual-port RAM interface for the programmable coefficients.

Generate Serial Partitions for FIR Filter

Explore clock rate and latency for different serial implementations of the same filter. Using a
symmetric structure also allows the filter logic to share multipliers for symmetric coefficients.

Create a direct form symmetric FIR filter with these specifications:

• Filter order 13
• Normalized cut-off frequency of 0.4 for the 6-dB point

The design function returns a dsp.FIRFilter System object™ that implements the specification.

FIR = design(fdesign.lowpass('N,Fc',13,.4),'FilterStructure','dfsymfir','SystemObject',true)

FIR =
 dsp.FIRFilter with properties:

 Structure: 'Direct form symmetric'
 NumeratorSource: 'Property'
 Numerator: [0.0037 0.0045 -0.0115 -0.0417 1.0911e-17 0.1776 ...]
 InitialConditions: 0

 Show all properties

To generate HDL code, call the generatehdl function. When the filter is a System object, you must
specify a fixed-point data type for the input data.

For a baseline comparison, first generate a default fully parallel architecture.

generatehdl(FIR,'Name','FullyParallel', ...
 'InputDataType',numerictype(1,16,15))

Starting VHDL code generation process for filter: FullyParallel
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex94948885\hdlsrc\FullyParallel.vhd

5 Functions

5-750

Starting generation of FullyParallel VHDL entity
Starting generation of FullyParallel VHDL architecture
Successful completion of VHDL code generation process for filter: FullyParallel
HDL latency is 2 samples

Generate a fully serial architecture by setting the partition size to the effective filter length. The
system clock rate is six times the input sample rate. The reported HDL latency is one sample greater
than the default parallel implementation.

generatehdl(FIR,'SerialPartition',6,'Name','FullySerial', ...
 'InputDataType',numerictype(1,16,15))

Starting VHDL code generation process for filter: FullySerial
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex94948885\hdlsrc\FullySerial.vhd
Starting generation of FullySerial VHDL entity
Starting generation of FullySerial VHDL architecture
Clock rate is 6 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: FullySerial
HDL latency is 3 samples

Generate a partly serial architecture with three equal partitions. This architecture uses three
multipliers. The clock rate is two times the input rate, and the latency is the same as the default
parallel implementation.

generatehdl(FIR,'SerialPartition',[2 2 2],'Name','PartlySerial', ...
 'InputDataType',numerictype(1,16,15))

Starting VHDL code generation process for filter: PartlySerial
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex94948885\hdlsrc\PartlySerial.vhd
Starting generation of PartlySerial VHDL entity
Starting generation of PartlySerial VHDL architecture
Clock rate is 2 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: PartlySerial
HDL latency is 3 samples

Generate a cascade-serial architecture by enabling accumulator reuse. Specify the three partitions in
descending order of size. Notice that the clock rate is higher than the rate in the partly serial
(without accumulator reuse) example.

generatehdl(FIR,'SerialPartition',[3 2 1],'ReuseAccum','on','Name','CascadeSerial', ...
 'InputDataType',numerictype(1,16,15))

Starting VHDL code generation process for filter: CascadeSerial
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex94948885\hdlsrc\CascadeSerial.vhd
Starting generation of CascadeSerial VHDL entity
Starting generation of CascadeSerial VHDL architecture
Clock rate is 4 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: CascadeSerial
HDL latency is 3 samples

You can also generate a cascade-serial architecture without specifying the partitions explicitly. The
coder automatically selects partition sizes.

generatehdl(FIR,'ReuseAccum','on','Name','CascadeSerial', ...
 'InputDataType',numerictype(1,16,15))

Starting VHDL code generation process for filter: CascadeSerial
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex94948885\hdlsrc\CascadeSerial.vhd

 generatehdl

5-751

Starting generation of CascadeSerial VHDL entity
Starting generation of CascadeSerial VHDL architecture
Clock rate is 4 times the input sample rate for this architecture.
Serial partition # 1 has 3 inputs.
Serial partition # 2 has 3 inputs.
Successful completion of VHDL code generation process for filter: CascadeSerial
HDL latency is 3 samples

Generate Serial Partitions of Cascaded Filter

Create a two-stage cascaded filter with these specifications for each filter stage:

• Direct form symmetric FIR filter
• Filter order 8
• Normalized cut-off frequency of 0.4 for the 6-dB point

Each call of the design function returns a dsp.FIRFilter System object™ that implements the
specification. The cascade function returns a two-stage cascaded filter.

lp = design(fdesign.lowpass('N,Fc',8,.4),'FilterStructure','dfsymfir','SystemObject',true)

lp =
 dsp.FIRFilter with properties:

 Structure: 'Direct form symmetric'
 NumeratorSource: 'Property'
 Numerator: [-0.0061 -0.0136 0.0512 0.2657 0.4057 0.2657 ...]
 InitialConditions: 0

 Show all properties

hp = design(fdesign.highpass('N,Fc',8,.4),'FilterStructure','dfsymfir','SystemObject',true)

hp =
 dsp.FIRFilter with properties:

 Structure: 'Direct form symmetric'
 NumeratorSource: 'Property'
 Numerator: [0.0060 0.0133 -0.0501 -0.2598 0.5951 -0.2598 ...]
 InitialConditions: 0

 Show all properties

casc = cascade(lp,hp)

casc =
 dsp.FilterCascade with properties:

 Stage1: [1x1 dsp.FIRFilter]
 Stage2: [1x1 dsp.FIRFilter]

To generate HDL code, call the generatehdl function for the cascaded filter. When the filter is a
System object, you must specify a fixed-point data type for the input data.

5 Functions

5-752

Specify different partitions for each cascade stage as a cell array.

generatehdl(casc,'InputDataType',numerictype(1,16,15),'SerialPartition',{[3 2],[4 1]})

Starting VHDL code generation process for filter: casfilt
Cascade stage # 1
Starting VHDL code generation process for filter: casfilt_stage1
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex16715237\hdlsrc\casfilt_stage1.vhd
Starting generation of casfilt_stage1 VHDL entity
Starting generation of casfilt_stage1 VHDL architecture
Clock rate is 3 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage1
Cascade stage # 2
Starting VHDL code generation process for filter: casfilt_stage2
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex16715237\hdlsrc\casfilt_stage2.vhd
Starting generation of casfilt_stage2 VHDL entity
Starting generation of casfilt_stage2 VHDL architecture
Clock rate is 4 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage2
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex16715237\hdlsrc\casfilt.vhd
Starting generation of casfilt VHDL entity
Starting generation of casfilt VHDL architecture
Successful completion of VHDL code generation process for filter: casfilt
HDL latency is 2 samples

To explore the effective filter length and partitioning options for each filter stage of a cascade, call
the hdlfilterserialinfo function. The function returns a partition vector corresponding to a
desired number of multipliers. Request serial partition possibilities for the first stage, and choose a
number of multipliers.

hdlfilterserialinfo(casc.Stage1,'InputDataType',numerictype(1,16,15))

 | Total Coefficients | Zeros | A/Symm | Effective |

 | 9 | 0 | 4 | 5 |

Effective filter length for SerialPartition value is 5.

 Table of 'SerialPartition' values with corresponding values of
 folding factor and number of multipliers for the given filter.

 | Folding Factor | Multipliers | SerialPartition |
 --
1	5	[1 1 1 1 1]
2	3	[2 2 1]
3	2	[3 2]
4	2	[4 1]
5	1	[5]

Select a serial partition vector for a target of two multipliers, and pass the vectors to the
generatehdl function. Calling the function this way returns the first possible partition vector, but
there are multiple partition vectors that achieve a two-multiplier architecture. Each stage uses a
different clock rate based on the number of multipliers. The coder generates a timing controller to
derive these clocks.

sp1 = hdlfilterserialinfo(casc.Stage1,'InputDataType',numerictype(1,16,15),'Multiplier',2)

sp1 = 1×2

 generatehdl

5-753

 3 2

sp2 = hdlfilterserialinfo(casc.Stage2,'InputDataType',numerictype(1,16,15),'Multiplier',3)

sp2 = 1×3

 2 2 1

generatehdl(casc,'InputDataType',numerictype(1,16,15),'SerialPartition',{sp1,sp2})

Starting VHDL code generation process for filter: casfilt
Cascade stage # 1
Starting VHDL code generation process for filter: casfilt_stage1
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex16715237\hdlsrc\casfilt_stage1.vhd
Starting generation of casfilt_stage1 VHDL entity
Starting generation of casfilt_stage1 VHDL architecture
Clock rate is 3 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage1
Cascade stage # 2
Starting VHDL code generation process for filter: casfilt_stage2
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex16715237\hdlsrc\casfilt_stage2.vhd
Starting generation of casfilt_stage2 VHDL entity
Starting generation of casfilt_stage2 VHDL architecture
Clock rate is 2 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage2
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex16715237\hdlsrc\casfilt.vhd
Starting generation of casfilt VHDL entity
Starting generation of casfilt VHDL architecture
Successful completion of VHDL code generation process for filter: casfilt
HDL latency is 2 samples

Generate Serial Architectures for IIR Filter

Create a direct form I SOS filter with these specifications:

• Sampling frequency of 48 kHz
• Filter order 5
• Cut-off frequency of 10.8 kHz for the 3 dB point

The design function returns a dsp.BiquadFilter System object™ that implements the
specification. The custom accumulator data type avoids quantization error.

Fs = 48e3;
Fc = 10.8e3;
N = 5;
lp = design(fdesign.lowpass('n,f3db',N,Fc,Fs),'butter', ...
 'FilterStructure','df1sos','SystemObject',true)

lp =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form I'
 SOSMatrixSource: 'Property'

5 Functions

5-754

 SOSMatrix: [3x6 double]
 ScaleValues: [4x1 double]
 NumeratorInitialConditions: 0
 DenominatorInitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

nt_accum = numerictype('Signedness','auto','WordLength',20, ...
 'FractionLength',15);
nt_input = numerictype(1,16,15);
lp.NumeratorAccumulatorDataType = 'Custom';
lp.CustomNumeratorAccumulatorDataType = nt_accum;
lp.DenominatorAccumulatorDataType = 'Custom';
lp.CustomDenominatorAccumulatorDataType = nt_accum;

To list all possible serial architecture specifications for this filter, call the hdlfilterserialinfo
function. When the filter is a System object, you must specify a fixed-point data type for the input
data.

hdlfilterserialinfo(lp,'InputDataType',nt_input)

 Table of folding factors with corresponding number of multipliers for the given filter.

 | Folding factor | Multipliers |

6	3
9	2
18	1

To generate HDL code, call the generatehdl function with one of the serial architectures. Specify
either the NumMultipliers or FoldingFactor property, but not both. For instance, using the
NumMultipliers property:

generatehdl(lp,'NumMultipliers',2,'InputDataType',nt_input)

Starting VHDL code generation process for filter: lp
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex90334139\hdlsrc\lp.vhd
Starting generation of lp VHDL entity
Starting generation of lp VHDL architecture
Successful completion of VHDL code generation process for filter: lp
HDL latency is 2 samples

Alternatively, specify the same architecture with the FoldingFactor property.

generatehdl(lp,'FoldingFactor',9,'InputDataType',nt_input)

Starting VHDL code generation process for filter: lp
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex90334139\hdlsrc\lp.vhd
Starting generation of lp VHDL entity
Starting generation of lp VHDL architecture
Successful completion of VHDL code generation process for filter: lp
HDL latency is 2 samples

Both these commands generate a filter that uses a total of two multipliers, with a latency of nine
clock cycles. This architecture uses less area than the parallel implementation, at the expense of
latency.

 generatehdl

5-755

Distributed Arithmetic for Single Rate Filters

Use distributed arithmetic options to reduce the number of multipliers in the filter implementation.

Create a direct-form FIR filter and calculate the filter length, FL.

filtdes = fdesign.lowpass('N,Fc,Ap,Ast',30,0.4,0.05,0.03,'linear');
firfilt = design(filtdes,'FilterStructure','dffir','SystemObject',true);
FL = length(find(firfilt.Numerator ~= 0))

FL = 31

Specify a set of partitions such that the partition sizes add up to the filter length. This is just one
partition option, you can specify other combinations of sizes.

generatehdl(firfilt,'InputDataType',numerictype(1,16,15), ...
 'DALUTPartition',[8 8 8 7])

Warning: Structure fir has symmetric coefficients, consider converting to structure symmetricfir for reduced area.

Warning: Structure fir has symmetric coefficients, consider converting to structure symmetricfir for reduced area.

Starting VHDL code generation process for filter: firfilt
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex00198568\hdlsrc\firfilt.vhd
Starting generation of firfilt VHDL entity
Starting generation of firfilt VHDL architecture
Clock rate is 16 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: firfilt
HDL latency is 3 samples

For comparison, create a direct-form symmetric FIR filter. The filter length is smaller in the
symmetric case.

filtdes = fdesign.lowpass('N,Fc,Ap,Ast',30,0.4,0.05,0.03,'linear');
firfilt = design(filtdes,'FilterStructure','dfsymfir','SystemObject',true);
FL = ceil(length(find(firfilt.Numerator ~= 0))/2)

FL = 16

Specify a set of partitions such that the partition sizes add up to the filter length. This is just one
partition option, you can specify other combinations of sizes. Tip: Use the hdlfilterdainfo
function to display the effective filter length, LUT partitioning options, and possible DARadix values
for a filter.

generatehdl(firfilt,'InputDataType',numerictype(1,16,15), ...
 'DALUTPartition',[8 8])

Starting VHDL code generation process for filter: firfilt
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex00198568\hdlsrc\firfilt.vhd
Starting generation of firfilt VHDL entity
Starting generation of firfilt VHDL architecture
Clock rate is 17 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: firfilt
HDL latency is 3 samples

5 Functions

5-756

Distributed Arithmetic for Multirate Filters

Use distributed arithmetic options to reduce the number of multipliers in the filter implementation.

Create a direct-form FIR polyphase decimator, and calculate the filter length.

d = fdesign.decimator(4);
filt = design(d,'SystemObject',true);
FL = size(polyphase(filt),2)

FL = 27

Specify distributed arithmetic LUT partitions that add up to the filter size. When you specify
partitions as a vector for a polyphase filter, each subfilter uses the same partitions.

generatehdl(filt,'InputDataType',numerictype(1,16,15), ...
 'DALUTPartition',[8 8 8 3])

Starting VHDL code generation process for filter: firdecim
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex51670151\hdlsrc\firdecim.vhd
Starting generation of firdecim VHDL entity
Starting generation of firdecim VHDL architecture
Clock rate is 4 times the input and 16 times the output sample rate for this architecture.
Successful completion of VHDL code generation process for filter: firdecim
HDL latency is 16 samples

You can also specify unique partitions for each subfilter. For the same filter, specify subfilter
partitioning as a matrix. The length of the first subfilter is 1, and the other subfilters have length 26.
Tip: Use the hdlfilterdainfo function to display the effective filter length, LUT partitioning
options, and possible DARadix values for a filter.

d = fdesign.decimator(4);
filt = design(d,'SystemObject',true);
generatehdl(filt,'InputDataType',numerictype(1,16,15), ...
 'DALUTPartition',[1 0 0 0; 8 8 8 2; 8 8 6 4; 8 8 8 2])

Starting VHDL code generation process for filter: firdecim
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex51670151\hdlsrc\firdecim.vhd
Starting generation of firdecim VHDL entity
Starting generation of firdecim VHDL architecture
Clock rate is 4 times the input and 16 times the output sample rate for this architecture.
Successful completion of VHDL code generation process for filter: firdecim
HDL latency is 16 samples

Distributed Arithmetic for Cascaded Filters

Use distributed arithmetic options to reduce the number of multipliers in the filter implementation.

Create Cascaded Filter

Create a two-stage cascaded filter. Define different LUT partitions for each stage, and specify the
partition vectors in a cell array.

lp = design(fdesign.lowpass('N,Fc',8,.4),'filterstructure','dfsymfir', ...
 'SystemObject',true);
hp = design(fdesign.highpass('N,Fc',8,.4),'filterstructure','dfsymfir', ...

 generatehdl

5-757

 'SystemObject',true);
casc = cascade(lp,hp);
nt1 = numerictype(1,12,10);
generatehdl(casc,'InputDataType',nt1,'DALUTPartition',{[3 2],[2 2 1]})

Starting VHDL code generation process for filter: casfilt
Cascade stage # 1
Starting VHDL code generation process for filter: casfilt_stage1
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex17169310\hdlsrc\casfilt_stage1.vhd
Starting generation of casfilt_stage1 VHDL entity
Starting generation of casfilt_stage1 VHDL architecture
Clock rate is 13 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage1
Cascade stage # 2
Starting VHDL code generation process for filter: casfilt_stage2
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex17169310\hdlsrc\casfilt_stage2.vhd
Starting generation of casfilt_stage2 VHDL entity
Starting generation of casfilt_stage2 VHDL architecture
Clock rate is 29 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage2
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex17169310\hdlsrc\casfilt.vhd
Starting generation of casfilt VHDL entity
Starting generation of casfilt VHDL architecture
Successful completion of VHDL code generation process for filter: casfilt
HDL latency is 4 samples

Distributed Arithmetic Options

Use the hdlfilterdainfo function to display the effective filter length, LUT partitioning options,
and possible DARadix values for each filter stage of a cascade. The function returns a LUT partition
vector corresponding to a desired number of address bits.

Request LUT partition possibilities for the first stage.

 hdlfilterdainfo(casc.Stage1,'InputDataType',nt1);

 | Total Coefficients | Zeros | A/Symm | Effective |

 | 9 | 0 | 4 | 5 |

Effective filter length for SerialPartition value is 5.

 Table of 'DARadix' values with corresponding values of
 folding factor and multiple for LUT sets for the given filter.

 | Folding Factor | LUT-Sets Multiple | DARadix |
 --
1	12	2^12
3	6	2^6
4	4	2^4
5	3	2^3
7	2	2^2
13	1	2^1

 Details of LUTs with corresponding 'DALUTPartition' values.

 | Max Address Width | Size(bits) | LUT Details | DALUTPartition |

5 Functions

5-758

5	416	1x32x13	[5]
4	216	1x16x12, 1x2x12	[4 1]
3	124	1x4x13, 1x8x9	[3 2]
2	104	1x2x12, 1x4x12, 1x4x8	[2 2 1]

Notes:
1. LUT Details indicates number of LUTs with their sizes. e.g. 1x1024x18
 implies 1 LUT of 1024 18-bit wide locations.

To request LUT partition possibilities for the second stage, you must first determine the input data
type of the second stage.

y = casc.Stage1(fi(0,nt1));
nt2 = y.numerictype;
hdlfilterdainfo(casc.Stage2,'InputDataType',nt2);

 | Total Coefficients | Zeros | A/Symm | Effective |

 | 9 | 0 | 4 | 5 |

Effective filter length for SerialPartition value is 5.

 Table of 'DARadix' values with corresponding values of
 folding factor and multiple for LUT sets for the given filter.

 | Folding Factor | LUT-Sets Multiple | DARadix |
 --
1	28	2^28
3	14	2^14
5	7	2^7
8	4	2^4
15	2	2^2
29	1	2^1

 Details of LUTs with corresponding 'DALUTPartition' values.

 | Max Address Width | Size(bits) | LUT Details | DALUTPartition |
 --
5	896	1x32x28	[5]
4	488	1x16x27, 1x2x28	[4 1]
3	304	1x4x28, 1x8x24	[3 2]
2	256	1x2x28, 1x4x23, 1x4x27	[2 2 1]

Notes:
1. LUT Details indicates number of LUTs with their sizes. e.g. 1x1024x18
 implies 1 LUT of 1024 18-bit wide locations.

Different LUT Partitions for Each Stage

Select address widths and folding factors to obtain LUT partition for each stage. The first stage uses
LUTs with a maximum address size of five bits. The second stage uses LUTs with a maximum address
size of three bits. They run at the same clock rate, and have different LUT partitions.

dp1 = hdlfilterdainfo(casc.Stage1,'InputDataType',nt1, ...
 'LUTInputs',5,'FoldingFactor',3);
dp2 = hdlfilterdainfo(casc.Stage2,'InputDataType',nt1, ...
 'LUTInputs',3,'FoldingFactor',5);
generatehdl(casc,'InputDataType',nt1,'DALUTPartition',{dp1,dp2});

 generatehdl

5-759

Starting VHDL code generation process for filter: casfilt
Cascade stage # 1
Starting VHDL code generation process for filter: casfilt_stage1
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex17169310\hdlsrc\casfilt_stage1.vhd
Starting generation of casfilt_stage1 VHDL entity
Starting generation of casfilt_stage1 VHDL architecture
Clock rate is 13 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage1
Cascade stage # 2
Starting VHDL code generation process for filter: casfilt_stage2
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex17169310\hdlsrc\casfilt_stage2.vhd
Starting generation of casfilt_stage2 VHDL entity
Starting generation of casfilt_stage2 VHDL architecture
Clock rate is 29 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage2
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex17169310\hdlsrc\casfilt.vhd
Starting generation of casfilt VHDL entity
Starting generation of casfilt VHDL architecture
Successful completion of VHDL code generation process for filter: casfilt
HDL latency is 4 samples

Different DARadix Values for Each Stage

You can also specify different DARadix values for each filter in a cascade. You can only specify
different cascade partitions on the command-line. When you specify partitions in the Generate HDL
dialog box, all cascade stages use the same partitions. Inspect the results of hdlfilterdainfo to
set DARadix values for each stage.

generatehdl(casc,'InputDataType',nt1, ...
'DALUTPartition',{[3 2],[2 2 1]},'DARadix',{2^3,2^7})

Starting VHDL code generation process for filter: casfilt
Cascade stage # 1
Starting VHDL code generation process for filter: casfilt_stage1
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex17169310\hdlsrc\casfilt_stage1.vhd
Starting generation of casfilt_stage1 VHDL entity
Starting generation of casfilt_stage1 VHDL architecture
Clock rate is 5 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage1
Cascade stage # 2
Starting VHDL code generation process for filter: casfilt_stage2
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex17169310\hdlsrc\casfilt_stage2.vhd
Starting generation of casfilt_stage2 VHDL entity
Starting generation of casfilt_stage2 VHDL architecture
Clock rate is 5 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage2
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex17169310\hdlsrc\casfilt.vhd
Starting generation of casfilt VHDL entity
Starting generation of casfilt VHDL architecture
Successful completion of VHDL code generation process for filter: casfilt
HDL latency is 4 samples

5 Functions

5-760

Cascaded Filter with Multiple Architectures

Specify different filter architectures for the different stages of a cascaded filter. You can specify a mix
of serial, distributed arithmetic (DA), and parallel architectures depending upon your hardware
constraints.

Create Cascaded Filter

Create a three-stage filter. Each stage is a different type.

h1 = dsp.FIRFilter('Numerator',[0.05 -.25 .88 0.9 .88 -.25 0.05]);
h2 = dsp.FIRFilter('Numerator',[-0.008 0.06 -0.44 0.44 -0.06 0.008], ...
 'Structure','Direct form antisymmetric');
h3 = dsp.FIRFilter('Numerator',[-0.008 0.06 0.44 0.44 0.06 -0.008], ...
 'Structure','Direct form symmetric');
casc = cascade(h1,h2,h3);

Specify Architecture for Each Stage

Specify a DA architecture for the first stage, a serial architecture for the second stage, and a fully
parallel (default) architecture for the third stage.

To obtain DARadix values for the first architecture, use hdlfilterdainfo, then pick a value from
dr.

nt = numerictype(1,12,10);
[dp,dr,lutsize,ff] = hdlfilterdainfo(casc.Stage1, ...
 'InputDataType',numerictype(1,12,10));
dr

dr = 6x1 cell
 {'2^12'}
 {'2^6' }
 {'2^4' }
 {'2^3' }
 {'2^2' }
 {'2^1' }

Set the property values as cell arrays, where each cell applies to a stage. To disable a property for a
particular stage, use default values (-1 for the partitions and 2 for DARadix).

generatehdl(casc,'InputDataType',nt, ...
 'SerialPartition',{-1,3,-1}, ...
 'DALUTPartition',{[4 3],-1,-1}, ...
 'DARadix',{2^6,2,2});

Warning: Structure fir has symmetric coefficients, consider converting to structure symmetricfir for reduced area.

Warning: Structure fir has symmetric coefficients, consider converting to structure symmetricfir for reduced area.

Warning: Structure fir has symmetric coefficients, consider converting to structure symmetricfir for reduced area.

Starting VHDL code generation process for filter: casfilt
Cascade stage # 1
Starting VHDL code generation process for filter: casfilt_stage1
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex13094988\hdlsrc\casfilt_stage1.vhd
Starting generation of casfilt_stage1 VHDL entity
Starting generation of casfilt_stage1 VHDL architecture

 generatehdl

5-761

Clock rate is 2 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage1
Cascade stage # 2
Starting VHDL code generation process for filter: casfilt_stage2
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex13094988\hdlsrc\casfilt_stage2.vhd
Starting generation of casfilt_stage2 VHDL entity
Starting generation of casfilt_stage2 VHDL architecture
Clock rate is 3 times the input sample rate for this architecture.
Successful completion of VHDL code generation process for filter: casfilt_stage2
Cascade stage # 3
Starting VHDL code generation process for filter: casfilt_stage3
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex13094988\hdlsrc\casfilt_stage3.vhd
Starting generation of casfilt_stage3 VHDL entity
Starting generation of casfilt_stage3 VHDL architecture
Successful completion of VHDL code generation process for filter: casfilt_stage3
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex13094988\hdlsrc\casfilt.vhd
Starting generation of casfilt VHDL entity
Starting generation of casfilt VHDL architecture
Successful completion of VHDL code generation process for filter: casfilt
HDL latency is 3 samples

Test Bench for FIR Filter with Programmable Coefficients

You can specify input coefficients to test a filter with programmable coefficients.

Create a direct-form symmetric FIR filter with a fully parallel (default) architecture. Define the
coefficients for the filter object in the vector b. The coder generates test bench code to test the
coefficient interface using a second set of coefficients, c. The coder trims c to the effective length of
the filter.

b = [-0.01 0.1 0.8 0.1 -0.01];
c = [-0.03 0.5 0.7 0.5 -0.03];
c = c(1:ceil(length(c)/2));
filt = dsp.FIRFilter('Numerator',b,'Structure','Direct form symmetric');
generatehdl(filt,'InputDataType',numerictype(1,16,15), ...
 'GenerateHDLTestbench','on', ...
 'CoefficientSource','ProcessorInterface','TestbenchCoeffStimulus',c)

Starting VHDL code generation process for filter: firfilt
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex66247050\hdlsrc\firfilt.vhd
Starting generation of firfilt VHDL entity
Starting generation of firfilt VHDL architecture
Successful completion of VHDL code generation process for filter: firfilt
HDL latency is 2 samples
Starting generation of VHDL Test Bench.
Generating input stimulus
Done generating input stimulus; length 3107 samples.
Generating Test bench: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex66247050\hdlsrc\firfilt_tb.vhd
Creating stimulus vectors ...
Done generating VHDL Test Bench.

5 Functions

5-762

IIR Filter with Programmable Coefficients

Create a filter specification. When you generate HDL code, specify a programmable interface for the
coefficients.

Fs = 48e3;
Fc = 10.8e3;
N = 5;
f_lp = fdesign.lowpass('n,f3db',N,Fc,Fs);
filtiir = design(f_lp,'butter','FilterStructure','df2sos','SystemObject',true);
filtiir.OptimizeUnityScaleValues = 0;
generatehdl(filtiir,'InputDataType',numerictype(1,16,15), ...
 'CoefficientSource','ProcessorInterface')

Starting VHDL code generation process for filter: filtiir
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex92389569\hdlsrc\filtiir.vhd
Starting generation of filtiir VHDL entity
Starting generation of filtiir VHDL architecture
Second-order section, # 1
Second-order section, # 2
First-order section, # 3
Successful completion of VHDL code generation process for filter: filtiir
HDL latency is 2 samples

The coder generates this VHDL entity for the filter object.

Clock Ports for Multirate Filters

Explore various ways to specify clock ports for multirate filters.

Default Setting

Create a polyphase sample rate converter. By default, the coder generates a single input clock (clk),
an input clock enable (clk_enable), and a clock enable output signal named ce_out. The ce_out
signal indicates when an output sample is ready. The ce_in output signal indicates when an input
sample was accepted. You can use this signal to control the upstream data flow.

firrc = dsp.FIRRateConverter('InterpolationFactor',5,'DecimationFactor',3);
generatehdl(firrc,'InputDataType',numerictype(1,16,15))

 generatehdl

5-763

Starting VHDL code generation process for filter: firrc
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex09049114\hdlsrc\firrc.vhd
Starting generation of firrc VHDL entity
Starting generation of firrc VHDL architecture
Successful completion of VHDL code generation process for filter: firrc
HDL latency is 2 samples

The generated entity has the following signals:

Custom Clock Names

You can provide custom names for the input clock enable and the output clock enable signals. You
cannot rename the ce_in signal.

firrc = dsp.FIRRateConverter('InterpolationFactor',5,'DecimationFactor',3)

firrc =
 dsp.FIRRateConverter with properties:

 InterpolationFactor: 5
 DecimationFactor: 3
 NumeratorSource: 'Property'
 Numerator: [0 -6.6976e-05 -1.6044e-04 -2.2552e-04 ...]

 Show all properties

generatehdl(firrc,'InputDataType',numerictype(1,16,15),...
 'ClockEnableInputPort','clk_en1', ...
 'ClockEnableOutputPort','clk_en2')

Starting VHDL code generation process for filter: firrc
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex09049114\hdlsrc\firrc.vhd
Starting generation of firrc VHDL entity
Starting generation of firrc VHDL architecture
Successful completion of VHDL code generation process for filter: firrc
HDL latency is 2 samples

The generated entity has the following signals:

5 Functions

5-764

Multiple Clock Inputs

To generate multiple clock input signals for a supported multirate filter, set the ClockInputs
property to 'Multiple'. In this case, the coder does not generate any output clock enable ports.

decim = dsp.CICDecimator(7,1,4);
generatehdl(decim,'InputDataType',numerictype(1,16,15), ...
 'ClockInputs','Multiple')

Starting VHDL code generation process for filter: cicDecOrIntFilt
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex09049114\hdlsrc\cicDecOrIntFilt.vhd
Starting generation of cicDecOrIntFilt VHDL entity
Starting generation of cicDecOrIntFilt VHDL architecture
Section # 1 : Integrator
Section # 2 : Integrator
Section # 3 : Integrator
Section # 4 : Integrator
Section # 5 : Comb
Section # 6 : Comb
Section # 7 : Comb
Section # 8 : Comb
Successful completion of VHDL code generation process for filter: cicDecOrIntFilt
HDL latency is 7 samples

The generated entity has the following signals:

 generatehdl

5-765

Generate Default Altera Quartus II Synthesis Script

Create a filter object. Then call generatehdl , and specify a synthesis tool.

lpf = fdesign.lowpass('fp,fst,ap,ast',0.45,0.55,1,60);
firfilt = design(lpf,'equiripple','FilterStructure','dfsymfir', ...
 'SystemObject',true);
generatehdl(firfilt,'InputDataType',numerictype(1,14,13), ...
 'HDLSynthTool','Quartus');

Starting VHDL code generation process for filter: firfilt
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex92219095\hdlsrc\firfilt.vhd
Starting generation of firfilt VHDL entity
Starting generation of firfilt VHDL architecture
Successful completion of VHDL code generation process for filter: firfilt
HDL latency is 2 samples

The coder generates a script file named firfilt_quartus.tcl, using the default script properties
for the Altera® Quartus II synthesis tool.

type hdlsrc/firfilt_quartus.tcl

load_package flow
set top_level firfilt
set src_dir "./hdlsrc"
set prj_dir "q2dir"
file mkdir ../$prj_dir
cd ../$prj_dir
project_new $top_level -revision $top_level -overwrite
set_global_assignment -name FAMILY "Stratix II"
set_global_assignment -name DEVICE EP2S60F484C3
set_global_assignment -name TOP_LEVEL_ENTITY $top_level
set_global_assignment -name vhdl_FILE "../$src_dir/firfilt.vhd"
execute_flow -compile
project_close

5 Functions

5-766

Construct Customized Synthesis Script

You can set the script automation properties to dummy values to illustrate how the coder constructs
the synthesis script from the properties.

Design a filter and generate HDL. Specify a synthesis tool and custom text to include in the synthesis
script.

lpf = fdesign.lowpass('fp,fst,ap,ast',0.45,0.55,1,60);
firfilt = design(lpf,'equiripple','FilterStructure','dfsymfir', ...
 'Systemobject',true);
generatehdl(firfilt,'InputDataType',numerictype(1,14,13), ...
 'HDLSynthTool','ISE', ...
 'HDLSynthInit','init line 1 : module name is %s\ninit line 2\n', ...
 'HDLSynthCmd','command : HDL filename is %s\n', ...
 'HDLSynthTerm','term line 1\nterm line 2\n');

Starting VHDL code generation process for filter: firfilt
Generating: C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\31\tp0df7e3c9\hdlfilter-ex64737676\hdlsrc\firfilt.vhd
Starting generation of firfilt VHDL entity
Starting generation of firfilt VHDL architecture
Successful completion of VHDL code generation process for filter: firfilt
HDL latency is 2 samples

The coder generates a script file named firfilt_ise.tcl. Note the locations of the custom text
you specified. You can use this feature to add synthesis instructions to the generated script.

type hdlsrc/firfilt_ise.tcl

init line 1 : module name is firfilt
init line 2
command : HDL filename is firfilt.vhd
term line 1
term line 2

Input Arguments
filtSO — Filter
filter System object

Filter from which to generate HDL code, specified as a filter System object. To create a filter System
object, use the design function or see the reference page of the object. You can use the following
System objects from DSP System Toolbox:

Single Rate Filters

• dsp.FIRFilter
• dsp.BiquadFilter
• dsp.HighpassFilter
• dsp.LowpassFilter
• dsp.FilterCascade
• dsp.VariableFractionalDelay

 generatehdl

5-767

Multirate Filters

• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FarrowRateConverter
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.FilterCascade
• dsp.DigitalDownConverter
• dsp.DigitalUpConverter

nt — Input data type
numerictype object

Input data type, specified as a numerictype object. This argument applies only when the input filter
is a System object. Call numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the
word length in bits, and f is the number of fractional bits.

fd — Fractional delay data type
numerictype object

Fractional delay data type, specified as a numerictype object. This argument applies only when the
input filter is a dsp.VariableFractionalDelay System object. Call numerictype(s,w,f),
where s is 1 for signed and 0 for unsigned, w is the word length in bits, and f is the number of
fractional bits.

filterObj — Filter
dfilt object

Filter from which to generate HDL code, specified as a dfilt object. You can create this object by
using the design function. For an overview of supported filter features, see “Filter Configuration
Options” (Filter Design HDL Coder).

Alternatives
You can use the fdhdltool function to generate HDL code instead (requires Filter Design HDL
Coder). Specify the input and fractional delay data types as arguments, and then set additional
properties in the Generate HDL dialog box.

See Also
generatetbstimulus | fdhdltool

Introduced before R2006a

5 Functions

5-768

getPolynomialCoefficients
Package: dsp

Get polynomial coefficients of farrow rate conversion filter

Syntax
[C] = getPolynomialCoefficients(frc)

Description
[C] = getPolynomialCoefficients(frc) returns the polynomial coefficients that the
dsp.FarrowRateConverter System object, frc, uses to implement the specified sample rate
conversion.

Examples

Return Polynomial Coefficients of dsp.FarrowRateConverter

Create a default dsp.FarrowRateConverter System object™ that converts a signal from 44.1 kHz to 48
kHz.

frc = dsp.FarrowRateConverter()

frc =
 dsp.FarrowRateConverter with properties:

 Main
 InputSampleRate: 44100
 OutputSampleRate: 48000
 OutputRateTolerance: 0
 Specification: 'Polynomial order'
 PolynomialOrder: 3

 Show all properties

Return the self-designed polynomial coefficients that the object uses to implement the specified rate
conversion.

c = getPolynomialCoefficients(frc)

c = 4×4

 -0.1667 0.5000 -0.3333 0
 0.5000 -1.0000 -0.5000 1.0000
 -0.5000 0.5000 1.0000 0
 0.1667 0 -0.1667 0

 getPolynomialCoefficients

5-769

Input Arguments
frc — Polynomial sample rate conversion filter
dsp.FarrowRateConverter System object

Polynomial sample rate conversion filter, specified as a dsp.FarrowRateConverter System object.

Output Arguments
C — Polynomial coefficients of Farrow rate conversion filter
real-valued square matrix

Polynomial coefficients of Farrow rate conversion filter, returned as a M-by-M matrix, where M is the
polynomial order.
Data Types: double

See Also
Functions
getActualOutputRate | getRateChangeFactors

Objects
dsp.FarrowRateConverter

Introduced in R2014b

5 Functions

5-770

getActualOutputRate
Package: dsp

Get actual output rate

Syntax
fsout = getActualOutputRate(rateConverter)

Description
fsout = getActualOutputRate(rateConverter) returns the actual output sample rate of the
rateConverter object, taking into account the OutputRateTolerance property. The rate
converter object can be a dsp.FarrowRateConverter System object or a
dsp.SampleRateConverter System object.

Examples

Specify Tolerance and Confim Output Sample Rate of dsp.FarrowRateConverter

Set the tolerance of the filter to 1%, then return the actual output sample rate for the default
conversion between 44.1 kHz and 48 kHz.

frc = dsp.FarrowRateConverter();
frc.OutputRateTolerance = 0.01;
FsOut = getActualOutputRate(frc)

FsOut = 4.8109e+04

The actual output rate can differ from the requested OutputSampleRate, within the configured
tolerance.

Output Sample Rate with Given Tolerance

Get the actual output sample rate for conversion between 192 kHz and 44.1 kHz when given a
tolerance of 1%.

src = dsp.SampleRateConverter;
src.OutputRateTolerance = 0.01;
FsOut = getActualOutputRate(src)

FsOut = 4.4308e+04

Input Arguments
rateConverter — Sample rate conversion filter
dsp.FarrowRateConverter | dsp.SampleRateConverter

 getActualOutputRate

5-771

Polynomial sample rate conversion filter, specified as a dsp.FarrowRateConverter or a
dsp.SampleRateConverter System object.

Output Arguments
fsout — Actual output sample rate
scalar

Actual output sample rate of the filter, returned as a scalar in Hz.
Data Types: double

See Also
Functions
getRateChangeFactors | getPolynomialCoefficients

Objects
dsp.FarrowRateConverter | dsp.SampleRateConverter

Introduced in R2014b

5 Functions

5-772

getRateChangeFactors
Package: dsp

Get overall interpolation and decimation factors

Syntax
[L,M] = getRateChangeFactors(rateConverter)

Description
[L,M] = getRateChangeFactors(rateConverter) returns the overall interpolation factor, L,
and the overall decimation factor, M, corresponding to the rateConverter. The rate converter object
can be a dsp.FarrowRateConverter System object or a dsp.SampleRateConverter System
object. The rate change factors computed take into account the OutputRateTolerance property.

In the case of dsp.SampleRateConverter, the overall decimation factor affects the allowable frame
size of the input to the object. The row length of the input vector or matrix to the
dsp.SampleRateConverter object must be an integer multiple of M.

This function supports C and C++ code generation.

Examples

Return Resampling Factors of dsp.FarrowRateConverter

Create a default dsp.FarrowRateConverter object that converts a signal from 44.1 kHz to 48 kHz.

frc = dsp.FarrowRateConverter

frc =
 dsp.FarrowRateConverter with properties:

 Main
 InputSampleRate: 44100
 OutputSampleRate: 48000
 OutputRateTolerance: 0
 Specification: 'Polynomial order'
 PolynomialOrder: 3

 Show all properties

Return the overall interpolation (L) and decimation (M) factors of the filter object.

[L,M] = getRateChangeFactors(frc)

L = 160

M = 147

 getRateChangeFactors

5-773

Default Resampling Factors

Create src, a multistage sample rate converter with default properties. src combines three filter
stages to convert from 192 kHz to 44.1 kHz. Determine its overall interpolation and decimation
factors.

src = dsp.SampleRateConverter;
[L,M] = getRateChangeFactors(src)

L = 147

M = 640

Input Arguments
rateConverter — Sample rate conversion filter
dsp.FarrowRateConverter | dsp.SampleRateConverter

Polynomial sample rate conversion filter, specified as a dsp.FarrowRateConverter or a
dsp.SampleRateConverter System object.

Output Arguments
L — Overall interpolation factor
scalar

Overall interpolation factor, returned as a scalar.
Data Types: double

M — Overall decimation factor
scalar

Overall decimation factor, returned as a scalar. In the case of dsp.SampleRateConverter, the
overall decimation factor affects the allowable frame size of the input to the object. The row length of
the input vector or matrix to the dsp.SampleRateConverter object must be an integer multiple of
M.
Data Types: double

See Also
Functions
getActualOutputRate | getPolynomialCoefficients

Objects
dsp.FarrowRateConverter | dsp.SampleRateConverter

Introduced in R2014b

5 Functions

5-774

getBandwidth
Package: dsp

Get 3 dB bandwidth

Syntax
BW = getBandwidth(npFilter)

Description
BW = getBandwidth(npFilter) returns the 3 dB bandwidth for the notch peak filter. If the
Specification property is set to 'Quality factor and center frequency', the 3 dB
bandwidth is determined from the quality factor value. If the Specification property is set to
'Coefficients', the 3 dB bandwidth is determined from the BandwidthCoefficient value and
the sample rate.

Examples

Get 3 dB Bandwidth of Notch Peak Filter

Create a dsp.NotchPeakFilter object with the Specification property set to 'Quality
factor and center frequency'. The default quality factor Q is 5, and the center frequency Fc is
11,025 Hz.

np = dsp.NotchPeakFilter('Specification','Quality factor and center frequency')

np =
 dsp.NotchPeakFilter with properties:

 Specification: 'Quality factor and center frequency'
 QualityFactor: 5
 CenterFrequency: 11025
 SampleRate: 44100

Compute the 3 dB bandwidth of the notch peak filter using the getBandwidth function. The
bandwidth is computed as the ratio of the center frequency and the quality factor, Fc

Q .

getBandwidth(np)

ans = 2205

Visualize the filter response using fvtool.

fvtool(np)

 getBandwidth

5-775

Input Arguments
npFilter — Notch peak filter
dsp.NotchPeakFilter

Notch peak filter whose 3 dB bandwidth is measured, specified as a dsp.NotchPeakFilter object.

Output Arguments
BW — 3 dB bandwidth
scalar

3 dB bandwidth of the filter, returned as a scalar.
Data Types: double

See Also
Functions
getCenterFrequency | getOctaveBandwidth | getQualityFactor | tf

Objects
dsp.NotchPeakFilter

5 Functions

5-776

Introduced in R2014a

 getBandwidth

5-777

getBranches
Package: dsp

Return internal allpass branches

Syntax
s = getBranches(caf)

Description
s = getBranches(caf) returns copies of the internal allpass branches as a two-field structure, s.
Each branch is an instance of dsp.AllpassFilter.

Examples

Get Branches of dsp.CoupledAllpassFilter

Get the internal allpass branches of the dsp.CoupledAllpassFilter System object™.

Minimum Multiplier

Create a dsp.CoupledAllpassFilter object with filter structure set to 'Minimum multiplier'.
Use the getBranches function to get the internal allpass filter objects.

caf = dsp.CoupledAllpassFilter

caf =
 dsp.CoupledAllpassFilter with properties:

 Structure: 'Minimum multiplier'
 PureDelayBranch: 0
 AllpassCoefficients1: {[0 0.5000]}
 AllpassCoefficients2: {[]}
 Gain1: '1'
 Gain2: '1'

s = getBranches(caf)

s = struct with fields:
 Branch1: [1x1 dsp.internal.LegacyAllpassFilter]
 Branch2: [1x1 dsp.internal.LegacyAllpassFilter]

s.Branch1

ans =
 dsp.internal.LegacyAllpassFilter with properties:

 AllpassCoefficients: {[0 0.5000]}
 Structure: 'Minimum multiplier'

5 Functions

5-778

 InitialConditions: 0

s.Branch2

ans =
 dsp.internal.LegacyAllpassFilter with properties:

 AllpassCoefficients: {[]}
 Structure: 'Minimum multiplier'
 InitialConditions: 0

Wave Digital Filter

Change the filter structure to 'Wave Digital Filter'. The internal allpass filters display WDF
coefficients.

caf.Structure = 'Wave Digital Filter'

caf =
 dsp.CoupledAllpassFilter with properties:

 Structure: 'Wave Digital Filter'
 PureDelayBranch: 0
 WDFCoefficients1: {[0.5000 0]}
 WDFCoefficients2: {[]}
 Gain1: '1'
 Gain2: '1'

s = getBranches(caf)

s = struct with fields:
 Branch1: [1x1 dsp.internal.LegacyAllpassFilter]
 Branch2: [1x1 dsp.internal.LegacyAllpassFilter]

s.Branch1

ans =
 dsp.internal.LegacyAllpassFilter with properties:

 WDFCoefficients: {[0.5000 0]}
 Structure: 'Wave Digital Filter'
 InitialConditions: 0

s.Branch2

ans =
 dsp.internal.LegacyAllpassFilter with properties:

 WDFCoefficients: {[]}
 Structure: 'Wave Digital Filter'
 InitialConditions: 0

 getBranches

5-779

Lattice

When the filter structure is set to 'Lattice', the internal allpass filters display the lattice
coefficients.

caf.Structure = 'Lattice'

caf =
 dsp.CoupledAllpassFilter with properties:

 Structure: 'Lattice'
 PureDelayBranch: 0
 LatticeCoefficients1: {[0 0.5000]}
 LatticeCoefficients2: {[]}
 Beta: 1
 Gain1: '1'
 Gain2: '1'
 ComplexConjugateCoefficients: 0

s = getBranches(caf)

s = struct with fields:
 Branch1: [1x1 dsp.internal.LegacyAllpassFilter]
 Branch2: [1x1 dsp.internal.LegacyAllpassFilter]

s.Branch1

ans =
 dsp.internal.LegacyAllpassFilter with properties:

 LatticeCoefficients: {[0 0.5000]}
 Structure: 'Lattice'
 InitialConditions: 0

s.Branch2

ans =
 dsp.internal.LegacyAllpassFilter with properties:

 LatticeCoefficients: {[]}
 Structure: 'Lattice'
 InitialConditions: 0

Input Arguments
caf — Input filter object
dsp.CoupledAllpassFilter

Input filter object, specified as a dsp.CoupledAllpassFilter System object.

Output Arguments
s — Internal allpass branches
structure

5 Functions

5-780

Internal allpass branches, returned as a two-field structure. The two fields contain instances of the
dsp.AllpassFilter System objects representing the two individual branches of the
dsp.CoupledAllpassFilter object.

See Also
Functions
fvtool

Objects
dsp.CoupledAllpassFilter

Introduced in R2013b

 getBranches

5-781

getCenterFrequency
Package: dsp

Get center frequency

Syntax
CF = getCenterFrequency(npFilter)

Description
CF = getCenterFrequency(npFilter) returns the center frequency of the notch peak filter. If
the Specification property is set to 'Coefficients', the center frequency is determined from
the CenterFrequencyCoefficient value and the sample rate.

Examples

Get Center Frequency of Notch Peak Filter

Create a dsp.NotchPeakFilter object with the Specification property set to
'Coefficients'.

np = dsp.NotchPeakFilter('Specification','Coefficients')

np =
 dsp.NotchPeakFilter with properties:

 Specification: 'Coefficients'
 BandwidthCoefficient: 0.7265
 CenterFrequencyCoefficient: 0
 SampleRate: 44100

Determine the center frequency of the notch peak filter using the getCenterFrequency function.
When the Specification is set to 'Coefficients', the center frequency is determined from the
CenterFrequencyCoefficient value and the sample rate.

getCenterFrequency(np)

ans = 11025

Visualize the filter response using fvtool.

fvtool(np)

5 Functions

5-782

Input Arguments
npFilter — Notch peak filter
dsp.NotchPeakFilter

Notch peak filter whose center frequency is measured, specified as dsp.NotchPeakFilter object.

Output Arguments
CF — Center frequency
scalar

Center frequency of the filter, returned as a scalar.
Data Types: double

See Also
Functions
getBandwidth | getOctaveBandwidth | getQualityFactor | tf

Objects
dsp.NotchPeakFilter

 getCenterFrequency

5-783

Introduced in R2014a

5 Functions

5-784

getCursorInfo
Package: dsp

Return settings for Logic Analyzer cursor

Syntax
cursorInfo = getCursorInfo(scope,'CursorTag',tag)

Description
cursorInfo = getCursorInfo(scope,'CursorTag',tag) returns the settings for the cursor or
cursors specified by the input tag.

Examples

Modify Logic Analyzer Cursors Programmatically

This example shows how to use functions to create, manipulate, and delete cursors in a
dsp.LogicAnalyzer object.

Create Logic Analyzer and Signals

scope = dsp.LogicAnalyzer('NumInputPorts',3);
for ii = 1:20
 scope(ii,10*ii,20*ii);
end

 getCursorInfo

5-785

Add Cursor

Add a cursor at 15 seconds and show the cursor information.

cursor = addCursor(scope,'Location',15,'Color','Cyan');
getCursorInfo(scope,cursor)

ans = struct with fields:
 Location: 15
 Color: [0 1 1]
 Locked: 0
 Tag: 'C2'

Modify Cursor

Change the cursor color to magenta.

hide(scope)
modifyCursor(scope,cursor,'Color','Magenta')
show(scope)

5 Functions

5-786

Remove Cursor

Delete the yellow cursor at 0 seconds.

hide(scope)
tags = getCursorTags(scope);
deleteCursor(scope,tags{1});
show(scope)

 getCursorInfo

5-787

Input Arguments
scope — The Logic Analyzer object from which you want to return cursor settings
dsp.LogicAnalyzer object

The Logic Analyzer object from which you want to return cursor settings, specified as a handle to the
dsp.LogicAnalyzer object.

tag — identifying tag or tags
character vector | string scalar | cell array of character vectors | string array

The tag or tags identifying the cursor or cursors about which to get information, specified as the
randomly assigned cursor tag or tags.
Example: 'C5'
Example: {'C4','C5'}
Example: ["C4","C5"]
Data Types: char | cell | string

5 Functions

5-788

Output Arguments
cursorInfo — Information about settings for the cursor or cursors
struct

The cursorInfo struct contains the following fields:

• Location — Location of the cursors
• Color — Color of the cursors
• Locked — Locked status of the cursors
• Tag — Tag identifying cursors

See Also
dsp.LogicAnalyzer | getCursorTags | modifyCursor | getDisplayChannelInfo

Introduced in R2013a

 getCursorInfo

5-789

getCursorTags
Package: dsp

Return all Logic Analyzer cursor tags

Syntax
cursorTags = getCursorTags(scope)

Description
cursorTags = getCursorTags(scope) returns all the cursor tags for the Logic Analyzer. You can
use these tags to get information about a cursor using the getCursorInfo method, to modify a
cursor using the modifyCursor method, or to delete a cursor using the deleteCursor method.

Examples

Modify Logic Analyzer Cursors Programmatically

This example shows how to use functions to create, manipulate, and delete cursors in a
dsp.LogicAnalyzer object.

Create Logic Analyzer and Signals

scope = dsp.LogicAnalyzer('NumInputPorts',3);
for ii = 1:20
 scope(ii,10*ii,20*ii);
end

5 Functions

5-790

Add Cursor

Add a cursor at 15 seconds and show the cursor information.

cursor = addCursor(scope,'Location',15,'Color','Cyan');
getCursorInfo(scope,cursor)

ans = struct with fields:
 Location: 15
 Color: [0 1 1]
 Locked: 0
 Tag: 'C2'

Modify Cursor

Change the cursor color to magenta.

hide(scope)
modifyCursor(scope,cursor,'Color','Magenta')
show(scope)

 getCursorTags

5-791

Remove Cursor

Delete the yellow cursor at 0 seconds.

hide(scope)
tags = getCursorTags(scope);
deleteCursor(scope,tags{1});
show(scope)

5 Functions

5-792

Input Arguments
scope — Logic analyzer object
dsp.LogicAnalyzer object

The Logic Analyzer object from which you want to return all cursor tags, specified as a handle to the
dsp.LogicAnalyzer object.

Output Arguments
cursorTags — All cursor tags
cell array of character vectors

The cursor tags, specified as a cell array of character vectors.
Example: {'C1'}
Example: {'C1','C2','C3'}
Data Types: cell

 getCursorTags

5-793

See Also
dsp.LogicAnalyzer | getDisplayChannelTags | getCursorInfo | modifyCursor

Introduced in R2013a

5 Functions

5-794

getDecimationFactors
Package: dsp

Get decimation factors of each filter stage of a digital down converter

Syntax
M = getDecimationFactors(dwnConv)

Description
M = getDecimationFactors(dwnConv) returns a vector, M, with the decimation factors of each
filter stage of the digital down converter, dwnConv. If the third filter stage is bypassed, then M is a 1-
by-2 vector containing the decimation factors of the first and second filter stages. If the third filter
stage is not bypassed, then M is a 1-by-3 vector containing the decimation factors of the first, second,
and third filter stages.

Examples

Get Decimation Factors

Get decimation factors of each filter stage of the dsp.DigitalDownConverter System object™.

Create a dsp.DigitalDownConverter System object with the default settings. Using the
getDecimationFactors function, obtain the decimation factors of each stage of the object.

dwnConv = dsp.DigitalDownConverter

dwnConv =
 dsp.DigitalDownConverter with properties:

 DecimationFactor: 100
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 30000000

 Show all properties

M = getDecimationFactors(dwnConv) %#ok

M = 1×3

 25 2 2

 getDecimationFactors

5-795

The DecimationFactor property of the object is set to 100. The output M is by default a 1-by-3
vector, where each element in the vector is a factor of the overall decimation factor.

When you set the DecimationFactor to a 1-by-2 vector, the object bypasses the third filter stage
and sets the decimation factor of the first and second filtering stages to the values in the first and
second vector elements respectively.

dwnConv.DecimationFactor = [10 10]

dwnConv =
 dsp.DigitalDownConverter with properties:

 DecimationFactor: [10 10]
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 30000000

 Show all properties

M = getDecimationFactors(dwnConv)

M = 1×2

 10 10

The output of the getDecimationFactors function is now a 1-by-2 vector.

Input Arguments
dwnConv — Digital down converter
dsp.DigitalDownConverter

Digital down converter, specified as a dsp.DigitalDownConverter System object.

Output Arguments
M — Decimation factors
vector

Decimation factors of each filter stage, returned as a 1-by-2 or a 1-by-3 vector. If the third filter stage
is bypassed, then M is a 1-by-2 vector containing the decimation factors of the first and second filter
stages. If the third filter stage is not bypassed, then M is a 1-by-3 vector containing the decimation
factors of the first, second, and third filter stages.
Data Types: double

5 Functions

5-796

See Also
Functions
getFilterOrders | getFilters | fvtool | groupDelay | visualizeFilterStages |
getInterpolationFactors

Objects
dsp.DigitalDownConverter

Introduced in R2012a

 getDecimationFactors

5-797

getDisplayChannelInfo
Package: dsp

Return settings for Logic Analyzer display channel

Syntax
channelInfo = getDisplayChannelInfo(scope,'DisplayChannelTag',tag)

Description
channelInfo = getDisplayChannelInfo(scope,'DisplayChannelTag',tag) returns the
settings for the display channel or channels, specified by the input tag.

Examples

Manipulate Logic Analyzer Programatically

Use functions to construct and manipulate a dsp.LogicAnalyzer System object.

Display Waves on Logic Analyzer scope.

scope = dsp.LogicAnalyzer('NumInputPorts',2);

stop = 30;
for count = 1:stop
 sinValVec = sin(count/stop*2*pi);
 cosValVec = cos(count/stop*2*pi);
 cosValVecOffset = cos((count+10)/stop*2*pi);

 scope([count (count-(stop/2))],[sinValVec cosValVec cosValVecOffset])
end

5 Functions

5-798

Reorganize Display

hide(scope)
digitalDividerTag = addDivider(scope,'Name','Digital','Height',20);
analogDividerTag = addDivider(scope,'Name','Analog','Height',40);

tags = getDisplayChannelTags(scope);

modifyDisplayChannel(scope,tags{1},'InputChannel',1,...
 'Name','Ramp Digital','Height',40);
modifyDisplayChannel(scope,tags{2},'InputChannel',2,...
 'Name','Waves Analog','Format','Analog','Height',80);

moveDisplayChannel(scope,digitalDividerTag,'DisplayChannel',1)
moveDisplayChannel(scope,tags{2},'DisplayChannel',length(tags))

show(scope)

 getDisplayChannelInfo

5-799

Duplicate Wave and Check Information

hide(scope)
addWave(scope,'InputChannel',2,'Name','Waves Digital','Format','Digital',...
 'Height',30,'DisplayChannel',3);
show(scope)

5 Functions

5-800

Remove Dividers

hide(scope)
deleteDisplayChannel(scope,digitalDividerTag)
deleteDisplayChannel(scope,analogDividerTag)
show(scope)

 getDisplayChannelInfo

5-801

Clear variables
clear analogDividerTag cosValVec cosValVecOffset count digitalDividerTag duplicateWave scope sinValVec stop tags

Input Arguments
scope — Logic Analyzer object
dsp.LogicAnalyzer object

The Logic Analyzer object from which you want to return display channel settings, specified as a
handle to the dsp.LogicAnalyzer object.

tag — Tag or tags identifying the display channel or channels about which to get
information
character vector | string scalar | cell array of character vectors | string array

The tag or tags identifying the display channel or channels about which to get information.
Example: 'DisplayChannelTag','W5'
Example: 'DisplayChannelTag',{'W4','W5'}

5 Functions

5-802

Example: 'DisplayChannelTag',["W4","W5"]
Data Types: char | string

Output Arguments
channelInfo — Information about settings for the display channel or channels
struct

The channelInfo struct contains the following fields:

• Color — Color of the waves.
• InputChannel — Channel on the display that corresponds to the specified waves.
• Radix — Radix for the waves.
• FontSize — Font size for values in the waves. A value of 0 indicates that the waves inherit

FontSize from the global DisplayChannelColor property.
• Name — The name or label for the waves.
• Height — Height of the wave. A value of 0 indicates that the waves inherit Height from the

global DisplayChannelHeight property.
• Tag — Tag for the channel.

See Also
dsp.LogicAnalyzer | getDisplayChannelTags | modifyDisplayChannel |
deleteDisplayChannel | getCursorInfo

Introduced in R2013a

 getDisplayChannelInfo

5-803

getDisplayChannelTags
Package: dsp

Return all Logic Analyzer display channel tags

Syntax
displayChannelTags = getDisplayChannelTags(scope)

Description
displayChannelTags = getDisplayChannelTags(scope) returns all the tags for waves or
dividers in a Logic Analyzer. You use these tags to

• Get information about a wave or divider using getDisplayChannelInfo
• Modify a wave or divider using modifyDisplayChannel
• Delete a wave or divider using deleteDisplayChannel

Examples

Manipulate Logic Analyzer Programatically

Use functions to construct and manipulate a dsp.LogicAnalyzer System object.

Display Waves on Logic Analyzer scope.

scope = dsp.LogicAnalyzer('NumInputPorts',2);

stop = 30;
for count = 1:stop
 sinValVec = sin(count/stop*2*pi);
 cosValVec = cos(count/stop*2*pi);
 cosValVecOffset = cos((count+10)/stop*2*pi);

 scope([count (count-(stop/2))],[sinValVec cosValVec cosValVecOffset])
end

5 Functions

5-804

Reorganize Display

hide(scope)
digitalDividerTag = addDivider(scope,'Name','Digital','Height',20);
analogDividerTag = addDivider(scope,'Name','Analog','Height',40);

tags = getDisplayChannelTags(scope);

modifyDisplayChannel(scope,tags{1},'InputChannel',1,...
 'Name','Ramp Digital','Height',40);
modifyDisplayChannel(scope,tags{2},'InputChannel',2,...
 'Name','Waves Analog','Format','Analog','Height',80);

moveDisplayChannel(scope,digitalDividerTag,'DisplayChannel',1)
moveDisplayChannel(scope,tags{2},'DisplayChannel',length(tags))

show(scope)

 getDisplayChannelTags

5-805

Duplicate Wave and Check Information

hide(scope)
addWave(scope,'InputChannel',2,'Name','Waves Digital','Format','Digital',...
 'Height',30,'DisplayChannel',3);
show(scope)

5 Functions

5-806

Remove Dividers

hide(scope)
deleteDisplayChannel(scope,digitalDividerTag)
deleteDisplayChannel(scope,analogDividerTag)
show(scope)

 getDisplayChannelTags

5-807

Clear variables

clear analogDividerTag cosValVec cosValVecOffset count digitalDividerTag duplicateWave scope sinValVec stop tags

Input Arguments
scope — The Logic Analyzer object from which you want to return all display channel tags
dsp.LogicAnalyzer object

The Logic Analyzer object from which you want to return all display channel tags, specified as a
handle to the dsp.LogicAnalyzer object.

Output Arguments
displayChannelTags — The display channel tags
cell array of character vectors

The display channel tags, returned as a cell array of character vectors.

5 Functions

5-808

Example: {'W1'}
Example: {'W1','W2','W3'}
Data Types: cell

See Also
dsp.LogicAnalyzer | getDisplayChannelInfo | modifyDisplayChannel |
moveDisplayChannel | getCursorTags

Introduced in R2013a

 getDisplayChannelTags

5-809

getFilterOrders
Package: dsp

Get orders of digital down converter or digital up converter filter cascade

Syntax
S = getFilterOrders(Conv)

Description
S = getFilterOrders(Conv) returns a structure, S, that contains the number of CIC filter
sections and the orders of the FIR filter stages of a digital down converter or digital up converter,
Conv. The converter usually implements the conversion using three filter stages. Sometimes, one of
the stages is bypassed and the order of that filter stage is returned as an empty field.

Examples

Get Filter Orders of Digital Up Converter

Get orders of each decimation filter stage of the dsp.DigitalUpConverter System object™.

Create a dsp.DigitalUpConverter System object with the default settings.

upConv = dsp.DigitalUpConverter

upConv =
 dsp.DigitalUpConverter with properties:

 InterpolationFactor: 100
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 300000

 Show all properties

Using the getFilterOrders function, obtain the number of CIC decimator sections, order of the
CIC compensation filter stage, and order of the third filter stage.

S = getFilterOrders(upConv)

S = struct with fields:
 FirstFilterOrder: 24
 SecondFilterOrder: 12
 NumCICSections: 4

5 Functions

5-810

The first filter order field is empty when the object bypasses the first filter stage.

Get Filter Orders of Digital Up Converter

Get orders of each decimation filter stage of the dsp.DigitalUpConverter System object™.

Create a dsp.DigitalUpConverter System object with the default settings.

upConv = dsp.DigitalUpConverter

upConv =
 dsp.DigitalUpConverter with properties:

 InterpolationFactor: 100
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 300000

 Show all properties

Using the getFilterOrders function, obtain the number of CIC decimator sections, order of the
CIC compensation filter stage, and order of the third filter stage.

S = getFilterOrders(upConv)

S = struct with fields:
 FirstFilterOrder: 24
 SecondFilterOrder: 12
 NumCICSections: 4

The first filter order field is empty when the object bypasses the first filter stage.

Input Arguments
Conv — Digital down converter or digital up converter
dsp.DigitalDownConverter | dsp.DigitalUpConverter

Digital down converter or digital up converter, specified as a dsp.DigitalDownConverter or
dsp.DigitalUpConverter System object.

Output Arguments
S — Filter order information
structure

 getFilterOrders

5-811

Filter order information, returned as a structure containing the number of CIC sections, and the
orders of the two FIR filter stages. For a digital down converter object, the structure contains these
fields:

• NumCICSections –– Number of sections of the CIC decimator. The default is 4.
• SecondFilterOrder –– Order of the CIC compensation filter stage. The default is 12.
• ThirdFilterOrder –– Order of the third filter stage. The default is 24. The ThirdFilterOrder

structure field is empty if the third filter stage has been bypassed.

For a digital up converter object, the structure contains these fields:

• FirstFilterOrder –– Order of the first filter stage. The default is 24. The FirstFilterOrder
structure field is empty if the first filter stage has been bypassed.

• SecondFilterOrder –– Order of the CIC compensation filter stage. The default is 12.
• NumCICSections –– Number of sections of the CIC interpolator. The default is 4.

See Also
Functions
getInterpolationFactors | getDecimationFactors | getFilters | fvtool | groupDelay |
visualizeFilterStages

Objects
dsp.DigitalDownConverter | dsp.DigitalUpConverter

Introduced in R2012a

5 Functions

5-812

getFilters
Package: dsp

Get handles to digital down converter or digital up converter filter cascade objects

Syntax
S = getFilters(Conv)
S = getFilters(Conv,'Arithmetic',arithType)

Description
S = getFilters(Conv) returns a structure, S, that contains copies of the filter System objects and
the CIC normalization factor that form a digital down converter or digital up converter, Conv. The
CIC normalization factor equals the inverse of the CIC filter gain. This gain can include a correction
factor to ensure that the cascade response meets the ripple specifications.

The converter usually implements the conversion using three filter stages. Sometimes, one of the
stages is bypassed and that filter stage is returned as an empty field.

S = getFilters(Conv,'Arithmetic',arithType) specifies the arithmetic type of the filter
stages. Set arithType to 'double', 'single', or 'Fixed-point'. When the Conv object is in an
unlocked state, you must specify the arithmetic input. When the Conv object is in a locked state, it
ignores the arithmetic input argument.

Examples

Get Filters of Digital Down Converter

Get handles to decimation filter objects of the dsp.DigitalDownConverter System object™.

Create a dsp.DigitalDownConverter System object with the default settings.

dwnConv = dsp.DigitalDownConverter

dwnConv =
 dsp.DigitalDownConverter with properties:

 DecimationFactor: 100
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 30000000

 Show all properties

 getFilters

5-813

Use the getFilters function to obtain the filter System objects and the CIC normalization factor
that form the decimation filter cascade.

To use the getFilters function on an unlocked System object, you must specify the filter arithmetic
through the 'Arithmetic' input of the getFilters function.

S = getFilters(dwnConv,'Arithmetic','Fixed-point')

S = struct with fields:
 CICDecimator: [1x1 dsp.CICDecimator]
 CICNormalizationFactor: 2.5600e-06
 SecondFilterStage: [1x1 dsp.FIRDecimator]
 ThirdFilterStage: [1x1 dsp.FIRDecimator]

Alternatively, you can lock the System object by passing a valid input to the object algorithm. In this
case, you can use the getFilters function without specifying the filter arithmetic.

Get Filters of Digital Up Converter

Get handles to decimation filter objects of the dsp.DigitalUpConverter System object™.

Create a dsp.DigitalUpConverter System object with the default settings.

upConv = dsp.DigitalUpConverter

upConv =
 dsp.DigitalUpConverter with properties:

 InterpolationFactor: 100
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 300000

 Show all properties

Use the getFilters function to obtain the filter System objects and the CIC normalization factor
that form the decimation filter cascade.

To use the getFilters function on an unlocked System object, you must specify the filter arithmetic
through the 'Arithmetic' input of the getFilters function.

S = getFilters(upConv,'Arithmetic','Fixed-point')

S = struct with fields:
 FirstFilterStage: [1x1 dsp.FIRInterpolator]
 CICNormalizationFactor: 6.4000e-05
 SecondFilterStage: [1x1 dsp.FIRInterpolator]
 CICInterpolator: [1x1 dsp.CICInterpolator]

5 Functions

5-814

The first filter field is empty when the object bypasses the first filter stage.

Alternatively, you can lock the System object by passing a valid input to the object algorithm. In this
case, you can use the getFilters function without specifying the filter arithmetic.

Input Arguments
Conv — Digital down converter or digital up converter
dsp.DigitalDownConverter | dsp.DigitalUpConverter

Digital down converter or digital up converter, specified as a dsp.DigitalDownConverter or
dsp.DigitalUpConverter System object.

arithType — Arithmetic type
'double' (default) | 'single' | 'fixed-point'

When the Conv object is in an unlocked state, you must specify the arithmetic type. When the Conv
object is in a locked state, it ignores the arithmetic input argument.

When Conv is in an unlocked state, and you specify the arithmetic type as 'fixed-point', the
getFilters function returns filter System objects. The custom coefficient data type properties of
these System objects are set to the values that the dsp.DigitalDownConverter or
dsp.DigitalUpConverter objects use to process data when you call the object. All other fixed-
point properties are set to their default values.

When Conv is in a locked state, and the input to the object algorithm is of a fixed-point data type, the
getFilters function returns filter System objects. All fixed-point properties of these System objects
are set to the exact values that the dsp.DigitalDownConverter or dsp.DigitalUpConverter
objects use to process the data.

Output Arguments
S — Handles to decimation or interpolation filter objects
structure

The output is a structure, S, containing three filter object handles and the
CICNormalizationFactor. For a digital down converter object, the structure contains these fields:

• CICDecimator –– Handle to the dsp.CICDecimator object.
• CICNormalizationFactor –– Inverse of the CIC filter gain.
• SecondFilterStage –– Handle to the CIC compensation filter stage.
• ThirdFilterStage –– Handle to the third filter stage. This field is empty if the third filter stage

has been bypassed.

For a digital up converter object, the structure contains these fields:

• FirstFilterStage –– Handle to the first filter stage. This field is empty if the first filter stage
has been bypassed.

• CICNormalizationFactor –– Inverse of the CIC filter gain.
• SecondFilterStage –– Handle to the CIC compensation filter stage.

 getFilters

5-815

• CICInterpolator –– Handle to the dsp.CICInterpolator object.

See Also
Functions
getInterpolationFactors | getDecimationFactors | getFilterOrders | fvtool |
groupDelay | visualizeFilterStages

Objects
dsp.DigitalDownConverter | dsp.DigitalUpConverter

Introduced in R2012a

5 Functions

5-816

groupDelay
Package: dsp

Group delay of digital down converter or digital up converter filter cascade

Syntax
D = groupDelay(Conv,N)
[D,F] = groupDelay(Conv,N)

Description
D = groupDelay(Conv,N) returns a vector of group delays, D, of a digital down converter or digital
up converter, Conv, evaluated at N frequency points. The frequency points are equally spaced around
the upper half of the unit circle.

[D,F] = groupDelay(Conv,N) returns a vector of frequencies, F, at which the group delay has
been computed.

Examples

Group Delays of Digital Down Converter

Compute the group delays of the digital down converter using the groupDelay function.

Create a dsp.DigitalDownConverter System object with the default settings.

dwnConv = dsp.DigitalDownConverter

dwnConv =
 dsp.DigitalDownConverter with properties:

 DecimationFactor: 100
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 30000000

 Show all properties

Use the groupDelay function to compute the vector of group delays. By default, the function
evaluates the group delays at 8192 frequency points equally spaced around the upper half of the unit
circle.

D = groupDelay(dwnConv);

 groupDelay

5-817

Plot the vector of group delays.

plot(D)
xlabel('Number of frequency points')
ylabel('Group delay')

Determine the vector of frequencies over which the group delays are computed and plot them.

[D,F] = groupDelay(dwnConv);
plot(F,D)
xlabel('Frequencies')
ylabel('Group delay')

5 Functions

5-818

Input Arguments
Conv — Digital down converter or digital up converter
dsp.DigitalDownConverter | dsp.DigitalUpConverter

Digital down converter or digital up converter, specified as a dsp.DigitalDownConverter or
dsp.DigitalUpConverter System object.

N — Number of frequency points
8192 (default) | positive scalar

Number of frequency points over which the group delays are evaluated, specified as a positive scalar.
These points are equally spaced around the upper half of the unit circle.
Data Types: double | single

Output Arguments
D — Vector of group delays
column vector

Vector of group delays of the digital down converter or digital up converter, evaluated at N frequency
points equally spaced around the upper half of the unit circle.
Data Types: double

 groupDelay

5-819

F — Vector of frequencies
column vector

Frequencies at which the group delays are evaluated, returned as a column vector.
Data Types: double

See Also
Functions
getDecimationFactors | getInterpolationFactors | getFilterOrders | getFilters |
fvtool | visualizeFilterStages

Objects
dsp.DigitalDownConverter | dsp.DigitalUpConverter

Introduced in R2012a

5 Functions

5-820

getFixedPointInfo
Package: dsp

Get fixed-point word and fraction lengths

Syntax
[WLs, FLs] = getFixedPointInfo(cicObj,nt)

Description
[WLs, FLs] = getFixedPointInfo(cicObj,nt) returns all the word lengths and fraction
lengths of the fixed-point sections and the output of the CIC filter System objects,
dsp.CICDecimator and dsp.CICInterpolator, based on the input numeric type, nt. For locked
objects or when the FixedPointDataType property of the unlocked CIC filter object is set to
'Specify word and fraction lengths', the input numeric type argument, nt, is optional.

Examples

Determine the Section and Output Word Lengths and Fraction Lengths

Using the getFixedPointInfo function, you can determine the word lengths and fraction lengths of
the fixed-point sections and the output of the dsp.CICDecimator and dsp.CICInterpolator
System objects. The data types of the filter sections and the output depend on the
FixedPointDataType property of the filter System object™.

Full precision

Create a dsp.CICDecimator object. The default value of the NumSections property is 2. This value
indicates that there are two integrator and comb sections. The WLs and FLs vectors returned by the
getFixedPointInfo function contain five elements each. The first two elements represent the two
integrator sections. The third and fourth elements represent the two comb sections. The last element
represents the filter output.

cicD = dsp.CICDecimator

cicD =
 dsp.CICDecimator with properties:

 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Full precision'

By default, the FixedPointDataType property of the object is set to 'Full precision'. Calling
the getFixedPointInfo function on this object with the input numeric type, nt, yields the following
word length and fraction length vectors.

nt = numerictype(1,16,15)

 getFixedPointInfo

5-821

nt =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

[WLs,FLs] = getFixedPointInfo(cicD,nt) %#ok

WLs = 1×5

 18 18 18 18 18

FLs = 1×5

 15 15 15 15 15

For details on how the word lengths and fraction lengths are computed, see the description for
Output Arguments.

If you lock the cicD object by passing an input to its algorithm, you do not need to pass the nt
argument to the getFixedPointInfo function.

input = int64(randn(8,1))

input = 8x1 int64 column vector

 1
 2
 -2
 1
 0
 -1
 0
 0

output = cicD(input)

output =
 0
 1
 3
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 66
 FractionLength: 0

[WLs,FLs] = getFixedPointInfo(cicD) %#ok

WLs = 1×5

 66 66 66 66 66

5 Functions

5-822

FLs = 1×5

 0 0 0 0 0

The output and section word lengths are the sum of input word length, 64 in this case, and the
number of sections, 2. The output and section fraction lengths are 0 since the input is a built-in
integer.

Minimum section word lengths

Release the object and change the FixedPointDataType property to 'Minimum section word
lengths'. Determine the section and output fixed-point information when the input is fixed-point
data, fi(randn(8,2),1,24,15).

release(cicD);
cicD.FixedPointDataType = 'Minimum section word lengths'

cicD =
 dsp.CICDecimator with properties:

 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Minimum section word lengths'
 OutputWordLength: 32

inputF = fi(randn(8,2),1,24,15)

inputF =
 3.5784 -0.1241
 2.7694 1.4897
 -1.3499 1.4090
 3.0349 1.4172
 0.7254 0.6715
 -0.0630 -1.2075
 0.7148 0.7172
 -0.2050 1.6302

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 15

[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF)) %#ok

WLs = 1×5

 26 26 26 26 32

FLs = 1×5

 15 15 15 15 21

 getFixedPointInfo

5-823

Specify word and fraction lengths

Change the FixedPointDataType property to 'Specify word and fraction lengths'.
Determine the fixed-point information using the getFixedPointInfo function.

cicD.FixedPointDataType = 'Specify word and fraction lengths'

cicD =
 dsp.CICDecimator with properties:

 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Specify word and fraction lengths'
 SectionWordLengths: [16 16 16 16]
 SectionFractionLengths: 0
 OutputWordLength: 32
 OutputFractionLength: 0

[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF)) %#ok

WLs = 1×5

 16 16 16 16 32

FLs = 1×5

 0 0 0 0 0

The section and output word lengths and fraction lengths are assigned as per the respective fixed-
point properties of the cicD object. These values are not determined by the input numeric type. To
confirm, call the getFixedPointInfo function without passing the numerictype input argument.

[WLs, FLs] = getFixedPointInfo(cicD) %#ok

WLs = 1×5

 16 16 16 16 32

FLs = 1×5

 0 0 0 0 0

Specify word lengths

To specify the word lengths of the filter section and output, set the FixedPointDataType property
to 'Specify word lengths'.

cicD.FixedPointDataType = 'Specify word lengths'

cicD =
 dsp.CICDecimator with properties:

 DecimationFactor: 2

5 Functions

5-824

 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Specify word lengths'
 SectionWordLengths: [16 16 16 16]
 OutputWordLength: 32

The getFixedPointInfo function requires the input numeric type because that information is used
to compute the section and word fraction lengths.

[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF))

WLs = 1×5

 16 16 16 16 32

FLs = 1×5

 5 5 5 5 21

For more details on how the function computes the word and fraction lengths, see the description for
Output Arguments.

Input Arguments
cicObj — CIC filter System object
dsp.CICDecimator | dsp.CICInterpolator

CIC filter System object, specified as either a dsp.CICDecimator or dsp.CICInterpolator
System object.

nt — Input numeric type
numerictype

Input data numeric type, specified as a numerictype object. Specify this input when the System
object is unlocked and the FixedPointDataType property of the CIC filter is set to 'Full
precision', 'Minimum section word lengths', or 'Specify word lengths'. If the
FixedPointDataType property is set to 'Specify word and fraction lengths', the word
and fraction lengths of the filter sections and the output are specified through the object parameters.
In this case, the nt input is optional. Alternatively, if the object is locked, the fixed-point data input to
the object specifies the input word length and fraction length. The nt argument in this case is also
optional.
Example: numerictype(1,16,15)
Example: input = fi(randn(16,1),1,32,30); numerictype(input)

Output Arguments
WLs — Section and output word lengths
row vector

Section and output word lengths, returned as a row vector. The first 2 × NumSections elements in
the row vector correspond to the word lengths of the integrator and comb sections of the CIC filter.

 getFixedPointInfo

5-825

The value of the NumSections property specifies the number of sections in either the integrator part
or the comb part of the filter. The last element in the vector corresponds to the word length of the
object output.

The word length of the CIC filter sections and the object output depend on the
FixedPointDataType property of the CIC filter object.

Full precision

When the FixedPointDataType property of the CIC filter object is set to 'Full precision', the
section and output word lengths are computed using the following equation:

WLsection = WLinput + NumSect
WLoutput = WLinput + NumSect

where,

• WLsection –– Word length of the CIC filter section.
• WLoutput –– Word length of the output data.
• WLinput –– Word length of the input data.
• NumSect –– Number of CIC filter sections specified through the NumSections property.

For locked objects, WLinput is inherited from the data input you pass to the object algorithm. For
unlocked objects, the WLinput is inherited from the nt argument.

Minimum section word lengths

When the FixedPointDataType property is set to 'Minimum section word lengths', the
section word length is given by the following equation:

WLsection = WLinput + NumSect

The output word length is the value you specify in OutputWordLength property of the CIC filter
object.

Specify word and fraction lengths

When the FixedPointDataType property is set to 'Specify word and fraction lengths',
the section word lengths and output word length are the values you specify in the
SectionWordLengths and OutputWordLength properties of the CIC filter object.

Specify word lengths

When the FixedPointDataType property is set to 'Specify word lengths', the section word
lengths and the output word length are the values you specify in the SectionWordLengths and
OutputWordLength properties of the CIC filter object.
Example: [20 20 20 20 20]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FLs — Section and output fraction lengths
row vector

Section and output fraction lengths, returned as a row vector. The first 2 × NumSections elements in
the row vector correspond to the fraction lengths of the integrator and comb sections of the CIC filter.

5 Functions

5-826

The value of NumSections property specifies the number of sections in either the integrator part or
the comb part of the filter. The last element in the vector corresponds to the fraction length of the
object output.

The fraction length of the CIC filter sections and the object output depend on the
FixedPointDataType property of the CIC filter object.

Full precision

When the FixedPointDataType property of the CIC filter object is set to 'Full precision', the
section and output fraction lengths are computed using the following equation:

FLsection = WLsection− (WLinput− FLinput + NumSect)
FLoutput = WLoutput− (WLinput− FLinput + NumSect)

For inputs of built-in integer data types, the section and output fraction lengths are 0.

Minimum section word lengths

When the FixedPointDataType property of the CIC filter object is set to 'Minimum section
word lengths', the section and output fraction lengths, FLsection and FLoutput are given by the
following equation:

FLsection = WLsection− (WLinput− FLinput + NumSect)
FLoutput = WLoutput− (WLinput− FLinput + NumSect)

For inputs of built-in integer data types, the section and output fraction lengths are 0.

Specify word and fraction lengths

When the FixedPointDataType property of the CIC filter object is set to 'Specify word and
fraction lengths', the section and output fraction lengths are the values you specify in the
SectionFractionLengths and OutputFractionLength properties.

Specify word lengths

When the FixedPointDataType property of the CIC filter object is set to 'Specify word
lengths', the section and output fraction lengths, FLsection and FLoutput are given by the following
equation:

FLsection = WLsection− (WLinput− FLinput + NumSect)
FLoutput = WLoutput− (WLinput− FLinput + NumSect)

Example: [12 12 12 12 12]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

References
[1] Hogenauer, E.B. "An Economical Class of Digital Filters for Decimation and Interpolation." IEEE

Transactions on Acoustics, Speech and Signal Processing. Volume 29, Number 2, 1981, 155–
162.

 getFixedPointInfo

5-827

[2] Meyer-Baese, U. Digital Signal Processing with Field Programmable Gate Arrays. New York:
Springer, 2001.

[3] Harris, Fredric J. Multirate Signal Processing for Communication Systems. Indianapolis, IN:
Prentice Hall PTR, 2004.

See Also
Functions
generatehdl | impz | freqz | phasez | fvtool

Objects
dsp.CICDecimator | dsp.CICInterpolator

Introduced in R2018a

5 Functions

5-828

getFilters
Package: dsp

Return matrix of channelizer FIR filters

Syntax
B = getFilters(obj)
B = getFilters(obj,ind)

Description
B = getFilters(obj) returns a matrix B of filter coefficients corresponding to each filter in the
dsp.Channelizer System object filter bank. Each row contains the coefficients for the
corresponding bandpass filter. The channelizer does not actually use all these filters in the
implementation. It only uses the prototype lowpass filter (the first row of matrix B) and an FFT to
implement the filter bank. The combination of polyphase implementation of the prototype lowpass
and the FFT effectively implements all the filters in B, but does so in a very efficient manner.

B = getFilters(obj,ind) returns the filters with indices corresponding to the elements in the
vector ind. ind is a row vector of indices between 1 and obj.NumFrequencyBands. By default, this
vector is [1:N], where N is the number of frequency bands specified in the
obj.NumFrequencyBands property.

Examples

Coefficients of Channelizer Filters

Using the getFilters function, you can access the coefficients of the lowpass prototype filter and
the modulated bandpass filters of the channelizer.

channelizer = dsp.Channelizer;
B = getFilters(channelizer);

The first row corresponds to the coefficients of the prototype filter. The subsequent rows correspond
to the coefficients of the respective modulated filters. Compare the first row with the coefficients
returned by the tf function.

b = tf(channelizer);
isequal(b,B(1,:))

ans = logical
 1

The output of the tf function and the first row of the B matrix are equal.

Visualize the frequency response of the first 4 filters of the channelizer.

fvtool(B(1,:),1, B(2,:),1, B(3,:),1, B(4,:),1);

 getFilters

5-829

Input Arguments
obj — Input filter System object
dsp.Channelizer

Input filter, specified as dsp.Channelizer System object. The getFilters function returns a
matrix of filter coefficients corresponding to each filter in the channelizer filter bank.

ind — Filter indices
row vector

Filter indices, specified as a row vector in the range [1 obj.NumFrequencyBands]. If not specified,
ind is 1:N, where N is the number of frequency bands specified through the
obj.NumFrequencyBands property.
Example: getFilters(channelizer,[1:4]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
B — Matrix of channelizer FIR filter coefficients
matrix

5 Functions

5-830

Matrix of channelizer finite impulse response (FIR) filter coefficients, returned as a matrix. Each row
in the matrix corresponds to a filter in the filter bank. The first row corresponds to the prototype filter
as returned by b = tf(obj). The remaining rows in B are given by:

bk = b × e jwkn/N

N is the number of frequency bands, and k is the row index – 1.

See Also
Functions
polyphase | tf | fvtool | freqz | bandedgeFrequencies | centerFrequencies | coeffs

Objects
dsp.Channelizer

Introduced in R2017b

 getFilters

5-831

getLatency
Package: dsp

Latency of FFT or channelizer calculation

Syntax
Y = getLatency(hdlfft)
Y = getLatency(hdlfft,N)
Y = getLatency(hdlfft,N,V)

Description
Y = getLatency(hdlfft) returns the number of cycles, Y, that the object takes to calculate the
FFT of an input frame. The latency depends on the input vector size and the FFT length. The
channelizer filter coefficients do not affect the latency.

Y = getLatency(hdlfft,N) returns the number of cycles that an object would take to calculate
the FFT of an input frame, if it had FFT length N, and scalar input. This function does not change the
properties of the hdlfft.

Y = getLatency(hdlfft,N,V) returns the number of cycles that an object would take to calculate
the FFT of an input frame, if it had FFT length N, and vector input of size V. This function does not
change the properties of hdlfft.

Examples

Explore Latency of HDL FFT Object

The latency of the object varies with the FFT length and the vector size. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output, assuming that the input is contiguous.

Create a new dsp.HDLFFT object and request the latency.

hdlfft = dsp.HDLFFT('FFTLength',512);
L512 = getLatency(hdlfft)

L512 = 599

Request hypothetical latency information about a similar object with a different FFT length. The
properties of the original object do not change.

L256 = getLatency(hdlfft,256)

L256 = 329

N = hdlfft.FFTLength

N = 512

5 Functions

5-832

Request hypothetical latency information of a similar object that accepts eight-sample vector input.

L256v8 = getLatency(hdlfft,256,8)

L256v8 = 93

Enable scaling at each stage of the FFT. The latency does not change.

hdlfft.Normalize = true;
L512n = getLatency(hdlfft)

L512n = 599

Request the same output order as the input order. The latency increases because the object must
collect the output before reordering.

hdlfft.BitReversedOutput = false;
L512r = getLatency(hdlfft)

L512r = 1078

Input Arguments
hdlfft — HDL-optimized FFT or channelizer System object
dsp.HDLFFT | dsp.HDLIFFT | dsp.HDLChannelizer

HDL-optimized FFT or channelizer System object that you created and configured. See
dsp.HDLChannelizer, dsp.HDLIFFT, or dsp.HDLFFT.

N — FFT length
integer power of 2 from 23 to 216

FFT length, specified as an integer power of 2 from 23 to 216. Use this argument to request the
latency of an object similar to hdlfft, but with FFT length N.

V — Vector size
power of 2 from 1 to 64

Vector size, specified as a power of 2 from 1 to 64. The vector size cannot be greater than the FFT
length. Use this argument to request the latency of an object similar to hdlfft, but with V-sample
vector input. When you do not specify this argument, the function assumes scalar input.

Output Arguments
Y — Cycles of latency
integer

Cycles of latency that the object takes to calculate the FFT of an input frame, returned as an integer.
The latency is the number of cycles between the first valid input and the first valid output, assuming
the input is contiguous. Each call to the object simulates one cycle.

 getLatency

5-833

See Also
Objects
dsp.HDLChannelizer | dsp.HDLIFFT | dsp.HDLFFT

Introduced in R2014b

5 Functions

5-834

getLatency
Package: dsp

Latency of CIC decimation filter

Syntax
Y = getLatency(hdlcic)
Y = getLatency(hdlcic,V)

Description
Y = getLatency(hdlcic) returns the latency, Y, between the first valid input sample and the first
valid output sample, assuming contiguous input samples. The latency depends on the NumSections
property and whether GainCorrection is enabled.

Y = getLatency(hdlcic,V) returns the latency, Y, between the first valid input sample and the
first valid output sample, assuming contiguous input samples and vector input of size V. The latency
depends on the NumSections property, vector input size, and whether GainCorrection is enabled.

Examples

Explore Latency of HDL CIC Decimation Object

The latency of the dsp.HDLCICDecimation System object™ varies depending on how many
integrator and comb sections your filter has, input vector size, and whether you enable gain
correction. Use the getLatency function to find the latency of a particular filter configuration. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is continuously valid.

Create a dsp.HDLCICDecimation System object™ and request the latency. The default filter has
two sections, and gain correction is disabled.

hdlcic = dsp.HDLCICDecimation

hdlcic =
 dsp.HDLCICDecimation with properties:

 VariableDownsample: false
 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 OutputDataType: 'Full precision'
 GainCorrection: false
 ResetIn: false

L_def = getLatency(hdlcic)

L_def = 5

 getLatency

5-835

Modify the filter object to have three integrator and comb sections. Check the resulting change in
latency.

hdlcic.NumSections = 3;
L_3sec = getLatency(hdlcic)

L_3sec = 6

Enable the gain correction on the filter object with vector input size 2. Check the resulting change in
latency.

hdlcic.GainCorrection = true;
vecSize = 2;
L_wgain = getLatency(hdlcic,vecSize)

L_wgain = 25

Input Arguments
hdlcic — HDL-optimized CIC decimation filter System object
dsp.HDLCIC Decimation

HDL-optimized CIC decimation filter System object that you created and configured. See
dsp.HDLCICDecimation.

V — Vector size
in range from 1 to 64

Vector size, specified in the range from 1 to 64. DecimationFactor property must be an integer
multiple of the input frame size. Use this argument to request the latency of an object similar to
hdlcic, but with V sample vector input. When you do not specify this argument, the function
assumes scalar input.

Output Arguments
Y — Cycles of latency
integer

Cycles of latency that the CIC decimation object takes between the first valid input and the first valid
output. Each call to the object simulates one cycle. This latency assumes valid input data on every
cycle.

See Also
Objects
dsp.HDLCICDecimation

Introduced in R2019b

5 Functions

5-836

getLatency
Package: dsp

Latency of FIR filter

Syntax
Y = getLatency(hdlfir,inputType,[],isInputComplex)
Y = getLatency(hdlfir,coeffType,coeffPrototype,isInputComplex)
Y = getLatency(hdlfir)

Description
Y = getLatency(hdlfir,inputType,[],isInputComplex) returns the latency, Y, between the
first valid input sample and the first valid output sample, assuming contiguous input samples. The
latency depends on filter structure and filter coefficients. Use this syntax when you are not using
programmable coefficients. The final three arguments may be optional, depending on the object
configuration.

• Use inputType when you set CoefficientsDataType property to 'Same word length as
input'. The latency can change with input data type because the object casts the coefficients to
the input data type, which can affect multiplier sharing for equal-absolute-value coefficients.

• Use isInputComplex when your input data is complex and you are using a partly-serial systolic
architecture. The latency changes when you have complex data and complex coefficients because
of the extra adder pipeline. When you specify isInputComplex, you must also give a placeholder
argument, [] for the unused third argument.

Y = getLatency(hdlfir,coeffType,coeffPrototype,isInputComplex) returns the latency,
Y, between the first valid input sample and the first valid output sample, assuming contiguous input
samples. The latency depends on filter structure and filter coefficients. Use this syntax when you are
using programmable coefficients. coeffType is the data type of the input coefficients. The final two
arguments may be optional, depending on the object configuration.

• Use coeffPrototype to optimize the programmable filter for symmetric or antisymmetric
coefficients. The prototype specifies a pattern that all input coefficients must follow. Based on the
prototype, the object implements an optimized filter that shares the multipliers for symmetric
coefficients. If your input coefficients do not all conform to the same pattern, or to opt out of
multiplier optimization, you can omit this argument or specify the prototype as an empty vector,
[].

• Use isInputComplex when your input data is complex. When you specify isInputComplex, you
must also specify the coeffPrototype or a placeholder argument, [].

Y = getLatency(hdlfir) returns the latency, Y. Use this syntax when the
CoefficientsDataType is set to a numeric type, you are not using programmable coefficients, and
the input data is not complex.

Examples

 getLatency

5-837

Explore Latency of HDL FIR Object

The latency of the dsp.HDLFIRFilter System object™ varies with filter structure, serialization
options, and whether the coefficient values provide optimization opportunities. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output.

Create a dsp.HDLFIRFilter System object™ and request the latency. The default architecture is
fully parallel systolic. The default data type for the coefficients is 'Same word length as input'.
Therefore, when you call the getLatency object function, you must specify an input data type. The
object casts the coefficient values to the input data type, and then checks for symmetric coefficients.
This Numerator has 31 symmetric coefficients, so the object optimizes for the shared coefficients,
and implements 16 multipliers.

Numerator = firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]);
Input_type = numerictype(1,16,15); % object uses only the word length for coefficient type cast
hdlfir = dsp.HDLFIRFilter('Numerator',Numerator);
L_sysp = getLatency(hdlfir,Input_type)

L_sysp = 23

Check the latency for a partly serial systolic implementation of the same filter. By default, the
SerializationOption property is 'Minimum number of cycles between valid input
samples', and so you must specify the serialization rule using the NumberOfCycles property. To
share each multiplier between 8 coefficients, set the NumberOfCycles to 8. The object then
optimizes based on the coefficient symmetry, so there are 16 unique coefficients shared 8 times each
over 2 multipliers. This serial filter implementation requires input samples that are valid every 8
cycles.

hdlfir = dsp.HDLFIRFilter('Numerator',Numerator,'FilterStructure','Partly serial systolic','NumberOfCycles',8);
L_syss = getLatency(hdlfir,Input_type)

L_syss = 19

Check the latency of a nonsymmetric fully parallel systolic filter. The Numerator has 31 coefficients.

Numerator = sinc(0.4*[-30:0]);
hdlfir = dsp.HDLFIRFilter('Numerator',Numerator);
L_sysp = getLatency(hdlfir,Input_type)

L_sysp = 37

Check the latency of the same nonsymmetric filter implemented as a partly serial systolic filter. In this
case, specify the SerializationOption by the number of multipliers. The object implements a
filter that has 2 multipliers and requires 8 cycles between input samples.

hdlfir = dsp.HDLFIRFilter('Numerator',Numerator,'FilterStructure','Partly serial systolic',...
 'SerializationOption','Maximum number of multipliers','NumberOfMultipliers',2);
L_syss = getLatency(hdlfir,Input_type)

L_syss = 37

Check the latency of a fully parallel transposed architecture. The latency for this filter structure is
always 6 cycles.

hdlfir = dsp.HDLFIRFilter('Numerator',Numerator,'FilterStructure','Direct form transposed');
L_trans = getLatency(hdlfir,Input_type)

5 Functions

5-838

L_trans = 6

Input Arguments
hdlfir — HDL-optimized FIR filter System object
dsp.HDLFIRFilter

HDL-optimized FIR filter System object that you created and configured. See dsp.HDLFIRFilter.

inputType — Input data type
numerictype object

Input data type, specified as a numerictype object. Call numerictype(s,w,f), where s is 1 for
signed and 0 for unsigned, w is the word length in bits, and f is the number of fractional bits.

If you specify [] for this argument, the object uses double data type to calculate the latency. The
result is equivalent to the fixed-point latency as long as the coefficient data type is large enough to
represent the coefficient values exactly.
Dependencies

This argument applies when the CoefficientsDataType is 'Same word length as input'.

coeffType — Input coefficients data type
numerictype object

Input coefficients data type, specified as a numerictype object. This argument applies when tyou
use programmable coefficients. Call numerictype(s,w,f), where s is 1 for signed and 0 for
unsigned, w is the word length in bits, and f is the number of fractional bits.
Dependencies

This argument applies when you set NumeratorSource to 'Input port (Parallel
interface)'.

coeffPrototype — Prototype filter coefficients
[] (default) | vector of numeric real values

Prototype filter coefficients, specified as a vector of numeric real values. The prototype specifies a
pattern that all input coefficients must follow. Based on the prototype, the object implements an
optimized filter that shares the multipliers for symmetric coefficients. If your input coefficients do not
all conform to the same pattern, or to opt out of multiplier optimization, specify the prototype as an
empty vector, [].

Coefficient optimizations affect the latency of the filter object.
Dependencies

This argument applies when you set NumeratorSource to 'Input port (Parallel
interface)'. When you have complex input data, but are not using programmable coefficients, set
this argument to [].
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

isInputComplex — Complexity of input data
false (default) | true

 getLatency

5-839

Set this argument to true if your input data is complex. You can omit this argument if your input data
is real. When your filter has complex input data and complex coefficients there is an additional adder
at the output of the filter that adds pipeline latency.
Data Types: logical

Output Arguments
Y — Cycles of latency
integer

Cycles of latency that the filter object takes between the first valid input and the first valid output.
Each call to the object simulates one cycle. This latency assumes valid input data on every cycle.

See Also
Objects
dsp.HDLFIRFilter

Introduced in R2018b

5 Functions

5-840

getLatency
Package: dsp

Latency of FIR decimation filter

Syntax
Y = getLatency(hdlfird,inputType,isInputComplex,inputVecSize)
Y = getLatency(hdlfird)

Description
Y = getLatency(hdlfird,inputType,isInputComplex,inputVecSize) returns the latency,
Y, between the first valid input sample and the first valid output sample, assuming contiguous input
samples. The latency depends on filter structure and filter coefficients. The final two arguments may
be optional, depending on the object configuration.

• Use inputType when you set CoefficientsDataType property to 'Same word length as
input'. Otherwise, set it to [].

• Set isInputComplex to true when your input data is complex. The latency changes when you
have complex data and complex coefficients, because of the extra adder pipeline.

Y = getLatency(hdlfird) returns the latency, Y. Use this syntax when the
CoefficientsDataType is set to a numeric type, you are using scalar input, and the input data is
not complex.

Examples

Explore Latency of HDL FIR Decimation Object

The latency of the dsp.HDLFIRDecimation System object™ varies with filter architecture and input
vector size. Use the getLatency function to find the latency of a particular configuration. The
latency is the number of cycles between the first valid input and the first valid output.

Create a dsp.HDLFIRDecimation System object™ and request the latency. The default filter is a
direct-form systolic architecture. The default data type for the coefficients is 'Same word length
as input'. Therefore, when you call the getLatency object function, you must specify an input
data type. The default filter has 36 coefficients. This example assumes the data input to your filter is
complex-valued. The default coefficients are real-valued. Complexity affects filter latency only when
you have complex-valued data and complex-valued coefficients.

inputType = numerictype(1,16,15); % object uses only the word length for coefficient type cast
complexInput = true;
downBy4 = dsp.HDLFIRDecimation('DecimationFactor',4);
L_by4scalar = getLatency(downBy4,inputType,complexInput)

L_by4scalar = 44

Check the latency for the same filter with vector input.

 getLatency

5-841

vectorSize = 2;
L_by4Vec2 = getLatency(downBy4,inputType,complexInput,vectorSize)

L_by4Vec2 = 28

Check the latency of a transposed architecture.

downBy4.FilterStructure = 'Direct form transposed';
L_by4trans = getLatency(downBy4,inputType,complexInput)

L_by4trans = 11

Check the latency for the transposed filter with vector input.

vectorSize = 4;
L_by4transVec4 = getLatency(downBy4,inputType,complexInput,vectorSize)

L_by4transVec4 = 9

Input Arguments
hdlfird — HDL-optimized FIR filter System object
dsp.HDLFIRDecimation

HDL-optimized FIR decimation filter System object that you created and configured. See
dsp.HDLFIRDecimation.

inputType — Input data type
numerictype object

Input data type, specified as a numerictype object. Call numerictype(s,w,f), where s is 1 for
signed and 0 for unsigned, w is the word length in bits, and f is the number of fractional bits.

If you specify [] for this argument, the object uses double data type to calculate the latency. The
result is equivalent to the fixed-point latency as long as the coefficient data type is large enough to
represent the coefficient values exactly.

Dependencies

This argument applies when the CoefficientsDataType is 'Same word length as input'.

isInputComplex — Complexity of input data
false (default) | true

Set this argument to true if your input data is complex. You can omit this argument if your input data
is real. When your filter has complex input data and complex coefficients there is an additional adder
at the output of the filter that adds pipeline latency.
Data Types: logical

inputVecSize — Vector size
integer from 1 to 64

Vector size, specified as an integer from 1 to 64. When you do not specify this argument, the function
assumes scalar input.

5 Functions

5-842

Output Arguments
Y — Cycles of latency
integer

Cycles of latency that the filter object takes between the first valid input and the first valid output.
Each call to the object simulates one cycle. This latency assumes valid input data on every cycle.

See Also
Objects
dsp.HDLFIRDecimation

Introduced in R2020b

 getLatency

5-843

generateScript
Generate MATLAB script to create scope with current settings

Syntax
generateScript(scope)

Description
generateScript(scope) generates a MATLAB script that can recreate a scope object with the
current settings in the scope.

Examples

Generate Script from dsp.SpectrumAnalyzer

1 Create a dsp.SpectrumAnalyzer System object.

scope = dsp.SpectrumAnalyzer();
show(scope);

2 Set options in the Spectrum Analyzer. For this example, turn on the Cursor Measurements. Also
in the Spectrum Settings, change the View type to Spectrum and spectrogram and set the
Axes Layout to Horizontal.

5 Functions

5-844

3 Generate a script to recreate the dsp.SpectrumAnalyzer with the same modified settings.
Either select File > Generate MATLAB Script or enter:

generateScript(scope);

A new editor window opens with code to regenerate the same scope.
% Creation Code for 'dsp.SpectrumAnalyzer'.
% Generated by Spectrum Analyzer on 10-Mar-2019 16:25:49 -0500.

specScope = dsp.SpectrumAnalyzer('ViewType','Spectrum and spectrogram', ...
 'AxesLayout','Horizontal');
% Cursor Measurements Configuration
specScope.CursorMeasurements.Enable = true;

 generateScript

5-845

Generate Script from dsp.ArrayPlot

1 Create a dsp.ArrayPlot object.

scope = dsp.ArrayPlot();
show(scope);

2 Set options in the Array Plot. For this example, from the Measurements tab, turn on the Data
Cursors. From the Plot tab, turn on Legend and Magnitude and Phase. Click Settings and
give the plot an XLabel and Title.

3 Generate a script to recreate the dsp.ArrayPlot with the same modified settings. Either select
Generate Script from the Plot tab, or enter:

generateScript(scope);

A new editor window opens with code to regenerate the same scope.
% Creation Code for 'dsp.ArrayPlot'.
% Generated by Array Plot on 20-Sep-2019 14:27:45 -0400.

arrayPlot = dsp.ArrayPlot('Title','My Array Plot', ...
 'XLabel','Frequency', ...
 'PlotAsMagnitudePhase',true, ...
 'ShowLegend',true, ...
 'Position',[2075 330 774 502]);

5 Functions

5-846

Generate Script from timescope

1 Create a timescope object.

scope = timescope;
show(scope)

2 Set options in the Time Scope. For this example, on the Scope tab, click Settings. Under
Display and Labels, select Show Legend and Magnitude Phase Plot. Set the Title as well.

3 Generate a script to recreate the timescope with the same modified settings. Either select
Generate Script from the Scope tab, or enter:

generateScript(scope);

A new editor window opens with code to regenerate the same scope.
% Creation Code for 'timescope'.
% Generated by Time Scope on 8-Nov-2020 13:51:54 -0500.

timeScope = timescope('Position',[2286 355 800 500], ...
 'Title','My Time Scope', ...
 'ShowLegend',true, ...
 'PlotAsMagnitudePhase',true);

Input Arguments
scope — object
dsp.SpectrumAnalyzer object | dsp.ArrayPlot object | timescope object

 generateScript

5-847

Object whose settings you want to recreate with a script.

See Also
dsp.SpectrumAnalyzer | dsp.ArrayPlot | timescope

Topics
“Generate a MATLAB Script”

Introduced in R2019a

5 Functions

5-848

getSpectralMaskStatus
Package: dsp

Get test results of current spectral mask

Syntax
results = getSpectralMaskStatus(scope)

Description
results = getSpectralMaskStatus(scope) returns the current status of the spectral mask on
the spectrum analyzer, scope, in a structure, results.

Examples

Get Spectral Mask Status

This example shows how to add a spectral mask to an existing dsp.SpectrumAnalyzer System
object scope and get the status with getSpectralMaskStatus.

sine = dsp.SineWave('Frequency',[98 100],'SampleRate',1000);
sine.SamplesPerFrame = 1024;
scope = dsp.SpectrumAnalyzer('SampleRate',sine.SampleRate, ...
 'PlotAsTwoSidedSpectrum',false,'ShowLegend',true);
hide(scope);

scope.SpectralMask.EnabledMasks = 'Upper and lower';
upperMask = [0 -10; 90 -10; 90 30; 110 30; 110 -10; 500 -10];
set(scope.SpectralMask,'UpperMask',upperMask,'LowerMask',-55);

for i=1:100
 scope(sine() + 0.05*randn(1024,2));
end

res = getSpectralMaskStatus(scope)

res =

 struct with fields:

 IsCurrentlyPassing: 0
 NumPassedTests: 1
 NumTotalTests: 33
 SuccessRate: 3.0303
 FailingMasks: 'Lower'
 FailingChannels: [1 2]
 SimulationTime: 101.3760

In the Spectrum Analyzer, you can see the same information in the Spectral Mask panel.

 getSpectralMaskStatus

5-849

show(scope);
release(scope);

Input Arguments
scope — Spectrum Analyzer
spectrum analyzer name

Spectrum Analyzer with spectral masks whose status you want to check. Specified by the name of the
dsp.SpectrumAnalyzer object.

Output Arguments
results — Current status of the spectral mask
structure

The results return the current status of the spectral mask with these properties:

5 Functions

5-850

Field Description
IsCurrentlyPassing Indicator of whether one or more masks are currently passing

1 — All masks are passing

0 — One or more masks are failing
NumPassedTests Number of mask tests that have passed
NumTotalTests Total number of mask tests
SuccessRate Percentage of tests that have passed
FailingChannels Array of channel numbers that are currently failing the mask

test
FailingMasks Character array of which masks are currently failing: 'None',

'Upper', 'Lower', or 'Upper and lower'
SimulationTime Simulation time

See Also
dsp.SpectrumAnalyzer | SpectrumAnalyzerConfiguration | getMeasurementsData

Introduced in R2017a

 getSpectralMaskStatus

5-851

getSpectrumData
Package: dsp

Save spectrum data shown in spectrum analyzer

Syntax
spectrumTable = getSpectrumData(scope)

Description
spectrumTable = getSpectrumData(scope) returns the spectrum and spectrogram displayed
on the spectrum analyzer along with additional statistics about the spectrum.

Examples
Save Spectrum Data

Save the spectrum estimation displayed on a spectrum analyzer.

Create a Spectrum Analyzer System object, scope, and generate data.

scope = dsp.SpectrumAnalyzer;
scope(randn(5000,3))

5 Functions

5-852

Save data from the last spectrum shown on the spectrum analyzer to a table.

specTable = getSpectrumData(scope)

specTable =

 1x3 table

 SimulationTime Spectrum FrequencyVector
 ______________ _______________ _______________

 {[0]} {1536x3 double} {1536x1 double}

Input Arguments
scope — Spectrum analyzer
system object name | block configuration

Spectrum analyzer you want to query. Specify a dsp.SpectrumAnalyzer System object or a
SpectrumAnalyzerConfiguration object for a spectrum analyzer block.

 getSpectrumData

5-853

Output Arguments
spectrumTable — Data about current spectrum estimation
table

A spectrum table is returned containing the following fields:

Field Description
SimulationTime Simulation time
Spectrum Power, power density, or RMS spectrum data
Spectrogram Spectrogram data
MinHoldTrace Minimum hold trace data
MaxHoldTrace Maximum hold trace data
FrequencyVector Frequency vector

See Also
Functions
isNewDataReady | getSpectralMaskStatus | getMeasurementsData

Objects
SpectrumAnalyzerConfiguration

Objects
dsp.SpectrumAnalyzer

Blocks
Spectrum Analyzer

Introduced in R2017b

5 Functions

5-854

getMeasurementsData
Package: dsp

Get the current measurement data displayed on the spectrum analyzer

Syntax
data = getMeasurementsData(scope)
data = getMeasurementsData(scope,'all')

Description
data = getMeasurementsData(scope) returns a data table about the current spectrum analyzer
measurements in use.

data = getMeasurementsData(scope,'all') returns a data table about all spectrum analyzer
measurements for the current time step.

Examples

Obtain Measurement Data Programmatically for dsp.SpectrumAnalyzer System object

Compute and display the power spectrum of a noisy sinusoidal input signal using the
dsp.SpectrumAnalyzer System object™. Measure the peaks, cursor placements, adjacent channel
power ratio, distortion, and CCDF values in the spectrum by enabling the following properties:

• PeakFinder
• CursorMeasurements
• ChannelMeasurements
• DistortionMeasurements
• CCDFMeasurements

Initialization

The input sine wave has two frequencies: 1000 Hz and 5000 Hz. Create two dsp.SineWave System
objects to generate these two frequencies. Create a dsp.SpectrumAnalyzer System object to
compute and display the power spectrum.

Fs = 44100;
Sineobject1 = dsp.SineWave('SamplesPerFrame',1024,'PhaseOffset',10,...
 'SampleRate',Fs,'Frequency',1000);
Sineobject2 = dsp.SineWave('SamplesPerFrame',1024,...
 'SampleRate',Fs,'Frequency',5000);
SA = dsp.SpectrumAnalyzer('SampleRate',Fs,'Method','Filter bank',...
 'SpectrumType','Power','PlotAsTwoSidedSpectrum',false,...
 'ChannelNames',{'Power spectrum of the input'},'YLimits',[-120 40],'ShowLegend',true);

 getMeasurementsData

5-855

Enable Measurements Data

To obtain the measurements, set the Enable property of the measurements to true.

SA.CursorMeasurements.Enable = true;
SA.ChannelMeasurements.Enable = true;
SA.PeakFinder.Enable = true;
SA.DistortionMeasurements.Enable = true;

Use getMeasurementsData

Stream in the noisy sine wave input signal and estimate the power spectrum of the signal using the
spectrum analyzer. Measure the characteristics of the spectrum. Use the getMeasurementsData
function to obtain these measurements programmatically. The isNewDataReady function indicates
when there is new spectrum data. The measured data is stored in the variable data.

data = [];
for Iter = 1:1000
 Sinewave1 = Sineobject1();
 Sinewave2 = Sineobject2();
 Input = Sinewave1 + Sinewave2;
 NoisyInput = Input + 0.001*randn(1024,1);
 SA(NoisyInput);
 if SA.isNewDataReady
 data = [data;getMeasurementsData(SA)];
 end
end

5 Functions

5-856

The right side of the spectrum analyzer shows the enabled measurement panes. The values shown in
these panes match with the values shown in the last time step of the data variable. You can access
the individual fields of data to obtain the various measurements programmatically.

Compare Peak Values

Peak values are obtained by the PeakFinder property. Verify that the peak values obtained in the
last time step of data match the values shown on the spectrum analyzer plot.

peakvalues = data.PeakFinder(end).Value

peakvalues = 3×1

 26.9850
 24.1735
 -52.3506

frequencieskHz = data.PeakFinder(end).Frequency/1000

frequencieskHz = 3×1

 4.9957
 0.9905

 getMeasurementsData

5-857

 7.8166

Obtain Measurements Data Programmatically for Spectrum Analyzer Block

Compute and display the power spectrum of a noisy sinusoidal input signal using the Spectrum
Analyzer block. Measure the peaks, cursor placements, adjacent channel power ratio, distortion, and
CCDF values in the spectrum by enabling these block configuration properties:

• PeakFinder
• CursorMeasurements
• ChannelMeasurements
• DistortionMeasurements
• CCDFMeasurements

Open and Inspect the Model

Filter a streaming noisy sinusoidal input signal using a Lowpass Filter block. The input signal consists
of two sinusoidal tones: 1 kHz and 15 kHz. The noise is white Gaussian noise with zero mean and a
variance of 0.05. The sampling frequency is 44.1 kHz. Open the model and inspect the various block
settings.

model = 'spectrumanalyzer_measurements.slx';
open_system(model)

5 Functions

5-858

Access the configuration properties of the Spectrum Analyzer block using the get_param function.

sablock = 'spectrumanalyzer_measurements/Spectrum Analyzer';
cfg = get_param(sablock,'ScopeConfiguration');

Enable Measurements Data

To obtain the measurements, set the Enable property of the measurements to true.

cfg.CursorMeasurements.Enable = true;
cfg.ChannelMeasurements.Enable = true;
cfg.PeakFinder.Enable = true;
cfg.DistortionMeasurements.Enable = true;

Simulate the Model

Run the model. The Spectrum Analyzer block compares the original spectrum with the filtered
spectrum.

sim(model)

 getMeasurementsData

5-859

The right side of the spectrum analyzer shows the enabled measurement panes.

Using getMeasurementsData

Use the getMeasurementsData function to obtain these measurements programmatically.

data = getMeasurementsData(cfg)

data =

 1x5 table

 SimulationTime PeakFinder CursorMeasurements ChannelMeasurements DistortionMeasurements
 ______________ __________ __________________ ___________________ ______________________

 {[0.9985]} 1x1 struct 1x1 struct 1x1 struct 1x1 struct

The values shown in measurement panes match the values shown in data. You can access the
individual fields of data to obtain the various measurements programmatically.

5 Functions

5-860

Compare Peak Values

As an example, compare the peak values. Verify that the peak values obtained by data.PeakFinder
match with the values seen in the Spectrum Analyzer window.

peakvalues = data.PeakFinder.Value
frequencieskHz = data.PeakFinder.Frequency/1000

peakvalues =

 26.8984
 26.2419
 -3.3507

frequencieskHz =

 15.0015
 1.0049
 6.0293

Save and Close the Model
save_system(model);
close_system(model);

Input Arguments
scope — Spectrum analyzer
System object name | block configuration

Spectrum analyzer you want to query. Specify a dsp.SpectrumAnalyzer System object or a
SpectrumAnalyzerConfiguration object for a spectrum analyzer block.

Output Arguments
data — Measurements data
table

When you specify 'all', a measurements table containing the following fields is returned:

Field Description
SimulationTime Simulation time
PeakFinder Peak finder data
CursorMeasurements Cursor measurements data
ChannelMeasurements Channel measurements data
DistortionMeasurements Distortion measurements data
CCDFMeasurements CCDF measurements data

When you do not specify 'all', the data table contains only the spectrum analyzer measurements
currently in use.

 getMeasurementsData

5-861

See Also
Functions
isNewDataReady | getSpectrumData | getSpectralMaskStatus

Objects
SpectrumAnalyzerConfiguration

Objects
dsp.SpectrumAnalyzer

Blocks
Spectrum Analyzer

Introduced in R2018b

5 Functions

5-862

getOctaveBandwidth
Package: dsp

Bandwidth in number of octaves

Syntax
N = getOctaveBandwidth(npFilter)

Description
N = getOctaveBandwidth(npFilter) returns the bandwidth of the notch peak filter, measured in
number of octaves.

Examples

Get Octave Bandwidth of Notch Peak Filter

Create a dsp.NotchPeakFilter object in the default configuration.

np = dsp.NotchPeakFilter

np =
 dsp.NotchPeakFilter with properties:

 Specification: 'Bandwidth and center frequency'
 Bandwidth: 2205
 CenterFrequency: 11025
 SampleRate: 44100

Determine the octave bandwidth of the filter using the getOctaveBandwidth function.

getOctaveBandwidth(np)

ans = 0.2881

Visualize the filter response using fvtool.

fvtool(np)

 getOctaveBandwidth

5-863

Input Arguments
npFilter — Notch peak filter
dsp.NotchPeakFilter

Notch peak filter whose bandwidth is measured in octaves, specified as a dsp.NotchPeakFilter
object.

Output Arguments
N — Number of octaves
scalar

Bandwidth of the filter measured in number of octaves, returned as a scalar.
Data Types: double

See Also
Functions
getBandwidth | getCenterFrequency | getQualityFactor | tf

Objects
dsp.NotchPeakFilter

5 Functions

5-864

Introduced in R2014a

 getOctaveBandwidth

5-865

getQualityFactor
Package: dsp

Get quality factor

Syntax
Q = getQualityFactor(npFilter)

Description
Q = getQualityFactor(npFilter) returns the quality factor (Q factor) of the notch peak filter.
The Q factor is defined as the center frequency divided by the bandwidth.

Examples

Compute Quality Factor of Notch Peak Filter

Create a dsp.NotchPeakFilter object in the default configuration, where the Specification
property is set to 'Bandwidth and center frequency'.

np = dsp.NotchPeakFilter

np =
 dsp.NotchPeakFilter with properties:

 Specification: 'Bandwidth and center frequency'
 Bandwidth: 2205
 CenterFrequency: 11025
 SampleRate: 44100

Determine the quality factor of the filter using the getQualityFactor function. The quality factor is
given by the ratio of the center frequency to the bandwidth.

getQualityFactor(np)

ans = 5

Visualize the filter response using fvtool.

fvtool(np)

5 Functions

5-866

Input Arguments
npFilter — Notch peak filter
dsp.NotchPeakFilter

Notch peak filter whose quality factor is computed, specified as a dsp.NotchPeakFilter object.

Output Arguments
Q — Quality factor
scalar

Quality factor of the filter, returned as a scalar. The Q factor is defined as the center frequency
divided by the bandwidth.
Data Types: double

See Also
Functions
getBandwidth | getCenterFrequency | getOctaveBandwidth | tf

Objects
dsp.NotchPeakFilter

 getQualityFactor

5-867

Introduced in R2014a

5 Functions

5-868

tf
Package: dsp

Transfer function

Syntax
[B,A] = tf(npFilter)
[B,A,B2,A2] = tf(npFilter)

Description
[B,A] = tf(npFilter) returns the vector of numerator coefficients, B, and the vector of
denominators, A, for the equivalent transfer function corresponding to the notch filter.

[B,A,B2,A2] = tf(npFilter) also returns the vector of numerator coefficients, B2, and the
vector of denominator coefficients, A2, for the equivalent transfer function corresponding to the peak
filter.

Examples

Determine Transfer Function of Notch Peak Filter

Create a dsp.NotchPeakFilter System object™. Obtain the coefficients of the transfer function
corresponding to the notch and peak filters.

notchpeak = dsp.NotchPeakFilter;
[Bnotch,Anotch,Bpeak,Apeak] = tf(notchpeak)

Bnotch = 1×3

 0.8633 -0.0000 0.8633

Anotch = 1×3

 1.0000 -0.0000 0.7265

Bpeak = 1×3

 0.1367 0 -0.1367

Apeak = 1×3

 1.0000 -0.0000 0.7265

 tf

5-869

Bnotch and Anotch are the vectors of numerator and denominator coefficients for the equivalent
transfer function corresponding to the notch filter. Bpeak and Apeak are the vectors of numerator
and denominator coefficients for the equivalent transfer function corresponding to the peak filter.

Input Arguments
npFilter — Notch peak filter object
dsp.NotchPeakFilter

Notch peak filter object, specified as a dsp.NotchPeakFilter object.

Output Arguments
B — Numerator coefficients of notch filter
vector

Numerator coefficients for the equivalent transfer function corresponding to the notch filter, specified
as a vector.
Data Types: double

A — Denominator coefficients of notch filter
vector

Denominator coefficients for the equivalent transfer function corresponding to the notch filter,
specified as a vector.
Data Types: double

B2 — Numerator coefficients of peak filter
vector

Numerator coefficients for the equivalent transfer function corresponding to the peak filter, specified
as a vector.
Data Types: double

A2 — Denominator coefficients of peak filter
vector

Denominator coefficients for the equivalent transfer function corresponding to the peak filter,
specified as a vector.
Data Types: double

See Also
Functions
getCenterFrequency | getOctaveBandwidth | getQualityFactor | getBandwidth

Objects
dsp.NotchPeakFilter

5 Functions

5-870

Introduced in R2014a

 tf

5-871

grpdelay
Package: dsp

Group delay response of discrete-time filter System object

Syntax
[gd,w] = grpdelay(sysobj)
[gd,w] = grpdelay(sysobj,n)
[gd,w] = grpdelay(sysobj,'Arithmetic',arithType)
grpdelay(sysobj)

Description
[gd,w] = grpdelay(sysobj) returns the group delay gd of the filter System object, sysobj,
based on the current filter coefficients. The vector w contains the frequencies (in radians) at which
the group delay is evaluated. The group delay is defined as:

− d
dw (angle(w))

The group delay is evaluated at 8192 points equally spaced around the upper half of the unit circle.

[gd,w] = grpdelay(sysobj,n) returns the group delay of the filter System object and the
corresponding frequencies at n points equally spaced around the upper half of the unit circle.

[gd,w] = grpdelay(sysobj,'Arithmetic',arithType) computes the group delay of the filter
System object, based on the arithmetic specified in arithType, using either of the previous syntaxes.

grpdelay(sysobj) plots the group delay of the filter System object in the fvtool.

For more input options, see grpdelay in Signal Processing Toolbox.

Examples

Group Delay of Discrete-Time Multirate Filter

CICComp = dsp.CICCompensationDecimator;

grpdelay computes the group delay of the filter and displays it using fvtool.

grpdelay(CICComp);

5 Functions

5-872

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator

 grpdelay

5-873

• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

n — Number of samples
8192 (default) | positive integer

Number of samples, specified as a positive integer. For an FIR filter where n is a power of two, the
computation is done faster using FFTs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

5 Functions

5-874

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
gd — Group delay
vector

Group delay vector of length n. If n is not specified, the function uses a default value of 8192.
Data Types: double

w — Frequencies
vector

Frequency vector of length n, in radians/sample. w consists of n points equally spaced around the
upper half of the unit circle (from 0 to π radians/sample). If n is not specified, the function uses a
default value of 8192.
Data Types: double

See Also
Functions
grpdelay

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

 grpdelay

5-875

help
Help for design method with filter specification

Syntax
help(d,'designmethod')

Description
help(d,'designmethod') displays help in the command window for the design algorithm
designmethod for the current specifications of the filter specification object d. designmethod must
be one of the design algorithms returned by designmethods for d, the design object.

Examples

Get Help for Designing Butterworth Filters

Get specific help for designing lowpass Butterworth filters.

The first lowpass filter uses the default specification 'Fp,Fst,Ap,Ast' and returns help text specific to
the specification.

d = fdesign.lowpass;
designmethods(d,'Systemobject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

help(d,'butter')

 DESIGN Design a Butterworth IIR filter.
 HD = DESIGN(D, 'butter') designs a Butterworth filter specified by the
 FDESIGN object D, and returns the DFILT/MFILT object HD.

 HD = DESIGN(D, ..., 'SystemObject', true) implements the filter, HD,
 using a System object instead of a DFILT/MFILT object.

 HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with the
 structure STRUCTURE. STRUCTURE is 'df2sos' by default and can be any of
 the following:

 'df1sos'

5 Functions

5-876

 'df2sos'
 'df1tsos'
 'df2tsos'
 'cascadeallpass'
 'cascadewdfallpass'

 Some of the listed structures may not be supported by System object
 filters. Type validstructures(D, 'butter', 'SystemObject', true) to
 get a list of structures supported by System objects.

 HD = DESIGN(..., 'MatchExactly', MATCH) designs a Butterworth filter
 and matches the frequency and magnitude specification for the band
 MATCH exactly. The other band will exceed the specification. MATCH
 can be 'stopband' or 'passband' and is 'stopband' by default.

 HD = DESIGN(..., 'SOSScaleNorm', NORM) designs an SOS filter and scales
 the coefficients using the P-Norm NORM. NORM can be either a
 discrete-time-domain norm or a frequency-domain norm. Valid time-domain
 norms are 'l1','l2', and 'linf'. Valid frequency-domain norms are
 'L1','L2', and 'Linf'. Note that L2-norm is equal to l2-norm
 (Parseval's theorem) but the same is not true for other norms.

 The different norms can be ordered in terms of how stringent they are
 as follows: 'l1' >= 'Linf' >= 'L2' = 'l2' >= 'L1' >= 'linf'.
 Using the most stringent scaling, 'l1', the filter is the least prone
 to overflow, but also has the worst signal-to-noise ratio. Linf-scaling is
 the most commonly used scaling in practice.

 Scaling is turned off by default, which is equivalent to setting
 SOSScaleNorm = ''.

 HD = DESIGN(..., 'SOSScaleOpts', OPTS) designs an SOS filter and scales
 the coefficients using an FDOPTS.SOSSCALING object OPTS. Scaling options
 are:
 Property Default Description/Valid values
 --------- ------- ------------------------
 'sosReorder' 'auto' Reorder section prior to scaling.
 {'auto','none','up','down','lowpass',
 'highpass','bandpass','bandstop'}
 'MaxNumerator' 2 Maximum value for numerator coefficients
 'NumeratorConstraint' 'none' {'none', 'unit', 'normalize','po2'}
 'OverflowMode' 'wrap' {'wrap','saturate'}
 'ScaleValueConstraint' 'unit' {'unit','none','po2'}
 'MaxScaleValue' 'Not used' Maximum value for scale values

 When sosReorder is set to 'auto', the sections will be automatically
 reordered depending on the response type of the design (lowpass,
 highpass, etc.).

 Note that 'MaxScaleValue' will only be used when 'ScaleValueConstraint'
 is set to something other than 'unit'. If 'MaxScaleValue' is set to a
 number, the 'ScaleValueConstraint' will be changed to 'none'. Further,
 if SOSScaleNorm is off (as it is by default), then all the SOSScaleOpts
 will be ignored.

 For more information about P-Norm and scaling options see help for DFILT\SCALE.

 % Example #1 - Compare passband and stopband MatchExactly.

 help

5-877

 h = fdesign.lowpass('Fp,Fst,Ap,Ast', .1, .3, 1, 60);
 Hd = design(h, 'butter', 'MatchExactly', 'passband');
 Hd(2) = design(h, 'butter', 'MatchExactly', 'stopband');

 % Compare the passband edges in FVTool.
 fvtool(Hd);
 axis([.09 .11 -2 0]);

Note the discussion of the MatchExactly input option. When you use a design object that uses a
different specification, such as 'N,F3dB', the help content for the butter design method changes.

In this case, the MatchExactly option does not appear in the help because it is not an available input
argument for the specification 'N,F3dB'.

d = fdesign.lowpass('N,F3dB')

d =
 lowpass with properties:

 Response: 'Lowpass'
 Specification: 'N,F3dB'
 Description: {2x1 cell}
 NormalizedFrequency: 1
 FilterOrder: 10
 F3dB: 0.5000

designmethods(d,'Systemobject',true)

Design Methods that support System objects for class fdesign.lowpass (N,F3dB):

butter
maxflat

help(d,'butter')

 DESIGN Design a Butterworth IIR filter.
 HD = DESIGN(D, 'butter') designs a Butterworth filter specified by the
 FDESIGN object D, and returns the DFILT/MFILT object HD.

 HD = DESIGN(D, ..., 'SystemObject', true) implements the filter, HD,
 using a System object instead of a DFILT/MFILT object.

 HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with the
 structure STRUCTURE. STRUCTURE is 'df2sos' by default and can be any of
 the following:

 'df1sos'
 'df2sos'
 'df1tsos'
 'df2tsos'
 'cascadeallpass'
 'cascadewdfallpass'

 Some of the listed structures may not be supported by System object
 filters. Type validstructures(D, 'butter', 'SystemObject', true) to
 get a list of structures supported by System objects.

5 Functions

5-878

 HD = DESIGN(..., 'SOSScaleNorm', NORM) designs an SOS filter and scales
 the coefficients using the P-Norm NORM. NORM can be either a
 discrete-time-domain norm or a frequency-domain norm. Valid time-domain
 norms are 'l1','l2', and 'linf'. Valid frequency-domain norms are
 'L1','L2', and 'Linf'. Note that L2-norm is equal to l2-norm
 (Parseval's theorem) but the same is not true for other norms.

 The different norms can be ordered in terms of how stringent they are
 as follows: 'l1' >= 'Linf' >= 'L2' = 'l2' >= 'L1' >= 'linf'.
 Using the most stringent scaling, 'l1', the filter is the least prone
 to overflow, but also has the worst signal-to-noise ratio. Linf-scaling is
 the most commonly used scaling in practice.

 Scaling is turned off by default, which is equivalent to setting
 SOSScaleNorm = ''.

 HD = DESIGN(..., 'SOSScaleOpts', OPTS) designs an SOS filter and scales
 the coefficients using an FDOPTS.SOSSCALING object OPTS. Scaling options
 are:
 Property Default Description/Valid values
 --------- ------- ------------------------
 'sosReorder' 'auto' Reorder section prior to scaling.
 {'auto','none','up','down','lowpass',
 'highpass','bandpass','bandstop'}
 'MaxNumerator' 2 Maximum value for numerator coefficients
 'NumeratorConstraint' 'none' {'none', 'unit', 'normalize','po2'}
 'OverflowMode' 'wrap' {'wrap','saturate'}
 'ScaleValueConstraint' 'unit' {'unit','none','po2'}
 'MaxScaleValue' 'Not used' Maximum value for scale values

 When sosReorder is set to 'auto', the sections will be automatically
 reordered depending on the response type of the design (lowpass,
 highpass, etc.).

 Note that 'MaxScaleValue' will only be used when 'ScaleValueConstraint'
 is set to something other than 'unit'. If 'MaxScaleValue' is set to a
 number, the 'ScaleValueConstraint' will be changed to 'none'. Further,
 if SOSScaleNorm is off (as it is by default), then all the SOSScaleOpts
 will be ignored.

 For more information about P-Norm and scaling options see help for DFILT\SCALE.

 % Example #1 - Design a lowpass Butterworth filter in the DF2TSOS structure.
 h = fdesign.lowpass('N,F3dB');
 Hd = design(h, 'butter', 'FilterStructure', 'df2tsos');

See Also
fdesign | design | designmethods | designopts

Introduced in R2011a

 help

5-879

hide
Package:

Hide scope window

Syntax
hide(scope)

Description
hide(scope) hides the window of the scope.

Examples

Hide and Show Time Scope

Create a sine wave signal and view it in the scope.

Fs = 1000; % Sampling frequency
signal = dsp.SineWave('Frequency',50,'SampleRate',Fs,...
 'SamplesPerFrame',100);
scope = timescope('SampleRate',Fs,'TimeSpanSource','property',...
 'TimeSpan',0.25,'YLimits',[-1 1]);
for ii = 1:2
 xsine = signal();
 scope(xsine)
end

5 Functions

5-880

Hide the scope window.

if(isVisible(scope))
 hide(scope)
end

Show the scope window.

if(~isVisible(scope))
 show(scope)
end

 hide

5-881

Clean up workspace variables.

clear scope Fs sine ii xsine

Input Arguments
scope — Scope object
scope object

Scope object whose window you want to hide, specified as one of the following:

• dsp.SpectrumAnalyzer System object
• dsp.ArrayPlot System object
• dsp.LogicAnalyzer System object
• timescope object
• dsp.DynamicFilterVisualizer object

Example: myScope = timescope; hide(myScope)

See Also
Functions
show | isVisible | step

5 Functions

5-882

Objects
dsp.DynamicFilterVisualizer | timescope | dsp.ArrayPlot | dsp.LogicAnalyzer |
dsp.SpectrumAnalyzer

Introduced in R2011a

 hide

5-883

ifir
Interpolated FIR filter design

Syntax
[h,g] = ifir(l,type,f,dev)
[h,g,d] = ifir(l,type,f,dev)
[...] = ifir(...,str)

Description
[h,g] = ifir(l,type,f,dev) designs a periodic filter h(zl), where l is the interpolation factor.
It also finds an image-suppressor filter g(z), such that the cascade of the two filters represents the
optimal minimax FIR approximation of the desired response. This response is specified by type, with
band edge frequencies contained in vector f. This is done while not exceeding the maximum
deviations or ripples (linear) specified in vector dev.

When type is set to 'low', the filter design is a lowpass design. When type is set to 'high', the
filter design is a highpass design. f is a two-element vector with passband and stopband edge
frequency values. For narrowband lowpass filters and wideband highpass filters, l×f(2) is less than
1. For wideband lowpass filters and narrowband highpass filters, specify f so that l×(1–f(1)) is
less than 1.

dev is a two-element vector that contains the peak ripple or deviation (in linear units) allowed for
both the passband and the stopband.

The ifir design algorithm achieves an efficient design in the sense that it reduces the total number
of multipliers required. To do this, the design problem is broken into two stages. In the first stage, the
filter is upsampled to achieve the stringent specifications without using many multipliers. In the
second stage, the filter removes the images created when upsampling the previous filter.

[h,g,d] = ifir(l,type,f,dev) returns a delay d that is connected in parallel with the cascade
of h(zl) and g(z) for both wideband lowpass and highpass filters. This is necessary to obtain the
desired response.

[...] = ifir(...,str) uses str to choose the algorithm level of optimization used. Possible
values for str are 'simple', 'intermediate' (default) or 'advanced'. str provides for a
tradeoff between design speed and filter order optimization. The 'advanced' option can result in
substantial filter order reduction, especially for g(z).

Examples

Narrowband lowpass design using an interpolation factor of 6

This example shows how to use the function ifir to design a narrowband lowpass filter.

[h,g]=ifir(6,'low',[.12 .14],[.01 .001]);
H = dsp.FIRFilter('Numerator',h);
G = dsp.FIRFilter('Numerator',g);

5 Functions

5-884

hfv = fvtool(H,G);
legend(hfv,'Periodic Filter','Image Suppressor Filter');

Hcas = cascade(H,G);
hfv2 = fvtool(Hcas);
legend(hfv2,'Overall Filter');

 ifir

5-885

Wideband highpass design using an interpolation factor of 6

This example shows how to use ifir to design a wideband highpass filter.

[h,g,d]=ifir(6,'high',[.12 .14],[.001 .01]);
H = dsp.FIRFilter('Numerator',h); G = dsp.FIRFilter('Numerator',g);
b1 = cascade(H,G); % Branch 1
b2 = dsp.FIRFilter('Numerator',d); % Branch 2
Hoverall = freqz(b1) + freqz(b2); % Overall wideband highpass
plot(linspace(0,1,length(Hoverall)),20*log10(abs(Hoverall)))
xlabel('Normalized frequency (\times \pi) rad/s')
ylabel('Magnitude (dB)')
title('Overall Filter');
grid on

5 Functions

5-886

Design a cascade of lowpass filters

This example shows how to use fdesign.lowpass to design a cascade of lowpass filters. After
designing the filter, use fvtool to plot the response curve.

fpass = 0.2;
fstop = 0.24;
d1 = fdesign.lowpass(fpass, fstop);
lowpassCascade = design(d1,'ifir','Systemobject',true);
fvtool(lowpassCascade)

 ifir

5-887

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
Functions
fdesign | firgr | fir1 | firls | firpm

Introduced in R2011a

5 Functions

5-888

iirbpc2bpc
Transform IIR complex bandpass filter to IIR complex bandpass filter with different characteristics

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt)

Description
[Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt) transform IIR complex
bandpass filter to IIR complex bandpass filter with different characteristics.

The iirbpc2bpc function returns the numerator and denominator vectors, Num and Den,
respectively of the target filter transformed from the complex bandpass prototype by applying a first-
order complex bandpass to complex bandpass frequency transformation. For more details, see IIR
Complex Bandpass Frequency Transformation on page 5-891.

The function also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the
allpass mapping filter. The prototype lowpass filter is specified with the numerator B and a
denominator A.

Note Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the
sample rate.

Examples

Shift Complex Bandpass

Design a prototype real IIR lowpass elliptic filter with a gain of about –3 dB at 0.5π rad/sample.

[b,a] = ellip(3,0.1,30,0.409);

Create a complex passband from 0.25π to 0.75π.

[bc,ac] = iirlp2bpc(b,a,0.5,[0.25 0.75]);

Move the bandpass to between –0.3π and 0.1π.

[num,den] = iirbpc2bpc(bc,ac,[0.25 0.75],[-0.3 0.1]);

Compare the three filters in FVTool.

hvft = fvtool(b,a,bc,ac,num,den);
legend(hvft,'Prototype','Positive complex band','Target')

 iirbpc2bpc

5-889

Input Arguments
B — Numerator of prototype lowpass filter
row vector

Numerator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double
Complex Number Support: Yes

A — Denominator of prototype lowpass filter
row vector

Denominator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double
Complex Number Support: Yes

Wo — Frequency values to be transformed from prototype filter
two-element vector

Frequency values to be transformed from the prototype filter, specified as a two-element vector.
Frequencies in Wo must be normalized to be between -1 and 1, with 1 corresponding to half the
sample rate.
Data Types: single | double

5 Functions

5-890

Wt — Desired frequency locations in transformed target filter
two-element vector

Desired frequency locations in the transformed target filter, specified as a two-element vector.
Frequencies in Wt must be normalized to be between -1 and 1, with 1 corresponding to half the
sample rate.
Data Types: single | double

Output Arguments
Num — Numerator of target filter
row vector

Numerator of the target filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

Den — Denominator of target filter
row vector

Denominator of the target filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

AllpassNum — Numerator of mapping filter
row vector

Numerator of the mapping filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

AllpassDen — Denominator of mapping filter
row vector

Denominator of the mapping filter, returned as a row vector.
Data Types: single | double

More About
IIR Complex Bandpass Frequency Transformation

IIR Complex Bandpass Frequency transformation effectively places two features of the original filter,
located at frequencies Wo1 and Wo2, at the required target frequency locations, Wt1, and Wt2
respectively. It is assumed that Wt2 is greater than Wt1. In most of the cases the features selected for
the transformation are the band edges of the filter passbands. In general it is possible to select any
feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of the original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

 iirbpc2bpc

5-891

IIR complex bandpass frequency transformation can also be used for transforming other types of
filters; e.g., complex notch filters or resonators can be repositioned at two distinct desired
frequencies at any place around the unit circle for example in the adaptive system.

See Also
iirftransf | allpassbpc2bpc | zpkbpc2bpc

Introduced in R2011a

5 Functions

5-892

iircomb
IIR comb notch or peak filter

Syntax
[num,den] = iircomb(n,bw)
[num,den] = iircomb(n,bw,ab)
[num,den] = iircomb(___ ,type)

Description
[num,den] = iircomb(n,bw) returns a digital notching filter with order n and with the width of
the filter notch at -3 dB set to bw, the filter bandwidth.

For the notching filter, the transfer function takes the form:

H(z) = b 1− z−n

1− αz−n

where α and b are positive scalars and n is the filter order or the number of notches in the filter
minus 1.

[num,den] = iircomb(n,bw,ab) returns a digital notching filter whose bandwidth, bw, is
specified at a level of –ab decibels.

[num,den] = iircomb(___ ,type) returns either a digital notch filter or a digital peaking filter
as specified by type.

The transfer function for peaking filters is:

H(z) = b 1− z−n

1 + az−n

Examples

Design IIR Notch Filter

Design and plot an IIR notch filter with 11 notches (equal to filter order plus 1) that removes a 60 Hz
tone (f0) from a signal at 600 Hz(fs). For this example, set the Q factor for the filter to 35 and use it to
specify the filter bandwidth.

fs = 600;
fo = 60;
q = 35;
bw = (fo/(fs/2))/q;
[b,a] = iircomb(fs/fo,bw,'notch'); % Note type flag 'notch'

Use the Filter Visualization Tool (fvtool) to generate the plot showing the filter notches.

 iircomb

5-893

fvtool(b,a);

Note that the notches are evenly spaced and one falls at exactly 60 Hz.

Input Arguments
n — Order of digital filter
positive integer

Order of the digital filter, specified as a positive integer. n also defines the number of notches (or
peaks) in the filter across the frequency range 0 to 2π. The number of notches (or peaks) equals n+1.
Data Types: single | double

bw — Bandwidth of filter
positive scalar in the range (0,1)

Bandwidth of the filter at a level of –ab decibels, specified as a positive scalar in the range (0,1).

The quality factor (Q factor) q for the filter is related to the filter bandwidth by q = ω0/bw where ω0 is
the frequency to remove from the signal.
Data Types: single | double

ab — Magnitude response at filter bandwidth
-3 (default) | scalar

5 Functions

5-894

Magnitude response at the filter bandwidth bw, specified as a scalar in dB. You can include the
optional input argument ab to specify the magnitude response at a level other than the default -3 dB,
for example, -6 dB or 0 dB. If you do not include the argument ab, the function sets the magnitude
response at the default -3 dB level.
Data Types: single | double

type — Type of digital filter
'notch' (default) | 'peak'

Type of the digital filter, specified as either:

• 'notch' — Design an IIR notch filter. Notch filters attenuate the response at the specified
frequencies. This is the default type. When you omit the type input argument, iircomb function
returns a notch filter.

• 'peak' — Design an IIR peaking filter. Peaking filters boost the signal at the specified
frequencies.

Output Arguments
num — Numerator coefficients
real-valued row vector

Numerator coefficients of the IIR filter transfer function, returned as a real-valued row vector. For an
nth-order filter, the number of elements in the row vector is n+1.
Data Types: single | double

den — Denominator coefficients
real-valued row vector

Denominator coefficients of the IIR filter transfer function, returned as a real-valued row vector. For
an nth-order filter, the number of elements in the row vector is n+1.
Data Types: single | double

References
[1] Orfanidis, S.J., Introduction to Signal Processing, Englewood Cliffs, New Jersey: Prentice-Hall,

1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
firgr | iirnotch | iirpeak | iirparameq

 iircomb

5-895

Introduced in R2011a

5 Functions

5-896

iirftransf
IIR frequency transformation of filter

Syntax
[OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen)

Description
[OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen) returns the numerator
and denominator vectors, OutNum and OutDen, of the target filter, which is the result of transforming
the prototype filter specified by the numerator, OrigNum, and denominator, OrigDen, with the
mapping filter given by the numerator, FTFNum, and the denominator, FTFDen. If the allpass mapping
filter is not specified, then the function returns an original filter.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[num, den] = iirftransf(b, a, AlpNum, AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Here's the comparison between the filters.

 iirftransf

5-897

Arguments
Variable Description
OrigNum Numerator of the prototype lowpass filter
OrigDen Denominator of the prototype lowpass filter
FTFNum Numerator of the mapping filter
FTFDen Denominator of the mapping filter
OutNum Numerator of the target filter
OutDen Denominator of the target filter

See Also
zpkftransf

Introduced in R2011a

5 Functions

5-898

iirgrpdelay
Optimal IIR filter with prescribed group-delay

Syntax
[num,den] = iirgrpdelay(n,f,edges,a)
[num,den] = iirgrpdelay(n,f,edges,a,w)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)
[num,den,tau] = iirgrpdelay(n,f,edges,a,w)

Description
[num,den] = iirgrpdelay(n,f,edges,a) returns an allpass IIR filter of order n (n must be
even) which is the best approximation to the relative group-delay response described by f and a in
the least-pth sense. f is a vector of frequencies between 0 and 1 and a is specified in samples. The
vector edges specifies the band-edge frequencies for multi-band designs. iirgrpdelay uses a
constrained Newton-type algorithm. Always check your resulting filter using grpdelay or freqz.

[num,den] = iirgrpdelay(n,f,edges,a,w) uses the weights in w to weight the error. w has one
entry per frequency point and must be the same length as f and a). Entries in w tell iirgrpdelay
how much emphasis to put on minimizing the error in the vicinity of each specified frequency point
relative to the other points.

f and a must have the same number of elements. f and a can contains more elements than the vector
edges contains. This lets you use f and a to specify a filter that has any group-delay contour within
each band.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius) returns a filter having a maximum pole
radius equal to radius, where 0<radius<1. radius defaults to 0.999999. Filters whose pole radius
you constrain to be less than 1.0 can better retain transfer function accuracy after quantization.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p), where p is a two-element vector [pmin
pmax], lets you determine the minimum and maximum values of p used in the least-pth algorithm. p
defaults to [2 128] which yields filters very similar to the L-infinity, or Chebyshev, norm. pmin and
pmax should be even. If p is 'inspect', no optimization occurs. You might use this feature to inspect
the initial pole/zero placement.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens) specifies the grid density dens
used in the optimization process. The number of grid points is (dens*(n+1)). The default is 20.
dens can be specified as a single-element cell array. The grid is not equally spaced.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden) allows you to specify
the initial estimate of the denominator coefficients in vector initden. This can be useful for difficult
optimization problems. The pole-zero editor in Signal Processing Toolbox software can be used for
generating initden.

 iirgrpdelay

5-899

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau) allows the initial
estimate of the group delay offset to be specified by the value of tau, in samples.

[num,den,tau] = iirgrpdelay(n,f,edges,a,w) returns the resulting group delay offset. In all
cases, the resulting filter has a group delay that approximates [a + tau]. Allpass filters can have
only positive group delay and a non-zero value of tau accounts for any additional group delay that is
needed to meet the shape of the contour specified by (f,a). The default for tau is max(a).

Hint: If the zeros or poles cluster together, your filter order may be too low or the pole radius may be
too small (overly constrained). Try increasing n or radius.

For group-delay equalization of an IIR filter, compute a by subtracting the filter's group delay from its
maximum group delay. For example,

[be,ae] = ellip(4,1,40,0.2);
f = 0:0.001:0.2;
g = grpdelay(be,ae,f,2); % Equalize only the passband.
a = max(g)-g;
[num,den]=iirgrpdelay(8, f, [0 0.2], a);

References
Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc.
1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All inputs must be constant. Expressions or variables are allowed if their values do not change.
• Does not support syntaxes that have cell array input.

See Also
freqz | filter | grpdelay | iirlpnorm | iirlpnormc | zplane

Introduced in R2011a

5 Functions

5-900

iirlinphase
Quasi-linear phase IIR filter from halfband filter specification

Syntax
iirlinFilter= design(d,'iirlinphase','SystemObject',true)
hd = design(...,'filterstructure',structure,'SystemObject',true)

Description
iirlinFilter= design(d,'iirlinphase','SystemObject',true) designs a quasi-linear
phase filter iirlinFilter specified by the filter specification object d.

hd = design(...,'filterstructure',structure,'SystemObject',true) returns a filter
with the structure specified by structure. By default, the filter structure is a cascade structure. The
following table lists all the structures design supports for the IIR linear phase response.

Structure Filter Structure
cascadeallpass Cascade of allpass filters
cascadewdfallpass Cascade of allpass wave digital filters
iirdecim IIR polyphase decimator
iirwdfdecim IIR wave digital filter polyphase decimator
iirinterp IIR polyphase interpolator
iirwdfinterp IIR wave digital filter polyphase interpolator

To get a list of all the structures the specific fdesign method supports, type the following in the
MATLAB command prompt.

d = fdesign.halfband;
strucs = validstructures(d,'SystemObject',true);

To get a list of structures iirlinphase supports, type the following in the MATLAB command
prompt.

iirlinphaseStrucs = strucs.iirlinphase;

Examples

Design a Minimum-order Halfband IIR Filter

Design a quasi-linear phase, minimum-order halfband IIR filter with transition width of 0.36 and
stopband attenuation of at least 80 dB.

tw = 0.36;
ast = 80;
d = fdesign.halfband('tw,ast',tw,ast); % Transition width,
 % stopband attenuation.

 iirlinphase

5-901

halfbandIIR = design(d,'iirlinphase','SystemObject',true);
fvtool(halfbandIIR)

Notice the characteristic halfband nature of the ripple in the stopband. If you measure the resulting
filter, you see it meets the specifications.

measure(halfbandIIR)

ans =
Sample Rate : N/A (normalized frequency)
Passband Edge : 0.32
3-dB Point : 0.5
6-dB Point : 0.51911
Stopband Edge : 0.68
Passband Ripple : 4.0866e-08 dB
Stopband Atten. : 80.2642 dB
Transition Width : 0.36

See Also
fdesign.halfband

Introduced in R2011a

5 Functions

5-902

iirlp2bp
Transform IIR lowpass filter to IIR bandpass filter

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt)

Description
[Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt) transform IIR lowpass filter to
IIR bandpass filter.

The iirlp2bp function returns the numerator and denominator vectors, Num and Den, respectively,
of the target filter transformed from the real lowpass prototype by applying a second-order real
lowpass to real bandpass frequency mapping. For more details, see “IIR Lowpass to IIR Bandpass
Transformation” on page 5-905.

The function also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the
allpass mapping filter. The prototype lowpass filter is specified with the numerator B and denominator
A.

Note Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the
sample rate.

Examples

Transform Lowpass Filter to Bandpass Filter

Design a prototype real IIR lowpass elliptic filter with a gain of about –3 dB at 0.5π rad/sample.

[b,a] = ellip(3,0.1,30,0.409);

Create a real bandpass filter by placing the cutoff frequencies of the prototype filter at 0.25π and
0.75π.

[num,den] = iirlp2bp(b,a,0.5,[0.25 0.75]);

Compare the magnitude responses of the filters using FVTool.

hvft = fvtool(b,a,num,den);
legend(hvft,'Prototype','Target')

 iirlp2bp

5-903

Input Arguments
B — Numerator of prototype lowpass filter
row vector

Numerator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double

A — Denominator of prototype lowpass filter
row vector

Denominator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double

Wo — Frequency value to be transformed from prototype filter
scalar

Frequency value to be transformed from the prototype filter, specified as a scalar. Frequency Wo must
be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.
Data Types: single | double

Wt — Desired frequency locations in transformed target filter
two-element vector

5 Functions

5-904

Desired frequency locations in the transformed target filter, specified as a two-element vector.
Frequencies in Wt must be normalized to be between 0 and 1, with 1 corresponding to half the
sample rate.
Data Types: single | double

Output Arguments
Num — Numerator of target filter
row vector

Numerator of the target filter, returned as a row vector.
Data Types: single | double

Den — Denominator of target filter
row vector

Denominator of the target filter, returned as a row vector.
Data Types: single | double

AllpassNum — Numerator of mapping filter
row vector

Numerator of the mapping filter, returned as a row vector.
Data Types: single | double

AllpassDen — Denominator of mapping filter
row vector

Denominator of the mapping filter, returned as a row vector.
Data Types: single | double

More About
IIR Lowpass to IIR Bandpass Transformation

IIR lowpass to IIR bandpass transformation effectively places one feature of the original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second feature, originally at
+Wo, at the new location, Wt2. It is assumed that Wt2 is greater than Wt1. This transformation
implements the “DC Mobility,” meaning that the Nyquist feature stays at Nyquist, but the DC feature
moves to a location dependent on the selection of Wts.

Relative positions of other features of the original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the
cutoff frequency of an original lowpass filter. You can choose to transform any feature of the original
filter like stopband edge, DC, deep minimum in the stopband, or others.

 iirlp2bp

5-905

Real lowpass to bandpass transformation can also be used to transform other types of filters, for
example, real notch filters or resonators can be doubled and positioned at two distinct desired
frequencies.

References
[1] Nowrouzian, B., and A.G. Constantinides. “Prototype Reference Transfer Function Parameters in

the Discrete-Time Frequency Transformations.” In Proceedings of the 33rd Midwest
Symposium on Circuits and Systems, 1078–82. Calgary, Alta., Canada: IEEE, 1991. https://
doi.org/10.1109/MWSCAS.1990.140912.

[2] Nowrouzian, B., and L.T. Bruton. “Closed-Form Solutions for Discrete-Time Elliptic Transfer
Functions.” In [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems ,
784–87. Washington, DC, USA: IEEE, 1992. https://doi.org/10.1109/MWSCAS.1992.271206.

[3] Constantinides, A.G. “Design of Bandpass Digital Filters.” Proceedings of the IEEE 57, no. 6
(1969): 1229–31. https://doi.org/10.1109/PROC.1969.7216.

[4] Constantinides, A.G.“Spectral transformations for digital filters.” Proceedings of the IEEE, vol.
117, no. 8: 1585-1590. August 1970.

See Also
Functions
iirftransf | allpasslp2bp | zpklp2bp

Introduced in R2011a

5 Functions

5-906

iirlp2bpc
Transform IIR lowpass to complex bandpass filter

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)

Description
[Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)transform IIR lowpass to
complex bandpass filter.

The iirlp2bpc function returns the numerator and denominator vectors, Num and Den, respectively
of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass
to complex bandpass frequency transformation. For more details, see “IIR Lowpass to Complex
Bandpass Transformation” on page 5-909.

The function also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the
allpass mapping filter. The prototype lowpass filter is specified with the numerator B and a
denominator A.

Examples

Transform Lowpass Filter to Complex Bandpass Filter

Design a prototype real IIR lowpass elliptic filter with a gain of about –3 dB at 0.5π rad/sample.

[b,a] = ellip(3,0.1,30,0.409);

Create a complex bandpass filter by placing the cutoff frequencies of the prototype filter at 0.25π and
0.75π.

[num,den] = iirlp2bpc(b,a,0.5,[0.25 0.75]);

Compare the magnitude responses of the filters using FVTool.

hvft = fvtool(b,a,num,den);
legend(hvft,'Prototype','Target')

 iirlp2bpc

5-907

Input Arguments
B — Numerator of prototype lowpass filter
row vector

Numerator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double

A — Denominator of prototype lowpass filter
row vector

Denominator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double

Wo — Frequency value to be transformed from prototype filter
scalar

Frequency value to be transformed from the prototype filter, specified as a real scalar. Frequency Wo
should be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.
Data Types: single | double

Wt — Desired frequency locations in transformed target filter
two-element vector

5 Functions

5-908

Desired frequency locations in the transformed target filter, specified as a two-element vector.
Frequencies in Wt should be normalized to be between -1 and 1, with 1 corresponding to half the
sample rate.
Data Types: single | double

Output Arguments
Num — Numerator of target filter
row vector

Numerator of the target filter, returned as a row vector.
Data Types: single | double

Den — Denominator of target filter
row vector

Denominator of the target filter, returned as a row vector.
Data Types: single | double

AllpassNum — Numerator of mapping filter
row vector

Numerator of the mapping filter, returned as a row vector.
Data Types: single | double

AllpassDen — Denominator of mapping filter
row vector

Denominator of the mapping filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

More About
IIR Lowpass to Complex Bandpass Transformation

IIR lowpass to complex bandpass transformation effectively places one feature of the original filter,
located at frequency -Wo, at the required target frequency location, Wt1 , and the second feature,
originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is greater than Wt1.

Relative positions of other features of the original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the
cutoff frequency of an original lowpass filter. You can choose to transform any feature of the original
filter like stopband edge, DC, deep minimum in the stopband, or others.

Lowpass to bandpass transformation can also be used to transform other types of filters, for example
real notch filters or resonators can be doubled and positioned at two distinct desired frequencies at

 iirlp2bpc

5-909

any place around the unit circle forming a pair of complex notches/resonators. This transformation
can be used for designing bandpass filters for radio receivers from the high-quality prototype lowpass
filter.

See Also
Functions
iirftransf | allpasslp2bpc | zpklp2bpc

Introduced in R2011a

5 Functions

5-910

iirlp2bs
Transform IIR lowpass to IIR bandstop filter

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt)

Description
[Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt)transform IIR lowpass to IIR
bandstop filter.

The iirlp2bs function returns the numerator and denominator vectors, Num and Den of the
transformed bandstop digital filter. AllpassNum and AllpassDen are the numerator and
denominator coefficients of the allpass mapping filter. The prototype lowpass filter is specified with
the numerator B and a denominator A. For more details, see “IIR Lowpass Filter to IIR Bandstop
Filter Transformation” on page 5-913.

Note Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the
sample rate.

Examples

Transform Lowpass Filter to Bandstop Filter

Design a prototype real IIR lowpass elliptic filter with a gain of about –3 dB at 0.5π rad/sample.

[b,a] = ellip(3,0.1,30,0.409);

Create a bandstop filter by placing the cutoff frequencies of the prototype filter at 0.25π and 0.75π.

[num,den] = iirlp2bs(b,a,0.5,[0.25 0.75]);

Compare the magnitude responses of the filters using FVTool.

fvt = fvtool(b,a,num,den);
legend(fvt,'Prototype','Target')

 iirlp2bs

5-911

Input Arguments
B — Numerator of prototype lowpass filter
row vector

Numerator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double

A — Denominator of prototype lowpass filter
row vector

Denominator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double

Wo — Frequency value to be transformed from prototype filter
scalar

Frequency value to be transformed from the prototype filter, specified as a real scalar. Frequency Wo
must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.
Data Types: single | double

Wt — Desired frequency locations in transformed target filter
two-element vector

5 Functions

5-912

Desired frequency locations in the transformed target filter, specified as a two-element vector.
Frequencies in Wt must be normalized to be between 0 and 1, with 1 corresponding to half the
sample rate.
Data Types: single | double

Output Arguments
Num — Numerator of target filter
row vector

Numerator of the target filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

Den — Denominator of target filter
row vector

Denominator of the target filter, returned as a row vector.
Data Types: single | double

AllpassNum — Numerator of mapping filter
row vector

Numerator of the mapping filter, returned as a row vector.
Data Types: single | double

AllpassDen — Denominator of mapping filter
row vector

Denominator of the mapping filter, returned as a row vector.
Data Types: single | double

More About
IIR Lowpass Filter to IIR Bandstop Filter Transformation

IIR lowpass filter to IIR bandstop filter transformation effectively places one feature of the original
filter, located at frequency -Wo, at the required target frequency location, Wt1, and the second feature,
originally at +Wo, at the new location, Wt2. Choice of the feature subject to the lowpass to bandstop
transformation is not restricted only to the cutoff frequency of an original lowpass filter. You can
choose to transform any feature of the original filter like stopband edge, DC, deep minimum in the
stopband, or others. It is assumed that Wt2 is greater than Wt1. Frequencies must be normalized to be
between 0 and 1, with 1 corresponding to half the sample rate.

This transformation implements the "Nyquist Mobility," which means that the DC feature stays at DC,
but the Nyquist feature moves to a location dependent on the selection of Wo and Wts.

Relative positions of other features of the original filter change in the target filter. This means that it
is possible to select two features of the original filter, F1 and F2, with F1 preceding F2. After the
transformation feature F2 will precede F1 in the target filter. However, the distance between F1 and F2
will not be the same before and after the transformation.

 iirlp2bs

5-913

For more details on the lowpass to bandstop frequency transformation, see “Digital Frequency
Transformations”.

References
[1] Nowrouzian, B., and A.G. Constantinides. “Prototype Reference Transfer Function Parameters in

the Discrete-Time Frequency Transformations.” In Proceedings of the 33rd Midwest
Symposium on Circuits and Systems, 1078–82. Calgary, Alta., Canada: IEEE, 1991. https://
doi.org/10.1109/MWSCAS.1990.140912.

[2] Nowrouzian, B., and L.T. Bruton. “Closed-Form Solutions for Discrete-Time Elliptic Transfer
Functions.” In [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems ,
784–87. Washington, DC, USA: IEEE, 1992. https://doi.org/10.1109/MWSCAS.1992.271206.

[3] Constantinides, A.G. “Design of Bandpass Digital Filters.” Proceedings of the IEEE 57, no. 6
(1969): 1229–31. https://doi.org/10.1109/PROC.1969.7216.

[4] Constantinides, A.G.“Spectral transformations for digital filters.” Proceedings of the IEEE, vol.
117, no. 8: 1585-1590. August 1970.

See Also
Functions
iirftransf | allpasslp2bs | zpklp2bs

Topics
“Digital Frequency Transformations”

Introduced in R2011a

5 Functions

5-914

iirlp2bsc
Transform IIR lowpass to complex bandstop filter

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt)

Description
[Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt) transform IIR lowpass to
complex bandstop filter.

The iirlp2bsc function returns the numerator and denominator vectors, Num and Den, respectively
of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass
to complex bandstop frequency transformation. For more details, see “IIR Lowpass Filter to IIR
Complex Bandstop Filter Transformation” on page 5-917.

The function also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the
allpass mapping filter. The prototype lowpass filter is specified with the numerator B and denominator
A.

Examples

Transform Lowpass Filter to Complex Bandstop Filter

Design a prototype real IIR lowpass elliptic filter with a gain of about –3 dB at 0.5π rad/sample.

[b,a] = ellip(3,0.1,30,0.409);

Create a complex bandstop filter by placing the cutoff frequencies of the prototype filter at –0.25π
and 0.75π.

[num,den] = iirlp2bsc(b,a,0.5,[-0.25 0.75]);

Compare the magnitude responses of the filters using FVTool.

fvt = fvtool(b,a,num,den);
legend(fvt,'Prototype','Target')

 iirlp2bsc

5-915

Input Arguments
B — Numerator of prototype lowpass filter
row vector

Numerator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double

A — Denominator of prototype lowpass filter
row vector

Denominator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double

Wo — Frequency value to be transformed from prototype filter
real scalar

Frequency value to be transformed from the prototype filter, specified as a scalar. Frequency Wo
should be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.
Data Types: single | double

Wt — Desired frequency locations in transformed target filter
two-element vector

5 Functions

5-916

Desired frequency locations in the transformed target filter, specified as a two-element vector.
Frequencies in Wt should be normalized to be between -1 and 1, with 1 corresponding to half the
sample rate.
Data Types: single | double

Output Arguments
Num — Numerator of target filter
row vector

Numerator of the target filter, returned as a row vector.
Data Types: single | double

Den — Denominator of target filter
row vector

Denominator of the target filter, returned as a row vector.
Data Types: single | double

AllpassNum — Numerator of mapping filter
row vector

Numerator of the mapping filter, returned as a row vector.
Data Types: single | double

AllpassDen — Denominator of mapping filter
row vector

Denominator of the mapping filter, returned as a row vector.
Data Types: single | double

More About
IIR Lowpass Filter to IIR Complex Bandstop Filter Transformation

IIR Lowpass Filter to IIR Complex Bandstop Filter transformation effectively places one feature of the
original filter, located at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is greater than Wt1.
Additionally the transformation swaps passbands with stopbands in the target filter.

Relative positions of other features of the original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the
cutoff frequency of an original lowpass filter. You can choose to transform any feature of the original
filter like stopband edge, DC, deep minimum in the stopband, or others.

Lowpass to bandpass transformation can also be used to transform other types of filters, for example.
real notch filters or resonators can be doubled and positioned at two distinct desired frequencies at

 iirlp2bsc

5-917

any place around the unit circle forming a pair of complex notches/resonators. This transformation
can be used for designing bandstop filters for band attenuation or frequency equalizers, from the
high-quality prototype lowpass filter.

See Also
Functions
iirftransf | allpasslp2bsc | zpklp2bsc

Introduced in R2011a

5 Functions

5-918

iirlp2hp
Transform lowpass IIR filter to highpass filter

Syntax
[num,den] = iirlp2hp(b,a,wo,wt)
[num,den,allpassNum,allpassDen] = iirbpc2bpc(b,a,wo,wt)

Description
[num,den] = iirlp2hp(b,a,wo,wt)transforms the lowpass IIR filter to highpass filter.

The iirlp2hp function defined by the input coefficients b and a, to a highpass IIR filter defined by
the coefficients num and den. The function accepts w0, frequency value to be transformed from the
prototype filter, and wt, desired frequency in the transformed highpass filter, and applies the lowpass
to highpass frequency transformation.

For more details, see “IIR Lowpass to Complex Highpass Frequency Transformation” on page 5-922.

[num,den,allpassNum,allpassDen] = iirbpc2bpc(b,a,wo,wt)in addition returns the
numerator and the denominator coefficients of the mapping filter.

Examples

Transform Lowpass Filter to Highpass Filter

This example transforms an IIR filter from lowpass to highpass by moving the magnitude response at
one frequency in the source filter to a new location in the transformed filter.

Generate a least P-norm optimal IIR lowpass filter with varying attenuation levels in the stopband.
Specify a numerator order of 10 and a denominator order of 6. Visualize the magnitude response of
the filter.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1], ...
 [0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0], ...
 [1 1 1 1 20 20]);

fvtool(b,a)

 iirlp2hp

5-919

To generate a highpass filter whose passband flattens out at 0.4π rad/sample, select the frequency in
the lowpass filter at 0.0175π, the frequency where the passband starts to roll off, and move it to the
new location. Compare the magnitude responses of the filters using FVTool.

wc = 0.0175;
wd = 0.4;
[num,den] = iirlp2hp(b,a,wc,wd);

hvft = fvtool(b,a,num,den);
legend(hvft,'Prototype','Target')

5 Functions

5-920

The transition band for the highpass filter is essentially the mirror image of the transition for the
lowpass filter from 0.0175π to 0.025π, stretched out over a wider frequency range. In the passbands,
the filter share common ripple characteristics and magnitude.

Input Arguments
b — Numerator of prototype lowpass IIR filter
row vector

Numerator coefficients of the prototype lowpass IIR filter, specified as a row vector.
Data Types: single | double

a — Denominator of prototype lowpass IIR filter
row vector

Denominator coefficients of the prototype lowpass IIR filter, specified as a row vector.
Data Types: single | double

wo — Frequency value to be transformed from prototype filter
positive scalar in (0,1)

Frequency value to be transformed from the prototype filter, specified as a real positive scalar in the
range (0,1).

 iirlp2hp

5-921

Data Types: single | double

wt — Desired frequency location in transformed highpass filter
positive scalar in (0,1)

Desired frequency location in the transformed highpass filter, specified as a real positive scalar in the
range (0,1).
Data Types: single | double

Output Arguments
num — Numerator of transformed highpass filter
row vector

Numerator coefficients of the transformed highpass filter, returned as a row vector.
Data Types: single | double

den — Denominator of transformed highpass filter
row vector

Denominator coefficients of the transformed highpass filter, returned as a row vector.
Data Types: single | double

allpassNum — Numerator of mapping filter
row vector

Numerator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double

allpassDen — Denominator of mapping filter
row vector

Denominator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double

More About
IIR Lowpass to Complex Highpass Frequency Transformation

IIR lowpass to complex highpass frequency transformation takes a selected frequency from the
lowpass filter, wo, and maps the corresponding magnitude response value onto the desired frequency
location in the highpass filter, wt. Note that all frequencies are normalized between zero and one and
that the filter order does not change when you transform to a highpass filter.

When you select wo and designate wt, the transformation algorithm sets the magnitude response at
the wt values of your bandstop filter to be the same as the magnitude response of your lowpass filter
at wo. Filter performance between the values in wt is not specified, except that the stopband retains
the ripple nature of your original lowpass filter and the magnitude response in the stopband is equal
to the peak response of your lowpass filter. To accurately specify the filter magnitude response across
the stopband of your bandpass filter, use a frequency value from within the stopband of your lowpass

5 Functions

5-922

filter as wo. Then your bandstop filter response is the same magnitude and ripple as your lowpass
filter stopband magnitude and ripple.

The transformation retains the shape of the original filter is what makes this function useful. If you
have a lowpass filter whose characteristics, such as rolloff or passband ripple, particularly meet your
needs, the transformation function lets you create a new filter with the same characteristic
performance features, but in a highpass version without designing the highpass filter from the
beginning.

In some cases transforming your filter may cause numerical problems, resulting in incorrect
conversion to the highpass filter. Use fvtool to verify the response of your converted filter.

References
[1] Nowrouzian, B., and A.G. Constantinides. “Prototype Reference Transfer Function Parameters in

the Discrete-Time Frequency Transformations.” In Proceedings of the 33rd Midwest
Symposium on Circuits and Systems, 1078–82. Calgary, Alta., Canada: IEEE, 1991. https://
doi.org/10.1109/MWSCAS.1990.140912.

[2] Nowrouzian, B., and L.T. Bruton. “Closed-Form Solutions for Discrete-Time Elliptic Transfer
Functions.” In [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems ,
784–87. Washington, DC, USA: IEEE, 1992. https://doi.org/10.1109/MWSCAS.1992.271206.

[3] Constantinides, A.G.“Spectral transformations for digital filters.” Proceedings of the IEEE, vol.
117, no. 8: 1585-1590. August 1970.

See Also
Functions
iirlp2bp | iirlp2bs | iirlp2lp | firlp2lp | firlp2hp

Introduced in R2011a

 iirlp2hp

5-923

iirlp2lp
Transform lowpass IIR filter to different lowpass filter

Syntax
[num,den] = iirlp2lp(b,a,wo,wt)
[num,den,allpassNum,allpassDen] = iirbpc2bpc(b,a,wo,wt)

Description
[num,den] = iirlp2lp(b,a,wo,wt) transform lowpass IIR filter to different lowpass filter.

The iirlp2lp function returns the numerator and denominator coefficients of the transformed
lowpass digital filter. The function transforms the magnitude response from lowpass to a different
lowpass. The prototype lowpass filter is specified with the numerator b and denominator a For more
details, see “Lowpass IIR Filter to Different Lowpass Filter Transformation” on page 5-927.

[num,den,allpassNum,allpassDen] = iirbpc2bpc(b,a,wo,wt) in addition returns the
numerator and the denominator coefficients of the allpass mapping filter.

Examples

Extend Passband of Lowpass Filter

This example transforms the passband of a lowpass IIR filter by moving the magnitude response at
one frequency in the source filter to a new location in the transformed filter.

Generate a least P-norm optimal IIR lowpass filter with varying attenuation levels in the stopband.
Specify a numerator order of 10 and a denominator order of 6. Visualize the magnitude response of
the filter.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1], ...
 [0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0], ...
 [1 1 1 1 10 10]);

fvtool(b,a)

5 Functions

5-924

To generate a lowpass filter whose passband extends out to 0.2π rad/sample, select the frequency in
the lowpass filter at 0.0175π, the frequency where the passband starts to roll off, and move it to the
new location. Compare the magnitude responses of the filters using FVTool.

wc = 0.0175;
wd = 0.2;
[num,den] = iirlp2lp(b,a,wc,wd);

hvft = fvtool(b,a,num,den);
legend(hvft,'Prototype','Target')

 iirlp2lp

5-925

Moving the edge of the passband from π to 0.2π results in a new lowpass filter whose peak response
in-band is the same as in the original filter, with the same ripple and the same absolute magnitude.
The rolloff is slightly less steep and the stopband profiles are the same for both filters. The new filter
stopband is a "stretched" version of the original, as is the passband of the new filter.

Input Arguments
b — Numerator of prototype lowpass IIR filter
row vector

Numerator coefficients for a prototype lowpass IIR filter, specified as a row vector.
Data Types: single | double

a — Denominator of prototype lowpass IIR filter
row vector

Denominator coefficients for a prototype lowpass IIR filter, specified as a row vector.
Data Types: single | double

wo — Frequency value to be transformed from prototype filter
positive scalar

5 Functions

5-926

Frequency value to be transformed from the prototype filter, specified as a real positive scalar.
Frequency wo must be normalized to be between 0 and 1, with 1 corresponding to half the sample
rate.
Data Types: single | double

wt — Desired frequency location in transformed target filter
positive scalar

Desired frequency location in the transformed target filter, specified as a real positive scalar.
Frequency wt must be normalized to be between 0 and 1, with 1 corresponding to half the sample
rate.
Data Types: single | double

Output Arguments
num — Numerator of transformed lowpass filter
row vector

Numerator of the transformed lowpass filter, returned as a row vector.
Data Types: single | double

den — Denominator of transformed lowpass filter
row vector

Denominator of the transformed lowpass filter, returned as a row vector.
Data Types: single | double

allpassNum — Numerator of mapping filter
row vector

Numerator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double

allpassDen — Denominator of mapping filter
row vector

Denominator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double

More About
Lowpass IIR Filter to Different Lowpass Filter Transformation

Lowpass IIR filter to different lowpass filter transformation takes a selected frequency from your
lowpass filter, wo, and maps the corresponding magnitude response value onto the desired frequency
location in the transformed lowpass filter, wt. Note that all frequencies are normalized between zero
and one and that the filter order does not change when you transform to the target lowpass filter.

When you select wo and designate wt, the transformation algorithm sets the magnitude response at
the wt values of your bandstop filter to be the same as the magnitude response of your lowpass filter

 iirlp2lp

5-927

at wo. Filter performance between the values in wt is not specified, except that the stopband retains
the ripple nature of your original lowpass filter and the magnitude response in the stopband is equal
to the peak response of your lowpass filter. To accurately specify the filter magnitude response across
the stopband of your bandpass filter, use a frequency value from within the stopband of your lowpass
filter as wc. Then your bandstop filter response is the same magnitude and ripple as your lowpass
filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what makes this function
useful. If you have a lowpass filter whose characteristics, such as rolloff or passband ripple,
particularly meet your needs, the transformation function lets you create a new filter with the same
characteristic performance features.

In some cases transforming your filter may cause numerical problems, resulting in incorrect
conversion to the target filter. Use fvtool to verify the response of your converted filter.

References
[1] Nowrouzian, B., and A.G. Constantinides. “Prototype Reference Transfer Function Parameters in

the Discrete-Time Frequency Transformations.” In Proceedings of the 33rd Midwest
Symposium on Circuits and Systems, 1078–82. Calgary, Alta., Canada: IEEE, 1991. https://
doi.org/10.1109/MWSCAS.1990.140912.

[2] Nowrouzian, B., and L.T. Bruton. “Closed-Form Solutions for Discrete-Time Elliptic Transfer
Functions.” In [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems ,
784–87. Washington, DC, USA: IEEE, 1992. https://doi.org/10.1109/MWSCAS.1992.271206.

[3] Constantinides, A.G.“Spectral transformations for digital filters.” Proceedings of the IEEE, vol.
117, no. 8: 1585-1590. August 1970.

See Also
Functions
iirlp2bp | iirlp2bs | iirlp2hp | firlp2lp | firlp2hp

Introduced in R2011a

5 Functions

5-928

iirlp2mb
Transform IIR lowpass filter to IIR M-band filter

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt,Pass)

Description
[Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt) transform IIR lowpass filter to
IIR M-band filter.

The iirlp2mb function returns the numerator and denominator vectors, Num and Den, respectively
of the target filter transformed from the real lowpass prototype by applying an Mth-order real lowpass
to real multiple bandpass frequency mapping. By default the DC feature is kept at its original
location. For more details, see “IIR Lowpass Filter to IIR M-Band Filter Transformation” on page 5-
931.

[Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt,Pass) allows you to specify an
additional parameter, Pass, which chooses between using the “DC Mobility”, the Nyquist feature
stays at its original location and the DC feature is free to move and the “Nyquist Mobility.”, the DC
feature is kept at an original frequency and the Nyquist feature is movable.

The function also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the
allpass mapping filter. The prototype lowpass filter is specified with the numerator B and denominator
A.

Note Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the
sample rate.

Examples

Transform Lowpass Filter to Multiband Filters

Design a prototype real IIR lowpass elliptic filter with a gain of about –3 dB at 0.5π rad/sample.

[b,a] = ellip(3,0.1,30,0.409);

Create a real multiband filter with two passbands.

[num1,den1] = iirlp2mb(b,a,0.5,[2 4 6 8]/10);

Create a real multiband filter with two stopbands.

[num2,den2] = iirlp2mb(b,a,0.5,[2 4 6 8]/10, 'stop');

Compare the magnitude responses of the filters using FVTool.

 iirlp2mb

5-929

hvft = fvtool(b,a,num1,den1,num2,den2);
legend(hvft,'Prototype','Two passbands','Two stopbands')

Input Arguments
B — Numerator of prototype lowpass filter
row vector

Numerator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double
Complex Number Support: Yes

A — Denominator of prototype lowpass filter
row vector

Denominator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double
Complex Number Support: Yes

Wo — Frequency value to be transformed from prototype filter
positive scalar

Frequency value to be transformed from the prototype filter, specified as a real scalar. Frequency Wo
must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

5 Functions

5-930

Data Types: single | double

Wt — Desired frequency locations in transformed target filter
row vector

Desired frequency locations in the transformed target filter, specified as a row vector. Frequencies in
Wt must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.
Data Types: single | double

Pass — Choice of passband or stopband at DC
'pass' (default) | 'stop'

Choice of passband or stopband at DC, specified as a 'pass' or 'stop' .

Output Arguments
Num — Numerator of transformed filter
row vector

Numerator coefficients of the transformed filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

Den — Denominator of transformed filter
row vector

Denominator coefficients of the transformed filter, returned as a row vector.
Data Types: single | double

AllpassNum — Numerator of mapping filter
row vector

Numerator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double

AllpassDen — Denominator of mapping filter
row vector

Denominator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double

More About
IIR Lowpass Filter to IIR M-Band Filter Transformation

IIR lowpass filter to IIR M-band filter transformation effectively places one feature of the original
filter, located at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of the original filter do not change in the target filter. It is possible
to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede
F2 after the transformation. However, the distance between F1 and F2 will not be the same before and
after the transformation.

 iirlp2mb

5-931

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. You can choose to transform any feature of the original filter like stopband
edge, DC, deep minimum in the stopband, or others.

The IIR lowpass filter to IIR M-band filter transformation can also be used to transform other types of
filters, for example, notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the
changing number and location of tones.

References
[1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation problems.” MSc Thesis,

Dept. of Electrical and Computer Engineering, University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis.“All-pass filter interpolation and frequency transformation
problem.” Proceedings 20th Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, California, pp. 164-168, November 1986.

[3] Mullis, C.T. and R. A. Roberts. Digital Signal Processing, section 6.7, Reading, Mass., Addison-
Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis. “An extension of the Schur Algorithm for frequency
transformations.” Linear Circuits, Systems and Signal Processing: Theory and Application. C.
J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

See Also
Functions
iirftransf | allpasslp2mb | zpklp2mb

Introduced in R2011a

5 Functions

5-932

iirlp2mbc
Transform IIR lowpass filter to IIR complex M-band filter

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wt)

Description
[Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wt) transform IIR lowpass filter to
IIR complex M-band filter.

The iirlp2mbc returns the numerator and denominator vectors, Num and Den, respectively of the
target filter transformed from the real lowpass prototype by applying an Mth-order real lowpass to
complex multi-bandpass frequency transformation. For more details, see “IIR Lowpass Filter to IIR
Complex M-Band Filter Transformation” on page 5-935.

The function also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the
allpass mapping filter. The prototype lowpass filter is specified with the numerator B and denominator
A.

Examples

Transform Lowpass Filter to Complex Multiband Filter

Design a prototype real IIR lowpass elliptic filter with a gain of about –3 dB at 0.5π rad/sample.

[b,a] = ellip(3,0.1,30,0.409);

Create a complex multiband filter with two passbands.

[num,den] = iirlp2mbc(b,a,0.5,[-7 -5 6 8]/10);

Compare the magnitude responses of the filters using FVTool. iirlp2mbc replicates the desired
feature at 0.5 in the lowpass filter at four locations in the multiband filter.

hvft = fvtool(b,a,num,den);
legend(hvft,'Prototype','Target')

 iirlp2mbc

5-933

Input Arguments
B — Numerator of prototype lowpass filter
row vector

Numerator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double
Complex Number Support: Yes

A — Denominator of prototype lowpass filter
row vector

Denominator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double
Complex Number Support: Yes

Wo — Frequency value to be transformed from prototype filter
positive scalar

Frequency value to be transformed from the prototype filter, specified as a positive scalar. Frequency
Wo should be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.
Data Types: single | double

5 Functions

5-934

Wt — Desired frequency locations in transformed target filter
row vector

Desired frequency locations in the transformed target filter, specified as a row vector. Frequencies in
Wt should be normalized to be between -1 and 1, with 1 corresponding to half the sample rate.
Data Types: single | double

Output Arguments
Num — Numerator of transformed filter
row vector

Numerator coefficients of the transformed filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

Den — Denominator of transformed filter
row vector

Denominator coefficients of the transformed filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

AllpassNum — Numerator of mapping filter
row vector

Numerator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

AllpassDen — Denominator of mapping filter
row vector

Denominator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

More About
IIR Lowpass Filter to IIR Complex M-Band Filter Transformation

IIR lowpass filter to IIR complex M-band filter transformation effectively places one feature of the
original filter, located at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of the original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

 iirlp2mbc

5-935

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. You can choose to transform any feature of the original filter like stopband
edge, DC, deep minimum in the stopband, or others.

The IIR lowpass filter to IIR complex M-band filter transformation can also be used for transforming
other types of filters, for example, notch filters or resonators can be easily replicated at a number of
required frequency locations. A good application would be an adaptive tone cancellation circuit
reacting to the changing number and location of tones.

References
[1] Krukowski, A., and I. Kale. “High-order complex frequency transformations,” Internal report No.

27/2001. Applied DSP and VLSI Research Group, University of Westminster.

See Also
Functions
iirftransf | allpasslp2mbc | zpklp2mbc

Introduced in R2011a

5 Functions

5-936

iirlp2xc
Transform IIR lowpass filter to IIR complex N-point filter

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt)

Description
[Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt)transform IIR lowpass filter to
IIR complex N-point filter.

The iirlp2xc function returns the numerator and denominator vectors, Num and Den respectively, of
the target filter transformed from the real lowpass prototype by applying an Nth-order real lowpass to
complex multipoint frequency transformation. For more details, see “IIR Lowpass Filter to IIR
Complex N-Point Filter Transformation” on page 5-940.

The function also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the
allpass mapping filter. The prototype lowpass filter is specified with the numerator B and denominator
A.

Examples

Transform Lowpass Filter to IIR Complex N-Point Filter

Design a prototype real IIR lowpass elliptic filter with a gain of about –3 dB at 0.5π rad/sample.

[b,a] = ellip(3,0.1,30,0.409);

Transform the lowpass filter to an IIR complex N-point filter.

[num,den] = iirlp2xc(b,a,[-0.5 0.5],[-0.25 0.25])

num = 1×4 complex

 0.0643 - 0.0000i 0.0464 + 0.0000i 0.0464 + 0.0000i 0.0643 + 0.0000i

den = 1×4 complex

 1.0000 + 0.0000i -1.6918 - 0.0000i 1.2340 + 0.0000i -0.3207 - 0.0000i

Compare the magnitude responses of the filters using FVTool.

fvt = fvtool(b,a,num,den);
legend(fvt,'Prototype','Target')

 iirlp2xc

5-937

The target filter has complex coefficients and is indeed a bandpass filter.

Input Arguments
B — Numerator of prototype lowpass filter
row vector

Numerator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double
Complex Number Support: Yes

A — Denominator of prototype lowpass filter
row vector

Denominator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double
Complex Number Support: Yes

Wo — Frequency values to be transformed from prototype filter
row vector

Frequency values to be transformed from the prototype filter, specified as a row vector with even
number of elements. Frequencies in Wo should be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

5 Functions

5-938

Note Length of Wo and Wt vectors must be the same.

Data Types: single | double

Wt — Desired frequency locations in transformed target filter
row vector

Desired frequency locations in the transformed target filter, specified as a row vector with even
number of elements. Frequencies in Wt should be normalized to be between -1 and 1, with 1
corresponding to half the sample rate.

Note Length of Wo and Wt vectors must be the same.

Data Types: single | double

Output Arguments
Num — Numerator of transformed filter
row vector

Numerator of the transformed filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

Den — Denominator of transformed filter
row vector

Denominator coefficients of the transformed filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

AllpassNum — Numerator of mapping filter
row vector

Numerator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

AllpassDen — Denominator of mapping filter
row vector

Denominator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

 iirlp2xc

5-939

More About
IIR Lowpass Filter to IIR Complex N-Point Filter Transformation

IIR lowpass filter to IIR complex N-point filter transformation effectively places N features of the
original filter, located at frequencies Wo1,...,WoN, at the required target frequency locations,
Wt1,...,WtM.

Relative positions of other features of the original filter are the same in the target filter for the
Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is
possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation. For DC mobility feature F2 will precede F1 after the
transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. In general it is possible to select any feature; e.g., a stopband edge, DC, the
deep minimum in the stopband, or other ones. Select features such that there is no band overlap
when creating N bands around the unit circle.

IIR lowpass filter to IIR complex N-point filter transformation can also be used to transform other
types of filters, for example, notch filters or resonators can be easily replicated at a number of
required frequency locations. A good application would be an adaptive tone cancellation circuit
reacting to the changing number and location of tones.

References
[1] Krukowski, A., and I. Kale, “High-order complex frequency transformations,” Internal report No.

27/2001, Applied DSP and VLSI Research Group, University of Westminster.

See Also
Functions
iirftransf | allpasslp2xc | zpklp2xc

Introduced in R2011a

5 Functions

5-940

iirlp2xn
Transform IIR lowpass filter to IIR real N-point filter

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt,Pass)

Description
[Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt) transform IIR lowpass filter to
IIR real N-point filter.

The iirlp2xn function returns the numerator and denominator vectors, Num and Den, respectively
of the target filter transformed from the real lowpass prototype by applying an Nth-order real lowpass
to real multipoint frequency transformation, where N is the number of features being mapped. By
default the DC feature is kept at its original location. For more details, see “IIR Lowpass to IIR Real
N-Point Filter Transformation” on page 5-943.

[Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt,Pass) allows you to choose
between using the "DC Mobility" and the "Nyquist Mobility". In the first case the Nyquist feature
stays at its original location and the DC feature is free to move. In the second case the DC feature is
kept at an original frequency and the Nyquist feature is allowed to move.

The function returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is specified with the numerator B and denominator A.

Note Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the
sample rate.

Examples

Transform Lowpass Filter to IIR Real N-Point Filter

Design a prototype real IIR lowpass elliptic filter with a gain of about –3 dB at 0.5π rad/sample.

[b,a] = ellip(3,0.1,30,0.409);

Transform the lowpass filter to an IIR real N-point filter.

[num,den] = iirlp2xn(b,a,[-0.5 0.5],[0.25 0.75]);

Compare the magnitude responses of the filters using FVTool.

hvft = fvtool(b,a,num,den);
legend(hvft,'Prototype','Target');

 iirlp2xn

5-941

Input Arguments
B — Numerator of prototype lowpass filter
row vector

Numerator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double
Complex Number Support: Yes

A — Denominator of prototype lowpass filter
row vector

Denominator of the prototype lowpass filter, specified as a row vector.
Data Types: single | double
Complex Number Support: Yes

Wo — Frequency values to be transformed from prototype filter
row vector

Frequency values to be transformed from the prototype filter, specified as a row vector. Frequencies
in Wo should be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Length of vectors Wo and Wt must be the same.

5 Functions

5-942

Data Types: single | double

Wt — Desired frequency locations in transformed target filter
row vector

Desired frequency locations in the transformed target filter, specified as a row vector. Frequencies in
Wt should be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Length of vectors Wo and Wt must be the same.
Data Types: single | double

Pass — Choice of passband or stopband at DC
'pass' (default) | 'stop'

Choice of passband or stopband at DC, specified as a 'pass' or 'stop'.

Output Arguments
Num — Numerator of transformed filter
row vector

Numerator coefficients of the transformed filter, returned as a row vector.
Data Types: single | double
Complex Number Support: Yes

Den — Denominator of transformed filter
row vector

Denominator coefficients of the transformed filter, returned as a row vector.
Data Types: single | double

AllpassNum — Numerator of mapping filter
row vector

Numerator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double

AllpassDen — Denominator of mapping filter
row vector

Denominator coefficients of the mapping filter, returned as a row vector.
Data Types: single | double

More About
IIR Lowpass to IIR Real N-Point Filter Transformation

IIR Lowpass to IIR Real N-Point Filter transformation effectively places N features of the original
filter, located at frequencies Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of the original filter are the same in the target filter for the
Nyquist mobility and are reversed in DC mobility. For the Nyquist mobility this means that it is

 iirlp2xn

5-943

possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation. For DC mobility feature F2 will precede F1 after the
transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC,
the deep minimum in the stopband, or other ones. Select features such that there is no band overlap
when creating N bands around the unit circle.

IIR Lowpass to IIR Real N-Point Filter transformation can also be used to transforming other types of
filters, for example, notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the
changing number and location of tones.

References
[1] Krukowski, A., G.D. Cain, and I. Kale. “Custom Designed High-Order Frequency Transformations

for IIR Filters.” In 38th Midwest Symposium on Circuits and Systems. Proceedings, 1:588–91.
Rio de Janeiro, Brazil: IEEE, 1996.

[2] Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for Flexible IIR Filter Design,”
VII European Signal Processing Conference (EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh,
United Kingdom, September 1994.

See Also
Functions
iirftransf | allpasslp2xn | zpklp2xn

Introduced in R2011a

5 Functions

5-944

iirlpnorm
Least P-norm optimal IIR filter

Syntax
[num,den] = iirlpnorm(n,d,f,edges,a)
[num,den] = iirlpnorm(n,d,f,edges,a,w)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)
[num,den,err] = iirlpnorm(...)
[num,den,err,sos,g] = iirlpnorm(...)

Description
[num,den] = iirlpnorm(n,d,f,edges,a) returns a filter having a numerator order n and
denominator order d which is the best approximation to the desired frequency response described by
f and a in the least-pth sense. The vector edges specifies the band-edge frequencies for multi-band
designs. An unconstrained quasi-Newton algorithm is employed and any poles or zeros that lie
outside of the unit circle are reflected back inside. n and d should be chosen so that the zeros and
poles are used effectively. See the “Hints” on page 5-947 section. Always use freqz to check the
resulting filter.

[num,den] = iirlpnorm(n,d,f,edges,a,w) uses the weights in w to weight the error. w has one
entry per frequency point (the same length as f and a) which tells iirlpnorm how much emphasis to
put on minimizing the error in the vicinity of each frequency point relative to the other points. f and
a must have the same number of elements, which may exceed the number of elements in edges. This
allows for the specification of filters having any gain contour within each band. The frequencies
specified in edges must also appear in the vector f. For example,

[num,den] = iirlpnorm(5,12,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

is a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p) where p is a two-element vector [pmin pmax]
allows for the specification of the minimum and maximum values of p used in the least-pth algorithm.
Default is [2 128] which essentially yields the L-infinity, or Chebyshev, norm. Pmin and pmax should
be even. If p is 'inspect', no optimization will occur. This can be used to inspect the initial pole/
zero placement.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens) specifies the grid density dens used in
the optimization. The number of grid points is (dens*(n+d+1)). The default is 20. dens can be
specified as a single-element cell array. The grid is not equally spaced.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden) allows for the
specification of the initial estimate of the filter numerator and denominator coefficients in vectors
initnum and initden. initnum should be of length n+1, and initden should be of length d+1.
This may be useful for difficult optimization problems. The pole-zero editor in Signal Processing
Toolbox software can be used for generating initnum and initden.

 iirlpnorm

5-945

[num,den,err] = iirlpnorm(...) returns the least-pth approximation error, err.

[num,den,err,sos,g] = iirlpnorm(...) returns the second-order section representation in
the matrix sos and gain g. For numerical reasons it may be beneficial to use sos and g in some
cases.

Examples
“Least Pth-Norm Optimal IIR Filter Design”

Design a Lowpass Filter with a Peak of 4.015 dB in Passband
[num,den] = iirlpnorm(5,12,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

num = 1×6

 -0.0128 0.0041 -0.0068 0.0048 0.0056 -0.0001

den = 1×13

 1.0000 -6.0264 18.6845 -38.7635 59.2365 -69.7345 64.5556 -47.2403 27.1100 -11.9198 3.8290 -0.8143 0.0882

Display the magnitude response in fvtool

fvtool(num,den)

5 Functions

5-946

Hints
• This is a weighted least-pth optimization.
• Check the radii and locations of the poles and zeros for your filter. If the zeros are on the unit

circle and the poles are well inside the unit circle, try increasing the order of the numerator or
reducing the error weighting in the stopband.

• Similarly, if several poles have a large radii and the zeros are well inside of the unit circle, try
increasing the order of the denominator or reducing the error weighting in the passband.

References
Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc.
1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All inputs must be constant. Expressions or variables are allowed if their values do not change.
• Does not support syntaxes that have cell array input.

See Also
iirlpnormc | filter | freqz | iirgrpdelay | zplane

Introduced in R2011a

 iirlpnorm

5-947

iirlpnormc
Constrained least Pth-norm optimal IIR filter

Syntax
[num,den] = iirlpnormc(n,d,f,edges,a)
[num,den] = iirlpnormc(n,d,f,edges,a,w)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens,initnum,initden)
[num,den,err] = iirlpnormc(...)
[num,den,err,sos,g] = iirlpnormc(...)

Description
[num,den] = iirlpnormc(n,d,f,edges,a) returns a filter having numerator order n and
denominator order d which is the best approximation to the desired frequency response described by
f and a in the least-pth sense. The vector edges specifies the band-edge frequencies for multi-band
designs. A constrained Newton-type algorithm is employed. n and d should be chosen so that the
zeros and poles are used effectively. See the Hints on page 5-949 section. Always check the resulting
filter using fvtool.

[num,den] = iirlpnormc(n,d,f,edges,a,w) uses the weights in w to weight the error. w has
one entry per frequency point (the same length as f and a) which tells iirlpnormc how much
emphasis to put on minimizing the error in the vicinity of each frequency point relative to the other
points. f and a must have the same number of elements, which can exceed the number of elements in
edges. This allows for the specification of filters having any gain contour within each band. The
frequencies specified in edges must also appear in the vector f. For example,

[num,den] = iirlpnormc(5,5,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

designs a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius) returns a filter having a maximum pole
radius of radius where 0<radius<1. radius defaults to 0.999999. Filters that have a reduced pole
radius may retain better transfer function accuracy after you quantize them.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p) where p is a two-element vector
[pmin pmax] allows for the specification of the minimum and maximum values of p used in the least-
pth algorithm. Default is [2 128] which essentially yields the L-infinity, or Chebyshev, norm. pmin and
pmax should be even. If p is 'inspect', no optimization will occur. This can be used to inspect the
initial pole/zero placement.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens) specifies the grid density dens
used in the optimization. The number of grid points is (dens*(n+d+1)). The default is 20. dens can
be specified as a single-element cell array. The grid is not equally spaced.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens,initnum,initden) allows for
the specification of the initial estimate of the filter numerator and denominator coefficients in vectors

5 Functions

5-948

initnum and initden. This may be useful for difficult optimization problems. The pole-zero editor in
Signal Processing Toolbox software can be used for generating initnum and initden.

[num,den,err] = iirlpnormc(...) returns the least-Pth approximation error err.

[num,den,err,sos,g] = iirlpnormc(...) returns the second-order section representation in
the matrix SOS and gain G. For numerical reasons you may find SOS and G beneficial in some cases.

Hints
• This is a weighted least-pth optimization.
• Check the radii and location of the resulting poles and zeros.
• If the zeros are all on the unit circle and the poles are well inside of the unit circle, try increasing

the order of the numerator or reducing the error weighting in the stopband.
• Similarly, if several poles have a large radius and the zeros are well inside of the unit circle, try

increasing the order of the denominator or reducing the error weight in the passband.
• If you reduce the pole radius, you might need to increase the order of the denominator.

The message

Poorly conditioned matrix. See the "help" file.

indicates that iirlpnormc cannot accurately compute the optimization because either:

a The approximation error is extremely small (try reducing the number of poles or zeros — refer to
the hints above).

b The filter specifications have huge variation, such as a=[1 1e9 0 0].

Examples

Magnitude Response of Constrained Least Pth-norm Optimal IIR Filter

This example returns a lowpass filter whose pole radius is constrained to 0.8.

[b,a,err,s,g] = iirlpnormc(6,6,[0 .4 .5 1],[0 .4 .5 1],...
[1 1 0 0],[1 1 1 1],.8);
fvtool(b,a);

 iirlpnormc

5-949

The magnitude response shows the lowpass nature of the filter. The pole/zero plot following shows
that the poles are constrained to 0.8 as specified in the command.

fvtool(b,a,'polezero');

5 Functions

5-950

References
[1] Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc.

1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All inputs must be constant. Expressions or variables are allowed if their values do not change.
• Does not support syntaxes that have cell array input.

See Also
Functions
freqz | filter | iirgrpdelay | iirlpnorm | zplane

Introduced in R2011a

 iirlpnormc

5-951

iirls
Least-squares IIR filter from specification object

Syntax
hd = design(d,'iirls','SystemObject',true)
hd =
design(d,'iirls',designoption,value,designoption,value,...,'SystemObject',tru
e)

Description
hd = design(d,'iirls','SystemObject',true) designs a least-squares filter specified by the
filter specification object d.

Note The iirls algorithm might not be well behaved in all cases. Experience is your best guide to
determining if the resulting filter meets your needs. When you use iirls to design a filter, review
the filter carefully to ensure that it is appropriate for your use.

hd =
design(d,'iirls',designoption,value,designoption,value,...,'SystemObject',tru
e) returns a least-squares IIR filter where you specify design options as input arguments.

To determine the available design options, use designopts with the specification object and the
design method as input arguments as shown.

designopts(d,'method')

For complete help about using iirls, refer to the command line help system. For example, to get
specific information about using iirls with d, the specification object, enter the following at the
MATLAB prompt.

help(d,'iirls')

Examples

Design a Complex Bandpass Filter

Starting from an arbitrary magnitude and phase design object d, generate a complex bandpass filter
of order = 5. To make the example a little easier to do, use the default values for F, and H, the
frequency vector and the complex desired frequency response.

d = fdesign.arbmagnphase('N,F,H',5)

d =
 arbmagnphase with properties:

 Response: 'Arbitrary Magnitude and Phase'

5 Functions

5-952

 Specification: 'N,F,H'
 Description: {3x1 cell}
 NormalizedFrequency: 1
 FilterOrder: 5
 Frequencies: [-1 -0.9969 -0.9939 -0.9908 -0.9878 -0.9847 ...]
 FreqResponse: [-0.0030 - 0.0105i -0.0031 - 0.0107i ...]

fvt = design(d,'iirls','SystemObject',true);
fvtool(fvt,'freq');
legend('Magnitude','phase');

See Also
fdesign.arbmag | fdesign.arbmagnphase | firls

Introduced in R2011a

 iirls

5-953

iirnotch
Second-order IIR notch filter

Syntax
[num,den] = iirnotch(w0,bw)
[num,den] = iirnotch(w0,bw,ab)

Description
[num,den] = iirnotch(w0,bw) returns the numerator coefficients, num, and the denominator
coefficients, den, of the digital notching filter with the notch located at w0 and the bandwidth at the –
3 dB point set to bw. To design the filter, w0 must meet the condition 0.0 < w0 < 1.0, where 1.0
corresponds to π radians per sample in the frequency range.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by q = w0/bw, where w0
is the notch frequency.

[num,den] = iirnotch(w0,bw,ab) returns the digital notching filter whose bandwidth, bw, is
specified at a level of –ab decibels.

Examples

Design IIR Notch Filter Using iirnotch

Design and plot an IIR notch filter that removes a 60 Hz tone (f0) from a signal at 300 Hz (fs). For this
example, set the Q factor for the filter to 35 and use it to specify the filter bandwidth.

wo = 60/(300/2);
bw = wo/35;
[b,a] = iirnotch(wo,bw);

The notch filter has the desired bandwidth with the notch located at 60 Hz, or 0 . 4π radians per
sample. Compare this plot to the comb filter plot shown for iircomb.

fvtool(b,a)

5 Functions

5-954

Input Arguments
w0 — Notch frequency
positive scalar

Notch frequency, specified as a positive scalar in the range (0.0, 1.0), where 1.0 corresponds to π
radians per sample in the frequency range.
Data Types: single | double

bw — 3 dB bandwidth
positive scalar

Bandwidth at the –3 dB point, specified as a positive scalar in the range (0.0, 1.0).

The quality factor (Q factor) q for the filter is related to the filter bandwidth by q = w0/bw, where w0
is the notch frequency.
Data Types: single | double

ab — Custom decibel level
real scalar

Custom decibel level, –ab, at which the filter has a bandwidth of bw. Including the optional input
argument ab lets you specify the magnitude response bandwidth at a level that is not the default –3
dB point, such as –6 dB or 0 dB. If not specified, ab defaults to the –3 dB width (10log10(1/2)).

 iirnotch

5-955

Data Types: single | double

Output Arguments
num — Numerator coefficients
row vector

Numerator coefficients of the designed notch filter, returned as a row vector.
Data Types: double

den — Denominator coefficients
row vector

Denominator coefficients of the designed notch filter, returned as a row vector.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
Functions
firgr | iircomb | iirpeak | iirparameq

Topics
“Design of Peaking and Notching Filters”

Introduced in R2011a

5 Functions

5-956

iirparameq
IIR biquad digital parametric equalizer filter

Note iirparameq function will be removed in a future release. Existing code using the function
continues to run. For new code, use the designParamEQ function instead.

Syntax
[SOS,SV] = iirparameq(N,G,Wo,BW)

[SOS,SV,B,A] = iirparameq(N,G,Wo,BW)

Description
[SOS,SV] = iirparameq(N,G,Wo,BW) returns the coefficients of an Nth order IIR biquad digital
parametric equalizer with gain G, center frequency Wo, and bandwidth BW. The coefficients are
returned in a second-order section matrix, SOS, and a vector of scale values between each biquad
stage, SV.

[SOS,SV,B,A] = iirparameq(N,G,Wo,BW) additionally returns a matrix of numerator fourth-
order sections, B, and a matrix A of denominator fourth-order sections, A. These can be used in lieu of
a biquad implementation and are useful for the case Wo = 0.5.

Examples

Second-order section matrices of the parametric equalizer

Compute the second-order section matrix and scale values of a parametric equalizer.

[SOS,SV] = iirparameq(6,5,0.0042,0.0028)

SOS =

 1.0000 -1.9892 0.9894 1.0000 -1.9911 0.9912
 1.0000 -1.9926 0.9929 1.0000 -1.9941 0.9944
 1.0000 -1.9964 0.9965 1.0000 -1.9967 0.9968

SV =

 1.0009
 1.0000
 1.0009
 1.0000

Fourth-order section matrices of the parametric equalizer

Compute the numerator and denominator coefficients of the fourth-order sections of the parametric
equalizer.

 iirparameq

5-957

[SOS,SV,B,A] = iirparameq(6,5,0.0042,0.0028)

SOS =

 1.0000 -1.9892 0.9894 1.0000 -1.9911 0.9912
 1.0000 -1.9926 0.9929 1.0000 -1.9941 0.9944
 1.0000 -1.9964 0.9965 1.0000 -1.9967 0.9968

SV =

 1.0009
 1.0000
 1.0009
 1.0000

B =

 1.0009 -1.9911 0.9903 0 0
 1.0009 -3.9927 5.9729 -3.9715 0.9903

A =

 1.0000 -1.9911 0.9912 0 0
 1.0000 -3.9908 5.9729 -3.9733 0.9912

Two Equalizers Centered at Different Frequencies

Design two equalizers centered at 100 Hz and 1000 Hz respectively, both with a gain of 5 dB and a Q-
factor of 1.5, for a system running at 48 kHz.

Fs = 48e3;
N = 6;
G = 5;
Q = 1.5;
Wo1 = 100/(Fs/2);
Wo2 = 1000/(Fs/2);
% Obtain the bandwidth of the equalizers from the center frequencies and
% Q-factors.
BW1 = Wo1/Q;
BW2 = Wo2/Q;
% Design the equalizers and obtain their SOS and SV values.
[SOS1,SV1] = iirparameq(N,G,Wo1,BW1);
[SOS2,SV2] = iirparameq(N,G,Wo2,BW2);

Design biquad filters using the obtained SOS and SV values.

BQ1 = dsp.BiquadFilter('SOSMatrix',SOS1,'ScaleValues',SV1);
BQ2 = dsp.BiquadFilter('SOSMatrix',SOS2,'ScaleValues',SV2);

Plot the magnitude response of both filters using a log scale.

fvtool(BQ1,BQ2,'Fs',Fs,'FrequencyScale','Log');
legend('Equalizer centered at 100 Hz','Equalizer centered at 1000 Hz');

5 Functions

5-958

Compare Notch Filters Designed with Different Orders

Design an eighth-order notch filter and compare it to a traditional second-order notch filter designed
with IIRNOTCH.

Fs = 44.1e3;
N = 8;
G = -inf;
Q = 1.8;
Wo = 60/(Fs/2); % Notch at 60 Hz
BW = Wo/Q; % Bandwidth occurs at -3 dB for this special case
[SOS1,SV1] = iirparameq(N,G,Wo,BW);
[NUM,DEN] = iirnotch(Wo,BW);
SOS2 = [NUM,DEN];

Design the notch filters using the SOS and SV values.

BQ1 = dsp.BiquadFilter('SOSMatrix',SOS1,'ScaleValues',SV1);
BQ2 = dsp.BiquadFilter('SOSMatrix',SOS2);

Plot the magnitude response of both filters. The filters intersect at -3 dB point.

FVT = fvtool(BQ1,BQ2,'Fs',Fs,'FrequencyScale','Log');
legend(FVT,'8th order notch filter','2nd order notch filter');

Input Arguments
N — Order of the parametric equalizer
even positive integer

Order of the parametric equalizer, specified as an even positive integer.
Example: 6
Example: 10
Data Types: single | double

G — Gain of the parametric equalizer
real scalar

Gain of the parametric equalizer in dB, specified as a real scalar.
Example: 2
Example: -2.2
Data Types: single | double

Wo — Center frequency of the parametric equalizer
real scalar

Center frequency of the parametric equalizer, specified as a real scalar in the range [0.0 1.0]. A
value of 1.0 corresponds to π radians/sample.
Example: 0.0
Example: 1.0
Data Types: single | double

 iirparameq

5-959

BW — Bandwidth of the parametric equalizer
real scalar

Bandwidth of the parametric equalizer, specified as a real scalar in the range [0.0 1.0]. A value of
1.0 corresponds to π radians/sample.
Example: 0.0
Example: 1.0
Data Types: single | double

Output Arguments
SOS — Second-order section matrix
real-valued matrix

Second-order section matrix, returned as a real-valued L-by-6 matrix, where L is the number of
second-order sections of the filter.

SV — Scale values between each biquad stage
real-valued vector

Scale values between each biquad stage, returned as a real-valued vector of length L + 1.

B — Numerator coefficients of the fourth-order sections of the parametric equalizer
real-valued matrix

Numerator coefficients of the fourth-order sections of the parametric equalizer, returned as a real-
valued M-by-5 matrix. M is the number of fourth-order sections of the filter.

A — Denominator coefficients of the fourth-order sections of the parametric equalizer
real-valued matrix

Denominator coefficients of the fourth-order sections of the parametric equalizer, returned as a real-
valued M-by-5 matrix. M is the number of fourth-order sections of the filter.

Algorithms
High-order Parametric Equalizer

Parametric equalizers are digital filters used in audio processing for adjusting the frequency content
of a sound signal. Parametric equalizers provide capabilities beyond those of graphic equalizers by
allowing the adjustment of gain, center frequency, and bandwidth of each filter. In contrast, graphic
equalizers allow for the adjustment of the gain of each filter only. Digital parametric audio equalizers
are commonly implemented as biquadratic (second-order IIR) filters. Due to low order, biquadratic
filters can present relatively large ripple or transition regions. When several filters are connected in
cascade, they can overlap with each other. In such circumstances, high-order filters are preferred.
High-order filters provide flatter passbands, sharper band edges, and more control over the shape of
each filter. In addition, if the order of the filter is set to two, the design changes to a special case: a
traditional second-order parametric equalizer.

The figure shows the magnitude response of a second-order parametric equalizer compared with a
high-order parametric equalizer.

5 Functions

5-960

W0 = 0.3 × π radians/sample is the center frequency of the equalizer, BW = 0.2 radians/sample is
the bandwidth of the equalizer, G = 10 is the peak gain of the equalizer, G0 = 1, and GB = (G0

2 + G2) /
2.

Algorithm

The first step in the filter design is to design a high-order analog lowpass shelving filter that meets
the specified gain and bandwidth. A high-order Butterworth filter is used for this purpose. The analog
Butterworth filter is then transformed into a digital lowpass shelving filter, and finally into a peaking
equalizer that is centered at the specified peak frequency.

The design specifications for the digital equalizer are the order of the equalizer, N, the gain of the
equalizer, G, the center frequency of the equalizer, W0, and the bandwidth of the equalizer, BW.

The transfer function of the high-order parametric equalizer is given by:

H(z) = [
b00 + b01z−1 + b02z−2

1 + a01z−1 + a02z−2]
r

× ∏
i = 1

L
[
bi0 + bi1z−1 + bi2z−2 + bi3z−3 + bi4z−4

1 + ai1z−1 + ai2z−2 + ai3z−3 + ai4z−4]

where b00, b01, b02, a01, and a02 are coefficients of the second-order section of the equalizer. bi0, bi1, bi2,
bi3, bi4, ai1, ai2, and ai3 are coefficients of the fourth-order sections of the equalizer. L = (N –r) / 2,
where r = 1 when N is odd, and r = 0 when N is even. The fourth-order sections are factored into
second-order sections so that you can implement them using biquad filters.

For more information on how coefficients are computed in terms of the design specifications, see the
"Butterworth Designs" section in [1].

 iirparameq

5-961

References
[1] Sophocles J. Orphanidis. "High-Order Digital Parametric Equalizer Design." J. Audio Eng. Soc. Vol.

53, November 2005, pp. 1026–1046.

See Also
iirpeak | iirnotch | iircomb | dsp.ParametricEQFilter

Introduced in R2015a

5 Functions

5-962

iirpeak
Second-order IIR peak or resonator filter

Syntax
[num,den] = iirpeak(w0,bw)
[num,den] = iirpeak(w0,bw,ab)

Description
[num,den] = iirpeak(w0,bw) returns a second-order digital peaking filter with the peak located
at w0, and with the bandwidth at the +3 dB point set to bw.

[num,den] = iirpeak(w0,bw,ab) returns a digital peaking filter whose bandwidth, bw, is
specified at a level of +ab decibels.

Examples

Design IIR Peaking Filter

Design and plot an IIR peaking filter that boosts the frequency at 1.75 KHz in a signal and has a
bandwidth of 500 Hz at the -3 dB point.

fs = 10000;
wo = 1750/(fs/2);
bw = 500/(fs/2);
[b,a] = iirpeak(wo,bw);
fvtool(b,a)

 iirpeak

5-963

The peak filter has the desired gain and bandwidth at 1.75 KHz.

Input Arguments
w0 — Peak frequency
positive scalar in the range (0.0,1.0)

Peak frequency of the IIR filter, specified as a positive scalar in the range (0.0,1.0), where 1.0
corresponds to π radians per sample in the frequency range.
Data Types: single | double

bw — Bandwidth of filter
positive scalar in the range (0.0,1.0)

Bandwidth of the filter at a level of +ab decibels, specified as a positive scalar in the range
(0.0,1.0).

The quality factor (Q factor) q for the filter is related to the filter bandwidth by q = ω0 / bw where ω0
is the signal frequency to boost.
Data Types: single | double

ab — Magnitude response at filter bandwidth
3 (default) | scalar

5 Functions

5-964

Magnitude response at the filter bandwidth bw, specified as a scalar in dB. Including the optional
input argument ab lets you specify the magnitude response bandwidth at a level that is not the
default +3 dB point, such as +6 dB or 0 dB.
Data Types: single | double

Output Arguments
num — Numerator coefficients
real-valued three-element row vector

Numerator coefficients of the second order IIR peak filter transfer function, returned as a real-valued
three-element row vector.
Data Types: single | double

den — Denominator coefficients
real-valued three-element row vector

Denominator coefficients of the second order IIR peak filter transfer function, returned as a real-
valued three-element row vector.
Data Types: single | double

References
[1] S.J.Orfanidis. Introduction To Signal Processing. Englewood Cliffs, New Jersey: Prentice-Hall,

1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
firgr | iircomb | iirparameq | iirnotch

Introduced in R2011a

 iirpeak

5-965

iirpowcomp
Power complementary IIR filter

Syntax
[bp,ap] = iirpowcomp(b,a)
[bp,ap] = iirpowcomp(b,a,c)

Description
[bp,ap] = iirpowcomp(b,a) returns the coefficients vectors bp and ap, of the power
complementary IIR filter g(z) = bp(z) / ap(z), given the coefficients vectors b and a of the IIR filter
h(z) = b(z)/ a(z) in . The vector b must be symmetric (Hermitian) or antisymmetric (antihermitian)
and of the same length as the vector a. The two power complementary filters satisfy the relation

|H(w)|2 + |G(w)|2 = 1.

[bp,ap] = iirpowcomp(b,a,c) allow you to specify a complex scalar of unity magnitude, c,
which forces bp to satisfy the generalized Hermitian property:

conj(bp(end:-1:1)) = c*bp

Examples

Power Complementary IIR Filter

Calaculate the coefficients of the power complementary IIR filter.

[b,a]=cheby1(10,.5,.4);
[bp,ap]=iirpowcomp(b,a);

Compare the magnitude responses of the filters using FVTool.

fvtool(b,a,bp,ap,'MagnitudeDisplay','Magnitude squared');
legend('Original Filter','Power Complementary Version');

5 Functions

5-966

Input Arguments
b — Numerator of IIR filter
row vector

Numerator coefficients of the IIR filter, specified as a row vector. The vector b must be symmetric
(Hermitian) or antisymmetric (antihermitian) and of the same length as the vector a.
Data Types: single | double

a — Denominator of IIR filter
row vector

Denominator coefficients of the IIR filter, specified as a row vector.
Data Types: single | double

c — Complex scalar of unity magnitude
complex scalar

Complex scalar of unity magnitude, which forces the bp to satisfy generalized Hermitian property.

The generalized Hermitian property is given by:

conj(bp(end:-1:1)) = c*bp

 iirpowcomp

5-967

When c is omitted, the function chooses c as follows:

• When b is real, the function chooses c as 1 or -1, whichever yields bp as real.
• When b is complex, c defaults to 1.

ap is always equal to a.
Data Types: single | double

Output Arguments
bp — Numerator of power complementary IIR filter
row vector

Numerator coefficients of the power complementary IIR filter, returned as a row vector.
Data Types: single | double

ap — Denominator of power complementary IIR filter
row vector

Denominator coefficients of the power complementary IIR filter, returned as a row vector.
Data Types: single | double

See Also
Functions
tf2ca | tf2cl | ca2tf | cl2tf

Introduced in R2011a

5 Functions

5-968

iirrateup
Upsample IIR filter by integer factor

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N)

Description
[Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N) returns the numerator and
denominator vectors, Num and Den respectively, of the target filter being transformed from any
prototype by applying an Nth-order rateup frequency transformation, where N is the upsample ratio.
Transformation creates N equal replicas of the prototype filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with a numerator specified by B and a
denominator specified by A.

The relative positions of other features of an original filter do not change in the target filter. This
means that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2.
Feature F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will
not be the same before and after the transformation.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[num, den] = iirrateup(b, a, 4);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

As shown in the figure produced by FVTool, the transformed filter appears as expected.

 iirrateup

5-969

Arguments
Variable Description
B Numerator of the prototype lowpass filter
A Denominator of the prototype lowpass filter
N Frequency multiplication ratio
Num Numerator of the target filter
Den Denominator of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

See Also
iirftransf | allpassrateup | zpkrateup

Introduced in R2011a

5 Functions

5-970

iirshift
Shift frequency response of IIR filter

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt)

Description
[Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt) returns the numerator and
denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass
prototype by applying a second-order real shift frequency mapping.

It also returns the numerator, AllpassNum, and the denominator of the allpass mapping filter,
AllpassDen. The prototype lowpass filter is given with the numerator specified by B and the
denominator specified by A.

This transformation places one selected feature of an original filter located at frequency Wo to the
required target frequency location, Wt. This transformation implements the "DC Mobility," which
means that the Nyquist feature stays at Nyquist, but the DC feature moves to a location dependent on
the selection of Wo and Wt.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to the cutoff frequency
of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the
DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or
resonators can change their position in a simple way without designing them from the beginning.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Perform the real frequency shift by defining where the selected feature of the prototype filter,
originally at Wo=0.5, should be placed in the target filter, Wt=0.75:

Wo = 0.5; Wt = 0.75;
[num, den] = iirshift(b, a, Wo, Wt);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

 iirshift

5-971

Shifting the specified feature from the prototype to the target generates the response shown in the
figure.

Arguments
Variable Description
B Numerator of the prototype lowpass filter
A Denominator of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
Num Numerator of the target filter
Den Denominator of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

See Also
iirftransf | allpassshift | zpkshift

Introduced in R2011a

5 Functions

5-972

iirshiftc
Shift frequency response of IIR complex filter

Syntax
[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wc)
[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,0.5)
[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,-0.5)

Description
[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wc) returns the numerator and
denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass
prototype by applying a first-order complex frequency shift transformation. This transformation
rotates all the features of an original filter by the same amount specified by the location of the
selected feature of the prototype filter, originally at Wo, placed at Wt in the target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with the numerator specified by B and the
denominator specified by A.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,0.5) calculates the allpass filter for
doing the Hilbert transformation, i.e. a 90 degree counterclockwise rotation of an original filter in the
frequency domain.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,-0.5) calculates the allpass filter
for doing an inverse Hilbert transformation, i.e. a 90 degree clockwise rotation of an original filter in
the frequency domain.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Rotate all features of the prototype filter in the frequency domain by the same amount by specifying
where the selected feature of an original filter, Wo= 0.5, should appear in the target filter, Wt= 0.25:

[num, den] = iirshiftc(b, a, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

After applying the shift, the selected feature from the original filter is just where it should be, at Wt =
0.25.

 iirshiftc

5-973

Arguments
Variable Description
B Numerator of the prototype lowpass filter
A Denominator of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
Num Numerator of the target filter
Den Denominator of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

References
Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, Prentice-Hall
International Inc., 1989.

Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert transformers, and half-band low-pass
filters,” IEEE Transactions on Education, vol. 32, pp. 314-318, August 1989.

See Also
iirftransf | allpassshiftc | zpkshiftc

5 Functions

5-974

Introduced in R2011a

 iirshiftc

5-975

impz
Package: dsp

Impulse response of discrete-time filter System object

Syntax
[impResp,t] = impz(sysobj)
[impResp,t] = impz(sysobj,n)
[impResp,t] = impz(sysobj,n,fs)
[impResp,t] = impz(sysobj,[],fs)
[impResp,t] = impz(sysobj,'Arithmetic',arithType)
impz(sysobj)

Description
[impResp,t] = impz(sysobj) computes the impulse response of the filter System object,
sysobj, and returns the response in column vector impResp, and a vector of times (or sample
intervals) in t, where t = [0 1 2 ...k-1]'. k is the number of filter coefficients.

[impResp,t] = impz(sysobj,n) computes the impulse response at floor(n) one-second
intervals. The time vector t equals (0:floor(n)-1)'.

[impResp,t] = impz(sysobj,n,fs) computes the impulse response at floor(n) 1/fs-second
intervals. The time vector t equals (0:floor(n)-1)'/fs.

[impResp,t] = impz(sysobj,[],fs) computes the impulse response at k 1/fs-second intervals.
k is the number of filter coefficients. The time vector t equals (0:k-1)'/fs.

[impResp,t] = impz(sysobj,'Arithmetic',arithType) computes the impulse response
based on the arithmetic specified in arithType, using either of the previous syntaxes.

impz(sysobj) uses fvtool to plot the impulse response of the filter System object sysobj.

You can use impz for both real and complex filters. When you omit the output arguments, impz plots
only the real part of the impulse response.

For more input options, refer to impz in Signal Processing Toolbox.

Examples

Plot the Impulse Response of a Lowpass Elliptic Filter

Create a discrete-time filter for a fourth-order, lowpass elliptic filter with a cutoff frequency of 0.4
times the Nyquist frequency. Use a second-order sections structure to resist quantization errors. Plot
the first 50 samples of the impulse response, along with the reference impulse response.

d = fdesign.lowpass(.4,.5,1,80);

5 Functions

5-976

Create a design object for the prototype filter. Use ellip to design a minimum order discrete-time
biquad filter.

biquad = design(d,'ellip','Systemobject',true);

Plot the impulse response.

impz(biquad);
axis([1 75 -0.2 0.35])

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator

 impz

5-977

• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

n — Number of filter coefficients
positive integer

Length of the impulse response vector, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fs — Sampling frequency
1 (default) | positive scalar

Sampling frequency used in computing the impulse response, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

5 Functions

5-978

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
impResp — Impulse response
vector

Impulse response, returned as an n-element vector. If n is not specified, the length of the impulse
response vector equals the number of coefficients in the filter.
Data Types: double

t — Time vector
vector

Time vector of length n, in seconds. t consists of n equally spaced points in the range
(0:floor(n)-1)'/fs. If n is not specified, the function uses the number of coefficients of the filter.
Data Types: double

See Also
filter | impz

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

 impz

5-979

impzlength
Package: dsp

Length of impulse response of discrete-time filter System object

Syntax
len = impzlength(sysobj)
len = impzlength(sysobj,tol)
len = impzlength(___ ,'Arithmetic',arithType)

Description
len = impzlength(sysobj) returns the length of the impulse response of the filter System object.

len = impzlength(sysobj,tol) specifies the tolerance to increase or decrease the length
accuracy.

len = impzlength(___ ,'Arithmetic',arithType) analyzes the filter System object based on
the arithmetic specified in arithType, using either of the previous syntaxes.

For more input options, see impzlength in Signal Processing Toolbox.

Examples

Impulse Response Length of Filter System object

This example requires DSP System Toolbox™ software.

Design a 4th-order lowpass elliptic filter with a cutoff frequency of 0.4π rad/sample. Specify 1 dB of
passband ripple and 60 dB of stopband attenuation. Design the filter in pole-zero-gain form and
obtain the second order section matrix using the zp2sos function. Create a biquad filter System
object and input the System object to impzlength.

[z,p,k] = ellip(4,1,60,.4);
[sos,g] = zp2sos(z,p,k);
hBqdFilt = dsp.BiquadFilter('Structure','Direct form I',...
 'SOSMatrix', sos,...
 'ScaleValues',g);
len = impzlength(hBqdFilt)

len = 80

Impulse Response Length for Filter System Objects

Design an IIR Butterworth and an FIR equiripple filter for data sampled at 1 kHz. Set the passband
frequency is 100 Hz and the stopband frequency is 150 Hz. Set the passband ripple to 0.5 dB and the

5 Functions

5-980

stopband attenuation to 60 dB. Create System objects for the filters and compare the filter impulse
response sequence lengths.

d = fdesign.lowpass('Fp,Fst,Ap,Ast',100,150,0.5,60,1000);
Hd1 = design(d,'butter','SystemObject',true);
Hd2 = design(d,'equiripple','SystemObject',true);
len = [impzlength(Hd1) impzlength(Hd2)]

len = 1×2

 183 49

Input Arguments
sysobj — Filter System object
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter

 impzlength

5-981

• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

tol — Tolerance for IIR filter effective impulse response length
5e-5 (default) | positive scalar

Tolerance for IIR filter effective impulse response length, specified as a positive number. The
tolerance determines the term in the absolutely summable sequence after which subsequent terms
are considered to be 0. The default tolerance is 5e-5. Increasing the tolerance returns a shorter
effective impulse response sequence length. Decreasing the tolerance returns a longer effective
impulse response sequence length.

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
len — Length of impulse response
positive integer

Length of the impulse response, specified as a positive integer. For stable IIR filters with absolutely
summable impulse responses, impzlength returns an effective length for the impulse response
beyond which the coefficients are essentially zero. You can control this cutoff point by specifying the
optional tol input argument.

5 Functions

5-982

See Also
Functions
impz | fvtool | impzlength | freqz | stepz | zerophase

Introduced in R2013a

 impzlength

5-983

info
Package: dsp

Information about filter System object

Syntax
s = info(sysobj)
s = info(sysobj,infoType)
s = info(___ ,'Arithmetic',arithType)

Description
s = info(sysobj) returns very basic information about the filter System object. The particulars
depend on the filter type and structure.

s = info(sysobj,infoType) returns the amount of filter information as specified by the
infoType.

s = info(___ ,'Arithmetic',arithType) analyzes the filter System object, based on the
arithmetic specified in arithType, using either of the previous syntaxes.

For more input options, see info in Signal Processing Toolbox.

Examples

Obtain Filter Information

Obtain short-format and long-format information about a filter.

d = fdesign.lowpass;
f = design(d,'SystemObject',true);
info(f)

ans = 6x35 char array
 'Discrete-Time FIR Filter (real) '
 '------------------------------- '
 'Filter Structure : Direct-Form FIR'
 'Filter Length : 43 '
 'Stable : Yes '
 'Linear Phase : Yes (Type 1) '

info(f,'long')

ans = 45x45 char array
 'Discrete-Time FIR Filter (real) '
 '------------------------------- '
 'Filter Structure : Direct-Form FIR '
 'Filter Length : 43 '
 'Stable : Yes '

5 Functions

5-984

 'Linear Phase : Yes (Type 1) '
 ' '
 'Design Method Information '
 'Design Algorithm : equiripple '
 ' '
 'Design Options '
 'Density Factor : 16 '
 'Maximum Phase : false '
 'Minimum Order : any '
 'Minimum Phase : false '
 'Stopband Decay : 0 '
 'Stopband Shape : flat '
 'SystemObject : true '
 'Uniform Grid : true '
 ' '
 'Design Specifications '
 'Sample Rate : N/A (normalized frequency) '
 'Response : Lowpass '
 'Specification : Fp,Fst,Ap,Ast '
 'Passband Ripple : 1 dB '
 'Passband Edge : 0.45 '
 'Stopband Atten. : 60 dB '
 'Stopband Edge : 0.55 '
 ' '
 'Measurements '
 'Sample Rate : N/A (normalized frequency)'
 'Passband Edge : 0.45 '
 '3-dB Point : 0.46957 '
 '6-dB Point : 0.48314 '
 'Stopband Edge : 0.55 '
 'Passband Ripple : 0.89042 dB '
 'Stopband Atten. : 60.945 dB '
 'Transition Width : 0.1 '
 ' '
 'Implementation Cost '
 'Number of Multipliers : 43 '
 'Number of Adders : 42 '
 'Number of States : 42 '
 'Multiplications per Input Sample : 43 '
 'Additions per Input Sample : 42 '

Decimate a Signal Using a CICDecimator Object

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a dsp.CICDecimator System object™ with DecimationFactor set to 4. Decimate a signal
from 44.1 kHz to 11.025 kHz.

cicdec = dsp.CICDecimator(4);
cicdec.FixedPointDataType = 'Minimum section word lengths';
cicdec.OutputWordLength = 16;

Create a fixed-point sinusoidal input signal of 1024 samples, with a sampling frequency of 44.1e3 Hz.

 info

5-985

Fs = 44.1e3;
% 0.0232 sec signal
n = (0:1023)';
x = fi(sin(2*pi*1e3/Fs*n),true,16,15);

Create a dsp.SignalSource object.

src = dsp.SignalSource(x,64);

Decimate the output with 16 samples per frame.

y = zeros(16,16);
for ii = 1:16
 y(ii,:) = cicdec(src());
end

Plot the first frame of the original and decimated signals. Output latency is 2 samples.

D = cicdec.DecimationFactor;
diffDelay = cicdec.DifferentialDelay;
NumSect = cicdec.NumSections;
gainCIC = ...
 (D*diffDelay)^NumSect;
stem(n(1:56)/Fs,double(x(4:59)))
hold on;
stem(n(1:14)/(Fs/D),double(y(1,3:end))/gainCIC,...
 'r','filled')
xlabel('Time (sec)')
ylabel('Signal Amplitude')
legend('Original signal',...
 'Decimated signal',...
 'Location','north')
hold off;

5 Functions

5-986

Using the info method in 'long' format, obtain the word lengths and fraction lengths of the fixed-
point filter sections and the filter output.

info(cicdec,'long')

ans =
 'Discrete-Time FIR Multirate Filter (real)

 Filter Structure : Cascaded Integrator-Comb Decimator
 Decimation Factor : 4
 Differential Delay : 1
 Number of Sections : 2
 Stable : Yes
 Linear Phase : Yes (Type 1)

 Implementation Cost
 Number of Multipliers : 0
 Number of Adders : 4
 Number of States : 4
 Multiplications per Input Sample : 0
 Additions per Input Sample : 2.5

 Fixed-Point Info
 Section word lengths : 20 19 19 18
 Section fraction lengths : 15 14 14 13
 Output word length : 16

 info

5-987

 Output fraction length : 11
 '

Interpolate Signal Using CICInterpolator System object

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a dsp.CICInterpolator System object™ with InterpolationFactor set to 2. Interpolate
a fixed-point signal by a factor of 2 from 22.05 kHz to 44.1 kHz.

cicint = dsp.CICInterpolator(2)

cicint =
 dsp.CICInterpolator with properties:

 InterpolationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 FixedPointDataType: 'Full precision'

Create a dsp.SineWave object with SampleRate set to 22.05 kHz, SamplesPerFrame set to 32,
and OutputDataType set to 'Custom'. To generate a fixed-point signal, set the
CustomOutputDataType property to a numerictype object. For the purpose of this example, set
the value to numerictype([],16). The fraction length is computed based on the values of the
generated sinusoidal signal to give the best possible precision.

To generate a fixed-point signal, set the Method property of the dsp.SineWave object to 'Table
lookup'. This method of generating the sinusoidal signal requires that the period of every sinusoid
in the output be evenly divisible by the sample period. That is, 1/ f iTs = ki must be an integer value for
every channel i = 1, 2, ..., N. The value of Ts equals 1/Fs, the variable f i is the frequency of the
sinusoidal signal, and Fs is the sample rate of the signal. In other words, the ratio Fs/ f i must be an
integer. For more details, see the “Algorithms” on page 4-1239 section on the dsp.SineWave object
page.

In this example, Fs is set to 22050 Hz and f i is set to 1050 Hz.

Fs = 22.05e3;
sine = dsp.SineWave('Frequency',1050,...
 'SampleRate',Fs,...
 'SamplesPerFrame',32,...
 'Method','Table lookup',...
 'OutputDataType','Custom')

sine =
 dsp.SineWave with properties:

 Amplitude: 1
 Frequency: 1050
 PhaseOffset: 0
 ComplexOutput: false
 Method: 'Table lookup'

5 Functions

5-988

 TableOptimization: 'Speed'
 SampleRate: 22050
 SamplesPerFrame: 32
 OutputDataType: 'Custom'

 Show all properties

In each loop of the iteration, stream in a frame of the fixed-point sinusoidal signal sampled at 22.05
kHz. Interpolate the streamed signal by a factor of 2. The interpolated output has 64 samples per
frame.

for i = 1:16
 x = sine();
 y = cicint(x);
end

The output of the CIC interpolation filter is amplified by a specific gain value. You can determine this
value using the gain function. This gain equals the gain of the 2Nth stage of the CIC interpolation
filter and equals I × D N/I, where I is the interpolation factor, D is the differential delay, and N is the
number of sections of the CIC interpolator.

gainCIC = gain(cicint)

gainCIC = 2

To adjust this amplified output and to match it to the amplitude of the original signal, divide the CIC
interpolated signal with the computed gain value.

Compare the last frames of the original and the interpolated signals. While plotting, account for the
output latency of 2 samples.

n = (0:63)';
stem(n(1:31)/Fs,double(x(1:31)),'r','filled')
hold on;
I = cicint.InterpolationFactor;
stem(n(1:61)/(Fs*I), ...
 double(y(4:end))/gainCIC,'b')
xlabel('Time (sec)')
ylabel('Signal Amplitude')
legend('Original Signal',...
 'Interpolated Signal',...
 'location','north')
hold off;

 info

5-989

Using the info function in the 'long' format, obtain the word lengths and fraction lengths of the
fixed-point filter sections and the filter output.

info(cicint,'long')

ans =
 'Discrete-Time FIR Multirate Filter (real)

 Filter Structure : Cascaded Integrator-Comb Interpolator
 Interpolation Factor : 2
 Differential Delay : 1
 Number of Sections : 2
 Stable : Yes
 Linear Phase : Yes (Type 1)

 Implementation Cost
 Number of Multipliers : 0
 Number of Adders : 4
 Number of States : 4
 Multiplications per Input Sample : 0
 Additions per Input Sample : 6

 Fixed-Point Info
 Section word lengths : 17 17 17 17
 Section fraction lengths : 14 14 14 14
 Output word length : 17

5 Functions

5-990

 Output fraction length : 14
 '

Input Arguments
sysobj — Input filter
filter System object

One of the following types of filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.ComplexBandpassDecimator
• dsp.CoupledAllpassFilter
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

infoType — Amount of information to display
'short' (default) | 'long'

Amount of filter information to be displayed. When this property is set to:

 info

5-991

• 'short' –– The function displays the same information as info(sysobj), which is the basic
filter information.

• 'long' –– The function returns the following information about the filter:

• Specifications such as the filter structure and filter order.
• Information about the design method and options.
• Performance measurements for the filter response, such as the passband cutoff or stopband

attenuation, included in the measure method

.
• Cost of implementing the filter in terms of operations required to apply the filter to data,

included in the cost method.

When the filter uses fixed-point arithmetic, the function returns additional information about the
filter, including the arithmetic setting and details about the filter internals.

Data Types: char | string

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
s — store filter information
character array

Filter information, returned as a character array.

5 Functions

5-992

When the infoType is 'short', the function displays basic filter information. When the infoType
is 'long', the function displays the following information:

• Specifications such as the filter structure and filter order
• Information about the design method and options
• Performance measurements for the filter response, such as the passband cutoff or stopband

attenuation, included in the measure method
• Cost of implementing the filter in terms of operations required to apply the filter to data, included

in the cost method

When the filter uses fixed-point arithmetic, the function returns additional information about the
filter, including the arithmetic setting and details about the filter internals.

See Also
Functions
info

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

 info

5-993

info
Package: dsp

Characteristic information about valid delay range

Syntax
S = info(obj)

Description
S = info(obj) returns a structure that contains the valid delay range values of the
dsp.VariableFractionalDelay object.

Examples

Obtain the Valid Delay Range

Create a dsp.VariableFractionalDelay object. Set the interpolation method to 'Farrow', and
the maximum delay to 9. Obtain the valid delay range for these settings using the info method.

vfd = dsp.VariableFractionalDelay('InterpolationMethod','Farrow','MaximumDelay',9);
info(vfd)

ans = struct with fields:
 ValidDelayRange: '[1, 9]'

Specify the delay vector to have two taps - [0.95 10]. These values are out of the valid range. The
object clips these values to [1 9] and concurrently applies the delay values to the input channel.

in = randn(10,1)

in = 10×1

 0.5377
 1.8339
 -2.2588
 0.8622
 0.3188
 -1.3077
 -0.4336
 0.3426
 3.5784
 2.7694

delayVec = [0.95 10]

delayVec = 1×2

5 Functions

5-994

 0.9500 10.0000

vfdout = vfd(in,delayVec)

vfdout = 10×2

 0 0
 0.5377 0
 1.8339 0
 -2.2588 0
 0.8622 0
 0.3188 0
 -1.3077 0
 -0.4336 0
 0.3426 0
 3.5784 0.5377

The output contains two channels, each being a delayed version of the input channel. The first
channel is delayed by 1 sample and the second channel is delayed by 9 samples.

Input Arguments
obj — Input System object
dsp.VariableFractionalDelay

Input object, specified as a dsp.VariableFractionalDelay System object.
Example: vfd = dsp.VariableFractionalDelay; info(vfd);

Output Arguments
S — Valid delay range information
structure

Valid delay range information of the input dsp.VariableFractionalDelay object, returned as the
ValidDelayRange field in the output structure S. ValidDelayRange contains the possible range of
delay values based on the current property values of the object. The ValidDelayRange is in the
format [MinValidDelay, MaxValidDelay]. The object clips all input delay values to be within this
ValidDelayRange.

See Also
Objects
dsp.VariableFractionalDelay

Introduced in R2012a

 info

5-995

info
Characteristic information about audio device writer

Syntax
S = info(adw)

Description
S = info(adw) returns a structure, S, containing characteristic information of the audio device
writer object, adw.

Examples

Read from File and Write to Audio Device

Read an MP3 audio file and play it through your default audio output device.

Create a dsp.AudioFileReader object with default settings. Use the audioinfo function to return
a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileInfo = audioinfo('speech_dft.mp3')

fileInfo = struct with fields:
 Filename: 'B:\matlab\toolbox\dsp\dsp\speech_dft.mp3'
 CompressionMethod: 'MP3'
 NumChannels: 1
 SampleRate: 22050
 TotalSamples: 112893
 Duration: 5.1199
 Title: []
 Comment: []
 Artist: []
 BitRate: 64

Create an audioDeviceWriter object and specify the sample rate.

deviceWriter = audioDeviceWriter('SampleRate',fileInfo.SampleRate);

Call setup to reduce the computational load of initialization in an audio stream loop.

setup(deviceWriter,zeros(fileReader.SamplesPerFrame,...
 fileInfo.NumChannels))

Use the info function to obtain the characteristic information about the device writer.

info(deviceWriter)

ans = struct with fields:
 Driver: 'DirectSound'

5 Functions

5-996

 DeviceName: 'Primary Sound Driver'
 MaximumOutputChannels: 2

In an audio stream loop, read an audio signal frame from the file, and write the frame to your device.

while ~isDone(fileReader)
 audioData = fileReader();
 deviceWriter(audioData);
end

Close the input file and release the device.

release(fileReader)
release(deviceWriter)

Input Arguments
adw — Audio device writer object
audioDeviceWriter

Audio device writer object, specified as audioDeviceWriter System object.

Output Arguments
S — Characteristic information
struct

Characteristic information of the audio device writer object, returned as a structure. The fields of the
structure vary depending on the System object.

See Also
Functions
getAudioDevices

Objects
audioDeviceWriter

Introduced in R2016a

 info

5-997

info
Package: dsp

Information about specific audio file

Syntax
S = info(afr)

Description
S = info(afr) returns a MATLAB structure, S, with information about the audio file specified in
the Filename property.

Examples

Obtain Information About Audio File

Read an audio file using the dsp.AudioFileReader object. Obtain information related to the audio
content of the file.

The dsp.AudioFileReader objects reads the default shipped file 'speech_dft.mp3'.

afr = dsp.AudioFileReader

afr =
 dsp.AudioFileReader with properties:

 Filename: 'B:\matlab\toolbox\dsp\dsp\speech_dft.mp3'
 PlayCount: 1
 SamplesPerFrame: 1024
 OutputDataType: 'double'
 FilenameIsTunableInCodegen: 0
 SampleRate: 22050
 ReadRange: [1 Inf]

The output structure displays the sample rate of the audio signal in Hz, number of bits used to
encode the audio stream, and the number of audio channels.

S = info(afr)

S = struct with fields:
 SampleRate: 22050
 NumBits: 32
 NumChannels: 1

5 Functions

5-998

Input Arguments
afr — File reader
dsp.AudioFileReader (default)

File reader, specified as a dsp.AudioFileReader System object.

Output Arguments
S — Audio file information
structure

Information about the audio file specified in the Filename property, returned as a structure. The
number of fields in the structure S varies depending on the audio content of the file. This table shows
some of the fields that can appear in the structure S.

Field Value
SampleRate Audio sampling rate of the audio file in Hz.
NumBits Number of bits used to encode the audio stream.
NumChannels Number of audio channels.

See Also
Functions
isDone

Objects
dsp.AudioFileReader

Introduced in R2012a

 info

5-999

isDone
Package: dsp

End-of-file status (logical)

Syntax
STATUS = isDone(afr)

Description
STATUS = isDone(afr) returns a logical value, STATUS. The value of STATUS is true when the file
has been read PlayCount number of times. The PlayCount property of the dsp.AudioFileReader
System object determines the number of times the audio file plays.

Examples

Read and Play Back Audio File

Read and play back an audio file using the standard audio output device.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj() becomes step(obj).

You can choose to read the entire data or specify a range of data to read from using the ReadRange
property. By default, ReadRange is set to [1 inf], indicating the file reader to read the entire data
from the source. In this example, set ReadRange to 3Fs, indicating the file reader to read the first 3
seconds of the data.

afr = dsp.AudioFileReader('speech_dft.mp3','ReadRange',[1 3*22050]);
adw = audioDeviceWriter('SampleRate', afr.SampleRate);

while ~isDone(afr)
 audio = afr();
 adw(audio);
end
release(afr);
release(adw);

Input Arguments
afr — Audio file reader
dsp.AudioFileReader

Audio file reader, specified as a dsp.AudioFileReader System object.

5 Functions

5-1000

Output Arguments
STATUS — Indicates EOF
false | true

Logical value that indicates if the reader has reached the EOF, returned as:

• true –– The STATUS is true when the EOF is reached. If the PlayCount property is set to a
value greater than 1, STATUS is returned as true only once the reader reaches the EOF
PlayCount number of times.

• false –– The STATUS is false when the EOF has not reached. If PlayCount property is greater
than 1, STATUS is returned as false until the EOF has reached PlayCount number of times.

Data Types: logical

See Also
Functions
info

Objects
dsp.AudioFileReader

Introduced in R2012a

 isDone

5-1001

info
Package: dsp

Get cumulative overrun and underrun

Syntax
S = info(asyncBuff)

Description
S = info(asyncBuff) returns a structure, S, containing the cumulative overrun and underrun
information of the dsp.AsyncBuffer System object, asyncBuff.

Examples

Read Variable Frame Sizes from Buffer

The dsp.AsyncBuffer System object™ supports reading variable frame sizes from the buffer.

Create a dsp.AsyncBuffer System object. The input is white Gaussian noise with a mean of 0, a
standard deviation of 1, and a frame size of 512 samples. Write the input to the buffer using the
write method.

asyncBuff = dsp.AsyncBuffer;
input = randn(512,1);
write(asyncBuff,input);
plot(input)
hold on

5 Functions

5-1002

Store the data that is read from the buffer in outTotal.

Plot the input signal and data that is read from the buffer in the same plot. Read data from the buffer
until all samples are read. In each iteration of the loop, randi determines the number of samples to
read. Therefore, the signal is read in as a variable-size signal. The prevIndex variable keeps track of
the previous index value that contains the data.

outTotal = zeros(size(input));
prevIndex = 0;
while asyncBuff.NumUnreadSamples ~= 0
 numToRead = randi([1,64]);
 out = read(asyncBuff,numToRead);
 outTotal(prevIndex+1:prevIndex+numToRead) = out;
 prevIndex = prevIndex+numToRead;
end
plot(outTotal,'r')
hold off

 info

5-1003

Verify that the input data and the data read from the buffer (excluding the underrun samples, if any)
are the same. The cumulative number of overrun and underrun samples in the buffer is determined
by the info function.

S = info(asyncBuff)

S = struct with fields:
 CumulativeOverrun: 0
 CumulativeUnderrun: 28

The CumulativeUnderrun field shows the number of samples underrun per channel. Underrun
occurs if you attempt to read more samples than available.

Input Arguments
asyncBuff — Async buffer
dsp.AsyncBuffer System object

Async buffer, specified as a dsp.AsyncBuffer System object.

Output Arguments
S — Cumulative overrun and underrun information
structure

5 Functions

5-1004

Cumulative overrun and underrun information, returned as a structure. The fields for S are described
in the table.

Field Value
CumulativeOverrun Number of samples overrun per channel since last call to reset. The number

of samples overrun is the number of unread samples overwritten.
CumulativeUnderru
n

Number of samples underrun per channel since last call to reset. Underrun
occurs if you attempt to read more samples than available.

The CumulativeOverrun and CumulativeUnderrun properties are data type int32.

See Also
Functions
read | write | peek

Objects
dsp.AsyncBuffer

Introduced in R2017a

 info

5-1005

read
Package: dsp

Read data from buffer

Syntax
out = read(asyncBuff)
out = read(asyncBuff,NumRows)
out = read(asyncBuff,NumRows,Overlap)
[out,nUnderrun] = read(___)

Description
out = read(asyncBuff) returns all unread samples from the buffer, asyncBuff.

out = read(asyncBuff,NumRows) returns NumRows samples from each channel (column) of the
buffer.

out = read(asyncBuff,NumRows,Overlap) returns NumRows samples from each channel and
overlaps previously read samples by Overlap.

[out,nUnderrun] = read(___) also returns the number of rows zero-padded if underrun
occurred, using any of the previous arguments.

Examples

Read Variable Frame Sizes from Buffer

The dsp.AsyncBuffer System object™ supports reading variable frame sizes from the buffer.

Create a dsp.AsyncBuffer System object. The input is white Gaussian noise with a mean of 0, a
standard deviation of 1, and a frame size of 512 samples. Write the input to the buffer using the
write method.

asyncBuff = dsp.AsyncBuffer;
input = randn(512,1);
write(asyncBuff,input);
plot(input)
hold on

5 Functions

5-1006

Store the data that is read from the buffer in outTotal.

Plot the input signal and data that is read from the buffer in the same plot. Read data from the buffer
until all samples are read. In each iteration of the loop, randi determines the number of samples to
read. Therefore, the signal is read in as a variable-size signal. The prevIndex variable keeps track of
the previous index value that contains the data.

outTotal = zeros(size(input));
prevIndex = 0;
while asyncBuff.NumUnreadSamples ~= 0
 numToRead = randi([1,64]);
 out = read(asyncBuff,numToRead);
 outTotal(prevIndex+1:prevIndex+numToRead) = out;
 prevIndex = prevIndex+numToRead;
end
plot(outTotal,'r')
hold off

 read

5-1007

Verify that the input data and the data read from the buffer (excluding the underrun samples, if any)
are the same. The cumulative number of overrun and underrun samples in the buffer is determined
by the info function.

S = info(asyncBuff)

S = struct with fields:
 CumulativeOverrun: 0
 CumulativeUnderrun: 28

The CumulativeUnderrun field shows the number of samples underrun per channel. Underrun
occurs if you attempt to read more samples than available.

Input Arguments
asyncBuff — Async buffer
dsp.AsyncBuffer System object

Async buffer, specified as a dsp.AsyncBuffer System object.

NumRows — Number of samples read from each channel
positive integer

5 Functions

5-1008

Number of samples read from each channel (column) of the buffer, specified as a positive integer. If
the requested number of samples is greater than the number of unread samples, the output is zero-
padded.

Overlap — Number of samples overlapped
integer

The function returns NumRows samples from each channel and overlaps previously read samples by
Overlap. The total number of samples read is NumRows × NumChann, where NumChann is the
number of channels in the buffer. The total number of new samples read is (NumRows – Overlap) ×
NumChann. If the overlap portion contains samples that are overwritten, and are therefore not
contiguously written, the output is zero-padded.

Output Arguments
out — Data read from buffer
vector | matrix

Data read from the buffer, returned as an array of NumRows × NumChann samples. If Overlap is
specified, the function returns (NumRows – Overlap) × NumChann samples. If the requested number
of samples is greater than the number of unread samples, the output is zero-padded.
Data Types: double

nUnderrun — Number of samples zero-padded in each channel
vector | matrix

Number of samples zero-padded in each channel (column) if underrun occurred. Underrun occurs if
you attempt to read more samples than available. Samples that are zero-padded in overlapped
portions are not counted as underrun.
Data Types: int32

See Also
Functions
info | write | peek

Objects
dsp.AsyncBuffer

Introduced in R2017a

 read

5-1009

write
Package: dsp

Write data to buffer

Syntax
nOverrun = write(asyncBuff,x)

Description
nOverrun = write(asyncBuff,x) writes the input array, x, to the buffering object, asyncBuff,
and returns the number of samples overrun, nOverrun.

Examples

Write Variable Frame Sizes to Buffer

Write a sine wave of variable frame size to the buffer. Compute the FFT of the sine wave and visualize
the result on an array plot.

Initialize the dsp.AsyncBuffer, dsp.ArrayPlot, and dsp.FFT System objects.

asynBuff = dsp.AsyncBuffer;
plotter = dsp.ArrayPlot;
fftObj = dsp.FFT('FFTLengthSource','Property','FFTLength',256);

The sine wave is generated using the sin function in MATLAB. The start and finish variables
mark the start and finish indices of each frame. If enough data is cached, read from the buffer and
perform the FFT. View the FFT on an array plot.

start = 1;

for Iter = 1 : 2000
 numToWrite = randi([200,800]);
 finish = start + numToWrite;

 inputData = sin(start:finish)';
 start = finish + 1;

 write(asynBuff,inputData);
 while asynBuff.NumUnreadSamples >= 256
 x = read(asynBuff,256);
 X = abs(fftObj(x));
 plotter(log(X));
 end
end

5 Functions

5-1010

Input Arguments
asyncBuff — Async buffer
dsp.AsyncBuffer System object

Async buffer, specified as a dsp.AsyncBuffer System object.

x — Data input
vector | matrix

Data written to the buffer, specified as a vector or a matrix. The maximum number of rows in the
buffer is determined by the Capacity property of asyncBuff. The number of channels in the buffer
is determined by the second dimension of the first data written to the buffer. Successive data inputs
can vary in the number of rows, but the number of channels must remain fixed. To change the
number of channels, you must call release on the buffer.

For example, the following is accepted:

asyncBuff = dsp.AsyncBuffer;
% First call to write
write(asyncBuff,randn(15,5));
% Add more data with a different number of rows
write(asyncBuff,randn(25,5));
write(asyncBuff,randn(5,5));

The following is not accepted and errors out:

 write

5-1011

asyncBuff = dsp.AsyncBuffer;
% First call to write
write(asyncBuff,randn(15,5));
% Add more data with a different number of columns
write(asyncBuff,randn(15,15));

To change the number of channels, call release on the buffer.

asyncBuff = dsp.AsyncBuffer;
% First call to write
write(asyncBuff,randn(15,5));
release(asyncBuff)
% Add more data with a different number of columns
write(asyncBuff,randn(15,15));

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical
Complex Number Support: Yes

Output Arguments
nOverrun — Number of samples overrun
scalar

Number of samples overrun in the current call to write. The number of samples overrun is the
number of unread samples overwritten. If x is a multichannel input, then nOverrun is the number of
rows of data overrun.
Data Types: int32

See Also
Functions
info | read | peek

Objects
dsp.AsyncBuffer

Introduced in R2017a

5 Functions

5-1012

peek
Package: dsp

Read data from buffer without changing number of unread samples

Syntax
out = peek(asyncBuff)
out = peek(asyncBuff,numRows)
out = peek(asyncBuff,numRows,overlap)
[out,nUnderrun] = peek(___)

Description
out = peek(asyncBuff) returns all unread samples from the buffer, asyncBuff, without
changing the number of unread samples in the buffer.

out = peek(asyncBuff,numRows) returns numRows samples from each channel (column) of the
buffer.

out = peek(asyncBuff,numRows,overlap) returns numRows samples from each channel and
overlaps previously read samples by overlap.

[out,nUnderrun] = peek(___) also returns the number of zero-padded rows if underrun
occurred, using any of the previous arguments.

Examples

Peek Data from Async Buffer

Read data from the async buffer without changing the number of unread samples using the peek
function.

Create a dsp.AsyncBuffer System object™. The input is a column vector of 100 samples, 1 to 100.
Write the data to the buffer.

asyncBuff = dsp.AsyncBuffer

asyncBuff =
 AsyncBuffer with properties:

 Capacity: 192000
 NumUnreadSamples: 0

input = (1:100)';
write(asyncBuff,input);

Peek at the first three samples. The output is [1 2 3]'.

out1 = peek(asyncBuff,3)

 peek

5-1013

out1 = 3×1

 1
 2
 3

The NumUnreadSamples is 100, indicating that the peek function has not changed the number of
unread samples in the buffer.

asyncBuff.NumUnreadSamples

ans = int32
 100

After peeking, read 50 samples using the read function. The output is [1:50]'.

out2 = read(asyncBuff,50)

out2 = 50×1

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 ⋮

The NumUnreadSamples is 50, indicating that the read function has changed the number of unread
samples in the buffer.

asyncBuff.NumUnreadSamples

ans = int32
 50

Now peek again at the first three samples. The output is [51 52 53]'. Verify that the
NumUnreadSamples is still 50.

out3 = peek(asyncBuff,3)

out3 = 3×1

 51
 52
 53

asyncBuff.NumUnreadSamples

ans = int32
 50

5 Functions

5-1014

Read 50 samples again. The output now contains the sequence [51:100]'. Verify that
NumUnreadSamples is 0.

out4 = read(asyncBuff)

out4 = 50×1

 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 ⋮

asyncBuff.NumUnreadSamples

ans = int32
 0

Input Arguments
asyncBuff — Async buffer
dsp.AsyncBuffer System object

Async buffer, specified as a dsp.AsyncBuffer System object.

numRows — Number of samples peeked from each channel
positive integer

Number of samples peeked from each channel (column) of the buffer, specified as a positive integer.
This operation does not change the number of unread samples in the buffer. If the requested number
of samples is greater than the number of unread samples, the output is zero-padded.

overlap — Number of samples overlapped
integer

Number of samples overlapped, specified as an integer. The function returns numRows samples from
each channel and overlaps previously read samples by overlap. The total number of samples peeked
is numRows × NumChann, where NumChann is the number of channels in the buffer. The total
number of new samples peeked is (numRows – overlap) × NumChann. If the overlap portion contains
samples that are overwritten, and are therefore not contiguously written, the output is zero-padded.

Output Arguments
out — Data peeked from buffer
vector | matrix

 peek

5-1015

Data peeked from the buffer, returned as an array of numRows × NumChann samples. If overlap is
specified, the function returns (numRows – overlap) × NumChann samples. If the requested number
of samples is greater than the number of unread samples, the output is zero-padded.
Data Types: double

nUnderrun — Number of zero-padded samples in each channel
vector | matrix

Number of zero-padded samples in each channel (column) if underrun occurred. Underrun occurs if
you attempt to peek more samples than available. Samples that are zero-padded in overlapped
portions are not counted as underrun.
Data Types: int32

See Also
Functions
info | write | read

Objects
dsp.AsyncBuffer

Introduced in R2018b

5 Functions

5-1016

readHeader
Package: dsp

Read file header

Syntax
header = readHeader(reader)

Description
header = readHeader(reader) returns the header structure, header, from the file specified by
the binary file reader, reader.

Examples

Read Header Data

Read the header data from a binary file using the readHeader function.

Write a header, followed by the data to a binary file named myfile.dat. The header is a 1-by-4
matrix of double precision values, followed by a 5-by-1 vector of single-precision values. The data is a
sequence of 1000 double-precision values.

fid = fopen('myfile.dat','w');
fwrite(fid,[1 2 3 4],'double');
fwrite(fid,single((1:5).'),'single');
fwrite(fid,(1:1000).','double');
fclose(fid);

Read the header using a dsp.BinaryFileReader object. Specify the expected header structure.
This structure specifies only the format of the expected binary file header and does not contain the
exact values.

reader = dsp.BinaryFileReader('myfile.dat');
s = struct('A',zeros(1,4),'B',ones(5,1,'single'));
reader.HeaderStructure = s;

Read the header using the readHeader function.

H = readHeader(reader);
fprintf('H.A: ')

H.A:

fprintf('%d ',H.A);

1 2 3 4

fprintf('\nH.A datatype: %s\n',class(H.A))

H.A datatype: double

 readHeader

5-1017

fprintf('H.B: ')

H.B:

fprintf('%d ',H.B);

1 2 3 4 5

fprintf('\nH.B datatype: %s\n',class(H.B))

H.B datatype: single

Input Arguments
reader — Binary file reader
dsp.BinaryFileReader System object

Binary file reader object, specified as a dsp.BinaryFileReader System object.

Output Arguments
header — Header structure
structure

Header structure of the binary file, returned as a structure. Each field of the structure is a real matrix
of a built-in type. For example, if you specify the HeaderStructure property of the
dsp.BinaryFileReader object to struct('field1',1:10,'field2',single(1)), the object
writes a header formed by 10 double-precision values, (1:10), followed by one single precision value,
single(1). If you do not specify a header, the object returns an empty structure, struct([]).
Data Types: struct

See Also
Objects
dsp.BinaryFileReader

Introduced in R2016b

5 Functions

5-1018

getFrequencyVector
Package: dsp

Vector of frequencies at which estimation is done

Syntax
freq = getFrequencyVector(estimator)
freq = getFrequencyVector(estimator,Fs)

Description
freq = getFrequencyVector(estimator) returns the vector of frequencies at which the
estimation is done.

freq = getFrequencyVector(estimator,Fs) returns the frequency vector assuming an input
sample rate, Fs.

Examples

Power Spectrum of Multichannel Sinusoidal Signal

Compute the power spectrum of a multichannel sinusoidal signal using the
dsp.SpectrumEstimator System object™. You can get the vector of frequencies at which the
spectrum is estimated using the getFrequencyVector function. To compute the resolution
bandwidth of the estimate (RBW), use the getRBW function.

Generate a three-channel sinusoid sampled at 1 kHz. Specify sinusoidal frequencies of 100, 200, and
300 Hz. The second and third channels have their phases offset from the first by and ,
respectively.

sineSignal = dsp.SineWave('SamplesPerFrame',1000,'SampleRate',1000, ...
 'Frequency',[100 200 300],'PhaseOffset',[0 pi/2 pi/4]);

Estimate and plot the one-sided spectrum of the signal. Use the dsp.SpectrumEstimator object for
the computation and the dsp.ArrayPlot for the plotting.

estimator = dsp.SpectrumEstimator('FrequencyRange','onesided');
plotter = dsp.ArrayPlot('PlotType','Line','YLimits',[0 0.75], ...
 'YLabel','Power Spectrum (watts)','XLabel','Frequency (Hz)');

Step through to obtain the data streams and display the spectra of the three channels.

y = sineSignal();
pxx = estimator(y);
plotter(pxx)

 getFrequencyVector

5-1019

Get the vector of frequencies at which the spectrum is estimated in Hz, using the
getFrequencyVector function.

f = getFrequencyVector(estimator);

Compute the resolution bandwidth (RBW) of the estimate using the getRBW function.

rbw = getRBW(estimator)

rbw =

 0.0015

The resolution bandwidth of the signal power spectrum is 0.0015 Hz. This frequency is the smallest
frequency that can be resolved on the spectrum.

Input Arguments
estimator — Estimator object
dsp.SpectrumEstimator | dsp.CrossSpectrumEstimator |
dsp.TransferFunctionEstimator

Estimator object, specified as one of the following:

5 Functions

5-1020

• dsp.SpectrumEstimator –– Estimates the power spectrum of the input signal.
• dsp.CrossSpectrumEstimator –– Estimates the cross-power spectrum of the input signal.
• dsp.TransferFunctionEstimator –– Estimates the transfer function of the system.

Fs — Input sample rate
positive scalar

Input sample rate, specified as a real positive scalar.

Output Arguments
freq — Spectrum frequencies
vector

Spectrum frequencies, returned as a column vector.

The length of the frequency vector is determined by the FrequencyRange and the FFT length.

If you set the FrequencyRange to 'onesided' and the FFT length, NFFT, is even, the frequency
vector is of length NFFT/2+1, and covers the interval [0,SampleRate/2].

If you set the FrequencyRange to 'onesided' and NFFT is odd, the frequency vector is of length
(NFFT+1)/2 and covers the interval [0,SampleRate/2].

If you set the FrequencyRange to 'twosided', the frequency vector is of length NFFT and covers
the interval [0, SampleRate].

If you set the FrequencyRange to 'centered', the frequency vector is of length NFFT and covers
the range [-SampleRate/2, SampleRate/2] and [-SampleRate/2, SampleRate/2] for even
and odd length NFFT, respectively.
Data Types: single | double

See Also
Functions
getRBW

Objects
dsp.SpectrumEstimator | dsp.CrossSpectrumEstimator |
dsp.TransferFunctionEstimator

Topics
“Fractional Delay Filters Using Farrow Structures”

Introduced in R2013b

 getFrequencyVector

5-1021

getFrequencyVector
Package: dsp

Get the vector of frequencies at which the short-time FFT is computed

Syntax
freq = getFrequencyVector(stf)
freq = getFrequencyVector(stf,Fs)

Description
freq = getFrequencyVector(stf) returns the frequency vector at which the short-time FFT is
computed. The input sample rate used is 2π.

freq = getFrequencyVector(stf,Fs) returns the frequency vector assuming an input sample
rate, Fs.

Examples

Get Short-time FFT Frequencies

Get the frequency vector at which the short-time FFT is computed.

Create a dsp.STFT object. The STFT object is defined with a 'twosided' frequency range. The
frequency vector is defined by the interval [0 Fs] and has the same length as the FFT length, where
Fs is the input sample rate.

stf = dsp.STFT

stf =
 STFT with properties:

 Window: [512x1 double]
 OverlapLength: 256
 FFTLength: 512
 FrequencyRange: 'twosided'

When the input sample rate Fs is not defined, the frequencies are computed in the interval [0, 2π].

Using the getFrequencyVector function, get the vector of frequencies at which the STFT is
computed.

freq = getFrequencyVector(stf)

freq = 512×1

 0
 0.0123
 0.0245

5 Functions

5-1022

 0.0368
 0.0491
 0.0614
 0.0736
 0.0859
 0.0982
 0.1104
 ⋮

When the input sample rate Fs is defined, the frequency vector is defined by the interval [0 Fs].

Fs = 44100;
freqFs = getFrequencyVector(stf,Fs)

freqFs = 512×1
104 ×

 0
 0.0086
 0.0172
 0.0258
 0.0345
 0.0431
 0.0517
 0.0603
 0.0689
 0.0775
 ⋮

Input Arguments
stf — STFT object
dsp.STFT

Short-time FFT object whose frequency vector is computed, specified as dsp.STFT object.

Fs — Input sample rate
positive scalar

Input sample rate, specified as a real positive scalar. The STFT frequencies are computed in the
interval determined by Fs. For more details, see freq.
Data Types: single | double

Output Arguments
freq — Frequencies
vector

Frequencies at which the short-time FFT is computed, returned as a column vector.

The length of the frequency vector is determined by the FrequencyRange property and the
FFTLength.

 getFrequencyVector

5-1023

If you set FrequencyRange to 'onesided' and FFTlength is even, the frequency vector is of
length (FFTlength/2)+1. If you set the FrequencyRange to 'onesided' and FFTlength is odd,
the frequency vector is of length (FFTlength+1)/2.

The frequencies cover the interval [0, Fs/2]. When Fs is not specified, the frequencies range from [0,
π].

If you set the FrequencyRange property to 'twosided', the length of the frequency vector is equal
to the value you specify in the FFTlength property. The frequencies cover the interval [0, Fs]. When
Fs is not specified, the frequencies range from [0, 2π].
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsp.STFT

Introduced in R2020b

5 Functions

5-1024

getRBW
Package: dsp

Resolution bandwidth of spectrum

Syntax
RBW = getRBW(estimator)
RBW = getRBW(estimator,Fs)

Description
RBW = getRBW(estimator) returns the resolution bandwidth of the spectral estimate.

RBW = getRBW(estimator,Fs) returns the resolution bandwidth assuming an input sample rate of
Fs.

Examples

Power Spectrum of Multichannel Sinusoidal Signal

Compute the power spectrum of a multichannel sinusoidal signal using the
dsp.SpectrumEstimator System object™. You can get the vector of frequencies at which the
spectrum is estimated using the getFrequencyVector function. To compute the resolution
bandwidth of the estimate (RBW), use the getRBW function.

Generate a three-channel sinusoid sampled at 1 kHz. Specify sinusoidal frequencies of 100, 200, and
300 Hz. The second and third channels have their phases offset from the first by and ,
respectively.

sineSignal = dsp.SineWave('SamplesPerFrame',1000,'SampleRate',1000, ...
 'Frequency',[100 200 300],'PhaseOffset',[0 pi/2 pi/4]);

Estimate and plot the one-sided spectrum of the signal. Use the dsp.SpectrumEstimator object for
the computation and the dsp.ArrayPlot for the plotting.

estimator = dsp.SpectrumEstimator('FrequencyRange','onesided');
plotter = dsp.ArrayPlot('PlotType','Line','YLimits',[0 0.75], ...
 'YLabel','Power Spectrum (watts)','XLabel','Frequency (Hz)');

Step through to obtain the data streams and display the spectra of the three channels.

y = sineSignal();
pxx = estimator(y);
plotter(pxx)

 getRBW

5-1025

Get the vector of frequencies at which the spectrum is estimated in Hz, using the
getFrequencyVector function.

f = getFrequencyVector(estimator);

Compute the resolution bandwidth (RBW) of the estimate using the getRBW function.

rbw = getRBW(estimator)

rbw =

 0.0015

The resolution bandwidth of the signal power spectrum is 0.0015 Hz. This frequency is the smallest
frequency that can be resolved on the spectrum.

Input Arguments
estimator — Estimator object
dsp.SpectrumEstimator | dsp.CrossSpectrumEstimator |
dsp.TransferFunctionEstimator

Estimator object, specified as one of the following:

5 Functions

5-1026

• dsp.SpectrumEstimator –– Estimates the power spectrum of the input signal.
• dsp.CrossSpectrumEstimator –– Estimates the cross-power spectrum of the input signal.
• dsp.TransferFunctionEstimator –– Estimates the transfer function of the system.

Fs — Input sample rate
positive scalar

Input sample rate, specified as a real positive scalar.

Output Arguments
RBW — Resolution bandwidth
scalar

Resolution bandwidth of the estimate, returned as a scalar.

The resolution bandwidth, RBW, is the smallest positive frequency, or frequency interval, that can be
resolved. It is equal to NENBW*SampleRate/L, where L is the input length, and NENBW is the
normalized effective noise bandwidth of the window.

The data type of RBW matches the data type of the input.
Data Types: single | double

See Also
Functions
getFrequencyVector

Objects
dsp.SpectrumEstimator | dsp.CrossSpectrumEstimator |
dsp.TransferFunctionEstimator

Topics
“Generate a Multithreaded MEX File from a MATLAB Function Using Unfolding”

Introduced in R2013b

 getRBW

5-1027

int
States from CIC filter

Compatibility
mfilt will be removed in a future release. Refer to the reference page for a specific mfilt object to
see its recommended replacement.

Syntax
integerstates = int(hm.states)

Description
integerstates = int(hm.states) returns the states of a CIC filter in matrix form, rather than
as the native filtstates object. An important point about int is that it quantizes the state values
to the smallest number of bits possible while maintaining the values accurately.

Examples
For many users, the states of multirate filters are most useful as a matrix, but the CIC filters store the
states as objects. Here is how you get the states from you CIC filter as a matrix.
hm = mfilt.cicinterp;
hs = hm.states; % Returns a FILTSTATES.CIC object hs.
states = int(hs); % Convert object hs to a signed integer matrix.

After using int to convert the states object to a matrix, here is what you get.

Before converting:
hm.states

ans =

 Integrator: [2x1 States]
 Comb: [2x1 States]

After the conversion and assigning the states to states:
states

states =

 0 0
 0 0

See Also
filtstates.cic | dsp.CICDecimator | dsp.CICInterpolator

Introduced in R2011a

5 Functions

5-1028

isallpass
Package: dsp

Verify that discrete-time filter System object is allpass

Syntax
flag = isallpass(sysobj)
flag = isallpass(sysobj,tol)
flag = isallpass(___ ,'Arithmetic',arithType)

Description
flag = isallpass(sysobj) returns true if the filter System object is allpass.

flag = isallpass(sysobj,tol) uses the tolerance tol to determine when two numbers are
close enough to be considered equal.

flag = isallpass(___ ,'Arithmetic',arithType) analyzes the filter System object based on
the arithmetic specified in arithType, using either of the previous syntaxes.

For more input options, see isallpass in Signal Processing Toolbox.

Examples

Verify if Filter is Allpass

Create an allpass filter using the dsp.AllpassFilter object.

apass = dsp.AllpassFilter

apass =
 dsp.AllpassFilter with properties:

 Structure: 'Minimum multiplier'
 AllpassCoefficients: [-0.7071 0.5000]
 TrailingFirstOrderSection: false

Verify that the filter is an allpass filter by visualizing the magnitude response in fvtool.

fvtool(apass)

 isallpass

5-1029

Now verify that the filter is an allpass filter using the isallpass function.

isallpass(apass)

ans = logical
 1

Input Arguments
sysobj — Filter System object
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator

5 Functions

5-1030

• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.FrequencyDomainFIRFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

tol — Tolerance value
eps^(2/3) (default) | positive scalar

Tolerance value to determine when two numbers are close enough to be considered equal, specified
as a positive scalar. If not specified, tol, defaults to eps^(2/3). Specifying a tolerance may be most
helpful in fixed-point allpass filters.

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

 isallpass

5-1031

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
flag — Flag to determine if filter is allpass
true or 1 | false or 0

Flag to determine if the filter is allpass, returned as a logical:

• 1 –– Filter is allpass.
• 0 –– Filter is not allpass.

Data Types: logical

See Also
isallpass

Introduced in R2013a

5 Functions

5-1032

isfir
Package: dsp

Verify if filter System object is FIR

Syntax
flag = isfir(sysobj)

Description
flag = isfir(sysobj) determines whether the filter System object is an FIR filter. If the filter is
an FIR filter, isfir returns 1.

To determine whether sysobj is an FIR filter, the isfir function inspects if the filter in the transfer
function form has a scalar denominator. If it does, it is an FIR filter.

Examples

Determine if Filter is FIR

Design a Lowpass FIR Filter.

d = fdesign.lowpass;
h = design(d,'Systemobject',true)

h =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [-0.0024 -0.0021 0.0068 0.0167 0.0111 -0.0062 ...]
 InitialConditions: 0

 Show all properties

Determine if the filter is an FIR filter using the isfir function.

isfir(h)

ans = logical
 1

isfir returns 1 to indicate that the filter is an FIR filter.

 isfir

5-1033

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

Output Arguments
flag — Flag to determine whether filter is FIR
1 | 0

Flag to determine whether the filter is FIR, returned as a logical scalar. If the filter is FIR, isfir
returns a logical 1, else it returns a logical 0.
Data Types: logical

5 Functions

5-1034

See Also
Functions
isallpass | islinphase | ismaxphase | isminphase | isreal | issos | isstable

Introduced in R2011a

 isfir

5-1035

isDone
Package: dsp

End-of-file status for signal reader object

Syntax
isDone(src)

Description
isDone(src) returns a logical value indicating whether or not the SignalSource object, src, has
reached the end of the imported signal. If the SignalEndAction property of src is set to Cyclic
repetition, this method returns true every time the reader reaches the end.

Examples

Create Signal Source

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, myObject() becomes step(myObject).

Create a signal source to output one sample at a time.

src1 = dsp.SignalSource;
src1.Signal = randn(1024,1);
y1 = zeros(1024,1);
idx = 1;
while(~isDone(src1))
 y1(idx) = src1();
 idx = idx + 1;
end

Create a signal source to output vectors.

src2 = dsp.SignalSource(randn(1024,1),128);
y2 = src2(); % y2 is a 128-by-1 frame of samples

Input Arguments
src — Signal reader object
dsp.SignalReader System object

Signal reader object, specified as a dsp.SignalSource System object.

5 Functions

5-1036

See Also
Objects
dsp.SignalSource

Introduced in R2012b

 isDone

5-1037

islinphase
Package: dsp

Verify that discrete-time filter System object is linear phase

Syntax
flag = islinphase(sysobj)
flag = islinphase(sysobj,tol)
flag = islinphase(___ ,'Arithmetic',arithType)

Description
flag = islinphase(sysobj) returns true if the filter System object has linear phase.

flag = islinphase(sysobj,tol) uses the tolerance tol to determine when two numbers are
close enough to be considered equal. If not specified, tol defaults to eps^(2/3).

flag = islinphase(___ ,'Arithmetic',arithType) analyzes the filter System object based
on the arithmetic specified in the arithType input using either of the previous syntaxes.

For more input options, see islinphase in Signal Processing Toolbox.

Examples

Linear and Nonlinear Phase Filters

Use the window method to design a 10th order lowpass FIR filter with the normalized cutoff
frequency of 0.55. Verify that the filter has linear phase.

firSpecs = fdesign.lowpass('N,Fc',10,0.55);
lpFIR = design(firSpecs,'window','SystemObject',true);

flag = islinphase(lpFIR)

flag = logical
 1

Plot the phase response of the filter and verify that it is linear.

[phs,w] = phasez(lpFIR);
plot(w/pi,phs)
xlabel('Frequency \omega/\pi')
ylabel('Phase')

5 Functions

5-1038

IIR filters in general do not have linear phase. Verify this by constructing Butterworth, Chebyshev,
and elliptic filters with similar specifications. Set the passband frequency to 0.35, stopband frequency
to 0.4, passband ripple to 1 dB, and stopband attenuation to 20 dB.

Wp = 0.35;
Wst = 0.4;
atten = 20;
rippl = 1;

buttSpecs = fdesign.lowpass('Fp,Fst,Ap,Ast',Wp,Wst,rippl,atten);
buttIIR = design(buttSpecs,'butter','SystemObject',true);

chb1Specs = fdesign.lowpass('Fp,Fst,Ap,Ast',Wp,Wst,rippl,atten);
chb1IIR = design(chb1Specs,'cheby1','SystemObject',true);

chb2Specs = fdesign.lowpass('Fp,Fst,Ap,Ast',Wp,Wst,rippl,atten);
chb2IIR = design(chb2Specs,'cheby2','SystemObject',true);

ellpSpecs = fdesign.lowpass('Fp,Fst,Ap,Ast',Wp,Wst,rippl,atten);
ellpIIR = design(ellpSpecs,'ellip','SystemObject',true);

Plot the phase responses of the filters. Determine whether they have linear phase.

fv = fvtool(buttIIR,chb1IIR,chb2IIR,ellpIIR,'Analysis','phase');
legend(fv,'Butterworth','Chebyshev I','Chebyshev II','Elliptic')

 islinphase

5-1039

phs = [islinphase(buttIIR) islinphase(chb1IIR) ...
 islinphase(chb2IIR) islinphase(ellpIIR)]

phs = 1x4 logical array

 0 0 0 0

Input Arguments
sysobj — Filter System object
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator

5 Functions

5-1040

• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

tol — Tolerance value
eps^(2/3) (default) | positive scalar

Tolerance value to determine when two numbers are close enough to be considered equal, specified
as a positive scalar. If not specified, tol, defaults to eps^(2/3).

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is

 islinphase

5-1041

signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
flag — Flag to determine if filter has linear phase
true or 1 | false or 0

Flag to determine if the filter has linear phase, returned as a logical:

• 1 –– Filter has linear phase.
• 0 –– Filter has nonlinear phase.

Data Types: logical

See Also
islinphase

Introduced in R2013a

5 Functions

5-1042

ismaxphase
Package: dsp

Verify that discrete-time filter System object is maximum phase

Syntax
flag = ismaxphase(sysobj)
flag = ismaxphase(sysobj,tol)
flag = ismaxphase(___ ,'Arithmetic',arithType)

Description
flag = ismaxphase(sysobj) returns true if the filter System object has maximum phase.

flag = ismaxphase(sysobj,tol) uses the tolerance tol to determine when two numbers are
close enough to be considered equal. If not specified, tol defaults to eps^(2/3).

flag = ismaxphase(___ ,'Arithmetic',arithType) analyzes the filter System object based
on the arithmetic specified in the arithType input using either of the previous syntaxes.

For more input options, see ismaxphase in Signal Processing Toolbox.

Examples

Determine if Filter has Maximum Phase

Design an allpass filter and determine if the filter has maximum phase.

Using the dsp.AllpassFilter System object™, design an allpass filter that uses the minimum
multiplier structure.

a = dsp.AllpassFilter

a =
 dsp.AllpassFilter with properties:

 Structure: 'Minimum multiplier'
 AllpassCoefficients: [-0.7071 0.5000]
 TrailingFirstOrderSection: false

Using the ismaxphase function, determine if the filter has maximum phase.

ismaxphase(a)

ans = logical
 1

 ismaxphase

5-1043

Verify the location of poles and zeros of the filter transfer function on the z-plane. By definition, the
zeros of the maximum phase filter must be outside the unit circle.

zplane(a)

Input Arguments
sysobj — Filter System object
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator

5 Functions

5-1044

• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

tol — Tolerance
eps^(2/3) (default) | positive scalar

Tolerance value to determine when two numbers are close enough to be considered equal, specified
as a positive scalar. If not specified, tol defaults to eps^(2/3).

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

 ismaxphase

5-1045

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
flag — Flag to determine if filter has maximum phase
true or 1 | false or 0

Flag to determine if the filter has maximum phase, returned as a logical:

• 1 –– Filter has maximum phase.
• 0 –– Filter has non maximum phase.

Data Types: logical

More About
Maximum Phase Filters

A causal and stable discrete-time system is said to be strictly maximum-phase when all its zeros are
outside the unit circle. A causal and stable LTI system is a maximum-phase system if its inverse is
causal and unstable.

Such a system is called a maximum-phase system because it has the maximum group delay
(grpdelay) of the set of systems that have the same magnitude response.

See Also
ismaxphase | isminphase

Introduced in R2013a

5 Functions

5-1046

isminphase
Package: dsp

Verify that discrete-time filter System object is minimum phase

Syntax
flag = isminphase(sysobj)
flag = isminphase(sysobj,tol)
flag = isminphase(___ ,'Arithmetic',arithType)

Description
flag = isminphase(sysobj) returns true if the filter System object has minimum phase.

flag = isminphase(sysobj,tol) uses the tolerance tol to determine when two numbers are
close enough to be considered equal. If not specified, tol defaults to eps^(2/3).

flag = isminphase(___ ,'Arithmetic',arithType) analyzes the filter System object based
on the arithmetic specified in the arithType input using either of the previous syntaxes.

For more input options, see isminphase in Signal Processing Toolbox.

Examples

Determine if Filter Has Minimum Phase and is Stable

Design a Chebyshev Type I IIR filter and determine if the filter has minimum phase and is stable.

Using the fdesign.lowpass and design functions, design a Chebyshev Type I IIR filter with a
passband ripple of 0.5 dB and a 3 dB cutoff frequency at 9600 Hz.

Fs = 48000; % Sampling frequency of input signal
d = fdesign.lowpass('N,F3dB,Ap', 10, 9600, .5, Fs);
filt = design(d,'cheby1','Systemobject',true)

filt =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Using the isminphase function, determine if the filter has minimum phase.

 isminphase

5-1047

isminphase(filt)

ans = logical
 1

Verify the location of poles and zeros of the filter transfer function on the z-plane. By definition, the
poles and zeros of the minimum phase filter must be on or inside the unit circle.

zplane(filt)

All minimum phase filters are stable. To verify if the designed filter is stable, use the isstable
function.

isstable(filt)

ans = logical
 1

Input Arguments
sysobj — Filter System object
filter System object

Input filter, specified as one of the following filter System objects:

5 Functions

5-1048

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

tol — Tolerance value
eps^(2/3) (default) | positive scalar

Tolerance value to determine when two numbers are close enough to be considered equal, specified
as a positive scalar. If not specified, tol defaults to eps^(2/3).

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

 isminphase

5-1049

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
flag — Flag to determine if filter has minimum phase
true or 1 | false or 0

Flag to determine if the filter has minimum phase, returned as a logical:

• 1 –– Filter has minimum phase.
• 0 –– Filter has non minimum phase.

Data Types: logical

More About
Minimum Phase Filters

A causal and stable discrete-time system is said to be strictly minimum-phase when all its zeros are
inside the unit circle. A causal and stable LTI system is a minimum-phase system if its inverse is
causal and stable as well.

Such a system is called a minimum-phase system because it has the minimum group delay
(grpdelay) of the set of systems that have the same magnitude response.

See Also
isminphase | ismaxphase

Introduced in R2013a

5 Functions

5-1050

isNewDataReady
Package: dsp

Check spectrum analyzer for new data

Syntax
flag = isNewDataReady(scope)

Description
flag = isNewDataReady(scope) indicates whether or not the spectrum analyzer scope displays
new spectrum estimates. When you are logging spectrum analyzer data from the
dsp.SpectrumAnalyzer scope, use this function to ignore duplicate spectrums from the
getSpectrumData function.

Examples

Log Spectrum Data

While a spectrum analyzer is running, save the spectrum data to a table. The spectrum analyzer does
not update at every time step. To avoid saving that redundant spectrum data, use the
isNewDataReady function.

wave = dsp.SineWave('Frequency',100,'SampleRate',1000);
wave.SamplesPerFrame = 1000;
scope = dsp.SpectrumAnalyzer('SampleRate',wave.SampleRate,...
 'ReducePlotRate',false,...
 'ViewType','Spectrum and spectrogram');
data = [];

for ii = 1:250
 x = wave() + 0.05*randn(1000,1);
 scope(x);
 if scope.isNewDataReady
 data = [data;getSpectrumData(scope)];
 end
end

release(scope);

 isNewDataReady

5-1051

In the data table, you can see gaps in the simulation time. These missing rows indicate times where
the spectrum analyzer was waiting for additional samples to update the spectrum. The
isNewDataReady function prevented the script from saving that redundant data.

data(1:5,:)

ans =

 5x4 table

 SimulationTime Spectrum Spectrogram FrequencyVector
 ______________ _______________ _________________ _______________

 {[1]} {1536x1 double} {100x1536 double} {1536x1 double}
 {[3]} {1536x1 double} {100x1536 double} {1536x1 double}
 {[4]} {1536x1 double} {100x1536 double} {1536x1 double}
 {[6]} {1536x1 double} {100x1536 double} {1536x1 double}

5 Functions

5-1052

 {[7]} {1536x1 double} {100x1536 double} {1536x1 double}

Input Arguments
scope — Spectrum analyzer
System object name

Spectrum analyzer that you want to save data from.

Output Arguments
flag — New data flag
true | false

true
The spectrum analyzer shows new data.

false
The spectrum analyzer shows the same spectrum as the last time the scope was called.

See Also
dsp.SpectrumAnalyzer | getSpectrumData | getMeasurementsData

Introduced in R2017b

 isNewDataReady

5-1053

isreal
Package: dsp

Verify that discrete-time filter System object is real

Syntax
flag = isreal(sysobj)

Description
flag = isreal(sysobj) determines if the filter coefficients are real. If the filter coefficients are
real, isreal returns a logical 1. If the filter coefficients are complex, isreal returns a logical 0.
Complex filters have one or more coefficients with nonzero imaginary parts.

Examples

Check if Filter Coefficients Are Real

Create a dsp.BiquadFilter System object™. Pass a fixed-point input to the object. Test the
coefficients of the fixed-point filter to see if they are strictly real.

d = fdesign.lowpass('n,fp,ap,ast',5,0.4,0.5,20);
biquadFilter = design(d,'ellip','SystemObject',true);
IsRealBefore = isreal(biquadFilter)

IsRealBefore = logical
 1

Pass a fixed-point input to the object.

fiInput = fi(randn(1000,2),1,32,16);
fiOutput = biquadFilter(fiInput);
IsRealAfter = isreal(biquadFilter)

IsRealAfter = logical
 1

The isreal function returns a value of 1, indicating that the filter coefficients are real.

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

5 Functions

5-1054

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

Output Arguments
flag — Flag to determine whether filter coefficients are real
1 | 0

Flag to determine whether the filter coefficients are real, returned as a logical scalar. If the filter
coefficients are real, isreal returns a logical 1, else it returns a logical 0.
Data Types: logical

See Also
isfir | islinphase | ismaxphase | isminphase | issos | isstable | isallpass

Introduced in R2011a

 isreal

5-1055

issos
Package: dsp

Verify if discrete-time System object filter is in second-order sections form

Syntax
flag = issos(sysobj)

Description
flag = issos(sysobj) determines whether the filter System object is in second-order sections
(SOS) form, returning a logical 1 if true and a logical 0 if false.

Examples

Design Lowpass SOS Filter

By default, fdesign and design functions return SOS filters when possible. This example designs a
lowpass SOS filter that uses fixed-point arithmetic.

d = fdesign.lowpass('n,fp,ap,ast',40,0.55,0.1,60);
hd = design(d,'ellip','SystemObject',true);

Using the issos function, verify whether the designed filter is in SOS form.

IsSOS = issos(hd)

IsSOS = logical
 1

The filter is in second-order section form.

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator

5 Functions

5-1056

• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

Output Arguments
flag — Flag to determine if filter is in SOS form
1 | 0

Flag to determine whether the filter is in second-order sections (SOS) form, returned as a logical
scalar. If the filter is in SOS form, issos returns a logical 1, else it returns a logical 0.
Data Types: logical

See Also
isallpass | isfir | islinphase | ismaxphase | isminphase | isreal | isstable

Introduced in R2011a

 issos

5-1057

isVisible
Package:

Determine visibility of scope

Syntax
visibility = isVisible(scope)

Description
visibility = isVisible(scope) returns the visibility of the System object scope as logical, with
1 (true) for visible.

Examples

Hide and Show Time Scope

Create a sine wave signal and view it in the scope.

Fs = 1000; % Sampling frequency
signal = dsp.SineWave('Frequency',50,'SampleRate',Fs,...
 'SamplesPerFrame',100);
scope = timescope('SampleRate',Fs,'TimeSpanSource','property',...
 'TimeSpan',0.25,'YLimits',[-1 1]);
for ii = 1:2
 xsine = signal();
 scope(xsine)
end

5 Functions

5-1058

Hide the scope window.

if(isVisible(scope))
 hide(scope)
end

Show the scope window.

if(~isVisible(scope))
 show(scope)
end

 isVisible

5-1059

Clean up workspace variables.

clear scope Fs sine ii xsine

Input Arguments
scope — Scope System object
scope System object

Scope System object whose visibility you want to query.
Example: myScope = dsp.SpectrumAnalyzer; visibility = isVisible(myScope)
Example: myTS = timescope; visibility = isVisible(myTS)

Output Arguments
visibility — Scope visibility
1 | 0

If the scope display is showing, the isVisible function returns 1 (true). Otherwise, the function
returns 0 (false).

5 Functions

5-1060

See Also
Functions
show | hide

Objects
timescope | dsp.ArrayPlot | dsp.SpectrumAnalyzer | dsp.LogicAnalyzer

Introduced in R2016b

 isVisible

5-1061

isstable
Package: dsp

Verify that discrete-time filter System object is stable

Syntax
flag = isstable(sysobj)
flag = isstable(sysobj,'Arithmetic',arithType)

Description
flag = isstable(sysobj) returns true if filter System object is stable. The function returns
false if filter System object is not stable.

flag = isstable(sysobj,'Arithmetic',arithType) analyzes the filter System object based
on the arithmetic specified in the arithType input.

For more input options, see isstable in Signal Processing Toolbox.

Examples

Determine if Filter Has Minimum Phase and is Stable

Design a Chebyshev Type I IIR filter and determine if the filter has minimum phase and is stable.

Using the fdesign.lowpass and design functions, design a Chebyshev Type I IIR filter with a
passband ripple of 0.5 dB and a 3 dB cutoff frequency at 9600 Hz.

Fs = 48000; % Sampling frequency of input signal
d = fdesign.lowpass('N,F3dB,Ap', 10, 9600, .5, Fs);
filt = design(d,'cheby1','Systemobject',true)

filt =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Using the isminphase function, determine if the filter has minimum phase.

isminphase(filt)

5 Functions

5-1062

ans = logical
 1

Verify the location of poles and zeros of the filter transfer function on the z-plane. By definition, the
poles and zeros of the minimum phase filter must be on or inside the unit circle.

zplane(filt)

All minimum phase filters are stable. To verify if the designed filter is stable, use the isstable
function.

isstable(filt)

ans = logical
 1

Input Arguments
sysobj — Filter System object
filter System object

Input filter, specified as one of the following filter System objects:

 isstable

5-1063

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

5 Functions

5-1064

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
flag — Flag to determine if filter is stable
1 | 0

Flag to determine if the filter is stable, returned as a logical:

• 1 –– Filter is stable.
• 0 –– Filter is not stable.

Data Types: logical

See Also
isstable

Introduced in R2013a

 isstable

5-1065

kaiserwin
Kaiser window filter from specification object

Syntax
kFilter = design(d,'kaiserwin','SystemObject',true)
kFilter = design(d,'kaiserwin',designoption,value,designoption,...
value,'SystemObject',true)

Description
kFilter = design(d,'kaiserwin','SystemObject',true) designs a digital filter kFilter
that uses a Kaiser window. For kaiserwin to work properly, the filter order in the specifications
object must be even. In addition, higher order filters (filter order greater than 120) tend to be more
accurate for smaller transition widths. kaiserwin returns a warning when your filter order may be
too low to design your filter accurately.

kFilter = design(d,'kaiserwin',designoption,value,designoption,...
value,'SystemObject',true) returns a filter where you specify design options as input
arguments and the design process uses the Kaiser window technique.

To determine the available design options, use designopts with the specification object and the
design method as input arguments as shown.

designopts(d,'method')

For complete help about using kaiserwin, refer to the command line help system. For example, to
get specific information about using kaiserwin with d, the specification object, enter the following
at the MATLAB prompt.

help(d,'kaiserwin')

Examples

Design a Direct Form FIR Filter

This example designs a direct form FIR filter from a halfband filter specification object.

d = fdesign.halfband('n,tw',200,0.01);
hbFilter = design(d,'kaiserwin','filterstructure','dffir',...
 'SystemObject',true)

hbFilter =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [0 -0.0028 0 0.0029 0 -0.0030 0 0.0030 0 -0.0031 ...]
 InitialConditions: 0

5 Functions

5-1066

 Show all properties

fvtool(hbFilter);

In this example, kaiserwin uses an interpolating filter specification object.

d = fdesign.interpolator(4,'lowpass');
interpFilter= design(d,'kaiserwin','SystemObject',true)

interpFilter =
 dsp.FIRInterpolator with properties:

 InterpolationFactor: 4
 NumeratorSource: 'Property'
 Numerator: [3.4579e-04 2.6057e-04 -4.2478e-05 -4.6005e-04 ...]

 Show all properties

fvtool(interpFilter);

 kaiserwin

5-1067

See Also
equiripple | firls

Introduced in R2011a

5 Functions

5-1068

lagrange
Fractional delay filter from fdesign.fracdelay specification object

Syntax
Hd = design(d,'lagrange')
hd = design(d,'lagrange',FilterStructure,structure)

Description
Hd = design(d,'lagrange') designs a fractional delay filter using the Lagrange method based
on the specifications in d.

hd = design(d,'lagrange',FilterStructure,structure) specifies the Lagrange design
method and the structure filter structure for hd. The only valid filter structure is fd, describing the
fractional delay structure.

Examples
This example uses a fractional delay of 0.30 samples. The help and designopts commands provide
the details about designing fractional delay filters.
d=fdesign.fracdelay(.30)

d =

 Response: 'Fractional Delay'
 Specification: 'N'
 Description: {'Filter Order'}
 FracDelay: 0.3
 NormalizedFrequency: true
 FilterOrder: 3

designmethods(d)

Design Methods for class fdesign.fracdelay (N):

lagrange

help(d,'lagrange')

DESIGN Design a Lagrange fractional delay filter.
HD = DESIGN(D, 'lagrange') designs a Lagrange filter specified by the
 FDESIGN object D, and returns the DFILT object HD.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with the
 structure STRUCTURE. STRUCTURE is 'farrowfd' by default and can be any of
 the following:

'farrowfd'
'fd'

 % Example #1 - Design a linear Lagrange fractional delay filter of 0.2 samples.
 h = fdesign.fracdelay(0.2,'N',2);
 Hd = design(h, 'lagrange', 'FilterStructure', 'farrowfd')

 % Example #2 - Design a cubic Lagrange fractional delay filter
 Fs = 8000; % Sampling frequency of 8kHz
 fdelay = 50e-6; % Fractional delay of 50 microseconds.
 h = fdesign.fracdelay(fdelay,'N',3,Fs);
 Hd = design(h, 'lagrange', 'FilterStructure', 'farrowfd');

This example designs a linear Lagrange fractional delay filter where you set the delay to 0.2 seconds
and the filter order N to 2.

 lagrange

5-1069

h = fdesign.fracdelay(0.2,'N',2);
hd = design(h,'lagrange','FilterStructure','farrowfd')

Design a cubic Lagrange fractional delay filter with filter order equal to 3.

Fs = 8000; % Sampling frequency of 8 kHz.
fdelay = 50e-6; % Fractional delay of 50 microseconds.
h = fdesign.fracdelay(fdelay,'N',3,Fs);
hd = design(h,'lagrange','FilterStructure','farrowfd');

References
Laakso, T. I., V. Välimäki, M. Karjalainen, and Unto K. Laine, “Splitting the Unit Delay - Tools for
Fractional Delay Filter Design,” IEEE Signal Processing Magazine, Vol. 13, No. 1, pp. 30-60, January
1996.

See Also
design | designmethods | designopts | fdesign | fdesign.fracdelay

Introduced in R2011a

5 Functions

5-1070

liblinks
Check model for blocks from specific DSP System Toolbox libraries

Syntax
liblinks(lib)
liblinks(lib,sys)
liblinks(lib,sys,c)

Description
liblinks(lib) returns a cell array of character vectors that lists the blocks in the current model
that are linked to the specified libraries. The input lib provides a cell array of character vectors with
the library names. Use the library name visible in the title bar when you open a library model.

liblinks(lib,sys) acts on the named model sys.

liblinks(lib,sys,c) changes the foreground color of the returned blocks to the color c. Possible
values of c are 'blue', 'green', 'red', 'cyan', 'magenta', 'yellow', or 'black'.

Examples
Check for blocks from the Sources library in the specified model:

rlsdemo
liblinks('dspsrcs4',gcs)

See Also
dsp_links

Introduced before R2006a

 liblinks

5-1071

limitcycle
Response of single-rate, fixed-point IIR filter

Syntax
report = limitcycle(hd)
report = limitcycle(hd,ntrials,inputlengthfactor,stopcriterion)

Description
report = limitcycle(hd) returns the structure report that contains information about how
filter hd responds to a zero-valued input vector. By default, the input vector has length equal to twice
the impulse response length of the filter.

limitcycle returns a structure whose elements contain the details about the limit cycle testing. As
shown in this table, the report includes the following details.

Output Object Property Description
LimitCycleType Contains one of the following results:

• Granular — indicates that a granular overflow occurred.
• Overflow — indicates that an overflow limit cycle occurred.
• None — indicates that the test did not find any limit cycles.

Zi Contains the initial condition value(s) that caused the detected
limit cycle to occur.

Output Contains the output of the filter in the steady state.
Trial Returns the number of the Monte Carlo trial on which the limit

cycle testing stopped. For example, Trial = 10 indicates that
testing stopped on the tenth Monte Carlo trial.

Using an input vector longer than the filter impulse response ensures that the filter is in steady-state
operation during the limit cycle testing. limitcycle ignores output that occurs before the filter
reaches the steady state. For example, if the filter impulse length is 500 samples, limitcycle
ignores the filter output from the first 500 input samples.

To perform limit cycle testing on your IIR filter, you must set the filter Arithmetic property to
fixed and hd must be a fixed-point IIR filter of one of the following forms:

• df1 — direct-form I
• df1t — direct-form I transposed
• df1sos — direct-form I with second-order sections
• df1tsos — direct-form I transposed with second-order sections
• df2 — direct-form II
• df2t — direct-form II transposed
• df2sos — direct-form II with second-order sections

5 Functions

5-1072

• df2tsos — direct-form II transposed with second-order sections

When you use limitcycle without optional input arguments, the default settings are

• Run 20 Monte Carlo trials
• Use an input vector twice the length of the filter impulse response
• Stop testing if the simulation process encounters either a granular or overflow limit cycle

To determine the length of the filter impulse response, use impzlength:

impzlength(hd)

During limit cycle testing, if the simulation runs reveal both overflow and granular limit cycles, the
overflow limit cycle takes precedence and is the limit cycle that appears in the report.

Each time you run limitcycle, it uses a different sequence of random initial conditions, so the
results can differ from run to run.

Each Monte Carlo trial uses a new set of randomly determined initial states for the filter. Test
processing stops when limitcycle detects a zero-input limit cycle in filter hd.

report = limitcycle(hd,ntrials,inputlengthfactor,stopcriterion) returns a report of
how filter hd responds to a zero-valued input vector, using the following optional input arguments:

• ntrials — Number of Monte Carlo trials (default is 20).
• inputlengthfactor — integer factor used to calculate the length of the input vector. The length

of the input vector comes from (impzlength(hd) * inputlengthfactor), where
inputlengthfactor = 2 is the default value.

• stopcriterion — the criterion for stopping the Monte Carlo trial processing. stopcriterion
can be set to either (the default), granular, overflow. This table describes the results of each
stop criterion.

stopcriterion Setting Description
either Stop the Monte Carlo trials when limitcycle detects either

a granular or overflow limit cycle.
granular Stop the Monte Carlo trials when limitcycle detects a

granular limit cycle.
overflow Stop the Monte Carlo trials when limitcycle detects an

overflow limit cycle.

Note An important feature is that if you specify a specific limit cycle stop criterion, such as
overflow, the Monte Carlo trials do not stop when testing encounters a granular limit cycle. You
receive a warning that no overflow limit cycle occurred, but consider that a granular limit cycle
might have occurred.

Examples
In this example, there is a region of initial conditions in which no limit cycles occur and a region
where they do. If no limit cycles are detected before the Monte Carlo trials are over, the state
sequence converges to zero. When a limit cycle is found, the states do not end at zero. Each time you

 limitcycle

5-1073

run this example, it uses a different sequence of random initial conditions, so the plot you get can
differ from the one displayed in the following figure.
s = [1 0 0 1 0.9606 0.9849];
hd = dfilt.df2sos(s);
hd.arithmetic = 'fixed';
greport = limitcycle(hd,20,2,'granular')
oreport = limitcycle(hd,20,2,'overflow')
figure,
subplot(211),plot(greport.Output(1:20)), title('Granular Limit Cycle');
subplot(212),plot(oreport.Output(1:20)), title('Overflow Limit Cycle');

greport =

 LimitCycle: 'granular'
 Zi: [2x1 double]
 Output: [1303x1 embedded.fi]
 Trial: 1

oreport =

 LimitCycle: 'overflow'
 Zi: [2x1 double]
 Output: [1303x1 embedded.fi]
 Trial: 2

The plots shown in this figure present both limit cycle types — the first displays the small amplitude
granular limit cycle, the second the larger amplitude overflow limit cycle.

As you see from the plots, and as is generally true, overflow limit cycles are much greater magnitude
than granular limit cycles. This is why limitcycle favors overflow limit cycle detection and
reporting.

See Also
freqz | noisepsd

5 Functions

5-1074

Introduced in R2011a

 limitcycle

5-1075

maxflat
Maxflat FIR filter

Syntax
maxflatFilter = design(d,'maxflat','SystemObject',true)
maxflatFilter =
design(d,'maxflat','FilterStructure',structure,'SystemObject',true)

Description
maxflatFilter = design(d,'maxflat','SystemObject',true) designs a maximally flat
filter, maxflatFilter, from a filter specification object, d.

maxflatFilter =
design(d,'maxflat','FilterStructure',structure,'SystemObject',true) designs a
maximally flat filter where structure is one of the following:

• 'dffir', a discrete-time, direct-form FIR filter (the default value)
• 'dffirt', a discrete-time, direct-form FIR transposed filter
• 'dfsymfir', a discrete-time, direct-form symmetric FIR filter

Examples

Design a Lowpass Filter with a Maximally Flat FIR Structure

d = fdesign.lowpass('N,F3dB', 50, 0.3);
flatLowpass = design(d, 'maxflat','SystemObject',true);
fvtool(flatLowpass);

5 Functions

5-1076

Design a Highpass Filter With a Maximally Flat Symmetric FIR Structure

d = fdesign.highpass('N,F3dB', 50, 0.7);
flatHighpass = design(d,'maxflat','FilterStructure','dfsymfir',...
 'SystemObject',true);
fvtool(flatHighpass)

 maxflat

5-1077

Introduced in R2011a

5 Functions

5-1078

maxstep
Package: dsp

Maximum step size for LMS adaptive filter convergence

Syntax
mumax = maxstep(lmsFilt,x)
[mumax,mumaxmse] = maxstep(lmsFilt,x)

Description
mumax = maxstep(lmsFilt,x) predicts a bound on the step size to provide convergence of the
mean values of the coefficients of the adaptive filter, lmsFilt.

[mumax,mumaxmse] = maxstep(lmsFilt,x) predicts a bound, in mean squared sense, on the
adaptive filter step size to provide convergence of the adaptive filter coefficients.

Examples

Compute Maximum Step of LMS Adaptive Filter

The maxstep function computes the maximum step size of the adaptive filter. This step size keeps the
filter stable at the maximum possible speed of convergence. Create the primary input signal, x, by
passing a signed random signal to an IIR filter. Signal x contains 50 frames of 2000 samples each
frame. Create an LMS filter with 32 taps and a step size of 0.1.

x = zeros(2000,50);
IIRFilter = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
for k = 1:size(x,2)
 x(:,k) = IIRFilter(sign(randn(size(x,1),1)));
end
mu = 0.1;
LMSFilter = dsp.LMSFilter('Length',32,...
 'StepSize',mu);

Compute the maximum adaptation step size and the maximum step size in mean-squared sense using
the maxstep function.

[mumax,mumaxmse] = maxstep(LMSFilter,x)

mumax = 0.0625

mumaxmse = 0.0536

 maxstep

5-1079

Input Arguments
lmsFilt — LMS adaptive filter System object
dsp.LMSFilter | dsp.BlockLMSFilter

LMS adaptive filter, specified as either a dsp.LMSFilter System object or a dsp.BlockLMSFilter
System object.

x — Input signal
scalar | column vector | matrix

Columns of the matrix x contain individual input signal sequences. The signal set is assumed to have
zero mean or close to zero mean.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical
Complex Number Support: Yes

Output Arguments
mumax — Maximum step size
scalar

Maximum step size value, returned as a scalar. This is the step size you can specify for the adaptive
filter without causing the filter to become unstable. For details on how this parameter is calculated,
see “Algorithms” on page 5-1080.
Data Types: double

mumaxmse — Maximum step size in mean squared sense
scalar

Maximum adaptive filter step size to provide convergence of the LMS adaptive filter coefficients in
the mean squared sense, returned as a scalar. For details on how this parameter is calculated, see
“Algorithms” on page 5-1080.
Data Types: double

Algorithms
The step size of the adaptive filter must satisfy the following equation in order for the adaptive filter
to be stable:

0 < μ < μmax

where, μmax is the maximum step size.

The value of μmax depends on the LMS filter System object and the adaptive filter algorithm the object
uses.

dsp.LMSFilter

LMS

When the Method property of the dsp.LMSFilter object is set to 'LMS', maximum step size μmax is
calculated using the following equation:

5 Functions

5-1080

μmax = 2
mean(xt ∘ xt)L

where,

• xt –– Concatenated columns of the input matrix, x(:).
• xt◦xt –– Hadamard or entrywise product of the two vectors.
• L –– Length of the filter coefficients.

The maximum step size in mean-square sense, μmaxMSE is computed using the following equation:

μmaxMSE = 2
λmax(Kurt + 2) + sum(λ)

where,

• sum(λ) –– Sum of the eigenvalues of the input auto correlation matrix.
• λmax –– Maximum eigenvalue of the input auto correlation matrix.
• Kurt –– Average kurtosis value of eigenvector-filtered signals.

Normalized LMS

When the Method property of the dsp.LMSFilter System object is set to 'Normalized LMS':

• Maximum step size, μmax = 2.
• Maximum step size in mean-square sense, μmaxMSE = 2.

For Other Methods

For all other methods such as Sign-Data LMS, Sign-Error LMS, and Sign-Sign LMS:

• μmax = ∞.
• μmaxMSE = ∞.

dsp.BlockLMSFilter

The maximum step size for dsp.BlockLMSFilter is computed using the following equation:

μmax = 2
mean(xt ∘ xt)L

where,

• xt –– Concatenated columns of the input matrix, x(:).
• xt◦xt –– Hadamard or entrywise product of the two vectors.
• L –– Length of the filter coefficients.

The maximum step size in mean-square sense, μmaxMSE is computed using the following equation:

μmaxMSE =
μmax

3

 maxstep

5-1081

References
[1] Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons,

1996.

See Also
Functions
msepred | msesim

Objects
dsp.LMSFilter | dsp.BlockLMSFilter

Topics
“Overview of Adaptive Filters and Applications”

Introduced in R2012a

5 Functions

5-1082

maximizestopband
Maximize stopband attenuation of fixed-point filter

Syntax
Hq = maximizestopband(Hd,Wordlength)
Hq = maximizestopband(Hd,Wordlength,'Ntrials',N)

Description
Hq = maximizestopband(Hd,Wordlength) quantizes the single-stage or multistage FIR filter Hd
and returns the fixed-point filter Hq with wordlength wordlength that maximizes the stopband
attenuation. Hd must be generated using fdesign and design. For multistage filters, wordlength
can either be a scalar or vector. If wordlength is a scalar, the same wordlength is used for all stages.
If wordlength is a vector, each stage uses the corresponding element in the vector. The vector
length must equal the number of stages. maximizestopband uses a stochastic noise-shaping
procedure by default to minimize the wordlength. To obtain repeatable results on successive function
calls, initialize the uniform random number generator rand

Hq = maximizestopband(Hd,Wordlength,'Ntrials',N) specifies the number of Monte Carlo
trials to use in the maximization. Hq is the fixed-point filter with the largest stopband attenuation
among the trials. The number of Monte Carlo trials N defaults to 1.

You must have the Fixed-Point Designer software installed to use this function.

Examples

Maximize Stopband Attenuation

Maximize stopband attenuation for 16-bit fixed-point filter.

Hf = fdesign.lowpass('Fp,Fst,Ap,Ast',0.4,0.45,0.5,60);
Hd = design(Hf,'equiripple');

Use 16 bits to represent coefficients.

WL = 16;
Hq = maximizestopband(Hd,WL);

Compare stopband attenuation

md = measure(Hd)

md =
Sample Rate : N/A (normalized frequency)
Passband Edge : 0.4
3-dB Point : 0.41178
6-dB Point : 0.41845
Stopband Edge : 0.45
Passband Ripple : 0.49369 dB

 maximizestopband

5-1083

Stopband Atten. : 60.0697 dB
Transition Width : 0.05

mq = measure(Hq)

mq =
Sample Rate : N/A (normalized frequency)
Passband Edge : 0.4
3-dB Point : 0.41178
6-dB Point : 0.41845
Stopband Edge : 0.45
Passband Ripple : 0.49773 dB
Stopband Atten. : 59.9728 dB
Transition Width : 0.05

hfvt=fvtool(Hd,Hq,'ShowReference','off');
legend(hfvt,'Floating-point Filter','Fixed-point Filter');

See Also
constraincoeffwl | design | fdesign | minimizecoeffwl | measure | rand

Topics
“Fixed-Point Overview”

5 Functions

5-1084

Introduced in R2011a

 maximizestopband

5-1085

measure
Package: dsp

Measure frequency response characteristics of filter System object

Syntax
measure(sysobj)
M = measure(sysobj)
M = measure(sysobj,'Arithmetic',arithType)
M = measure(sysobj,'freqspec', freqspecvalue)

Description
measure(sysobj) displays measurements of various quantities from the frequency response of the
filter System object, sysobj. Measurements include the actual passband ripple, the minimum
stopband attenuation, the frequency point at which the filter's gain is 3 dB below the nominal
passband gain, etc. You must construct sysobj using fdesign and design with the name-value pair
argument 'SystemObject', true. You can optionally specify additional options by one or more
Name,Value pair arguments.

M = measure(sysobj) returns the measurements, M, such that the measurements can be queried
programmatically. For example, to query the 3 dB point, type M.F3dB. Type get(M) to see the full list
of properties that can be queried. Note that different filter responses generate different
measurements.

M = measure(sysobj,'Arithmetic',arithType) analyzes the filter System object, sysobj,
based on the arithmetic specified in the arithType input. arithType can be set to one of
'double', 'single', or 'fixed'. When the arithmetic input is not specified and the filter System
object is in an unlocked state, the analysis tool assumes a double precision filter.

M = measure(sysobj,'freqspec', freqspecvalue) passes the frequency value as an input to
measure in order to determine the corresponding magnitude measurements. For designs that do not
specify some of the frequency constraints, you can determine the corresponding magnitude
measurements using this option.

In the following example, the passband edge, passband ripple, and the transition width of the IIR
filter are unknown.

 designLowpass = fdesign.lowpass('N,F3dB,Ast',8,0.5,80);
 chebFilter = design(designLowpass,'cheby2');
 measure(chebFilter)

Sample Rate : N/A (normalized frequency)
Passband Edge : Unknown
3-dB Point : 0.5
6-dB Point : 0.51823
Stopband Edge : 0.68727
Passband Ripple : Unknown
Stopband Atten. : 79.9994 dB
Transition Width : Unknown

5 Functions

5-1086

Specify the passband edge to be 0.4, and measure the passband ripple and the transition width of
this filter.

 measure(chebFilter,'Fpass',0.4)

Sample Rate : N/A (normalized frequency)
Passband Edge : 0.4
3-dB Point : 0.5
6-dB Point : 0.51823
Stopband Edge : 0.68727
Passband Ripple : 0.013644 dB
Stopband Atten. : 79.9994 dB
Transition Width : 0.28727

Examples

Measure the Filter Specifications

Create a lowpass filter and check whether the actual filter meets the specifications. For this case, use
normalized frequency for Fs, the default setting.

desigLowpass = fdesign.lowpass('Fp,Fst,Ap,Ast',0.45,0.55,0.1,80)

desigLowpass =
 lowpass with properties:

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: 1
 Fpass: 0.4500
 Fstop: 0.5500
 Apass: 0.1000
 Astop: 80

designmethods(desigLowpass,'SystemObject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

Use the default equiripple design method.

equiFilter = design(desigLowpass,'SystemObject',true)

equiFilter =
 dsp.FIRFilter with properties:

 measure

5-1087

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [-1.0186e-05 -6.8148e-04 -0.0017 -0.0014 ...]
 InitialConditions: 0

 Show all properties

Measure the specifications of the designed lowpass filter.

measure(equiFilter)

ans =
Sample Rate : N/A (normalized frequency)
Passband Edge : 0.45
3-dB Point : 0.47798
6-dB Point : 0.48913
Stopband Edge : 0.55
Passband Ripple : 0.095021 dB
Stopband Atten. : 80.1164 dB
Transition Width : 0.1

Stopband Edge, Passband Edge, Passband Ripple, and Stopband Attenuation all meet the
specifications.

Now, using Fs in linear frequency, create a bandpass filter, and measure the magnitude response
characteristics.

designBandpass = fdesign.bandpass

designBandpass =
 bandpass with properties:

 Response: 'Bandpass'
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
 NormalizedFrequency: 1
 Fstop1: 0.3500
 Fpass1: 0.4500
 Fpass2: 0.5500
 Fstop2: 0.6500
 Astop1: 60
 Apass: 1
 Astop2: 60

Convert to Linear Frequency.

normalizefreq(designBandpass,false,1.5e3)

bpFilter = design(designBandpass,'cheby2','SystemObject',true);

Measure the specifications of the designed bandpass filter.

measure(bpFilter)

ans =
Sample Rate : 1.5 kHz

5 Functions

5-1088

First Stopband Edge : 262.5 Hz
First 6-dB Point : 319.9585 Hz
First 3-dB Point : 324.9744 Hz
First Passband Edge : 337.5 Hz
Second Passband Edge : 412.5 Hz
Second 3-dB Point : 425.0256 Hz
Second 6-dB Point : 430.0415 Hz
Second Stopband Edge : 487.5 Hz
First Stopband Atten. : 60 dB
Passband Ripple : 0.17985 dB
Second Stopband Atten. : 60 dB
First Transition Width : 75 Hz
Second Transition Width : 75 Hz

Measure Frequency Response Characteristics of Highpass Filter

Measure the frequency response characteristics of a highpass filter. Create a dsp.HighpassFilter
System object with default properties. Measure the frequency response characteristics of the filter.

HPF = dsp.HighpassFilter

HPF =
 dsp.HighpassFilter with properties:

 FilterType: 'FIR'
 DesignForMinimumOrder: true
 StopbandFrequency: 8000
 PassbandFrequency: 12000
 StopbandAttenuation: 80
 PassbandRipple: 0.1000
 SampleRate: 44100

 Show all properties

HPFMeas = measure(HPF)

HPFMeas =
Sample Rate : 44.1 kHz
Stopband Edge : 8 kHz
6-dB Point : 10.418 kHz
3-dB Point : 10.8594 kHz
Passband Edge : 12 kHz
Stopband Atten. : 81.8558 dB
Passband Ripple : 0.08066 dB
Transition Width : 4 kHz

Measure Frequency Response Characteristics of Lowpass Filter

Measure the frequency response characteristics of a lowpass filter. Create a dsp.LowpassFilter
System object with default properties. Measure the frequency response characteristics of the filter.

 measure

5-1089

LPF = dsp.LowpassFilter

LPF =
 dsp.LowpassFilter with properties:

 FilterType: 'FIR'
 DesignForMinimumOrder: true
 PassbandFrequency: 8000
 StopbandFrequency: 12000
 PassbandRipple: 0.1000
 StopbandAttenuation: 80
 SampleRate: 44100

 Show all properties

LPFMeas = measure(LPF)

LPFMeas =
Sample Rate : 44.1 kHz
Passband Edge : 8 kHz
3-dB Point : 9.1311 kHz
6-dB Point : 9.5723 kHz
Stopband Edge : 12 kHz
Passband Ripple : 0.08289 dB
Stopband Atten. : 81.6141 dB
Transition Width : 4 kHz

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as as one of the following filter System objects:

• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.HighpassFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter

When sysobj is a generic discrete-time filter, for example, a single-rate lowpass filter,
measure(sysobj) returns the following filter specifications.

Lowpass Filter Specification Description
Sample Rate Filter sampling frequency.
Passband Edge Location of the edge of the passband as it enters transition.

5 Functions

5-1090

Lowpass Filter Specification Description
3-dB Point Location of the –3 dB point on the response curve.
6-dB Point Location of the –6 dB point on the response curve.
Stopband Edge Location of the edge of the transition band as it enters the

stopband.
Passband Ripple Ripple in the passband.
Stopband Atten Attenuation in the stopband.
Transition Width Width of the transition between the passband and stopband, in

normalized frequency or absolute frequency. Measured between
Fpass and Fstop.

When sysobj is a bandstop filter, measure(sysobj) returns these specifications for the resulting
bandstop filter.

Bandstop Filter Specification Description
Sample Rate Filter sampling frequency.
First Passband Edge Location of the edge of the first passband.
First 3-dB Point Location of the edge of the –3 dB point in the first transition band.
First 6-dB Point Location of the edge of the –6 dB point in the first transition band.
First Stopband Edge Location of the start of the stopband.
Second Stopband Edge Location of the end of the stopband.
Second 6-dB Point Location of the edge of the –6 dB point in the second transition

band.
Second 3-dB Point Location of the edge of the –3 dB point in the second transition

band.
Second Passband Edge Location of the start of the second passband.
First Passband Ripple Ripple in the first passband.
Stopband Atten Attenuation in the stopband.
Second Passband Ripple Ripple in the second passband.
First Transition Width Width of the first transition region. Measured between the –3 and

–6 dB points.
Second Transition Width Width of the second transition region. Measured between the –6

and –3 dB points.

When sysobj is an interpolator, decimator, or a rate converter, measure(sysobj) returns these
specifications for the resulting filter.

Interpolator Filter
Specification

Description

Sample Rate Filter sampling frequency.
First Passband Edge Location of the edge of the passband as it enters transition.
3-dB Point Location of the –3 dB point on the response curve.

 measure

5-1091

Interpolator Filter
Specification

Description

6-dB Point Location of the –6 dB point on the response curve.
Stopband Edge Location of the edge of the transition band as it enters the

stopband.
Passband Ripple Ripple in the passband.
Stopband Atten Attenuation in the stopband.
Transition Width Width of the transition between the passband and stopband, in

normalized frequency or absolute frequency. Measured between
Fpass and Fstop.

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

freqspecvalue — Frequency specifications
scalar

Frequency specifications are input to measure in order to determine the corresponding magnitude
measurements. For designs that do not specify some of the frequency constraints, you can determine
the corresponding magnitude measurements using this option.

In the following example, the passband edge, passband ripple, and the transition width of the IIR
filter are unknown.

 designLowpass = fdesign.lowpass('N,F3dB,Ast',8,0.5,80);
 chebFilter = design(designLowpass,'cheby2');
 measure(chebFilter)

5 Functions

5-1092

Sample Rate : N/A (normalized frequency)
Passband Edge : Unknown
3-dB Point : 0.5
6-dB Point : 0.51823
Stopband Edge : 0.68727
Passband Ripple : Unknown
Stopband Atten. : 79.9994 dB
Transition Width : Unknown

Specify the passband edge to be 0.4, and measure the passband ripple and the transition width of
this filter.

 measure(chebFilter,'Fpass',0.4)

Sample Rate : N/A (normalized frequency)
Passband Edge : 0.4
3-dB Point : 0.5
6-dB Point : 0.51823
Stopband Edge : 0.68727
Passband Ripple : 0.013644 dB
Stopband Atten. : 79.9994 dB
Transition Width : 0.28727

Output Arguments
M — Measurements
fdesign object

Measurements object, returned as an fdesign object. Here is a list of supported input filter objects
with their corresponding fdesign measurements objects:

• dsp.CICCompensationDecimator –– fdesign.isinclpmeas.
• dsp.CICCompensationInterpolator –– fdesign.isinclpmeas
• dsp.FIRHalfbandDecimator –– fdesign.lowpassmeas
• dsp.FIRHalfbandInterpolator –– fdesign.lowpassmeas
• dsp.HighpassFilter –– fdesign.highpassmeas
• dsp.IIRHalfbandDecimator –– fdesign.lowpassmeas
• dsp.IIRHalfbandInterpolator –– fdesign.lowpassmeas
• dsp.LowpassFilter –– fdesign.lowpassmeas

The measurements, M can be queried programmatically. For example, to query the 3 dB point, type
M.F3dB. Type get(M) to see the full list of properties that can be queried. Note that different filter
responses generate different measurements.

Tips
For designs that do not specify some of the frequency constraints, the function may not be able to
determine corresponding magnitude measurements. In these cases, a constraint can be passed in to
measure to determine such measurements. For example:

f = fdesign.lowpass('N,F3dB,Ast',8,0.5,80);
H = design(f,'cheby2','SystemObject',true);
measure(H)

 measure

5-1093

returns values of Unknown for the passband edge, passband ripple, and transition width
measurements, but

f = fdesign.lowpass('N,F3dB,Ast',8,0.5,80);
H = design(f,'cheby2','SystemObject',true);
measure(H,'Fpass',0.4)

provides measurements for all returned values.

See Also
Functions
design | fdesign | normalizefreq

Introduced in R2011a

5 Functions

5-1094

mfilt
(To be removed) Multirate filter

Compatibility
mfilt will be removed in a future release. See dsp.CICDecimator, dsp.CICInterpolator,
dsp.FIRDecimator, dsp.FIRInterpolator, dsp.FilterCascade,
dsp.FarrowRateConverter, dsp.FIRRateConverter, dsp.IIRHalfbandDecimator, or
dsp.IIRHalfbandInterpolator instead.

Syntax
hm = mfilt.structure(input1,input2,...)

Description
hm = mfilt.structure(input1,input2,...) returns the object hm of type structure. As with
dfilt objects, you must include the structure to construct a multirate filter object. You can,
however, construct a default multirate filter object of a given structure by not including input
arguments in your calling syntax.

Multirate filters include decimators and interpolators, and fractional decimators and fractional
interpolators where the resulting interpolation or decimation factor is not an integer.

Structures

Each of the following multirate filter structures has a reference page of its own.

Filter Structure Description of Resulting
Multirate Filter

Coefficient Mapping
Support in realizemdl

mfilt.cascade Cascade multirate filters to form
another filter

Supported

mfilt.cicdecim Cascaded integrator-comb
decimator

Not supported

mfilt.cicinterp Cascaded integrator-comb
interpolator

Not supported

mfilt.farrowsrc Multirate Farrow filter Supported.
mfilt.fftfirinterp Overlap-add FIR polyphase

interpolator
Not supported

mfilt.firdecim Direct-form FIR polyphase
decimator

Supported

mfilt.firinterp Direct-form FIR polyphase
interpolator

Supported

mfilt.firsrc Direct-form FIR polyphase sample
rate converter

Supported

 mfilt

5-1095

Filter Structure Description of Resulting
Multirate Filter

Coefficient Mapping
Support in realizemdl

mfilt.firtdecim Direct-form transposed FIR
polyphase decimator

Supported

mfilt.holdinterp FIR hold interpolator Not supported
mfilt.iirdecim IIR decimator Supported
mfilt.iirinterp IIR interpolator Supported
mfilt.linearinterp FIR Linear interpolator Supported
mfilt.iirwdfdecim IIR wave digital filter decimator Supported
mfilt.iirwdfinterp IIR wave digital filter interpolator Supported

Copying mfilt Objects

To create a copy of an mfilt object, use the copy method.

h2 = copy(hd)

Note The syntax hd2 = hd copies only the object handle. It does not create a new object. hd2 and
hd are not independent. If you change the property value for one of the two, such as hd2, you are
changing the property for both.

Examples
Decimation by a factor of two. Convert input sampled at 48 kHz to 24 kHz:
Fs = 4.8e4;
t =0:1/Fs:1-(1/Fs);
x = cos(2*pi*4000*t);
Hm=mfilt.firdecim(2);
% Note cutoff frequency of 1/2 normalized frequency
fvtool(Hm);
% Note the group delay of 34 samples
fvtool(Hm,'analysis','grpdelay');
y = filter(Hm,x);
% Note delay in output is consistent with 36/2
stem(y(1:48),'markerfacecolor',[0 0 1]);

Using existing coefficients to decimate a signal by a factor of two:
 M = 2; % Decimation factor
 b = firhalfband('minorder',.45,0.0001);
 Hm = mfilt.firdecim(M,b);
 % Decimate a signal which consists of the sum of 2 sinusoids.
 N = 160;
 x = sin(2*pi*.05*[0:N-1]+pi/3)+cos(2*pi*.03*[0:N-1]+pi/3);
 y = filter(Hm,x);

Note Multirate filters can also have complex coefficients. For example, you can specify complex
coefficients in the argument num passed to the filter structure. This works for all multirate filter
structures.

m = 2;
num = [0.5 0.5+1j*0.2];

5 Functions

5-1096

Hm = mfilt.firdecim(m, num);
y = filter(Hm, [1:10]);

Introduced in R2011a

 mfilt

5-1097

mfilt.cascade
Cascade filter objects

Note mfilt.cascade will be removed in a future release. Use dsp.FilterCascade instead.

Syntax
hm = cascade(hm1,hm2,...,hmn)

Description
hm = cascade(hm1,hm2,...,hmn) creates filter object hm by cascading (connecting in series) the
individual filter objects hm1, hm2, and so on to hmn.

In block diagram form, the cascade looks like this, with x as the input to the filter hm and y the output
from the cascade filter hm:

mfilt.cascade accepts any combination of mfilt and dfilt objects (discrete time filters) to
cascade, as well as Farrow filter objects.

Examples
Create a variety of mfilt objects and cascade them together.

hm(1) = mfilt.firdecim(12);
hm(2) = mfilt.firdecim(4);
h1 = mfilt.cascade(hm(1),hm(2));
hm(3) = mfilt.firinterp(4);
hm(4) = mfilt.firinterp(12);
h2 = mfilt.cascade(hm(3),hm(4));
% Cascade h1 and h2 together
h3 = mfilt.cascade(h1,h2,9600);

See Also
dfilt.cascade

Introduced in R2011a

5 Functions

5-1098

mfilt.cicdecim
Fixed-point CIC decimator

Note mfilt.cicdecim will be removed in a future release. Use dsp.CICDecimator instead.

Syntax
hm = mfilt.cicdecim(r,m,n,iwl,owl,wlps)

Description
hm = mfilt.cicdecim(r,m,n,iwl,owl,wlps) returns a cascaded integrator-comb (CIC)
decimation filter object.

All of the input arguments are optional. To enter any optional value, you must include all optional
values to the left of your desired value.

When you omit one or more input options, the omitted option applies the default values shown in the
table below.

The following table describes the input arguments for creating hm.

Input Arguments Description
r Decimation factor applied to the input signal. Sharpens the response

curve to let you change the shape of the response. r must be an integer
value greater than or equal to 1. The default value is 2.

m Differential delay. Changes the shape, number, and location of nulls in
the filter response. Increasing m increases the sharpness of the nulls and
the response between nulls. In practice, differential delay values of 1 or
2 are the most common. m must be an integer value greater than or equal
to 1. The default value is 1.

n Number of sections. Deepens the nulls in the response curve. Note that
this is the number of either comb or integrator sections, not the total
section count. 2 is the default value.

iwl Word length of the input signal. Use any integer number of bits. The
default value is 16 bits.

owl Word length of the output signal. It can be any positive integer number
of bits. By default, owl is 16 bits.

 mfilt.cicdecim

5-1099

Input Arguments Description
wlps Defines the number of bits per word in each filter section while

accumulating the data in the integrator sections or while subtracting the
data during the comb sections (using 'wrap' arithmetic). Enter wlps as a
scalar or vector of length 2*n, where n is the number of sections. When
wlps is a scalar, the scalar value is applied to each filter section. The
default is 16 for each section in the decimator.

When you elect to specify wlps as an input argument, the
FilterInternals property automatically switches from the default
value of 'FullPrecision' to 'SpecifyWordLengths'.

Constraints and Word Length Considerations

CIC decimators have the following constraint — the word lengths of the filter section must be
monotonically decreasing. The word length of each filter section must be the same size as, or smaller
than, the word length of the previous filter section.

The formula for Bmax, the most significant bit at the filter output, is given in the Hogenauer paper in
the References on page 5-1109 below.

Bmax = (Nlog2RM + Bin− 1)

where Bin is the number of bits of the input.

The cast operations shown in the diagram in “Algorithms” on page 5-1109 perform the changes
between the word lengths of each section. When you specify word lengths that do not follow the
constraints above, the constructor returns an error.

When you specify the word lengths correctly, the most significant bit Bmax stays the same throughout
the filter, while the word length of each section either decreases or stays the same. This can cause
the fraction length to change throughout the filter as least significant bits are truncated to decrease
the word length, as shown in “Algorithms” on page 5-1109.

Properties of the Object

Objects have properties that control the way the object behaves. This table lists all the properties for
the filter, with a description of each.

Name Values Default Description
Arithmetic fixed fixed Reports the kind of arithmetic

the filter uses. CIC decimators
are always fixed-point filters.

DecimationFactor Any positive integer 2 Amount to reduce the input
sampling rate.

DifferentialDelay Any positive integer 1 Sets the differential delay for
the filter. Usually a value of
one or two is appropriate.

5 Functions

5-1100

Name Values Default Description
FilterStructure mfilt structure None Reports the type of filter

object. You cannot set this
property — it is always read
only and results from your
choice of mfilt objects.

FilterInternals FullPrecision,
MinWordLengths,
SpecifyPrecision,
SpecifyWordLengths

FullPrecision Set the usage mode for the
filter. Refer to “Usage Modes”
on page 5-1103 below for
details.

InputFracLength Any positive integer 15 The number of bits applied to
the fraction length to
interpret the input data to the
filter.

InputOffset Integers in the range
0 ≤ InputOffset ≤ r-1

0 Contains a value derived from
the number of input samples
and the decimation factor —
InputOffset =
mod(length(nx),m) where
nx is the number of input
samples that have been
processed so far and m is the
decimation factor.

The InputOffset property
applies only when you set the
PersistentMemory property
to true. See “InputOffset” on
page 6-8 for more
information.

InputWordLength Any positive integer 16 The number of bits applied to
the word length to interpret
the input data to the filter.

NumberOfSections Any positive integer 2 Number of sections used in
the decimator. Generally
called n. Reflects either the
number of decimator or comb
sections, not the total number
of sections in the filter.

OutputFracLength Any positive integer 15 The number of bits applied to
the fraction length to
interpret the output data from
the filter. Read-only.

OutputWordLength Any positive integer 16 The number of bits applied to
the word length to interpret
the output data from the filter.

 mfilt.cicdecim

5-1101

Name Values Default Description
PersistentMemory false or true false Determines whether the filter

states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter if you have not changed
the filter since you
constructed it.
PersistentMemory returns
to zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.
When PersistentMemory is
false, you cannot access the
filter states. Setting
PersistentMemory to true
reveals the States property
so you can modify the filter
states.

Name Values Default Description
SectionWord
 Lengths

Any integer or a vector of
length 2*n.

16 Defines the bits per section
used while accumulating the
data in the integrator sections
or while subtracting the data
during the comb sections
(using 'wrap' arithmetic).
Enter SectionWordLengths
as a scalar or vector of length
2*n, where n is the number of
sections. When
SectionWordLengths is a
scalar, the scalar value is
applied to each filter section.
When SectionWordLengths
is a vector of values, the
values apply to the sections in
order. The default is 16 for
each section in the decimator.
Available when
FilterInternals is
'SpecifyWordLengths'.

5 Functions

5-1102

Name Values Default Description
States filtstates.cic object m+1-by-n matrix of zeros,

after you call function
int.

Stored conditions for the filter,
including values for the
integrator and comb sections
before and after filtering. m is
the differential delay of the
comb section and n is the
number of sections in the
filter. The integrator states are
stored in the first matrix row.
States for the comb section fill
the remaining rows in the
matrix. Available for
modification when
PersistentMemory is true.
Refer to the filtstates
object in Signal Processing
Toolbox documentation for
more general information
about the filtstates object.

Usage Modes

There are four modes of usage for this which are set using the FilterInternals property

• FullPrecision — All word and fraction lengths set to Bmax + 1, called Baccum by Fred Harris in
[3]. Full Precision is the default setting.

• MinWordLengths — Automatically set the sections for minimum word lengths.
• SpecifyWordLengths — Specify the word lengths for each section.
• SpecifyPrecision — Specify precision by providing values for the word and fraction lengths for

each section.

Full Precision

In full precision mode, the word lengths of all sections and the output are set to Baccum as defined by

Baccum = ceil(Nsecs(Log2(D × M)) + InputWordLength)

where Nsecs is the number of filter sections.

Section fraction lengths and the fraction length of the output are set to the input fraction length.

Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

 mfilt.cicdecim

5-1103

FilterInternals: 'FullPrecision'

Minimum Wordlengths

In minimum word length mode, you control the output word length explicitly. When the output word
length is less than Baccum, roundoff noise is introduced at the output of the filter. Hogenauer's bit
pruning theory (refer to [1]) states that one valid design criterion is to make the word lengths of the
different sections of the filter smaller than Baccum as well, so that the roundoff noise introduced by all
sections does not exceed the roundoff noise introduced at the output.

In this mode, the design calculates the word lengths of each section to meet the Hogenauer criterion.
The algorithm subtracts the number of bits computed using eq. 21 in Hogenauer's paper from Baccum
to determine the word length each section.

To compute the fraction lengths of the different sections, the algorithm notes that the bits thrown out
for this word length criterion are least significant bits (LSB), therefore each bit thrown out at a
particular section decrements the fraction length of that section by one bit compared to the input
fraction length. Setting the output wordlength for the filter automatically sets the output fraction
length as well.

Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'MinWordLengths'

OutputWordLength: 16

Specify word lengths

In this mode, the design algorithm discards the LSBs, adjusting the fraction length so that
unrecoverable overflow does not occur, always producing a reasonable output.

You can specify the word lengths for all sections and the output, but you cannot control the fraction
lengths for those quantities.

To specify the word lengths, you enter a vector of length 2*(NumberOfSections), where each vector
element represents the word length for a section. If you specify a scalar, such as Baccum, the full-
precision output word length, the algorithm expands that scalar to a vector of the appropriate size,
applying the scalar value to each section.

The CIC design does not check that the specified word lengths are monotonically decreasing. There
are some cases where the word lengths are not necessarily monotonically decreasing, for example

hcic=mfilt.cicdecim;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

5 Functions

5-1104

which are valid CIC filters but the word lengths do not decrease monotonically across the sections.

Here is the display for the SpecifyWordLengths mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyWordLengths'

SectionWordLengths: [19 18 18 17]

OutputWordLength: 16

Specify precision

In this mode, you have full control over the word length and fraction lengths of all sections and the
filter output.

When you elect the SpecifyPrecision mode, you must enter a vector of length
2*(NumberOfSections) with elements that represent the word length for each section. When you
enter a scalar such as Baccum, mfilt.cicdecim expands that scalar to a vector of the appropriate
size and applies the scalar value to each section and the output. The design does not check that this
vector is monotonically decreasing.

Also, you must enter a vector of length 2*(NumberOfSections) with elements that represent the
fraction length for each section as well. When you enter a scalar such as Baccum, mfilt.cicdecim
applies scalar expansion as done for the word lengths.

Here is the SpecifyPrecision display.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

SectionWordLengths: [19 18 18 17]
SectionFracLengths: [14 13 13 12]

OutputWordLength: 16
OutputFracLength: 11

 mfilt.cicdecim

5-1105

About the States of the Filter

In the states property you find the states for both the integrator and comb portions of the filter.
states is a matrix of dimensions m + 1-by-n, with the states apportioned as follows:

• States for the integrator portion of the filter are stored in the first row of the state matrix.
• States for the comb portion fill the remaining rows in the state matrix.

To review the states of a CIC filter, use int to assign the states to a variable in MATLAB. As an
example, here are the states for a CIC decimator hm before and after filtering a data set.

x = fi(ones(1,10),true,16,0); % Fixed-point input data.
hm = mfilt.cicdecim(2,1,2,16,16,16);
sts=int(hm.states)
set(hm,'InputFracLength',0); % Integer input specified.
y=filter(hm,x);
sts=int(hm.states)

STS is an integer matrix that int returns from the contents of the filtstates.cic object in hm.

Design Considerations

When you design your CIC decimation filter, remember the following general points:

• The filter output spectrum has nulls at ω = k * 2π/rm radians, k = 1,2,3....
• Aliasing and imaging occur in the vicinity of the nulls.
• n, the number of sections in the filter, determines the passband attenuation. Increasing n

improves the filter ability to reject aliasing and imaging, but it also increases the droop (or rolloff)
in the filter passband. Using an appropriate FIR filter in series after the CIC decimation filter can
help you compensate for the induced droop.

• The DC gain for the filter is a function of the decimation factor. Raising the decimation factor
increases the DC gain.

Examples
This example applies a decimation factor r equal to 8 to a 160-point impulse signal. The signal output
from the filter has 160/r, or 20, points or samples. Choosing 10 bits for the word length represents a
fairly common setting for analog to digital converters. The plot shown after the code presents the
stem plot of the decimated signal, with 20 samples remaining after decimation:

m = 2; % Differential delays in the filter.
n = 4; % Filter sections
r = 8; % Decimation factor
x = int16(zeros(160,1)); x(1) = 1; % Create a 160-point
 % impulse signal.
hm = mfilt.cicdecim(r,m,n); % Expects 16-bit input
 % by default.
y = filter(hm,x);
stem(double(y)); % Plot output as a stem plot.
xlabel('Samples'); ylabel('Amplitude');
title('Decimated Signal');

5 Functions

5-1106

The next example demonstrates one way to compute the filter frequency response, using a 4-section
decimation filter with the decimation factor set to 7:

hm = mfilt.cicdecim(7,1,4);
fvtool(hm)

FVTool provides ways for you to change the title and x labels to match the figure shown. Here's the
frequency response plot for the filter. For details about the transfer function used to produce the
frequency response, refer to [1] in the References on page 5-1109 section.

 mfilt.cicdecim

5-1107

This final example demonstrates the decimator for converting from 44.1 kHz audio to 22.05 kHz —
decimation by two. To overlay the before and after signals, scale the output and plot the signals on a
stem plot.
r = 2; % Decimation factor.
hm = mfilt.cicdecim(r); % Use default NumberOfSections &
 % DifferentialDelay property values.
fs = 44.1e3; % Original sampling frequency: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long signal.
x = sin(2*pi*1e3/fs*n);% Original signal, sinusoid at 1kHz.

y_fi = filter(hm,x); % 5120 samples, still 0.232 seconds.

% Scale the output to overlay the stem plots.
x = double(x);
y = double(y_fi);
y = y/max(abs(y));
stem(n(1:44)/fs,x(2:45)); hold on; % Plot original signal
 % sampled at 44.1kHz.
stem(n(1:22)/(fs/r),y(3:24),'r','filled'); % Plot decimated
 % signal (22.05kHz)
 % in red.
xlabel('Time (seconds)');ylabel('Signal Value');

5 Functions

5-1108

Algorithms
To show how the CIC decimation filter is constructed, the following figure presents a block diagram
of the filter structure for a two-section CIC decimation filter (n = 2). fs is the high sampling rate, the
input to the decimation process.

For details about the bits that are removed in the Comb section, refer to [1] in References.

mfilt.cicdecim calculates the fraction length at each section of the decimator to avoid overflows
at the output of the filter.

References

[1] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation and Interpolation,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, “Hogenauer CIC Filters,” in Digital Signal Processing with Field
Programmable Gate Arrays, Springer, 2001, pp. 155-172

[3] Harris, Fredric J, Multirate Signal Processing for Communication Systems, Prentice-Hall PTR,
2004 , pp. 343

See Also
mfilt | mfilt.cicinterp

 mfilt.cicdecim

5-1109

Introduced in R2011a

5 Functions

5-1110

mfilt.cicinterp
Fixed-point CIC interpolator

Note mfilt.cicinterp will be removed in a future release. Use dsp.CICInterpolator instead.

Syntax
hm = mfilt.cicinterp(R,M,N,ILW,OWL,WLPS)
hm = mfilt.cicinterp
hm = mfilt.cicinterp(R,...)

Description
hm = mfilt.cicinterp(R,M,N,ILW,OWL,WLPS) constructs a cascaded integrator-comb (CIC)
interpolation filter object that uses fixed-point arithmetic.

All of the input arguments are optional. To enter any optional value, you must include all optional
values to the left of your desired value.

When you omit one or more input options, the omitted option applies the default values shown in the
table below.

The following table describes the input arguments for creating hm.

Input Arguments Description
R Interpolation factor applied to the input signal. Sharpens the response curve

to let you change the shape of the response. R must be an integer value
greater than or equal to 1. The default value is 2.

M Differential delay. Changes the shape, number, and location of nulls in the
filter response. Increasing M increases the sharpness of the nulls and the
response between nulls. In practice, differential delay values of 1 or 2 are the
most common. M must be an integer value greater than or equal to 1. The
default value is 1.

N Number of sections. Deepens the nulls in the response curve. Note that this is
the number of either comb or integrator sections, not the total section count.
By default, the filter has two sections.

IWL Word length of the input signal. Use any integer number of bits. The default
value is 16 bits.

OWL Word length of the output signal. It can be any positive integer number of bits.
By default, OWL is 16 bits.

 mfilt.cicinterp

5-1111

Input Arguments Description
WLPS Defines the number of bits per word in each filter section while accumulating

the data in the integrator sections or while subtracting the data during the
comb sections (using 'wrap' arithmetic). Enter WLPS as a scalar or vector of
length 2*N, where N is the number of sections. When WLPS is a scalar, the
scalar value is applied to each filter section. The default is 16 for each section
in the integrator.

When you elect to specify wlps as an input argument, the FilterInternals
property automatically switches from the default value of 'FullPrecision'
to 'SpecifyWordLengths'.

hm = mfilt.cicinterp constructs the CIC interpolator using the default values for the optional
input arguments.

hm = mfilt.cicinterp(R,...) constructs the CIC interpolator applying the values you provide
for R and any other values you specify as input arguments.

Constraints and Conversions

In Hogenauer [1], the author describes the constraints on CIC interpolator filters. mfilt.cicinterp
enforces a constraint—the word lengths of the filter sections must be non-decreasing. That is, the
word length of each filter section must be the same size as, or greater than, the word length of the
previous filter section.

The formula for Wj, the minimum register width, is derived in [1]. The formula for Wj is given by

W j = ceil(Bin + log2G j)

where Gj, the maximum register growth up to the jth section, is given by

G j =
2 j, j = 1, 2, …, N

22N − j(RM) j− N

R , j = N + 1, …, 2N

When the differential delay, M, is 1, there is also a special condition for the register width of the last
comb, WN, that is given by

WN = Bin + N − 1 if M = 1

The conversions denoted by the cast blocks in the integrator diagrams in “Algorithms” on page 5-
1117 perform the changes between the word lengths of each section. When you specify word lengths
that do not follow the constraints described in this section, mfilt.cicinterp returns an error.

The fraction lengths and scalings of the filter sections do not change. At each section the word length
is either staying the same or increasing. The signal scaling can change at the output after the final
filter section if you choose the output word length to be less than the word length of the final filter
section.

Properties of the Object

The following table lists the properties for the filter with a description of each.

5 Functions

5-1112

Name Values Default Description
Arithmetic fixed fixed Reports the kind of arithmetic

the filter uses. CIC interpolators
are always fixed-point filters.

InterpolationFactor Any positive integer 2 Amount to increase the input
sampling rate.

DifferentialDelay Any positive integer 1 Sets the differential delay for the
filter. Usually a value of one or
two is appropriate.

FilterStructure mfilt structure None Reports the type of filter object,
such as a interpolator or
fractional integrator. You cannot
set this property — it is always
read only and results from your
choice of mfilt objects.

FilterInternals FullPrecision,

MinWordLengths,

SpecifyWordLengths,

SpecifyPrecision

FullPrecision Set the usage mode for the filter.
Refer to “Usage Modes” on page
5-1115 below for details.

InputFracLength Any positive integer 16 The number of bits applied as the
fraction length to interpret the
input data to the filter.

InputWordLength Any positive integer 16 The number of bits applied to the
word length to interpret the input
data to the filter.

NumberOfSections Any positive integer 2 Number of sections used in the
interpolator. Generally called n.
Reflects either the number of
interpolator or comb sections,
not the total number of sections
in the filter.

OutputFracLength Any positive integer 15 The number of bits applied to the
fraction length to interpret the
output data from the filter. Read-
only.

OutputWordLength Any positive integer 16 The number of bits applied to the
word length to interpret the
output data from the filter.

 mfilt.cicinterp

5-1113

Name Values Default Description
PersistentMemory false or true false Determines whether the filter

states get restored to their
starting values for each filtering
operation. The starting values are
the values in place when you
create the filter if you have not
changed the filter since you
constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected. When
PersistentMemory is false,
you cannot access the filter
states. Setting
PersistentMemory to true
reveals the States property so
you can modify the filter states.

SectionWordLengths Any integer or a vector of
length 2N, where N is a
positive integer.

This property only applies
when the
FilterInternals is
SpecifyWordLengths.

16 Defines the bits per section used
while accumulating the data in
the integrator sections or while
subtracting the data during the
comb sections (using 'wrap'
arithmetic). Enter
SectionWordLengths as a
scalar or vector of length 2*n,
where n is the number of
sections. When
SectionWordLengths is a
scalar, the scalar value is applied
to each filter section. When
SectionWordLengths is a
vector of values, the values apply
to the sections in order. The
default is 16 for each section in
the interpolator. Available when
FilterInternals is
'SpecifyWordLengths'.

5 Functions

5-1114

Name Values Default Description
States filtstates.cic object m+1-by-n matrix of

zeros, after you
call function int.

Stored conditions for the filter,
including values for the
integrator and comb sections
before and after filtering. m is the
differential delay of the comb
section and n is the number of
sections in the filter. The
integrator states are stored in the
first matrix row. States for the
comb section fill the remaining
rows in the matrix. Available for
modification when
PersistentMemory is true.
Refer to the filtstates object
in Signal Processing Toolbox
documentation for more general
information about the
filtstates object.

Usage Modes

There are usage modes which are set using the FilterInternals property:

• FullPrecision — In this mode, the word and fraction lengths of the filter sections and outputs
are automatically selected for you. The output and last section word lengths are set to:

wordlength = ceil(log2((RM)N/R)) + I,

where R is the interpolation factor, M is the differential delay, N is the number of filter sections,
and I denotes the input word length.

• MinWordLengths — In this mode, you specify the word length of the filter output in the
OutputWordLength property. The word lengths of the filter sections are automatically set in the
same way as in the FullPrecision mode. The section fraction lengths are set to the input
fraction length. The output fraction length is set to the input fraction length minus the difference
between the last section and output word lengths.

• SpecifyWordLengths — In this mode, you specify the word lengths of the filter sections and
output in the SectionWordLengths and OutputWordLength properties. The fraction lengths of
the filter sections are set such that the spread between word length and fraction length is the
same as in full-precision mode. The output fraction length is set to the input fraction length minus
the difference between the last section and output word lengths.

• SpecifyPrecision — In this mode, you specify the word and fraction lengths of the filter
sections and output in the SectionWordLengths, SectionFracLengths, OutputWordLength,
and OutputFracLength properties.

About the States of the Filter

In the states property you find the states for both the integrator and comb portions of the filter.
states is a matrix of dimensions m+1-by-n, with the states apportioned as follows:

• States for the integrator portion of the filter are stored in the first row of the state matrix.

 mfilt.cicinterp

5-1115

• States for the comb portion fill the remaining rows in the state matrix.

To review the states of a CIC filter, use the int method to assign the states. As an example, here are
the states for a CIC interpolator hm before and after filtering data:

x = fi(cos(pi/4*[0:99]),true,16,0); % Fixed-point input data
hm = mfilt.cicinterp(2,1,2,16,16,16);
% get initial states-all zero
sts=int(hm.states)
set(hm,'InputFracLength',0); % Integer input specified
y=filter(hm,x);
sts=int(hm.states)
%sts =
%
% -1 -1
% -1 -1

Design Considerations

When you design your CIC interpolation filter, remember the following general points:

• The filter output spectrum has nulls at ω = k * 2π/rm radians, k = 1,2,3....
• Aliasing and imaging occur in the vicinity of the nulls.
• n, the number of sections in the filter, determines the passband attenuation. Increasing n

improves the filter ability to reject aliasing and imaging, but it also increases the droop or rolloff
in the filter passband. Using an appropriate FIR filter in series after the CIC interpolation filter
can help you compensate for the induced droop.

• The DC gain for the filter is a function of the interpolation factor. Raising the interpolation factor
increases the DC gain.

Examples
Demonstrate interpolation by a factor of two, in this case from 22.05 kHz to 44.1 kHz. Note the
scaling required to see the results in the stem plot and to use the full range of the int16 data type.
R = 2; % Interpolation factor.
hm = mfilt.cicinterp(R); % Use default NumberOfSections and
 % DifferentialDelay property values.
fs = 22.05e3; % Original sample frequency:22.05 kHz.
n = 0:5119; % 5120 samples, .232 second long signal.
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz.

y_fi = filter(hm,x); % 5120 samples, still 0.232 seconds.

% Scale the output to overlay stem plots correctly.
x = double(x);
y = double(y_fi);
y = y/max(abs(y));
stem(n(1:22)/fs,x(1:22),'filled'); % Plot original signal sampled
 % at 22.05 kHz.
hold on;
stem(n(1:44)/(fs*R),y(4:47),'r'); % Plot interpolated signal
 % (44.1 kHz) in red.
xlabel('Time (sec)');ylabel('Signal Value');

As you expect, the plot shows that the interpolated signal matches the input sine shape, with
additional samples between each original sample.

5 Functions

5-1116

Use the filter visualization tool (FVTool) to plot the response of the interpolator object. For example,
to plot the response of an interpolator with an interpolation factor of 7, 4 sections, and 1 differential
delay, do something like the following:

hm = mfilt.cicinterp(7,1,4)
fvtool(hm)

Algorithms
To show how the CIC interpolation filter is constructed, the following figure presents a block diagram
of the filter structure for a two-section CIC interpolation filter (n = 2). fs is the high sampling rate,
the output from the interpolation process.

For details about the bits that are removed in the integrator section, refer to [1] in References.

When you select MinWordLengths, the filter section word lengths are automatically set to the
minimum number of bits possible in a valid CIC interpolator. mfilt.cicinterp computes the
wordlength for each section so the roundoff noise introduced by all sections is less than the roundoff
noise introduced by the quantization at the output.

 mfilt.cicinterp

5-1117

References

[1] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation and Interpolation,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, “Hogenauer CIC Filters,” in Digital Signal Processing with Field
Programmable Gate Arrays, Springer, 2001, pp. 155-172

[3] Harris, Fredric J., Multirate Signal Processing for Communication Systems, Prentice-Hall PTR,
2004 , pp. 343

Introduced in R2011a

5 Functions

5-1118

mfilt.farrowsrc
Sample rate converter with arbitrary conversion factor

Compatibility
mfilt.farrowsrc will be removed in a future release. Use dsp.FarrowRateConverter instead.

Syntax
hm = mfilt.farrowsrc(L,M,C)
hm = mfilt.farrowsrc
hm = mfilt.farrowsrc(l,...)

Description
hm = mfilt.farrowsrc(L,M,C) returns a filter object that is a natural extension of
dfilt.farrowfd with a time-varying fractional delay. It provides a economical implementation of a
sample rate converter with an arbitrary conversion factor. This filter works well in the interpolation
case, but may exhibit poor anti-aliasing properties in the decimation case.

Note You can use the realizemdl method to create a Simulink block of a filter created using
mfilt.farrowsrc.

Input Arguments

The following table describes the input arguments for creating hm.

Input Argument Description
l Interpolation factor for the filter. l specifies the amount to increase the

input sampling rate. The default value of l is 3.
m Decimation factor for the filter. m specifies the amount to decrease the

input sampling rate. The default value for m is 2.
c Coefficients for the filter. When no input arguments are specified, the

default coefficients are [-1 1; 1, 0]

hm = mfilt.farrowsrc constructs the filter using the default values for l, m, and c.

hm = mfilt.farrowsrc(l,...) constructs the filter using the input arguments you provide and
defaults for the argument you omit.

mfilt.farrowsrc Object Properties

Every multirate filter object has properties that govern the way it behaves when you use it. Note that
many of the properties are also input arguments for creating mfilt.farrowsrc objects. The next
table describes each property for an mfilt.farrowsrc filter object.

 mfilt.farrowsrc

5-1119

Name Values Description
FilterStructure Character vector Reports the type of filter object. You cannot set

this property — it is always read only and
results from your choice of mfilt object.

Arithmetic Character vector Reports the arithmetic precision used by the
filter.

Coefficients Vector Vector containing the coefficients of the FIR
lowpass filter

InterpolationFactor Integer Interpolation factor for the filter. It specifies the
amount to increase the input sampling rate.

DecimationFactor Integer Decimation factor for the filter. It specifies the
amount to increase the input sampling rate.

PersistentMemory false or true Determines whether the filter states are
restored to their starting values for each
filtering operation. The starting values are the
values in place when you create the filter if you
have not changed the filter since you
constructed it. PersistentMemory returns to
zero any state that the filter changes during
processing. States that the filter does not
change are not affected.

Examples
Interpolation by a factor of 8. This object removes the spectral replicas in the signal after
interpolation.
 [L,M] = rat(48/44.1);
 Hm = mfilt.farrowsrc(L,M); % We use the default filter
 Fs = 44.1e3; % Original sampling frequency
 n = 0:9407; % 9408 samples, 0.213 seconds long
 x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz
 y = filter(Hm,x); % 10241 samples, still 0.213 seconds
 stem(n(1:45)/Fs,x(1:45)) % Plot original sampled at 44.1kHz
 hold on
 % Plot fractionally interpolated signal (48kHz) in red
 stem((n(2:50)-1)/(Fs*L/M),y(2:50),'r','filled')
 xlabel('Time (sec)');ylabel('Signal value')
 legend('44.1 kHz sample rate','48kHz sample rate')

The results of the example are shown in the following figure:

5 Functions

5-1120

See Also
dsp.FarrowRateConverter

Introduced in R2011a

 mfilt.farrowsrc

5-1121

mfilt.fftfirinterp
Overlap-add FIR polyphase interpolator

Note mfilt.fftfirinterp will be removed in a future release. Use dsp.FIRInterpolator
instead.

Syntax
hm = mfilt.fftfirinterp(l,num,bl)
hm = mfilt.fftfirinterp
hm = mfilt.fftfirinterp(l,...)

Description
hm = mfilt.fftfirinterp(l,num,bl) returns a discrete-time FIR filter object that uses the
overlap-add method for filtering input data.

The input arguments are optional. To enter any optional value, you must include all optional values to
the left of your desired value.

When you omit one or more input options, the omitted option applies the default values shown in the
table below.

The number of FFT points is given by [bl+ceil(length(num)/l)-1]. It is to your advantage to
choose bl such that the number of FFT points is a power of two—using powers of two can improve
the efficiency of the FFT and the associated interpolation process.

Input Arguments

The following table describes the input arguments for creating hm.

Input Argument Description
l Interpolation factor for the filter. l specifies the amount to increase the

input sampling rate. It must be an integer. When you do not specify a value
for l it defaults to 2.

num Vector containing the coefficients of the FIR lowpass filter used for
interpolation. When num is not provided as an input, fftfirinterp uses a
lowpass Nyquist filter with gain equal to l and cutoff frequency equal to
π/l by default.

bl Length of each block of input data used in the filtering. bl must be an
integer. When you omit input bl, it defaults to 100

hm = mfilt.fftfirinterp constructs the filter using the default values for l, num, and bl.

hm = mfilt.fftfirinterp(l,...) constructs the filter using the input arguments you provide
and defaults for the argument you omit.

5 Functions

5-1122

mfilt.fftfirinterp Object Properties

Every multirate filter object has properties that govern the way it behaves when you use it. Note that
many of the properties are also input arguments for creating mfilt.fftfirinterp objects. The
next table describes each property for an mfilt.fftfirinterp filter object.

Name Values Description
FilterStructure Reports the type of filter object. You cannot set

this property — it is always read only and
results from your choice of mfilt object.

Numerator Vector containing the coefficients of the FIR
lowpass filter used for interpolation.

InterpolationFactor Interpolation factor for the filter. It specifies the
amount to increase the input sampling rate. It
must be an integer.

BlockLength Length of each block of input data used in the
filtering.

PersistentMemory false or true Determines whether the filter states are
restored to their starting values for each
filtering operation. The starting values are the
values in place when you create the filter if you
have not changed the filter since you
constructed it. PersistentMemory returns to
zero any state that the filter changes during
processing. States that the filter does not
change are not affected.

States Stored conditions for the filter, including values
for the interpolator states.

Examples
Interpolation by a factor of 8. This object removes the spectral replicas in the signal after
interpolation.

l = 8; % Interpolation factor
hm = mfilt.fftfirinterp(l); % We use the default filter
n = 8192; % Number of points
hm.blocklength = n; % Set block length to number of points
fs = 44.1e3; % Original sample freq: 44.1 kHz.
n = 0:n-1; % 0.1858 secs of data
x = sin(2*pi*n*22e3/fs); % Original signal, sinusoid at 22 kHz
y = filter(hm,x); % Interpolated sinusoid
xu = l*upsample(x,8); % Upsample to compare--the spectrum
 % does not change
[px,f]=periodogram(xu,[],65536,l*fs);% Power spectrum of original
 % signal
[py,f]=periodogram(y,[],65536,l*fs); % Power spectrum of
 % interpolated signal
plot(f,10*log10(([fs*px,l*fs*py])))
legend('22 kHz sinusoid sampled at 44.1 kHz',...
'22 kHz sinusoid sampled at 352.8 kHz')
xlabel('Frequency (Hz)'); ylabel('Power Spectrum');

To see the results of the example, look at this figure.

 mfilt.fftfirinterp

5-1123

See Also
mfilt.firinterp | mfilt.holdinterp | mfilt.linearinterp | mfilt.firsrc |
mfilt.cicinterp

Introduced in R2011a

5 Functions

5-1124

mfilt.firdecim
Direct-form FIR polyphase decimator

Note mfilt.firdecim will be removed in a future release. Use dsp.FIRDecimator instead.

Syntax
hm = mfilt.firdecim(m)
hm = mfilt.firdecim(m,num)

Description
hm = mfilt.firdecim(m) returns a direct-form FIR polyphase decimator object hm with a
decimation factor of m. A lowpass Nyquist filter of gain 1 and cutoff frequency of π/m is designed by
default. This filter allows some aliasing in the transition band but it very efficient because the first
polyphase component is a pure delay.

hm = mfilt.firdecim(m,num) uses the coefficients specified by num for the decimation filter. This
lets you specify more completely the FIR filter to use for the decimator.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

Input Arguments

The following table describes the input arguments for creating hm.

Input Argument Description
m Decimation factor for the filter. m specifies the amount to reduce the

sampling rate of the input signal. It must be an integer. When you do not
specify a value for m it defaults to 2.

num Vector containing the coefficients of the FIR lowpass filter used for
decimation. When num is not provided as an input, mfilt.firdecim
constructs a lowpass Nyquist filter with gain of 1 and cutoff frequency
equal to π/m by default. The default length for the Nyquist filter is 24*m.
Therefore, each polyphase filter component has length 24.

Object Properties
This section describes the properties for both floating-point filters (double-precision and single-
precision) and fixed-point filters.

 mfilt.firdecim

5-1125

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it behaves when you use it. Note that
many of the properties are also input arguments for creating mfilt.firdecim objects. The next
table describes each property for an mfilt.firdecim filter object.

Name Values Description
Arithmetic Double, single,

fixed
Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operation
mode for your filter.

DecimationFactor Integer Decimation factor for the filter. m specifies
the amount to reduce the sampling rate of
the input signal. It must be an integer.

FilterStructure Character vector Reports the type of filter object. You cannot
set this property — it is always read only and
results from your choice of mfilt object.
Describes the signal flow for the filter object.

InputOffset Integers Contains a value derived from the number of
input samples and the decimation factor —
InputOffset = mod(length(nx),m)
where nx is the number of input samples that
have been processed so far and m is the
decimation factor.

Numerator Vector Vector containing the coefficients of the FIR
lowpass filter used for decimation.

PersistentMemory false, true Determines whether the filter states get
restored to zeros for each filtering operation.
The starting values are the values in place
when you create the filter if you have not
changed the filter since you constructed it.
PersistentMemory set to false returns
filter states to the default values after
filtering. States that the filter does not
change are not affected. Setting this to true
allows you to modify the States,
InputOffset, and PolyphaseAccum
properties.

PolyphaseAccum 0 in double, single,
or fixed for the
different filter
arithmetic settings.

Differentiates between the adders in the filter
that work in full precision at all times
(PolyphaseAccum) and the adders in the
filter that the user controls and that may
introduce quantization effects when
FilterInternals is set to
SpecifyPrecision.

5 Functions

5-1126

Name Values Description
States Double, single, or

fi matching the filter
arithmetic setting.

This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. Double is the default setting for
floating-point filters in double arithmetic.

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point implementation of the filter. You see
one or more of these properties when you set Arithmetic to fixed. Some of the properties have
different default values when they refer fixed point filters. One example is the property
PolyphaseAccum which stores data as doubles when you use your filter in double-precision mode,
but stores a fi object in fixed-point mode.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties
listed are dynamic, meaning they exist only in response to the settings of other properties. To view all
of the characteristics for a filter at any time, use info(hm) where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to “Multirate
Filter Properties” on page 6-2.

Name Values Description
AccumFracLength Any positive or

negative integer
number of bits [32]

Specifies the fraction length used to interpret data output
by the accumulator. This is a property of FIR filters.

AccumWordLength Any integer number of
bits [39]

Sets the word length used to store data in the accumulator.

Arithmetic fixed for fixed-point
filters

Setting this to fixed allows you to modify other filter
properties to customize your fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically chooses the
proper fraction length to represent filter coefficients
without overflowing. Turning this off by setting the value to
false enables you to change the NumFracLength
property value to specify the precision used.

CoeffWordLength Any integer number of
bits [16]

Specifies the word length to apply to filter coefficients.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets the output
word and fraction lengths, product word and fraction
lengths, and the accumulator word and fraction lengths to
maintain the best precision results during filtering. The
default value, FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and accumulator-
related properties available so you can set your own word
and fraction lengths for them.

 mfilt.firdecim

5-1127

Name Values Description
InputFracLength Any positive or

negative integer
number of bits [15]

Specifies the fraction length the filter uses to interpret
input data.

InputWordLength Any integer number of
bits[16]

Specifies the word length applied to interpret input data.

OutputFracLength Any positive or
negative integer
number of bits [32]

Determines how the filter interprets the filter output data.
You can change the value of OutputFracLength when you
set FilterInternals to SpecifyPrecision.

OutputWordLength Any integer number of
bits [39]

Determines the word length used for the output data. You
make this property editable by setting FilterInternals
to SpecifyPrecision.

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow conditions in
fixed-point arithmetic. Choose from either saturate (limit
the output to the largest positive or negative representable
value) or wrap (set overflowing values to the nearest
representable value using modular arithmetic.) The choice
you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always
saturates. Finally, products never overflow — they maintain
full precision.

RoundMode [convergent], ceil,
fix, floor, nearest,
round

Sets the mode the filter uses to quantize numeric values
when the values lie between representable values for the
data format (word and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable

integer. Ties round to the nearest even stored integer.
This is the least biased of the methods available in this
software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward

positive infinity.
• round - Round toward nearest. Ties round toward

negative infinity for negative numbers, and toward
positive infinity for positive numbers.

The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic always
round. Finally, products never overflow — they maintain
full precision.

Signed [true], false Specifies whether the filter uses signed or unsigned fixed-
point coefficients. Only coefficients reflect this property
setting.

5 Functions

5-1128

Name Values Description
States fi object This property contains the filter states before, during, and

after filter operations. States act as filter memory between
filtering runs or sessions. The states use fi objects, with
the associated properties from those objects. For details,
refer to fixed-point objects in Fixed-Point Designer
documentation. For information about the ordering of the
states, refer to the filter structure section.

Filter Structure
To provide decimation, mfilt.firdecim uses the following structure. At the input you see a
commutator that operates counterclockwise, moving from position 0 to position 2, position 1, and
back to position 0 as input samples enter the filter.

The following figure details the signal flow for the direct form FIR filter implemented by
mfilt.firdecim.

Notice the order of the states in the filter flow diagram. States 1 through 9 appear in the diagram
above each delay element. State 1 applies to the first delay element in phase 2. State 2 applies to the
first delay element in phase 1. State 3 applies to the first delay element in phase 0. State 4 applies to
the second delay in phase 2, and so on. When you provide the states for the filter as a vector to the
States property, the above description explains how the filter assigns the states you specify.

In property value form, the states for a filter hm are

hm.states=[1:9];

Examples
Convert an input signal from 44.1 kHz to 22.05 kHz using decimation by a factor of 2. In the figure
that appears after the example code, you see the results of the decimation.
m = 2; % Decimation factor.
hm = mfilt.firdecim(m); % Use the default filter.
fs = 44.1e3; % Original sample freq: 44.1kHz.

 mfilt.firdecim

5-1129

n = 0:10239; % 10240 samples, 0.232 second long
 % signal.
x = sin(2*pi*1e3/fs*n); % Original signal--sinusoid at 1kHz.
y = filter(hm,x); % 5120 samples, 0.232 seconds.
stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1 kHz.
hold on % Plot decimated signal (22.05 kHz)
 % in red.
stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

See Also
mfilt.firtdecim | mfilt.firsrc | mfilt.cicdecim

Introduced in R2011a

5 Functions

5-1130

mfilt.firinterp
FIR filter-based interpolator

Compatibility
mfilt.firinterp will be removed in a future release. Use dsp.FIRInterpolator instead.

Syntax
Hm = mfilt.firinterp(L)
Hm = mfilt.firinterp(L,num)

Description
Hm = mfilt.firinterp(L) returns a FIR polyphase interpolator object Hm with an interpolation
factor of L and gain equal to L. L defaults to 2 if unspecified.

Hm = mfilt.firinterp(L,num) uses the values in the vector num as the coefficients of the
interpolation filter.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter Hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

Input Arguments

The following table describes the input arguments for creating hm.

Input Argument Description
l Interpolation factor for the filter. l specifies the amount to increase the input

sampling rate. It must be an integer. When you do not specify a value for l it
defaults to 2.

num Vector containing the coefficients of the FIR lowpass filter used for
interpolation. When num is not provided as an input, firinterp uses a
lowpass Nyquist filter with gain equal to l and cutoff frequency equal to π/l
by default. The default length for the Nyquist filter is 24*l. Therefore, each
polyphase filter component has length 24.

Object Properties
This section describes the properties for both floating-point filters (double-precision and single-
precision) and fixed-point filters.

 mfilt.firinterp

5-1131

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it behaves when you use it. Note that
many of the properties are also input arguments for creating mfilt.firinterp objects. The next
table describes each property for an mfilt.firinterp filter object.

Name Values Description
Arithmetic Double, single, fixed Defines the arithmetic the filter uses. Gives you the

options double, single, and fixed. In short, this
property defines the operation mode for your filter.

FilterStructure Character vector Reports the type of filter object. You cannot set this
property — it is always read only and results from
your choice of mfilt object. Describes the signal
flow for the filter object.

InterpolationFactor Integer Interpolation factor for the filter. l specifies the
amount to increase the sampling rate of the input
signal. It must be an integer.

Numerator Vector Vector containing the coefficients of the FIR
lowpass filter used for decimation.

PersistentMemory [false], true Determines whether the filter states get restored to
zeros for each filtering operation. The starting
values are the values in place when you create the
filter if you have not changed the filter since you
constructed it. PersistentMemory set to false
returns filter states to the default values after
filtering. States that the filter does not change are
not affected. Setting this to true allows you to
modify the States property.

States Double, single,
matching the filter
arithmetic setting.

Contains the filter states before, during, and after
filter operations. States act as filter memory
between filtering runs or sessions.

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point implementation of the
mfilt.firinterp filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties
listed are dynamic, meaning they exist only in response to the settings of other properties. To view all
of the characteristics for a filter at any time, use

info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to “Multirate
Filter Properties” on page 6-2.

5 Functions

5-1132

Name Values Description
AccumFracLength Any positive or negative

integer number of bits.
[32]

Specifies the fraction length used to interpret data
output by the accumulator. This is a property of FIR
filters and lattice filters. IIR filters have two similar
properties — DenAccumFracLength and
NumAccumFracLength — that let you set the
precision for numerator and denominator operations
separately.

AccumWordLength Any integer number of
bits[39]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for fixed-point filters Setting this to fixed allows you to modify other filter
properties to customize your fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically chooses the
proper fraction length to represent filter coefficients
without overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify the
precision used.

CoeffWordLength Any integer number of bits
[16]

Specifies the word length to apply to filter
coefficients.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets the
output word and fraction lengths, product word and
fraction lengths, and the accumulator word and
fraction lengths to maintain the best precision results
during filtering. The default value, FullPrecision,
sets automatic word and fraction length
determination by the filter. SpecifyPrecision
makes the output and accumulator-related properties
available so you can set your own word and fraction
lengths for them.

InputFracLength Any positive or negative
integer number of bits [15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer number of bits
[16]

Specifies the word length applied to interpret input
data.

NumFracLength Any positive or negative
integer number of bits
[14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or negative
integer number of bits [32]

Determines how the filter interprets the filter output
data. You can change the value of
OutputFracLength when you set
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer number of bits
[39]

Determines the word length used for the output data.
You make this property editable by setting
FilterInternals to SpecifyPrecision.

 mfilt.firinterp

5-1133

Name Values Description
OverflowMode saturate, [wrap] Sets the mode used to respond to overflow conditions

in fixed-point arithmetic. Choose from either
saturate (limit the output to the largest positive or
negative representable value) or wrap (set
overflowing values to the nearest representable value
using modular arithmetic.) The choice you make
affects only the accumulator and output arithmetic.
Coefficient and input arithmetic always saturates.
Finally, products never overflow — they maintain full
precision.

RoundMode [convergent], ceil, fix,
floor, nearest, round

Sets the mode the filter uses to quantize numeric
values when the values lie between representable
values for the data format (word and fraction
lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable

integer. Ties round to the nearest even stored
integer. This is the least biased of the methods
available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round

toward positive infinity.
• round - Round toward nearest. Ties round toward

negative infinity for negative numbers, and toward
positive infinity for positive numbers.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow — they maintain full precision.

Signed [true], false Specifies whether the filter uses signed or unsigned
fixed-point coefficients. Only coefficients reflect this
property setting.

States fi object to match the
filter arithmetic setting.

Contains the filter states before, during, and after
filter operations. States act as filter memory between
filtering runs or sessions. The states use fi objects,
with the associated properties from those objects. For
details, refer to fixed-point objects in Fixed-Point
Designer documentation.

Filter Structure
To provide interpolation, mfilt.firinterp uses the following structure.

5 Functions

5-1134

The following figure details the signal flow for the direct form FIR filter implemented by
mfilt.firinterp. In the figure, the delay line updates happen at the lower input rate. The
remainder of the filter — the sums and coefficients — operate at the higher output rate.

Examples
This example uses mfilt.firinterp to double the sample rate of a 22.05 kHz input signal. The
output signal ends up at 44.1 kHz. Although l is set explicitly to 2, this represents the default
interpolation value for mfilt.firinterp objects.
L = 2; % Interpolation factor.
Hm = mfilt.firinterp(L); % Use the default filter.
fs = 22.05e3; % Original sample freq: 22.05 kHz.
n = 0:5119; % 5120 samples, 0.232s long signal.
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz.
y = filter(Hm,x); % 10240 samples, still 0.232s.
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at
 % 22.05 kHz.
hold on;

% Plot interpolated signal (44.1 kHz) in red
stem(n(1:44)/(fs*L),y(25:68),'r')
xlabel('Time (sec)');ylabel('Signal Value')
legend('Original Signal','Interpolated Signal');

With interpolation by 2, the resulting signal perfectly matches the original, but with twice as many
samples — one between each original sample, as shown in the following figure.

 mfilt.firinterp

5-1135

See Also
mfilt.holdinterp | mfilt.linearinterp | mfilt.fftfirinterp | mfilt.firsrc |
mfilt.cicinterp

Introduced in R2011a

5 Functions

5-1136

mfilt.firsrc
Direct-form FIR polyphase sample rate converter

Note mfilt.firsrc will be removed in a future release. Use dsp.FIRRateConverter instead.

Syntax
hm = mfilt.firsrc(l,m,num)

Description
hm = mfilt.firsrc(l,m,num) returns a direct-form FIR polyphase sample rate converter. l
specifies the interpolation factor. It must be an integer and when omitted in the calling syntax, it
defaults to 2.

m is the decimation factor. It must be an integer. If not specified, m defaults to 1. If l is also not
specified, m defaults to 3 and the overall rate change factor is 2/3.

You specify the coefficients of the FIR lowpass filter used for sample rate conversion in num. If
omitted, a lowpass Nyquist filter with gain l and cutoff frequency of π/max(l,m) is the default.

Combining an interpolation factor and a decimation factor lets you use mfilt.firsrc to perform
fractional interpolation or decimation on an input signal. Using an mfilt.firsrc object applies a
rate change factor defined by l/m to the input signal. For proper rate changing to occur, l and m must
be relatively prime — meaning the ratio l/m cannot be reduced to a ratio of smaller integers.

When you are doing sample-rate conversion with large values of l or m, such as l or m greater than
20, using the mfilt.firsrc structure is the most effective approach.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

Note You can use the realizemdl method to create a Simulink block of a filter created using
mfilt.firsrc.

Input Arguments

The following table describes the input arguments for creating hm.

 mfilt.firsrc

5-1137

Input Argument Description
l Interpolation factor for the filter. l specifies the amount to increase the input

sampling rate. It must be an integer. When you do not specify a value for l, it
defaults to 2.

num Vector containing the coefficients of the FIR lowpass filter used for
interpolation. When num is not provided as an input, mfilt.firsrc uses a
lowpass Nyquist filter with gain equal to l and cutoff frequency equal to π/
max(l,m) by default. The default length for the Nyquist filter is
24*max(1,m). Therefore, each polyphase filter component has length 24.

m Decimation factor for the filter. m specifies the amount to reduce the
sampling rate of the input signal. It must be an integer. When you do not
specify a value for m, it defaults to 1. When l is unspecified as well, m
defaults to 3.

Object Properties
This section describes the properties for both floating-point filters (double-precision and single-
precision) and fixed-point filters.

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it behaves when you use it. Note that
many of the properties are also input arguments for creating mfilt.firsrc objects. The next table
describes each property for an mfilt.firsrc filter object.

Name Values Description
Arithmetic [Double], single,

fixed
Defines the arithmetic the filter uses. Gives you the
options double, single, and fixed. In short, this
property defines the operation mode for your filter.

FilterStructure Character vector Reports the type of filter object. You cannot set this
property — it is always read only and results from your
choice of mfilt object. Describes the signal flow for
the filter object.

InputOffset Integers Contains a value derived from the number of input
samples and the decimation factor — InputOffset =
mod(length(nx),m) where nx is the number of input
samples and m is the decimation factor.

Numerator Vector Vector containing the coefficients of the FIR lowpass
filter used for decimation.

PersistentMemory false, true Determines whether the filter states get restored to
zeros for each filtering operation. The starting values
are the values in place when you create the filter if you
have not changed the filter since you constructed it.
PersistentMemory set to false returns filter states
to the default values after filtering. States that the
filter does not change are not affected. Setting this to
true allows you to modify the States, InputOffset,
and PolyphaseAccum properties.

5 Functions

5-1138

Name Values Description
RateChangeFactors Positive integers. [2 3] Specifies the interpolation and decimation factors [l

m] (the rate change factors) for changing the input
sample rate by nonintegral amounts.

States Double, single,
matching the filter
arithmetic setting.

Contains the filter states before, during, and after
filter operations. States act as filter memory between
filtering runs or sessions.

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point implementation of the mfilt.firsrc
filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties
listed are dynamic, meaning they exist only in response to the settings of other properties. To view all
of the characteristics for a filter at any time, use

info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to “Multirate
Filter Properties” on page 6-2.

Name Values Description
AccumFracLength Any positive or negative

integer number of bits.
[32]

Specifies the fraction length used to interpret data
output by the accumulator. This is a property of FIR
filters.

AccumWordLength Any integer number of
bits [39]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for fixed-point
filters

Setting this to fixed allows you to modify other filter
properties to customize your fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically chooses the
proper fraction length to represent filter coefficients
without overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify the precision
used.

CoeffWordLength Any integer number of
bits [16]

Specifies the word length to apply to filter coefficients.

 mfilt.firsrc

5-1139

Name Values Description
FilterInternals [FullPrecision],

SpecifyPrecision
Controls whether the filter automatically sets the output
word and fraction lengths, product word and fraction
lengths, and the accumulator word and fraction lengths
to maintain the best precision results during filtering.
The default value, FullPrecision, sets automatic
word and fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so you can set
your own word and fraction lengths for them.

InputFracLength Any positive or negative
integer number of bits
[15]

Specifies the fraction length the filter uses to interpret
input data.

InputWordLength Any integer number of
bits [16]

Specifies the word length applied to interpret input
data.

NumFracLength Any positive or negative
integer number of bits
[14]

Sets the fraction length used to interpret the numerator
coefficients.

OutputFracLength Any positive or negative
integer number of bits
[32]

Determines how the filter interprets the filter output
data. You can change the value of OutputFracLength
when you set FilterInternals to
SpecifyPrecision.

OutputWordLength Any integer number of
bits [39]

Determines the word length used for the output data.
You make this property editable by setting
FilterInternals to SpecifyPrecision.

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow conditions in
fixed-point arithmetic. Choose from either saturate
(limit the output to the largest positive or negative
representable value) or wrap (set overflowing values to
the nearest representable value using modular
arithmetic.) The choice you make affects only the
accumulator and output arithmetic. Coefficient and
input arithmetic always saturates. Finally, products
never overflow — they maintain full precision.

RateChangeFactors Positive integers [2 3] Specifies the interpolation and decimation factors [l m]
(the rate change factors) for changing the input sample
rate by nonintegral amounts.

5 Functions

5-1140

Name Values Description
RoundMode [convergent], ceil,

fix, floor, nearest,
round

Sets the mode the filter uses to quantize numeric values
when the values lie between representable values for
the data format (word and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable

integer. Ties round to the nearest even stored
integer. This is the least biased of the methods
available in this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward

positive infinity.
• round - Round toward nearest. Ties round toward

negative infinity for negative numbers, and toward
positive infinity for positive numbers.

The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic
always round. Finally, products never overflow — they
maintain full precision.

Signed [true], false Specifies whether the filter uses signed or unsigned
fixed-point coefficients. Only coefficients reflect this
property setting.

States fi object Contains the filter states before, during, and after filter
operations. States act as filter memory between
filtering runs or sessions. The states use fi objects,
with the associated properties from those objects. For
details, refer to fixed-point objects in Fixed-Point
Designer documentation. For information about the
ordering of the states, refer to the filter structure
section.

Examples
This is an example of a common audio rate change process — changing the sample rate of a high end
audio (48 kHz) signal to the compact disc sample rate (44.1 kHz). This conversion requires a rate
change factor of 0.91875, or l = 147 and m = 160.

l = 147; m = 160; % Interpolation/decimation factors.
hm = mfilt.firsrc(l,m); % Use the default FIR filter.
fs = 48e3; % Original sample freq: 48 kHz.
n = 0:10239; % 10240 samples, 0.213 seconds long.
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz.
y = filter(hm,x); % 9408 samples, still 0.213 seconds.
stem(n(1:49)/fs,x(1:49)) % Plot original sampled at 48 kHz.
hold on

% Plot fractionally decimated signal (44.1 kHz) in red
stem(n(1:45)/(fs*l/m),y(13:57),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

 mfilt.firsrc

5-1141

Fractional decimation provides you the flexibility to pick and choose the sample rates you want by
carefully selecting l and m, the interpolation and decimation factors, that result in the final fractional
decimation. The following figure shows the signal after applying the rate change filter hm to the
original signal.

See Also
mfilt.firsrc | mfilt.firinterp | mfilt.firdecim

Introduced in R2011a

5 Functions

5-1142

mfilt.firtdecim
Direct-form transposed FIR filter

Note mfilt.firtdecim will be removed in a future release. Use dsp.FIRDecimator instead.

Syntax
hm = mfilt.firtdecim(m)
hm = mfilt.firtdecim(m,num)

Description
hm = mfilt.firtdecim(m) returns a polyphase decimator mfilt object hm based on a direct-form
transposed FIR structure with a decimation factor of m. A lowpass Nyquist filter of gain 1 and cutoff
frequency of π/m is the default.

hm = mfilt.firtdecim(m,num) uses the coefficients specified by num for the decimation filter.
num is a vector containing the coefficients of the transposed FIR lowpass filter used for decimation. If
omitted, a lowpass Nyquist filter with gain of 1 and cutoff frequency of π/m is the default.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');
• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

Input Arguments

The following table describes the input arguments for creating hm.

Input Argument Description
num Vector containing the coefficients of the FIR lowpass filter used for

interpolation. When num is not provided as an input, firtdecim uses a
lowpass Nyquist filter with gain equal to l and cutoff frequency equal to
π/m by default. The default length for the Nyquist filter is 24*m. Therefore,
each polyphase filter component has length 24.

m Decimation factor for the filter. m specifies the amount to reduce the
sampling rate of the input signal. It must be an integer. When you do not
specify a value for m it defaults to 2.

Object Properties
This section describes the properties for both floating-point filters (double-precision and single-
precision) and fixed-point filters.

 mfilt.firtdecim

5-1143

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it behaves when you use it. Note that
many of the properties are also input arguments for creating mfilt.firtdecim objects. The next
table describes each property for an mfilt.firtdecim filter object.

Name Values Description
Arithmetic Double, single, fixed Specifies the arithmetic the filter uses to process

data while filtering.
DecimationFactor Integer Decimation factor for the filter. m specifies the

amount to reduce the sampling rate of the input
signal. It must be an integer.

FilterStructure Character vector Reports the type of filter object. You cannot set this
property — it is always read only and results from
your choice of mfilt object. Also describes the
signal flow for the filter object.

InputOffset Integers Contains a value derived from the number of input
samples and the decimation factor — InputOffset
= mod(length(nx),m) where nx is the number of
input samples that have been processed so far and m
is the decimation factor.

Numerator Vector Vector containing the coefficients of the FIR lowpass
filter used for decimation.

PersistentMemory [false], true Determines whether the filter states get restored to
zeros for each filtering operation. The starting values
are the values in place when you create the filter if
you have not changed the filter since you constructed
it. PersistentMemory set to false returns filter
states to the default values after filtering. States that
the filter does not change are not affected. Setting
this to true allows you to modify the States,
InputOffset, and PolyphaseAccum properties.

PolyphaseAccum Double, single [0] The idea behind having both PolyphaseAccum and
Accum is to differentiate between the adders in the
filter that work in full precision at all times
(PolyphaseAccum) from the adders in the filter that
the user controls and that may introduce
quantization effects when FilterInternals is set
to SpecifyPrecision.

States Double, single matching
the filter arithmetic setting.

Contains the filter states before, during, and after
filter operations. States act as filter memory between
filtering runs or sessions.

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point implementation of the
mfilt.firtdecim filter.

5 Functions

5-1144

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties
listed are dynamic, meaning they exist only in response to the settings of other properties. To view all
of the characteristics for a filter at any time, use

info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to “Multirate
Filter Properties” on page 6-2.

Name Values Description
AccumFracLength Any positive or

negative integer
number of bits. [32]

Specifies the fraction length used to interpret data output
by the accumulator. This is a property of FIR filters and
lattice filters. IIR filters have two similar properties —
DenAccumFracLength and NumAccumFracLength — that
let you set the precision for numerator and denominator
operations separately.

AccumWordLength Any integer number
of bits [39]

Sets the word length used to store data in the accumulator.

Arithmetic fixed for fixed-point
filters

Setting this to fixed allows you to modify other filter
properties to customize your fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically chooses the
proper fraction length to represent filter coefficients
without overflowing. Turning this off by setting the value to
false enables you to change the NumFracLength
property value to specify the precision used.

CoeffWordLength Any integer number
of bits [16]

Specifies the word length to apply to filter coefficients.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets the output
word and fraction lengths, product word and fraction
lengths, and the accumulator word and fraction lengths to
maintain the best precision results during filtering. The
default value, FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and accumulator-
related properties available so you can set your own word
and fraction lengths for them.

InputFracLength Any positive or
negative integer
number of bits [15]

Specifies the fraction length the filter uses to interpret
input data.

InputWordLength Any integer number
of bits [16]

Specifies the word length applied to interpret input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the numerator
coefficients.

 mfilt.firtdecim

5-1145

Name Values Description
OutputFracLength Any positive or

negative integer
number of bits [32]

Determines how the filter interprets the filter output data.
You can change the value of OutputFracLength when you
set FilterInternals to SpecifyPrecision.

OutputWordLength Any integer number
of bits [39]

Determines the word length used for the output data. You
make this property editable by setting FilterInternals
to SpecifyPrecision.

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow conditions in
fixed-point arithmetic. Choose from either saturate (limit
the output to the largest positive or negative representable
value) or wrap (set overflowing values to the nearest
representable value using modular arithmetic.) The choice
you make affects only the accumulator and output
arithmetic. Coefficient and input arithmetic always
saturates. Finally, products never overflow — they maintain
full precision.

PolyphaseAccum fi object with zeros
to start

Differentiates between the adders in the filter that work in
full precision at all times (PolyphaseAccum) and the
adders in the filter that the user controls and that may
introduce quantization effects when FilterInternals is
set to SpecifyPrecision.

RoundMode [convergent],
ceil, fix, floor,
nearest, round

Sets the mode the filter uses to quantize numeric values
when the values lie between representable values for the
data format (word and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest representable

integer. Ties round to the nearest even stored integer.
This is the least biased of the methods available in this
software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties round toward

positive infinity.
• round - Round toward nearest. Ties round toward

negative infinity for negative numbers, and toward
positive infinity for positive numbers.

The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic always
round. Finally, products never overflow — they maintain
full precision.

Signed [true], false Specifies whether the filter uses signed or unsigned fixed-
point coefficients. Only coefficients reflect this property
setting.

5 Functions

5-1146

Name Values Description
States fi object Contains the filter states before, during, and after filter

operations. States act as filter memory between filtering
runs or sessions. The states use fi objects, with the
associated properties from those objects. For details, refer
to fixed-point objects in Fixed-Point Designer
documentation. For information about the ordering of the
states, refer to the filter structure section.

Filter Structure
To provide sample rate changes, mfilt.firtdecim uses the following structure. At the input you
see a commutator that operates counterclockwise, moving from position 0 to position 2, position 1,
and back to position 0 as input samples enter the filter. To keep track of the position of the
commutator, the mfilt object uses the property InputOffset which reports the current position of
the commutator in the filter.

The following figure details the signal flow for the direct form FIR filter implemented by
mfilt.firtdecim.

Notice the order of the states in the filter flow diagram. States 1 through 3 appear in the following
diagram at each delay element. State 1 applies to the third delay element in phase 2. State 2 applies
to the second delay element in phase 2. State 3 applies to the first delay element in phase 2. When
you provide the states for the filter as a vector to the States property, the above description explains
how the filter assigns the states you specify.

In property value form, the states for a filter hm are

hm.states=[1:3];

Examples
Demonstrate decimating an input signal by a factor of 2, in this case converting from 44.1 kHz down
to 22.05 kHz. In the figure shown following the code, you see the results of decimating the signal.

 mfilt.firtdecim

5-1147

m = 2; % Decimation factor.
hm = mfilt.firtdecim(m); % Use the default filter coeffs.
fs = 44.1e3; % Original sample freq: 44.1 kHz.
n = 0:10239; % 10240 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal--sinusoid at 1 kHz.
y = filter(hm,x); % 5120 samples, 0.232 seconds.
stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1 kHz.
axis([0 0.001 -1.2 1.2]);
hold on % Plot decimated signal (22.05 kHz) in red
stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value');
legend('Original signal','Decimated signal','location','best');

See Also
mfilt.firdecim | mfilt.firsrc | mfilt.cicdecim

Introduced in R2011a

5 Functions

5-1148

mfilt.holdinterp
FIR hold interpolator

Note mfilt.holdinterp will be removed in a future release. Use dsp.CICInterpolator (with
NumSections = 1) instead.

Syntax
hm = mfilt.holdinterp(l)

Description
hm = mfilt.holdinterp(l) returns the object hm that represents a hold interpolator with the
interpolation factor l. To work, l must be an integer. When you do not include l in the calling syntax,
it defaults to 2. To perform interpolation by noninteger amounts, use one of the fractional interpolator
objects, such as mfilt.firsrc.

When you use this hold interpolator, each sample added to the input signal between existing samples
has the value of the most recent sample from the original signal. Thus you see something like a
staircase profile where the interpolated samples form a plateau between the previous and next
original samples. The example demonstrates this profile clearly. Compare this to the interpolation
process for other interpolators in the toolbox, such as mfilt.linearinterp.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

Input Arguments

The following table describes the input arguments for creating hm.

Input Argument Description
l Interpolation factor for the filter. l specifies the amount to increase the

input sampling rate. It must be an integer. When you do not specify a value
for l it defaults to 2.

Object Properties
This section describes the properties for both floating-point filters (double-precision and single-
precision) and fixed-point filters.

 mfilt.holdinterp

5-1149

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it behaves when you use it. Note that
many of the properties are also input arguments for creating mfilt.holdinterp objects. The next
table describes each property for an mfilt.interp filter object.

Name Values Description
Arithmetic Double, single, fixed Specifies the arithmetic the filter uses

to process data while filtering.
FilterStructure Character vector Reports the type of filter object. You

cannot set this property — it is always
read only and results from your choice
of mfilt object.

InterpolationFactor Integer Interpolation factor for the filter. l
specifies the amount to increase the
input sampling rate. It must be an
integer.

PersistentMemory 'false' or 'true' Determines whether the filter states
are restored to zero for each filtering
operation.

States Double or single array Filter states. states defaults to a
vector of zeros that has length equal to
nstates (hm). Always available, but
visible in the display only when
PersistentMemory is true.

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point implementation of the
mfilt.holdinterp filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties
listed are dynamic, meaning they exist only in response to the settings of other properties. To view all
of the characteristics for a filter at any time, use

info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to “Multirate
Filter Properties” on page 6-2.

Name Values Description
Arithmetic Double, single,

fixed
Specifies the arithmetic the filter uses to
process data while filtering.

5 Functions

5-1150

Name Values Description
FilterStructure Character vector Reports the type of filter object. You cannot

set this property — it is always read only
and results from your choice of mfilt
object.

InputFracLength Any positive or
negative integer
number of bits [15]

Specifies the fraction length the filter uses
to interpret input data.

InputWordLength Any integer number
of bits [16]

Specifies the word length applied to
interpret input data.

InterpolationFactor Integer Interpolation factor for the filter. l specifies
the amount to increase the input sampling
rate. It must be an integer.

PersistentMemory 'false' or 'true' Determine whether the filter states get
restored to zero for each filtering operation

States fi object Contains the filter states before, during,
and after filter operations. For hold
interpolators, the states are always empty
— hold interpolators do not have states.
The states use fi objects, with the
associated properties from those objects.
For details, refer to fixed-point objects in
Fixed-Point Designer documentation.

Filter Structure
Hold interpolators do not have filter coefficients and their filter structure is trivial.

Examples
To see the effects of hold-based interpolation, interpolate an input sine wave from 22.05 to 44.1 kHz.
Note that each added sample retains the value of the most recent original sample.
l = 2; % Interpolation factor
hm = mfilt.holdinterp(l);
fs = 22.05e3; % Original sample freq: 22.05 kHz.
n = 0:5119; % 5120 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 10240 samples, still 0.232 seconds
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at
 % 22.05 kHz
hold on % Plot interpolated signal (44.1 kHz)
stem(n(1:44)/(fs*l),y(1:44),'r')
legend('Original Signal','Interpolated Signal','Location','best');
xlabel('Time (sec)');ylabel('Signal Value')

The following figure shows clearly the step nature of the signal that comes from interpolating the
signal using the hold algorithm approach. Compare the output to the linear interpolation used in
mfilt.linearinterp.

 mfilt.holdinterp

5-1151

See Also
mfilt.linearinterp | mfilt.firinterp | mfilt.firsrc | mfilt.cicinterp

Introduced in R2011a

5 Functions

5-1152

mfilt.iirdecim
IIR decimator

Compatibility

Note mfilt.iirdecim will be removed in a future release. Use dsp.IIRHalfbandDecimator
instead.

Syntax
hm = mfilt.iirdecim(c1,c2,...)

Description
hm = mfilt.iirdecim(c1,c2,...) constructs an IIR decimator filter given the coefficients
specified in the cell arrays c1, c2, and so on. The resulting IIR decimator is a polyphase IIR filter
where each phase is a cascade allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass sections. Each element
in one cell array is one section. For more information about the contents of each cell array, refer to
dfilt.cascadeallpass. The contents of the cell arrays are the same for both filter constructors
and mfilt.iirdecim interprets them same way as mfilt.cascadeallpass.

The following exception applies to interpreting the contents of a cell array — if one of the cell arrays
ci contains only one vector, and that vector comprises a series of 0s and one element equal to 1, that
cell array represents a dfilt.delay section with latency equal to the number of zeros, rather than a
dfilt.cascadeallpass section. This exception case occurs with quasi-linear phase IIR decimators.

Although the first example shows how to construct an IIR decimators explicitly, one usually constructs
an IIR decimators filter as a result of designing an decimators, as shown in the subsequent examples.

Examples
When the coefficients are known, you can construct the IIR decimator directly using
mfilt.iirdecim. For example, if the filter's coefficients are [0.6 0.5] for the first phase in the first
stage, 0.7 for the second phase in the first stage and 0.8 for the third phase in the first stage; as well
as 0.5 for the first phase in the second stage and 0.4 for the second phase in the second stage,
construct the filter as shown here.

Hm = mfilt.iirdecim({[0.6 0.5] 0.7 0.8},{0.5 0.4})

Also refer to the “Quasi-Linear Phase Halfband and Dyadic Halfband Designs” section of the “IIR
Polyphase Filter Design” example, “Multistage Halfband IIR Filter Design” example.

When the coefficients are not known, use the approach given by the following set of examples. Start
by designing an elliptic halfband decimator with a decimation factor of 2. The example specifies the
optional sampling frequency argument.

 mfilt.iirdecim

5-1153

tw = 100; % Transition width of filter.
ast = 80; % Stopband attenuation of filter.
fs = 2000; % Sampling frequency of signal to filter.
m = 2; % Decimation factor.
hm = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

hm contains the specifications for a decimator defined by tw, ast, m, and fs.

Use the specification object hm to design a mfilt.iirdecim filter object.

d = design(hm,'ellip','filterstructure','iirdecim');
% Note that realizemdl requires Simulink
realizemdl(d) % Build model of the filter.

Designing a linear phase decimator is similar to the previous example. In this case, design a halfband
linear phase decimator with decimation factor of 2.

tw = 100; % Transition width of filter.
ast = 60; % Stopband attenuation of filter.
fs = 2000; % Sampling frequency of signal to filter.
m = 2; % Decimation factor.

Create a specification object for the decimator.

hm = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

Finally, design the filter d.

d = design(hm,'iirlinphase','filterstructure','iirdecim');
% Note that realizemdl requires Simulink
realizemdl(d) % Build model of the filter.

The filter implementation appears in this model, generated by realizemdl and Simulink.

Given the design specifications shown here

the first phase is a delay section with 0s and a 1 for coefficients and the second phase is a linear
phase decimator, shown in the next models.

Phase 1 model

5 Functions

5-1154

Phase 2 model

 mfilt.iirdecim

5-1155

Overall model

See Also
mfilt | mfilt.iirinterp | mfilt.iirwdfdecim

Introduced in R2011a

5 Functions

5-1156

mfilt.iirinterp
IIR interpolator

Compatibility

Note mfilt.iirinterp will be removed in a future release. Use
dsp.IIRHalfbandInterpolator instead.

Syntax
hm = mfilt.iirinterp(c1,c2,...)

Description
hm = mfilt.iirinterp(c1,c2,...) constructs an IIR interpolator filter given the coefficients
specified in the cell arrays C1, C2, etc.

The IIR interpolator is a polyphase IIR filter where each phase is a cascade allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass sections. Each element
in one cell array is one section. For more information about the contents of each cell array, refer to
dfilt.cascadeallpass. The contents of the cell arrays are the same for both filter constructors
and mfilt.iirdecim interprets them same way as mfilt.cascadeallpass.

The following exception applies to interpreting the contents of a cell array—if one of the cell arrays
ci contains only one vector, and that vector comprises a series of 0s and a unique element equal to 1,
that cell array represents a dfilt.delay section with latency equal to the number of zeros, rather
than a dfilt.cascadeallpass section. This exception case occurs with quasi-linear phase IIR
interpolators.

Although the first example shows how to construct an IIR interpolator explicitly, one usually
constructs an IIR interpolator filter as a result of designing an interpolator, as shown in the
subsequent examples.

Examples
When the coefficients are known, you can construct the IIR interpolator directly using
mfilt.iirinterp. In the following example, a cascaded polyphase IIR interpolator filter is
constructed using 2 phases for each of three stages. The coefficients are given below:

Phase1Sect1=0.0603;Phase1Sect2=0.4126; Phase1Sect3=0.7727;
Phase2Sect1=0.2160; Phase2Sect2=0.6044; Phase2Sect3=0.9239;

Next the filter is implemented by passing the above coefficients to mfilt.iirinterp as cell arrays,
where each cell array represents a different phase.
Hm = mfilt.iirinterp({Phase1Sect1,Phase1Sect2,Phase1Sect3},...
{Phase2Sect1,Phase2Sect2,Phase2Sect3})

 mfilt.iirinterp

5-1157

Hm =

 FilterStructure: 'IIR Polyphase Interpolator'
 Polyphase: Phase1: Section1: 0.0603
 Section2: 0.4126
 Section3: 0.7727
 Phase2: Section1: 0.216
 Section2: 0.6044
 Section3: 0.9239
 InterpolationFactor: 2
 PersistentMemory: false

Also refer to the “Quasi-Linear Phase Halfband and Dyadic Halfband Designs” section of “Multistage
Halfband IIR Filter Design”.

When the coefficients are not known, use the approach given by the following set of examples. Start
by designing an elliptic halfband interpolator with a interpolation factor of 2.

tw = 100; % Transition width of filter.
ast = 80; % Stopband attenuation of filter.
fs = 2000; % Sampling frequency of filter.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

Specification object d stores the interpolator design specifics. With the details in d, design the filter,
returning hm, an mfilt.iirinterp object. Use hm to realize the filter if you have Simulink installed.

hm = design(d,'ellip','filterstructure','iirinterp');
% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

Designing a linear phase halfband interpolator follows the same pattern.

tw = 100; % Transition width of filter.
ast= 60; % Stopband attenuation of filter.
fs = 2000; % Sampling frequency of filter.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

fdesign.interpolator returns a specification object that stores the design features for an
interpolator.

Now perform the actual design that results in an mfilt.iirinterp filter, hm.
hm = design(d,'iirlinphase','filterstructure','iirinterp');
% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

The toolbox creates a Simulink model for hm, shown here. Phase1, Phase2, and InterpCommutator are
all subsystem blocks.

5 Functions

5-1158

See Also
mfilt | mfilt.iirdecim | mfilt.iirwdfinterp

Introduced in R2011a

 mfilt.iirinterp

5-1159

mfilt.iirwdfdecim
IIR wave digital filter decimator

Note mfilt.iirwdfdecim will be removed in a future release. Use dsp.IIRHalfbandDecimator
instead.

Syntax
hm = mfilt.iirwdfdecim(c1,c2,...)

Description
hm = mfilt.iirwdfdecim(c1,c2,...) constructs an IIR wave digital decimator given the
coefficients specified in the cell arrays c1, c2, and so on. The IIR decimator hm is a polyphase IIR
filter where each phase is a cascade wave digital allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass sections. Each element
in one cell array is one section. For more information about the contents of each cell array, refer to
dfilt.cascadewdfallpass. The contents of the cell arrays are the same for both filter
constructors and mfilt.iirwdfdecim interprets them same way as mfilt.cascadewdfallpass.

The following exception applies to interpreting the contents of a cell array — if one of the cell arrays
ci contains only one vector, and that vector comprises a series of 0s and one element equal to 1, that
cell array represents a dfilt.delay section with latency equal to the number of zeros, rather than a
dfilt.cascadewdfallpass section. This exception occurs with quasi-linear phase IIR decimators.

Usually you do not construct IIR wave digital filter decimators explicitly. Instead, you obtain an IIR
wave digital filter decimator as a result of designing a halfband decimator. The first example in the
following section illustrates this case.

Examples
Design an elliptic halfband decimator with a decimation factor equal to 2. Both examples use the
iirwdfdecim filter structure (an input argument to the design method) to design the final
decimator.

The first portion of this example generates a filter specification object d that stores the specifications
for the decimator.

tw = 100; % Transition width of filter to design, 100 Hz.
ast = 80; % Stopband attenuation of filter 80 dB.
fs = 2000; % Sampling frequency of the input signal.
m = 2; % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

Now perform the actual design using d. Filter object hm is an mfilt.iirwdfdecim filter.

Hm = design(d,'ellip','FilterStructure','iirwdfdecim');
% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

5 Functions

5-1160

Design a linear phase halfband decimator for decimating a signal by a factor of 2.

tw = 100; % Transition width of filter, 100 Hz.
ast = 60; % Filter stopband attenuation = 80 dB
fs = 2000; % Input signal sampling frequency.
m = 2; % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

Use d to design the final filter hm, an mfilt.iirwdfdecim object.

hm = design(d,'iirlinphase','filterstructure',...
'iirwdfdecim');
% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

The models that realizemdl returns for each example appear below. At this level, the realizations of
the filters are identical. The differences appear in the subsystem blocks Phase1 and Phase2.

This is the Phase1 subsystem from the halfband model.

 mfilt.iirwdfdecim

5-1161

Phase1 subsystem from the linear phase model is less revealing—an allpass filter.

See Also
mfilt | mfilt.iirdecim | mfilt.iirwdfinterp

Introduced in R2011a

5 Functions

5-1162

mfilt.iirwdfinterp
IIR wave digital filter interpolator

Note mfilt.iirwdfinterp will be removed in a future release. Use
dsp.IIRHalfbandInterpolator instead.

Syntax
hm = mfilt.iirwdfinterp(c1,c2,...)

Description
hm = mfilt.iirwdfinterp(c1,c2,...) constructs an IIR wave digital interpolator given the
coefficients specified in the cell arrays c1, c2, and so on. The IIR interpolator hm is a polyphase IIR
filter where each phase is a cascade wave digital allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass sections. Each element
in one cell array is one section. For more information about the contents of each cell array, refer to
dfilt.cascadewdfallpass. The contents of the cell arrays are the same for both filter
constructors and mfilt.iirwdfinterp interprets them same way as mfilt.cascadewdfallpass.

The following exception applies to interpreting the contents of a cell array — if one of the cell arrays
ci contains only one vector, and that vector comprises a series of 0s and one element equal to 1, that
cell array represents a dfilt.delay section with latency equal to the number of zeros, rather than a
dfilt.cascadewdfallpass section. This exception occurs with quasi-linear phase IIR
interpolators.

Usually you do not construct IIR wave digital filter interpolators explicitly. Rather, you obtain an IIR
wave digital interpolator as a result of designing a halfband interpolator. The first example in the
following section illustrates this case.

Examples
Design an elliptic halfband interpolator with interpolation factor equal to 2. At the end of the design
process, hm is an IIR wave digital filter interpolator.

tw = 100; % Transition width of filter, 100 Hz.
ast = 80; % Stopband attenuation of filter, 80 dB.
fs = 2000; % Sampling frequency after interpolation.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

The specification object d stores the interpolator design requirements. Now use d to design the
actual filter hm.

hm = design(d,'ellip','filterstructure','iirwdfinterp');

If you have Simulink installed, you can realize your filter as a model built from DSP System Toolbox
blocks.

 mfilt.iirwdfinterp

5-1163

% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

For variety, design a linear phase halfband interpolator with an interpolation factor of 2.

tw = 100; % Transition width of filter, 100 Hz.
ast = 80; % Stopband attenuation of filter, 80 dB.
fs = 2000; % Sampling frequency after interpolation.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

Now perform the actual design process with d. Filter hm is an IIR wave digital filter interpolator. As in
the previous example, realizemdl returns a Simulink model of the filter if you have Simulink
installed.

hm = design(d,'iirlinphase','filterstructure',...
'iirwdfinterp');
% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

See Also
mfilt.iirinterp | mfilt.iirwdfdecim

Introduced in R2011a

5 Functions

5-1164

mfilt.linearinterp
Linear interpolator

Note mfilt.linearinterp will be removed in a future release. Use dsp.CICInterpolator (with
NumSections = 2) instead.

Syntax
hm = mfilt.linearinterp(l)

Description
hm = mfilt.linearinterp(l) returns an FIR linear interpolator hm with an integer interpolation
factor l. Provide l as a positive integer. The default value for the interpolation factor is 2 when you
do not include the input argument l.

When you use this linear interpolator, the samples added to the input signal have values between the
values of adjacent samples in the original signal. Thus you see something like a smooth profile where
the interpolated samples continue a line between the previous and next original samples. The
example demonstrates this smooth profile clearly. Compare this to the interpolation process for
mfilt.holdinterp, which creates a stairstep profile.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic
property for the filter hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

Input Arguments

The following table describes the input argument for mfilt.linearinterp.

Input Argument Description
l Interpolation factor for the filter. l specifies the amount to increase the input

sampling rate. It must be an integer. When you do not specify a value for l it
defaults to 2.

Object Properties
This section describes the properties for both floating-point filters (double-precision and single-
precision) and fixed-point filters.

 mfilt.linearinterp

5-1165

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it behaves when you use it. Note that
many of the properties are also input arguments for creating mfilt.linearinterp objects. The
next table describes each property for an mfilt.linearinterp filter object.

Name Values Description
Arithmetic Double, single,

fixed
Specifies the arithmetic the filter uses to
process data while filtering.

FilterStructure Character vector Reports the type of filter object. You
cannot set this property — it is always
read only and results from your choice
of mfilt object.

InterpolationFactor Integer Interpolation factor for the filter. l
specifies the amount to increase the
input sampling rate. It must be an
integer.

PersistentMemory 'false' or 'true' Determine whether the filter states get
restored to zero for each filtering
operation

States Double or single array Filter states. states defaults to a
vector of zeros that has length equal to
nstates(hm). Always available, but
visible in the display only when
PersistentMemory is true.

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point implementation of the
mfilt.holdinterp filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties
listed are dynamic, meaning they exist only in response to the settings of other properties. To view all
of the characteristics for a filter at any time, use

info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to “Multirate
Filter Properties” on page 6-2.

Name Values Description
AccumFracLength Any positive or negative integer

number of bits. Depends on L. [29
when L=2]

Specifies the fraction length used to interpret
data output by the accumulator.

AccumWordLength Any integer number of bits [33] Sets the word length used to store data in the
accumulator.

5 Functions

5-1166

Name Values Description
Arithmetic fixed for fixed-point filters Setting this to fixed allows you to modify

other filter properties to customize your fixed-
point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify the
precision used.

CoeffWordLength Any integer number of bits [16] Specifies the word length to apply to filter
coefficients.

FilterInternals [FullPrecision], SpecifyPrecision Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the
accumulator word and fraction lengths to
maintain the best precision results during
filtering. The default value, FullPrecision,
sets automatic word and fraction length
determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so
you can set your own word and fraction
lengths for them.

InputFracLength Any positive or negative integer
number of bits [15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer number of bits [16] Specifies the word length applied to interpret
input data.

NumFracLength Any positive or negative integer
number of bits [14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or negative integer
number of bits [29]

Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer number of bits [33] Determines the word length used for the
output data. You make this property editable
by setting FilterInternals to
SpecifyPrecision.

 mfilt.linearinterp

5-1167

Name Values Description
OverflowMode saturate, [wrap] Sets the mode used to respond to overflow

conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic.) The choice you make affects only
the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow —
they maintain full precision.

RoundMode [convergent], ceil, fix, floor,
nearest, round

Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• ceil - Round toward positive infinity.
• convergent - Round to the closest

representable integer. Ties round to the
nearest even stored integer. This is the
least biased of the methods available in
this software.

• fix - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties

round toward positive infinity.
• round - Round toward nearest. Ties round

toward negative infinity for negative
numbers, and toward positive infinity for
positive numbers.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always round.
Finally, products never overflow — they
maintain full precision.

Signed [true], false Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
The states use fi objects, with the associated
properties from those objects. For details,
refer to fixed-point objects in Fixed-Point
Designer documentation. For information
about the ordering of the states, refer to the
filter structure in the following section.

5 Functions

5-1168

Filter Structure
Linear interpolator structures depend on the FIR filter you use to implement the filter. By default, the
structure is direct-form FIR.

Examples
Interpolation by a factor of 2 (used to convert the input signal sampling rate from 22.05 kHz to 44.1
kHz).

l = 2; % Interpolation factor
hm = mfilt.linearinterp(l);
fs = 22.05e3; % Original sample freq: 22.05 kHz.
n = 0:5119; % 5120 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 10240 samples, still 0.232 seconds
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at
 % 22.05 kHz
hold on % Plot interpolated signal (44.1
 % kHz) in red
stem(n(1:44)/(fs*l),y(2:45),'r')
xlabel('Time (s)');ylabel('Signal Value')

Using linear interpolation, as compared to the hold approach of mfilt.holdinterp, provides
greater fidelity to the original signal.

 mfilt.linearinterp

5-1169

See Also
mfilt.holdinterp | mfilt.firinterp | mfilt.firsrc | mfilt.cicinterp

Introduced in R2011a

5 Functions

5-1170

midicallback
Call function handle when MIDI controls change value

Note In a future release, the midicallback function will require Audio Toolbox™.

Syntax
oldfh = midicallback(h,newfh)
oldfh = midicallback(h,[])
fh= midicallback(h)

Description
oldfh = midicallback(h,newfh) sets newfh as the function handle to be called when h changes
value, and returns the previous function handle, oldfh.

oldfh = midicallback(h,[]) clears the function handle.

fh= midicallback(h) returns the current function handle.

Examples

Interactively Read MIDI Controls

Use the midicallback command with an anonymous function to interactively read MIDI controls.

h = midicontrols;
midicallback(h,@(h)disp(midiread(h)));
% Now move any control on the default MIDI device.
 0.6587
 0.6429
 0.6349
 0.6270
 0.6190
 0.6111
 0.6032
 0.5952
clear h

Input Arguments
h — Object that listens to the controls on a MIDI device
object

h is an object that listens to the controls on a MIDI device.

newfh — new function handle
function handle

 midicallback

5-1171

The new function handle, which is set as the function handle to be called when h changes value. For
information on what function handles are, see “Function Handles”.
Example: @myFunction

Output Arguments
oldfh — Old function handle
function handle

The function handle set by the previous call to midicallback.
Example: @myFunction

fh — Current function handle
function handle

The function handle set by the current call to midicallback.
Example: @myFunction

See Also
midicontrols | midiread | midisync | midiid | setpref

Introduced in R2013b

5 Functions

5-1172

midicontrols
Open a group of MIDI controls for reading

Note In a future release, the midicontrols function will require Audio Toolbox™.

Syntax
h = midicontrols
h = midicontrols(ControlNumbers)
h = midicontrols(ControlNumbers,InitialValues)
h = midicontrols(___ ,'MIDIDevice',devicename)
h = midicontrols(___ ,'OutputMode',mode)

Description
h = midicontrols returns an object that responds to any control on the default MIDI device.
Calling midiread with the object, returns the double scalar value of the MIDI control that recently
moved after the object was created. The value is normally in the range [0 1]. See OutputMode for an
alternative. This object can only determine a control’s value if the control is moved after the
midicontrols object is created. If midiread is called before the control is moved, midiread
returns a default initial value of 0.

h = midicontrols(ControlNumbers) returns an object that responds to the MIDI controls
specified by ControlNumbers. Calling midiread with the object, returns a double array of the same
shape as ControlNumbers. Use midiid to interactively identify the control number of individual
MIDI controls.

h = midicontrols(ControlNumbers,InitialValues) returns an object that uses the specified
InitialValues when controls are not moved after the object is created. Because initial values are
quantized for the underlying MIDI protocol, sometimes midiread returns an initial value that is
slightly different from InitialValues.

h = midicontrols(___ ,'MIDIDevice',devicename) specifies the MIDI device to which the
object responds. Use midiid to interactively identify the name of a specific MIDI device. If you do
not specify the 'MIDIDevice' name-value pair, the default MIDI device is used. The MATLAB
preference 'midi' 'DefaultDevice' determines the default device.

h = midicontrols(___ ,'OutputMode',mode) specifies the range of values returned by
midiread and accepted as InitialValues. This name-value pair is optional, and you can insert it
only at the end of the argument list.

Examples

Respond to any Control on the Default Device

Create the object, and read from it:

 midicontrols

5-1173

h =midicontrols
midiread(h)

Move one of the controls, and read the data:

midiread(h)

Respond to a Specific Control

Make the object respond to a specific control:

h = midicontrols(1081);

Use Control Numbers and an Initial Value

Return a square array, with initial value of 0.5:

h = midicontrols([1081 1083; 1082 1084], 0.5);

Set Mode to raw, and Set an Initial Value

Return a square array, with the raw initial value of 63:

h = midicontrols([1081 1083; 1082 1084], 63, 'OutputMode', 'rawmidi');

Set the Default MIDI Device

Assume your MIDI device is a Behringer BCF2000. Set the default device this way:

setpref midi DefaultDevice BCF2000

This preference persists across MATLAB sessions, so you do not need to set it again unless you want
to change devices.

Use Both ControlNumbers and DeviceName

Respond to control 1001 on a Behringer BCF2000:

h = midicontrols(1001, 'MIDIDevice', 'BCF2000');

Input Arguments
ControlNumbers — Identifying MIDI controls
integer values

ControlNumbers are integer-valued double-precision numbers. Each control on the MIDI device has
a specific integer assigned to it by the device manufacturer. If ControlNumbers is [], then the

5 Functions

5-1174

midicontrols object responds to any control on the MIDI device. As a result, midiread returns a
double scalar.
Example: 1081
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialValues — Initial value of MIDI control
any numeric value within range

InitialValues must either be an array of the same size as ControlNumbers or a scalar. If you do
not specify InitialValues, the default initial value is 0. Typically, initial values must be in the
range [0 1]. However, if you specify 'rawmidi' as OutputMode, the InitialValues range is
between 0 and 127. Because the initial values are quantized for the underlying MIDI protocol,
sometimes midiread returns an initial value that is slightly different from InitialValues.
Example: 0.3 or [0 0.3 0.6]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

devicename — Name of device
character string

devicename is a character string assigned by the device manufacturer or the host operating system.
The specified devicename can be a substring of the device’s exact name. If you do not specify the
‘MIDIDevice’ name-value pair, the default MIDI device is used. The MATLAB preference ‘midi’,
‘DefaultDevice’ determines the default device.

If you do not set the MATLAB preference, the host operating system chooses the default device in an
unspecified way. Some systems have virtual (ie, software) MIDI devices installed. Even if you have
only one hardware MIDI device attached to your system, the system may not choose it, which can
cause confusion. As a best practice, use midiid to identify the name of the device you want. Then
use setpref to set it as the default device.
Example: 'BCF2000 MIDI 1'
Data Types: char

mode — Mode of output
character string

mode is a string and must be one of ‘normalized’ or ‘rawmidi’. In normalized mode, values are
in the range [0 1]. Also, initial values are quantized for the underlying MIDI protocol. In the raw MIDI
mode, values are integers in the range [0 127], and the quantization of the initial values is not
performed. The default of this name-value pair is ‘normalized’.
Example: 'rawmidi'
Data Types: char

Output Arguments
h — Object that listens to the controls on a MIDI device
object

h is an object that listens to the controls on a MIDI device.

 midicontrols

5-1175

See Also
midiid | midiread | midisync | midicallback | setpref

Introduced in R2013b

5 Functions

5-1176

midiid
Interactively identify MIDI control

Note In a future release, the midiid function will require Audio Toolbox™.

Syntax
[ctl device] = midiid

Description
[ctl device] = midiid returns the control number and device name of the MIDI control moved
by the user. Call the function at the MATLAB command prompt and then move the control you want to
identify on the MIDI control surface. The function detects which control you move and returns the
corresponding control number and device name that specify that control.

Examples

Retrieve Control Number and Device Name

Call midiid.

[ctl,dev] = midiid;
Move the control you wish to identify; type ^C to abort.
Waiting for control message...

ctl =
1002
dev =
nanoKONTROL

Output Arguments
ctl — Number associated with control being moved
integer values

ctl is an integer-valued double-precision number. Each control on the MIDI device has a specific
integer assigned to it by the device manufacturer.
Example: 1003
Data Types: double

device — Name of device
character string

device is a character string assigned by the device manufacturer or the host operating system.
Example: 'nanoKontrol'

 midiid

5-1177

Data Types: char

See Also
midicontrols | midiread | midisync | midicallback | setpref

Introduced in R2013b

5 Functions

5-1178

midiread
Return most recent value of MIDI controls

Note In a future release, the midiread function will require Audio Toolbox™.

Syntax
v = midiread(h)

Description
v = midiread(h) returns the most recent value of the MIDI controls associated with
midicontrols object, h. You must create h first before it can determine the values of its MIDI
controls if they are moved. Calling midiread before the controls are moved, returns the initial values
specified to midicontrols. In this case, when h is created. (or 0 if no initial values are specified).

Examples

Read Control Values

h = midicontrols;
v = midiread(h);

Input Arguments
h — Object that listens to the controls on a MIDI device
object

h is an object that listens to the controls on a MIDI device.

Output Arguments
v — Most recent value of MIDI controls
any numeric value

The output value depends on the OutputMode specified by midicontrols when h is created. If you
specify that the OutputMode is normalized, then the midiread returns output values in the range [0
1]. Also, initial values are quantized and may be slightly different from those specified by
midicontrols.

If you specify the mode as rawmidi, then midiread returns integer values in the range [0 127],
and no quantization is required. If you do not specify the OutputMode, the default is normalized.
Example: 0.3 or [0 0.3 0.6]
Data Types: double | uint8

 midiread

5-1179

See Also
midicontrols | midisync | midicallback | midiid | setpref

Introduced in R2013b

5 Functions

5-1180

midisync
Send values to MIDI controls to synchronize

Note In a future release, the midisync function will require Audio Toolbox™.

Syntax
midisync(h)
midisync(h,Values)

Description
midisync(h) sends the initial values specified by midicontrols. h is created by the MIDI controls
associated with the midicontrols object, h. You can use midisync with bidirectional MIDI devices
that can both send and receive messages, and move a control in response to a received message. For
example, when a midicontrols object is first created, it is often helpful to move the MIDI control to
match the initial value of the object. Many MIDI devices are not bidirectional, and calling midisync
with a unidirectional device has no effect. midisync cannot tell whether a value is successfully sent
to a device or even whether the device is bidirectional. Therefore, no errors or warnings are
generated if sending a value fails.

midisync(h,Values) sends Values to the MIDI controls associated with the midicontrols
object, h. Values must follow the same rules as InitialValue arguments of midicontrols.

Examples

Send a Slider Change to MIDI Control

midisync(h, get(slider, 'Value'))

Create a GUI with a Single Slider, and Synchronize it with a MIDI Control

When you move either control, the other control tracks it. The resulting value appears on the
command prompt.

function trivialmidigui(controlnum,DEVICENAME)
 slider = uicontrol('Style','slider');
 mc = midicontrols(controlnum,'MIDIDevice',DEVICENAME);
 midisync(mc);
 set(slider,'Callback',@slidercb);
 midicallback(mc, @mccb);

 function slidercb(slider,~)
 val = get(slider,'Value');
 midisync(mc, val);
 disp(val);
 end

 midisync

5-1181

 function mccb(mc)
 val = midiread(mc);
 set(slider,'Value',val);
 disp(val);
 end
end

Input Arguments
h — Object that listens to the controls on a MIDI device
object

h is an object that listens to the controls on a MIDI device.

Values — Values sent to select MIDI control
any numeric value in range

Values must either be an array the same size as ControlNumbers from midicontrols or a scalar.
If you do not specify Values, the default value is whatever the InitialValues is from
midicontrols. Typically, values must normally be in the range [0 1]. However, if you specify
'rawmidi' as OutputMode of midicontrols, the Values range is between 0 and 127.
Example: 0.3 or [0 0.3 0.6]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
midicontrols | midiread | midicallback | midiid | setpref

Introduced in R2013b

5 Functions

5-1182

minimizecoeffwl
Minimum wordlength fixed-point filter

Syntax
Hq = minimizecoeffwl(Hd)
Hq = minimizecoeffwl(Hd,...,'NoiseShaping',NSFlag)
Hq = inimizecoeffwl(Hd,...,'NTrials',N)
Hq = minimizecoeffwl(Hd,...'Apasstol',Apasstol)
Hq = minimizecoeffwl(Hd,...,'Astoptol',Astoptol)
Hq = minimizecoeffwl(Hd,...,'MatchrefFilter',RefFiltFlag)

Description
Hq = minimizecoeffwl(Hd) returns the minimum wordlength fixed-point filter object Hq that
meets the design specifications of the single-stage or multistage FIR filter object Hd. Hd must be
generated using fdesign and design. If Hd is a multistage filter object, the procedure minimizes the
wordlength for each stage separately. minimizecoeffwl uses a stochastic noise-shaping procedure
by default to minimize the wordlength. To obtain repeatable results on successive function calls,
initialize the uniform random number generator rand.

Hq = minimizecoeffwl(Hd,...,'NoiseShaping',NSFlag) enables or disables the stochastic
noise-shaping procedure in the minimization of the wordlength. By default NSFlag is true. Setting
NSFlag to false minimizes the wordlength without using noise-shaping.

Hq = inimizecoeffwl(Hd,...,'NTrials',N) specifies the number of Monte Carlo trials to use
in the minimization. Hq is the filter with the minimum wordlength among the N trials that meets the
specifications in Hd. 'NTrials' defaults to one.

Hq = minimizecoeffwl(Hd,...'Apasstol',Apasstol) specifies the passband ripple tolerance
in dB. 'Apasstol' defaults to 1e-4.

Hq = minimizecoeffwl(Hd,...,'Astoptol',Astoptol) specifies the stopband tolerance in
dB. 'Astoptol' defaults to 1e-2.

Hq = minimizecoeffwl(Hd,...,'MatchrefFilter',RefFiltFlag) determines whether the
fixed-point filter matches the filter order and transition width of the floating-point design. Setting
'MatchRefFilter' to true returns a fixed-point filter with the same order and transition width as
Hd. The 'MatchRefFilter' property defaults to false and the resulting fixed-point filter may have
a different order and transition width than the floating-point design Hd.

You must have the Fixed-Point Designer software installed to use this function.

Examples
Minimize wordlength for lowpass FIR equiripple filter:

f=fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.3,1,60);
% Design filter with double-precision floating point
Hd=design(f,'equiripple');

 minimizecoeffwl

5-1183

% Find minimum wordlength fixed-point filter
% with 0.15 dB stopband tolerance
Hq=minimizecoeffwl(Hd,'MatchRefFilter',true,'Astoptol',0.15);
Hq1=minimizecoeffwl(Hd,'Astoptol',0.15);
% Hq.coeffwordlength is 14 bits.
% Hq1.coeffwordlength is 11 bits
hfvt=fvtool(Hd,Hq,Hq1,'showreference','off');
legend(hfvt,'44 coefficients floating-point',...
'44 coefficients 14 bits','48 coefficients 11 bits');

See Also
constraincoeffwl | design | fdesign | maximizestopband | measure | rand

Topics
“Fixed-Point Overview”

Introduced in R2011a

5 Functions

5-1184

modifyCursor
Package: dsp

Modify properties of Logic Analyzer cursor

Syntax
modifyCursor(scope,tag)
modifyCursor(scope,tag,Name,Value)

Description
modifyCursor(scope,tag) modifies the properties of the Logic Analyzer cursor specified by the
input tag.

modifyCursor(scope,tag,Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in single quotes.

Examples

Modify Logic Analyzer Cursors Programmatically

This example shows how to use functions to create, manipulate, and delete cursors in a
dsp.LogicAnalyzer object.

Create Logic Analyzer and Signals

scope = dsp.LogicAnalyzer('NumInputPorts',3);
for ii = 1:20
 scope(ii,10*ii,20*ii);
end

 modifyCursor

5-1185

Add Cursor

Add a cursor at 15 seconds and show the cursor information.

cursor = addCursor(scope,'Location',15,'Color','Cyan');
getCursorInfo(scope,cursor)

ans = struct with fields:
 Location: 15
 Color: [0 1 1]
 Locked: 0
 Tag: 'C2'

Modify Cursor

Change the cursor color to magenta.

hide(scope)
modifyCursor(scope,cursor,'Color','Magenta')
show(scope)

5 Functions

5-1186

Remove Cursor

Delete the yellow cursor at 0 seconds.

hide(scope)
tags = getCursorTags(scope);
deleteCursor(scope,tags{1});
show(scope)

 modifyCursor

5-1187

Input Arguments
scope — The Logic Analyzer object for which you want to modify a cursor
dsp.LogicAnalyzer object

The Logic Analyzer object for which you want to modify a cursor specified, as a handle to the
dsp.LogicAnalyzer object.

tag — The tag identifying which cursor to modify
character vector | string scalar

The tag identifying which cursor to modify specified.
Example: modifyCursor(scope,'C4') modifies a cursor in Logic Analyzer.
Example: modifyCursor(scope,"C4") modifies a cursor in Logic Analyzer.
Data Types: char | string

5 Functions

5-1188

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Location',2,'Color','Blue' specifies that a cursor should be moved to the 2-second
mark and colored blue.

Color — Color of the cursor
'Yellow' (default) | character vector | three element numeric vector | string scalar

Color of the cursor, specified as a [R G B] number value, color name, or color short name:

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Example: 'Color','blue'
Example: 'Color',[0,0,1]
Data Types: char | string | double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

Location — Location of the cursor
0 (default) | numeric scalar

Specify as a numeric scalar value, in seconds, the cursor location.
Example: 'Location',1
Data Types: double

Locked — Locked status of the cursor
false (default) | true

Locked status of the cursor, specified as false or true.

• true — the cursor location cannot be changed. Logic Analyzer denotes the locked cursor by
assigning a default color of gray. This color cannot be changed.

• false — the cursor location can be changed. Logic Analyzer denotes the unlocked cursor by
assigning a default color of yellow.

Example: 'Locked',true

 modifyCursor

5-1189

See Also
dsp.LogicAnalyzer | addCursor | deleteCursor | getCursorTags | getCursorInfo

Introduced in R2013a

5 Functions

5-1190

modifyDisplayChannel
Package: dsp

Modify properties of Logic Analyzer display channel

Syntax
modifyDisplayChannel(scope,tag,Name,Value)

Description
modifyDisplayChannel(scope,tag,Name,Value) modifies the properties of tag using
properties specified by one or more name-value pairs. Enclose each property name in single quotes.

Examples

Display Fixed-Point Signals

Create a dsp.LogicAnalyzer object with four channels. Call modifyDisplayChannel to set the
radix of each of the channels. Run the scope in a loop to display the waves.

scope = dsp.LogicAnalyzer('NumInputPorts',4,'DisplayChannelFormat','Digital');
scope.TimeSpan = 12;

modifyDisplayChannel(scope,1,'Name','Index','Radix','Unsigned decimal');
modifyDisplayChannel(scope,2,'Name','Fi_hex','Radix','Hexadecimal');
modifyDisplayChannel(scope,3,'Name','Fi_bin','Radix','Binary');
modifyDisplayChannel(scope,4,'Name','Fi_actual','Radix','Signed decimal');

for ii = 1:20
 fival = fi((ii-1)/16,0,4,4);
 scope(ii,fival,fival,fival);
end

 modifyDisplayChannel

5-1191

Manipulate Logic Analyzer Programatically

Use functions to construct and manipulate a dsp.LogicAnalyzer System object.

Display Waves on Logic Analyzer scope.

scope = dsp.LogicAnalyzer('NumInputPorts',2);

stop = 30;
for count = 1:stop
 sinValVec = sin(count/stop*2*pi);
 cosValVec = cos(count/stop*2*pi);
 cosValVecOffset = cos((count+10)/stop*2*pi);

 scope([count (count-(stop/2))],[sinValVec cosValVec cosValVecOffset])
end

5 Functions

5-1192

Reorganize Display

hide(scope)
digitalDividerTag = addDivider(scope,'Name','Digital','Height',20);
analogDividerTag = addDivider(scope,'Name','Analog','Height',40);

tags = getDisplayChannelTags(scope);

modifyDisplayChannel(scope,tags{1},'InputChannel',1,...
 'Name','Ramp Digital','Height',40);
modifyDisplayChannel(scope,tags{2},'InputChannel',2,...
 'Name','Waves Analog','Format','Analog','Height',80);

moveDisplayChannel(scope,digitalDividerTag,'DisplayChannel',1)
moveDisplayChannel(scope,tags{2},'DisplayChannel',length(tags))

show(scope)

 modifyDisplayChannel

5-1193

Duplicate Wave and Check Information

hide(scope)
addWave(scope,'InputChannel',2,'Name','Waves Digital','Format','Digital',...
 'Height',30,'DisplayChannel',3);
show(scope)

5 Functions

5-1194

Remove Dividers

hide(scope)
deleteDisplayChannel(scope,digitalDividerTag)
deleteDisplayChannel(scope,analogDividerTag)
show(scope)

 modifyDisplayChannel

5-1195

Clear variables

clear analogDividerTag cosValVec cosValVecOffset count digitalDividerTag duplicateWave scope sinValVec stop tags

Input Arguments
scope — Logic Analyzer object for which you want to modify a display channel
dsp.LogicAnalyzer object

The Logic Analyzer object for which you want to modify a display channel, specified as a handle to the
dsp.LogicAnalyzer object.

tag — which display channel to modify
character vector | string scalar

The tag identifying which display channel to modify.
Example: modifyDisplayChannel(scope,tag)
Example: modifyDisplayChannel(scope,'W4')

5 Functions

5-1196

Data Types: char | string

The first section on Name-Value Pair Arguments shows the properties you can set if the display
channel contains a wave. The second section on Name-Value Pair Arguments shows the properties
you can set if the display channel contains a divider.

Wave Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'InputChannel',2,'Color','Blue' specifies that a wave should be added to input
channel 1 and colored blue.

Color — Color of the wave
'Default' (default) | character vector | three element numeric vector | string scalar

Color of the wave, specified as an [R G B] value or one of the following:

• 'Black'
• 'Blue'
• 'Cyan'
• 'Default'
• 'Green'
• 'Magenta'
• 'Red'
• 'White'
• 'Yellow'

When you choose 'Default', the value of the DisplayChannelColor property in the Logic
Analyzer is used.
Example: 'Color','Blue'
Example: 'Color',[0,0,1]
Data Types: char | string | double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

DisplayChannel — Channel on the display that shows this wave
NumInputPorts (default) | scalar numeric value in the range (1,NumInputPorts)

Specify as a scalar numeric value the display channel that shows this wave. By default, the wave is
added to the end of the display.
Example: 'DisplayChannel',2
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

FontSize — Font size for values in the wave
0 (default) | scalar nonnegative integer

Specify as a scalar nonnegative integer the font size in points. When you choose 0, the value of the
DisplayChannelFontSize property in the Logic Analyzer is used.

 modifyDisplayChannel

5-1197

Example: 'FontSize',8
Data Types: double

Format — Display format for the wave
'Default' (default) | 'Analog' | 'Digital'

When you choose 'Default', the value of the DisplayChannelFormat property in the Logic
Analyzer is used.
Example: 'Format','Digital'
Data Types: char | string

Height — Height of the wave
0 (default) | scalar integer

Specify as a scalar integer the height of the wave in the display in units of 16 pixels. When you
choose 0, the value of the DisplayChannelHeight property in the Logic Analyzer is used.
Example: 'Height',2
Data Types: double

InputChannel — Input channel that corresponds to this wave
1 (default) | scalar integer in the range (1,NumInputPorts)

This property specifies the input channel whose data is used for this wave. By default, it will connect
the first input to this wave.
Example: 'InputChannel',2
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Name — Name or label for the wave
'' (default) | character vector | string scalar

Specify the name that you would like to set for the new wave.
Example: 'Name','MyWave'
Data Types: char | string

Radix — Radix for the wave
'Default' (default) | 'Binary' | 'Hexadecimal' | 'Octal' | 'Signed decimal' | 'Unsigned
decimal'

When the input signals are of class double, single, or logical, you should not set this property. When
you choose 'Default', the value of the DisplayChannelRadix property in the Logic Analyzer is
used.
Data Types: char | string

Divider Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

5 Functions

5-1198

Example: 'DisplayChannel',2,'Name','MyDivider' specifies that a divider should be added to
display channel 2 and named “MyDivider”.

DisplayChannel — Channel on the display that shows this divider
NumInputPorts (default) | scalar numeric value in the range (1,NumInputPorts)

Specify as a scalar numeric value the display channel that shows this divider. By default, the divider
is added to the end of the display.
Example: 'DisplayChannel',2
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Height — Height of the divider
0 (default) | scalar integer

Specify, in pixels, the height of the divider as a scalar integer in the range 8-200. If you choose 0, the
value of the DisplayChannelHeight property in the Logic Analyzer is used.
Example: 'Height',2
Data Types: double

Name — The name or label for the divider
'' (default) | character vector | string scalar

Specify the name that you would like to set for the new divider.
Example: 'Name','MyDivider'
Data Types: char | string

See Also
dsp.LogicAnalyzer | addDivider | addWave | deleteDisplayChannel |
getDisplayChannelInfo | getDisplayChannelTags | moveDisplayChannel

Introduced in R2013a

 modifyDisplayChannel

5-1199

moveDisplayChannel
Package: dsp

Move position of Logic Analyzer display channel

Syntax
moveDisplayChannel(scope,tag,'DisplayChannel',displayChannelValue)

Description
moveDisplayChannel(scope,tag,'DisplayChannel',displayChannelValue) moves the
display channel, either a wave or a divider, specified by the input tag, to the new location specified
by the input displayChannelValue.

Examples

Manipulate Logic Analyzer Programatically

Use functions to construct and manipulate a dsp.LogicAnalyzer System object.

Display Waves on Logic Analyzer scope.

scope = dsp.LogicAnalyzer('NumInputPorts',2);

stop = 30;
for count = 1:stop
 sinValVec = sin(count/stop*2*pi);
 cosValVec = cos(count/stop*2*pi);
 cosValVecOffset = cos((count+10)/stop*2*pi);

 scope([count (count-(stop/2))],[sinValVec cosValVec cosValVecOffset])
end

5 Functions

5-1200

Reorganize Display

hide(scope)
digitalDividerTag = addDivider(scope,'Name','Digital','Height',20);
analogDividerTag = addDivider(scope,'Name','Analog','Height',40);

tags = getDisplayChannelTags(scope);

modifyDisplayChannel(scope,tags{1},'InputChannel',1,...
 'Name','Ramp Digital','Height',40);
modifyDisplayChannel(scope,tags{2},'InputChannel',2,...
 'Name','Waves Analog','Format','Analog','Height',80);

moveDisplayChannel(scope,digitalDividerTag,'DisplayChannel',1)
moveDisplayChannel(scope,tags{2},'DisplayChannel',length(tags))

show(scope)

 moveDisplayChannel

5-1201

Duplicate Wave and Check Information

hide(scope)
addWave(scope,'InputChannel',2,'Name','Waves Digital','Format','Digital',...
 'Height',30,'DisplayChannel',3);
show(scope)

5 Functions

5-1202

Remove Dividers

hide(scope)
deleteDisplayChannel(scope,digitalDividerTag)
deleteDisplayChannel(scope,analogDividerTag)
show(scope)

 moveDisplayChannel

5-1203

Clear variables

clear analogDividerTag cosValVec cosValVecOffset count digitalDividerTag duplicateWave scope sinValVec stop tags

Input Arguments
scope — Logic Analyzer object
dsp.LogicAnalyzer object

The Logic Analyzer object in which you want to move a display channel, specified as a handle to the
dsp.LogicAnalyzer object.

tag — The tag identifying which display channel to move
character vector | string scalar

The tag identifying which display channel to move.
Example: 'W1'
Data Types: char | string

5 Functions

5-1204

displayChannelValue — The location identifying where the display channel should be
moved
scalar integer

The location identifying where the display channel should be moved, specified as a scalar integer.
Example: 'DisplayChannel',2
Data Types: double

See Also
dsp.LogicAnalyzer | deleteDisplayChannel | getDisplayChannelInfo |
getDisplayChannelTags | modifyDisplayChannel

Introduced in R2013a

 moveDisplayChannel

5-1205

msepred
Package: dsp

Predicted mean squared error for LMS adaptive filter

Syntax
[mmseemse] = msepred(lmsFilt,x,d)
[mmseemse,meanw,mse,tracek] = msepred(lmsFilt,x,d)
[mmseemse,meanw,mse,tracek] = msepred(lmsFilt,x,d,m)

Description
[mmseemse] = msepred(lmsFilt,x,d) predicts the steady-state values at convergence of the
minimum mean squared error, mmse, and the excess mean squared error, emse, given the input and
the desired response signal sequences in x and d and the quantities in the dsp.LMSFilter System
object, lmsFilt.

[mmseemse,meanw,mse,tracek] = msepred(lmsFilt,x,d) also computes meanw, the
sequence of means of the coefficient vectors, mse, sequence of mean-squared errors, and tracek,
the sequence of total coefficient error powers.

[mmseemse,meanw,mse,tracek] = msepred(lmsFilt,x,d,m) specifies an optional decimation
factor for computing meanw, mse, and tracek. If m > 1, every mth predicted value of each of these
sequences is saved. If omitted, the value of m is the default, which is one.

Examples

Predict Mean Squared Error for LMS Filter

The mean squared error (MSE) measures the average of the squares of the errors between the
desired signal and the primary signal input to the adaptive filter. Reducing this error converges the
primary input to the desired signal. Determine the predicted value of MSE and the simulated value of
MSE at each time instant using the msepred and msesim functions. Compare these MSE values with
each other and with respect to the minimum MSE and steady-state MSE values. In addition, compute
the sum of the squares of the coefficient errors given by the trace of the coefficient covariance
matrix.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Initialization

Create a dsp.FIRFilter System object™ that represents the unknown system. Pass the signal, x, to
the FIR filter. The output of the unknown system is the desired signal, d, which is the sum of the
output of the unknown system (FIR filter) and an additive noise signal, n.

num = fir1(31,0.5);
fir = dsp.FIRFilter('Numerator',num);

5 Functions

5-1206

iir = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
x = iir(sign(randn(2000,25)));
n = 0.1*randn(size(x));
d = fir(x) + n;

LMS Filter

Create a dsp.LMSFilter System object to create a filter that adapts to output the desired signal.
Set the length of the adaptive filter to 32 taps, step size to 0.008, and the decimation factor for
analysis and simulation to 5. The variable simmse represents the simulated MSE between the output
of the unknown system, d, and the output of the adaptive filter. The variable mse gives the
corresponding predicted value.

l = 32;
mu = 0.008;
m = 5;

lms = dsp.LMSFilter('Length',l,'StepSize',mu);
[mmse,emse,meanW,mse,traceK] = msepred(lms,x,d,m);
[simmse,meanWsim,Wsim,traceKsim] = msesim(lms,x,d,m);

Plot the MSE Results

Compare the values of simulated MSE, predicted MSE, minimum MSE, and the final MSE. The final
MSE value is given by the sum of minimum MSE and excess MSE.

nn = m:m:size(x,1);
semilogy(nn,simmse,[0 size(x,1)],[(emse+mmse)...
 (emse+mmse)],nn,mse,[0 size(x,1)],[mmse mmse])
title('Mean Squared Error Performance')
axis([0 size(x,1) 0.001 10])
legend('MSE (Sim.)','Final MSE','MSE','Min. MSE')
xlabel('Time Index')
ylabel('Squared Error Value')

 msepred

5-1207

The predicted MSE follows the same trajectory as the simulated MSE. Both these trajectories
converge with the steady-state (final) MSE.

Plot the Coefficient Trajectories

meanWsim is the mean value of the simulated coefficients given by msesim. meanW is the mean value
of the predicted coefficients given by msepred.

Compare the simulated and predicted mean values of LMS filter coefficients 12,13,14, and 15.

plot(nn,meanWsim(:,12),'b',nn,meanW(:,12),'r',nn,...
meanWsim(:,13:15),'b',nn,meanW(:,13:15),'r')
PlotTitle ={'Average Coefficient Trajectories for';...
 'W(12), W(13), W(14), and W(15)'}

PlotTitle = 2x1 cell
 {'Average Coefficient Trajectories for'}
 {'W(12), W(13), W(14), and W(15)' }

title(PlotTitle)
legend('Simulation','Theory')
xlabel('Time Index')
ylabel('Coefficient Value')

5 Functions

5-1208

In steady state, both the trajectories converge.

Sum of Squared Coefficient Errors

Compare the sum of the squared coefficient errors given by msepred and msesim. These values are
given by the trace of the coefficient covariance matrix.

semilogy(nn,traceKsim,nn,traceK,'r')
title('Sum-of-Squared Coefficient Errors')
axis([0 size(x,1) 0.0001 1])
legend('Simulation','Theory')
xlabel('Time Index')
ylabel('Squared Error Value')

 msepred

5-1209

Input Arguments
lmsFilt — LMS adaptive filter System object
dsp.LMSFilter

LMS adaptive filter, specified as a dsp.LMSFilter System object.

x — Input signal
scalar | column vector | matrix

Input signal, specified as a scalar, column vector, or matrix. Columns of the matrix x contain
individual input signal sequences. The input, x, and the desired signal, d, must have the same size,
data type, and complexity.
Data Types: single | double

d — Desired signal
scalar | column vector | matrix

Desired response signal, specified as a scalar, column vector, or matrix. Columns of the matrix d
contain individual desired signal sequences. The input, x, and the desired signal, d, must have the
same size, data type, and complexity.
Data Types: single | double

m — Decimation factor
1 (default) | positive scalar

5 Functions

5-1210

Decimation factor, specified as a positive scalar. Every mth predicted value of the 3rd, 4th, and 5th
predicted sequences output is saved into the corresponding output arguments, meanw, mse, and
tracek. If m equals 1, every value of these sequences is saved.

m must be a factor of the input frame size.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
mmse — Minimum mean squared error
scalar

Minimum mean squared error (mmse), returned as a scalar. This parameter is estimated using a
Wiener filter. The Wiener filter minimizes the mean squared error between the desired signal and the
input signal filtered by the Wiener filter. A large value of the mean squared error indicates that the
adaptive filter cannot accurately track the desired signal. The minimal value of the mean squared
error ensures that the adaptive filter is optimal. The minimum mean squared error between a
particular frame of the desired signal and the filtered signal is computed as the variance between the
two frames of signals. The msepred function outputs the average of the mmse values for all the
frames. For more details on how this parameter is calculated, see “Algorithms” on page 5-1212.
Data Types: single | double

emse — Steady state excess mean squared error
scalar

Excess mean squared error, returned as a scalar. This error is the difference between the mean
squared error introduced by adaptive filters and the minimum mean squared error produced by
corresponding Wiener filter. For details on how this parameter is calculated, see “Algorithms” on page
5-1212.
Data Types: single | double

meanw — Sequence of coefficient vector means
matrix

Sequence of coefficient vector means of the adaptive filter at each time instant, returned as a matrix.
The columns of this matrix contain predictions of the mean values of the LMS adaptive filter
coefficients at each time instant. If the decimation factor, m equals 1, the dimensions of meanw is M-
by-N. M is the frame size (number of rows) of the input signal, x. N is the length of the FIR filter
weights vector, specified by the Length property of the lmsFilt System object. If m > 1, the
dimensions of meanw is M/m-by-N.

For details on how this parameter is calculated, see “Algorithms” on page 5-1212.
Data Types: double

mse — Sequence of mean squared errors
column vector

Predictions of the mean squared error of the LMS adaptive filter at each time instant, returned as a
column vector. If the decimation factor, m equals 1, the length of mse equals the frame size (number
of rows) of the input signal, M. If m > 1, the length of mse equals M/m.

 msepred

5-1211

For details on how this parameter is calculated, see “Algorithms” on page 5-1212.
Data Types: double

tracek — Sequence of total coefficient error powers
column vector

Predictions of the total coefficient error power of the LMS adaptive filter at each time instant,
returned as a column vector. If the decimation factor, m equals 1, the length of tracek equals the
frame size (number of rows) of the input signal, given by size(x,1). If m > 1, the length of tracek
equals the ratio of input frame size and the decimation factor, m.

For details on how this parameter is calculated, see “Algorithms” on page 5-1212.
Data Types: double

Algorithms
Minimum Mean Squared Error (mmse)

The msepred function computes the minimum mean-squared error (mmse) using the following
equation:

mmse =
∑

i = 1

N
var(di−W(xi))

N

where,

• N –– Number of frames in the input signal, x.
• di –– ith frame (column) of the desired signal.
• xi –– ith frame (column) of the input signal.
• W(xi) –– Output of the Wiener filter.
• var –– Variance

Excess Mean Squared Error (emse)

The msepred function computes the steady-state excess mean squared error using the following
equations:

emse = Kλ,

K = B
I(L)− A ,

B = μ2 . mmse . λ′,
A = I(L)− 2μLam + μ2(Lam2(kurt + 2) + λλ′) .

where,

• K –– Final values of transformed coefficient variances.
• λ –– Column vector containing the eigenvalues of the input autocorrelation matrix.
• λ' –– Transpose of λ.

5 Functions

5-1212

• B –– MSE analysis driving term.
• L –– Length of the FIR adaptive filter, given by lmsFilt.Length.
• I(L) –– L-by-L identity matrix.
• A –– MSE analysis transition matrix.
• μ –– Step size given by lmsFilt.StepSize.
• Lam –– Diagonal matrix containing the eigenvalues.
• kurt –– Average kurtosis value of eigenvector-filtered signals.

Coefficient Vector Means (meanw)

The msepred function computes each element of the sequence of coefficient vector means using the
following equations:

meanw = meanw . T . D,
T = I(L)− μR,
D = μP .

where,

• meanw –– The initial value of meanw is given by lmsFilt.InitialConditions.
• T –– Transition matrix for mean coefficient analysis.
• I(L) –– L-by-L identity matrix.
• μ –– Step size given by lmsFilt.StepSize.
• R –– Input autocorrelation matrix of size L-by-L.
• D –– Driving term for mean coefficient analysis.
• P –– Cross correlation vector of size 1-by-L.
• kurt –– Average kurtosis value of eigenvector-filtered signals.

Mean Squared Errors (mse)

The msepred function computes each element of the sequence of the mean squared errors using the
following equations:

mse = mmse + dk . λ,
dk = dk ∘ diagA + mse . D,

diagA = (1− 2μλ + μ2(kurt + 2)λ ∘ 2)′,
D = μ2λ′ .

where,

• mmse –– Minimum mean squared error.
• dk –– Diagonal entries of coefficient covariance matrix. The initial value of dk is given by

dk = ((meanw−Wopt)Q) ∘ 2.
• meanw –– Coefficient vector means given by lmsFilt.InitialConditions.
• Wopt –– Optimal Wiener filter coefficients.
• Q –– L-by-L matrix whose columns are the eigenvectors of the input autocorrelation matrix, R, so

that RQ = QLam. Lam is the diagonal matrix containing the corresponding eigen values.

 msepred

5-1213

• diagA –– Portion of MSE analysis transition matrix.
• dk◦diagA –– Hadamard or entrywise product of dk and diagA.
• λ –– Column vector containing the eigenvalues of the input autocorrelation matrix, R.
• μ –– Step size given by lmsFilt.StepSize.
• kurt –– Average kurtosis value of eigenvector filtered signals.
• λ◦2 –– Hadamard or entrywise power of the column vector containing the eigenvalues.
• D –– Driving term for MSE analysis.

Total Coefficient Error Powers (tracek)

The msepred function computes each element of the sequence of the total coefficient error powers.
These values are given by the trace of the coefficient covariance matrix. The diagonal entries of the
coefficient covariance matrix are given by dk in the following equations:

mse = mmse + dk . λ,
dk = dk ∘ diagA + mse . D,

diagA = (1− 2μλ + μ2(kurt + 2)λ ∘ 2)′,
D = μ2λ′ .

The trace of the coefficient covariance matrix is given by the following equation:

tracek = sum(dk) .

References
[1] Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons,

1996.

See Also
Functions
maxstep | msesim

Objects
dsp.LMSFilter

Topics
“Overview of Adaptive Filters and Applications”
“Signal Enhancement Using LMS and NLMS Algorithms”

Introduced in R2012a

5 Functions

5-1214

msesim
Package: dsp

Estimated mean squared error for adaptive filters

Syntax
mse = msesim(adaptFilt,x,d)
[mse,meanw,w,tracek] = msesim(adaptFilt,x,d)
[___] = msesim(adaptFilt,x,m)

Description
mse = msesim(adaptFilt,x,d) estimates the mean squared error of the adaptive filter at each
time instant given the input and the desired response signal sequences in x and d.

[mse,meanw,w,tracek] = msesim(adaptFilt,x,d) also calculates the sequences of coefficient
vector means, meanw, adaptive filter coefficients, w, and the total coefficient error powers, tracek,
corresponding to the simulated behavior of the adaptive filter.

[___] = msesim(adaptFilt,x,m) specifies an optional decimation factor for computing mse,
meanw, and tracek. If m > 1, every mth value of each of these sequences is saved. If omitted, the
value of m defaults to 1.

Examples

Predict Mean Squared Error for LMS Filter

The mean squared error (MSE) measures the average of the squares of the errors between the
desired signal and the primary signal input to the adaptive filter. Reducing this error converges the
primary input to the desired signal. Determine the predicted value of MSE and the simulated value of
MSE at each time instant using the msepred and msesim functions. Compare these MSE values with
each other and with respect to the minimum MSE and steady-state MSE values. In addition, compute
the sum of the squares of the coefficient errors given by the trace of the coefficient covariance
matrix.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Initialization

Create a dsp.FIRFilter System object™ that represents the unknown system. Pass the signal, x, to
the FIR filter. The output of the unknown system is the desired signal, d, which is the sum of the
output of the unknown system (FIR filter) and an additive noise signal, n.

num = fir1(31,0.5);
fir = dsp.FIRFilter('Numerator',num);
iir = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);

 msesim

5-1215

x = iir(sign(randn(2000,25)));
n = 0.1*randn(size(x));
d = fir(x) + n;

LMS Filter

Create a dsp.LMSFilter System object to create a filter that adapts to output the desired signal.
Set the length of the adaptive filter to 32 taps, step size to 0.008, and the decimation factor for
analysis and simulation to 5. The variable simmse represents the simulated MSE between the output
of the unknown system, d, and the output of the adaptive filter. The variable mse gives the
corresponding predicted value.

l = 32;
mu = 0.008;
m = 5;

lms = dsp.LMSFilter('Length',l,'StepSize',mu);
[mmse,emse,meanW,mse,traceK] = msepred(lms,x,d,m);
[simmse,meanWsim,Wsim,traceKsim] = msesim(lms,x,d,m);

Plot the MSE Results

Compare the values of simulated MSE, predicted MSE, minimum MSE, and the final MSE. The final
MSE value is given by the sum of minimum MSE and excess MSE.

nn = m:m:size(x,1);
semilogy(nn,simmse,[0 size(x,1)],[(emse+mmse)...
 (emse+mmse)],nn,mse,[0 size(x,1)],[mmse mmse])
title('Mean Squared Error Performance')
axis([0 size(x,1) 0.001 10])
legend('MSE (Sim.)','Final MSE','MSE','Min. MSE')
xlabel('Time Index')
ylabel('Squared Error Value')

5 Functions

5-1216

The predicted MSE follows the same trajectory as the simulated MSE. Both these trajectories
converge with the steady-state (final) MSE.

Plot the Coefficient Trajectories

meanWsim is the mean value of the simulated coefficients given by msesim. meanW is the mean value
of the predicted coefficients given by msepred.

Compare the simulated and predicted mean values of LMS filter coefficients 12,13,14, and 15.

plot(nn,meanWsim(:,12),'b',nn,meanW(:,12),'r',nn,...
meanWsim(:,13:15),'b',nn,meanW(:,13:15),'r')
PlotTitle ={'Average Coefficient Trajectories for';...
 'W(12), W(13), W(14), and W(15)'}

PlotTitle = 2x1 cell
 {'Average Coefficient Trajectories for'}
 {'W(12), W(13), W(14), and W(15)' }

title(PlotTitle)
legend('Simulation','Theory')
xlabel('Time Index')
ylabel('Coefficient Value')

 msesim

5-1217

In steady state, both the trajectories converge.

Sum of Squared Coefficient Errors

Compare the sum of the squared coefficient errors given by msepred and msesim. These values are
given by the trace of the coefficient covariance matrix.

semilogy(nn,traceKsim,nn,traceK,'r')
title('Sum-of-Squared Coefficient Errors')
axis([0 size(x,1) 0.0001 1])
legend('Simulation','Theory')
xlabel('Time Index')
ylabel('Squared Error Value')

5 Functions

5-1218

System Identification of FIR Filter Using Filtered XLMS Filter

Identify an unknown system by performing active noise control using a filtered-x LMS algorithm. The
objective of the adaptive filter is to minimize the error signal between the output of the adaptive filter
and the output of the unknown system (or the system to be identified). Once the error signal is
minimal, the unknown system converges to the adaptive filter.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Initialization

Create a dsp.FIRFilter System object that represents the system to be identified. Pass the signal,
x, to the FIR filter. The output of the unknown system is the desired signal, d, which is the sum of the
output of the unknown system (FIR filter) and an additive noise signal, n.

num = fir1(31,0.5);
fir = dsp.FIRFilter('Numerator',num);
iir = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
x = iir(sign(randn(2000,25)));
n = 0.1*randn(size(x));
d = fir(x) + n;

 msesim

5-1219

Adaptive Filter

Create a dsp.FilteredXLMSFilter System object to create an adaptive filter that uses the filtered-
x LMS algorithm. Set the length of the adaptive filter to 32 taps, step size to 0.008, and the
decimation factor for analysis and simulation to 5. The variable simmse represents the error between
the output of the unknown system, d, and the output of the adaptive filter.

l = 32;
mu = 0.008;
m = 5;
fxlms = dsp.FilteredXLMSFilter(l,'StepSize',mu);
[simmse,meanWsim,Wsim,traceKsim] = msesim(fxlms,x,d,m);
plot(m*(1:length(simmse)),10*log10(simmse))
xlabel('Iteration')
ylabel('MSE (dB)')
% Plot the learning curve for filtered-x LMS filter
% used in system identification
title('Learning curve')

With each iteration of adaptation, the value of simmse decreases to a minimal value, indicating that
the unknown system has converged to the adaptive filter.

System Identification of FIR Filter Using Adaptive Lattice Filter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

5 Functions

5-1220

ha = fir1(31,0.5);
% FIR system to be identified
fir = dsp.FIRFilter('Numerator',ha);
iir = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
x = iir(sign(randn(2000,25)));
% Observation noise signal
n = 0.1*randn(size(x));
 % Desired signal
d = fir(x)+n;
% Filter length
l = 32;
% Decimation factor for analysis
% and simulation results
m = 5;
ha = dsp.AdaptiveLatticeFilter(l);
[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);
plot(m*(1:length(simmse)),10*log10(simmse));
xlabel('Iteration');
ylabel('MSE (dB)');
% Plot the learning curve used for
% adaptive lattice filter used in system identification
title('Learning curve')

 msesim

5-1221

System Identification of FIR Filter Using Block LMS Filter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

fir = fir1(31,0.5);
% FIR system to be identified
firFilter = dsp.FIRFilter('Numerator',fir);
iirFilter = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
x = iirFilter(sign(randn(2000,25)));
% Observation noise signal
n = 0.1*randn(size(x));
% Desired signal
d = firFilter(x)+n;
% Filter length
l = 32;
% Block LMS Step size
mu = 0.008;
% Decimation factor for analysis
% and simulation results
m = 32;
fir = dsp.BlockLMSFilter(l,'StepSize',mu);
[simmse,meanWsim,Wsim,traceKsim] = msesim(fir,x,d,m);
plot(m*(1:length(simmse)),10*log10(simmse));
xlabel('Iteration'); ylabel('MSE (dB)');
% Plot the learning curve for
% block LMS filter used in system identification
title('Learning curve')

5 Functions

5-1222

System Identification of FIR Filter Using Affine Projection Filter

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

ha = fir1(31,0.5);
% FIR system to be identified
fir = dsp.FIRFilter('Numerator',ha);
iir = dsp.IIRFilter('Numerator',sqrt(0.75),...
 'Denominator',[1 -0.5]);
x = iir(sign(randn(2000,25)));
% Observation noise signal
n = 0.1*randn(size(x));
% Desired signal
d = fir(x)+n;
% Filter length
l = 32;
% Affine Projection filter Step size.
mu = 0.008;
% Decimation factor for analysis
% and simulation results
m = 5;

apf = dsp.AffineProjectionFilter(l,'StepSize',mu);
[simmse,meanWsim,Wsim,traceKsim] = msesim(apf,x,d,m);

 msesim

5-1223

plot(m*(1:length(simmse)),10*log10(simmse));
xlabel('Iteration'); ylabel('MSE (dB)');
% Plot the learning curve for affine projection filter
% used in system identification
title('Learning curve')

Input Arguments
adaptFilt — Adaptive filter System object
adaptive filter System object

Adaptive filter, specified as one of the following System objects:

• dsp.LMSFilter
• dsp.BlockLMSFilter
• dsp.AdaptiveLatticeFilter
• dsp.AffineProjectionFilter
• dsp.FastTransversalFilter
• dsp.FilteredXLMSFilter
• dsp.RLSFilter

x — Input signal
scalar | column vector | matrix

5 Functions

5-1224

Input signal, specified as a scalar, column vector, or matrix. Columns of the matrix x contain
individual input signal sequences. The input, x, and the desired signal, d, must have the same size
and data type.

If adaptFilt is a dsp.BlockLMSFilter object, the input signal frame size must be greater than or
equal to the value you specify in the BlockSize property of the object.
Data Types: single | double

d — Desired signal
scalar | column vector | matrix

Desired response signal, specified as a scalar, column vector, or matrix. Columns of the matrix d
contain individual desired signal sequences. The input, x, and the desired signal, d, must have the
same size and the data type.

If adaptFilt is a dsp.BlockLMSFilter System object, the desired signal frame size must be
greater than or equal to the value you specify in the BlockSize property of the object.
Data Types: single | double

m — Decimation factor
1 (default) | positive scalar

Decimation factor, specified as a positive scalar. Every mth value of the estimated sequences is saved
into the corresponding output arguments, mse, meanw, w, and tracek. If m equals 1, every value of
these sequences is saved.

If adaptFilt is a dsp.BlockLMSFilter System object, the decimation factor must be a multiple of
the value you specify in the BlockSize property of the object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
mse — Sequence of mean squared errors
column vector

Estimates of the mean squared error of the adaptive filter at each time instant, returned as a column
vector.

If the adaptive filter is dsp.BlockLMSFilter and the decimation factor m is specified, length of mse
equals floor(M/m). M is the frame size (number of rows) of the input signal, x. If m is not specified, the
length of mse equals floor(M/B), where B is the value you specify in the BlockSize property of the
object. The input signal frame size must be greater than or equal to the value you specify in the
BlockSize property of the object. The decimation factor, if specified, must be a multiple of the
BlockSize property.

For the other adaptive filters, if the decimation factor, m = 1, the length of mse equals the frame size
of the input signal. If m > 1, the length of mse equals floor(M/m).
Data Types: double

meanw — Sequence of coefficient vector means
matrix

 msesim

5-1225

Sequence of coefficient vector means of the adaptive filter at each time instant, estimated as a
matrix. The columns of this matrix contain estimates of the mean values of the adaptive filter
coefficients at each time instant.

If the adaptive filter is dsp.BlockLMSFilter and the decimation factor m is specified, the
dimensions of meanw is floor(M/m)-by-N. M is the frame size (number of rows) of the input signal, x.
N is the length of the filter weights vector, specified by the Length property of the adaptive filter. If m
is not specified, the dimensions of meanw is floor(M/B)-by-N, where B is the value you specify in the
BlockSize property of the object. The input signal frame size must be greater than or equal to the
value you specify in the BlockSize property of the object. The decimation factor, if specified, must
be a multiple of the BlockSize property.

For the other adaptive filters, If the decimation factor, m = 1, the dimensions of meanw is M-by-N. If m
> 1, the dimensions of meanw is floor(M/m)-by-N.
Data Types: double

w — Final values of adaptive filter coefficients
row vector

Final values of the adaptive filter coefficients for the algorithm corresponding to adaptFilt,
returned as a row vector. The length of the row vector equals the value you specify in the Length
property of the object.
Data Types: single | double

tracek — Sequence of total coefficient error powers
column vector

Sequence of total coefficient error powers, estimated as a column vector. This column vector contains
estimates of the total coefficient error power of the adaptive filter at each time instant.

If the adaptive filter is dsp.BlockLMSFilter and the decimation factor m is specified, length of
tracek equals floor(M/m). M is the frame size (number of rows) of the input signal, x. If m is not
specified, the length of tracek equals floor(M/B), where B is the value you specify in the BlockSize
property of the object. The input signal frame size must be greater than or equal to the value you
specify in the BlockSize property of the object. The decimation factor, if specified, must be a
multiple of the BlockSize property.

For the other adaptive filters, if the decimation factor, m = 1, the length of tracek equals the frame
size of the input signal. If m > 1, the length of tracek equals floor(M/m).
Data Types: double

References
[1] Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons,

1996.

See Also
Functions
msepred | maxstep

5 Functions

5-1226

Objects
dsp.LMSFilter | dsp.BlockLMSFilter | dsp.AdaptiveLatticeFilter |
dsp.AffineProjectionFilter | dsp.FastTransversalFilter | dsp.FilteredXLMSFilter |
dsp.RLSFilter

Topics
“Overview of Adaptive Filters and Applications”
“Signal Enhancement Using LMS and NLMS Algorithms”

Introduced in R2012a

 msesim

5-1227

multistage
Multistage filter from specification object

Syntax
msFilter = design(d,'multistage','SystemObject',true)
msFilter = design(...,'filterstructure',structure,'SystemObject',true)
msFilter = design(...,'nstages',nstages,'SystemObject',true)
msFilter = design(...,'usehalfbands',hb,'SystemObject',true)

Description
msFilter = design(d,'multistage','SystemObject',true) designs a multistage filter
whose response you specified by the filter specification object d.

msFilter = design(...,'filterstructure',structure,'SystemObject',true) returns a
filter with the structure specified by structure. Input argument structure is dffir by default
and can also be one of the following options.

structure Valid with These Responses
firdecim Lowpass or Nyquist response
firtdecim Lowpass or Nyquist response
firinterp Lowpass or Nyquist response
lowpass Default lowpass only

Multistage design applies to the default lowpass filter specification object and to decimators and
interpolators that use either lowpass or Nyquist responses.

msFilter = design(...,'nstages',nstages,'SystemObject',true) specifies nstages,
the number of stages to be used in the design. nstages must be an integer or auto. To allow the
design algorithm to use the optimal number of stages while minimizing the cost of using the resulting
filter, nstages is auto by default. When you specify an integer for nstages, the design algorithm
minimizes the cost for the number of stages you specify.

msFilter = design(...,'usehalfbands',hb,'SystemObject',true) uses halfband filters
when you set hb to true. The default value for hb is false.

Note To see a list of the design methods available for your filter, use designmethods(hd).

Examples

Design a Multistage Interpolator

This example designs a minimum-order, multistage Nyquist interpolator.

l = 15; % Interpolation factor. Also the Nyquist band.
tw = 0.05; % Normalized transition width

5 Functions

5-1228

ast = 40; % Minimum stopband attenuation in dB
d = fdesign.interpolator(l,'nyquist',l,'tw,ast',tw,ast);
msMinInterp = design(d,'multistage','SystemObject',true);
fvtool(msMinInterp);

Design a multistage lowpass interpolator with an interpolation factor of 8.

m = 8;
d = fdesign.interpolator(m,'lowpass');
% Use halfband filters if possible.
msInterp = design(d,'multistage','Usehalfbands',true,'SystemObject',true);
fvtool(msInterp);

 multistage

5-1229

See Also
design | designopts

Introduced in R2011a

5 Functions

5-1230

noisepsd
Package: dsp

Power spectral density of filter output due to roundoff noise

Syntax
noisepsdOut = noisepsd(sysobj,L)
noisepsdOut = noisepsd(___ ,Name,Value)
noisepsdOut = noisepsd(sysobj,L,opts)
noisepsdOut = noisepsd(sysobj,'Arithmetic',arithType)
noisepsd(sysobj, ___)

Description
noisepsdOut = noisepsd(sysobj,L) computes the power spectral density (PSD) of filter output
occurring because of roundoff noise. The roundoff noise is produced by quantization errors within the
filter. The PSD is computed as an average over the L trials.

noisepsdOut = noisepsd(___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in the previous syntax.

noisepsdOut = noisepsd(sysobj,L,opts) uses an options object to specify the optional input
parameters in lieu of specifying name-value pairs.

noisepsdOut = noisepsd(sysobj,'Arithmetic',arithType) analyzes the filter System
object based on the arithmetic specified in the arithType input.

noisepsd(sysobj, ___) with no output argument launches FVTool and shows the noise PSD
estimate of the filter System object.

Examples

Compute the PSD of Output Noise

Compute the PSD of the output noise caused by the quantization processes in a fixed-point, direct-
form FIR filter. The input signal has fixed-point data type. The noisepsd function performs the
analysis based on the data type of the locked input.

b = firgr(27,[0 .4 .6 1],[1 1 0 0]);
firfilt = dsp.FIRFilter('Numerator',b); % Create the filter object.
data = fi(randn(15,16),1,16,3);
output = firfilt(data);

Quantize the filter to fixed-point. Plot the hpsd data. This is the data resulting from the noise PSD
calculation. You can review the data in hpsd.data.

hpsd = noisepsd(firfilt,'Arithmetic','fixed');
plot(hpsd)

 noisepsd

5-1231

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FIRFilter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter

5 Functions

5-1232

• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

L — Number of trials
10 | positive integer

Number of trials used to compute the average, specified as a positive integer. The larger you specify
L, the more accurate is the estimate of power spectral density but at the expense of longer
computation time. When you do not specify L, the function sets L to the default value of 10 trials.
Data Types: single | double

opts — Options object
options object

Options object to specify the optional input parameters in lieu of specifying name-value pairs.

Create an opts object with

opts = noisepsdopts(sysobj);

opts then takes the noisepsd settings from sysobj.

Because opts is an object, use the set function to change the parameter values in opts before using
it with the noisepsd function. For example, you could specify a new sample rate with

set(opts,'NormalizedFrequency',false,'Fs',48e3);

arithType — Arithmetic type
'double' | 'single' | 'fixed'

Arithmetic used in the analysis, specified as 'double', 'single', or 'Fixed'. You cannot use the
'Arithmetic' argument unless you know the data type of the input. If you do not specify the
'Arithmetic' argument, that is, you use the syntax noisepsdOut = noisepsd(sysobj), then
the noisepsd function applies these rules:

• If the System object is Unlocked — The noisepsd function performs double-precision analysis.
• If the System object is Locked — The noisepsd function performs the analysis based on the data

type of the locked input.

If you do specify the 'Arithmetic' argument, that is, you use the syntax noisepsdOut =
noisepsd(sysobj,'Arithmetic',arithType), the noisepsd function applies these rules
depending on the value you set for arithType.

Value System Object State Rule
arithType = 'double' Unlocked noisepsd performs double-

precision analysis.
Locked noisepsd performs double-

precision analysis.
arithType = 'single' Unlocked noisepsd performs single-

precision analysis.
Locked noisepsd performs single-

precision analysis.

 noisepsd

5-1233

Value System Object State Rule
arithType = 'fixed' Unlocked noisepsd produces an error

because data type of the fixed-
point input is unknown.

Locked When the input data type is
double or single, then
noisepsd produces an error
because data type of the fixed-
point input is unknown.
When the input data is of fixed-
point type, noisepsd performs
analysis based on the data type
of the locked input.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: b = firgr(27,[0 .4 .6 1],[1 1 0 0]); firfilt =
dsp.FIRFilter('Numerator',b); noisepsdOut = noisepsd(firfilt);

NFFT — Number of FFT points
512 (default) | positive integer

Number of FFT points used in calculating the PSD, specified as a positive integer. This value
determines the length of the PSD data vector shown in the Data field of the noisepsdOut structure.
When 'NFFT' is set to an:

• Odd integer –– The length of the PSD data is given by (NFFT+1)/2.
• Even integer –– The length of the PSD data is given by (NFFT/2)+1.

When not specified, NFFT defaults to 512.

Note If the spectrum data you specify is calculated over half the Nyquist interval and you do not
specify a corresponding frequency vector, the default frequency vector assumes that the number of
points in the whole FFT is even. Also, the plot option to convert to a whole or two-sided spectrum
assumes the original whole FFT length is even.

Data Types: single | double

NormalizedFrequency — Use normalized frequency
true (default) | false

Indicate whether to use normalized frequency or linear frequency, specified as either:

• true –– Use normalized frequency. When not specified, the function defaults to true.
• false –– Use linear frequency. When you specify false, you must supply the sampling frequency

Fs.

5 Functions

5-1234

Fs — Sampling frequency
'Normalized' | positive scalar

Sampling frequency to be specified in Hz when 'NormalizedFrequency' is set to false. When
'NormalizedFrequency' is set to true, 'Fs' is set to 'Normalized'.
Data Types: single | double

SpectrumType — Spectrum type
'Onesided' (default) | 'Twosided'

Spectrum type of the generated PSD data, specified as:

• 'Onesided' –– Converts the type to a spectrum that is calculated over half the Nyquist interval.
All properties affected by the new frequency range are adjusted automatically.

• 'Twosided' –– Converts the type to a spectrum that is calculated over the whole Nyquist
interval. All properties affected by the new frequency range are adjusted automatically. If you
choose a two-sided computation, you can also choose 'CenterDC' as true. Otherwise,
'CenterDC' must be false.

CenterDC — Set center of spectrum to DC
false (default) | true

Shift the zero-frequency component to the center of a two-sided spectrum.

• When you set 'SpectrumType' to 'Onesided', it is changed to 'Twosided' and the data is
converted to a two-sided spectrum.

• Setting 'CenterDC' to false shifts the data and the frequency values in the object so that DC is
in the left edge of the spectrum. This operation does not affect the 'SpectrumType' property
setting.

Output Arguments
noisepsdOut — PSD data object
psd data object

Data object containing the PSD data, returned as a psd object. To extract the PSD vector from
noisepsdOut, enter the following in the MATLAB command prompt:

get(noisepsdOut,'data')

Plot the PSD data with plot(noisepsdOut). The average power of the output noise (the integral of
the PSD) can be computed with avgpower, a method of dspdata objects:

avgpwr = avgpower(hpsd)

References
[1] McClellan, James H., editor. Computer-Based Exercises for Signal Processing Using MATLAB 5.

Prentice-Hall, 1998.

 noisepsd

5-1235

See Also
Functions
filter | noisepsdopts | reorder | scale

Introduced in R2011a

5 Functions

5-1236

noisepsdopts
Package: dsp

Create an options object for output noise PSD computation

Syntax
opts = noisepsdopts(sysobj)

Description
opts = noisepsdopts(sysobj) uses the current settings in the filter System object to create an
options object that contains specified options for computing the output noise power spectral density.
You can pass the opts object as an input argument to the noisepsd function.

Examples

Set the Noise PSD Options

Use the noisepsdopts function to set options to compute the output noise PSD. filt1 and filt2
are lowpass filters that use different design methods. The opts object makes it easier to set the same
conditions for the noise PSD computation in the noisepsd function.

d = fdesign.lowpass

d =
 lowpass with properties:

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: 1
 Fpass: 0.4500
 Fstop: 0.5500
 Apass: 1
 Astop: 60

filt1 = design(d,'butter','Systemobject',true)

filt1 =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [13x6 double]
 ScaleValues: [14x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

 noisepsdopts

5-1237

filt2 = design(d,'cheby2','Systemobject',true)

filt2 =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II'
 SOSMatrixSource: 'Property'
 SOSMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

opts = noisepsdopts(filt1)

opts =

 struct with fields:

 FreqPoints: 'All'
 NFFT: 512
 NormalizedFrequency: true
 Fs: 'Normalized'
 SpectrumType: 'Onesided'
 CenterDC: false
 ConfLevel: 'Not Specified'
 ConfInterval: []

opts.NFFT = 256; % Same as set(opts,'nfft',256).
opts.NormalizedFrequency = false;
opts.Fs = 1.5e3;
opts.CenterDC = true

opts =

 struct with fields:

 FreqPoints: 'All'
 NFFT: 256
 NormalizedFrequency: false
 Fs: 1500
 SpectrumType: 'Twosided'
 CenterDC: true
 ConfLevel: 'Not Specified'
 ConfInterval: []

With opts configured as needed, use it as an input argument for the noisepsd function.

noisepsd(filt1,20,opts)

5 Functions

5-1238

noisepsd(filt2,20,opts)

 noisepsdopts

5-1239

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FIRFilter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter

5 Functions

5-1240

• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

Output Arguments
opts — Options object
spectrum object

Options object which contains the options for computing the output noise PSD, returned as a
spectrum object. You pass the opts object as an input argument to the noisepsd function to
specify values for the input parameters.

Using opts, you can set the following properties for noisepsd:

Property Name Default Value Description and Valid Entries
NFFT 512 Specify the number of FFT points to use to

calculate the PSD.
NormalizedFrequency true Determine whether to use normalized

frequency. Enter a logical value of the logical
true or false. Because this property is a
logical value, do not enclose with single
quotation marks.

Fs 'Normalized' Specify the sampling frequency to use when
you set NormalizedFrequency to false.
Use any integer value greater than 1. Enter
the value in Hz.

SpectrumType 'Onesided' Specify how noisepsd should generate the
PSD. Options are 'Onesided' or
'Twosided'. If you choose a two-sided
computation, you can also choose CenterDC
= true. Otherwise, CenterDC must be
false.

• 'Onesided' converts the type to a
spectrum that is calculated over half the
Nyquist interval. All properties affected by
the new frequency range are adjusted
automatically.

• 'Twosided' converts the type to a
spectrum that is calculated over the whole
Nyquist interval. All properties affected by
the new frequency range are adjusted
automatically.

 noisepsdopts

5-1241

Property Name Default Value Description and Valid Entries
CenterDC false Shift the zero-frequency component to the

center of a two-sided spectrum.

• When you set SpectrumType to
'Onesided', it is changed to
'Twosided' and the data is converted to
a two-sided spectrum.

• Setting CenterDC to false shifts the
data and the frequency values in the
object so that DC is in the left edge of the
spectrum. This operation does not effect
the SpectrumType property setting.

Arithmetic arithType Analyze the filter System object, based on the
arithmetic specified in the arithType input.
arithType can be set to 'double',
'single', or 'fixed'. The analysis tool
assumes a double-precision filter when the
arithmetic input is not specified and the filter
System object is in an unlocked state.

See Also
Functions
noisepsd | freqrespest | noisepsdopts

Introduced in R2011a

5 Functions

5-1242

norm
P-norm of filter

Syntax
l = norm(hd)
l = norm(hd,pnorm)

Description
All of the variants of norm return the filter p-norm for the object in the syntax, a digital filter. When
you omit the pnorm argument, norm returns the L2-norm for the object.

Note that by Parseval's theorem, the L2-norm of a filter is equal to the l2 norm. This equality is not
true for the other norm variants.

For dfilt Objects

l = norm(hd) returns the L2-norm of a discrete-time filter.

l = norm(hd,pnorm) includes input argument pnorm that lets you specify the norm returned.
pnorm can be either

• Frequency-domain norms specified by one of L1, L2, or Linf
• Discrete-time domain norms specified by one of l1, l2, or linf

By Parseval's theorem, the L2-norm of a filter is equal to the l2 norm. This equality is not true for the
other norm variants.

IIR filters respond slightly differently to norm. When you compute the l2, linf, L1, and L2 norms for an
IIR filter, norm(...,L2,tol) lets you specify the tolerance for the accuracy in the computation. For
l1, l2, L2, and linf, norm uses the tolerance to truncate the infinite impulse response that it uses to
calculate the norm. For L1, norm passes the tolerance to the numerical integration algorithm. Refer
to Examples on page 5-0 to see this in use. You cannot specify Linf for the norm and include the
tol option.

Examples

Norm of an IIR Filter

This example shows how to compute the L2 norm of an IIR filter. A tolerance of 1e-10 is used.

spec = fdesign.lowpass('n,fc',5,0.4);
filter = butter(spec);
filternorm = norm(filter,'l2',1e-10)

filternorm = 0.6336

 norm

5-1243

See Also
reorder | scale | scalecheck

Introduced in R2011a

5 Functions

5-1244

normalize
Normalize filter numerator or feed-forward coefficients

Syntax
normalize(hq)
g = normalize(hd)

Description
normalize(hq) normalizes the filter numerator coefficients for a quantized filter to have values
between -1 and 1. The coefficients of hq change — normalize does not copy hq and return the copy.
To restore the coefficients of hq to the original values, use denormalize.

Note that for lattice filters, the feed-forward coefficients stored in the property lattice are
normalized.

g = normalize(hd) normalizes the numerator coefficients for the filter hq to between -1 and 1 and
returns the gain g due to the normalization operation. Calling normalize again does not change the
coefficients. g always returns the gain returned by the first call to normalize the filter.

Examples

Normalize the Coefficients of a Direct Form II Filter

Create a direct form II quantized filter that uses second-order sections. Then use normalize to
maximize the use of the range of representable coefficients.

d = fdesign.lowpass('n,fp,ap,ast',8,.5,2,40);
hd = design(d,'ellip');
hd.arithmetic ='fixed';

Check the filter coefficients. Note that InitialSOSMatrix(3,2)>1

InitialSOSMatrix = hd.sosMatrix;

Use normalize to modify the coefficients into the range between -1 and 1. The output g contains the
gains applied to each section of the SOS filter.

g = normalize(hd);

None of the numerator coefficients exceed -1 or 1.

Introduced in R2011a

 normalize

5-1245

normalizefreq
Switch filter specification between normalized frequency and absolute frequency

Syntax
normalizefreq(d)
normalizefreq(d,flag)
normalizefreq(d,false,fs)

Description
normalizefreq(d) normalizes the frequency specifications in filter specifications object d. By
default, the NormalizedFrequency property is set to true when you create a design object. You
provide the design specifications in normalized frequency units. normalizefreq does not affect
filters that already use normalized frequency.

If you use this syntax when d does not use normalized frequency specifications, all of the frequency
specifications are normalized by fs/2 so they lie between 0 and 1, where fs is specified in the object.
Included in the normalization are the filter properties that define the filter pass and stopband edge
locations by frequency:

• F3 dB — Used by IIR filter specifications objects to describe the passband cutoff frequency
• Fcutoff — Used by FIR filter specifications objects to describe the passband cutoff frequency
• Fpass — Describes the passband edges
• Fstop — Describes the stopband edges

In this syntax, normalizefreq(d) assumes you specified fs when you created d or changed d to
use absolute frequency specifications.

normalizefreq(d,flag) where flag is either true or false, specifies whether the
NormalizedFrequency property value is true or false and therefore whether the filter
normalizes the sampling frequency fs and other related frequency specifications. fs defaults to 1 for
this syntax.

When you do not provide the input argument flag, it defaults to true. If you set flag to false,
affected frequency specifications are multiplied by fs/2 to remove the normalization. Use this syntax
to switch your filter between using normalized frequency specifications and not using normalized
frequency specifications.

normalizefreq(d,false,fs) lets you specify a new sampling frequency fs when you set the
NormalizedFrequency property to false.

Examples

5 Functions

5-1246

Normalize the Frequency Specifications of a Filter

These examples demonstrate using normalizefreq in both of the major syntax applications-setting
the design object frequency specifications to use absolute frequency (normalizefreq(hd,false,fs)) and
resetting a design object to using normalized frequencies (normalizefreq(d)).

Construct a highpass filter specifications object by specifying the passband and stopband edges and
the desired attenuations in the bands. By default, provide the frequency specifications in normalized
values between 0 and 1.

d = fdesign.highpass(0.35, 0.45, 60, 40);

Fstop and Fpass are in normalized form, and the property NormalizedFrequency is true.

Now use normalizedfreq to convert to absolute frequency specifications, with a sampling frequency of
1000 Hz.

normalizefreq(d,false,1e3);

Both of the attenuation specifications remain the same. The passband and stopband edge definitions
now appear in Hz, where the new value represents the normalized values multiplied by Fs/2, or 500
Hz.

Converting to using normalized frequencies consists of using normalizefreq with the design object
d.

normalizefreq(d)

For bandstop, bandpass, and multiple band filter specifications objects, normalizefreq works the same
way for all band edge definitions. When you do not provide the sampling frequency Fs as an input
argument and you are converting to absolute frequency specifications, normalizefreq sets Fs to 1, as
shown in this example.

d=fdesign.bandstop(0.25,0.35,0.55,0.65,50,60);
normalizefreq(d,false)

See Also
fdesign.lowpass | fdesign.halfband | fdesign.highpass | fdesign.interpolator

Introduced in R2011a

 normalizefreq

5-1247

nstates
Number of filter states

Syntax
n = nstates(hd)

Description
Discrete-Time Filters

n = nstates(hd) returns the number of states n in the discrete-time filter hd. The number of
states depends on the filter structure and the coefficients.

Examples

Number of States of a Filter

Determine the number of states of a direct form FIR filter.

FIRFilter = firls(30,[0 .1 .2 .5]*2,[1 1 0 0]);
DiscFilter = dfilt.dffir(FIRFilter);
NstateDF = nstates(DiscFilter)

NstateDF = 30

Introduced in R2011a

5 Functions

5-1248

order
Package: dsp

Order of discrete-time filter System object

Syntax
n = order(sysobj)

Description
n = order(sysobj) returns the order n of the filter System object. The order depends on the filter
structure and the reference double-precision floating-point coefficients.

Examples

Determine Filter Order

Design a compensation decimator for a CIC decimator using the dsp.FilterCascade object.
Determine the order of the overall filter.

cicdecim = dsp.CICDecimator('DecimationFactor', 6, ...
 'NumSections', 6);

fs = 16e3; % Sampling frequency of input of compensation decimator
fPass = 4e3; % Passband frequency
fStop = 4.5e3; % Stopband frequency
ciccomp = dsp.CICCompensationDecimator(cicdecim, ...
 'DecimationFactor', 2, ...
 'PassbandFrequency', fPass, ...
 'StopbandFrequency', fStop, ...
 'SampleRate', fs);

filtchain = dsp.FilterCascade(cicdecim, ciccomp);

order(filtchain)

ans = 648

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter

 order

5-1249

• dsp.BiquadFilter
• dsp.Channelizer
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

Output Arguments
n — Filter order
scalar

Filter order, returned as a scalar. The order depends on the filter structure and the reference double-
precision floating-point coefficients.
Data Types: double

See Also
info

Introduced in R2011a

5 Functions

5-1250

phasedelay
Package: dsp

Phase delay response of discrete-time filter System object

Syntax
[phi,w] = phasedelay(sysobj)
[phi,w] = phasedelay(sysobj,n)
[phi,w] = phasedelay(sysobj,n,fs)
[phi,w] = phasedelay(___ ,'Arithmetic',arithType)
phasedelay(sysobj)

Description
[phi,w] = phasedelay(sysobj) returns the phase delay response vector, phi, and the
corresponding frequency vector, w, in radians/sample of the filter System object based on the current
filter coefficients.

[phi,w] = phasedelay(sysobj,n) returns the n-point phase delay response vector and the
corresponding n-point frequency vector in radians/sample of the filter System object.

[phi,w] = phasedelay(sysobj,n,fs) uses fs to calculate the delay response. When you specify
this syntax without any output arguments, the function launches fvtool and plots the response to
fs/2.

[phi,w] = phasedelay(___ ,'Arithmetic',arithType) analyzes the filter System object,
based on the arithmetic specified in arithType using anyone of the previous syntaxes.

phasedelay(sysobj) launches fvtool and shows the phase delay response of the filter System
object.

For more input options, see phasedelay in Signal Processing Toolbox.

Examples

Phase Delay of Discrete-Time Filter

Design an FIR filter.

Fs = 8000; Fcutoff = 2000;
FIRFilt = dsp.FIRFilter('Numerator', fir1(130,Fcutoff/(Fs/2)));

The phasedelay function computes the phase delay of the filter and displays it using FVTool.

phasedelay(FIRFilt)

 phasedelay

5-1251

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.Channelizer
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade

5 Functions

5-1252

• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

n — Number of points over which phase response is evaluated
8192 (default) | positive integer

Number of points over which the phase response is evaluated around the upper half of the unit circle.
For an FIR filter where n is a power of two, the computation is done faster using FFTs.
Data Types: double

fs — Sampling frequency
1 (default) | positive scalar

Sampling frequency used in computing the phase delay response, specified as a positive scalar.
Data Types: single | double

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

 phasedelay

5-1253

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
phi — Phase delay response vector
vector

Phase delay response vector, evaluated at n equally-spaced points around the upper half of the unit
circle, returned as a vector. If n is not specified, the function uses a default value of 8192.
Data Types: double

w — Frequency vector
vector

Frequency vector of length n in radians/sample. w consists of n equally-spaced points around the
upper half of the unit circle (from 0 to π radians/sample). If n is not specified, the function uses a
default value of 8192.
Data Types: double

See Also
Functions
freqz | grpdelay | phasez | zerophase | zplane | fvtool | phasedelay

Introduced in R2011a

5 Functions

5-1254

phasez
Package: dsp

Phase response of discrete-time filter System object (unwrapped)

Syntax
[phi,w] = phasez(sysobj)
[phi,w] = phasez(sysobj,n)
[phi,w] = phasez(___ ,'Arithmetic',arithType)
phasez(sysobj)

Description
[phi,w] = phasez(sysobj) returns the unwrapped phase response phi of the filter System
object, sysobj, based on the current filter coefficients. The vector w contains the frequencies (in
radians) at which the function evaluates the phase response. The phase response is evaluated at 8192
points equally spaced around the upper half of the unit circle.

[phi,w] = phasez(sysobj,n) returns the phase response of the filter System object and the
corresponding frequencies at n points equally spaced around the upper half of the unit circle.

[phi,w] = phasez(___ ,'Arithmetic',arithType) analyzes the filter System object, based on
the arithmetic specified in arithType, using either of the previous syntaxes.

phasez(sysobj) displays the phase response of the filter System object sysobj in the fvtool.

For more input options, see phasez in Signal Processing Toolbox.

Examples

Unwrapped Phase Response of a Discrete-Time Filter

Fs = 8000; Fcutoff = 2000;
FIRFilt = dsp.FIRFilter('Numerator', fir1(130,Fcutoff/(Fs/2)));

phasez computes the unwrapped phase response of the filter and displays it using fvtool

phasez(FIRFilt);

 phasez

5-1255

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator

5 Functions

5-1256

• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

n — Number of points over which the frequency response is computed
8192 (default) | positive integer

Number of points over which the frequency response is computed. For an FIR filter where n is a
power of two, the computation is done faster using FFTs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

 phasez

5-1257

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
phi — Phase response
vector

Phase response vector of length n. If n is not specified, the function uses a default value of 8192. The
phase response is evaluated at n points equally spaced around the upper half of the unit circle.

w — frequencies
vector

Frequency vector of length n, in radians/sample. w consists of n points equally spaced around the
upper half of the unit circle (from 0 to π radians/sample). If n is not specified, the function uses a
default value of 8192.

See Also
Functions
phasez

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

5 Functions

5-1258

plot
Package: dsp

(To be removed) Plot pulse signal and metrics

Note dsp.PulseMetrics and dsp.TransitionMetrics objects will be removed in a future
release. Use the functions from “Pulse and Transition Metrics” instead. To plot the metrics, call the
functions with no output arguments. For more information, see “Compatibility Considerations”.

Syntax
plot(pm)

Description
plot(pm) plots the signal and metrics resulting from the last call of the object algorithm.

By default plot displays:

• the low- and high-state levels and the state-level boundaries defined by the
PercentStateLevelTolerance property.

• the lower-, middle-, and upper-reference levels.
• the locations of the mid-reference level crossings of the positive (+) and negative (-) transitions of

each detected pulse.

When the TransitionOutputPort property of the object is set to true, the locations of the upper
and lower crossings are also plotted. When the PreshootOutputPort or PostShootOutputPort
properties are set to true, the corresponding overshoots and undershoots are plotted as inverted or
noninverted triangles. When the SettlingOutputPort property is set to true, the locations where
the signal enters and remains within the lower- and upper-state boundaries over the specified seek
duration are plotted.

Examples

Slew Rates for 2.3 V Digital Clock

Note If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Find the slew rates of the leading and trailing edges of a 2.3 V digital clock sampled at 4 MHz.

 load('pulseex.mat','x','t');

Construct the dsp.PulseMetrics object. Set the TransitionOutputPort property to true to
report transition metrics for the initial and final transitions. Set the StateLevelsSource property to
'Auto' to estimate the state levels from the data.

 plot

5-1259

 pm = dsp.PulseMetrics('SampleRate',4e6, ...
 'TransitionOutputPort', true, ...
 'StateLevelsSource','Auto');

Compute the pulse and transition metrics and plot the result.

 [pulse,transition] = pm(x);
 plot(pm);

Input Arguments
pm — Signal and metrics object
dsp.PulseMetrics | dsp.TransitionMetrics

Signal and metrics object, specified as one of the following:

• dsp.PulseMetrics
• dsp.TransitionMetrics

Compatibility Considerations
dsp.PulseMetrics and dsp.TransitionMetrics System objects will be removed
Warns starting in R2021b

dsp.PulseMetrics and dsp.TransitionMetrics System objects will be removed in a future
release. Use the functions from “Pulse and Transition Metrics” instead. To plot the metrics, call these
functions with no output arguments.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
these functions.

5 Functions

5-1260

Discouraged Usage Recommended Replacement
load('clockex.mat','x','t');
pm = dsp.PulseMetrics('SampleRate',4e6,...
 'TransitionOutputPort',true,...
 'StateLevelsSource','Auto',...
 'CycleOutputPort', true);
[pulse, cycle, transition] = step(pm,x)

pulse =

 struct with fields:

 PositiveCross: [4×1 double]
 NegativeCross: [4×1 double]
 Width: [4×1 double]
 RiseTime: [4×1 double]
 FallTime: [4×1 double]

cycle =

 struct with fields:

 Period: [4×1 double]
 Frequency: [4×1 double]
 Separation: [4×1 double]
 Width: [4×1 double]
 DutyCycle: [4×1 double]

transition =

 struct with fields:

 Duration: [4×2 double]
 Polarity: [4×2 double]
 SlewRate: [4×2 double]
 MiddleCross: [4×2 double]
 LowerCross: [4×2 double]
 UpperCross: [4×2 double]

If you are using a release prior to R2016b,
replace pm(x) with step(pm,x).

MATLAB code using the replacement functions is
shown below.

 plot

5-1261

Discouraged Usage Recommended Replacement
Plot the pulse

plot(pm)

Plot the pulse

To plot the individual pulse metrics, call the
metrics functions without an output argument.

Some examples below:

dutycycle(x,t)

midcross(x,t)

pulseperiod(x,t)

pulsesep(x,t)

pulsewidth(x,t)

See Also

Introduced in R2012a

5 Functions

5-1262

plot
Package: dsp

(To be removed) Plot signal, state levels, and histogram

Note dsp.StateLevels will be removed in a future release. Use statelevels instead. To plot the
state levels, call the statelevels function with no output arguments. For more information, see
“Compatibility Considerations”.

Syntax
plot(sl)

Description
plot(sl) plots the signal and state levels computed in the last call to the algorithm. If the Method
property of the state levels object is set to 'Histogram mode' or 'Histogram Mean', the
histogram is plotted in a subplot below the signal.

Examples

State Levels of 2.3 V Underdamped Noisy Clock

Compute and plot the state levels of a 2.3 V underdamped noisy clock. Load the clock data in the
variable, x, and the sampling instants in the variable t.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

load('clockex.mat','x','t');

Estimate the state levels.

sl = dsp.StateLevels;
levels = sl(x);

Plot the clock data along with the estimated state levels and histograms.

plot(sl)

Input Arguments
sl — State levels object
dsp.StateLevels

State levels object, specified as a dsp.StateLevels System object.

 plot

5-1263

Compatibility Considerations
dsp.StateLevels System object will be removed
Warns starting in R2021b

dsp.StateLevels System object will be removed in a future release. To plot the state levels, call the
statelevels function with no output arguments.

Update Code

This table shows typical usage of the System object and explains how to update existing code to use
the statelevels function.

Discouraged Usage Recommended Replacement
load('clockex.mat', 'x', 't');
slevel = dsp.StateLevels;

Plot state levels and the corresponding
histogram

figure;
plot(slevel)

Plot state levels and the corresponding
histogram

figure;
statelevels(x)

See Also

Introduced in R2012a

5 Functions

5-1264

polyphase
Package: dsp

Polyphase decomposition of multirate filter

Syntax
p = polyphase(sysobj)
p = polyphase(sysobj,'Arithmetic',arithType)
polyphase(sysobj)

Description
p = polyphase(sysobj) returns the polyphase matrix p of the multirate filter System object
sysobj. Each row in the matrix corresponds to a polyphase branch. The number of columns in p
corresponds to the number of filter taps per polyphase branch.

p = polyphase(sysobj,'Arithmetic',arithType) returns the polyphase matrix p in the
precision set by the arithType.

polyphase(sysobj) launches the Filter Visualization Tool (fvtool) with all the polyphase subfilters
to allow you to analyze each component subfilter individually.

Examples

Polyphase Matrix of an FIR Interpolator

When you create a multirate filter that uses polyphase decomposition, polyphase lets you analyze the
component filters individually by returning the components as rows in a matrix. First, create an
interpolate-by-three filter.

hs = dsp.FIRInterpolator

hs =
 dsp.FIRInterpolator with properties:

 InterpolationFactor: 3
 NumeratorSource: 'Property'
 Numerator: [0 -1.2906e-04 -2.2804e-04 0 5.5461e-04 ...]

 Show all properties

In this syntax, the matrix p contains all of the subfilters for hm, one filter per matrix row.

p = polyphase(hs)

p = 3×24

 0 0 0 0 0 0 0 0 0 0 0 0 1.0000 0 0 0 0 0 0 0 0 0 0 0
 -0.0001 0.0006 -0.0015 0.0034 -0.0067 0.0121 -0.0205 0.0332 -0.0530 0.0861 -0.1540 0.4088 0.8247 -0.1976 0.1027 -0.0620 0.0388 -0.0241 0.0145 -0.0083 0.0043 -0.0020 0.0008 -0.0002

 polyphase

5-1265

 -0.0002 0.0008 -0.0020 0.0043 -0.0083 0.0145 -0.0241 0.0388 -0.0620 0.1027 -0.1976 0.8247 0.4088 -0.1540 0.0861 -0.0530 0.0332 -0.0205 0.0121 -0.0067 0.0034 -0.0015 0.0006 -0.0001

Finally, using polyphase without an output argument opens the Filter Visualization Tool, ready for
you to use the analysis capabilities of the tool to investigate the interpolator hm.

polyphase(hs)

The fvtool shows the coefficients of the subfilters. To see the magnitude response of the subfilters,
click on the Magnitude Response button on the fvtool toolstrip.

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as as one of the following filter System objects:

• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.FIRDecimator
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator

5 Functions

5-1266

• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Specify the arithmetic used in computing the polyphase matrix. When you specify 'double' or
'single', the function performs double- or single-precision analysis. When you specify 'fixed' ,
the arithmetic changes depending on the setting of the CoefficientDataType property and
whether the System object is locked or unlocked.

Details for Fixed-Point Arithmetic

System Object State Coefficient Data Type Rule
Unlocked 'Same as input' The function assumes that the

coefficient data type is signed,
16 bit, and autoscaled. The
function performs fixed-point
analysis based on this
assumption.

Unlocked 'Custom' The function performs fixed-
point analysis based on the
setting of the
CustomCoefficientsDataTy
pe property.

Locked 'Same as input' When the input data type is
'double' or 'fixed', the
function assumes that the
coefficient data type is signed,
16-bit, and autoscaled. The
function performs fixed-point
analysis based on this
assumption.

Locked 'Custom' The function performs fixed-
point analysis based on the
setting of the
CustomCoefficientsDataTy
pe property.

When you do not specify the arithmetic for non-CIC structures, the function uses double-precision
arithmetic if the filter System object is in an unlocked state. If the System object is locked, the
function performs analysis based on the locked input data type. CIC structures only support fixed-
point arithmetic.

Output Arguments
p — polyphase matrix
matrix

 polyphase

5-1267

Polyphase matrix p of the multirate filter. Each row in the matrix corresponds to a polyphase branch.
The first row of matrix p represents the first polyphase branch, the second row the second polyphase
branch, and so on to the last polyphase branch. The number of columns in p corresponds to the
number of filter taps per polyphase branch.

See Also
Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

5 Functions

5-1268

polyphase
Package: dsp

Return polyphase matrix

Syntax
p = polyphase(obj)

Description
p = polyphase(obj) returns the polyphase matrix used by the filter bank in dsp.Channelizer
and dsp.ChannelSynthesizer System objects. Each row in the matrix corresponds to a polyphase
branch. The number of columns in p corresponds to the number of filter taps per branch.

Examples

Polyphase Matrix of Filter Bank

Compute the polyphase matrix of the filter bank used by the channelizer.

Design a channelizer with the number of frequency bands or polyphase branches set to 8, the number
of taps or coefficients per band set to 12, and stopband attenuation set to 80 dB.

channelizer = dsp.Channelizer;
p = polyphase(channelizer)

p = 8×12

 0 0 0 0 0 0 0.1250 0 0 0 0 0
 -0.0000 0.0002 -0.0007 0.0022 -0.0056 0.0161 0.1216 -0.0119 0.0045 -0.0017 0.0005 -0.0001
 -0.0000 0.0004 -0.0015 0.0045 -0.0117 0.0354 0.1118 -0.0192 0.0073 -0.0027 0.0008 -0.0001
 -0.0001 0.0006 -0.0023 0.0067 -0.0172 0.0565 0.0966 -0.0220 0.0085 -0.0031 0.0009 -0.0001
 -0.0001 0.0008 -0.0029 0.0082 -0.0210 0.0776 0.0776 -0.0210 0.0082 -0.0029 0.0008 -0.0001
 -0.0001 0.0009 -0.0031 0.0085 -0.0220 0.0966 0.0565 -0.0172 0.0067 -0.0023 0.0006 -0.0001
 -0.0001 0.0008 -0.0027 0.0073 -0.0192 0.1118 0.0354 -0.0117 0.0045 -0.0015 0.0004 -0.0000
 -0.0001 0.0005 -0.0017 0.0045 -0.0119 0.1216 0.0161 -0.0056 0.0022 -0.0007 0.0002 -0.0000

Each row in the matrix corresponds to a polyphase branch. The number of columns in the matrix
corresponds to the number of filter taps per branch.

Input Arguments
obj — Input filter System object
dsp.Channelizer | dsp.ChannelSynthesizer

Input filter, specified as either a dsp.Channelizer or dsp.ChannelSynthesizer System object.

 polyphase

5-1269

Example: channelizer = dsp.Channelizer;
Example: channelizer = dsp.ChannelSynthesizer

Output Arguments
p — Polyphase matrix
matrix

Polyphase matrix of the filter bank, returned as a matrix of size [NFBands, NTPerBand]. The
dimensions of the matrix depend on the type of System object in the obj argument:

• dsp.Channelizer –– NFBands is the value you specify in the NumFrequencyBands property,
and NTPerBand is the value you specify in the NumTapsPerBand property.

• dsp.ChannelSynthesizer –– NFBands is the number of narrowband signals or the number of
columns in the input signal, and NTPerBand is the value you specify in the NumTapsPerBand
property.

See Also
Functions
tf | fvtool | freqz | coeffs | bandedgeFrequencies | centerFrequencies | getFilters

Objects
dsp.Channelizer | dsp.ChannelSynthesizer

Introduced in R2016b

5 Functions

5-1270

qreport
Most recent fixed-point filtering operation report

Syntax
rlog = qreport(h)

Description
rlog = qreport(h) returns the logging report stored in the filter object h in the object rlog. The
ability to log features of the filtering operation is integrated in the fixed-point filter object and the
filter method.

Each time you filter a signal with h, new log data overwrites the results in the filter from the previous
filtering operation. To save the log from a filtering simulation, change the name of the output
argument for the operation before subsequent filtering runs.

Note qreport requires Fixed-Point Designer software and that filter h is a fixed-point filter. Data
logging for fi operations is a preference you set for each MATLAB session. To learn more about
logging, LoggingMode, and fi object preferences, refer to fipref in the Fixed-Point Designer
documentation.

Also, you cannot use qreport to log the filtering operations from a fixed-point Farrow filter.

Enable logging during filtering by setting LoggingMode to on for fi objects for your MATLAB
session. Trigger logging by setting the Arithmetic property for h to fixed, making h a fixed-point
filter and filtering an input signal.

Using Fixed-Point Filtering Logging

Filter operation logging with qreport requires some preparation in MATLAB. Complete these steps
before you use qreport.

1 Set the fixed-point object preference for LoggingMode to on for your MATLAB session. This
setting enables data logging.

fipref('LoggingMode','on')
2 Create your fixed-point filter.
3 Filter a signal with the filter.
4 Use qreport to return the filtering information stored in the filter object.

qreport provides a way to instrument your fixed-point filters and the resulting data log offers insight
into how the filter responds to a particular input data signal.

Report object rlog contains a filter-structure-specific list of internal signals for the filter. Each signal
contains

• Minimum and maximum values that were recorded during the last simulation. Minimum and
maximum values correspond to values before quantization.

 qreport

5-1271

• Representable numerical range of the word length and fraction length format
• Number of overflows during filtering for that signal.

Examples

View the Logging Report

This example shows how to use qreport to log the results of filtering a sinusoidal signal with a fixed-
point direct-form FIR filter, firFilt. To use the qreport, set the LoggingMode of fixed-point objects to
'on'.

fipref('loggingmode','on');
hd = design(fdesign.lowpass,'equiripple');
hd.arithmetic = 'fixed';
hd.InputWordLength = 32;
fs = 1000; % Input sampling frequency.
t = 0:1/fs:1.5; % Signal length = 1501 samples.
x = sin(2*pi*10*t); % Amplitude = 1 sinusoid.
y = filter(hd,x);
rlog = qreport(hd)

rlog =

 Fixed-Point Report

 Min Max | Range | Number of Overflows

 Input: -1 1 | -65536 65536 | 0/1501 (0%)
 Output: -1.02325 1.02325 | -131072 131072 | 0/1501 (0%)
 Product: -0.48538208 0.48538208 | -32768 32768 | 0/64543 (0%)
 Accumulator: -1.0852075 1.0852075 | -131072 131072 | 0/63042 (0%)

Restore the default logging mode preference.

fipref('loggingmode','off');

Introduced in R2011a

5 Functions

5-1272

realizemdl
Package: dsp

Simulink subsystem block for filter

Syntax
realizemdl(sysobj)
realizemdl(sysobj,Name,Value)

Description
realizemdl(sysobj) generates a model of filter System object in a Simulink subsystem block
using sum, gain, and delay blocks from Simulink. The properties and values of sysobj define the
resulting subsystem block parameters.

realizemdl requires Simulink. To accurately realize models of quantized filters, use Fixed-Point
Designer.

realizemdl(sysobj,Name,Value) generates the model for sysobj with additional options
specified by one or more Name,Value pair arguments. Using name-value pair arguments lets you
control more fully the way the block subsystem model gets built. You can specify such details as
where the block goes, what the name is, or how to optimize the block structure.

Examples

Realize Simulink Model of a Lowpass Butterworth Filter

d = fdesign.lowpass('N,F3dB',4,0.25);
filterobject = design(d,'butter','systemobject',true);

Create a new model, LPFilter.slx, and realize the subsystem block in this model.

new_system('LPFilter');
realizemdl(filterobject);

View the block diagram by clicking on the subsystem block.

 realizemdl

5-1273

Create a new model, LPFilterMapping.slx, and realize the subsystem block, with coefficients
mapped to ports, in this model.

new_system('LPFilterMapping');
realizemdl(filterobject,'MapCoeffsToPorts','on');

View the block diagram by clicking on the subsystem block.

In this case, the filter is an IIR filter with a direct form II second-order sections structure. Setting
MapCoeffstoPorts to 'on' exports the numerator coefficients, the denominator coefficients, and the
gains to the MATLAB® workspace using the default variable names Num, Den, and g. Each column of
Num and Den represents one second-order section. You can modify the filter coefficients directly in
the MATLAB workspace providing tunability to the realized Simulink model.

Input Arguments
sysobj — Filter System object
filter System object

List of filter system objects that the function supports:

Filter System objects
dsp.AllpassFilter
dsp.AllpoleFilter
dsp.BiquadFilter
dsp.CICCompensationDecimator
dsp.CICCompensationInterpolator

5 Functions

5-1274

Filter System objects
dsp.CoupledAllpassFilter
dsp.FarrowRateConverter
dsp.FilterCascade
dsp.FIRFilter
dsp.FIRInterpolator
dsp.FIRDecimator
dsp.FIRRateConverter
dsp.FIRHalfbandDecimator
dsp.FIRHalfbandInterpolator
dsp.FourthOrderSectionFilter
dsp.HighpassFilter
dsp.IIRFilter
dsp.IIRHalfbandDecimator
dsp.IIRHalfbandInterpolator
dsp.LowpassFilter
dsp.NotchPeakFilter
dsp.SOSFilter

Name-Value Pair Arguments
Example: d = fdesign.lowpass('N,F3dB',4,0.25); filterobject =
design(d,'butter','systemobject',true);
realizemdl(filterobject,'MapCoeffsToPorts','on');

Destination — Destination choices
'current' (default) | 'new' | character vector | string scalar

Specify whether to add the block to your current Simulink model or create a new model to contain
the block. If you provide the name of a current subsystem as a character vector or a string scalar, the
realizemdl function adds the new block to the specified subsystem.

BlockName — Name of the block
'filter' (default) | character vector | string scalar

Provide the name for the new subsystem block. By default the block is named Filter.

MapCoeffsToPorts — Map coefficients
'off' (default) | 'on'

Specify whether to map the coefficients of the filter to the ports of the block.

MapStates — Apply current filter states
'off' (default) | 'on'

Specify whether to apply the current filter states to the realized model. Such specification allows you
to save states from a filter object you may have used or configured in a specific way. The default

 realizemdl

5-1275

setting of 'off' means the states are not transferred to the model. Setting the property to 'on'
preserves the current filter states in the realized model.

OverwriteBlock — Overwrite existing block
'off' (default) | 'on'

Specify whether to overwrite an existing block with the same name or create a new block.

OptimizeZeros — Remove zero-gain blocks
'off' (default) | 'on'

Specify whether to remove zero-gain blocks.

OptimizeOnes — Replace unity-gain blocks
'off' (default) | 'on'

Specify whether to replace unity-gain blocks with direct connections.

OptimizeNegOnes — Replace negative unity-gain blocks
'off' (default) | 'on'

Specify whether to replace negative unity-gain blocks with a sign change at the nearest sum block.

OptimizeDelayChains — Replace delay chains
'off' (default) | 'on'

Specify whether to replace delay chains made up of n unit delays with a single delay by n.

CoeffNames — Names of coefficients
{'Num'} (default FIR) | {'Num','Den'} (default direct form IIR) | {'Num','Den','g'} (default
IIR SOS) | {'Num_1,'Num_2,'Num_3'...} (default multistage) | {'K'} (default form lattice)

Specify the coefficient variable name as a cell array of character vectors. MapCoeffsToPorts must
be set to 'on' for this property to apply.

InputProcessing — Possible input processing options
'columnsaschannels' | 'elementsaschannels'

Specify sample-based ('elementsaschannels') or frame-based ('columnsaschannels')
processing.

RateOption — Rate options
'enforcesinglerate' (default) | 'allowmultirate'

Specify how the block adjusts the rate at the output to accommodate the reduced number of samples.

Dependencies

This parameter applies only when InputProcessing is 'columnsaschannels'.

Arithmetic — Value types
'double' | 'single'

The arithmetic for System object inputs must be 'double' or 'single'.

5 Functions

5-1276

Limitations
The destination must be a Simulink model. The function does not support a library file destination.

See Also
Functions
design | fdesign

Introduced in R2011a

 realizemdl

5-1277

rebuffer_delay
Number of samples of delay introduced by buffering and unbuffering operations

Syntax
d = rebuffer_delay(f,n,v)
d = rebuffer_delay(f,n,v,'mode')

Description
d = rebuffer_delay(f,n,v) returns the delay, in samples, introduced by the Buffer or Unbuffer
block in multitasking operations.

d = rebuffer_delay(f,n,v,'mode') returns the delay, in samples, introduced by the Buffer or
Unbuffer block in the specified tasking mode.

Input Arguments
f

Frame size of the input to the Buffer or Unbuffer block.

n

Size of the output buffer. Specify one of the following:

• The value of the Output buffer size parameter, if you are computing the delay introduced by a
Buffer block.

• 1, if you are computing the delay introduced by an Unbuffer block.

v

Amount of buffer overlap. Specify one of the following:

• The value of the Buffer overlap parameter, if you are computing the delay introduced by a Buffer
block.

• 0, if you are computing the delay introduced by an Unbuffer block.

'mode'

The tasking mode of the model. Specify one of the following options:

• 'singletasking'
• 'multitasking'

Default: 'multitasking'

Examples
Compute the delay introduced by a Buffer block in a multitasking model:

5 Functions

5-1278

1 Open a model containing a Buffer block. For this example, open the ex_buffer_tut4 model by
typing ex_buffer_tut4 at the MATLAB command line.

2 Double-click the Buffer block to open the block mask. Verify that you have the following settings:

• Output buffer size = 3
• Buffer overlap = 1
• Initial conditions = 0

Based on these settings, two of the required inputs to the rebuffer_delay function are as
follows:

• n = 3
• v = 1

3 To determine the frame size of the input signal to the Buffer block, open the Signal From
Workspace block mask. Verify that you have the following settings:

• Signal = sp_examples_src
• Sample time = 1
• Samples per frame = 4

Because Samples per frame = 4, you know the f input to the rebuffer_delay function is 4.
4 After you verify the values of all the inputs to the rebuffer_delay function, determine the

delay that the Buffer block introduces in this multitasking model. To do so, type the following at
the MATLAB command line:

d = rebuffer_delay(4,3,1)

d =
 8

Compute the delay introduced by an Unbuffer block in a multitasking model:

1 Open a model containing an Unbuffer block. For this example, open the ex_unbuffer_ref1
model by typing ex_unbuffer_ref1 at the MATLAB command line.

2 To determine the frame size of the input to the Buffer block, open the Signal From Workspace
block mask by double-clicking the block in your model. Verify that you have the following
settings:

• Signal = sp_examples_src
• Sample time = 1
• Samples per frame = 3

Because Samples per frame = 3, you know the f input to the rebuffer_delay function is 3.
3 Use the rebuffer_delay function to determine the amount of delay that the Unbuffer block

introduces in this multitasking model. To compute the delay introduced by the Unbuffer block,
use f = 3, n = 1 and v = 0.

d = rebuffer_delay(3,1,0)

d =
 3

 rebuffer_delay

5-1279

matlab:ex_buffer_tut4
matlab:ex_unbuffer_ref1

More About
Multitasking

When you run a model in MultiTasking mode, Simulink processes groups of blocks with the same
execution priority through each stage of simulation based on task priority. Multitasking mode helps to
create valid models of real-world multitasking systems, where sections of your model represent
concurrent tasks. The Treat each discrete rate as a separate task parameter on the Solver
(Simulink) pane of the Configuration Parameters dialog box controls this setting.

Singletasking

When you run a model in SingleTasking mode, Simulink processes all blocks through each stage of
simulation together. The Treat each discrete rate as a separate task parameter on the Solver
(Simulink) pane of the Configuration Parameters dialog box controls this setting.

See Also
Buffer | Unbuffer

Topics
“Buffer Delay and Initial Conditions”

Introduced before R2006a

5 Functions

5-1280

reffilter
Reference filter for fixed-point or single-precision filter

Syntax
href = reffilter(hd)

Description
href = reffilter(hd) returns a new filter href that has the same structure as hd, but uses the
reference coefficients and has its arithmetic property set to double. Note that hd can be either a
fixed-point filter (arithmetic property set to 'fixed', or a single-precision floating-point filter whose
arithmetic property is 'single').

reffilter(hd) differs from double(hd) in that

• the filter href returned by reffilter has the reference coefficients of hd.
• double(hd) returns the quantized coefficients of hd represented in double-precision.

To check the performance of your fixed-point filter, use href = reffilter(hd) to quickly have the
floating-point, double-precision version of hd available for comparison.

Examples

Compare Fixed-point Quantizations of a Filter

Compare several fixed-point quantizations of a filter with the same double-precision floating-point
version of the filter.

h = dfilt.dffir(firceqrip(87,.5,[1e-3,1e-6])); % Lowpass filter.
h1 = copy(h); h2 = copy(h); % Create copies of h.
h.arithmetic = 'fixed'; % Set h to filter using fixed-point...
 % arithmetic.
h1.arithmetic = 'fixed'; % Same for h1.
h2.arithmetic = 'fixed'; % Same for h2.
h.CoeffWordLength = 16; % Use 16 bits to represent the...
 % coefficients.
h1.CoeffWordLength = 12; % Use 12 bits to represent the...
 % coefficients.
h2.CoeffWordLength = 8; % Use 8 bits to represent the...
 % coefficients.
href = reffilter(h);
hfvt = fvtool(href,h,h1,h2);
set(hfvt,'ShowReference','off'); % Reference displayed once
 % already.
legend(hfvt,'Reference filter','16-bits','12-bits','8-bits');

 reffilter

5-1281

The fvtool shows href, the reference filter, and the effects of using three different word lengths to
represent the coefficients.

Introduced in R2011a

5 Functions

5-1282

reorder
Package: dsp

Reorder second-order sections of biquadratic filter System object

Syntax
reorder(sysobj,order)
sysobjnew = reorder(sysobj,order)
reorder(sysobj,numorder,denorder)
reorder(sysobj,numorder,denorder,svorder)
reorder(sysobj,filter_type)
reorder(sysobj,dir_flag)
reorder(sysobj,dir_flag,sv)
reorder(___ ,'Arithmetic',arithType)

Description
reorder(sysobj,order) rearranges the sections of the biquadratic filter System object using the
vector of indices provided in order.

sysobjnew = reorder(sysobj,order) generates a new biquadratic filter System object that
contains the reordered sections. In this case, the original filter sysobj does not change.

reorder(sysobj,numorder,denorder) reorders the numerator and denominator of the filter
separately using the vector of indices in numorder and denorder, respectively. These vectors must
be of the same length.

reorder(sysobj,numorder,denorder,svorder) independently reorders the scale values of the
biquadratic filter System object. If svorder is not specified, the scale values of the biquadratic filter
are reordered in the same way as the numerator. The output scale value always remains at the end
and numorder is used to reorder the scale values.

reorder(sysobj,filter_type) reorders sysobj in a way suitable for the specified filter type.
This mode is intended for fixed-point implementations where the ordering of the sections can have a
significant impact on the filter performance.

reorder(sysobj,dir_flag) rearranges the sections according to proximity to the origin of the
poles of the sections.

reorder(sysobj,dir_flag,sv) reorders the scale values following the reordering of the poles
when sv is set to 'poles', or following the reordering of the zeros when sv is set to 'zeros'. The
scale values are not reordered when using the dir_flag option unless sv is specified.

reorder(___ ,'Arithmetic',arithType) assumes that the filter arithmetic is equal to
arithType.

Examples

 reorder

5-1283

Reorder Biquadratic Filter

Being able to rearrange the order of the sections in a filter can be a powerful tool for controlling the
filter design process. This example uses reorder to change the sections of a df2sos filter. Let reorder
do the reordering automatically in the first filter. In the second, use reorder to specify the new order
for the sections.

First use the automatic reordering option on a lowpass filter.

d = fdesign.lowpass('n,f3db',15,0.75);
biquad = design(d,'butter','SystemObject',true);
biquadreorder = reorder(biquad,'auto');

Then, create an SOS filter in the direct form II implementation.

biquad2sos = design(d,'butter', 'FilterStructure', 'df2sos',...
 'SystemObject',true);
biquad2sosreorder = reorder(biquad2sos,[1 3:7 2 8]);
fvt = fvtool(biquad2sos,biquad2sosreorder,'analysis','coefficients');

Remove the third, fourth, and seventh sections.

biquad2sosclone1 = clone(biquad2sos);
reorder(biquad2sosclone1, logical([1 1 0 0 1 1 0 1]));
setfilter(fvt, biquad2sosclone1);

5 Functions

5-1284

Move the first filter to the end and remove the eighth section.

biquad2sosclone2 = clone(biquad2sos);
reorder(biquad2sosclone2, [2:7 1]);
setfilter(fvt, biquad2sosclone2);

 reorder

5-1285

Move the numerator and denominator independently.

biquad2sosclone3 = clone(biquad2sos);
reorder(biquad2sosclone3, [1 3:8 2], (1:8));
setfilter(fvt, biquad2sosclone3);

5 Functions

5-1286

Input Arguments
sysobj — Biquadratic filter object
dsp.BiquadFilter System object | dsp.SOSFilter System object

Biquadratic filter object, specified as either dsp.BiquadFilter or dsp.SOSFilter objects.

order — Vector of indices used to reorder filter sections
vector

Vector of indices used to reorder the filter sections. order does not need to contain all the indices of
the filter. Omitting one or more filter section indices removes the omitted sections from the filter. You
can use a logical array to remove sections from the filter, but not to reorder it.

When order is a vector of logicals, the function removes the sections of the filter that correspond to
the index values where order is equal to false.
Data Types: double | logical

numorder — Vector of indices used to reorder filter numerator
vector

Vector of indices used to reorder the numerator of the filter. The numorder and denorder vectors
must be of the same length.

 reorder

5-1287

When numorder is a vector of logicals, the function removes the numerator coefficients that
correspond to the index values where numorder is equal to false.
Data Types: double | logical

denorder — Vector of indices used to reorder filter denominator
vector

Vector of indices used to reorder the denominator of the filter. The numorder and denorder vectors
must be of the same length.

When denorder is a vector of logicals, the function removes the denominator coefficients that
correspond to the index values where denorder is equal to false.
Data Types: double | logical

svorder — Reorder scale values
vector

Independent reordering of scale values. When svorder is not specified, the scale values are
reordered in the same way as the numerator. The output scale value always remains at the end when
you use the argument numorder to reorder the scale values.

When svorder is a vector of logicals, the function removes the scale values that correspond to the
index values where svorder is equal to false.
Data Types: double | logical

filter_type — Filter type
'auto' | 'bandpass' | 'bandstop' | 'highpass' | 'lowpass'

Filter type. Automatic reordering only applies when sysobj was obtained using fdesign. With the
'auto' option as an input argument, reorder automatically rearranges the filter sections
depending on the specification response type of the design (lowpass, highpass, etc).

dir_flag — Pole direction flag
'down' | 'up'

Pole direction flag, specified as either:

• 'up' –– The first filter section contains the poles closest to the origin, and the last section
contains the poles closest to the unit circle.

• 'down' –– The sections are ordered in the opposite direction. The zeros are always paired with
the poles closest to them.

sv — Scale value options
'poles' | 'zeros'

Scale value options, specified as either:

• 'poles' –– Scale values are reordered following the reordering of the poles.
• 'zeros' –– Scale values are reordered following the reordering of the zeros.

The scale values are not reordered when using the dir_flag option unless sv is specified.

5 Functions

5-1288

arithType — Filter arithmetic
'double' (default) | 'single' | 'fixed'

Arithmetic type the reorder function assumes, specified as one of the following:

• 'double' –– The function assumes a double precision filter when the arithmetic input is not
specified and the filter System object is in an unlocked state.

• 'single' –– The function assumes a single precision filter.
• 'fixed' –– The overflow action used in the reorder operation is set to the action specified in the
filter System object.

Output Arguments
sysobjnew — Reordered biquadratic filter object
dsp.BiquadFilter System object | dsp.SOSFilter System object

Biquadratic filter object with reordered second-order sections, returned as a dsp.BiquadFilter or
a dsp.SOSFilter object. The SOS matrices and the corresponding scale values in the output object
are as per the reorder arguments run on the input sysobj.

See Also
scale | scalecheck | scaleopts | cumsec | sos

Introduced in R2011a

 reorder

5-1289

scale
Package: dsp

Scale second-order sections

Syntax
scale(sysobj)
sysobjnew = scale(sysobj)
scale(sysobj,pnorm)
scale(sysobj,pnorm,opts)
scale(sysobj,pnorm,Name,Value)

Description
scale(sysobj) scales the biquadratic System object, sysobj, using peak magnitude response
scaling (L-infinity, 'Linf'). This scaling reduces the possibility of overflows when the filter object
operates in fixed-point arithmetic mode.

sysobjnew = scale(sysobj) generates a new filter System object, sysobjnew, with scaled
second-order sections. The original filter System object, sysobj, is not changed.

scale(sysobj,pnorm) specifies the norm used to scale the filter. The variable pnorm can be either
a discrete-time-domain norm or a frequency-domain norm. Valid time-domain norms are 'l1', 'l2',
and 'linf'. Valid frequency-domain norms are 'L1', 'L2', and 'Linf'. Note that L2-norm is equal
to l2-norm (Parseval's theorem) but the same is not true for other norms.

The different norms can be ordered in terms of how stringent they are as follows: 'l1' >= 'Linf'
>= 'L2' = 'l2' >= 'L1' >= 'linf'.

Using the most stringent scaling, 'l1', the filter is the least prone to overflow, but also has the worst
signal-to-noise ratio. Linf-scaling is the most commonly used scaling in practice.

scale(sysobj,pnorm,opts) uses an options object to specify the optional scaling parameters in
lieu of specifying parameter-value pairs. The opts object can be created using the scaleopts
function: opts = scaleopts(sysobj).

scale(sysobj,pnorm,Name,Value) specifies optional scaling parameters via by one or more
Name,Value pair arguments.

Examples

Linf-norm Scaling of a Biquad Filter

Demonstrate the Linf-norm scaling of a biquad filter using the scale function.

Fs = 8000; Fcutoff = 2000;
[z,p,k] = butter(10,Fcutoff/(Fs/2)); [s,g] = zp2sos(z,p,k);
biquad = dsp.BiquadFilter('Structure', 'Direct form I', ...

5 Functions

5-1290

 'SOSMatrix', s,'ScaleValues', g);
scale(biquad,'linf','scalevalueconstraint','none','maxscalevalue',2)

Input Arguments
sysobj — Input filter
dsp.BiquadFilter System object | dsp.SOSFilter System object

Input filter, specified as one of the following System objects:

• dsp.BiquadFilter
• dsp.SOSFilter

Example: biquad = dsp.BiquadFilter('Structure', 'Direct form
I', ...'SOSMatrix', s,'ScaleValues', g);

pnorm — Discrete-time-domain norm or a frequency-domain norm
'Linf' (default) | 'L1' | 'L2' | 'l1' | 'l2' | 'linf'

Valid time-domain norm values for pnorm are 'l1', 'l2', and 'linf'. Valid frequency-domain norm
values are 'L1', 'L2', and 'Linf' . The 'L2' norm is equal to the 'l2' norm (by Parseval's
theorem), but this equivalency does not hold for other norms — 'l1' is not the same as 'L1' and
'Linf' is not the same as 'linf'.

Filter norms can be ordered in terms of how stringent they are, as follows from most stringent to
least: 'l1', 'Linf', 'l2' ('L2'), 'linf'. Using 'l1', the most stringent scaling, produces a
filter that is least likely to overflow, but has the worst signal-to-noise ratio performance. The default
scaling 'Linf' (default) is the most commonly used scaling norm.

opts — Scale options object
fdopts.sosscaling object

You can create an fdopts.sosscaling object, opts, using the scaleopts function.

The following table lists the properties of opts:

Parameter Default Description and Valid Value
sosReorder 'auto' Reorder section prior to scaling.

Valid options are 'auto' (default),
'none', 'up', 'down', 'lowpass',
'highpass', 'bandpass', and
'bandstop'.

MaxNumerator 2 Maximum allowed value for
numerator coefficients.

NumeratorConstraint 'none' Specifies whether and how to
constrain numerator coefficient
values. Options are 'none' (default),
'unit', 'normalize', and 'po2'.

 scale

5-1291

Parameter Default Description and Valid Value
OverflowMode 'wrap' Sets the way the filter handles

arithmetic overflow situations during
scaling. Valid options are 'wrap'
(default), 'saturate', and
'satall'.

ScaleValueConstraint 'unit' Specify whether to constrain the filter
scale values, and how to constrain
them. Valid options are 'unit'
(default), 'none', and 'po2'.

MaxScaleValue 'Not used' Maximum allowed scale values. The
filter applies the MaxScaleValue
limit only when you set
ScaleValueConstraint to a value
other than unit. Setting
MaxScaleValue to a numerical value
automatically changes the
ScaleValueConstraint setting to
none.

Example: opts = scaleopts(biquad)

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [z,p,k] = butter(10,2000/(8000/2)); [s,g] = zp2sos(z,p,k); biquad =
dsp.BiquadFilter('Structure','Direct form I','SOSMatrix',s,'ScaleValues',g);
scale(biquad,'linf','scalevalueconstraint','none','maxscalevalue',2)

Arithmetic — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic type used during analysis, specified as one of 'double', 'single', or 'fixed'. The
scale method assumes a double precision filter when the arithmetic input is not specified and the
filter System object is in an unlocked state. If the System object is locked, the function performs
analysis based on the locked input data type. If 'Arithmetic' is 'double' or 'single', the
default values are used for all scaling options that are not specified as an input to the scale function.
If 'Arithmetic' is 'fixed', the values used for the scaling options are set according to the
settings in the filter System object. However, if a scaling option is specified that differs from the
settings in sysobj, this option is used for scaling purposes but does not change the setting in
sysobj. For example, if you do not specify the 'OverflowMode' scaling option, the scale method
assumes that the 'OverflowMode' is equal to the value in the OverflowAction property of the
filter object. If you do specify an 'OverflowMode' scaling option, then the scale function uses this
overflow mode value regardless of the value in the OverflowAction property of the System object.

sosReorder — Reorder section prior to scaling
'auto' (default) | 'none' | 'up' | 'down' | 'lowpass' | 'highpass' | 'bandpass' |
'bandstop'

Reorder filter sections prior to applying scaling. Possible options:

5 Functions

5-1292

• 'auto'
• 'none'
• 'up'
• 'down'
• 'lowpass'
• 'highpass'
• 'bandpass'
• 'bandstop'

Automatic reordering takes effect when sysobj is obtained as a result from a design using fdesign.
The sections are automatically reordered depending on the response type of the design.

MaxNumerator — Maximum value for numerator coefficients
2 (default) | positive scalar

Maximum allowed value for numerator coefficients, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

NumeratorConstraint — Method to constrain numerator coefficients
'none' (default) | 'normalized' | 'po2' | 'unit'

Method to constrain numerator coefficient values, specified as one of the following:

• 'none'
• 'normalized'
• 'po2'
• 'unit'

OverflowMode — Overflow mode
'wrap' (default) | 'saturate'

Sets the way the filter handles arithmetic overflow situations during scaling. If your device does not
have guard bits available, and you are using saturation arithmetic for filtering, use 'satall' instead
of 'saturate'. The default is 'wrap'.

ScaleValueConstraint — Constrain scale values
'unit' (default) | 'none' | 'po2'

Specify whether to constrain the filter scale values, and how to constrain them. Choosing 'unit' for
the constraint disables the MaxScaleValue property setting. 'po2' constrains the scale values to be
powers of 2, while 'none' removes any constraint on the scale values. 'unit' is the default value.

MaxScaleValue — Maximum value for scale values
'Not Used' (default) | positive scalar

Maximum allowed scale values. The filter applies the MaxScaleValue limit only when you set
ScaleValueConstraint to a value other than unit (the default setting). Setting MaxScaleValue
to any numerical value automatically changes the ScaleValueConstraint setting to none.

 scale

5-1293

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
sysobjnew — Scaled biquadratic filter object
dsp.BiquadFilter System object | dsp.SOSFilter System object

Scaled biquadratic filter object, returned as one of the following System objects:

• dsp.BiquadFilter
• dsp.SOSFilter

The returned object contains the scaled second-order sections.

References
[1] Dehner, G.F. “Noise Optimized Digital Filter Design: Tutorial and Some New Aspects.” Signal

Processing. Vol. 83, Number 8, 2003, pp. 1565–1582.

See Also
Functions
cumsec | reorder | scalecheck | scaleopts

Objects
dsp.BiquadFilter | dsp.SOSFilter

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

5 Functions

5-1294

scalecheck
Package: dsp

Check scaling of biquadratic filter

Syntax
s = scalecheck(sysobj,pnorm)
s = scalecheck(sysobj,pnorm,'Arithmetic',arithType)

Description
s = scalecheck(sysobj,pnorm) checks the scaling of the input filter System object.

s = scalecheck(sysobj,pnorm,'Arithmetic',arithType) checks the scaling of the filter
object with the arithmetic specified in arithType.

Examples

Linf-norm scaling of a filter

This example shows how to check the Linf-norm scaling of a filter.

Design an elliptic sos filter in the direct form II structure with default specifications.

EllipII = design(fdesign.lowpass, 'ellip', 'FilterStructure', 'df2sos',...
 'SystemObject',true);

Check the scaling.

scalecheck(EllipII,'Linf')

ans = 2×3

 3.1678 15.0757 1.4974
 4.7360 52.6026 1.0000

Design an elliptic sos filter in the direct form I structure with default specifications.

EllipI = design(fdesign.lowpass('N,Fp,Ap,Ast',10,0.5,0.5,20), 'ellip',...
 'FilterStructure', 'df1sos','SystemObject',true);

Check the scaling.

scalecheck(EllipI,'Linf')

ans = 1×5

 1.7078 2.0807 2.6084 7.1467 1.0000

 scalecheck

5-1295

Input Arguments
sysobj — Input filter object
dsp.BiquadFilter System object | dsp.SOSFilter System object

Input filter, specified as one of the following System objects:

• dsp.BiquadFilter
• dsp.SOSFilter

pnorm — Different types of norm
'l1' | 'l2' | 'linf' | 'L1' | 'L2' | 'Linf'

Discrete-time-domain norm or a frequency-domain norm.

Valid time-domain norm values for pnorm are 'l1', 'l2', and 'linf'. Valid frequency-domain norm
values are 'L1', 'L2', and 'Linf'. The 'L2' norm is equal to the 'l2' norm (by Parseval's
theorem), but this equivalency does not hold for other norms — 'l1' is not the same as 'L1' and
'Linf' is not the same as 'linf'.

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic type used during analysis, specified as 'double', 'single', or 'fixed'. The function
assumes a double precision filter when the arithmetic input is not specified and the filter System
object is in an unlocked state.

Output Arguments
s — Filter scaling
scalar | row vector

Filter scaling for a given p-norm. An optimally scaled filter has partial norms equal to one. In such
cases, s contains all ones.

For direct-form I (df1sos) and direct-form II transposed (df2tsos) filters, the function returns the
p-norm of the filter computed from the filter input to the output of each second-order section.
Therefore, the number of elements in s is one less than the number of sections in the filter. This p-
norm computation does not include the trailing scale value of the filter, which you can find by
entering hd.scalevalue(end) at the MATLAB prompt.

For direct-form II (df2sos) and direct-form I transposed (df1tsos) filters, the function returns a row
vector whose elements contain the p-norm from the filter input to the input of the recursive part of
each second-order section. This computation of the p-norm corresponds to the input to the multipliers
in these filter structures. These inputs correspond to the locations in the signal flow where overflow
should be avoided.

When hd has nontrivial scale values, that is, if any scale values are not equal to one, s is a two-row
matrix, rather than a vector. The first row elements of s report the p-norm of the filter computed from
the filter input to the output of each second-order section. The elements of the second row of s
contain the p-norm computed from the input of the filter to the input of each scale value between the
sections. For df2sos and df1tsos filter structures, the last numerator and the trailing scale value
for the filter are not included when scalecheck checks the scaling.

5 Functions

5-1296

Data Types: double

See Also
Functions
reorder | scale | scaleopts | cumsec

Objects
dsp.BiquadFilter | dsp.SOSFilter

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

 scalecheck

5-1297

scaleopts
Package: dsp

Create an options object for second-order section scaling

Syntax
opts = scaleopts(sysobj)
opts = scaleopts(sysobj,'Arithmetic',arithType)

Description
opts = scaleopts(sysobj) uses the current settings in the filter System object to create an
options object opts that contains specified scaling options for second-order section scaling. You can
pass opts as an input to scale to apply scaling settings to a second-order filter.

opts = scaleopts(sysobj,'Arithmetic',arithType) returns filter coefficients for the filter
System object with the arithmetic specified in arithType.

Examples

Options for scaling SOS filter

Create an options scaling object that contains the scaling options settings you require.

EllipI = design(fdesign.lowpass('N,Fp,Ap,Ast',10,0.5,0.5,20),...
 'ellip',...
 'FilterStructure', 'df1sos',...
 'SystemObject',true)

EllipI =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form I'
 SOSMatrixSource: 'Property'
 SOSMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 NumeratorInitialConditions: 0
 DenominatorInitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

opts = scaleopts(EllipI)

opts =

 sosReorder: 'auto'
 MaxNumerator: 2
 NumeratorConstraint: 'none'

5 Functions

5-1298

 OverflowMode: 'wrap'
 ScaleValueConstraint: 'unit'
 MaxScaleValue: 'Not used'

Input Arguments
sysobj — Input filter
dsp.BiquadFilter System object | dsp.SOSFilter System object

Input filter, specified as one of the following System objects:

• dsp.BiquadFilter
• dsp.SOSFilter

Example: biquad = dsp.BiquadFilter('Structure', 'Direct form
I', ...'SOSMatrix', s,'ScaleValues', g);

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic type used during analysis, specified as 'double', 'single', or 'fixed'. The function
assumes a double precision filter when the arithmetic input is not specified and the filter System
object is in an unlocked state. The scaleopts function chooses the default values of the scaling
options according to the 'Arithmetic' value and the System object settings.

Output Arguments
opts — Scale options object
fdopts.sosscaling object

You can create an fdopts.sosscaling object, opts, using the scaleopts function.

The following table lists the properties of opts:

Parameter Default Description and Valid Value
sosReorder 'auto' Reorder section prior to scaling.

Valid options are 'auto' (default),
'none', 'up', 'down', 'lowpass',
'highpass', 'bandpass', and
'bandstop'.

MaxNumerator 2 Maximum allowed value for
numerator coefficients.

NumeratorConstraint 'none' Specifies whether and how to
constrain numerator coefficient
values. Options are 'none' (default),
'unit', 'normalize', and 'po2'.

 scaleopts

5-1299

Parameter Default Description and Valid Value
OverflowMode 'wrap' Sets the way the filter handles

arithmetic overflow situations during
scaling. Valid options are 'wrap'
(default), 'saturate', and
'satall'.

ScaleValueConstraint 'unit' Specify whether to constrain the filter
scale values, and how to constrain
them. Valid options are 'unit'
(default), 'none', and 'po2'.

MaxScaleValue 'Not used' Maximum allowed scale values. The
filter applies the MaxScaleValue
limit only when you set
ScaleValueConstraint to a value
other than unit. Setting
MaxScaleValue to a numerical value
automatically changes the
ScaleValueConstraint setting to
none.

Example: opts = scaleopts(biquad)

See Also
Functions
cumsec | reorder | scale | scalecheck

Objects
dsp.BiquadFilter | dsp.SOSFilter

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

5 Functions

5-1300

setCursorDataLabels
Customize data labels for cursor measurements

Syntax
setCursorDataLabels(obj,labels)

Description
setCursorDataLabels(obj,labels) customizes the data labels that appear in the tool tip of
cursor measurements in the dsp.MatrixViewer.

Examples

Set Cursor Labels on dsp.MatrixViewer

This example shows how to set the data labels for the cursor measurements on the
dsp.MatrixViewer System object.

Display a chirp signal on the dsp.MatrixViewer scope.

Fs = 233e3;
frameSize = 20e3;
chirp = dsp.Chirp("SampleRate",Fs,"SamplesPerFrame",frameSize,...
 "InitialFrequency",11e3,"TargetFrequency",11e3+55e3,...
 "Type","Quadratic");
scope = dsp.MatrixViewer(...
 "ColorBarLabel","Power/Frequency (dB/Hz)",...
 "XLabel","Frequency (Hz)",...
 "YLabel","Time (secs)",...
 "Colormap","hsv",...
 "ColorLimits",[-100,-30]);
y = chirp() + 0.05*randn(frameSize,1);
[~,~,~,Ps] = spectrogram(y,128,120,128,1e3);
val = 10*log10(abs(Ps)'+eps);
scope(val);

 setCursorDataLabels

5-1301

Change the data labels for the cursor measurements to match the type of data in the matrix.

setCursorDataLabels(scope,["Hz","Sec","db/Hz"])

Enable the cursor measurements by selecting the cursor button in the axes toolbar. When you hover
over the cursor, the tooltip shows you the data values with the new data labels.

5 Functions

5-1302

Input Arguments
obj — Matrix viewer
dsp.MatrixViewer System object

Matrix viewer whose data labels you want to customize.

labels — Label customization vector
["X","Y","Value"] (default) | 3-by-1 string array

Specify the label names as a three-element string array. The first element corresponds to the x-data,
the second element to the y-data, and the third element to the matrix value.
Example: ["freq","time","power"]
Data Types: char | string

See Also
dsp.MatrixViewer

Introduced in R2019a

 setCursorDataLabels

5-1303

set2int
Configure filter for integer filtering

Syntax
set2int(h)
set2int(h,coeffwl)
set2int(...,inwl)
g = set2int(...)

Description
This section applies to discrete-time (dfilt) filters.

set2int(h) scales the filter coefficients to integer values and sets the filter coefficient and input
fraction lengths to zero.

set2int(h,coeffwl) uses the number of bits specified by coeffwl as the word length it uses to
represent the filter coefficients.

set2int(...,inwl) uses the number of bits specified by coeffwl as the word length it uses to
represent the filter coefficients and the number of bits specified by inwl as the word length to
represent the input data.

g = set2int(...) returns the gain g introduced into the filter by scaling the filter coefficients to
integers. g is always calculated to be a power of 2.

Note set2int does not work with CIC decimators or interpolators because they do not have
coefficients.

Examples

Configure an FIR Filter for Integer Filtering

Two parts comprise this example. Part 1 compares the step response of an FIR filter in both the
fractional and integer filter modes. Fractional mode filtering is essentially the opposite of integer
mode. Integer mode uses a filter which has coefficients represented by integers. Fractional mode
filters have coefficients represented in fractional form (nonzero fraction length).

The second part of the example depends on the following - after you filter a set of data, the input data
and output data cover the same range of values, unless the filter process introduces gain in the
output. Converting your filter object to integer form, and then filtering a set of data, does introduce
gain into the system. When the examples refer to resetting the output to the same range as the input,
the examples are accounting for this added gain feature.

b = rcosdesign(.25,4,25,'sqrt');
hd = dfilt.dffir(b);
hd.Arithmetic = 'fixed';

5 Functions

5-1304

hd.InputFracLength = 0; % Integer inputs.
x = ones(100,1);
yfrac = filter(hd,x); % Fractional mode output.
g = set2int(hd); % Convert to integer coefficients.
yint = filter(hd,x); % Integer mode output.

Note that yint and yfrac are fi objects. Later in this example, use the fi object properties
WordLength and FractionLength to work with the output data. Now use the gain g to rescale the
output from the integer mode filter operation. Verify that the scaled integer output is equal to the
fractional output.

yints = double(yint)/g;

Verify that the scaled integer output is equal to the fractional output.

max(abs(yints-double(yfrac)))

ans = 0

In part two, the example reinterprets the output binary data, putting the input and the output on the
same scale by weighting the most significant bits in the input and output data equally.

WL = yint.WordLength;
FL = yint.FractionLength + log2(g);
yints2 = fi(zeros(size(yint)),true,WL,FL);
yints2.bin = yint.bin;
max(abs(double(yints2)-double(yfrac)))

ans = 0

Introduced in R2011a

 set2int

5-1305

setspecs
Specifications for filter specification object

Syntax
setspecs(D,specvalue1,specvalue2,...)
setspecs(D,Specification,specvalue1,specvalue2,...)
setspecs(...Fs)
setspecs(...,MAGUNITS)

Description
setspecs(D,specvalue1,specvalue2,...) sets the specifications in filter specification object,
D, in the same order they appear in the Specification property.

setspecs(D,Specification,specvalue1,specvalue2,...) changes the specifications for an
existing filter specification object and sets values for the new Specification property.

setspecs(...Fs) specifies the sampling frequency, Fs, in Hz. The sampling frequency must be a
scalar trailing all other specifications. Entering a sampling frequency causes all other frequency
specifications to be in Hz.

setspecs(...,MAGUNITS) specifies the units for any magnitude specifications. MAGUNITS can be
one of the following: 'linear', 'dB', or 'squared'. The default is 'dB'. The magnitude
specifications are always converted and stored in dB regardless of how the units are specified.

Use SET(D,'SPECIFICATION') to get the list of all available specification types for the filter
specification object, D.

Examples

Set the Filter Order and Cutoff Frequency Using setspecs

Construct a lowpass filter with specifications for the filter order and cutoff frequency (-6 dB). Use
setspecs after construction to set the values of the filter order and cutoff frequency. Display the
values in the MATLAB® command window.

D = fdesign.lowpass('N,Fc');
setspecs(D,10,0.2);

D.FilterOrder

ans = 10

D.Fcutoff

ans = 0.2000

5 Functions

5-1306

Set the Specifications of a Highpass Filter Using setspecs

Construct a highpass filter with specifications for the numerator order, denominator order, and 3-dB
frequency. Assume the sampling frequency is 1 kHz. Use setspecs to set the numerator and
denominator orders to 6. Set the 3-dB frequency to 250 Hz. In order to use frequency specifications
in Hz, specify the sampling frequency as a trailing scalar.

D = fdesign.highpass('Nb,Na,F3dB');
setspecs(D,6,6,250,1000);

See Also
design | designmethods | designopts | fdesign

Introduced in R2011b

 setspecs

5-1307

show
Package:

Display scope window

Syntax
show(scope)

Description
show(scope) shows the window of the scope.

Examples

Hide and Show Time Scope

Create a sine wave signal and view it in the scope.

Fs = 1000; % Sampling frequency
signal = dsp.SineWave('Frequency',50,'SampleRate',Fs,...
 'SamplesPerFrame',100);
scope = timescope('SampleRate',Fs,'TimeSpanSource','property',...
 'TimeSpan',0.25,'YLimits',[-1 1]);
for ii = 1:2
 xsine = signal();
 scope(xsine)
end

5 Functions

5-1308

Hide the scope window.

if(isVisible(scope))
 hide(scope)
end

Show the scope window.

if(~isVisible(scope))
 show(scope)
end

 show

5-1309

Clean up workspace variables.

clear scope Fs sine ii xsine

Input Arguments
scope — Scope object
scope object

Scope object whose window you want to show, specified as one of the following:

• dsp.SpectrumAnalyzer System object
• dsp.ArrayPlot System object
• dsp.LogicAnalyzer System object
• timescope System object
• dsp.DynamicFilterVisualizer object

Example: myScope = dsp.SpectrumAnalyzer; show(myScope)

See Also
Functions
hide | isVisible | step

5 Functions

5-1310

Objects
dsp.DynamicFilterVisualizer | timescope | dsp.ArrayPlot | dsp.LogicAnalyzer |
dsp.SpectrumAnalyzer

Introduced in R2011a

 show

5-1311

showsignalblockdatatypetable
Launch DSP System Toolbox data type support table

Syntax
showsignalblockdatatypetable

Description
The showsignalblockdatatypetable function shows a table of characteristics for the DSP
System Toolbox blocks. The table lists capabilities and limitations of code generation, variable size,
and supported data types for each block.

If a cell has an:

• "X" –– The corresponding block supports the data type or capability indicated by the column
heading.

• "s" or a "u" –– The block supports signed or unsigned varieties of that data type, respectively.
• (#) –– Refer to the numbered footnotes at the bottom of the table window for further details. The

(#) is hyperlinked to the footnotes at the bottom.

Examples

Show Block Characteristics for DSP System Toolbox

The showsignalblockdatatypetable function returns a table of block characteristics for DSP
System Toolbox™.

Run the function in the MATLAB™ command prompt. The table opens in a separate window.

showsignalblockdatatypetable

Loading DSP System Toolbox Library.

See Also
Topics
“Simulink Blocks in DSP System Toolbox that Support Fixed-Point Design”
“Variable-Size Signal Support DSP System Objects”
“Understanding C Code Generation in DSP System Toolbox”

Introduced in R2008b

5 Functions

5-1312

sos
Package: dsp

Convert to second order sections

Syntax
sysobjsos = sos(sysobj)
sysobjsos = sos(sysobj,dir_flag)

Description
sysobjsos = sos(sysobj) converts a IIR discrete-time filter System object to second-order
section (SOS) form. The sysobjsos output is a dsp.BiquadFilter System object.

sysobjsos = sos(sysobj,dir_flag) rearranges the second-order sections according to
proximity to the origin of the poles of the sections.

Examples

Convert IIR Discrete-time Filter to SOS Form

Convert an IIR discrete-time filter object to a biquadratic filter object that contains the corresponding
SOS sections.

Design a 10th order lowpass Butterworth filter using the butter function.

N = 10;
Fc = 0.4;
[b,a] = butter(N,Fc);

Create a dsp.IIRFilter object and assign the designed coefficients to the Numerator and the
Denominator properties of the object.

iir = dsp.IIRFilter('Numerator',b,'Denominator',a)

iir =
 dsp.IIRFilter with properties:

 Structure: 'Direct form II transposed'
 Numerator: [4.9945e-04 0.0050 0.0225 0.0599 0.1049 0.1259 ...]
 Denominator: [1 -1.9924 3.0195 -2.8185 2.0387 -1.0545 0.4144 ...]
 InitialConditions: 0

 Show all properties

Use the sos function to convert the IIR filter object into a biquadratic filter that contains the
corresponding SOS sections.

biquad = sos(iir)

 sos

5-1313

biquad =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II transposed'
 SOSMatrixSource: 'Property'
 SOSMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

You can access the SOS matrix and the scale value properties of the biquadratic filter.

sMatrix = biquad.SOSMatrix

sMatrix = 5×6

 1.0000 2.0958 1.0984 1.0000 -0.3187 0.0313
 1.0000 2.0576 1.0602 1.0000 -0.3345 0.0826
 1.0000 1.9981 1.0005 1.0000 -0.3695 0.1958
 1.0000 1.9412 0.9436 1.0000 -0.4317 0.3969
 1.0000 1.9073 0.9097 1.0000 -0.5380 0.7410

sValues = biquad.ScaleValues

sValues = 6×1

 0.0005
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000

To verify, compare these values to the values obtained using the tf2sos function.

[sMatrixfn,g] = tf2sos(b,a)

sMatrixfn = 5×6

 1.0000 2.0958 1.0984 1.0000 -0.3187 0.0313
 1.0000 2.0576 1.0602 1.0000 -0.3345 0.0826
 1.0000 1.9981 1.0005 1.0000 -0.3695 0.1958
 1.0000 1.9412 0.9436 1.0000 -0.4317 0.3969
 1.0000 1.9073 0.9097 1.0000 -0.5380 0.7410

g = 4.9945e-04

isequal(sMatrix,sMatrixfn)

ans = logical
 1

isequal(sValues(1),g)

5 Functions

5-1314

ans = logical
 1

Input Arguments
sysobj — IIR discrete-time filter object
dsp.IIRFilter System object

IIR discrete-time filter object, specified as a dsp.IIRFilter System object.

dir_flag — Pole direction flag
'up' | 'down'

Pole direction flag, specified as either:

• 'up' –– The first row contains the poles closest to the origin, and the last row contains the poles
closest to the unit circle.

• 'down' –– The sections are ordered in the opposite direction. The zeros are always paired with
the poles closest to them.

Output Arguments
sysobjsos — Second order section filter object
dsp.BiquadFilter System object

Second order section filter object, returned as a dsp.BiquadFilter System object. The sos
function converts the input IIR filter numerator and denominator coefficients into SOS matrix and
scale values and assigns these values to the dsp.BiquadFilter object.

See Also
reorder | scale | scalecheck | scaleopts | cumsec

Introduced in R2011a

 sos

5-1315

ss
Package: dsp

Convert discrete-time filter System object to state-space representation

Syntax
[A,B,C,D] = ss(sysobj)
[A,B,C,D] = ss(sysobj,'Arithmetic',arithType)

Description
[A,B,C,D] = ss(sysobj) converts a filter System object to state-space representation given by:

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where x is the state vector, u is the input vector, and y is the output vector.

[A,B,C,D] = ss(sysobj,'Arithmetic',arithType) analyzes the filter System object based on
the arithmetic specified in arithType.

For more input options, see ss in Signal Processing Toolbox.

Examples

State-Space Representation of Biquad Filter

Design a fourth-order, lowpass biquadratic filter object with a normalized cutoff frequency of 0.4.

[z,p,k] = ellip(4,1,60,.4); % Set up the filter
[s,g] = zp2sos(z,p,k);
biquad = dsp.BiquadFilter(s,g,'Structure','Direct form I')

biquad =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form I'
 SOSMatrixSource: 'Property'
 SOSMatrix: [2x6 double]
 ScaleValues: 0.0351
 NumeratorInitialConditions: 0
 DenominatorInitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Convert the designed filter into state-space form using the ss function.

[A,B,C,D] = ss(biquad)

5 Functions

5-1316

A = 8×8

 0 0 0 0 0 0 0 0
 1.0000 0 0 0 0 0 0 0
 1.8116 1.0000 1.0095 -0.3954 0 0 0 0
 0 0 1.0000 0 0 0 0 0
 1.8116 1.0000 1.0095 -0.3954 0 0 0 0
 0 0 0 0 1.0000 0 0 0
 1.8116 1.0000 1.0095 -0.3954 1.1484 1.0000 0.5581 -0.7823
 0 0 0 0 0 0 1.0000 0

B = 8×1

 0.0351
 0
 0.0351
 0
 0.0351
 0
 0.0351
 0

C = 1×8

 1.8116 1.0000 1.0095 -0.3954 1.1484 1.0000 0.5581 -0.7823

D = 0.0351

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.BiquadFilter
• dsp.Differentiator
• dsp.FilterCascade
• dsp.FIRFilter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

 ss

5-1317

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
A — State matrix
matrix

State matrix, returned as an N-by-N matrix, where N is the filter order.
Data Types: double

B — Input matrix
column vector

Input matrix, returned as an N-by-1 column vector, indicating that the number of inputs to the linear
system is 1. N is the filter order.
Data Types: double

C — Output matrix
row vector

Output matrix, returned as a 1-by-N row vector, indicating that the number of outputs of the linear
system is 1. N is the filter order.
Data Types: double

D — Feedthrough matrix
scalar

Feedthrough matrix, returned as a scalar, indicating that the number of inputs and outputs of the
linear system is 1.

5 Functions

5-1318

Data Types: double

See Also
Functions
ss

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

 ss

5-1319

step
Package: dsp

Display time-varying magnitude response

Syntax
step(dfv,filt)
step(dfv,B,A)

Description
step(dfv,filt) displays the time-varying magnitude response of the object filter, filt, in the
Dynamic Filter Visualizer figure, as long as filt has a valid freqz() implementation.

step(dfv,B,A) displays the magnitude response for the digital filters with numerator and
denominator polynomial coefficients stored in B1 and A1, B2 and A2, ..., and BN and AN, respectively.

Examples

Plot Time-Varying Magnitude Response of FIR Filter

Design an FIR filter with time-varying magnitude response. Plot this varying response on a dynamic
filter visualizer.

Create a dsp.DynamicFilterVisualizer object.

dfv = dsp.DynamicFilterVisualizer('YLimits',[-120 10])

dfv =
 DynamicFilterVisualizer with properties:

 FFTLength: 2048
 SampleRate: 44100
 FrequencyRange: [0 22050]
 XScale: 'Linear'
 MagnitudeDisplay: 'Magnitude (dB)'

 Visualization
 Name: 'Dynamic Filter Visualizer'
 Title: 'Magnitude Response'
 YLimits: [-120 10]
 ShowLegend: 0
 FilterNames: {''}
 UpperMask: Inf
 LowerMask: -Inf
 Position: [240 262 800 500]

Vary the cutoff frequency of the FIR filter, k, from 0.1 to 0.5 in increments of 0.001. View the
varying magnitude response using the dynamic filter visualizer.

5 Functions

5-1320

for k = 0.1:0.001:0.5
 b = fir1(90,k);
 dfv(b,1);
end

Plot Time-Varying Magnitude Response of Variable Bandwidth FIR Filter

Visualize the varying magnitude response of the variable bandwidth FIR filter using the dyamic filter
visualizer.

Create a dsp.DynamicFilterVisualizer object.

dfv = dsp.DynamicFilterVisualizer('YLimits',[-160 10])

dfv =
 DynamicFilterVisualizer with properties:

 FFTLength: 2048
 SampleRate: 44100
 FrequencyRange: [0 22050]
 XScale: 'Linear'
 MagnitudeDisplay: 'Magnitude (dB)'

 Visualization

 step

5-1321

 Name: 'Dynamic Filter Visualizer'
 Title: 'Magnitude Response'
 YLimits: [-160 10]
 ShowLegend: 0
 FilterNames: {''}
 UpperMask: Inf
 LowerMask: -Inf
 Position: [240 262 800 500]

Design a bandpass variable bandwidth FIR filter with a center frequency of 5 kHz and a bandwidth of
4 kHz.

Fs = 44100;
vbw = dsp.VariableBandwidthFIRFilter('FilterType','Bandpass',...
 'FilterOrder',100,...
 'SampleRate',Fs,...
 'CenterFrequency',5e3,...
 'Bandwidth',4e3);

Vary the center frequency of the filter. Visualize the varying magnitude response of the filter using
the dsp.DynamicFilterVisualizer object.

for idx = 1:100
 dfv(vbw);
 vbw.CenterFrequency = vbw.CenterFrequency + 20;
end

5 Functions

5-1322

Input Arguments
dfv — Dynamic filter visualizer
dsp.DynamicFilterVisualizer object

Dynamic filter visualizer, specified as a dsp.DynamicFilterVisualizer object.

filt — Filter
filter System object

Filter System object with a valid freqz() implementation.

B — Numerator polynomial coefficients
row vector

Numerator polynomial coefficients, specified as a row vector.
Data Types: single | double

A — Denominator polynomial coefficients
scalar | row vector

Denominator polynomial coefficients, specified as a:

• scalar –– The filter is an FIR filter.
• row vector –– The filter is an IIR filter.

Data Types: single | double

See Also
Functions
show | hide

Objects
dsp.DynamicFilterVisualizer

Introduced in R2018b

 step

5-1323

specifyall
Package: dsp

Fully specify fixed-point filter System object settings

Syntax
specifyall(sysobj)
specifyall(sysobj,false)
specifyall(sysobj,true)

Description
specifyall(sysobj) sets all the data type fixed-point properties of the filter System object to
'Custom' so that you can easily specify all the fixed-point settings. If the object has a
FullPrecisionOverride property, its value is set to false. specifyall is intended as a shortcut
to changing all the fixed-point properties.

specifyall(sysobj,false) sets all fixed-point properties of the filter System object to their
default values and sets the filter to full-precision mode, if one is available.

specifyall(sysobj,true) is equivalent to specifyall(sysobj).

Examples

Specify All Fixed-point Settings of FIRFilter

Use specifyall to access all the fixed-point settings of an FIR filter implemented with a direct-form
structure. Using specifyall disables all automatic filter scaling and resets the mode values.

b = fircband(12,[0 0.4 0.5 1],[1 1 0 0],[1 0.2],{'w' 'c'});
firFilter = dsp.FIRFilter('Numerator',b);
get(firFilter)

ans = struct with fields:
 Numerator: [0.0164 0.1031 -0.0632 -0.0907 ...]
 ReflectionCoefficients: [0.5000 0.5000]
 InitialConditions: 0
 NumeratorSource: 'Property'
 ReflectionCoefficientsSource: 'Property'
 Structure: 'Direct form'
 FullPrecisionOverride: 1
 RoundingMethod: 'Floor'
 OverflowAction: 'Wrap'
 CoefficientsDataType: 'Same word length as input'
 ReflectionCoefficientsDataType: 'Same word length as input'
 CustomCoefficientsDataType: [1x1 embedded.numerictype]
 CustomReflectionCoefficientsDataType: [1x1 embedded.numerictype]
 ProductDataType: 'Full precision'
 CustomProductDataType: [1x1 embedded.numerictype]

5 Functions

5-1324

 AccumulatorDataType: 'Full precision'
 CustomAccumulatorDataType: [1x1 embedded.numerictype]
 StateDataType: 'Same as accumulator'
 CustomStateDataType: [1x1 embedded.numerictype]
 OutputDataType: 'Same as accumulator'
 CustomOutputDataType: [1x1 embedded.numerictype]

The specifyall function sets all the data type fixed-point properties of the FIR filter to 'Custom'.

specifyall(firFilter)
get(firFilter)

ans = struct with fields:
 Numerator: [0.0164 0.1031 -0.0632 -0.0907 ...]
 ReflectionCoefficients: [0.5000 0.5000]
 InitialConditions: 0
 NumeratorSource: 'Property'
 ReflectionCoefficientsSource: 'Property'
 Structure: 'Direct form'
 FullPrecisionOverride: 0
 RoundingMethod: 'Floor'
 OverflowAction: 'Wrap'
 CoefficientsDataType: 'Custom'
 ReflectionCoefficientsDataType: 'Custom'
 CustomCoefficientsDataType: [1x1 embedded.numerictype]
 CustomReflectionCoefficientsDataType: [1x1 embedded.numerictype]
 ProductDataType: 'Custom'
 CustomProductDataType: [1x1 embedded.numerictype]
 AccumulatorDataType: 'Custom'
 CustomAccumulatorDataType: [1x1 embedded.numerictype]
 StateDataType: 'Custom'
 CustomStateDataType: [1x1 embedded.numerictype]
 OutputDataType: 'Custom'
 CustomOutputDataType: [1x1 embedded.numerictype]

Input Arguments
sysobj — Input filter object
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.Differentiator
• dsp.FarrowRateConverter

 specifyall

5-1325

• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.LowpassFilter
• dsp.SOSFilter

Introduced in R2011a

5 Functions

5-1326

stepz
Package: dsp

Step response of discrete-time filter System object

Syntax
[stepResp,t] = stepz(sysobj)
[stepResp,t] = stepz(sysobj,n)
[stepResp,t] = stepz(sysobj,n,fs)
[stepResp,t] = stepz(sysobj,[],fs)
[___] = stepz(___ ,'Arithmetic',arithType)
stepz(sysobj)

Description
[stepResp,t] = stepz(sysobj) computes the step response of the filter System object and
returns the response in the column vector stepResp, and a vector of times (or sample intervals) in t,
where t = [0 1 2 ...k-1]'. k is the number of filter coefficients.

[stepResp,t] = stepz(sysobj,n) computes the step response at floor(n) 1-second intervals.
The time vector t equals (0:floor(n)-1)'.

[stepResp,t] = stepz(sysobj,n,fs) computes the step response at floor(n) 1/fs-second
intervals. The time vector t equals (0:floor(n)-1)'/fs.

[stepResp,t] = stepz(sysobj,[],fs) computes the step response at k 1/fs-second intervals,
where k is the number of filter coefficients. The time vector t equals (0:k-1)'/fs.

[___] = stepz(___ ,'Arithmetic',arithType) analyzes the filter System object based on the
arithmetic specified in arithType using any one of the previous syntaxes.

stepz(sysobj) launches fvtool and plots the step response of the filter System object.

For more input options, see stepz in Signal Processing Toolbox.

stepz works for both real and complex filters. When you omit the output arguments, the stepz
function plots only the real part of the step response.

Examples

Step Response of Equiripple Lowpass FIR Filter

Design an equiripple lowpass FIR filter and compute the step response of the filter.

Use the fdesign.lowpass specification object to define the filter specifications. Run the design
function on the specification object to create a dsp.FIRFilter object. Specify the passband
frequency to be 20 kHz, stopband frequency to be 22.05 kHz, passband ripple to be 1 dB, and the
stopband attenuation to be 80 dB. Specify the sampling frequency to be 96 kHz.

 stepz

5-1327

Fs = 96e3; filtSpecs = fdesign.lowpass(20e3,22.05e3,1,80,Fs);
firlp2 = design(filtSpecs,'equiripple','SystemObject',true)

firlp2 =
 dsp.FIRFilter with properties:

 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [4.2157e-04 9.7407e-04 3.1143e-04 -0.0031 -0.0082 ...]
 InitialConditions: 0

 Show all properties

Compute the step response of the filter using the stepz function.

stepz(firlp2)

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter

5 Functions

5-1328

• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.Channelizer
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

n — Length of step response vector
positive integer

Length of the step response vector, specified as a positive integer.
Data Types: single | double

fs — Sampling frequency
1 (default) | positive scalar

Sampling frequency used in computing the step response, specified as a positive scalar.
Data Types: single | double

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

 stepz

5-1329

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
stepResp — Step response
vector

Step response, returned as an n-element vector. If n is not specified, the length of the step response
vector equals the number of coefficients, k in the filter.
Data Types: double

t — Time vector
vector

Time vector of length n in seconds. The vector t consists of n equally spaced points in the range
(0:floor(n)-1)'/fs. If n is not specified, the function uses the number of coefficients k in the
filter.
Data Types: double

See Also
freqz | impz | stepz

Introduced in R2011a

5 Functions

5-1330

sysobj
Create filter System object from discrete-time filter

Syntax
hs = sysobj(hfilt)

Description
hs = sysobj(hfilt) creates a new filter System object hs from the dfilt object, hfilt.

The function supports a subset of dfilt objects. The following table lists supported filter structures
for hfilt and the filter System object that the function creates.

Single-rate Filter System object
Lattice AR(dfilt.latticear) dsp.AllpoleFilter
Coupled-allpass, power-complementary lattice
filter (dfilt.calatticepc)

dsp.CoupledAllpassFilter

Coupled-allpass, lattice filter
(dfilt.calattice)

dsp.CoupledAllpassFilter

Cascade of discrete time filters
(dfilt.cascade)

dsp.CoupledAllpassFilter

Direct Form I (dfilt.df1) dsp.IIRFilter
Direct Form I transposed (dfilt.df1t) dsp.IIRFilter
Direct Form II (dfilt.df2) dsp.IIRFilter
Direct Form II transposed (dfilt.df2t) dsp.IIRFilter
Direct-form FIR (dfilt.dffir) dsp.FIRFilter
Direct-form FIR transposed (dfilt.dffirt) dsp.FIRFilter
Direct-form symmetric FIR (dfilt.dfsymfir) dsp.FIRFilter
Direct-form antisymmetric FIR
(dfilt.dfasymfir)

dsp.FIRFilter

Discrete-time, lattice, moving-average
(dfilt.latticemamin)

dsp.FIRFilter

Discrete-time, second-order section, direct-form I
(dfilt.df1sos)

dsp.BiquadFilter

Discrete-time, second-order section, direct-form I
transposed (dfilt.df1tsos)

dsp.BiquadFilter

Discrete-time, second-order section, direct-form
II (dfilt.df2sos)

dsp.BiquadFilter

Discrete-time, second-order section, direct-form
II transposed (dfilt.df2tsos)

dsp.BiquadFilter

 sysobj

5-1331

Input Arguments
hfilt

Discrete-time filter (dfilt) object. The preceding table lists supported filter structures.

If hfilt is a discrete-time filter with the PersistentMemory property set to true, then the filter
states are copied into the initial conditions properties of hs. Otherwise, initial conditions are ignored.

The function does not support some properties for SOS filter structures:

• If the CastBeforeSum property is set to false, the function issues a warning.
dsp.BiquadFilter System objects always have a cast before a sum.

• If the Signed property is false, the function issues an error. dsp.BiquadFilter System
objects do not support unsigned arithmetic.

Output Arguments
hs

Filter System object. The function maps almost all properties of hfilt into the filter System object.
However, some properties are not mapped exactly:

• Filter System objects do not have a CoeffAutoScale property. The function specifies a word
length and a fraction length regardless of whether the CoeffAutoScale property of hfilt is
true or false.

• dsp.BiquadFilter System objects do not have a FullPrecisionOverride property. Full-
precision values in hfilt are mapped to word and fraction lengths in hs. These settings
correspond to the full-precision setting of the input data type.

Examples

Convert a discrete-time filter object to a System object

hfilt = dfilt.df1sos; %Direct-form I SOS
hs = sysobj(hfilt) %Biquadratic IIR filter

hs =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form I'
 SOSMatrixSource: 'Property'
 SOSMatrix: [1 0 0 1 0 0]
 ScaleValues: [2x1 double]
 NumeratorInitialConditions: 0
 DenominatorInitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Introduced in R2012a

5 Functions

5-1332

tf
Package: dsp

Return transfer function of overall prototype lowpass filter

Syntax
[num,den] = tf(obj)

Description
[num,den] = tf(obj) returns the vector of numerator coefficients, num, and the vector of
denominator coefficients, den, for the overall prototype lowpass filter used for the filter bank in
dsp.Channelizer and dsp.ChannelSynthesizer System objects.

Examples

Transfer Function of Prototype Lowpass Filter

Determine the transfer function of the overall prototype lowpass filter used for the filter bank in the
dsp.Channelizer System object.

Design a channelizer with the number of frequency bands or polyphase branches set to 8, the number
of taps or coefficients per band set to 12, and stopband attenuation set to 80 dB. The function tf
returns the transfer function of the prototype lowpass filter.

channelizer = dsp.Channelizer;
[num,den] = tf(channelizer);

View the magnitude response of the prototype lowpass filter using fvtool.

fvtool(num,den);

 tf

5-1333

Input Arguments
obj — Input filter System object
dsp.Channelizer | dsp.ChannelSynthesizer

Input filter, specified as either a dsp.Channelizer or a dsp.ChannelSynthesizer System object.
Example: channelizer = dsp.Channelizer;
Example: channelizer = dsp.ChannelSynthesizer

Output Arguments
num — Numerator coefficients
row vector

Numerator coefficients, returned as a row vector.

den — Denominator coefficients
row vector

Denominator coefficients, returned as a row vector. For a finite Impulse response (FIR) filter, this
value is 1.

5 Functions

5-1334

See Also
Functions
polyphase | coeffs | fvtool | freqz | bandedgeFrequencies | centerFrequencies |
getFilters

Objects
dsp.Channelizer | dsp.ChannelSynthesizer

Introduced in R2016b

 tf

5-1335

tf
Package: dsp

Convert discrete-time filter System object to transfer function

Syntax
[num,den] = tf(sysobj)
[num,den] = tf(sysobj,'Arithmetic',arithType)

Description
[num,den] = tf(sysobj) converts the discrete-time filter System object to numerator and
denominator coefficient vectors of the equivalent transfer function.

[num,den] = tf(sysobj,'Arithmetic',arithType) analyzes the filter System object based on
the arithmetic specified in arithType.

For more input options, see tf in Signal Processing Toolbox.

Examples

Transfer Function of Biquad Filter

Compute the transfer function of a biquad filter using the tf function.

Create a fourth-order, lowpass biquadratic filter object with a normalized cutoff frequency of 0.4.

[z,p,k] = ellip(4,1,60,0.4); % Set up the filter
[s,g] = zp2sos(z,p,k);
biquad = dsp.BiquadFilter(s,g,'Structure','Direct form I')

biquad =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form I'
 SOSMatrixSource: 'Property'
 SOSMatrix: [2x6 double]
 ScaleValues: 0.0351
 NumeratorInitialConditions: 0
 DenominatorInitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

Compute the transfer function of the designed biquadratic filter. The tf function returns the
numerator and the denominator coefficient vectors of the filter.

[num,den] = tf(biquad)

5 Functions

5-1336

num = 1×5

 0.0351 0.1038 0.1432 0.1038 0.0351

den = 1×5

 1.0000 -1.5676 1.7412 -1.0104 0.3093

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

 tf

5-1337

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
num — Numerator coefficients
row vector

Numerator coefficients of the filter, returned as a row vector.
Data Types: double

den — Denominator coefficients
scalar | row vector

Denominator coefficients of the filter, returned as a row vector.
Data Types: double

See Also
Functions
tf

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

5 Functions

5-1338

tf2ca
Transfer function to coupled allpass

Syntax
[d1,d2] = tf2ca(b,a)
[d1,d2] = tf2ca(b,a)
[d1,d2,beta] = tf2ca(b,a)

Description
[d1,d2] = tf2ca(b,a) where b is a real, symmetric vector of numerator coefficients and a is a
real vector of denominator coefficients, corresponding to a stable digital filter, returns real vectors d1
and d2 containing the denominator coefficients of the allpass filters H1(z) and H2(z) such that

H(z) = B(z)
A(z) = 1

2 [H1(z) + H2(z)]

representing a coupled allpass decomposition.

[d1,d2] = tf2ca(b,a) where b is a real, antisymmetric vector of numerator coefficients and a is
a real vector of denominator coefficients, corresponding to a stable digital filter, returns real vectors
d1 and d2 containing the denominator coefficients of the allpass filters H1(z) and H2(z) such that

H(z) = B(z)
A(z) = 1

2 H1(z)− H2(z)

In some cases, the decomposition is not possible with real H1(z) and H2(z). In those cases a
generalized coupled allpass decomposition may be possible, as described in the following syntax.

[d1,d2,beta] = tf2ca(b,a) returns complex vectors d1 and d2 containing the denominator
coefficients of the allpass filters H1(z) and H2(z), and a complex scalar beta, satisfying |beta| = 1,
such that

H(z) = B(z)
A(z) = 1

2 β ⋅ H1(z) + β ⋅ H2(z)

representing the generalized allpass decomposition.

In the above equations, H1(z) and H2(z) are real or complex allpass IIR filters given by

H1(z) = f liplr((D1(z)))
D1(z) , H2(1)(z) = f liplr((D2(1)(z)))

D2(1)(z)

where D1(z) and D2(z) are polynomials whose coefficients are given by d1 and d2.

Note A coupled allpass decomposition is not always possible. Nevertheless, Butterworth, Chebyshev,
and Elliptic IIR filters, among others, can be factored in this manner. For details, refer to Signal
Processing Toolbox User's Guide.

 tf2ca

5-1339

Examples
[b,a]=cheby1(9,.5,.4);
[d1,d2]=tf2ca(b,a); % TF2CA returns denominators of the allpass.
num = 0.5*conv(fliplr(d1),d2)+0.5*conv(fliplr(d2),d1);
den = conv(d1,d2); % Reconstruct numerator and denonimator.
MaxDiff=max([max(b-num),max(a-den)]); % Compare original and reconstructed
 % numerator and denominators.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
ca2tf | cl2tf | iirpowcomp | latc2tf | tf2latc

Introduced in R2011a

5 Functions

5-1340

tf2cl
Transfer function to coupled allpass lattice

Syntax
[k1,k2] = tf2cl(b,a)
[k1,k2] = tf2cl(b,a)
[k1,k2,beta] = tf2cl(b,a)

Description
[k1,k2] = tf2cl(b,a) where b is a real, symmetric vector of numerator coefficients and a is a
real vector of denominator coefficients, corresponding to a stable digital filter, will perform the
coupled allpass decomposition

H(z) = B(z)
A(z) = 1

2 [H1(z) + H2(z)]

of a stable IIR filter H(z) and convert the allpass transfer functions H1(z) and H2(z) to a coupled
lattice allpass structure with coefficients given in vectors k1 and k2.

[k1,k2] = tf2cl(b,a) where b is a real, antisymmetric vector of numerator coefficients and a is
a real vector of denominator coefficients, corresponding to a stable digital filter, performs the coupled
allpass decomposition

H(z) = B(z)
A(z) = 1

2 H1(z)− H2(z)

of a stable IIR filter H(z) and converts the allpass transfer functions H1(z) and H2(z) to a coupled
lattice allpass structure with coefficients given in vectors k1 and k2.

In some cases, the decomposition is not possible with real H1(z) and H2(z). In those cases, a
generalized coupled allpass decomposition may be possible, using the syntax described below.

[k1,k2,beta] = tf2cl(b,a) performs the generalized allpass decomposition of a stable IIR filter
H(z) and converts the complex allpass transfer functions H1(z) and H2(z) to corresponding lattice
allpass filters

H(z) = B(z)
A(z) = 1

2 β ⋅ H1(z) + β ⋅ H2(z)

where beta is a complex scalar of magnitude equal to 1.

Note Coupled allpass decomposition is not always possible. Nevertheless, Butterworth, Chebyshev,
and Elliptic IIR filters, among others, can be factored in this manner. For details, refer to Signal
Processing Toolbox User's Guide.

Examples
[b,a]=cheby1(9,.5,.4);
[k1,k2]=tf2cl(b,a); % Get the reflection coeffs. for the lattices.

 tf2cl

5-1341

[num1,den1]=latc2tf(k1,'allpass'); % Convert each allpass lattice
[num2,den2]=latc2tf(k2,'allpass'); % back to transfer function.
num = 0.5*conv(num1,den2)+0.5*conv(num2,den1);
den = conv(den1,den2); % Reconstruct numerator and denonimator.
MaxDiff=max([max(b-num),max(a-den)]); % Compare original and reconstructed
 % numerator and denominators.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
ca2tf | cl2tf | iirpowcomp | latc2tf | tf2ca | tf2latc

Introduced in R2011a

5 Functions

5-1342

validstructures
Structures for specification object with design method

Syntax
filtstruct = validstructures(designSpecs,'Systemobject',true)
filtstruct = validstructures(designSpecs,method,'Systemobject',true)

Description
filtstruct = validstructures(designSpecs,'Systemobject',true) returns a structure
of cell arrays, filtstruct, which contains a set of valid filter structures for the filter specification
object designSpecs. When you set 'Systemobject' to true, validstructures returns a list of
structures that support filter System objects. Each field in filtstruct lists a set of filter structures
for the design method specified.

filtstruct = validstructures(designSpecs,method,'Systemobject',true) returns the
valid structures for the filter specification object, designSpecs, and the design method, method, in
a cell array of character vectors.

Examples

Valid Filter Structures

Design a default lowpass filter specification object. Use the validstructures function to obtain
valid design methods and structures in a structure array. Display the fieldnames to see all valid
design methods. Display the valid filter structures for the equiripple field.

D = fdesign.lowpass;
filtstruct = validstructures(D,'SystemObject',true);

fn = fieldnames(filtstruct)

fn = 8x1 cell
 {'butter' }
 {'cheby1' }
 {'cheby2' }
 {'ellip' }
 {'equiripple'}
 {'ifir' }
 {'multistage'}
 {'kaiserwin' }

strs = eval(['filtstruct.' fn{5}])

strs = 1x3 cell
 {'dffir'} {'dffirt'} {'dfsymfir'}

 validstructures

5-1343

Create a highpass filter of order 50 with a 3-dB frequency of 0.2. Obtain the available structures for a
Butterworth design.

D = fdesign.highpass('N,F3dB',50,0.2);
C = validstructures(D,'butter','SystemObject',true)

C = 1x6 cell
 Columns 1 through 4

 {'df1sos'} {'df2sos'} {'df1tsos'} {'df2tsos'}

 Columns 5 through 6

 {'cascadeallpass'} {'cascadewdfallpass'}

Input Arguments
designSpecs — Filter specification object
object

Filter specification object, specified as one of the fdesign functions.

method — Design method
character vector

Design method, specified as a character vector. You can pick a design method from the available
methods given by the designmethods function.

Output Arguments
filtstruct — Available filter structures
structure

Available filter structures, returned as a structure with the fields determined by the input filter
specification object, designSpecs, and the chosen design method.
Data Types: struct

See Also
design | designmethods | designopts | fdesign

Introduced in R2009a

5 Functions

5-1344

visualizeFilterStages
Package: dsp

Visualize filter stages

Syntax
visualizeFilterStages(sysobj)

Description
visualizeFilterStages(sysobj) shows the response of each individual filter stage of the filter
System object using FVTool.

Examples

Filter Signal Through Complex Bandpass Decimator

Filter an input signal through a complex bandpass decimator and visualize the filtered spectrum in a
spectrum analyzer.

Initialization

Create a dsp.ComplexBandpassDecimator System object™ with center frequency set to 2000 Hz,
bandwidth of interest set to 1000 Hz, and sample rate set to 48 kHz. The decimation factor is
computed as the ratio of the sample rate to the bandwidth of interest. The input to the decimator is a
sine wave with a frame length of 1200 samples with tones at 1625 Hz, 2000 Hz, and 2125 Hz. Create
a dsp.SpectrumAnalyzer scope to visualize the signal spectrum.

Fs = 48e3;
CF = 2000;
BW = 1000;
D = Fs/BW;
FrameLength = 1200;
bpdecim = dsp.ComplexBandpassDecimator(D,CF,Fs);

sa = dsp.SpectrumAnalyzer('SampleRate',Fs/D,...
 'YLimits',[-120 40],...
 'FrequencyOffset',CF);

tones = [1625 2000 2125];
sin = dsp.SineWave('SampleRate',Fs,'Frequency',tones,...
 'SamplesPerFrame',FrameLength);

Visualize Filter Stages

Using the visualizeFilterStages function, you can visualize the response of each individual filter
stage using FVTool.

visualizeFilterStages(bpdecim)

 visualizeFilterStages

5-1345

Display Filter info

The info function displays information about the bandpass decimator.

fprintf('%s',info(bpdecim))

Overall Decimation Factor : 48
Bandwidth : 1000 Hz
Number of Filters : 5
Real multiplications per Input Sample: 14.708333
Real additions per Input Sample : 13.833333
Number of Coefficients : 89
Filters:
 Filter 1:
 dsp.FIRDecimator - Decimation Factor : 2
 Filter 2:
 dsp.FIRDecimator - Decimation Factor : 2
 Filter 3:
 dsp.FIRDecimator - Decimation Factor : 2
 Filter 4:
 dsp.FIRDecimator - Decimation Factor : 3
 Filter 5:
 dsp.FIRDecimator - Decimation Factor : 2

5 Functions

5-1346

Stream In and Filter Signal

Construct a for-loop to run for 1000 iterations. In each iteration, stream in 1200 samples (one frame)
of the noisy sine wave and apply the complex bandpass decimator on each frame of the input signal.
Visualize the input and output spectrum in the spectrum analyzer, sa.

for index = 1:1000
 x = sum(sin(),2) + 1e-4*randn(FrameLength,1);
 z = bpdecim(x);
 sa(z);
end

The bandpass decimator with center frequency at 2000 Hz and a bandwidth of 1000 Hz passes the
three sine wave tones at 1625 Hz, 2000 Hz, and 2125 Hz.

Change the center frequency of the decimator to 2400 Hz and filter the signal.

release(bpdecim);
bpdecim.CenterFrequency = 2400

bpdecim =

 dsp.ComplexBandpassDecimator with properties:

 visualizeFilterStages

5-1347

 CenterFrequency: 2400
 Specification: 'Decimation factor'
 DecimationFactor: 48
 StopbandAttenuation: 80
 TransitionWidth: 100
 MinimizeComplexCoefficients: true
 SampleRate: 48000

Configure the spectrum analyzer to show the bandwidth of interest, [-1900, 2900] Hz.

release(sa)
sa.FrequencyOffset = 2400;

Stream in the data and filter the signal.

for index = 1:1000
 x = sum(sin(),2) + 1e-4 * randn(FrameLength,1);
 z = bpdecim(x);
 sa(z);
end

5 Functions

5-1348

The tones at 2000 Hz and 2125 Hz are passed through the decimator, while the tone at 1625 Hz is
filtered out.

Sample Rate Converter Stages

Create a multistage sample rate converter with default properties, corresponding to the combined
three filter stages used to convert from 192 kHz to 44.1 kHz. Visualize the stages.

src = dsp.SampleRateConverter;
visualizeFilterStages(src)

 visualizeFilterStages

5-1349

Input Arguments
sysobj — Filter System object
filter System object

Filter System object, specified as one of the following:

• dsp.ComplexBandpassDecimator
• dsp.SampleRateConverter

See Also
Functions
cost | freqz | info | getActualOutputRate | getFilters | visualizeFilterStages |
getRateChangeFactors

Topics
“Design and Analysis of a Digital Down Converter”
“Digital Up and Down Conversion for Family Radio Service”
“IF Subsampling with Complex Multirate Filters”

Introduced in R2012a

5 Functions

5-1350

visualizeFilterStages
Package: dsp

Display response of digital down converter or digital up converter filter cascade

Syntax
visualizeFilterStages(Conv)
visualizeFilterStages(Conv,'Arithmetic',arithType)
fvt = visualizeFilterStages(Conv)

Description
visualizeFilterStages(Conv) plots the magnitude response of the filter stages and the cascade
response of a digital down converter or digital up converter, Conv. The function plots the response of
the filters up to the second CIC null frequency (or to the first when only one CIC null exists).

visualizeFilterStages(Conv,'Arithmetic',arithType) specifies the arithmetic type of the
filter stages. Set input arithType to 'double', 'single', or 'fixed-point'. When the Conv
object is in an unlocked state, you must specify the arithmetic type. When the Conv object is in a
locked state, the object ignores the arithmetic input argument.

fvt = visualizeFilterStages(Conv) returns the handle to the FVTool object.

Examples

Magnitude Response of Digital Down Converter

Plot the magnitude response of the digital down converter using the fvtool function and the
visualizeFilterStages function.

Create a dsp.DigitalDownConverter System object with the default settings. Using the fvtool
function, plot the magnitude response of the overall filter cascade. The visualizeFilterStages
function in addition plots the magnitude response of the individual filters stages.

dwnConv = dsp.DigitalDownConverter

dwnConv =
 dsp.DigitalDownConverter with properties:

 DecimationFactor: 100
 MinimumOrderDesign: true
 Bandwidth: 200000
 StopbandFrequencySource: 'Auto'
 PassbandRipple: 0.1000
 StopbandAttenuation: 60
 Oscillator: 'Sine wave'
 CenterFrequency: 14000000
 SampleRate: 30000000

 visualizeFilterStages

5-1351

 Show all properties

Using fvtool

If the System object is unlocked, you must specify the filter arithmetic through the 'Arithmetic'
input of the fvtool function. If the System object is locked, the arithmetic input is ignored.

fvtool(dwnConv,'Arithmetic','fixed-point')

Using visualizeFilterStages

To view the magnitude response of the individual filter stages, call the visualizeFilterStages
function.

visualizeFilterStages(dwnConv,'Arithmetic','fixed-point')

5 Functions

5-1352

Input Arguments
Conv — Digital down converter or digital up converter
dsp.DigitalDownConverter | dsp.DigitalUpConverter

Digital down converter or digital up converter, specified as a dsp.DigitalDownConverter or
dsp.DigitalUpConverter System object.

arithType — Arithmetic type
'double' (default) | 'single' | 'fixed-point'

Arithmetic type of the filter stages, specified as 'double', 'single', or 'fixed-point'. When the
Conv object is in an unlocked state, you must specify the arithmetic type. When the Conv object is in
a locked state, the object ignores the arithmetic input argument.

See Also
Functions
getInterpolationFactors | getDecimationFactors | getFilterOrders | fvtool |
groupDelay | getFilters

Objects
dsp.DigitalDownConverter | dsp.DigitalUpConverter

 visualizeFilterStages

5-1353

Introduced in R2012a

5 Functions

5-1354

wdf2allpass
Wave Digital Filter to allpass coefficient transformation

Syntax
a = wdf2allpass(w)
A = wdf2allpass(W)

Description
a = wdf2allpass(w) accepts a vector of transformed real allpass coefficients, w, and returns the
conventional allpass polynomial version a. w is used by allpass filter objects such as
dsp.AllpassFilter, and dsp.CoupledAllpassFilter, with Structure set to 'Wave Digital
Filter'.

A = wdf2allpass(W) accepts the cell array of transformed allpass coefficient vectors W. Each cell
of W contains the transformed real coefficients of a section of a cascade allpass filter. The output A is
also a cell array, and each cell of A contains the conventional polynomial version of the corresponding
cell of W. W is used by allpass filter objects such as dsp.AllpassFilter and
dsp.CoupledAllpassFilter, with Structure set to 'Wave Digital Filter'. Every cell of W
must contain a real vector of length 1,2, or 4. When the length is 4, the second and fourth
components must both be zero. W can be a row or column vector of cells while A is always returned as
column.

Examples

Convert Wave Digital Filter Coefficients to Allpass Polynomial Coefficients

Note: If you are using R2016a or earlier, replace each call to the object with the equivalent step
syntax. For example, obj(x) becomes step(obj,x).

Create a second order allpass filter with wave digital filter coefficients w = [0.5 0]. Convert these
coefficients into polynomial form using wdf2allpass. Assign the polynomial coefficients to an
allpass filter using the 'Minimum multiplier' structure. Pass a random input to both these filters and
compare the outputs.

w = [0.5 0];
allpasswdf = dsp.AllpassFilter('Structure', 'Wave Digital Filter',...
 'WDFCoefficients', w);
a = wdf2allpass(w);
allpass = dsp.AllpassFilter('AllpassCoefficients', a);
in = randn(512, 1);
outputallpasswdf = allpasswdf(in);
outputallpass = allpass(in);
plot(outputallpasswdf-outputallpass)

 wdf2allpass

5-1355

The difference between the two outputs is very small.

Input Arguments
w — Transformed Wave Digital Filter allpass coefficients
scalar | vector of real numbers

Numeric vector of transformed Wave Digital Filter allpass coefficients, specified as a real number. w
can have only length equal to 1,2, and 4. When the length is 4, the second and fourth components
must both be zero. w can be a row or a column vector.
Example: [0.3,-0.2]
Data Types: double | single

W — Transformed Wave Digital Filter allpass coefficients
scalar cell | vector of cells

Cascade of allpass filter coefficients in transformed Wave Digital Filter form, specified as a cell vector.
Every cell of W must contain a real vector of length 1, 2, or 4. When the length is 4, the second and
fourth components must both be zero. W can be a row or a column vector of cells.
Example: {[0.3,-0.2];0.5}

5 Functions

5-1356

Output Arguments
a — allpass filter coefficients
vector of real numbers

Numeric vector of polynomial allpass coefficients, determined as a numeric row vector.
Data Types: double | single

A — allpass filter coefficients
vector cell array

Cascade of allpass filter coefficient, determined as a column of cells, each containing a vector of
length 1, 2, or 4.
Example: {0.3 5.0 0.2}
Data Types: double | single

Algorithms
wdf2allpass provides the inverse operation of allpass2wdf, by transforming the transformed
cascade of allpass coefficients W into their conventional polynomial representation A. Please refer to
the reference page for allpass2wdf for more details about the two representations.

W defines a multisection allpass filter, and wdf2allpass applies separately to each section, with the
same transformation used in the single-section case. In this case, the numeric coefficients vector w
can have order 1, 2, or 4.

The relations between the vector of section coefficients a and w respectively depend on the order, as
follows:

f or order 1:
a1 = w1
f or order 2:
a1 = w2(1 + w1)
a2 = w1
f or order 4:
a2 = w3(1 + w1)
a4 = w1
a1 = a3 = 0

References
[1] M. Lutovac, D. Tosic, B. Evans, Filter Design for Signal Processing using MATLAB and

Mathematica. Prentice Hall, 2001.

See Also
allpass2wdf | ca2tf | latc2tf | dsp.AllpassFilter | dsp.CoupledAllpassFilter

 wdf2allpass

5-1357

Introduced in R2014a

5 Functions

5-1358

window
FIR filter using windowed impulse response

Syntax
h = window(d,fcnhndl,fcnarg,'SystemObject',true)
h = window(d,win,'SystemObject',true)

Description
h = window(d,fcnhndl,fcnarg,'SystemObject',true) designs a single-rate digital filter
System object using the specifications in filter specification object d.

fcnhndl is a handle to a filter design function that returns a window vector, such as the hamming or
blackman functions. fcnarg is an optional argument that returns a window. You pass the function to
window.

h = window(d,win,'SystemObject',true) designs a filter using the vector you supply in win.
The length of vector win must be the same as the impulse response of the filter, which is equal to the
filter order plus one.

Examples

Design a Nyquist Filter Using Kaiser Window

This example designs a filter using the two design techniques of specifying a function handle and
passing a window vector as an input argument.

Use a window vector provided by the kaiser window function to design a Nyquist filter. The window
length must be the filter order plus one.

d = fdesign.nyquist(5,'n',150);
% Kaiser window with beta parameter 2.5
nyqFilter = window(d,'window',kaiser(151,2.5),'SystemObject',true);
fvtool(nyqFilter)

 window

5-1359

See Also
firls | kaiserwin

Introduced in R2011a

5 Functions

5-1360

zerophase
Package: dsp

Zero-phase response of discrete-time filter System object

Syntax
[zphase,w] = zerophase(sysobj)
[zphase,w] = zerophase(sysobj,n)
[zphase,w] = zerophase(___ ,'Arithmetic',arithType)
zerophase(sysobj)

Description
[zphase,w] = zerophase(sysobj) returns the zero-phase response vector, zphase, and the
corresponding frequency vector, w, in radians/sample of the filter System object based on the current
filter coefficients.

[zphase,w] = zerophase(sysobj,n) returns the n-point zero-phase response vector and the
corresponding n-point frequency vector in radians/sample of the filter System object.

[zphase,w] = zerophase(___ ,'Arithmetic',arithType) analyzes the filter System object
based on the arithmetic specified in arithType using either of the previous syntaxes.

zerophase(sysobj) launches fvtool and shows the zero-phase response of the filter System
object.

For more input options, see zerophase in Signal Processing Toolbox.

Examples

Zero-phase Response of Discrete-Time Filter

Create a dsp.FIRFilter System object™ and compute the zero-phase response of the filter.

Fs = 8000;
Fcutoff = 2000;
FIRFilt = dsp.FIRFilter('Numerator', fir1(130,Fcutoff/(Fs/2)));

The zerophase function computes the zero-phase response of the filter and displays the response
using fvtool.

zerophase(FIRFilt)

 zerophase

5-1361

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.Channelizer
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade

5 Functions

5-1362

• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

n — Number of points over which zero-phase response is evaluated
8192 (default) | positive integer

Number of points over which the zero-phase response is evaluated around the upper half of the unit
circle. For an FIR filter where n is a power of two, the computation is done faster using FFTs.
Data Types: double

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

 zerophase

5-1363

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
zphase — Zero-phase response vector
vector

Zero-phase response vector, evaluated at n equally-spaced points around the upper half of the unit
circle, returned as a vector. If n is not specified, the function uses a default value of 8192.
Data Types: double

w — Frequency vector
vector

Frequency vector of length n in radians/sample. w consists of n equally-spaced points around the
upper half of the unit circle (from 0 to π radians/sample). If n is not specified, the function uses a
default value of 8192.
Data Types: double

See Also
Functions
freqz | fvtool | grpdelay | impz | phasez | zerophase | zplane | zerophase

Introduced in R2011a

5 Functions

5-1364

zpk
Package: dsp

Zero-pole-gain conversion of discrete-time filter System object

Syntax
[z,p,k] = zpk(sysobj)
[z,p,k] = zpk(sysobj,'Arithmetic',arithType)

Description
[z,p,k] = zpk(sysobj) returns the zeros, poles, and gain corresponding to the filter System
object in vector z, vector p, and scalar k, respectively.

[z,p,k] = zpk(sysobj,'Arithmetic',arithType) analyzes the filter System object based on
the arithmetic specified in arithType.

For more input options, see zpk in Signal Processing Toolbox.

Examples

Highpass Filter in Zero-Pole-Gain Form

Compute the zero-pole-gain form of the highpass filter using the zpk function.

Design a minimum order highpass FIR filter with a passband frequency of 75 kHz and passband
ripple of 0.2 dB. Specify a sample rate of 200 kHz.

hFilt = dsp.HighpassFilter('PassbandFrequency',75e3,'PassbandRipple',0.2,'SampleRate',200e3)

hFilt =
 dsp.HighpassFilter with properties:

 FilterType: 'FIR'
 DesignForMinimumOrder: true
 StopbandFrequency: 8000
 PassbandFrequency: 75000
 StopbandAttenuation: 80
 PassbandRipple: 0.2000
 SampleRate: 200000

 Show all properties

Find the zeros, poles, and the gain of the designed filter using the zpk function.

[z,p,k] = zpk(hFilt)

z = 8×1 complex

 zpk

5-1365

 17.2236 + 0.0000i
 -3.0709 + 0.0000i
 0.9732 + 0.2300i
 0.9732 - 0.2300i
 0.9954 + 0.0957i
 0.9954 - 0.0957i
 -0.3256 + 0.0000i
 0.0581 + 0.0000i

p = 8×1

 0
 0
 0
 0
 0
 0
 0
 0

k = -0.0023

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade
• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter

5 Functions

5-1366

• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

Output Arguments
z — Zeros
column vector

Zeros of the filter, returned as a column vector.
Data Types: double

p — Poles
column vector

Poles of the filter, returned as a column vector.

 zpk

5-1367

Data Types: double
Complex Number Support: Yes

k — Gain
real scalar

Gain of the filter, returned as a real scalar.
Data Types: double

See Also
Functions
zpk

Topics
“Analysis Methods for Filter System Objects” on page 3-2

Introduced in R2011a

5 Functions

5-1368

zpkbpc2bpc
Zero-pole-gain complex bandpass frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt) returns zeros, Z2, poles,
P2, and gain factor, K2, of the target filter transformed from the complex bandpass prototype by
applying a first-order complex bandpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The original lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places two features of an original filter, located at frequencies Wo1 and
Wo2, at the required target frequency locations, Wt1, and Wt2 respectively. It is assumed that Wt2 is
greater than Wt1. In most of the cases the features selected for the transformation are the band edges
of the filter passbands. In general it is possible to select any feature; e.g., the stopband edge, the DC,
the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

This transformation can also be used for transforming other types of filters; e.g., complex notch filters
or resonators can be repositioned at two distinct desired frequencies at any place around the unit
circle; e.g., in the adaptive system.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);

Create a complex passband from 0.25 to 0.75:

[b, a] = iirlp2bpc(b,a,0.5,[0.25,0.75]);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkbpc2bpc(z,p,k,[0.25, 0.75],[-0.75, -0.25]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Comparing the filters in FVTool shows the example results. Use the features in FVTool to check the
filter coefficients, or other filter analyses.

 zpkbpc2bpc

5-1369

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

See Also
zpkftransf | allpassbpc2bpc | iirbpc2bpc

Introduced in R2011a

5 Functions

5-1370

zpkftransf
Zero-pole-gain frequency transformation

Syntax
[Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen)

Description
[Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen) returns zeros, Z2, poles, P2, and
gain factor, K2, of the transformed lowpass digital filter. The prototype lowpass filter is given with
zeros, Z, poles, P, and gain factor, K. If AllpassDen is not specified it will default to 1. If neither
AllpassNum nor AllpassDen is specified, then the function returns the input filter.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[z2, p2, k2] = zpkftransf(roots(b),roots(a),b(1),AlpNum,AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

After transforming the filter, you get the response shown in the figure, where the passband has been
shifted towards zero.

 zpkftransf

5-1371

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
FTFNum Numerator of the mapping filter
FTFDen Denominator of the mapping filter
Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter

See Also
iirftransf

Introduced in R2011a

5 Functions

5-1372

zpklp2bp
Zero-pole-gain lowpass to bandpass frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt) returns zeros, Z2, poles, P2,
and gain factor, K2, of the target filter transformed from the real lowpass prototype by applying a
second-order real lowpass to real bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located at frequency -Wo, at the
required target frequency location, Wt1, and the second feature, originally at +Wo, at the new
location, Wt2. It is assumed that Wt2 is greater than Wt1. This transformation implements the "DC
Mobility," which means that the Nyquist feature stays at Nyquist, but the DC feature moves to a
location dependent on the selection of Wt.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the
cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the
stopband edge, the DC, the deep minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for transforming other types of filters; e.g.,
real notch filters or resonators can be easily doubled and positioned at two distinct, desired
frequencies.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[B,A] = ellip(3,0.1,30,0.409);
Z = roots(B);
P = roots(A);
K = B(1);
[Z2,P2,K2] = zpklp2bp(Z,P,K, 0.5, [0.2 0.3]);
hfvt = fvtool(B,A,K2*poly(Z2),poly(P2));
legend(hfvt,'Prototype Lowpass Filter', 'Bandpass Filter');
axis([0 1 -70 10]);

 zpklp2bp

5-1373

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
Constantinides, A.G., “Spectral transformations for digital filters,” IEE Proceedings, vol. 117, no. 8,
pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer function parameters in the
discrete-time frequency transformations,” Proceedings 33rd Midwest Symposium on Circuits and
Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time elliptic transfer functions,”
Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.

5 Functions

5-1374

Constantinides, A.G., “Design of bandpass digital filters,” IEEE Proceedings, vol. 1, pp. 1129-1231,
June 1969.

See Also
zpkftransf | allpasslp2bp | iirlp2bp

Introduced in R2011a

 zpklp2bp

5-1375

zpklp2bpc
Zero-pole-gain lowpass to complex bandpass frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt) returns zeros, Z2, poles,
P2, and gain factor, K2, of the target filter transformed from the real lowpass prototype by applying a
first-order real lowpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located at frequency -Wo, at the
required target frequency location, Wt1, and the second feature, originally at +Wo, at the new
location, Wt2. It is assumed that Wt2 is greater than Wt1.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the
cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the
stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real
notch filters or resonators can be doubled and positioned at two distinct desired frequencies at any
place around the unit circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandpass filters for radio receivers from the high-quality prototype lowpass filter.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bpc(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

5 Functions

5-1376

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter. It should be

normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Wt Desired frequency locations in the transformed target filter. They should be
normalized to be between 0 and 1, with 1 corresponding to half the sample
rate.

Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

See Also
zpkftransf | allpasslp2bpc | iirlp2bpc

Introduced in R2011a

 zpklp2bpc

5-1377

zpklp2bs
Zero-pole-gain lowpass to bandstop frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt) returns zeros, Z2, poles, P2,
and gain factor, K2, of the target filter transformed from the real lowpass prototype by applying a
second-order real lowpass to real bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located at frequency -Wo, at the
required target frequency location, Wt1, and the second feature, originally at +Wo, at the new
location, Wt2. It is assumed that Wt2 is greater than Wt1. This transformation implements the "Nyquist
Mobility," which means that the DC feature stays at DC, but the Nyquist feature moves to a location
dependent on the selection of Wo and Wts.

Relative positions of other features of an original filter change in the target filter. This means that it is
possible to select two features of an original filter, F1 and F2, with F1 preceding F2. After the
transformation feature F2 will precede F1 in the target filter. However, the distance between F1 and F2
will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the
cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the
stopband edge, the DC, the deep minimum in the stopband, or other ones.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bs(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments
Variable Description
Z Zeros of the prototype lowpass filter

5 Functions

5-1378

Variable Description
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
Constantinides, A.G., “Spectral transformations for digital filters,” IEEE Proceedings, vol. 117, no. 8,
pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer function parameters in the
discrete-time frequency transformations,” Proceedings 33rd Midwest Symposium on Circuits and
Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time elliptic transfer functions,”
Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE Proceedings, vol. 1, pp. 1129-1231,
June 1969.

See Also
zpkftransf | allpasslp2bs | iirlp2bs

Introduced in R2011a

 zpklp2bs

5-1379

zpklp2bsc
Zero-pole-gain lowpass to complex bandstop frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt) returns zeros, Z2, poles,
P2, and gain factor, K2, of the target filter transformed from the real lowpass prototype by applying a
first-order real lowpass to complex bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located at frequency -Wo, at the
required target frequency location, Wt1, and the second feature, originally at +Wo, at the new
location, Wt2. It is assumed that Wt2 is greater than Wt1. Additionally the transformation swaps
passbands with stopbands in the target filter.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the
cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the
stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real
notch filters or resonators can be doubled and positioned at two distinct desired frequencies at any
place around the unit circle forming a pair of complex notches/resonators.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bsc(z, p, k, 0.5, [0.2, 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

5 Functions

5-1380

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter. It should be

normalized to be between 0 and 1, with 1 corresponding to half the sample
rate.

Wt Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

See Also
zpkftransf | allpasslp2bsc | iirlp2bsc

Introduced in R2011a

 zpklp2bsc

5-1381

zpklp2hp
Zero-pole-gain lowpass to highpass frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt) returns zeros, Z2, poles, P2,
and gain factor, K2, of the target filter transformed from the real lowpass prototype by applying a
first-order real lowpass to real highpass frequency mapping. This transformation effectively places
one feature of an original filter, located at frequency Wo, at the required target frequency location,
Wt, at the same time rotating the whole frequency response by half of the sampling frequency. Result
is that the DC and Nyquist features swap places.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with zeros, Z, poles, P, and the gain factor, K.

Relative positions of other features of an original filter change in the target filter. This means that it is
possible to select two features of an original filter, F1 and F2, with F1 preceding F2. After the
transformation feature F2 will precede F1 in the target filter. However, the distance between F1 and F2
will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not restricted to the cutoff
frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the
stopband edge, the DC, or the deep minimum in the stopband, or other ones.

Lowpass to highpass transformation can also be used for transforming other types of filters; e.g.,
notch filters or resonators can change their position in a simple way without designing them again.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2hp(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments
Variable Description
Z Zeros of the prototype lowpass filter

5 Functions

5-1382

Variable Description
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
Constantinides, A.G., “Spectral transformations for digital filters,” IEE Proceedings, vol. 117, no. 8,
pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer function parameters in the
discrete-time frequency transformations,” Proceedings 33rd Midwest Symposium on Circuits and
Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time elliptic transfer functions,”
Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Frequency transformations for digital filters,” Electronics Letters, vol. 3, no.
11, pp. 487-489, November 1967.

See Also
zpkftransf | allpasslp2hp | iirlp2hp

Introduced in R2011a

 zpklp2hp

5-1383

zpklp2lp
Zero-pole-gain lowpass to lowpass frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt) returns zeros, Z2, poles, P2,
and gain factor, K2, of the target filter transformed from the real lowpass prototype by applying a
first-order real lowpass to real lowpass frequency mapping. This transformation effectively places one
feature of an original filter, located at frequency Wo, at the required target frequency location, Wt.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not restricted to the cutoff
frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the
stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to lowpass transformation can also be used for transforming other types of filters; e.g.,
notch filters or resonators can change their position in a simple way without designing them again.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2lp(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Using zpklp2lp creates the desired half band IIR filter with the transformed features that you
specify in the transformation function. This figure shows the results.

5 Functions

5-1384

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
Constantinides, A.G., “Spectral transformations for digital filters,” IEE Proceedings, vol. 117, no. 8,
pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer function parameters in the
discrete-time frequency transformations,” Proceedings 33rd Midwest Symposium on Circuits and
Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

 zpklp2lp

5-1385

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time elliptic transfer functions,”
Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Frequency transformations for digital filters,” Electronics Letters, vol. 3, no.
11, pp. 487-489, November 1967.

See Also
zpkftransf | allpasslp2lp | iirlp2lp

Introduced in R2011a

5 Functions

5-1386

zpklp2mb
Zero-pole-gain lowpass to M-band frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt) returns zeros, Z2, poles, P2,
and gain factor, K2, of the target filter transformed from the real lowpass prototype by applying an
Mth-order real lowpass to real multibandpass frequency mapping. By default the DC feature is kept at
its original location.

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass) allows you to specify
an additional parameter, Pass, which chooses between using the “DC Mobility” and the "Nyquist
Mobility". In the first case the Nyquist feature stays at its original location and the DC feature is free
to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is
allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located at frequency Wo, at the
required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC,
the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or
resonators can be easily replicated at a number of required frequency locations. A good application
would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'pass');
[z2,p2,k2] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'stop');

 zpklp2mb

5-1387

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

The resulting multiband filter that replicates features from the prototype appears in the figure shown.
Note the accuracy of the replication process.

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
Pass Choice ('pass'/'stop') of passband/stopband at DC, 'pass' being the default
Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

5 Functions

5-1388

References
Franchitti, J.C., “All-pass filter interpolation and frequency transformation problems,” MSc Thesis,
Dept. of Electrical and Computer Engineering, University of Colorado, 1985.

Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and frequency transformation
problem,” Proceedings 20th Asilomar Conference on Signals, Systems and Computers, Pacific Grove,
California, pp. 164-168, November 1986.

Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7, Reading, Massachusetts,
Addison-Wesley, 1987.

Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm for frequency
transformations, Linear Circuits, Systems and Signal Processing: Theory and Application, C. J. Byrnes
et al Eds, Amsterdam: Elsevier, 1988.

See Also
zpkftransf | allpasslp2mb | iirlp2mb

Introduced in R2011a

 zpklp2mb

5-1389

zpklp2mbc
Zero-pole-gain lowpass to complex M-band frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt) returns zeros, Z2, poles, P2,
and gain factor, K2, of the target filter transformed from the real lowpass prototype by applying an
Mth-order real lowpass to complex multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located at frequency Wo, at the
required target frequency locations, Wt1,...,WtM.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. In general it is possible to select any feature, for example, the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

This transformation can also be used for transforming other types of filters; e.g., to replicate notch
filters and resonators at any required location.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);
[z2,p2,k2] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

You could review the coefficients to compare the filters, but the graphical comparison shown here is
quicker and easier.

5 Functions

5-1390

However, looking at the coefficients in FVTool shows the complex nature desired.

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter. It should be

normalized to be between 0 and 1, with 1 corresponding to half the sample
rate.

Wt Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the
sample rate.

Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

See Also
zpkftransf | allpasslp2mbc | iirlp2mbc

Introduced in R2011a

 zpklp2mbc

5-1391

zpklp2xc
Zero-pole-gain lowpass to complex N-point frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt) returns zeros, Z2, poles, P2,
and gain factor, K2, of the target filter transformed from the real lowpass prototype by applying an
Nth-order real lowpass to complex multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype filter created around the unit circle
after the transformation. This transformation effectively places N features of an original filter, located
at frequencies Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the target filter for the
Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is
possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation. For DC mobility feature F2 will precede F1 after the
transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC,
the deep minimum in the stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there will be no band
overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or
resonators can be easily replicated at a number of required frequency locations. A good application
would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xc(z, p, k, [-0.5 0.5], [-0.25 0.25]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

5 Functions

5-1392

Plotting the filters on the same axes lets you compare the results graphically, shown here.

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency values to be transformed from the prototype filter. They should be

normalized to be between 0 and 1, with 1 corresponding to half the sample
rate.

Wt Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

See Also
zpkftransf | allpasslp2xc | iirlp2xc

Introduced in R2011a

 zpklp2xc

5-1393

zpklp2xn
Zero-pole-gain lowpass to N-point frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt) returns zeros, Z2, poles, P2,
and gain factor, K2, of the target filter transformed from the real lowpass prototype by applying an
Nth-order real lowpass to real multipoint frequency transformation, where N is the number of features
being mapped. By default the DC feature is kept at its original location.

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass) allows you to specify
an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist
Mobility". In the first case the Nyquist feature stays at its original location and the DC feature is free
to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is
allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype filter created around the unit circle
after the transformation. This transformation effectively places N features of an original filter, located
at frequencies Wo1,...,WoN, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the target filter for the
Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is
possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation. For DC mobility feature F2 will precede F1 after the
transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an
original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC,
the deep minimum in the stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there will be no band
overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or
resonators can be easily replicated at a number of required frequency locations. A good application
would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);

5 Functions

5-1394

p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xn(z, p, k, [-0.5 0.5], [0 0.25], 'pass');
hfvt = fvtool(b, a, k2*poly(z2), poly(p2));
legend(hfvt,'Original Filter','Half-band Filter');

As demonstrated by the figure, the target filter has the desired response shape and values replicated
from the prototype.

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
Pass Choice ('pass'/'stop') of passband/stopband at DC, 'pass' being the

default
Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassDen Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for Flexible IIR Filter Design,” VII
European Signal Processing Conference (EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United
Kingdom, September 1994.

Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order frequency transformations for IIR
filters,” 38th Midwest Symposium on Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil,
August 1995.

See Also
zpkftransf | allpasslp2xn | iirlp2xn

Introduced in R2011a

 zpklp2xn

5-1395

zpkrateup
Zero-pole-gain complex bandpass frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N) returns zeros, Z2, poles, P2, and
gain factor, K2, of the target filter being transformed from any prototype by applying an Nth-order
rateup frequency transformation, where N is the upsample ratio. Transformation creates N equal
replicas of the prototype filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The original lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
% Upsample the prototype filter 4 times
[z2,p2,k2] = zpkrateup(z, p, k, 4);
% Compare prototype filter with target filter
fvtool(b, a, k2*poly(z2), poly(p2));

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
N Integer upsampling ratio
Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter

5 Functions

5-1396

Variable Description
AllpassNum Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

See Also
zpkrateup | allpassrateup | iirrateup

Introduced in R2011a

 zpkrateup

5-1397

zpkshift
Zero-pole-gain real shift frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt) returns the zeros,Z2 ,
poles, P2, and gain factor, K2, of the target filter transformed from the zeros, poles, and gain factor of
real lowpass prototype by applying a second-order real shift frequency mapping. It also returns the
numerator, AllpassNum, and the denominator, AllpassDen of the allpass mapping filter.

This transformation places one selected feature of an original filter, located at frequency Wo, at the
required target frequency location, Wt. This transformation implements the "DC Mobility," which
means that the Nyquist feature stays at Nyquist, but the DC feature moves to a location dependent on
the selection of Wo and Wt.

Relative positions of other features of an original filter do not change in the target filter. This means
that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature
F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to the cutoff frequency
of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the
DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or
resonators can change their position in a simple way without the need to design them again.

Examples
Rotate frequency response by π/2 radians/sample:

[B,A] = ellip(10,0.1,40,0.25);
% Elliptic lowpass filter with passband frequency 0.25*pi rad/sample
Z = roots(B); % get roots of numerator polynomial- filter zeros
P = roots(A); % get roots of denominator polynomial- filter poles
K = B(1);
[Z2,P2,K2] = zpkshift(Z,P,K,0.25,0.75); % shift by 0.25*pi rad/sample
Num = poly(Z2);
Den = poly(P2);
hfvt = fvtool(B,A,K2*Num,Den);
legend(hfvt,'Original Filter','Rotate by \pi/2 radians/sample');
axis([0 1 -90 10]);

5 Functions

5-1398

See Also
zpkftransf | allpassshift | iirshift

Introduced in R2011a

 zpkshift

5-1399

zpkshiftc
Zero-pole-gain complex shift frequency transformation

Syntax
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,0.5)
[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,-0.5)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt) returns zeros, Z2, poles,
P2, and gain factor, K2, of the target filter transformed from the real lowpass prototype by applying a
first-order complex frequency shift transformation. This transformation rotates all the features of an
original filter by the same amount specified by the location of the selected feature of the prototype
filter, originally at Wo, placed at Wt in the target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass
mapping filter. The prototype lowpass filter is given with zeros, Z, poles, P, and the gain factor, K.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,0.5) performs the Hilbert
transformation, i.e. a 90 degree counterclockwise rotation of an original filter in the frequency
domain.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,-0.5) performs the inverse
Hilbert transformation, i.e. a 90 degree clockwise rotation of an original filter in the frequency
domain.

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

Rotation by π/4 Radians/Sample

Rotation by -0.25:

5 Functions

5-1400

[z2,p2,k2] = zpkshiftc(z, p, k, 0.5, 0.25);
fvtool(b, a, k2*poly(z2), poly(p2));

Rotation by π/2 Radians/Sample

[z2,p2,k2] = zpkshiftc(z, p, k, 0, 0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Rotation by –π/2 Radians/Sample

[z2,p2,k2] = zpkshiftc(z, p, k, 0, -0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Result of Example 1

After performing the rotation, the resulting filter shows the features desired.

Result of Example 2

Similar to the first example, performing the Hilbert transformation generates the desired target filter,
shown here.

 zpkshiftc

5-1401

Result of Example 3

Finally, using the inverse Hilbert transformation creates yet a third filter, as the figure shows.

5 Functions

5-1402

Arguments
Variable Description
Z Zeros of the prototype lowpass filter
P Poles of the prototype lowpass filter
K Gain factor of the prototype lowpass filter
Wo Frequency value to be transformed from the prototype filter
Wt Desired frequency location in the transformed target filter
Z2 Zeros of the target filter
P2 Poles of the target filter
K2 Gain factor of the target filter
AllpassDen Numerator of the mapping filter
AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

References
Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, Prentice-Hall
International Inc., 1989.

Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert transformers, and half-band low-pass
filters,” IEEE Transactions on Education, vol. 32, pp. 314-318, August 1989.

 zpkshiftc

5-1403

See Also
zpkftransf | allpassshiftc | iirshiftc

Introduced in R2011a

5 Functions

5-1404

zplane
Package: dsp

Z-plane zero-pole plot for discrete-time filter System object

Syntax
zplane(sysobj)
zplane(sysobj,'Arithmetic',arithType)
[z,p,k] = zplane(sysobj)

Description
zplane(sysobj) plots the zeros and poles of the filter System object, sysobj, with the unit circle
for reference in the Filter Visualization Tool (FVTool). Each zero is represented with an 'o' and each
pole with a 'x' on the plot. Multiple zeros and poles are indicated by the multiplicity number shown
at the upper right of the zero or pole.

When you run the filter System object with a fixed-point input, the filter becomes a quantized fixed-
point filter, filtQuant. When filtQuant is a quantized filter, zplane(filtQuant) plots the poles
and zeros of the quantized and unquantized filters. The symbols and + represent the zeros and poles
of the quantized filter filtQuant. The plot includes the unit circle for reference.

zplane(sysobj,'Arithmetic',arithType) also analyzes the filter System object, sysobj,
based on the arithmetic specified in arithType.

[z,p,k] = zplane(sysobj) returns the zeros, poles, and the gain of the filter.

For more input options, see zplane in Signal Processing Toolbox.

Examples

Plot Poles and Zeros of Fourth-Order Filter

Create a fourth-order IIR digital filter with a cutoff frequency of 0.6. Plot the poles and zeros of this
filter.

[b,a] = ellip(4,.5,20,.6);
zplane(b,a)

 zplane

5-1405

Quantize the filter by passing a fixed-point input through the filter algorithm. Plot the quantized and
unquantized poles and zeros associated with this filter.

iirFilt = dsp.IIRFilter('Numerator',b,'Denominator',a);
in = fi(randn(15,6),1,15,3);
out = iirFilt(in);
zplane(iirFilt)

5 Functions

5-1406

Input Arguments
sysobj — Input filter
filter System object

Input filter, specified as one of the following filter System objects:

• dsp.AllpassFilter
• dsp.AllpoleFilter
• dsp.BiquadFilter
• dsp.Channelizer
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CoupledAllpassFilter
• dsp.Differentiator
• dsp.FarrowRateConverter
• dsp.FilterCascade

 zplane

5-1407

• dsp.FIRDecimator
• dsp.FIRFilter
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FourthOrderSectionFilter
• dsp.HighpassFilter
• dsp.IIRFilter
• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.LowpassFilter
• dsp.NotchPeakFilter
• dsp.SOSFilter
• dsp.VariableBandwidthFIRFilter
• dsp.VariableBandwidthIIRFilter

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When the
arithmetic input is not specified and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When the arithmetic input is not specified and the System object is locked, the
function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When the 'Arithmetic' input argument is specified as 'Fixed' and the filter object has the data
type of the coefficients set to 'Same word length as input', the arithmetic analysis depends on
whether the System object is unlocked or locked.

• unlocked –– The analysis object function cannot determine the coefficients data type. The function
assumes that the coefficients data type is signed, has a 16-bit word length, and is auto scaled. The
function performs fixed-point analysis based on this assumption.

• locked –– When the input data type is 'double' or 'single', the analysis object function cannot
determine the coefficients data type. The function assumes that the data type of the coefficients is
signed, has a 16-bit word length, and is auto scaled. The function performs fixed-point analysis
based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When the arithmetic input is specified as 'Fixed' and the filter object has the data type of the
coefficients set to a custom numeric type, the object function performs fixed-point analysis based on
the custom numeric data type.

5 Functions

5-1408

Output Arguments
z — Location of zeros
vector

Location of zeros of the filter transfer function on the zplane, returned as a column vector. The zeros
are the roots of the polynomial whose coefficients are given by the numerator coefficients of the filter
System object.

In case there are no zeros, the vector z is set to an empty matrix [].
Data Types: double

p — Location of poles
vector

Location of poles of the filter transfer function on the zplane, returned as a column vector. The poles
are the roots of the polynomial whose coefficients are given by the denominator coefficients of the
filter System object.

In case there are no poles, the vector p is set to an empty matrix [].
Data Types: double

k — Gain of filter
real scalar

Gain of the filter, returned as a real scalar.
Data Types: double

See Also
Functions
freqz | impz | zplane

Introduced in R2011a

 zplane

5-1409

Reference for the Properties of Filter
Objects

6

Multirate Filter Properties
In this section...
“Compatibility” on page 6-2
“Property Summaries” on page 6-2
“Property Details for Multirate Filter Properties” on page 6-5
“References for Multirate Filters” on page 6-12

Compatibility
mfilt objects will be removed in a future release. Refer to the reference page for a specific mfilt
object to see its recommended replacement.

Property Summaries
The following table summarizes the multirate filter properties and provides a brief description of
each. Full descriptions of each property are given in the subsequent section.

Name Values Default Description
BlockLength Positive integers 100 Length of each block of data

input to the FFT used in the
filtering. fftfirinterp
multirate filters include this
property.

DecimationFactor Any positive integer 2 Amount to reduce the input
sampling rate.

DifferentialDelay Any integer 1 Sets the differential delay for the
filter. Usually a value of one or
two is appropriate.

FilterInternals FullPrecision,
MinWordlengths,
SpecifyWordLengths,
SpecifyPrecision

FullPrecision Controls whether the filter sets
the output word and fraction
lengths, and the accumulator
word and fraction lengths
automatically to maintain the
best precision results during
filtering. The default value,
FullPrecision, sets automatic
word and fraction length
determination by the filter.
SpecifyPrecision exposes the
output and accumulator related
properties so you can set your
own word and fraction lengths
for them.

6 Reference for the Properties of Filter Objects

6-2

Name Values Default Description
FilterStructure mfilt structure None Describes the signal flow for the

filter object, including all of the
active elements that perform
operations during filtering —
gains, delays, sums, products,
and input/output. You cannot set
this property — it is always read
only and results from your choice
of mfilt object.

InputOffset Integers 0 Contains the number of input
data samples processed without
generating an output sample.
InputOffset =
mod(length(nx),m) where nx
is the number of input samples
that have been processed so far
and m is the decimation factor.

InterpolationFactor Positive integers 2 Interpolation factor for the filter.
l specifies the amount to
increase the input sampling rate.

NumberOfSections Any positive integer 2 Number of sections used in the
decimator, or in the comb and
integrator portions of CIC filters.

Numerator Array of double values No default values Vector containing the coefficients
of the FIR lowpass filter used for
interpolation.

OverflowMode saturate, [wrap] wrap Sets the mode used to respond to
overflow conditions in fixed-point
arithmetic. Choose from either
saturate (limit the output to the
largest positive or negative
representable value) or wrap (set
overflowing values to the nearest
representable value using
modular arithmetic. The choice
you make affects only the
accumulator and output
arithmetic. Coefficient and input
arithmetic always saturates.
Finally, products never overflow
— they maintain full precision.

 Multirate Filter Properties

6-3

Name Values Default Description
PolyphaseAccum Values depend on filter

type. Either double,
single, or fixed-point
object

0 Stores the value remaining in the
accumulator after the filter
processes the last input sample.
The stored value for
PolyphaseAccum affects the
next output when
PersistentMemory is true and
InputOffset is not equal to 0.
Always provides full precision
values. Compare the
AccumWordLength and
AccumFracLength.

PersistentMemory false or true false Determines whether the filter
states get restored to their
starting values for each filtering
operation. The starting values are
the values in place when you
create the filter if you have not
changed the filter since you
constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.

RateChangeFactors [l,m] [2,3] or [3,2] Reports the decimation (m) and
interpolation (l) factors for the
filter object. Combining these
factors results in the final rate
change for the signal. The default
changes depending on whether
the filter decimates or
interpolates.

States Any m+1-by-n matrix of
double values

2-by-2 matrix,
int32

Stored conditions for the filter,
including values for the
integrator and comb sections. n
is the number of filter sections
and m is the differential delay.
Stored in a filtstates object.

SpecifyWordLengths Vector of integers [16 16 16 16]
bits

6 Reference for the Properties of Filter Objects

6-4

Name Values Default Description
WordLengthPerSection Any integer or a vector of

length 2*n
16 Defines the word length used in

each section while accumulating
the data in the integrator
sections or while subtracting the
data during the comb sections
(using 'wrap' arithmetic). Enter
WordLengthPerSection as a
scalar or vector of length 2*n,
where n is the number of
sections. When
WordLengthPerSection is a
scalar, the scalar value is applied
to each filter section. The default
is 16 for each section in the
decimator.

The following sections provide details about the properties that govern the way multirate filter work.
Creating any multirate filter object puts in place a number of these properties. The following pages
list the mfilt object properties in alphabetical order.

Property Details for Multirate Filter Properties
BitsPerSection

Any integer or a vector of length 2*n.

Defines the bits per section used while accumulating the data in the integrator sections or while
subtracting the data during the comb sections (using wrap arithmetic). Enter bps as a scalar or
vector of length 2*n, where n is the number of sections. When bps is a scalar, the scalar value is
applied to each filter section. The default is 16 for each section in the decimator.

BlockLength

Length of each block of input data used in the filtering.

mfilt.fftfirinterp objects process data in blocks whose length is determined by the value you
set for the BlockLength property. By default the property value is 100. When you set the
BlockLength value, try choosing a value so that [BlockLength + length(filter order)] is a power
of two.

Larger block lengths generally reduce the computation time.

DecimationFactor

Decimation factor for the filter. m specifies the amount to reduce the sampling rate of the input signal.
It must be an integer. You can enter any integer value. The default value is 2.

DifferentialDelay

Sets the differential delay for the filter. Usually a value of one or two is appropriate. While you can set
any value, the default is one and the maximum is usually two.

 Multirate Filter Properties

6-5

FilterInternals

Similar to the FilterInternals pane in FDATool, this property controls whether the filter sets the
output word and fraction lengths automatically, and the accumulator word and fraction lengths
automatically as well, to maintain the best precision results during filtering. The default value,
FullPrecision, sets automatic word and fraction length determination by the filter. Setting
FilterInternals to SpecifyPrecision exposes the output and accumulator related properties
so you can set your own word and fraction lengths for them.
About FilterInternals Mode

There are four usage modes for this that you set using the FilterInternals property in multirate
filters.

• FullPrecision — All word and fraction lengths set to Bmax + 1, called Baccum by Fred Harris in
[2]. Full precision is the default setting.

• MinWordLengths — Minimum Word Lengths
• SpecifyWordLengths — Specify Word Lengths
• SpecifyPrecision — Specify Precision

Full Precision

In full precision mode, the word lengths of all sections and the output are set to Baccum as defined by

Baccum = ceil(Nsecs(Log2(D × M)) + InputWordLength)

where Nsecs is the number of filter sections.

Section fraction lengths and the fraction length of the output are set to the input fraction length.

Here is the display looks for this mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

Minimum Word Lengths

In minimum word length mode, you control the output word length explicitly. When the output word
length is less than Baccum, roundoff noise is introduced at the output of the filter. Hogenauer's bit
pruning theory (refer to [3] in the following References section) states that one valid design criterion
is to make the word lengths of the different sections of the filter smaller than Baccum as well, so that
the roundoff noise introduced by all sections does not exceed the roundoff noise introduced at the
output.

In this mode, the design calculates the word lengths of each section to meet the Hogenauer criterion.
The algorithm subtracts the number of bits computed using eq. 21 in Hogenauer's paper from Baccum
to determine the word length each section.

6 Reference for the Properties of Filter Objects

6-6

To compute the fraction lengths of the different sections, the algorithm notes that the bits thrown out
for this word length criterion are least significant bits (LSB), therefore each bit thrown out at a
particular section decrements the fraction length of that section by one bit compared to the input
fraction length. Setting the output word length for the filter automatically sets the output fraction
length as well.

Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'MinWordLengths'

OutputWordLength: 16

Specify Word Lengths

In this mode, the design algorithm discards the LSBs, adjusting the fraction length so that
unrecoverable overflow does not occur, always producing a reasonable output.

You can specify the word lengths for all sections and the output, but you cannot control the fraction
lengths for those quantities.

To specify the word lengths, you enter a vector of length 2*(NumberOfSections), where each vector
element represents the word length for a section. If you specify a scalar, such as Baccum, the full-
precision output word length, the algorithm expands that scalar to a vector of the appropriate size,
applying the scalar value to each section.

The CIC design does not check that the specified word lengths are monotonically decreasing. There
are some cases where the word lengths are not necessarily monotonically decreasing, for example

hcic=mfilt.cicdecim;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

which are valid CIC filters but the word lengths do not decrease monotonically across the sections.

Here is the display looks like for the SpecifyWordLengths mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyWordLengths'

 Multirate Filter Properties

6-7

SectionWordLengths: [19 18 18 17]

OutputWordLength: 16

Specify Precision

In this mode, you have full control over the word length and fraction lengths of all sections and the
filter output.

When you elect the SpecifyPrecision mode, you must enter a vector of length
2*(NumberOfSections) with elements that represent the word length for each section. When you
enter a scalar such as Baccum, the CIC algorithm expands that scalar to a vector of the appropriate size
and applies the scalar value to each section and the output. The design does not check that this
vector is monotonically decreasing.

Also, you must enter a vector of length 2*(NumberOfSections) with elements that represent the
fraction length for each section as well. When you enter a scalar such as Baccum, the design applies
scalar expansion as done for the word lengths.

Here is the SpecifyPrecision display.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

SectionWordLengths: [19 18 18 17]
SectionFracLengths: [14 13 13 12]

OutputWordLength: 16
OutputFracLength: 11

FilterStructure

Reports the type of filter object, such as a decimator or fractional integrator. You cannot set this
property — it is always read only and results from your choice of mfilt object.

hm = mfilt.firdecim

hm =

 FilterStructure: 'Direct-Form FIR Polyphase Decimator'
 Arithmetic: 'double'
 Numerator: [1x48 double]
 DecimationFactor: 2
 PersistentMemory: false

InputOffset

When you decimate signals whose length is not a multiple of the decimation factor M, the last
samples — (nM +1) to [(n+1)(M) -1], where n is an integer — are processed and used to track where

6 Reference for the Properties of Filter Objects

6-8

the filter stopped processing input data and when to expect the next output sample. If you think of
the filtering process as generating an output for a block of input data, InputOffset contains a count
of the number of samples in the last incomplete block of input data.

Note InputOffset applies only when you set PersistentMemory to true. Otherwise,
InputOffset is not available for you to use.

Two different cases can arise when you decimate a signal:

1 The input signal is a multiple of the filter decimation factor. In this case, the filter processes the
input samples and generates output samples for all inputs as determined by the decimation
factor. For example, processing 99 input samples with a filter that decimates by three returns 33
output samples.

2 The input signal is not a multiple of the decimation factor. When this occurs, the filter processes
all of the input samples, generates output samples as determined by the decimation factor, and
has one or more input samples that were processed but did not generate an output sample.

For example, when you filter 100 input samples with a filter which has decimation factor of 3, you
get 33 output samples, and 1 sample that did not generate an output. In this case, InputOffset
stores the value 1 after the filter run.

InputOffset equal to 1 indicates that, if you divide your input signal into blocks of data with
length equal to your filter decimation factor, the filter processed one sample from a new
(incomplete) block of data. Subsequent inputs to the filter are concatenated with this single
sample to form the next block of length m.

One way to define the value stored in InputOffset is

InputOffset = mod(length(nx),m)

where nx is the number of input samples in the data set and m is the decimation factor.

Storing InputOffset in the filter allows you to stop filtering a signal at any point and start over
from there, provided that the PersistentMemory property is set to true. Being able to resume
filtering after stopping a signal lets you break large data sets in to smaller pieces for filtering. With
PersistentMemory set to true and the InputOffset property in the filter, breaking a signal into
sections of arbitrary length and filtering the sections is equivalent to filtering the entire signal at
once.

xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092
reset(hm1); % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]

ysec =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the entire signal filtered
at once).

 Multirate Filter Properties

6-9

InterpolationFactor

Amount to increase the sampling rate. Interpolation factor for the filter. It specifies the amount to
increase the input sampling rate. It must be an integer. Two is the default value. You may use any
positive value.

NumberOfSections

Number of sections used in the multirate filter. By default multirate filters use two sections, but any
positive integer works.

OverflowMode

The OverflowMode property is specified as one of the following two character vectors indicating
how to respond to overflows in fixed-point arithmetic:

• 'saturate' — saturate overflows.

When the values of data to be quantized lie outside of the range of the largest and smallest
representable numbers (as specified by the applicable word length and fraction length properties),
these values are quantized to the value of either the largest or smallest representable value,
depending on which is closest.

• 'wrap' — wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the largest and smallest
representable numbers (as specified by the data format properties), these values are wrapped
back into that range using modular arithmetic relative to the smallest representable number. You
can learn more about modular arithmetic in Fixed-Point Designer documentation.

These rules apply to the OverflowMode property.

• Applies to the accumulator and output data only.
• Does not apply to coefficients or input data. These always saturate the results.
• Does not apply to products. Products maintain full precision at all times. Your filters do not lose

precision in the products.

Default value

: 'saturate'

Note Numbers in floating-point filters that extend beyond the dynamic range overflow to ±inf.

PolyphaseAccum

The idea behind PolyphaseAccum and AccumWordLength/AccumFracLength is to distinguish
between the adders that always work in full precision (PolyphaseAccum) from the others [the
adders that are controlled by the user (through AccumWordLength and AccumFracLength) and that
may introduce quantization effects when you set property FilterInternals to
SpecifyPrecision.

Given a product format determined by the input word and fraction lengths, and the coefficients word
and fraction lengths, doing full precision accumulation means allowing enough guard bits to avoid
overflows and underflows.

6 Reference for the Properties of Filter Objects

6-10

Property PolyphaseAccum stores the value that was in the accumulator the last time your filter ran
out of input samples to process. The default value for PolyphaseAccum affects the next output only
if PersistentMemory is true and InputOffset is not equal to 0.

PolyphaseAccum stores data in the format for the filter arithmetic. Double-precision filters store
doubles in PolyphaseAccum. Single-precision filter store singles in PolyphaseAccum. Fixed-point
filters store fi objects in PolyphaseAccum.

PersistentMemory

Determine whether the filter states get restored to their starting values for each filtering operation.
The starting values are the values in place when you create the filter if you have not changed the
filter since you constructed it. PersistentMemory returns to zero any state that the filter changes
during processing. States that the filter does not change are not affected.

Determine whether the filter states get restored to their starting values for each filtering operation.
The starting values are the values in place when you create the filter object. PersistentMemory
returns to zero any state that the filter changes during processing. States that the filter does not
change are not affected. Defaults to true — the filter retains memory about filtering operations from
one to the next. Maintaining memory lets you filter large data sets as collections of smaller subsets
and get the same result.
xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092
reset(hm1); % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]

ysec =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the entire signal filtered
at once).

RateChangeFactors

Reports the decimation (m) and interpolation (l) factors for the filter object when you create
fractional integrators and decimators, although m and l are used as arguments to both decimators
and integrators, applying the same meaning. Combining these factors as input arguments to the
fractional decimator or integrator results in the final rate change for the signal.

For decimating filters, the default is [2,3]. For integrators, [3,2].

States

Stored conditions for the filter, including values for the integrator and comb sections. m is the
differential delay and n is the number of sections in the filter.

About the States of Multirate Filters

In the states property you find the states for both the integrator and comb portions of the filter,
stored in a filtstates object. states is a matrix of dimensions m+1-by-n, with the states in CIC
filters apportioned as follows:

 Multirate Filter Properties

6-11

• States for the integrator portion of the filter are stored in the first row of the state matrix.
• States for the comb portion fill the remaining rows in the state matrix.

In the state matrix, state values are specified and stored in double format.

States stores conditions for the delays between each interpolator phase, the filter states, and the
states at the output of each phase in the filter, including values for the interpolator and comb states.

The number of states is (lh-1)*m+(l-1)*(lo+mo) where lh is the length of each subfilter, and l and m
are the interpolation and decimation factors. lo and mo, the input and output delays between each
interpolation phase, are integers from Euclid's theorem such that lo*l-mo*m = -1 (refer to the
reference for more details). Use euclidfactors to get lo and mo for an mfilt.firfracdecim
object.

States defaults to a vector of zeros that has length equal to nstates(hm)

References for Multirate Filters

[1] Fliege, N.J., Multirate Digital Signal Processing, John Wiley and Sons, 1994.

[2] Harris, Fredric J, Multirate Signal Processing for Communication Systems, Prentice Hall PTR,
2004.

[3] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation and Interpolation,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No. 2, April 1981,
pp. 155-162.

[4] Lyons, Richard G., Understanding Digital Signal Processing, Prentice Hall PTR, 2004

[5] Mitra, S.K., Digital Signal Processing, McGraw-Hill, 1998.

[6] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, Inc., 1996.

6 Reference for the Properties of Filter Objects

6-12

	Apps
	Filter Builder
	Logic Analyzer

	Blocks
	Allpass Filter
	Allpole Filter
	Analog Filter Design
	Analytic Signal
	Arbitrary Response Filter
	Array Plot
	Array-Vector Add
	Array-Vector Divide
	Array-Vector Multiply
	Array-Vector Subtract
	Audio Device Writer
	Audio Weighting Filter
	Autocorrelation
	Autocorrelation LPC
	Backward Substitution
	Bandpass Filter
	Bandstop Filter
	Binary File Reader
	Binary File Writer
	Biquad Filter
	Block LMS Filter
	Buffer
	Burg AR Estimator
	Burg Method
	Channelizer
	Channel Synthesizer
	Channelizer HDL Optimized
	Check Signal Attributes
	Chirp
	Cholesky Factorization
	Cholesky Inverse
	Cholesky Solver
	CIC Compensator (Obsolete)
	CIC Compensation Interpolator
	CIC Compensation Decimator
	CIC Decimation
	CIC Filter
	CIC Interpolation
	Colored Noise
	Comb Filter
	Complex Bandpass Decimator
	Complex Cepstrum
	Constant
	Constant Ramp
	Contiguous Copy (Obsolete)
	Convert 1-D to 2-D
	Convert 2-D to 1-D
	Convolution
	Correlation
	Counter
	Covariance AR Estimator
	Covariance Method
	Create Diagonal Matrix
	Cross-Spectrum Estimator
	Cumulative Product
	Cumulative Sum
	Dataflow Subsystem
	dB Conversion
	dB Gain
	DCT
	DC Blocker
	Delay
	Delay Line
	Detrend
	Difference
	Differentiator Filter
	Differentiator Filter (Obsolete)
	Digital Down-Converter
	Digital Up-Converter
	Digital Filter (Obsolete)
	Digital Filter Design
	Discrete Impulse
	Discrete FIR Filter HDL Optimized
	Discrete Transfer Function Estimator
	Downsample
	DSP Constant (Obsolete)
	DWT
	Dyadic Analysis Filter Bank
	Dyadic Synthesis Filter Bank
	Edge Detector
	Event-Count Comparator
	Extract Diagonal
	Extract Triangular Matrix
	Farrow Rate Converter
	Fast Block LMS Filter
	FFT
	Filter Realization Wizard
	FIR Decimation
	FIR Decimation HDL Optimized
	FIR Interpolation
	FIR Halfband Decimator
	FIR Halfband Interpolator
	FIR Rate Conversion
	FIR Rate Conversion HDL Optimized
	Flip
	Forward Substitution
	Frame Conversion
	Frame Status Conversion (Obsolete)
	From Audio Device
	Frequency-Domain Adaptive Filter
	Frequency-Domain FIR Filter
	From Multimedia File
	From Wave Device (Obsolete)
	From Wave File (Obsolete)
	G711 Codec
	Halfband Filter (Obsolete)
	Hampel Filter
	CIC Decimation HDL Optimized
	Complex to Magnitude-Angle HDL Optimized
	HDL Minimum Resource FFT
	HDL Streaming FFT
	FFT HDL Optimized
	IFFT HDL Optimized
	Highpass Filter
	Highpass Filter (Obsolete)
	Hilbert Filter
	Histogram
	IDCT
	Identity Matrix
	IDWT
	IFFT
	IIR Halfband Interpolator
	IIR Halfband Decimator
	Inherit Complexity
	Integer Delay (Obsolete)
	Interpolation
	Inverse Short-Time FFT
	Inverse Sinc Filter
	Kalman Adaptive Filter (Obsolete)
	Kalman Filter
	LDL Factorization
	LDL Inverse
	LDL Solver
	Least Squares Polynomial Fit
	Levinson-Durbin
	LMS Adaptive Filter (Obsolete)
	LMS Filter
	LMS Update
	Lowpass Filter
	Lowpass Filter (Obsolete)
	LPC to LSF/LSP Conversion
	LSF/LSP to LPC Conversion
	LPC to/from Cepstral Coefficients
	LPC to/from RC
	LPC/RC to Autocorrelation
	LU Factorization
	LU Inverse
	LU Solver
	Magnitude FFT
	Matrix 1-Norm
	Matrix Exponential
	Matrix Product
	Matrix Sum (Obsolete)
	Matrix Viewer
	Maximum
	Mean
	Median
	Median Filter
	MIDI Controls
	Minimum
	Modified Covariance AR Estimator
	Modified Covariance Method
	Moving Average
	Moving Maximum
	Moving Minimum
	Moving RMS
	Moving Variance
	Moving Standard Deviation
	Multiphase Clock
	Multiport Selector
	N-Sample Enable
	N-Sample Switch
	NCO
	NCO HDL Optimized
	Normalization
	Notch-Peak Filter
	Nyquist Filter
	Octave Filter
	Offset
	Overlap-Add FFT Filter (Obsolete)
	Overlap-Save FFT Filter (Obsolete)
	Overwrite Values
	Pad
	Parametric Equalizer
	Parametric EQ Filter (Obsolete)
	Peak Finder
	Peak-Notch Filter
	Periodogram
	Permute Matrix
	Phase Extractor
	Polynomial Evaluation
	Polynomial Stability Test
	Power Meter
	Pseudoinverse
	Pulse Shaping Filter (Obsolete)
	QR Factorization
	QR Solver
	Queue
	Random Source
	Real Cepstrum
	Reciprocal Condition
	Repeat
	RLS Adaptive Filter (Obsolete)
	RLS Filter
	RMS
	Sample and Hold
	Sample-Rate Converter
	Scalar Quantizer (Obsolete)
	Scalar Quantizer Decoder
	Scalar Quantizer Design
	Scalar Quantizer Encoder
	Short-Time FFT
	Signal From Workspace
	Signal To Workspace
	Sine Wave
	Singular Value Decomposition
	Sort
	Spectrum Analyzer
	Spectrum Estimator
	Stack
	Standard Deviation
	Submatrix
	SVD Solver
	Time Scope
	Toeplitz
	To Audio Device
	To Multimedia File
	To Wave Device (Obsolete)
	To Wave File (Obsolete)
	Triggered Delay Line (Obsolete)
	Triggered Signal From Workspace
	Triggered To Workspace
	Two-Channel Analysis Subband Filter
	Two-Channel Synthesis Subband Filter
	UDP Receive
	UDP Send
	Unbuffer
	Uniform Decoder
	Uniform Encoder
	Unwrap
	Upsample
	Variable Bandwidth FIR Filter
	Variable Bandwidth IIR Filter
	Variable Fractional Delay
	Variable Integer Delay (Obsolete)
	Variable Selector
	Variance
	Vector Quantizer Decoder
	Vector Quantizer Design
	Vector Quantizer Encoder
	Waterfall
	Window Function
	Yule-Walker AR Estimator
	Yule-Walker Method
	Zero Crossing
	Zoom FFT

	Analysis Methods for Filter System Objects
	Analysis Methods for Filter System Objects

	System Objects
	powermeter
	dsp.AdaptiveLatticeFilter
	dsp.AffineProjectionFilter
	dsp.AllpassFilter
	dsp.AllpoleFilter
	dsp.AnalyticSignal
	dsp.ArrayPlot
	dsp.ArrayVectorAdder
	dsp.ArrayVectorAdder.step
	dsp.ArrayVectorDivider
	dsp.ArrayVectorDivider.step
	dsp.ArrayVectorMultiplier
	dsp.ArrayVectorMultiplier.step
	dsp.ArrayVectorSubtractor
	dsp.ArrayVectorSubtractor.step
	dsp.AsyncBuffer
	audioDeviceWriter
	getAudioDevices
	dsp.AudioFileReader
	dsp.AudioFileWriter
	dsp.AudioPlayer
	dsp.AudioPlayer.step
	dsp.AudioRecorder
	dsp.AudioRecorder.step
	dsp.Autocorrelator
	dsp.BinaryFileReader
	dsp.BinaryFileWriter
	dsp.BiquadFilter
	dsp.BlockLMSFilter
	dsp.Buffer
	dsp.BurgAREstimator
	dsp.BurgAREstimator.step
	dsp.BurgSpectrumEstimator
	dsp.BurgSpectrumEstimator.step
	dsp.CepstralToLPC
	dsp.CepstralToLPC.step
	dsp.Channelizer
	dsp.ChannelSynthesizer
	dsp.Chirp
	dsp.CICCompensationDecimator
	dsp.CICCompensationInterpolator
	dsp.CICDecimator
	dsp.CICInterpolator
	dsp.HDLCICDecimation
	dsp.ColoredNoise
	dsp.ComplexBandpassDecimator
	dsp.Convolver
	dsp.Counter
	dsp.CoupledAllpassFilter
	dsp.CrossSpectrumEstimator
	dsp.Crosscorrelator
	dsp.CumulativeProduct
	dsp.CumulativeSum
	dsp.DCBlocker
	dsp.DCT
	dsp.DCT.step
	dsp.Delay
	dsp.DelayLine
	dsp.Differentiator
	dsp.DigitalDownConverter
	dsp.DigitalUpConverter
	getInterpolationFactors
	dsp.DyadicAnalysisFilterBank
	dsp.DyadicSynthesisFilterBank
	dsp.FarrowRateConverter
	dsp.FastTransversalFilter
	dsp.FFT
	dsp.FilterCascade
	addStage
	generateFilteringCode
	getNumStages
	releaseStages
	removeStage
	dsp.FilteredXLMSFilter
	dsp.FIRDecimator
	dsp.FIRFilter
	dsp.HDLFIRFilter
	dsp.HDLFIRDecimation
	dsp.FIRHalfbandDecimator
	dsp.FIRHalfbandInterpolator
	dsp.FIRInterpolator
	dsp.FIRRateConverter
	dsp.FrequencyDomainAdaptiveFilter
	dsp.FrequencyDomainFIRFilter
	dsp.HampelFilter
	dsp.HDLChannelizer
	dsp.HDLComplexToMagnitudeAngle
	dsp.HDLFIRRateConverter
	dsp.HDLFFT
	dsp.HDLIFFT
	dsp.HDLNCO
	dsp.HighpassFilter
	dsp.Histogram
	dsp.IDCT
	dsp.IDCT.step
	dsp.IFFT
	dsp.IIRFilter
	dsp.IIRHalfbandDecimator
	dsp.IIRHalfbandInterpolator
	dsp.Interpolator
	dsp.KalmanFilter
	dsp.LDLFactor
	dsp.LDLFactor.step
	dsp.LevinsonSolver
	dsp.LevinsonSolver.step
	dsp.LMSFilter
	dsp.LogicAnalyzer
	dsp.LowerTriangularSolver
	dsp.LowpassFilter
	dsp.LPCToAutocorrelation
	dsp.LPCToAutocorrelation.step
	dsp.LPCToCepstral
	dsp.LPCToCepstral.step
	dsp.LPCToLSF
	dsp.LPCToLSF.reset
	dsp.LPCToLSF.step
	dsp.LPCToLSP
	dsp.LPCToLSP.reset
	dsp.LPCToLSP.step
	dsp.LPCToRC
	dsp.LPCToRC.step
	dsp.LSFToLPC
	dsp.LSFToLPC.step
	dsp.LSPToLPC
	dsp.LSPToLPC.step
	dsp.LUFactor
	dsp.LUFactor.step
	dsp.MatFileReader
	dsp.MatFileWriter
	dsp.MatrixViewer
	dsp.Maximum
	dsp.Mean
	dsp.Median
	dsp.MedianFilter
	dsp.Minimum
	dsp.MovingAverage
	dsp.MovingMaximum
	dsp.MovingMinimum
	dsp.MovingRMS
	dsp.MovingStandardDeviation
	dsp.MovingVariance
	dsp.NCO
	dsp.Normalizer
	dsp.NotchPeakFilter
	dsp.ParametricEQFilter
	dsp.ParametricEQFilter.getBandwidth
	dsp.ParametricEQFilter.getCenterFrequency
	dsp.ParametricEQFilter.getOctaveBandwidth
	dsp.ParametricEQFilter.getPeakGain
	dsp.ParametricEQFilter.getPeakGaindB
	dsp.ParametricEQFilter.getQualityFactor
	dsp.ParametricEQFilter.reset
	dsp.ParametricEQFilter.step
	dsp.ParametricEQFilter.tf
	dsp.PeakFinder
	dsp.PeakToPeak
	dsp.PeakToRMS
	dsp.PhaseExtractor
	dsp.PhaseUnwrapper
	dsp.PulseMetrics
	dsp.RCToAutocorrelation
	dsp.RCToAutocorrelation.step
	dsp.RCToLPC
	dsp.RCToLPC.step
	dsp.RLSFilter
	dsp.RMS
	dsp.SampleRateConverter
	dsp.ScalarQuantizerDecoder
	dsp.ScalarQuantizerEncoder
	dsp.SignalSink
	dsp.SignalSource
	dsp.SineWave
	dsp.SOSFilter
	dsp.SpectrumAnalyzer
	dsp.SpectrumEstimator
	dsp.StandardDeviation
	dsp.StateLevels
	dsp.SubbandAnalysisFilter
	dsp.SubbandSynthesisFilter
	dsp.TimeScope
	timescope
	dsp.TransferFunctionEstimator
	dsp.TransitionMetrics
	dsp.UDPReceiver
	dsp.UDPSender
	dsp.UniformDecoder
	dsp.UniformEncoder
	dsp.UpperTriangularSolver
	dsp.VariableBandwidthFIRFilter
	dsp.VariableBandwidthIIRFilter
	dsp.VariableFractionalDelay
	dsp.VariableIntegerDelay
	dsp.Variance
	dsp.VectorQuantizerDecoder
	dsp.VectorQuantizerEncoder
	dsp.Window
	dsp.ZeroCrossingDetector
	dsp.ZoomFFT
	SpectrumAnalyzerConfiguration
	SpectralMaskSpecification
	ArrayPlotConfiguration
	dsp.DynamicFilterVisualizer
	dsp.FourthOrderSectionFilter
	dsp.ISTFT
	dsp.STFT

	Functions
	addCursor
	addDivider
	addWave
	allpass2wdf
	allpassbpc2bpc
	allpasslp2bp
	allpasslp2bpc
	allpasslp2bs
	allpasslp2bsc
	allpasslp2hp
	allpasslp2lp
	allpasslp2mb
	allpasslp2mbc
	allpasslp2xc
	allpasslp2xn
	allpassrateup
	allpassshift
	allpassshiftc
	autoscale
	bandedgeFrequencies
	block
	butter
	ca2tf
	cascade
	centerFrequencies
	cheby1
	cheby2
	cl2tf
	coeffs
	coeffs
	coeread
	coewrite
	constraincoeffwl
	convert
	cost
	cost
	cost
	getFilters
	info
	cumsec
	deleteCursor
	deleteDisplayChannel
	getFilter
	fvtool
	denormalize
	design
	designFracDelayFIR
	designMultirateFIR
	designMultistageDecimator
	designMultistageInterpolator
	designmethods
	designoptions
	designopts
	dfilt
	dfilt.allpass
	dfilt.calattice
	dfilt.calatticepc
	dfilt.cascade
	dfilt.cascadeallpass
	dfilt.cascadewdfallpass
	dfilt.delay
	dfilt.df1
	dfilt.df1sos
	dfilt.df1t
	dfilt.df1tsos
	dfilt.df2
	dfilt.df2sos
	dfilt.df2t
	dfilt.df2tsos
	dfilt.dfasymfir
	dfilt.dffir
	dfilt.dffirt
	dfilt.dfsymfir
	dfilt.farrowfd
	dfilt.farrowlinearfd
	dfilt.fftfir
	dfilt.latticeallpass
	dfilt.latticear
	dfilt.latticearma
	dfilt.latticemamax
	dfilt.latticemamin
	dfilt.parallel
	dfilt.scalar
	dfilt.wdfallpass
	disp
	double
	dsp.util.getLogsArray
	dsp.util.getSignalPath
	dsp.util.SignalPath
	dsp_links
	dsplib
	dspunfold
	ellip
	euclidfactors
	equiripple
	fcfwrite
	filterDesigner
	fdesign
	fdesign.arbgrpdelay
	fdesign.arbmag
	fdesign.arbmagnphase
	fdesign.audioweighting
	fdesign.bandpass
	fdesign.bandstop
	fdesign.ciccomp
	fdesign.comb
	fdesign.decimator
	fdesign.differentiator
	fdesign.fracdelay
	fdesign.halfband
	fdesign.highpass
	fdesign.hilbert
	fdesign.interpolator
	fdesign.isinchp
	fdesign.isinclp
	fdesign.lowpass
	fdesign.notch
	fdesign.nyquist
	fdesign.octave
	fdesign.parameq
	fdesign.peak
	fdesign.polysrc
	fdesign.pulseshaping
	fdesign.rsrc
	fftcoeffs
	filterBuilder
	filtstates.cic
	fircband
	fireqint
	firceqrip
	fircls
	firgr
	firhalfband
	firlp2lp
	firlp2hp
	firlpnorm
	firls
	firminphase
	firnyquist
	firpr2chfb
	firtype
	freqrespest
	freqrespopts
	freqsamp
	freqz
	freqz
	freqz
	info
	fvtool
	fvtool
	fvtool
	gain
	generatehdl
	getPolynomialCoefficients
	getActualOutputRate
	getRateChangeFactors
	getBandwidth
	getBranches
	getCenterFrequency
	getCursorInfo
	getCursorTags
	getDecimationFactors
	getDisplayChannelInfo
	getDisplayChannelTags
	getFilterOrders
	getFilters
	groupDelay
	getFixedPointInfo
	getFilters
	getLatency
	getLatency
	getLatency
	getLatency
	generateScript
	getSpectralMaskStatus
	getSpectrumData
	getMeasurementsData
	getOctaveBandwidth
	getQualityFactor
	tf
	grpdelay
	help
	hide
	ifir
	iirbpc2bpc
	iircomb
	iirftransf
	iirgrpdelay
	iirlinphase
	iirlp2bp
	iirlp2bpc
	iirlp2bs
	iirlp2bsc
	iirlp2hp
	iirlp2lp
	iirlp2mb
	iirlp2mbc
	iirlp2xc
	iirlp2xn
	iirlpnorm
	iirlpnormc
	iirls
	iirnotch
	iirparameq
	iirpeak
	iirpowcomp
	iirrateup
	iirshift
	iirshiftc
	impz
	impzlength
	info
	info
	info
	info
	isDone
	info
	read
	write
	peek
	readHeader
	getFrequencyVector
	getFrequencyVector
	getRBW
	int
	isallpass
	isfir
	isDone
	islinphase
	ismaxphase
	isminphase
	isNewDataReady
	isreal
	issos
	isVisible
	isstable
	kaiserwin
	lagrange
	liblinks
	limitcycle
	maxflat
	maxstep
	maximizestopband
	measure
	mfilt
	mfilt.cascade
	mfilt.cicdecim
	mfilt.cicinterp
	mfilt.farrowsrc
	mfilt.fftfirinterp
	mfilt.firdecim
	mfilt.firinterp
	mfilt.firsrc
	mfilt.firtdecim
	mfilt.holdinterp
	mfilt.iirdecim
	mfilt.iirinterp
	mfilt.iirwdfdecim
	mfilt.iirwdfinterp
	mfilt.linearinterp
	midicallback
	midicontrols
	midiid
	midiread
	midisync
	minimizecoeffwl
	modifyCursor
	modifyDisplayChannel
	moveDisplayChannel
	msepred
	msesim
	multistage
	noisepsd
	noisepsdopts
	norm
	normalize
	normalizefreq
	nstates
	order
	phasedelay
	phasez
	plot
	plot
	polyphase
	polyphase
	qreport
	realizemdl
	rebuffer_delay
	reffilter
	reorder
	scale
	scalecheck
	scaleopts
	setCursorDataLabels
	set2int
	setspecs
	show
	showsignalblockdatatypetable
	sos
	ss
	step
	specifyall
	stepz
	sysobj
	tf
	tf
	tf2ca
	tf2cl
	validstructures
	visualizeFilterStages
	visualizeFilterStages
	wdf2allpass
	window
	zerophase
	zpk
	zpkbpc2bpc
	zpkftransf
	zpklp2bp
	zpklp2bpc
	zpklp2bs
	zpklp2bsc
	zpklp2hp
	zpklp2lp
	zpklp2mb
	zpklp2mbc
	zpklp2xc
	zpklp2xn
	zpkrateup
	zpkshift
	zpkshiftc
	zplane

	Reference for the Properties of Filter Objects
	Multirate Filter Properties
	Compatibility
	Property Summaries
	Property Details for Multirate Filter Properties
	References for Multirate Filters

